WO2005045082A1 - AUSTENITIC HIGH Mn STAINLESS STEEL EXCELLENT IN WORKABILITY - Google Patents

AUSTENITIC HIGH Mn STAINLESS STEEL EXCELLENT IN WORKABILITY Download PDF

Info

Publication number
WO2005045082A1
WO2005045082A1 PCT/JP2004/016057 JP2004016057W WO2005045082A1 WO 2005045082 A1 WO2005045082 A1 WO 2005045082A1 JP 2004016057 W JP2004016057 W JP 2004016057W WO 2005045082 A1 WO2005045082 A1 WO 2005045082A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
workability
sfe
less
steel
Prior art date
Application number
PCT/JP2004/016057
Other languages
French (fr)
Japanese (ja)
Inventor
Masaharu Hatano
Eiichiro Ishimaru
Akihiko Takahashi
Original Assignee
Nippon Steel & Sumikin Stainless Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel & Sumikin Stainless Steel Corporation filed Critical Nippon Steel & Sumikin Stainless Steel Corporation
Priority to KR1020057021573A priority Critical patent/KR101177540B1/en
Publication of WO2005045082A1 publication Critical patent/WO2005045082A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the austenite of the present invention is soft, has low work hardenability, has excellent workability such as cold working or deep drawing at a high working rate, and maintains non-magnetism even after working.
  • high-Mn stainless steel Related to high-Mn stainless steel. Background art
  • Austenitic stainless steels are classified into 300 series (SUS304, SUS316, SUS301, etc.) and 200 series (SUS201, SUS202, etc.) specified in JIS SG4305.
  • Ni-based austenitic stainless steel represented by SUS304 has good workability and excellent corrosion resistance, but has the disadvantage of high raw material cost because it contains a large amount of expensive Ni. .
  • SUS304 has a problem in that the austenite phase is metastable, so that martensitic transformation occurs during molding, and the processed product becomes magnetic. .,
  • 200 type austenitic stainless steel is a high Mn stainless steel in which Ni is replaced with Mn, and has high strength and non-magnetic properties because it contains a large amount of C and N. It is also less expensive than Ni-based austenitic stainless steel.
  • high-Mn stainless steels such as SUS201 and SUS202, have higher strength and higher work hardenability than the 300 series in the annealed state, and therefore have high press formability such as cold workability and deep drawing. To There is an inferior problem.
  • 200 series austenitic stainless steel containing 5.5% or less of 1 ⁇ and 5.5% or more of Mn is a high-strength steel for electronic equipment, wires for bicycle spokes, nails for construction and construction materials, etc. Mainly applied to members that require non-magnetism. For this reason, many studies have been made on the high Mn stainless steel for further improvement of high strength non-magnetization.
  • Japanese Patent No. 2618151 and Japanese Patent Application Laid-Open No. Hei 6-235048 disclose that high strength and non-magnetization include a small amount of Nb, Mo, and P by suppressing an increase in Mn and Cr in conjunction with increasing N. It is disclosed that the addition works effectively.
  • Japanese Patent Application Laid-Open Nos. 11-92885 and 2000-34546 disclose reducing the impurity elements of Ca, B and S. Is disclosed to be effective. These low-Ni austenitic stainless steels contain a large amount of N exceeding 0.1%, and have high strength (0.2% power resistance) similar to the above-mentioned high-Mn stainless steel, and have problems in workability. is there.
  • Japanese Patent Application Laid-Open No. 2004-143576 and British Patent No. 2359095 disclose a low Ni austenitic stainless steel with a reduced Cr content in order to improve workability in addition to corrosion resistance. It is disclosed and its mechanical properties are relatively close to SUS304.
  • high-Mn stainless steel with a reduced Ni content is not intended to improve workability to be applied to press forming applications where Ni-based stainless steel represented by SUS304 is used.
  • high-Mn stainless steel that has excellent workability equal to or higher than that of SUS304 and realizes non-magnetism even after processing has not yet emerged. Disclosure of the invention
  • the present invention has been devised to improve the workability of the high-Mn stainless steel described above, and includes C + N, an austenitic stability index Md30 value (° C), a stacking fault energy generation index SFE By designing the component so that (mj / m 2 ) satisfies the specified conditions, austenitic stainless steel that has workability equal to or higher than SUS304 and maintains non-magnetism even after processing is obtained.
  • the purpose is to provide.
  • the gist of the present invention is as follows.
  • the high Mn stainless steel of the present invention has a mass of 0 /. C + N: 0.03 to 0.15%, Si: 0.1 to 1%, Mn: 3 to 15%, Cr: 10 to 16%, Ni: 1 to 6%, Cu: 0.3 to 3%, Mo: 0.3 to It consists of 3%, the balance being Fe and unavoidable impurities, and is characterized by its component design so that the austenitic stability index Md30 value and the stacking fault energy generation index SFE satisfy the following.
  • C + N In order to ensure the workability of press forming such as cold working or deep drawing at a high working rate, C + N must be 0.15% by mass or less, the 0.2% proof stress required in the tensile test should be less than 300MPa,
  • the work hardening index n which is the slope of the nominal strain of 25% and 35% in the true stress logarithmic elongation strain curve, is 0.45 or less.
  • the high Mn stainless steel of the present invention has a 0.2% proof stress because it adopts a composition design of C + N: 0.03 to 0.15%, -10 ⁇ Md30 ⁇ 30, 40 and SFE 80. It is soft with less than 300 MPa, has low work hardening properties, has excellent workability such as cold working or deep drawing working at a high working rate, and maintains non-magnetism even after working. Therefore, it is possible to carry out forming work that cannot be performed with conventional high-Mn stainless steel, and it is used for press forming where Ni-based stainless steel represented by SUS304 is used. Further, annealing for demagnetization after processing SUS304 can be omitted, so that it can be applied in a wide range of fields as a material for forming processing requiring nonmagnetic properties.
  • Figure 1 is a graph showing the effect of Md30 on the elongation of steel.
  • Fig. 2 is a graph showing the effect of the Md30 value on the magnetic permeability of a 60% cold-rolled material.
  • Figure 3 is a graph showing the relationship between SFE and work hardening index n.
  • High Mn stainless steel of the present invention C + N, austenite stability index Md30 value C
  • an index SFE of stacking fault energy (mj / m 2) and the adopted child components designed to satisfy the appropriate range As a result, it has workability equal to or higher than that of SUS304, and maintains non-magnetism even after processing.
  • the function and effect of the composition design of the high Mn stainless steel of the present invention and the reason for limiting the same will be described.
  • C and N are effective elements for stabilizing the austenite phase and suppressing the formation of the ⁇ ferrite phase.
  • these elements increase the 0.2% resistance of steel by solid solution strengthening and lower the workability. Therefore, the upper limit of C + N is set to 0.15%.
  • has a large effect of increasing the power resistance by 0.2% compared to C, ⁇ is preferably designed to be lower than C.
  • design C + N to 0.15% or less (high C). Therefore, it is effective to soften the steel 0.2% resistance to less than 300MPa.
  • C + N is less than 0.03%, not only is it difficult to demagnetize the processed product, but it also imposes a burden on steelmaking costs for reducing C and N. Therefore, the lower limit of C + N is set to 0.03%. A preferred range is from 0.08 to 0.12%.
  • Metastable austenitic stainless steel undergoes martensitic transformation by plastic deformation even at temperatures above the Ms point.
  • the maximum temperature at which a transformation point occurs during processing is called the Md value. That is, the Md value is an index indicating the degree of stability of austenite.
  • the temperature at which 50% martensite occurs when 30% strain is applied by tensile deformation is referred to as the Md30 value.
  • Md30 497-462 (C + N)-9.2Si-8.1Mn-13.7Cr-20 (Ni + Cu)-18.5Mo
  • the Md30 value (° C) defined for the high Mn stainless steel of the present invention It has been found that the workability and the non-magnetism aimed at by the present invention are ensured by designing the temperature in the range of 10 ° C to 30 ° C.
  • the Md30 value is lower than -10 ° C, the elongation of the steel material is reduced (by 50%) due to the high austenite stability, and workability is impaired.
  • the Md30 value exceeds 30 ° C, the elongation of the steel material improves due to the formation of the work-induced martensite ( ⁇ 'phase), but the formed ⁇ , phase has magnetism, and the processed product becomes less magnetic. Take on.
  • the Md30 value is -10 to 30 ° C, the high-Mn stainless steel of the present invention can improve the workability of the steel material while maintaining the non-magnetic properties of the processed product.
  • austenitic stainless steel with fee structure has larger work hardening because stacking faults are easily generated.
  • a component design is adopted which allows easy dislocation cross-slip where stacking faults are hardly generated.
  • the present invention aims to provide an excellent object.
  • Workability was developed.
  • high-Mn stainless steel tends to generate stacking faults and has a large work hardening, so that the workability targeted by the present invention cannot be obtained.
  • the work hardening index n value (the slope of nominal strain of 25% and 35% in the true stress logarithmic elongation strain curve) obtained in the tensile test exceeds 0.45.
  • the n value determined by the tensile test is in the range of 0.3 to 0.45.
  • Soft, low work hardening, non-magnetic steel material that satisfies the Md30 value and SFE of the present invention is a non-magnetic steel that is a problem in Ni-based austenitic stainless steels such as SUS304. And excellent in deep drawability over multiple steps without causing cracks.
  • SUS304 the austenite phase is metastable, so that martensite transformation occurs during processing, and the flange portion becomes too hard during deep drawing, and a residual crack increases due to an increase in residual stress.
  • C + N of the present invention 0.03 to 0.15%, Md30 value: —10 to 30.
  • other alloy elements except C and N of the present invention are selected in the following ranges.
  • Si is effective as a deoxidizing agent at the time of smelting, and 0.1% or more is added to obtain the effect. It is more preferably at least 0.3%. Si is an element that promotes work hardening by strengthening solid solution and lowering SFE. Therefore, the upper limit is 1% or less in order to obtain the 0.2% heat resistance of less than 300 MPa and the work hardening index n value of less than 0.45 of the present invention. Preferably it is less than 0.2-0.7%.
  • Mn works effectively with non-magnetic retention and austenite-forming elements as an alternative to Ni.
  • Mn is added in an amount of 3% or more to obtain these effects. More preferably, it is 5% or more.
  • the upper limit is 15%. Preferably it is 10% or less.
  • Cr is an alloying element necessary for obtaining the corrosion resistance required for stainless steel, and is preferably required to be 10% or more. It is more preferably at least 12%.
  • Cr is an element that promotes work hardening by reducing solid solution strengthening and SFE. Therefore, the upper limit is 16% or less in order to obtain the 0.2% heat resistance of less than 300 MPa and the work hardening index n value of less than 0.45 of the present invention. Preferably it is 15% or less.
  • Ni is an expensive element, and more than 6% of 300 series austenitic stainless steel raises the cost of raw materials. Therefore, Ni is less than 6%. It is preferably at most 5%. Ni is an element necessary for austenitic stainless steel and is an effective element for ensuring non-magnetism and ductility after cold working. Therefore, the lower limit is 1%.
  • Cu is an alloy element effective for lowering the Md30 value defined in the present invention and increasing SFE to improve workability.
  • the lower limit of Cu is set to 0.3% or more. Preferably, it is 1% or more.
  • excessive addition of Cu has the problem of inducing Cu contamination and hot embrittlement during steelmaking.
  • the SFE is excessively increased, resulting in deterioration of workability. Therefore, the upper limit of Cu is set to 3% or less.
  • Mo 0.3-3% It is an element effective for improving corrosion resistance. Further, it is an element effective for lowering the Md30 value defined in the present invention and increasing SFE to improve workability. In order to ensure the corrosion resistance and workability of the high Mn stainless steel of the present invention, the lower limit of Mo is set to 0.3% or more. However, when Mo is contained in excess, magnetism is generated by the formation of ⁇ ferrite, and the strength is increased by solid solution strengthening. Therefore, the upper limit of Mo should be 3% or less.
  • Stainless steel having the chemical composition shown in Table 1 was melted and hot-rolled at a heating temperature of 1200 ° C to produce a hot-rolled steel sheet with a thickness of 4.0 mm.
  • Hot-rolled steel sheet is annealed at 1120 ° C and soaking time of 2 minutes, cold-rolled to 1.5mm thickness after pickling, further intermediate-annealed at 1060 ° C and soaking time of 2 minutes, and after pickling
  • a cold-rolled steel sheet with a thickness of 0.7 mm was subjected to final annealing at 1060 ° C and soaking time of 1 minute (annealed pickling material).
  • a 60% cold-rolled material was obtained by cold rolling the intermediate annealed pickled material to a sheet thickness of 0.6 mm.
  • a JIS13B tensile test piece was cut out from the annealed pickling material, and 0.2% power resistance, tensile strength, elongation, and work hardening index n were measured by a tensile test.
  • a ⁇ 96mm disk (blank) is cut out from the annealed pickling material and subjected to a 5-stage deep-drawing test with a punch diameter ⁇ 48 ⁇ ⁇ 44 ⁇ ⁇ 40 ⁇ ⁇ 35 ⁇ 30mm. (Punch diameter) was investigated.
  • a test piece was cut out from a 60% cold-rolled material, and the magnetic permeability was determined by measuring the attractive force due to the magnetization by measuring the slope at a magnetic field of 5000 gauj3 on an applied magnetic field-magnetization curve using a magnetic balance.
  • Table 2 shows the 0.2% heat resistance, tensile strength, elongation, n-value, and magnetic permeability ( ⁇ ) of the 60% cold-rolled material of the annealed pickling material.
  • Steel No .:! To 6 satisfy the component design conditions for high-Mn stainless steel specified in the present invention, and have mechanical properties with a 0.2% proof stress equivalent to 304 less than 300 MPa and an elongation of 50% or more.
  • the work hardening index n was less than 304 with a work hardening index n of 0.3 to 0.45, the work hardening was small, and the magnetic permeability ⁇ of the 60% cold-rolled material was non-magnetic with a magnetic permeability ⁇ of 1.05 or less.
  • this steel did not undergo any cracking due to multi-stage deep drawing, and the cracking limit drawing ratio was much higher than SUS304, which was 3.2 or more.
  • the workability and non-magnetism of the steel material targeted by the present invention cannot be obtained because the amount of C + N, the Md30 value and / or the SFE are out of the conditions specified by the present invention. It is a thing.
  • Steel No. 15 is SUS304 which is a comparison of workability. Steels 16 to 29 do not satisfy the component range specified by the present invention, and the target workability and non-magnetism of the steel material could not be obtained.
  • Figures 1 and 2 show the results of an examination of the effect of the austenitic stability index Md30 on the elongation and permeability of steel. As shown in Fig. 1 and Fig. 2, by controlling to -10 It was confirmed that the target growth of Akira was 50% or more and ⁇ : 1.05 or less.
  • Md30 497-462 (C + N) -9.2Si-8.1 ⁇ -13.7Cr-20 (Ni + Cu)-18.5Mo
  • the high-Mn stainless steel of the present invention can be formed by conventional high-Mn stainless copper, and can be used for press forming applications where Ni-based stainless steel represented by SUS304 is used. . In particular, it is most suitable for multi-step deep drawing applications in which time cracking is a problem with SUS304. Furthermore, annealing for demagnetization after processing of SUS304 can be omitted, so that it can be applied in a wide range of fields as a material for molding that requires nonmagnetism.

Abstract

An austenitic high Mn stainless steel excellent in wokability, characterized in that it has a chemical composition, in mass %, C + N: 0.03 to 0.15 %, Si: 0.1 to 1 %, Mn: 3 to 15 %, Cr: 10 to 16 %, Ni: 1 to 6 %, Cu: 0.3 to 3 %, Mo: : 0.3 to 3 %, and the balance: Fe and inevitable impurities, and the chemical composition is so designed that Md30, which is an indicator for the stability degree of austenite, and SFE, which is an indicator for the formation of stacking fault energy, satisfy the following formulae: -10 < Md30 < 30, and 40 < SFE < 80, Md30 (°C): 497-462(C+N)-9.2Si-8.1Mn-13.7Cr-20(Ni+Cu)-18.5Mo SFE (mJ/m2): 6.2Ni+18.6Cu+0.7Cr+3.2Mn+9.3Mo-53. The above austenitic high Mn stainless steel is improved in workability and retains non-magnetism also after being worked.

Description

明 細 書 加工性に優れたオーステナイ ト系高 Mnステンレス鋼 技術分野  Description Austenitic high-Mn stainless steel with excellent workability Technical field
本発明は、 軟質で加工硬化性が小さ く 、 高い加工率で冷間加工や 深絞り加工などのプレス成形ができる優れた加工性を有し、 加工後 にも非磁性が維持されるオーステナイ ト系高 Mnステンレス鋼に関す る。 背景技術  The austenite of the present invention is soft, has low work hardenability, has excellent workability such as cold working or deep drawing at a high working rate, and maintains non-magnetism even after working. Related to high-Mn stainless steel. Background art
オーステナイ ト系ステンレス鋼は、 J I SG4305に規定される 300系 ( SUS304, SUS316 , SUS301等) や 200系 ( SUS201 , SUS202等) のも のがある。  Austenitic stainless steels are classified into 300 series (SUS304, SUS316, SUS301, etc.) and 200 series (SUS201, SUS202, etc.) specified in JIS SG4305.
300系のオーステナィ ト系ステンレス鋼は、 Mnが 2. 0質量%以下、 N iが 6〜: 15質量0ん程度含まれる。 SUS304に代表される N i系のオース テナイ トステンレス鋼は、 良好な加工性を有し耐食性にも優れるが 、 高価な N iを多量に含むこ とから原料コス 卜が高いという欠点があ る。 また、 SUS304は、 オーステナイ ト相が準安定であるため成形加 ェ中にマルテンサイ.ト変態を生じ、 加工品が磁性を帯びるという問 題もある。 ., 300 based Osutenai preparative stainless steel is, Mn is 2.0 mass% or less, N i is 6: contains degree 15 mass 0 I. Ni-based austenitic stainless steel represented by SUS304 has good workability and excellent corrosion resistance, but has the disadvantage of high raw material cost because it contains a large amount of expensive Ni. . In addition, SUS304 has a problem in that the austenite phase is metastable, so that martensitic transformation occurs during molding, and the processed product becomes magnetic. .,
他方、 200系のオーステナイ ト系ステンレス鋼は、 N iを Mnで置換 した高 Mnステンレス鋼であり、 Cや Nを多く含むために強度が高く 非磁性である。 また、 N i系のオーステナイ ト系ステンレス鋼と比較 して安価である。 しかし、 SUS201や SUS202等に代表される高 Mnステ ンレス鋼は、 焼鈍状態において 300系と比較して強度が高く加工硬 化性も大きいために冷間加工性や深絞り加工などのプレス成形性に 劣る問題がある。 On the other hand, 200 type austenitic stainless steel is a high Mn stainless steel in which Ni is replaced with Mn, and has high strength and non-magnetic properties because it contains a large amount of C and N. It is also less expensive than Ni-based austenitic stainless steel. However, high-Mn stainless steels, such as SUS201 and SUS202, have higher strength and higher work hardenability than the 300 series in the annealed state, and therefore have high press formability such as cold workability and deep drawing. To There is an inferior problem.
オーステナイ ト系ステンレス鋼の加工性を改善する手段に関し、 Regarding means to improve the workability of austenitic stainless steel,
Mnが 3 %未満、 N iが 6 %以上を含む 300系については従来から多く の検討がなされている。 例えば、 特許第 3039838号公報、 特許第 339 8258号公報、 特許第 3398260号公報、 特開平 10— 102210号公報およ び特開平 10— 121207号公報に開示されているよ うに、 プレス成形性 等の加工性改善には、 Cuの添加が有効に作用するこ とが知られてい る。 Many studies have been made on the 300 series including Mn of less than 3% and Ni of 6% or more. For example, as disclosed in Japanese Patent No. 3039838, Japanese Patent No. 339 8258, Japanese Patent No. 3398260, Japanese Patent Application Laid-Open No. 10-102210 and Japanese Patent Application Laid-Open No. 10-121207, press moldability and the like are disclosed. It is known that the addition of Cu works effectively to improve the workability of steel.
他方、 1^が5. 5 %以下、 Mnが 5. 5 %以上含む 200系のオーステナイ ト系ステンレス鋼は、 電子機器用シャフ ト材、 自転車スポークス用 線、 建築、 建材用釘等の高強度非磁性が要求される部材への適用が 主体である。 そのため、 高 Mnステンレス鋼は、 高強度非磁性化の更 なる向上に関し、 多く の検討がなされている。 例えば、 特許第 2618 151号公報、 特開平 6 — 235048号公報には、 高強度 · 非磁性化には 、 高 N化とあわせて Mnや Crの増加を抑制して Nb, Mo , Pの微量添加 が有効に作用するこ とが開示されている。  On the other hand, 200 series austenitic stainless steel containing 5.5% or less of 1 ^ and 5.5% or more of Mn is a high-strength steel for electronic equipment, wires for bicycle spokes, nails for construction and construction materials, etc. Mainly applied to members that require non-magnetism. For this reason, many studies have been made on the high Mn stainless steel for further improvement of high strength non-magnetization. For example, Japanese Patent No. 2618151 and Japanese Patent Application Laid-Open No. Hei 6-235048 disclose that high strength and non-magnetization include a small amount of Nb, Mo, and P by suppressing an increase in Mn and Cr in conjunction with increasing N. It is disclosed that the addition works effectively.
低 N iオーステナイ ト系ステンレス鋼の耐腐食性を改善するために 、 特開平 11 -92885号公報、 特開 2000— 34546号公報等には、 Ca, B , Sの不純物元素を低減するこ とが有効である と開示されている。 これら低 Niオーステナイ ト系ステンレス鋼は 0. 1 %を越える多量の Nを含有しており 、 強度 (0. 2 %耐カ) は上述の高 Mnステンレス鋼 と同様に高く加工性には問題がある。 他方、 特開 2004— 143576号公 報、 英国特許第 2359095号公報には、 耐腐食性に加えて、 加工性を 改善するために、 C r量を低く した低 N iオーステナイ ト系ステンレス 鋼が開示されており、 その機械的性質は SUS304に比較的近いもので ある。 これら低 N iオーステナイ ト系ステンレス鋼は、 熱間加工性を 確保するために、 高温でのフェライ ト量の生成を抑制するよ う にォ ーステナイ ト安定度を調整しているものの、 室温でのオーステナイ ト安定度については全く検討されていない。 すなわち、 これら低 Ni オーステナイ ト系ステンレス鋼は、 プレス成形等の冷間加工により 加工誘起マルテンサイ 卜が生成して、 その加工品は磁性を帯びたり 、 置き割れを発生したりする問題が懸念される。 In order to improve the corrosion resistance of low Ni austenitic stainless steel, Japanese Patent Application Laid-Open Nos. 11-92885 and 2000-34546 disclose reducing the impurity elements of Ca, B and S. Is disclosed to be effective. These low-Ni austenitic stainless steels contain a large amount of N exceeding 0.1%, and have high strength (0.2% power resistance) similar to the above-mentioned high-Mn stainless steel, and have problems in workability. is there. On the other hand, Japanese Patent Application Laid-Open No. 2004-143576 and British Patent No. 2359095 disclose a low Ni austenitic stainless steel with a reduced Cr content in order to improve workability in addition to corrosion resistance. It is disclosed and its mechanical properties are relatively close to SUS304. These low Ni austenitic stainless steels suppress the generation of ferrite at high temperatures to ensure hot workability. -Although austenite stability was adjusted, no study was performed on austenite stability at room temperature. That is, in these low Ni austenitic stainless steels, there is a concern that work-induced martensite is generated by cold working such as press forming, and the processed product becomes magnetic or cracks are generated. .
上述した通り、 Ni量を低く した高 Mnステンレス鋼は、 SUS304に代 表される Ni系のステンレス鋼が使用されるプレス成形用途等へ適応 するための加工性の改善を意図したものでない。 すなわち、 SUS304 と同等以上の優れた加工性を具備しつつ、 加工後にも非磁性を実現 した高 Mnステンレス鋼は未だ出現していないのが現状である。 発明の開示  As described above, high-Mn stainless steel with a reduced Ni content is not intended to improve workability to be applied to press forming applications where Ni-based stainless steel represented by SUS304 is used. In other words, at present, high-Mn stainless steel that has excellent workability equal to or higher than that of SUS304 and realizes non-magnetism even after processing has not yet emerged. Disclosure of the invention
本発明は、 上述した高 Mnステンレス鋼の加工性を改善すベく案出 されたものであり、 C + N、 オーステナイ ト安定度の指標 Md30値 ( °C) 、 積層欠陥エネルギーの生成指標 SFE (mj/m2) が特定条件を 満足するよ う成分設計を行う ことによ り、 SUS304と同等以上の加工 性を具備し、 加工後にも非磁性が維持されるオーステナイ ト系ステ ンレス鋼を提供することを目的とする。 本発明の要旨は次のとおり である。 The present invention has been devised to improve the workability of the high-Mn stainless steel described above, and includes C + N, an austenitic stability index Md30 value (° C), a stacking fault energy generation index SFE By designing the component so that (mj / m 2 ) satisfies the specified conditions, austenitic stainless steel that has workability equal to or higher than SUS304 and maintains non-magnetism even after processing is obtained. The purpose is to provide. The gist of the present invention is as follows.
( 1 ) 本発明の高 Mnステンレス鋼は、 質量0/。で、 C + N : 0.03〜 0.15% , Si : 0.1~ 1 % , Mn: 3 ~15% , Cr : 10~16%, Ni : 1〜 6 %, Cu : 0.3〜 3 %, Mo : 0.3〜 3 %、 残部 Feおよび不可避的不純 物からなり、 オーステナイ ト安定度の指標 Md30値と積層欠陥エネル ギ一の生成指標 SFEが下記を満足するよ うに成分設計されているこ とを特徴とする。 (1) The high Mn stainless steel of the present invention has a mass of 0 /. C + N: 0.03 to 0.15%, Si: 0.1 to 1%, Mn: 3 to 15%, Cr: 10 to 16%, Ni: 1 to 6%, Cu: 0.3 to 3%, Mo: 0.3 to It consists of 3%, the balance being Fe and unavoidable impurities, and is characterized by its component design so that the austenitic stability index Md30 value and the stacking fault energy generation index SFE satisfy the following.
- 10< Md30< 30, 40 < SFE < 80  -10 <Md30 <30, 40 <SFE <80
Md30 (°C) : 497-462 ( C + N) -9.2Si-8. lMn-13.7Cr-20 ( Ni + Cu) - 18.5Mo Md30 (° C): 497-462 (C + N) -9.2Si-8.lMn-13.7Cr-20 ( Ni + Cu)-18.5Mo
SFE (mj/m2) : 6.2Ni + 18.6Cu+ 0.7Cr+ 3.2Mn+9.3Mo-53 SFE (mj / m 2 ): 6.2Ni + 18.6Cu + 0.7Cr + 3.2Mn + 9.3Mo-53
( 2 ) この高 Mnステンレス鋼は、 熱間加工性や耐酸化性の改善の ために、 REMを 0.001〜0.2質量0 /0含むこ とができる。 (2) The high Mn stainless steel, for hot workability and oxidation resistance improve, the REM can and 0.001 mass 0/0 whatever child.
( 3 ) 高い加工率で冷間加工や深絞り加工などのプレス成形がで きる加工性を確保するには、 C + Nが 0.15質量%以下、 引張試験で 求められる 0.2%耐力が 300MPa未満、 真応力一対数伸び歪曲線で公 称歪 25%と 35%の勾配である加工硬化指数 nが 0.45以下とする。 ま た、 圧下率 60%冷間圧延したときの透磁率 ( μ ) が 1.05以下である とき、 各種加工後においても非磁性が維持される。  (3) In order to ensure the workability of press forming such as cold working or deep drawing at a high working rate, C + N must be 0.15% by mass or less, the 0.2% proof stress required in the tensile test should be less than 300MPa, The work hardening index n, which is the slope of the nominal strain of 25% and 35% in the true stress logarithmic elongation strain curve, is 0.45 or less. When the magnetic permeability (μ) at the time of cold rolling at a rolling reduction of 60% is 1.05 or less, non-magnetism is maintained even after various types of processing.
このよ う に、 本発明の高 Mnステンレス鋼は、 C + N : 0.03〜0.15 %, - 10< Md30< 30, 40く SFEく 80とする成分設計を採用している ため、 0.2%耐力が 300MPa未満の軟質で加工硬化性が小さ く 、 高い 加工率で冷間加工や深絞り加工などのプレス成形ができる優れた加 ェ性を有し、 加工後にも非磁性が維持される。 従って、 従来の高 Mn ステンレス鋼ではなし得なかった成形加工が可能であり 、 SUS304に 代表される Ni系のステンレス鋼が使用されるプレス成形用途へ使用 される。 更に、 SUS304を加工した後で非磁性化するための焼鈍も省 略できるため、 非磁性が要求される成形加工用の材料と して広範囲 な分野で適用可能である。 図面の簡単な説明  As described above, the high Mn stainless steel of the present invention has a 0.2% proof stress because it adopts a composition design of C + N: 0.03 to 0.15%, -10 <Md30 <30, 40 and SFE 80. It is soft with less than 300 MPa, has low work hardening properties, has excellent workability such as cold working or deep drawing working at a high working rate, and maintains non-magnetism even after working. Therefore, it is possible to carry out forming work that cannot be performed with conventional high-Mn stainless steel, and it is used for press forming where Ni-based stainless steel represented by SUS304 is used. Further, annealing for demagnetization after processing SUS304 can be omitted, so that it can be applied in a wide range of fields as a material for forming processing requiring nonmagnetic properties. Brief Description of Drawings
図 1 は、 Md30値が鋼材の伸びに及ぼす影響を示したグラフ。  Figure 1 is a graph showing the effect of Md30 on the elongation of steel.
図 2は、 Md30値が 60%冷間圧延材の透磁率に及ぼす影響を示した グラフ。  Fig. 2 is a graph showing the effect of the Md30 value on the magnetic permeability of a 60% cold-rolled material.
図 3 は、 SFEと加工硬化指数 n との関係を示したグラフ。 発明を実施するための最良の形態 Figure 3 is a graph showing the relationship between SFE and work hardening index n. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の高 Mnステンレス鋼は、 C + N、 オーステナイ ト安定度の 指標 Md30値 C) 、 積層欠陥エネルギーの生成指標 SFE (mj/m2) が適正範囲を満足する成分設計を採用するこ とによ り、 SUS304と同 等以上の加工性を具備し、 加工後にも非磁性を維持している。 以下 、 本発明の高 Mnステンレス鋼の成分設計に関する作用効果とその限 定理由を説明する。 High Mn stainless steel of the present invention, C + N, austenite stability index Md30 value C), generates an index SFE of stacking fault energy (mj / m 2) and the adopted child components designed to satisfy the appropriate range As a result, it has workability equal to or higher than that of SUS304, and maintains non-magnetism even after processing. Hereinafter, the function and effect of the composition design of the high Mn stainless steel of the present invention and the reason for limiting the same will be described.
• C + N : 0.15%以下  • C + N: 0.15% or less
Cや Nは、 オーステナイ ト相の安定化や δ フェライ ト相の生成抑 制に有効な元素である。 他方、 これら元素は、 固溶強化によ り鋼材 の 0.2%耐カを上昇させて加工性を低下させる。 そこで、 C + Nの 上限は 0.15%と した。 Νは C と比較して 0.2%耐カを上昇させる作 用が大きいために、 Νは Cよ り低く設計するこ とが好ましい。 本発 明が目的とする高い加工率で冷間加工や深絞り加工などのプレス成 形が要求される用途には、 C + Nを 0.15%以下 (Νく C) に設計す るこ とによ り、 鋼材の 0.2%耐カを 300MPa未満に軟質化するこ とが 有効である。  C and N are effective elements for stabilizing the austenite phase and suppressing the formation of the δ ferrite phase. On the other hand, these elements increase the 0.2% resistance of steel by solid solution strengthening and lower the workability. Therefore, the upper limit of C + N is set to 0.15%. Since Ν has a large effect of increasing the power resistance by 0.2% compared to C, Ν is preferably designed to be lower than C. For applications requiring press forming such as cold working and deep drawing at a high working rate, which is the objective of the present invention, design C + N to 0.15% or less (high C). Therefore, it is effective to soften the steel 0.2% resistance to less than 300MPa.
しかし、 C + Nが 0.03%未満の場合、 加工品の非磁性化が困難に なるばかり でなく 、 Cや Nを低減するための製鋼コス トの負担を招 く。 従って、 C + Nの下限は 0.03%とする。 好ましい範囲は 0.08〜 0.12%である。  However, when C + N is less than 0.03%, not only is it difficult to demagnetize the processed product, but it also imposes a burden on steelmaking costs for reducing C and N. Therefore, the lower limit of C + N is set to 0.03%. A preferred range is from 0.08 to 0.12%.
• オーステナィ ト安定度の指標 : Md30値 (°C)  • Austenitic stability index: Md30 value (° C)
準安定オーステナイ トステンレス鋼は Ms点以上の温度でも塑性加 ェによってマルテンサイ ト変態を起こす。 加工によって変態点を生 じる上限温度は Md値と呼ばれる。 すなわち、 Md値はオーステナイ ト の安定度を示す指標である。 そして、 引張変形によって 30%の歪を 与えたとき、 50%のマルテンサイ 卜が生じる温度を Md30値とレヽう。 Md30 = 497-462 (C + N) - 9.2Si - 8. lMn- 13.7Cr - 20 (Ni + Cu) — 18.5Moと定義する Md30値 (°C) を本発明の高 Mnステンレス鋼にお いて一 10°C〜30°Cの範囲に設計するこ とによ り、 本発明が目的とす る加工性と非磁性が確保されるこ とを見出した。 Metastable austenitic stainless steel undergoes martensitic transformation by plastic deformation even at temperatures above the Ms point. The maximum temperature at which a transformation point occurs during processing is called the Md value. That is, the Md value is an index indicating the degree of stability of austenite. The temperature at which 50% martensite occurs when 30% strain is applied by tensile deformation is referred to as the Md30 value. Md30 = 497-462 (C + N)-9.2Si-8.1Mn-13.7Cr-20 (Ni + Cu)-18.5Mo The Md30 value (° C) defined for the high Mn stainless steel of the present invention It has been found that the workability and the non-magnetism aimed at by the present invention are ensured by designing the temperature in the range of 10 ° C to 30 ° C.
Md30値が— 10°Cよ り小さい場合、 オーステナイ ト安定度が高いた めに鋼材の伸びが低下し (く 50%) 、 加工性が阻害される。 他方、 Md30値が 30°Cを越える場合、 加工誘起マルテンサイ 卜 の生成 ( α ' 相) によ り鋼材の伸びは向上するが、 生成した α, 相が磁性を持つ ために加工品が磁性を帯びる。 Md30値が— 10〜30°Cの場合、 本発明 の高 Mnステンレス鋼は、 加工品の非磁性を維持しつつ鋼材の加工性 を向上させるこ とができる。  If the Md30 value is lower than -10 ° C, the elongation of the steel material is reduced (by 50%) due to the high austenite stability, and workability is impaired. On the other hand, when the Md30 value exceeds 30 ° C, the elongation of the steel material improves due to the formation of the work-induced martensite (α 'phase), but the formed α, phase has magnetism, and the processed product becomes less magnetic. Take on. When the Md30 value is -10 to 30 ° C, the high-Mn stainless steel of the present invention can improve the workability of the steel material while maintaining the non-magnetic properties of the processed product.
• 積層欠陥エネルギーの生成指標 : SFE (mj/m2) • Stacking fault energy generation index: SFE (mj / m 2 )
bcc構造の普通鋼に比較して、 fee構造をもつオーステナイ トステ ンレス鋼は、 積層欠陥が生成しやすいために加工硬化が大きい。 本 発明では、 高い加工率で冷間加工や深絞り加工などのプレス成形を 可能にするために積層欠陥が生成し難い転位の交差すべりが容易な 成分設計を採用している。  Compared with ordinary steel with bcc structure, austenitic stainless steel with fee structure has larger work hardening because stacking faults are easily generated. In the present invention, in order to enable press forming such as cold working or deep drawing at a high working rate, a component design is adopted which allows easy dislocation cross-slip where stacking faults are hardly generated.
近年、 ステンレス鋼板は複雑な形状の製品を冷間加工で製造する こ とが多く なつている。 このよ う な場合、 加工硬化が大きい鋼材は 加工の途中に中間焼鈍の工程を挟んで軟化させながら繰り返して大 きな加工度を得るこ とが必要になる。 加工硬化が小さい鋼材であれ ば中間焼鈍の工程を省略して製品加工が可能にな り、 製品コス 卜の 低減に大きく寄与する。 本発明者らは、 このよ う な観点から、 積層 欠陥エネルギー (SFE) に及ぼす成分の影響を検討した。 その結果 、 SFE (mj/m2) : 6.2Ni + 18.6Cu+ 0.7Cr + 3.2Mn+ 9.3Mo— 53と定 義される SFEを 40〜80の高い範囲に調整する とき、 本発明が目的と する優れた加工性が発現するこ とを見出した。 SFEが 40未満の場合、 高 Mnステンレス鋼は積層欠陥が生成しやす く加工硬化が大き く な り、 本発明が目的とする加工性が得られなく なる。 このとき、 引張試験で求められる加工硬化指数 n値 (真応力 一対数伸び歪曲線で公称歪 25%と 35%の勾配) は 0.45を超える。 他 方、 SFEが 80を超える場合、 加工硬化が小さ く n値は 0.3未満となる 。 このとき、 実用のプレス成形では張り 出し加工性が低下する とい う問題がある。 従って、 本発明では、 引張試験で求められる n値は 0.3〜0.45の範囲であるこ とが好ましい。 本発明の Md30値と SFEを満 足した軟質で加工硬化性が小さ く 、 非磁性である鋼材は、 SUS304に 代表される Ni系のオーステナイ ト系ステンレス鋼で問題となる時期 割れ (置き割れ) を生じるこ となく 、 多工程に及ぶ深絞り性に優れ る。 つま り、 SUS304は、 オーステナイ ト相が準安定であるため加工 中にマルテンサイ ト変態を生じ、 深絞り成形においてフランジ部が 硬く な りすぎて残留応力の増大によ り置き割れが発生する。 In recent years, stainless steel sheets are often manufactured by cold-working products with complex shapes. In such a case, it is necessary to obtain a large degree of workability by repeatedly softening a steel material with high work hardening while softening it with an intermediate annealing step in the middle of working. For steel materials with low work hardening, the intermediate annealing step can be omitted and the product can be processed, greatly contributing to a reduction in product cost. The present inventors have studied the effects of components on stacking fault energy (SFE) from such a viewpoint. As a result, when the SFE defined as SFE (mj / m 2 ): 6.2Ni + 18.6Cu + 0.7Cr + 3.2Mn + 9.3Mo-53 is adjusted to a high range of 40 to 80, the present invention aims to provide an excellent object. Workability was developed. When the SFE is less than 40, high-Mn stainless steel tends to generate stacking faults and has a large work hardening, so that the workability targeted by the present invention cannot be obtained. At this time, the work hardening index n value (the slope of nominal strain of 25% and 35% in the true stress logarithmic elongation strain curve) obtained in the tensile test exceeds 0.45. On the other hand, when the SFE exceeds 80, the work hardening is small and the n value is less than 0.3. At this time, there is a problem that overhang workability is reduced in practical press forming. Therefore, in the present invention, it is preferable that the n value determined by the tensile test is in the range of 0.3 to 0.45. Soft, low work hardening, non-magnetic steel material that satisfies the Md30 value and SFE of the present invention is a non-magnetic steel that is a problem in Ni-based austenitic stainless steels such as SUS304. And excellent in deep drawability over multiple steps without causing cracks. In other words, in SUS304, the austenite phase is metastable, so that martensite transformation occurs during processing, and the flange portion becomes too hard during deep drawing, and a residual crack increases due to an increase in residual stress.
本発明の C + N : 0.03〜0.15%、 Md30値 : — 10〜30。C、 SFE : 40 〜80 (mj/m2) に調整された高 Mnステンレス鋼材は、 0.2%耐力が 300MPa未満の軟質で加工硬化性が小さ く高い加工率で冷間加工が可 能な非磁性ステンレスである。 以下、 本発明の Cと Nを除く他の合 金元素は次の範囲で選定される。 C + N of the present invention: 0.03 to 0.15%, Md30 value: —10 to 30. C, SFE: 40 to 80 high Mn stainless steel is adjusted to (mj / m 2) 0.2% yield strength is cold working by work hardening property small Ku high processing rate soft than 300MPa possible non Magnetic stainless steel. Hereinafter, other alloy elements except C and N of the present invention are selected in the following ranges.
- Si : 0.1~ 1 %  -Si: 0.1 ~ 1%
Siは溶製時の脱酸剤と して有効であり 、 その効果を得るために 0. 1%以上添加する。 よ り好ましく は 0.3%以上である。 また、 Siは固 溶強化および SFEを低下させて加工硬化を助長する元素である。 そ のため、 本発明の 300MPa未満の 0.2%耐カ、 加工硬化指数 n値 0.45 未満の小さい加工硬化性を得るために上限は 1 %以下である。 好ま しく は 0.2〜0.7%以下である。  Si is effective as a deoxidizing agent at the time of smelting, and 0.1% or more is added to obtain the effect. It is more preferably at least 0.3%. Si is an element that promotes work hardening by strengthening solid solution and lowering SFE. Therefore, the upper limit is 1% or less in order to obtain the 0.2% heat resistance of less than 300 MPa and the work hardening index n value of less than 0.45 of the present invention. Preferably it is less than 0.2-0.7%.
- n: 3〜15% Mnは溶製時の脱酸剤と して使用されるこ とに加え、 非磁性の維持 および Niの代替と してのオーステナイ ト形成元素と有効に作用する 。 本発明では、 これら作用を得るために Mnは 3 %以上添加する。 よ り好ま しく は 5 %以上である。 他方、 Mnの添加は S系介在物の増加 をもたらし、 耐食性や加工性を阻害する という 問題がある。 従って 、 上限は 15 %とする。 好ましく は 10%以下である。 -n: 3-15% In addition to being used as a deoxidizer during smelting, Mn works effectively with non-magnetic retention and austenite-forming elements as an alternative to Ni. In the present invention, Mn is added in an amount of 3% or more to obtain these effects. More preferably, it is 5% or more. On the other hand, there is a problem that the addition of Mn increases the amount of S-based inclusions and impairs corrosion resistance and workability. Therefore, the upper limit is 15%. Preferably it is 10% or less.
• Cr : 10〜: 16%  • Cr: 10 or more: 16%
Crはステンレス鋼に要求される耐食性を得るために必要な合金元 素であり、 10%以上必要であるこ とが好ま しい。 よ り好ましく は 12 %以上である。 他方、 Crは固溶強化および SFEを低下させて加工硬 化を助長する元素である。 そのため、 本発明の 300MPa未満の 0. 2 % 耐カ、 加工硬化指数 n値が 0. 45未満の小さい加工硬化性を得るため に上限は 16 %以下である。 好ましく は 15%以下である。  Cr is an alloying element necessary for obtaining the corrosion resistance required for stainless steel, and is preferably required to be 10% or more. It is more preferably at least 12%. On the other hand, Cr is an element that promotes work hardening by reducing solid solution strengthening and SFE. Therefore, the upper limit is 16% or less in order to obtain the 0.2% heat resistance of less than 300 MPa and the work hardening index n value of less than 0.45 of the present invention. Preferably it is 15% or less.
• Ni : 1 〜 6 %  • Ni: 1-6%
Niは高価な元素であり、 6 %を超える 300系のオーステナイ ト ス テンレス鋼は原料コ ス ト の上昇を招く。 従って、 Niは 6 %以下であ る。 好ましく は 5 %以下である。 Niはオーステナイ ト ステ ンレス鋼 に必要な元素であり、 更に、 冷間加工後の非磁性および延性を確保 するのに有効な元素である。 そのため、 下限は 1 %とする。  Ni is an expensive element, and more than 6% of 300 series austenitic stainless steel raises the cost of raw materials. Therefore, Ni is less than 6%. It is preferably at most 5%. Ni is an element necessary for austenitic stainless steel and is an effective element for ensuring non-magnetism and ductility after cold working. Therefore, the lower limit is 1%.
• Cu: 0. 3〜 3 %  • Cu: 0.3-3%
Cuは本発明で定義する Md30値を低下し SFEを上昇させて加工性を 改善するために有効な合金元素である。 本発明ではこれら作用を得 るために、 Cuの下限は 0. 3 %以上とする。 好ま しく は 1 %以上とす る。 しかし、 過剰量の Cu添加は製鋼時の Cu汚染や熱間脆性を誘発す る問題がある。 また、 SFEが過度に上昇して加工性の低下を招く。 そのため、 Cuの上限は 3 %以下とする。  Cu is an alloy element effective for lowering the Md30 value defined in the present invention and increasing SFE to improve workability. In the present invention, in order to obtain these effects, the lower limit of Cu is set to 0.3% or more. Preferably, it is 1% or more. However, excessive addition of Cu has the problem of inducing Cu contamination and hot embrittlement during steelmaking. In addition, the SFE is excessively increased, resulting in deterioration of workability. Therefore, the upper limit of Cu is set to 3% or less.
• Mo : 0. 3〜 3 % 耐食性向上に有効な元素である。 また、 本発明で定義する Md30値 を低下し SFEを上昇させて加工性を改善するために有効な元素であ る。 本発明の高 Mnステンレス鋼の耐食性と加工性を確保するために 、 Moの下限は 0.3%以上とする。 しかし、 Moは過剰に含まれると δ フェ ライ トの生成によ り磁性が発現し、 固溶強化によ り強度上昇す る。 そのため、 Moの上限は 3 %以下とする。 • Mo: 0.3-3% It is an element effective for improving corrosion resistance. Further, it is an element effective for lowering the Md30 value defined in the present invention and increasing SFE to improve workability. In order to ensure the corrosion resistance and workability of the high Mn stainless steel of the present invention, the lower limit of Mo is set to 0.3% or more. However, when Mo is contained in excess, magnetism is generated by the formation of δ ferrite, and the strength is increased by solid solution strengthening. Therefore, the upper limit of Mo should be 3% or less.
• REM: 0.001〜0.2%  • REM: 0.001 to 0.2%
必要に応じて添加される元素であり、 熱間加工性および耐酸化性 を改善する作用を有する。 これら作用を得るためには 0.001%以上 添加する。 しかし、 REM添加による効果は 0.2%で飽和し、 0.2%以 上添加しても鋼材が硬質化し加工性が低下する。 従って上限は 0.2 %が好ましい。 実施例  It is an element added as needed and has the effect of improving hot workability and oxidation resistance. To obtain these effects, add 0.001% or more. However, the effect of adding REM saturates at 0.2%, and adding more than 0.2% hardens the steel material and reduces workability. Therefore, the upper limit is preferably 0.2%. Example
表 1 の化学組成を有するステンレス銅を溶製し、 加熱温度 1200°C の熱間圧延によ り板厚 4.0mmの熱延鋼板を製造した。 熱延鋼板を 112 0°C、 均熱時間 2分で焼鈍し、 酸洗後に板厚 1.5mmまで冷間圧延し、 更に 1060°C、 均熱時間 2分の中間焼鈍を施し、 酸洗後、 板厚 0.7mm の冷延鋼板と し、 最終焼鈍を 1060°C、 均熱時間 1分で実施した (焼 鈍酸洗材) 。 中間焼鈍酸洗材を板厚 0.6mmまで冷間圧延することに よ り 60%冷間圧延材を得た。  Stainless steel having the chemical composition shown in Table 1 was melted and hot-rolled at a heating temperature of 1200 ° C to produce a hot-rolled steel sheet with a thickness of 4.0 mm. Hot-rolled steel sheet is annealed at 1120 ° C and soaking time of 2 minutes, cold-rolled to 1.5mm thickness after pickling, further intermediate-annealed at 1060 ° C and soaking time of 2 minutes, and after pickling A cold-rolled steel sheet with a thickness of 0.7 mm was subjected to final annealing at 1060 ° C and soaking time of 1 minute (annealed pickling material). A 60% cold-rolled material was obtained by cold rolling the intermediate annealed pickled material to a sheet thickness of 0.6 mm.
焼鈍酸洗材から JIS13B引張試験片を切り出し、 引張試験によ り 0. 2%耐カ、 引張強度、 伸び、 加工硬化指数 nを測定した。 加工硬化 指数 nは、 公称歪 25%と 35%に相当する真歪 ε 25, ε 35における真 応力 δ 25, δ 35を求め、 次式に従って加工硬化指数 η値を算出した η値 =ln Ε 35 / ε 25 j / In ( δ 35 / δ 25) 焼鈍酸洗材から、 Φ 96mm円盤 (ブランク) を切り 出し、 ボンチ径 φ 48→ φ 44→ φ 40→ φ 35→ φ 30mmの 5段円筒深絞り試験によ り時期 割れ限界絞り比 (ブランク系 ポンチ径) を調査した。 A JIS13B tensile test piece was cut out from the annealed pickling material, and 0.2% power resistance, tensile strength, elongation, and work hardening index n were measured by a tensile test. The work hardening index n is obtained by calculating the true stress δ 25 , δ 35 at the true strains ε 25 , ε 35 corresponding to the nominal strains of 25% and 35%, and calculating the work hardening index η value according to the following equation: η value = ln Ε 35 / ε 25 j / In (δ 35 / δ 25 ) A Φ96mm disk (blank) is cut out from the annealed pickling material and subjected to a 5-stage deep-drawing test with a punch diameter φ48 → φ44 → φ40 → φ35 → φ30mm. (Punch diameter) was investigated.
60%冷間圧延材から試験片を切り 出し、 磁化による引力を磁気天 秤によ り印加磁場一磁化曲線上で磁場 5000gauj3 における傾きを測 定するこ とによ り透磁率を求めた。  A test piece was cut out from a 60% cold-rolled material, and the magnetic permeability was determined by measuring the attractive force due to the magnetization by measuring the slope at a magnetic field of 5000 gauj3 on an applied magnetic field-magnetization curve using a magnetic balance.
焼鈍酸洗材の 0.2%耐カ、 引張強度、 伸び、 n値および 60%冷間 圧延材の透磁率 ( μ ) を表 2に示す。 鋼 No. :! 〜 6は、 本発明で規 定した高 Mnステンレス鋼の成分設計条件を満足しており、 304と同 等の 0.2%耐力が 300MPa未満、 伸びが 50%以上の機械的性質を有し 、 加工硬化指数 nが 0.3〜0.45の 304未満で加工硬化が小さ く 、 60% 冷間圧延材の透磁率 μが 1.05以下の非磁性であった。 さ らに、 本鋼 は、 多段深絞り成形によ り時期割れが発生せず、 時期割れ限界絞り 比は 3.2以上の SUS304を大き く上回る値が得られた。 鋼 No. 7〜 14は 、 C + N量や Md30値と SFEの両者あるいは片方が本発明の規定する 条件から外れるために、 本発明が目標とする鋼材の加工性と非磁性 が得られなかったものである。 鋼 No.15は加工性の比較となる SUS30 4である。 鋼 Νο.16〜29は、 本発明が規定する成分範囲を満足しない ものであり 、 目標とする鋼材の加工性と非磁性が得られなかったも のである。  Table 2 shows the 0.2% heat resistance, tensile strength, elongation, n-value, and magnetic permeability (μ) of the 60% cold-rolled material of the annealed pickling material. Steel No .:! To 6 satisfy the component design conditions for high-Mn stainless steel specified in the present invention, and have mechanical properties with a 0.2% proof stress equivalent to 304 less than 300 MPa and an elongation of 50% or more. The work hardening index n was less than 304 with a work hardening index n of 0.3 to 0.45, the work hardening was small, and the magnetic permeability μ of the 60% cold-rolled material was non-magnetic with a magnetic permeability μ of 1.05 or less. In addition, this steel did not undergo any cracking due to multi-stage deep drawing, and the cracking limit drawing ratio was much higher than SUS304, which was 3.2 or more. In steel Nos. 7 to 14, the workability and non-magnetism of the steel material targeted by the present invention cannot be obtained because the amount of C + N, the Md30 value and / or the SFE are out of the conditions specified by the present invention. It is a thing. Steel No. 15 is SUS304 which is a comparison of workability. Steels 16 to 29 do not satisfy the component range specified by the present invention, and the target workability and non-magnetism of the steel material could not be obtained.
0.2%耐力と成分の関係を調査した結果、 下式で現される回帰式 が得られ、 C + N量の低減によって 0.2%耐カを 300MPa未満に軟質 化出来るこ とが確認できた。 0.2%耐カ [NZmm2] =875* ( C + N) +3.87Mn- 1.48Ni- 3.53Cu+8.58Cr+ 19.7 As a result of investigating the relationship between 0.2% proof stress and components, a regression equation expressed by the following equation was obtained, and it was confirmed that the 0.2% proof stress could be softened to less than 300 MPa by reducing the amount of C + N. 0.2% resistance [NZmm 2 ] = 875 * (C + N) + 3.87Mn- 1.48Ni- 3.53Cu + 8.58Cr + 19.7
鋼材の伸びと透磁率に及ぼすオーステナイ ト安定度の指標 Md30値 の影響について検討した結果を図 1 および図 2に示す。 図 1 および 図 2に示すよ う に、 —10く Md30く 30に制御するこ とによって、 本発 明が目標とする伸び : 50 %以上、 μ : 1. 05以下が得られるこ とが確 認できた。 Figures 1 and 2 show the results of an examination of the effect of the austenitic stability index Md30 on the elongation and permeability of steel. As shown in Fig. 1 and Fig. 2, by controlling to -10 It was confirmed that the target growth of Akira was 50% or more and μ: 1.05 or less.
また、 積層欠陥エネルギーの生成指標 SFEと加工硬化指数 η との 関係を検討した結果、 図 3に見られるよ う に、 40く SFEく 80にする こ とによって、 本発明が目標とする η値が得られるこ とが確認でき た。 In addition, as a result of examining the relationship between the stacking fault energy generation index SFE and the work hardening index η, as shown in FIG. Was obtained.
表 1 table 1
Figure imgf000014_0001
Figure imgf000014_0001
*本発明が目標とする高 Mnス テ ン レス鋼の加工性と非磁性に未達であるこ とを示す。 Md30=497-462(C+N)-9.2Si-8.1Μη-13.7Cr - 20(Ni + Cu) - 18.5Mo  * It shows that the high workability and non-magnetism of the high Mn stainless steel targeted by the present invention are not achieved. Md30 = 497-462 (C + N) -9.2Si-8.1Μη-13.7Cr-20 (Ni + Cu)-18.5Mo
SFE[mJ/m2 ]=6.2N1 + 18.6Cu+0.7Cr + 3.2Mn+9.3Mo - 53>40 SFE [mJ / m 2 ] = 6.2N1 + 18.6Cu + 0.7Cr + 3.2Mn + 9.3Mo-53> 40
0.2%耐カ [N/mm2 ]=875*(C+N) + 3.87Mn- 1.48N1-3.53Cu + 8.58Cr + 19.7(回帰式) 0.2% resistance [N / mm 2 ] = 875 * (C + N) + 3.87Mn- 1.48N1-3.53Cu + 8.58Cr + 19.7 (regression formula)
;本発明範囲から外れている もの Those outside the scope of the invention
産業上の利用可能性 Industrial applicability
本発明の高 Mnステンレス鋼は、 従来の高 Mnステンレス銅ではなし 得なかった成形加工が可能であり、 SUS304に代表される N i系のステ ンレス鋼が使用されるプレス成形用途へ使用される。 特に、 SUS304 で時期割れが問題となる多工程に及ぶ深絞り成形用途に最適である 。 更に、 SUS304を加工した後で非磁性化するための焼鈍も省略でき るため、 非磁性が要求される成形加工用の材料と して広範囲な分野 で適用可能である。  The high-Mn stainless steel of the present invention can be formed by conventional high-Mn stainless copper, and can be used for press forming applications where Ni-based stainless steel represented by SUS304 is used. . In particular, it is most suitable for multi-step deep drawing applications in which time cracking is a problem with SUS304. Furthermore, annealing for demagnetization after processing of SUS304 can be omitted, so that it can be applied in a wide range of fields as a material for molding that requires nonmagnetism.

Claims

1 . 質量0/。で、 C + N : 0.03〜0.15%, Si : 0.1~ 1 %, Mn: 3 ~15% , Cr : 10~16%, Ni : 1 〜 6 %, Cu : 0.3〜 3 %, Mo : 0.3〜 3 %、 残部 Feおよび不可避的不純物からなり、 オーステナイ ト安定 度の指標 Md30値と積層欠陥エネルギーの生成指標 SFEが下記を満足 するこ とを特徴とする加一卩青工性に優れたオーステナイ ト系高 Mnステン レス鋼。 1. Mass 0 /. C + N: 0.03 to 0.15%, Si: 0.1 to 1%, Mn: 3 to 15%, Cr: 10 to 16%, Ni: 1 to 6%, Cu: 0.3 to 3%, Mo: 0.3 to Austenitic steel with excellent workability, characterized by 3%, the balance being Fe and unavoidable impurities, and having an austenitic stability index Md30 value and a stacking fault energy generation index SFE satisfying the following: High Mn stainless steel.
— 10く Md30く 30, 40く SFEく 80の  — 10 Md30, 30, 40 SFE, 80
Md30 (°C) : 497-462 ( C + N) — 9.2S i _ 8. ΙΜη— 13.7Cr— 20 ( Ni + Cu) - 18.5Mo  Md30 (° C): 497-462 (C + N) — 9.2S i _ 8. ΙΜη — 13.7Cr — 20 (Ni + Cu)-18.5Mo
 Enclosure
SFE (mj/m2 ) : 6.2Ni + 18.6Cu+0.7Cr + 3.2Mn+9.3Mo-53SFE (mj / m 2 ): 6.2Ni + 18.6Cu + 0.7Cr + 3.2Mn + 9.3Mo-53
2. 質量%で、 REMを 0.001〜0.2%を含むこ とを特徴とする請求 項 1 に記載の加工性に優れたオーステナイ ト系高 Mnステンレス鋼。 2. The austenitic high-Mn stainless steel excellent in workability according to claim 1, characterized in that REM contains 0.001 to 0.2% by mass%.
3. 0.2%耐カカ S300MPa未満、 公称歪 25%と 35%の勾配である加 ェ硬化指数 nが 0.30〜0.45、 伸びが 50%以上である請求項 1 および 2に記載の加工性に優れたオーステナイ ト系高 Mnステ ンレス銅。  3.Excellent workability according to claims 1 and 2, wherein 0.2% Kaka resistance is less than S300MPa, the heat hardening index n is a gradient of 25% and 35% of nominal strain, 0.30 to 0.45, and the elongation is 50% or more. Austenitic high Mn stainless steel.
PCT/JP2004/016057 2003-11-07 2004-10-22 AUSTENITIC HIGH Mn STAINLESS STEEL EXCELLENT IN WORKABILITY WO2005045082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020057021573A KR101177540B1 (en) 2003-11-07 2004-10-22 AUSTENITIC HIGH Mn STAINLESS STEEL EXCELLENT IN WORKABILITY

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003378635 2003-11-07
JP2003-378635 2003-11-07
JP2004218508A JP4498847B2 (en) 2003-11-07 2004-07-27 Austenitic high Mn stainless steel with excellent workability
JP2004-218508 2004-07-27

Publications (1)

Publication Number Publication Date
WO2005045082A1 true WO2005045082A1 (en) 2005-05-19

Family

ID=34575934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016057 WO2005045082A1 (en) 2003-11-07 2004-10-22 AUSTENITIC HIGH Mn STAINLESS STEEL EXCELLENT IN WORKABILITY

Country Status (4)

Country Link
JP (1) JP4498847B2 (en)
KR (1) KR101177540B1 (en)
TW (1) TWI268960B (en)
WO (1) WO2005045082A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687156B2 (en) 2005-08-18 2010-03-30 Tdy Industries, Inc. Composite cutting inserts and methods of making the same
US8007922B2 (en) 2006-10-25 2011-08-30 Tdy Industries, Inc Articles having improved resistance to thermal cracking
US8025112B2 (en) 2008-08-22 2011-09-27 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
WO2011138503A1 (en) * 2010-05-06 2011-11-10 Outokumpu Oyj Low-nickel austenitic stainless steel and use of the steel
US8221517B2 (en) 2008-06-02 2012-07-17 TDY Industries, LLC Cemented carbide—metallic alloy composites
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8308096B2 (en) 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
US8312941B2 (en) 2006-04-27 2012-11-20 TDY Industries, LLC Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8318063B2 (en) 2005-06-27 2012-11-27 TDY Industries, LLC Injection molding fabrication method
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8440314B2 (en) 2009-08-25 2013-05-14 TDY Industries, LLC Coated cutting tools having a platinum group metal concentration gradient and related processes
EP2623624A1 (en) * 2010-09-29 2013-08-07 Nippon Steel & Sumikin Stainless Steel Corporation Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
US8540933B2 (en) 2009-01-30 2013-09-24 Sandvik Intellectual Property Ab Stainless austenitic low Ni steel alloy
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
US8858872B2 (en) 2007-11-29 2014-10-14 Ati Properties, Inc. Lean austenitic stainless steel
US8877121B2 (en) 2007-12-20 2014-11-04 Ati Properties, Inc. Corrosion resistant lean austenitic stainless steel
CN104169450A (en) * 2012-03-30 2014-11-26 新日铁住金不锈钢株式会社 Heat-resistant austenitic stainless steel sheet
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
US9121089B2 (en) 2007-12-20 2015-09-01 Ati Properties, Inc. Lean austenitic stainless steel
US9133538B2 (en) 2007-12-20 2015-09-15 Ati Properties, Inc. Lean austenitic stainless steel containing stabilizing elements
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907151B2 (en) * 2005-11-01 2012-03-28 新日鐵住金ステンレス株式会社 Austenitic high Mn stainless steel for high-pressure hydrogen gas
KR100720279B1 (en) 2005-12-23 2007-05-22 주식회사 포스코 Cu added high manganese and high nitrogen austenitic stainless steel having good hot workability
JP4606337B2 (en) * 2006-01-30 2011-01-05 日本金属工業株式会社 Austenitic stainless steel for coins and coins manufactured with the steel
JP2008038191A (en) * 2006-08-04 2008-02-21 Nippon Metal Ind Co Ltd Austenitic stainless steel and its production method
KR100894679B1 (en) * 2007-06-19 2009-04-24 한양대학교 산학협력단 Fe-base austenitic alloy with high-wearresistance
JP5014915B2 (en) 2007-08-09 2012-08-29 日新製鋼株式会社 Ni-saving austenitic stainless steel
TW200942628A (en) * 2008-04-08 2009-10-16 Walsin Lihwa Corp Low nickel austenitic stainless steel with low magnetism, corrosion resistance and easy-to-process
JP5444561B2 (en) 2009-02-27 2014-03-19 日本冶金工業株式会社 High Mn austenitic stainless steel and metal parts for clothing
JP5528459B2 (en) * 2009-09-02 2014-06-25 新日鐵住金ステンレス株式会社 Ni-saving stainless steel with excellent corrosion resistance
EP2813906A1 (en) * 2013-06-12 2014-12-17 Nivarox-FAR S.A. Part for clockwork
US20170326628A1 (en) * 2014-12-26 2017-11-16 Posco Lean duplex stainless steel and method for producing the same
JP6492163B2 (en) 2015-03-06 2019-03-27 新日鐵住金ステンレス株式会社 High strength austenitic stainless steel with excellent hydrogen embrittlement resistance and method for producing the same
US11149324B2 (en) 2015-03-26 2021-10-19 Nippon Steel Stainless Steel Corporation High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment
KR102173302B1 (en) * 2018-11-12 2020-11-03 주식회사 포스코 Non-magnetic austenitic stainless steel and manufacturing method thereof
KR102491305B1 (en) * 2020-11-18 2023-01-20 주식회사 포스코 Non-magnetic steel having excellent High strength property and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119414A (en) * 1976-04-01 1977-10-06 Nippon Steel Corp Nickel saving type stainless steel having high stretchability
JPH06271995A (en) * 1993-03-19 1994-09-27 Nippon Steel Corp Low chromium asutenitic stainless steel
JPH07145452A (en) * 1993-11-19 1995-06-06 Nippon Steel Corp High strength and high rusting resistant stainless steel excellent in weldability
JPH11293405A (en) * 1998-02-16 1999-10-26 Hitachi Metals Ltd High hardness high corrosion resistance stainless steel
JP2000034546A (en) * 1998-07-02 2000-02-02 Ugine Sa Austenitic stainless steel reduced in nickel content and excellent in corrosion resistance
JP2001011579A (en) * 1999-06-28 2001-01-16 Sumitomo Metal Ind Ltd Manganese alloy steel, shaft and screw member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119414A (en) * 1976-04-01 1977-10-06 Nippon Steel Corp Nickel saving type stainless steel having high stretchability
JPH06271995A (en) * 1993-03-19 1994-09-27 Nippon Steel Corp Low chromium asutenitic stainless steel
JPH07145452A (en) * 1993-11-19 1995-06-06 Nippon Steel Corp High strength and high rusting resistant stainless steel excellent in weldability
JPH11293405A (en) * 1998-02-16 1999-10-26 Hitachi Metals Ltd High hardness high corrosion resistance stainless steel
JP2000034546A (en) * 1998-07-02 2000-02-02 Ugine Sa Austenitic stainless steel reduced in nickel content and excellent in corrosion resistance
JP2001011579A (en) * 1999-06-28 2001-01-16 Sumitomo Metal Ind Ltd Manganese alloy steel, shaft and screw member

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808591B2 (en) 2005-06-27 2014-08-19 Kennametal Inc. Coextrusion fabrication method
US8318063B2 (en) 2005-06-27 2012-11-27 TDY Industries, LLC Injection molding fabrication method
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8647561B2 (en) 2005-08-18 2014-02-11 Kennametal Inc. Composite cutting inserts and methods of making the same
US7687156B2 (en) 2005-08-18 2010-03-30 Tdy Industries, Inc. Composite cutting inserts and methods of making the same
US8789625B2 (en) 2006-04-27 2014-07-29 Kennametal Inc. Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8312941B2 (en) 2006-04-27 2012-11-20 TDY Industries, LLC Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8841005B2 (en) 2006-10-25 2014-09-23 Kennametal Inc. Articles having improved resistance to thermal cracking
US8697258B2 (en) 2006-10-25 2014-04-15 Kennametal Inc. Articles having improved resistance to thermal cracking
US8007922B2 (en) 2006-10-25 2011-08-30 Tdy Industries, Inc Articles having improved resistance to thermal cracking
US8858872B2 (en) 2007-11-29 2014-10-14 Ati Properties, Inc. Lean austenitic stainless steel
US9617628B2 (en) 2007-11-29 2017-04-11 Ati Properties Llc Lean austenitic stainless steel
US10370748B2 (en) 2007-11-29 2019-08-06 Ati Properties Llc Lean austenitic stainless steel
US10323308B2 (en) 2007-12-20 2019-06-18 Ati Properties Llc Corrosion resistant lean austenitic stainless steel
US9624564B2 (en) 2007-12-20 2017-04-18 Ati Properties Llc Corrosion resistant lean austenitic stainless steel
US9822435B2 (en) 2007-12-20 2017-11-21 Ati Properties Llc Lean austenitic stainless steel
US9133538B2 (en) 2007-12-20 2015-09-15 Ati Properties, Inc. Lean austenitic stainless steel containing stabilizing elements
US9873932B2 (en) 2007-12-20 2018-01-23 Ati Properties Llc Lean austenitic stainless steel containing stabilizing elements
US8877121B2 (en) 2007-12-20 2014-11-04 Ati Properties, Inc. Corrosion resistant lean austenitic stainless steel
US9121089B2 (en) 2007-12-20 2015-09-01 Ati Properties, Inc. Lean austenitic stainless steel
US8221517B2 (en) 2008-06-02 2012-07-17 TDY Industries, LLC Cemented carbide—metallic alloy composites
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8225886B2 (en) 2008-08-22 2012-07-24 TDY Industries, LLC Earth-boring bits and other parts including cemented carbide
US8858870B2 (en) 2008-08-22 2014-10-14 Kennametal Inc. Earth-boring bits and other parts including cemented carbide
US8025112B2 (en) 2008-08-22 2011-09-27 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US8459380B2 (en) 2008-08-22 2013-06-11 TDY Industries, LLC Earth-boring bits and other parts including cemented carbide
US8540933B2 (en) 2009-01-30 2013-09-24 Sandvik Intellectual Property Ab Stainless austenitic low Ni steel alloy
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US9435010B2 (en) 2009-05-12 2016-09-06 Kennametal Inc. Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US9266171B2 (en) 2009-07-14 2016-02-23 Kennametal Inc. Grinding roll including wear resistant working surface
US8308096B2 (en) 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
US8440314B2 (en) 2009-08-25 2013-05-14 TDY Industries, LLC Coated cutting tools having a platinum group metal concentration gradient and related processes
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
WO2011138503A1 (en) * 2010-05-06 2011-11-10 Outokumpu Oyj Low-nickel austenitic stainless steel and use of the steel
AU2011249711B2 (en) * 2010-05-06 2016-05-12 Outokumpu Oyj Low-nickel austenitic stainless steel and use of the steel
EA024633B1 (en) * 2010-05-06 2016-10-31 Отокумпу Оюй Low-nickel austenitic stainless steel and use thereof
US9039961B2 (en) 2010-05-06 2015-05-26 Outokumpu Oyj Low-nickel austenitic stainless steel
EP2623624A1 (en) * 2010-09-29 2013-08-07 Nippon Steel & Sumikin Stainless Steel Corporation Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
EP2623624A4 (en) * 2010-09-29 2015-04-22 Nippon Steel & Sumikin Sst Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
US9175361B2 (en) 2010-09-29 2015-11-03 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic high Mn stainless steel and method production of same and member using that steel
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
CN104169450A (en) * 2012-03-30 2014-11-26 新日铁住金不锈钢株式会社 Heat-resistant austenitic stainless steel sheet

Also Published As

Publication number Publication date
KR20060099388A (en) 2006-09-19
TWI268960B (en) 2006-12-21
KR101177540B1 (en) 2012-08-28
JP2005154890A (en) 2005-06-16
TW200521251A (en) 2005-07-01
JP4498847B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
WO2005045082A1 (en) AUSTENITIC HIGH Mn STAINLESS STEEL EXCELLENT IN WORKABILITY
JP4907151B2 (en) Austenitic high Mn stainless steel for high-pressure hydrogen gas
TWI428454B (en) High-toughness and high-corrosion resistance cold rolled ferritic stainless steel sheet and production method thereof
JP5308726B2 (en) Austenitic stainless steel sheet for press forming having a fine grain structure and method for producing the same
JP2006200035A (en) Ferritic-austenitic stainless steel having excellent punch stretch formability and resistance to crevice corrosion
WO2011093516A1 (en) Highly corrosion-resistant hot-rolled ferrite stainless steel sheet having excellent toughness
JP5376927B2 (en) Manufacturing method of high proportional limit steel plate with excellent bending workability
JP2018127685A (en) Ferrite austenite two-phase stainless steel sheet and manufacturing method therefor
JP4327030B2 (en) Low Ni austenitic stainless steel with excellent overhanging and rust resistance
JP2010215953A (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
CN110088323B (en) Article comprising a duplex stainless steel and use thereof
JP5977609B2 (en) Saving Ni-type austenitic stainless steel
JP2018178144A (en) Precipitation-hardened stainless steel having excellent hot workability
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP6583885B2 (en) High hardness stainless steel with excellent corrosion resistance and manufacturability
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
JP4606337B2 (en) Austenitic stainless steel for coins and coins manufactured with the steel
CN100372961C (en) Austenitic high mn stainless steel excellent in workability
JP4331731B2 (en) Austenitic stainless steel and springs made of that steel
JP4740021B2 (en) Cr-containing thin steel sheet having excellent shape freezing property and method for producing the same
WO2012160594A1 (en) Austenitic stainless steel for spring, and stainless processing material for spring
JP4587739B2 (en) Austenitic stainless steel plate and deep-drawn container with excellent secondary workability and corrosion resistance after deep drawing
JP2011047008A (en) Austenitic stainless steel for spring
JP2011225944A (en) High corrosion resistance ferritic stainless steel sheet with excellent toughness, and method of manufacturing the same
JP2018145484A (en) High strength diplophase stainless steel material excellent in corrosion resistance and flexure processability

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 4718/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1200501658

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 1020057021573

Country of ref document: KR

Ref document number: 20048128832

Country of ref document: CN

122 Ep: pct application non-entry in european phase