WO2005037168A1 - Integral joystick display for a power driven wheelchair - Google Patents

Integral joystick display for a power driven wheelchair Download PDF

Info

Publication number
WO2005037168A1
WO2005037168A1 PCT/US2004/030298 US2004030298W WO2005037168A1 WO 2005037168 A1 WO2005037168 A1 WO 2005037168A1 US 2004030298 W US2004030298 W US 2004030298W WO 2005037168 A1 WO2005037168 A1 WO 2005037168A1
Authority
WO
WIPO (PCT)
Prior art keywords
joystick unit
programmed controller
display
joystick
display screen
Prior art date
Application number
PCT/US2004/030298
Other languages
French (fr)
Inventor
Theodore D. Ii Wakefield
Original Assignee
Invacare Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Invacare Corporation filed Critical Invacare Corporation
Publication of WO2005037168A1 publication Critical patent/WO2005037168A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/10General characteristics of devices characterised by specific control means, e.g. for adjustment or steering
    • A61G2203/14Joysticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/10General characteristics of devices characterised by specific control means, e.g. for adjustment or steering
    • A61G2203/20Displays or monitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S180/00Motor vehicles
    • Y10S180/907Motorized wheelchairs

Definitions

  • the present invention is directed to the field of power driven wheelchairs, in general, and more particularly to an integral joystick display therefor and a method of operating the same.
  • Power driven wheelchairs which may be of the type manufactured by Invacare Corporation of Elyria, Ohio, for example, generally include right and left side drive wheels driven by a motor controller via respectively corresponding right and left side drive motors, all of which being disposed on the wheelchair.
  • a motor drive controller 10 which may be an Invacare MK IVTM controller, for example, controls drive motors 12 and 14 which are mechanically linked respectively to the right side and left side drive wheels of the wheelchair.
  • the controller 10 includes a microcontroller 15 which may be programmed with a plurality of drive programs, each suited for a particular operating environment of the wheelchair.
  • a user interface 16 which may include a joystick 18 and selection switches (not shown) operable by a user is also disposed on the wheelchair in a convenient location to the user.
  • the user interface 16 is generally interfaced to the microcontroller 15 over a two wire serial coupling 20 to permit the user to select a drive program appropriate for operating the wheelchair in its environment and to adjust the direction and speed of the wheelchair within the selected drive program.
  • a main program of the microcontroller 15 which may contain the plurality of drive programs is stored in a non-volatile memory 19, like a read only memory (ROM), for example, which may be integrated into the microcontroller 15 or may be a separate component thereof.
  • ROM read only memory
  • the motor controller 10 is generally powered by a battery source 22, which may be 24 volts, for example, also disposed on the wheelchair.
  • the drive motors 12 and 14 may be of the permanent magnet type and may be either a gearless, brushless AC motor or a brush type DC motor.
  • the microcontroller 15 is interfaced and responsive to the user interface 16 to control drive signals 24 and 26 to motors 12 and 14, respectively, via a power switching arrangement configured in accordance with the motor type being driven.
  • the power switching arrangement may be powered by the 24V battery 22.
  • appropriate drive signals 24 and 26 are controlled by motor controller 10 via microcontroller 15 to drive the motors 12 and 14 accordingly.
  • Motor controller 10 generally controls motor speed to the user setting utilizing a closed loop controller programmed in the microcontroller 15.
  • Actual speed of each motor 12 and 14 may be derived from signals 28 and 30 respectively sensed therefrom.
  • a Hall Effect sensor may be disposed at the motor for sensing and generating a signal representative of angular position.
  • the signals 28 and 30 are coupled to the microcontroller 15 which may be programmed to derive motor speed from a change in angular position for use as the actual speed feedback signal for the closed loop speed control of the motor.
  • the voltage Va across the armature and armature current la may be sensed from each motor 12 and 14 and provided to the microcontroller 15 via lines 28 and 30, respectively.
  • Microcontroller 15 may under programmed control derive the actual speed of each motor 12 and 14 from the respective voltage Va and current la measurements thereof for use as the speed feedback signal for the respective closed loop speed control of each motor 12 and 14.
  • a remote programmer 34 which may be electrically coupled to a port of the microcontroller 15 via signal lines 36, for example.
  • Each remote programmer 34 may include a screen 38 for displaying interactive text and graphics and a plurality of pushbuttons 40 for communicating with the microcontroller 15 which is programmed to interact with the programmer 34.
  • a dealer is generally provided with one or more remote programmers for rendering the wheelchair unique to the user's safe operating capabilities.
  • apparatus of a power driven wheelchair for displaying operational parameters thereof comprises: a programmed controller operative to monitor a plurality of operational parameters of the wheelchair; a joystick unit coupled to the programmed controller; and a display screen integral to the joystick unit, wherein the programmed controller being operative to interact with the joystick unit to display a user selected operational parameter of the plurality on the display screen of the joystick unit.
  • a method of displaying operational parameters of a power driven wheelchair on a display screen integral to a joystick unit of the wheelchair comprises the steps of: monitoring a plurality of operational parameters of the wheelchair by a programmed controller; coupling the joystick unit to the programmed controller; utilizing the joystick unit to select an operational parameter of the plurality; and operating the programmed controller to interact with the joystick unit to display the selected operational parameter of the plurality on the display screen of the joystick unit.
  • Figure 1 is a block diagram schematic illustration of an exemplary motor drive arrangement for a power driven wheelchair.
  • FIG. 2 is a block diagram illustration of an interactively operated integral joystick display suitable for embodying the principles of the present invention.
  • Figure 2A is an exemplary screen image suitable for display on the integral joystick display.
  • Figure 3 is a block diagram schematic of an exemplary joystick unit with an integral display suitable for use in the embodiment of Figure 2.
  • Figure 4 is a software flowchart of an exemplary program suitable for use in the embodiment of Figure 2.
  • Figures 5A-5F are exemplary screen images suitable for display on the integral joystick display in a predetermined sequence.
  • FIG. 2 is a block diagram illustration of an interactively operated integral joystick display suitable for embodying the principles of the present invention.
  • a joystick unit 50 having an integral image screen display 52, which may be a liquid crystal display (LCD), for example, interfaces with the microcontroller 15 utilizing signals serially transmitted over the two wire serial cable connection 20 to interactively control the operation of the wheelchair.
  • the joystick unit 50 includes a rotary knob 54 located at the front of the unit near the LCD 52 for setting the maximum speed of the wheelchair.
  • the microcontroller 15 detects a clockwise rotation of the knob 54 via signals over cable 20 and increases the maximum speed of the wheelchair in response thereto.
  • the microcontroller 15 also detects movement of a joystick 56, located at the middle of the unit 50, via signals over cable 20 and provides smooth control of the speed and direction of the wheelchair.
  • the microcontroller 15 further responds to movement of a drive select momentary switch 58 via signals over the cable 20 to control the wheelchair in a drive program selected by the user.
  • the unit 50 additionally includes a one-eighth inch diameter phono plug or jack 60 located at the rear of the unit.
  • a momentary switch 62 which may be an ability switch, for example, may be plugged into the jack 60 such that when the contacts of switch 62 are closed a representative signal is conducted over the cable 20 to the microcontroller 15.
  • an ability switch includes a flexible stem and an integral switch which is normally open. Moreover, a bending of the flexible stem momentarily closes the integral switch thereof.
  • FIG. 3 A block diagram schematic of an exemplary joystick unit 50 suitable for use in the embodiment of Figure 2 is shown in Figure 3.
  • the joystick unit 50 comprises a microcontroller 300 which may be of the type manufactured by Toshiba under the part no. TMPN3150B, for example.
  • the Toshiba microcontroller 300 is designed for serial communication using a proprietary protocol developed by Echelon Corporation, for example. It has serial driver circuits 302 for interacting with the serial cable 20 and internal firmware stored in a read only memory (ROM) 304 executable to send and receive serial data over cable 20. Received serial data from cable 20 may be further processed by application firmware of the microcontroller 300 which may also be stored in ROM 304.
  • the ROM 304 may be external to the microcontroller 300 or integrated therewith.
  • An external analog to digital converter (A/D) 306 may be used to read and digitize voltage signals from the joystick 56 and rotary knob 54 of the unit 50. The digitized signals are received by the microcontroller 300 which transmits them serially over cable 20. Also, input/output (I/O) circuits 308 of the microcontroller 300 are coupled to the switches 58 and 62 for reading the states thereof which may be also transmitted serially over cable 20 by the microcontroller 300. Additional I/O circuits 310 of the microcontroller 300 are coupled to the LCD 52 which is controlled by address (A), data (D), and control (C) lines of the microcontroller 300. At times, data may be temporarily stored in a scratch pad or random access memory (RAM) 312 of the microcontroller 300. Serial protocols, such as CAN and RS232, for example, may be used by the microcontroller 300 for serial communication.
  • the LCD 52 may be of the type manufactured by Hantronix under the part no. HDM12216L, for example. As will become more evident from the following description, all of the data that appears on the display 52 is determined by the microcontroller 15 and transmitted to the joystick unit 50 over cable 20. In the unit 50, the microcontroller 300 receives and translates the serial data from cable 20 and delivers the data directly to the LCD 52 for display in an appropriate screen image format. In the alternative, the microcontroller 300 may receive data from the microcontroller 15 via serial lines 20, process and/or store it in the RAM 312, then transfer it to the LCD 52 for display.
  • the microcontroller 15 receives sensor signals 28 and 30 through an analog-to digital converter unit (A/D) 64 which may be part of the microcontroller 15.
  • the A D unit 64 may sample and digitize the sensor signals 28 and 30 and store the sampled digitized data in a memory 66 which may also be part of the microcontroller 15.
  • the microcontroller 15 is operative under program control to derive from one or both of the sampled, digitized sensor signals: (1) a current speed of the wheelchair in parametric units of miles per hour (mph) or kilometers per hour (kmh) or both; (2) a trip distance traveled since the wheelchair was last powered on in parametric units of miles (MI) or kilometers (KM) or both; and (3) a total distance traveled by the wheelchair.
  • a battery circuit 68 which may be part of the motor controller 10, for example, may be connected to the battery 22 for monitoring certain operational parameters thereof, like voltage and current, for example.
  • circuit 22 may generate signals representative of the current battery voltage and battery current being used, and provide such signals to the A/D unit 64 wherein such signals may be sampled and digitized.
  • the sampled, digitized voltage and current data of the battery 22 may be stored in memory 66.
  • the microcontroller 15 is also programmed to derive from the battery voltage and current data trip battery consumption or battery capacity consumed since the wheelchair was last powered on in parametric units of amp-hours (AH).
  • the derived and measured values may be stored in designated registers of memory 66.
  • the battery circuit 68 may be controlled by the microcontroller 15 to perform a load test on the battery 22 from time to time and measure the current battery condition (BATT) based on each load test.
  • the battery load test is performed automatically and without user intervention.
  • the microcontroller 15 may execute a routine which monitors the battery voltage, time and current load on the battery. During the routine, when the right sequence of events occurs during normal usage of the wheelchair, the load test data is captured and the display is updated as will become more evident from the description below. Factors in the sequence are: battery fully charged, a five minute rest period before the load test, a load on the batteries of 30-40 amperes, and the load is stable long enough for the data to be considered valid.
  • a voltage difference or drop between the rest battery voltage and the loaded battery voltage is read by the microcontroller 15 via A/D 64 and stored in a non-volatile portion of the memory 66, which may be EEPROM, for example.
  • the memory 66 which may be EEPROM, for example.
  • the voltage drop under load is in the approximate range of 0-2.0V, the battery or batteries are considered good. If the voltage drop under load is in the range of 2-2.5V, the battery is considered poor, and if the voltage drop is more that 2.5V, the battery is considered bad.
  • the resulting measured battery status of "GOOD", "POOR” or “BAD” is stored in memory 66 for display when selected as will become better understood from the following description.
  • certain operational parameters of the wheelchair like current speed (speedometer), trip miles or kilometers (trip odometer), total distance in miles or kilometers (odometer), battery capacity consumed since the chair was last powered on (trip amp-hour meter), current battery voltage (battery volts), battery current being used (battery amps), and load test results (good, poor or bad), for example, may be selectively displayed on the integral joystick display 52 via communication over the serial communication cable 20.
  • FIG. 2A An exemplary screen image displayed by the microcontroller 15 on the LCD 52 via microcontroller 300 of unit 50 is shown in Figure 2A.
  • the screen image is a two line (top and bottom) by twelve character length back lighted display which is separated into left side and right side image sections, 80 and 82, respectively.
  • the drive program selected by the user is displayed on the top line of the left side image section 80.
  • Displayed on the bottom line of the left side image section 80 is a battery discharge indicator comprising a line of five character blocks going from E (empty) to F (full). At full charge, all of the blocks are darkened or filled in.
  • the microcontroller 15 is pre-programmed to function in accordance with the following steps.
  • the microcontroller 15 determines the drive program selected by the switch 58 of the joystick unit 50 and stored in memory 66, and sends serial data over cable 20 to render the selected drive program displayed on the top line of the left side screen image section 80 as shown in Figure 2A.
  • the microcontroller 15 calculates battery capacity from the battery voltage using a predetermined table of battery voltage vs. battery capacity relationships, which may be stored in memory 66, for example, and uses a time averaging filter algorithm to obtain a present battery capacity. Data of the present battery capacity is transmitted serially over the cable 20 to the joystick unit 50 to update the line block battery indicator displayed on the bottom line of the left side screen image section 80 as shown in Figure 2A.
  • FIG. 82 of the exemplary screen image of Figure 2 A which is referred to as an information center, is displayed a selected one of the aforementioned operational parameters of the wheelchair on the top and bottom lines thereof.
  • a preprogrammed factory default odometer reading is displayed in the right side section 82 with the parametric unit of miles (MI) displayed on the top line and the total miles traveled by the wheelchair numerically displayed on the bottom line. It is understood that the total distance traveled by the wheelchair may also be displayed in kilometers (KM) just as well.
  • MI parametric unit of miles
  • KM kilometers
  • data representative of all of the operational parameters which are to be displayed are stored in memory 66 in parametric unit format.
  • the selection between English and metric units may be made with the programmer 34 described in connection with the embodiment of Figure 1 and saved in a nonvolatile portion of memory 66.
  • the factory default selection is English, but in countries other than the U.S., like Canada, for example, metric units are preferred.
  • the dealer can perform a change in metric units via the programmer 34 before delivering the wheelchair to the user.
  • a benefit of integrating the display 52 in the joystick unit 50 is to allow the user to interact via the microcontroller 15 with the display 52 through movement of the joystick 56 and/or other switches on the unit 50, for example.
  • One of the user interactions is the selection of the operational parameter to be displayed as will become more evident from the following description.
  • the microcontroller 15 is programmed to detect a command to enter a display select mode which is transmitted over cable 20 from the microcontroller 300 of joystick unit 50 to the microcontroller 15. While in such mode, the microcontroller 15 is further programmed to detect commands transmitted over cable 20 from the microcontroller 300 of unit 50 to determine the operational parameter selected by the user for display in the information center 82.
  • the microcontroller 15 is operative to send the associated operational parameter data serially over cable 20 to the microcontroller 300 of joystick unit 50 to render the units and value of the selected parameter displayed on the top and bottom lines of the information center 82 of the screen image as described above.
  • FIG. 4 An exemplary program suitable for use in the microcontroller 15 for interacting with the joystick unit 50 and display 52 is shown in the flowchart of Figure 4 and typical screen images for the display 52 are shown in Figures 5A-5F.
  • the program monitors the cable 20, for example, to determine if a command is present to enter the display select mode.
  • the microcontroller 300 of unit 50 may generate this command over cable 20 in response to an activation of the switch 62, for example. While the activation switch 62 is utilized to enter the display select mode in the present embodiment, it is understood that other switches may be utilized just as well without deviating from the principles of the present invention.
  • the microcontroller 15 may be default programmed to provide data to the unit 50 for displaying the wheelchair odometer reading such as shown in the screen image of Figure 3.
  • decision block 102 determines if the joystick 56 is moved to a predetermined position, like to the left, for example.
  • the microcontroller 300 of unit 50 detects a joystick movement to the left and sends a command to the microcontroller 15 over cable 20, which command being identified by block 102. If no command is present after a predetermined time period as determined by decision block 104, then execution is returned to block 100 awaiting for the next command for entry into the display select mode. Otherwise, program execution continues at block 106 wherein data of the parametric units and value of an operational parameter next in a predetermined sequence is provided to the microcontroller 300 of unit 50 over cable 20 for display in the screen image of the display 52. For example, if speed of the wheelchair is the next parameter in the predetermined sequence, then the screen image exhibited in Figure 5A will appear on display 52. Thereafter, the program is delayed for a short time period in block 108 and returned to block 102.
  • each operational parameter screen image remains displayed for the time period set in the delay block 108 which may be on the order of two seconds, for example.
  • the user observes the desired parameter on the display 52 he or she may move the joystick 56 to a position away from the left position which will be identified in block 102.
  • program execution will return to block 100 via blocks 102 and 104 and the current screen image will remain until re-entry into the display select mode by the user.
  • display of the selected parameter it will be updated in value by the microcontroller 15 in a timely fashion.

Abstract

Apparatus of a power driven wheelchair for displaying operational parameters thereof comprises: a programmed controller operative to monitor a plurality of operational parameters of the wheelchair; a joystick unit coupled to the programmed controller; and a display screen integral to the joystick unit. The programmed controller is operative to interact with the joystick unit to display a user selected operational parameter of the plurality on the display screen of the joystick unit. In addition, a method of displaying operational parameters of a power driven wheelchair on a display screen integral to a joystick unit of the wheelchair comprises the steps of: monitoring a plurality of operational parameters of the wheelchair by a programmed controller; coupling the joystick unit to the programmed controller; utilizing the joystick unit to select an operational parameter of the plurality; and operating the programmed controller to interact with the joystick unit to display the selected operational parameter of the plurality on the display screen of the joystick unit.

Description

INTEGRAL JOYSTICK DISPLAY FOR A POWER DRIVEN WHEELCHAIR
BACKGROUND OF THE INVENTION
[0001] The present invention is directed to the field of power driven wheelchairs, in general, and more particularly to an integral joystick display therefor and a method of operating the same.
[0002] Power driven wheelchairs which may be of the type manufactured by Invacare Corporation of Elyria, Ohio, for example, generally include right and left side drive wheels driven by a motor controller via respectively corresponding right and left side drive motors, all of which being disposed on the wheelchair. An exemplary illustration of such a motor drive arrangement is shown in the schematic of Figure 1. Referring to Figure 1 , a motor drive controller 10 which may be an Invacare MK IV™ controller, for example, controls drive motors 12 and 14 which are mechanically linked respectively to the right side and left side drive wheels of the wheelchair. The controller 10 includes a microcontroller 15 which may be programmed with a plurality of drive programs, each suited for a particular operating environment of the wheelchair.
[0003] A user interface 16 which may include a joystick 18 and selection switches (not shown) operable by a user is also disposed on the wheelchair in a convenient location to the user. The user interface 16 is generally interfaced to the microcontroller 15 over a two wire serial coupling 20 to permit the user to select a drive program appropriate for operating the wheelchair in its environment and to adjust the direction and speed of the wheelchair within the selected drive program. In the present example, a main program of the microcontroller 15 which may contain the plurality of drive programs is stored in a non-volatile memory 19, like a read only memory (ROM), for example, which may be integrated into the microcontroller 15 or may be a separate component thereof.
[0004] The motor controller 10 is generally powered by a battery source 22, which may be 24 volts, for example, also disposed on the wheelchair. The drive motors 12 and 14 may be of the permanent magnet type and may be either a gearless, brushless AC motor or a brush type DC motor. The microcontroller 15 is interfaced and responsive to the user interface 16 to control drive signals 24 and 26 to motors 12 and 14, respectively, via a power switching arrangement configured in accordance with the motor type being driven. The power switching arrangement may be powered by the 24V battery 22. Thus, as the user adjusts the speed and direction of the wheelchair via the joystick of interface 16, appropriate drive signals 24 and 26 are controlled by motor controller 10 via microcontroller 15 to drive the motors 12 and 14 accordingly.
[0005] Motor controller 10 generally controls motor speed to the user setting utilizing a closed loop controller programmed in the microcontroller 15. Actual speed of each motor 12 and 14 may be derived from signals 28 and 30 respectively sensed therefrom. For example, for AC motors, a Hall Effect sensor may be disposed at the motor for sensing and generating a signal representative of angular position. The signals 28 and 30 are coupled to the microcontroller 15 which may be programmed to derive motor speed from a change in angular position for use as the actual speed feedback signal for the closed loop speed control of the motor. For DC motors, the voltage Va across the armature and armature current la may be sensed from each motor 12 and 14 and provided to the microcontroller 15 via lines 28 and 30, respectively. Microcontroller 15 may under programmed control derive the actual speed of each motor 12 and 14 from the respective voltage Va and current la measurements thereof for use as the speed feedback signal for the respective closed loop speed control of each motor 12 and 14.
[0006] In addition, interaction with the motor controller 10 is performed through a remote programmer 34 which may be electrically coupled to a port of the microcontroller 15 via signal lines 36, for example. Each remote programmer 34 may include a screen 38 for displaying interactive text and graphics and a plurality of pushbuttons 40 for communicating with the microcontroller 15 which is programmed to interact with the programmer 34. A dealer is generally provided with one or more remote programmers for rendering the wheelchair unique to the user's safe operating capabilities.
[0007] Present joystick interface units 16, like the joystick unit interfaced to Invacre's MK IV controller, for example, do not have an interactive display, but rather are only capable of displaying an indication of battery discharge which may be a line bar representative of the charge remaining on the battery 22, for example. It is desirable from both a user and dealer standpoint to have a display which may selectively display screen images of current operational parameters of the wheelchair. Display of such operational parameters of the wheelchair will enhance the ability to know when to replace and service certain components of the wheelchair. [0008] The present invention provides such a display integral to a joystick unit which is already interfaceable to and operable with the microcontroller 15 for hands-on control to render a more convenient and less costly add-on display.
SUMMARY OF THE INVENTION
[0009] In accordance with one aspect of the present invention, apparatus of a power driven wheelchair for displaying operational parameters thereof comprises: a programmed controller operative to monitor a plurality of operational parameters of the wheelchair; a joystick unit coupled to the programmed controller; and a display screen integral to the joystick unit, wherein the programmed controller being operative to interact with the joystick unit to display a user selected operational parameter of the plurality on the display screen of the joystick unit.
[0010] In accordance with another aspect of the present invention, a method of displaying operational parameters of a power driven wheelchair on a display screen integral to a joystick unit of the wheelchair comprises the steps of: monitoring a plurality of operational parameters of the wheelchair by a programmed controller; coupling the joystick unit to the programmed controller; utilizing the joystick unit to select an operational parameter of the plurality; and operating the programmed controller to interact with the joystick unit to display the selected operational parameter of the plurality on the display screen of the joystick unit.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Figure 1 is a block diagram schematic illustration of an exemplary motor drive arrangement for a power driven wheelchair.
[0012] Figure 2 is a block diagram illustration of an interactively operated integral joystick display suitable for embodying the principles of the present invention.
[0013] Figure 2A is an exemplary screen image suitable for display on the integral joystick display.
[0014] Figure 3 is a block diagram schematic of an exemplary joystick unit with an integral display suitable for use in the embodiment of Figure 2.
[0015] Figure 4 is a software flowchart of an exemplary program suitable for use in the embodiment of Figure 2. [0016] Figures 5A-5F are exemplary screen images suitable for display on the integral joystick display in a predetermined sequence.
DETAILED DESCRIPTION OF THE INVENTION
[0017] Figure 2 is a block diagram illustration of an interactively operated integral joystick display suitable for embodying the principles of the present invention. Referring to Figure 2, a joystick unit 50 having an integral image screen display 52, which may be a liquid crystal display (LCD), for example, interfaces with the microcontroller 15 utilizing signals serially transmitted over the two wire serial cable connection 20 to interactively control the operation of the wheelchair. More specifically, the joystick unit 50 includes a rotary knob 54 located at the front of the unit near the LCD 52 for setting the maximum speed of the wheelchair. In the present embodiment, the microcontroller 15 detects a clockwise rotation of the knob 54 via signals over cable 20 and increases the maximum speed of the wheelchair in response thereto. The microcontroller 15 also detects movement of a joystick 56, located at the middle of the unit 50, via signals over cable 20 and provides smooth control of the speed and direction of the wheelchair.
[0018] The microcontroller 15 further responds to movement of a drive select momentary switch 58 via signals over the cable 20 to control the wheelchair in a drive program selected by the user. The unit 50 additionally includes a one-eighth inch diameter phono plug or jack 60 located at the rear of the unit. In the present embodiment, a momentary switch 62, which may be an ability switch, for example, may be plugged into the jack 60 such that when the contacts of switch 62 are closed a representative signal is conducted over the cable 20 to the microcontroller 15. Usually, an ability switch includes a flexible stem and an integral switch which is normally open. Moreover, a bending of the flexible stem momentarily closes the integral switch thereof.
[0019] A block diagram schematic of an exemplary joystick unit 50 suitable for use in the embodiment of Figure 2 is shown in Figure 3. Referring to Figure 3, the joystick unit 50 comprises a microcontroller 300 which may be of the type manufactured by Toshiba under the part no. TMPN3150B, for example. In the present embodiment, the Toshiba microcontroller 300 is designed for serial communication using a proprietary protocol developed by Echelon Corporation, for example. It has serial driver circuits 302 for interacting with the serial cable 20 and internal firmware stored in a read only memory (ROM) 304 executable to send and receive serial data over cable 20. Received serial data from cable 20 may be further processed by application firmware of the microcontroller 300 which may also be stored in ROM 304. The ROM 304 may be external to the microcontroller 300 or integrated therewith.
[0020] An external analog to digital converter (A/D) 306 may be used to read and digitize voltage signals from the joystick 56 and rotary knob 54 of the unit 50. The digitized signals are received by the microcontroller 300 which transmits them serially over cable 20. Also, input/output (I/O) circuits 308 of the microcontroller 300 are coupled to the switches 58 and 62 for reading the states thereof which may be also transmitted serially over cable 20 by the microcontroller 300. Additional I/O circuits 310 of the microcontroller 300 are coupled to the LCD 52 which is controlled by address (A), data (D), and control (C) lines of the microcontroller 300. At times, data may be temporarily stored in a scratch pad or random access memory (RAM) 312 of the microcontroller 300. Serial protocols, such as CAN and RS232, for example, may be used by the microcontroller 300 for serial communication.
[0021] In the present embodiment, the LCD 52 may be of the type manufactured by Hantronix under the part no. HDM12216L, for example. As will become more evident from the following description, all of the data that appears on the display 52 is determined by the microcontroller 15 and transmitted to the joystick unit 50 over cable 20. In the unit 50, the microcontroller 300 receives and translates the serial data from cable 20 and delivers the data directly to the LCD 52 for display in an appropriate screen image format. In the alternative, the microcontroller 300 may receive data from the microcontroller 15 via serial lines 20, process and/or store it in the RAM 312, then transfer it to the LCD 52 for display.
[0022] Returning to Figure 2, the microcontroller 15 receives sensor signals 28 and 30 through an analog-to digital converter unit (A/D) 64 which may be part of the microcontroller 15. The A D unit 64 may sample and digitize the sensor signals 28 and 30 and store the sampled digitized data in a memory 66 which may also be part of the microcontroller 15. In the present embodiment, the microcontroller 15 is operative under program control to derive from one or both of the sampled, digitized sensor signals: (1) a current speed of the wheelchair in parametric units of miles per hour (mph) or kilometers per hour (kmh) or both; (2) a trip distance traveled since the wheelchair was last powered on in parametric units of miles (MI) or kilometers (KM) or both; and (3) a total distance traveled by the wheelchair. All of the resultant derivations may be stored in designated registers of memory 66. [0023] Still further, a battery circuit 68, which may be part of the motor controller 10, for example, may be connected to the battery 22 for monitoring certain operational parameters thereof, like voltage and current, for example. In the present embodiment, circuit 22 may generate signals representative of the current battery voltage and battery current being used, and provide such signals to the A/D unit 64 wherein such signals may be sampled and digitized. The sampled, digitized voltage and current data of the battery 22 may be stored in memory 66. The microcontroller 15 is also programmed to derive from the battery voltage and current data trip battery consumption or battery capacity consumed since the wheelchair was last powered on in parametric units of amp-hours (AH). The derived and measured values may be stored in designated registers of memory 66.
[0024] Further yet, the battery circuit 68 may be controlled by the microcontroller 15 to perform a load test on the battery 22 from time to time and measure the current battery condition (BATT) based on each load test. In the present embodiment, the battery load test is performed automatically and without user intervention. For example, the microcontroller 15 may execute a routine which monitors the battery voltage, time and current load on the battery. During the routine, when the right sequence of events occurs during normal usage of the wheelchair, the load test data is captured and the display is updated as will become more evident from the description below. Factors in the sequence are: battery fully charged, a five minute rest period before the load test, a load on the batteries of 30-40 amperes, and the load is stable long enough for the data to be considered valid.
[0025] A voltage difference or drop between the rest battery voltage and the loaded battery voltage is read by the microcontroller 15 via A/D 64 and stored in a non-volatile portion of the memory 66, which may be EEPROM, for example. In the present battery load test routine, if the voltage drop under load is in the approximate range of 0-2.0V, the battery or batteries are considered good. If the voltage drop under load is in the range of 2-2.5V, the battery is considered poor, and if the voltage drop is more that 2.5V, the battery is considered bad. The resulting measured battery status of "GOOD", "POOR" or "BAD" is stored in memory 66 for display when selected as will become better understood from the following description.
[0026] In accordance with the present invention, certain operational parameters of the wheelchair, like current speed (speedometer), trip miles or kilometers (trip odometer), total distance in miles or kilometers (odometer), battery capacity consumed since the chair was last powered on (trip amp-hour meter), current battery voltage (battery volts), battery current being used (battery amps), and load test results (good, poor or bad), for example, may be selectively displayed on the integral joystick display 52 via communication over the serial communication cable 20.
[0027] An exemplary screen image displayed by the microcontroller 15 on the LCD 52 via microcontroller 300 of unit 50 is shown in Figure 2A. Referring to Figure 2A, in the present embodiment, the screen image is a two line (top and bottom) by twelve character length back lighted display which is separated into left side and right side image sections, 80 and 82, respectively. The drive program selected by the user is displayed on the top line of the left side image section 80. Displayed on the bottom line of the left side image section 80 is a battery discharge indicator comprising a line of five character blocks going from E (empty) to F (full). At full charge, all of the blocks are darkened or filled in. As the battery 22 becomes discharged, the furthest right blocks will progressively become unfilled or disappear a half block at a time until no blocks or segments appear between E and F. At this battery level, the word "RECHARGE" will appear on the second line of the left side image section 80.
[0028] To accomplish the foregoing described left side image screen display, the microcontroller 15 is pre-programmed to function in accordance with the following steps. The microcontroller 15 determines the drive program selected by the switch 58 of the joystick unit 50 and stored in memory 66, and sends serial data over cable 20 to render the selected drive program displayed on the top line of the left side screen image section 80 as shown in Figure 2A. In addition, the microcontroller 15 calculates battery capacity from the battery voltage using a predetermined table of battery voltage vs. battery capacity relationships, which may be stored in memory 66, for example, and uses a time averaging filter algorithm to obtain a present battery capacity. Data of the present battery capacity is transmitted serially over the cable 20 to the joystick unit 50 to update the line block battery indicator displayed on the bottom line of the left side screen image section 80 as shown in Figure 2A.
[0029] On the right side section 82 of the exemplary screen image of Figure 2 A, which is referred to as an information center, is displayed a selected one of the aforementioned operational parameters of the wheelchair on the top and bottom lines thereof. In the example image of Figure 2A, a preprogrammed factory default odometer reading is displayed in the right side section 82 with the parametric unit of miles (MI) displayed on the top line and the total miles traveled by the wheelchair numerically displayed on the bottom line. It is understood that the total distance traveled by the wheelchair may also be displayed in kilometers (KM) just as well. As noted above, data representative of all of the operational parameters which are to be displayed are stored in memory 66 in parametric unit format.
[0030] The selection between English and metric units may be made with the programmer 34 described in connection with the embodiment of Figure 1 and saved in a nonvolatile portion of memory 66. In the present embodiment, the factory default selection is English, but in countries other than the U.S., like Canada, for example, metric units are preferred. The dealer can perform a change in metric units via the programmer 34 before delivering the wheelchair to the user.
[0031] A benefit of integrating the display 52 in the joystick unit 50 is to allow the user to interact via the microcontroller 15 with the display 52 through movement of the joystick 56 and/or other switches on the unit 50, for example. One of the user interactions is the selection of the operational parameter to be displayed as will become more evident from the following description. Thus, the microcontroller 15 is programmed to detect a command to enter a display select mode which is transmitted over cable 20 from the microcontroller 300 of joystick unit 50 to the microcontroller 15. While in such mode, the microcontroller 15 is further programmed to detect commands transmitted over cable 20 from the microcontroller 300 of unit 50 to determine the operational parameter selected by the user for display in the information center 82. And, in response, the microcontroller 15 is operative to send the associated operational parameter data serially over cable 20 to the microcontroller 300 of joystick unit 50 to render the units and value of the selected parameter displayed on the top and bottom lines of the information center 82 of the screen image as described above.
[0032] An exemplary program suitable for use in the microcontroller 15 for interacting with the joystick unit 50 and display 52 is shown in the flowchart of Figure 4 and typical screen images for the display 52 are shown in Figures 5A-5F. Referring to Figure 4, in decisional block 100, the program monitors the cable 20, for example, to determine if a command is present to enter the display select mode. The microcontroller 300 of unit 50 may generate this command over cable 20 in response to an activation of the switch 62, for example. While the activation switch 62 is utilized to enter the display select mode in the present embodiment, it is understood that other switches may be utilized just as well without deviating from the principles of the present invention. Moreover, in the present embodiment, the microcontroller 15 may be default programmed to provide data to the unit 50 for displaying the wheelchair odometer reading such as shown in the screen image of Figure 3.
[0033] When the display select mode is entered as determined by block 100, decision block 102 determines if the joystick 56 is moved to a predetermined position, like to the left, for example. In the present embodiment, the microcontroller 300 of unit 50 detects a joystick movement to the left and sends a command to the microcontroller 15 over cable 20, which command being identified by block 102. If no command is present after a predetermined time period as determined by decision block 104, then execution is returned to block 100 awaiting for the next command for entry into the display select mode. Otherwise, program execution continues at block 106 wherein data of the parametric units and value of an operational parameter next in a predetermined sequence is provided to the microcontroller 300 of unit 50 over cable 20 for display in the screen image of the display 52. For example, if speed of the wheelchair is the next parameter in the predetermined sequence, then the screen image exhibited in Figure 5A will appear on display 52. Thereafter, the program is delayed for a short time period in block 108 and returned to block 102.
[0034] If in block 102, it is identified that the joystick 56 remains in the left position, then data of the operational parameter next in sequence is again provided to the microcontroller 300 of unit 50 for display in the information center of display 52. If the next parameter is trip odometer, then the screen image will appear as shown in Figure 5B. So long as the joystick 56 is maintained in a left position, data will be provided by the microcontroller 15 to the microcontroller 300 of unit 50 to render a scrolling of the screen image of display 52 through the various operational parameters like trip-amp hour meter, battery volts, battery current, and load test results, for example, as shown in the screen images of Figures 5C through 5F, respectively. During scrolling, each operational parameter screen image remains displayed for the time period set in the delay block 108 which may be on the order of two seconds, for example. Whenever, the user observes the desired parameter on the display 52, he or she may move the joystick 56 to a position away from the left position which will be identified in block 102. Thereafter, program execution will return to block 100 via blocks 102 and 104 and the current screen image will remain until re-entry into the display select mode by the user. During display of the selected parameter, it will be updated in value by the microcontroller 15 in a timely fashion. [0035] While the present invention has been described herein above in connection with one or more embodiments, it is understood that such description is presented by way of example with no intent of limiting the invention in any way. Rather, the invention should be construed in breadth and broad scope in accordance with the recitation of the claims appended hereto.

Claims

CLAIMSWhat is claimed is:
1. Apparatus of a power driven wheelchair for displaying operational parameters thereof, said apparatus comprising: a programmed controller operative to monitor a plurality of operational parameters of said wheelchair; a joystick unit coupled to said programmed controller; and a display screen integral to said joystick unit, wherein said programmed controller being operative to interact with said joystick unit to display a user selected operational parameter of said plurality on said display screen of said joystick unit.
2. The apparatus of claim 1 wherein the joystick unit is operative to accommodate user selection of an operational parameter of the plurality and to communicate the user selection to the programmed controller.
3. The apparatus of claim 2 including a memory coupled to said programmed controller for storing data representative of the monitored operational parameters; and wherein the programmed controller is operative in response to the user selection from the joystick unit to access data representative of said user selected operational parameter from said memory and to communicate said accessed data to the joystick unit for display on the display screen.
4. The apparatus of claim 2 wherein the joystick unit comprises a joystick operable by a user to a predetermined position to select an operational parameter for display on the display screen of the joystick unit.
5. The apparatus of claim 4 wherein the joystick unit is operative in response to movement of the joystick to said predetermined position to communicate a second signal to the programmed controller; and wherein the programmed controller being responsive to the second signal to communicate to the joystick unit data representative of a next operational parameter in a predetermined sequence of operational parameters for display on the display screen of the joystick unit.
6. The apparatus of claim 5 wherein the programmed controller is responsive to the second signal when in a display select mode.
7. The apparatus of claim 5 wherein the programmed controller continues to communicate to the joystick unit data representative of the next operational parameter of the sequence at a predetermined rate in response to the second signal.
8. The apparatus of claim 2 including a switch coupled to the joystick unit; wherein the joystick unit being responsive to an activation of said switch to communicate a first signal to the programmed controller; and wherein the programmed controller being responsive to the first signal to enter a display select mode of operation.
9. The apparatus of claim 1 wherein the user selected operational parameter of the plurality is displayed on the display screen of the joystick unit in parametric units.
10. The apparatus of claim 1 wherein the user selected operational parameter is displayed in a predetermined region of the display screen.
11. The apparatus of claim 10 wherein the predetermined region comprises two lines of display.
12. The apparatus of claim 1 including a serial communication cable for coupling the joystick unit to the programmed controller to accommodate serial data communication therebetween.
13. The apparatus of claim 1 wherein the programmed controller comprises a microcontroller.
14. Method of displaying operational parameters of a power driven wheelchair on a display screen integral to a joystick unit of said wheelchair, said method comprising the steps of: monitoring a plurality of operational parameters of said wheelchair by a programmed controller; coupling the joystick unit to said programmed controller; utilizing said joystick unit to select an operational parameter of said plurality; and operating said programmed controller to interact with said joystick unit to display said selected operational parameter of said plurality on said display screen of said joystick unit.
15. The method of claim 14 including the steps of: storing data representative of the monitored operational parameters in a memory coupled to the programmed controller; communicating a selection signal from the joystick unit to the programmed controller; and operating the programmed controller to respond to the selection signal to access data representative of the selected operational parameter from said memory and to communicate said accessed data to the joystick unit for display on the display screen.
16. The method of claim 14 including operating the programmed controller to respond to an activation signal to enter a display select mode of operation.
17. The method of claim 14 including operating a joystick of the joystick unit to a predetermined position to select an operational parameter for display on the display screen of the joystick unit.
18. The method of claim 17 including the steps of: operating the joystick unit to communicate a selection signal to the programmed controller in response to movement of the joystick to the predetermined position; and operating the programmed controller to respond to the selection signal to communicate to the joystick unit data representative of a next operational parameter in a predetermined sequence of operational parameters for display on the display screen of the joystick unit.
19. The method of claim 18 including operating the programmed controller to respond to the selection signal when in a display select mode.
20. The method of claim 18 including operating the programmed controller to continue to communicate to the joystick unit data representative of the next operational parameter of the sequence at a predetermined rate in response to the selection signal.
21. The method of claim 14 including displaying the selected operational parameter on the display screen of the joystick unit in parametric units.
PCT/US2004/030298 2003-10-09 2004-09-16 Integral joystick display for a power driven wheelchair WO2005037168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/681,933 US7003381B2 (en) 2003-10-09 2003-10-09 Integral joystick display for a powder driven wheelchair
US10/681,933 2003-10-09

Publications (1)

Publication Number Publication Date
WO2005037168A1 true WO2005037168A1 (en) 2005-04-28

Family

ID=34422395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/030298 WO2005037168A1 (en) 2003-10-09 2004-09-16 Integral joystick display for a power driven wheelchair

Country Status (2)

Country Link
US (1) US7003381B2 (en)
WO (1) WO2005037168A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027851A3 (en) * 2005-08-31 2007-05-10 Invacare Corp Method and apparatus for setting or modifying programable parameter in power driven wheelchair

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113854B2 (en) * 2003-10-22 2006-09-26 Sunrise Medical Hhg Inc. Personal mobility vehicle control system with input functions programmably mapped to output functions
JP4319048B2 (en) * 2004-01-09 2009-08-26 本田技研工業株式会社 Electric vehicle
US20060076748A1 (en) * 2004-10-08 2006-04-13 Sunrise Medical Hhg Inc. Wheelchair with damping mechanism
US20070050111A1 (en) * 2005-08-31 2007-03-01 Invacare Corp. Method and apparatus for automated positioning of user support surfaces in power driven wheelchair
US20070080003A1 (en) * 2005-10-11 2007-04-12 Sunrise Medical Hhg, Inc. Mode selection for wheelchairs
TW200810738A (en) * 2006-08-31 2008-03-01 Kwang Yang Motor Co Chassis device of electric wheelchair
FR2905482B1 (en) * 2006-09-05 2009-07-03 Bosch Rexroth D S I Soc Par Ac HANDLE FOR A MOBILE DEVICE REMOTE CONTROL, IN PARTICULAR A PUBLIC WORKS EQUIPMENT, AGRICULTURAL OR HANDLING ENGINE.
US7931101B2 (en) * 2006-10-13 2011-04-26 Invacare Corporation Proportional joystick with integral switch
US9201514B1 (en) 2008-10-16 2015-12-01 Danfoss Power Solutions Inc. Joystick grip with integrated display
AU2010319339B2 (en) 2009-11-15 2014-09-04 Invacare Corporation Wheelchair
US8919797B2 (en) 2010-03-16 2014-12-30 Invacare Corp. Wheelchair seat assembly
CA2792631A1 (en) * 2010-03-16 2011-09-22 Invacare Corporation Wheelchair and controller
US8931583B2 (en) 2010-06-24 2015-01-13 Invacare Corporation Wheelchair
US20130192907A1 (en) * 2011-11-02 2013-08-01 Joseph Sarokham Stair climbing wheeled vehicle, and system and method of making and using same
CN103149481B (en) * 2013-01-21 2015-05-06 常州中进医疗器材有限公司 Comprehensive electrically propelled wheelchair tester
CA3170776A1 (en) 2013-12-16 2015-06-25 Pride Mobility Products Corporation Elevated height wheelchair
US10130382B2 (en) * 2014-03-27 2018-11-20 Medtronic Xomed, Inc. Powered surgical handpiece having a surgical tool with an RFID tag
US10000268B1 (en) * 2015-08-20 2018-06-19 Brunswick Corporation Systems and methods for controlling a marine vessel having a joystick with adjustable display
AU2017224130B2 (en) 2016-02-27 2020-03-05 Pride Mobility Products Corporation Adjustable height wheelchair
JP6806621B2 (en) * 2017-04-26 2021-01-06 パラマウントベッド株式会社 Control unit and electric furniture
CN111596084A (en) * 2019-02-21 2020-08-28 广东省医疗器械质量监督检验所 Device for monitoring wheel speed change of electric wheelchair through electromagnetic compatibility test
JP7019014B2 (en) * 2020-12-04 2022-02-14 パラマウントベッド株式会社 Controls and electric furniture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2244684A (en) * 1990-06-06 1991-12-11 Keith Richard Bound Electric four wheel drive wheelchair
WO1995005141A1 (en) * 1993-08-16 1995-02-23 Andersson Thomas Harald Johann A wheel device for a wheel chair

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820966A (en) * 1988-06-13 1989-04-11 Ron Fridman Battery monitoring system
US5248007A (en) * 1989-11-21 1993-09-28 Quest Technologies, Inc. Electronic control system for stair climbing vehicle
US5274311A (en) * 1991-11-13 1993-12-28 Quest Technologies, Inc. Control system network structure
US5799258A (en) * 1996-02-22 1998-08-25 Fidanza; Andre Wheelchair monitoring system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2244684A (en) * 1990-06-06 1991-12-11 Keith Richard Bound Electric four wheel drive wheelchair
WO1995005141A1 (en) * 1993-08-16 1995-02-23 Andersson Thomas Harald Johann A wheel device for a wheel chair

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027851A3 (en) * 2005-08-31 2007-05-10 Invacare Corp Method and apparatus for setting or modifying programable parameter in power driven wheelchair
US7403844B2 (en) 2005-08-31 2008-07-22 Invacare Corporation Method and apparatus for programming parameters of a power driven wheelchair for a plurality of drive settings
US8065051B2 (en) 2005-08-31 2011-11-22 Invacare Corporation Context-sensitive help for display device associated with power driven wheelchair
US8073585B2 (en) 2005-08-31 2011-12-06 Invacare Corporation Method and apparatus for setting or modifying programmable parameters in power driven wheelchair
US8073588B2 (en) 2005-08-31 2011-12-06 Invacare Corporation Method and apparatus for setting or modifying programmable parameter in power driven wheelchair
US8127875B2 (en) 2005-08-31 2012-03-06 Invacare Corporation Power driven wheelchair
US8145373B2 (en) 2005-08-31 2012-03-27 Invacare Corporation Method and apparatus for programming parameters of a power driven wheelchair for a plurality of drive settings
US8285440B2 (en) 2005-08-31 2012-10-09 Invacare Corporation Method and apparatus for setting or modifying programmable parameters in power driven wheelchair
AU2006284747B2 (en) * 2005-08-31 2013-05-02 Invacare Corporation Method and apparatus for setting or modifying programable parameter in power driven wheelchair
US8437899B2 (en) 2005-08-31 2013-05-07 Invacare Corporation Method and apparatus for programming parameters of a power driven wheelchair for a plurality of drive settings
US8646551B2 (en) 2005-08-31 2014-02-11 Invacare Corporation Power driven wheelchair
US8793032B2 (en) 2005-08-31 2014-07-29 Invacare Corporation Method and apparatus for setting or modifying programmable parameter in power driven wheelchair
US8977431B2 (en) 2005-08-31 2015-03-10 Invacare Corporation Method and apparatus for setting or modifying programmable parameter in power driven wheelchair
US9084705B2 (en) 2005-08-31 2015-07-21 Invacare Corporation Method and apparatus for setting or modifying programmable parameters in power driven wheelchair
EP1928386B1 (en) 2005-08-31 2016-04-27 Invacare Corporation Method and apparatus for setting or modifying programable parameter in power driven wheelchair
US9456942B2 (en) 2005-08-31 2016-10-04 Invacare Corporation Method and apparatus for setting or modifying programmable parameter in power driven wheelchair
US9522091B2 (en) 2005-08-31 2016-12-20 Invacare Corporation Method and apparatus for automated positioning of user support surfaces in power driven wheelchair
US10130534B2 (en) 2005-08-31 2018-11-20 Invacare Corporation Method and apparatus for automated positioning of user support surfaces in power driven wheelchair
US11071665B2 (en) 2005-08-31 2021-07-27 Invacare Corporation Method and apparatus for setting or modifying programmable parameter in power driven wheelchair

Also Published As

Publication number Publication date
US20050080518A1 (en) 2005-04-14
US7003381B2 (en) 2006-02-21

Similar Documents

Publication Publication Date Title
US7003381B2 (en) Integral joystick display for a powder driven wheelchair
US5961561A (en) Method and apparatus for remote maintenance, troubleshooting, and repair of a motorized wheelchair
EP0481743B1 (en) Method of displaying a residual electric charge in a battery of an electrically driven vehicle
AU2009230795B2 (en) Method and apparatus for setting speed/response performance parameters of a power driven wheelchair
JP2003220907A (en) Distribution gear for vehicle and auxiliary terminal for user posterior load connection
US8217627B2 (en) System and method for managing power to an electronic apparatus on-board a bicycle
EP1220350A1 (en) Electric device with timer means
JP2002536670A (en) How to measure the state of charge of a battery
JP3705163B2 (en) Vacuum cleaner
US5497323A (en) Trip computer with retroactive reset
JP2003028939A (en) Portable resistance-welding measuring apparatus
CN111071050B (en) Display device
US20210061101A1 (en) Display system and vehicle including the same, and method of showing state of secondary battery
EP1420977B1 (en) Connecting device for an electric work vehicle
JPH10215737A (en) Power reel for fishing
JP2002107429A (en) Method for indicating battery residual capacity in vehicle with electric motor
JP2003009417A (en) Battery charger and battery forklift installed it
CN217066675U (en) Periodontal probe detection device without pedal
KR100388417B1 (en) Apparatus for controlling charging time of electric vehicle and controlling method thereof
KR19990072625A (en) Battery pack and system for charging battery
JPH06213499A (en) Remote controller for air-conditioning machine
JPH1094177A (en) Charger for rechargeable battery
JP2022073461A (en) vehicle
JP2023075694A (en) Power supply feeding system, power supply feeding apparatus and adaptor
CN114248660A (en) Electric vehicle charging control system capable of setting charging capacity and charging setting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase