WO2006049197A1 - CeO2微粒子の製造方法及び該微粒子を含む研磨用スラリー - Google Patents

CeO2微粒子の製造方法及び該微粒子を含む研磨用スラリー Download PDF

Info

Publication number
WO2006049197A1
WO2006049197A1 PCT/JP2005/020188 JP2005020188W WO2006049197A1 WO 2006049197 A1 WO2006049197 A1 WO 2006049197A1 JP 2005020188 W JP2005020188 W JP 2005020188W WO 2006049197 A1 WO2006049197 A1 WO 2006049197A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceo
fine particles
producing
melt
polishing
Prior art date
Application number
PCT/JP2005/020188
Other languages
English (en)
French (fr)
Inventor
Yoshihisa Beppu
Tomohiro Sakai
Satoshi Kashiwabara
Kazuo Sunahara
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2006542417A priority Critical patent/JP5012026B2/ja
Priority to EP05805415A priority patent/EP1818312A4/en
Publication of WO2006049197A1 publication Critical patent/WO2006049197A1/ja
Priority to US11/745,024 priority patent/US7381232B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1427Abrasive particles per se obtained by division of a mass agglomerated by melting, at least partially, e.g. with a binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a method for producing CeO fine particles and a polishing slurry containing the fine particles,
  • CeO fine particles with particularly high crystallinity and excellent particle size uniformity and small particle size
  • Cu As a wiring material, Cu has attracted attention because it has a low specific resistance and superior electromigration resistance compared to the conventionally used A1 alloy. Cu has a low vapor pressure of its chloride gas. Conventional reactive ion etching (RIE) is difficult to process into wiring shapes, so the damascene method is used to form wiring. Is used. This is done by forming recesses such as wiring groove patterns and vias in the insulating layer, and then forming a noria layer, and then depositing Cu in the trenches by sputtering, plating, etc. The excess Cu and barrier layer are removed by chemical mechanical polishing (CMP) until the surface of the insulating layer is exposed, and the surface is flattened to form a buried metal wiring. Is the method. Furthermore, an interlayer insulating film that also has SiO force is deposited on the buried wiring, and Si is formed by CMP.
  • CMP chemical mechanical polishing
  • Multilayer wiring can also be formed.
  • STI shallow trench
  • a selection ratio is given to the polishing rate of the SiN film and the polishing rate of the SiO film, and the polishing is completed when the SiN film is exposed.
  • the SiN film is generally used as a stopper.
  • silica particles were generally used as the polishing particles used in CMP as described above. However, since the selective ratio between the polishing rate of the SiN film and the polishing rate of the SiO film is small, this is difficult.
  • CeO Cerium oxide
  • a slurry abrasive containing ultrafine particles of high-purity CeO is used as the semiconductor device.
  • Patent Document 4 glass is heat-treated at a temperature equal to or higher than the glass transition point to precipitate ceramic crystals in the glass matrix, and then the glass is dissolved and removed with a weak acid to separate only the precipitated crystals.
  • Magnetoplumbite-type ferrite (MFe O) Magnetoplumbite-type ferrite
  • a method for producing a powder is disclosed. This glass crystallization method is used for substances other than precipitated crystals. Is effective as a means of synthesizing high-purity ceramic particles and can easily control the particle size, particle size distribution, and shape of the particles. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-55861 (Claims)
  • Patent Document 2 JP-A-8-134435 (Claims)
  • Patent Document 3 USP5, 938, 837
  • Patent Document 4 USP4, 569, 775
  • the present invention relates to a method for producing CeO fine particles and a polishing slurry containing the fine particles,
  • An object is to provide a polishing slurry containing the fine particles.
  • the present invention is characterized by having the following configuration.
  • a method for producing CeO fine particles comprising: 2 steps in this order.
  • the amorphous material force is also subjected to a step of precipitating CeO crystals at 600 to 900 ° C. (1) to
  • the average primary particle diameter of the CeO fine particles is 5 to 200 nm.
  • CeO fine particles according to any one of (1) to (7) are dispersed in a liquid medium
  • CeO fine particles having a high crystallinity and excellent particle size uniformity and a small particle size can be easily obtained. Therefore, if the fine particles are used,
  • polishing slurry suitable for precision polishing in the conductor device manufacturing process.
  • the particles have a small particle diameter, there are also advantages such as shortening the firing temperature and firing time in the production process.
  • the fine particles are also effective as polishing materials for glass such as optical disks, magnetic disk substrates, display substrates, optical lenses, and the like.
  • the fine particles are also suitably used as an ultraviolet absorber for ultraviolet absorbing glass and ultraviolet absorbing film, a gas sensor, or an electrode material for a solid oxide fuel cell.
  • the melt is a CeO source, RO (R is Mg,
  • CeO sources include cerium oxide (CeO, Ce 2 O 3) and cerium carbonate (Ce (CO 2)).
  • CeO source is melted to cooperate with the RO and BO sources described below. It works as a component of the formation.
  • the RO source is selected from the group consisting of R acid or carbonate (RO) or carbonate (RCO).
  • R Ba or Sr is preferable.
  • oxyboron (B 2 O) or boric acid (H BO) as the B 2 O source.
  • alkaline earth metal borates may be used.
  • the purity of the constituent materials in the mixture is not particularly limited as long as the desired properties are not deteriorated, but the purity excluding hydration water is preferably 99% or more, more preferably purity. 99. Use 9% or more.
  • the particle size of the constituent material is not particularly limited as long as it is within a range in which a uniform melt can be obtained by melting.
  • it is preferable that the above-described constituent materials are melted after being mixed dry or wet using a mixing and pulverizing means such as a ball mill or a planetary mill.
  • Melting may be performed in an air atmosphere, but is preferably performed while controlling the oxygen partial pressure and the oxygen flow rate.
  • the crucible used for melting is preferably made of alumina, platinum, or platinum containing rhodium, but a refractory can also be used. Further, it is preferable to perform melting using a resistance heating furnace, a high frequency induction furnace or a plasma arc furnace.
  • the resistance heating furnace is preferably an electric furnace including a heating element made of a metal such as a dichromium alloy, a carbonized carbon, or a molybdenum silicide.
  • a high-frequency induction furnace has an induction coil and can control the output, and a plasma arc furnace can use carbon or the like as an electrode and can use a plasma arc generated thereby. Good. Further, it may be melted by infrared or laser direct heating. Melting is preferably performed at 1200 ° C or higher, particularly 1300-1500 ° C. The obtained melt may be agitated to enhance uniformity.
  • the mixture in which the constituent materials are mixed may be melted in a powder state, and the previously molded mixture may be melted.
  • the mixture formed in advance can be melted as it is and further rapidly cooled.
  • composition of the melt is 5 to 50% CeO and 10 to 50% RO in terms of mol% based on oxide.
  • melt with the above composition range has moderate viscosity
  • the amorphous material can be obtained by the subsequent rapid cooling operation without crystallization of the melt, which is preferable.
  • This composition also corresponds to the chemical composition of the constituent material before melting. If the constituent material volatilizes during the melting operation and a melt with the desired composition cannot be obtained, the proportion of the constituent material added should be adjusted.
  • CeO crystals may not be sufficiently precipitated, which is not preferable.
  • a melt containing a molar ratio of 60 is preferable because the melt is easily vitrified.
  • the melt is dropped between twin rollers rotating at high speed to form a flaky amorphous material.
  • a method of obtaining a fiber-like amorphous substance (long fiber) continuously with a melt force by a high-speed rotating drum is preferably used.
  • the temperature at the time of rapid cooling is, for example, 100 ° CZ seconds or more, preferably 1 ⁇ 10 4 ° CZ seconds or more.
  • the double roller and drum those made of metal or ceramics are used.
  • a spinner that rotates at high speed and has pores on the side walls to obtain a fiber-like amorphous material (short fibers).
  • the amorphous substance is flaky, its thickness is 200 m or less, more preferably 100 m or less, and when it is fibrous, its diameter is 50 m or less. More preferably, rapid cooling is preferably performed to 30 ⁇ m or less. Less than this or straight.
  • the amorphous material having the above-mentioned thickness or diameter is obtained because rapid crystallization so that an amorphous material having a diameter can be formed, the crystallization efficiency in the subsequent crystallization process can be increased. Is preferably subjected to a subsequent crystallization step after pulverization.
  • the step of 2 2 is preferably performed at 600 to 900 ° C in the air. Even if it is continuously heated at less than 600 ° C for about 24 hours, it is difficult for crystals to precipitate.If it exceeds 900 ° C, there is a risk that crystallized material containing amorphous material will melt. It is not preferable. More preferably, it is performed at 650 to 850 ° C. Since this crystal precipitation process also has a two-stage force of nucleation and subsequent crystal growth, these two stages may be performed at different temperatures. In addition, since the particle diameter of the precipitated crystals tends to increase as the heating is performed at a higher temperature, the crystallization temperature may be set according to the desired particle diameter. In the present invention, CeO is mainly precipitated as crystals by crystallization of an amorphous substance. Depending on the composition of the mixture, R borate, CeO, R
  • boric acid double salt may precipitate. In that case, it can be removed at the same time by leaching.
  • the retention time may be set according to the desired particle diameter.
  • the substance other than CeO crystal can be easily leached and removed by the crystallization force.
  • inorganic acids such as acetic acid, hydrochloric acid and nitric acid, and organic acids such as oxalic acid and citrate can be used.
  • organic acids such as oxalic acid and citrate
  • an acid may be used warming and you may use ultrasonic irradiation together.
  • a part of CeO crystal may be dissolved by this leaching process.
  • the average primary particle diameter of the fine particles (in the case of anisotropic particles, the long diameter is assumed) is preferably 5 to 2 OOnm.
  • Average primary The particle diameter is 5 to: LOOnm is more preferable, and 10 to 50 nm is particularly preferable.
  • the CeO fine particles obtained above are dispersed in a suitable liquid medium to obtain a polishing slurry.
  • the liquid medium is not particularly limited, but it is preferable to use water or an aqueous medium mainly composed of water in order to maintain the viscosity of the slurry, that is, the fluidity.
  • a viscosity control agent may be added to the slurry.
  • a solvent having a high relative dielectric constant such as methanol, ethanol, propanol, ethylene glycol, propylene glycol or the like can be contained for the purpose of improving polishing characteristics and dispersion stability.
  • the content ratio of CeO fine particles in the polishing slurry is determined by the polishing rate, uniform dispersibility and dispersion.
  • 0.1 to 20% by mass of CeO fine particles are included in the total mass of the polishing slurry.
  • the content ratio is 0.1% by mass
  • the polishing rate will not be sufficient, but if it exceeds 20% by mass, the viscosity of the slurry will increase, making it difficult to handle as a polishing slurry. More preferably, the content ratio is 0.5 to 5% by mass.
  • a slurry obtained by wet-grinding a suspension obtained by adding water or an aqueous medium is dispersed to form a slurry.
  • the above pulverization and dispersion are performed using a dry jet mill that collides powders at high speed, a ball (bead) mill, a planetary mill, a high-pressure homogenizer that collides a plurality of fluids, and ultrasonic irradiation.
  • a filtration process or centrifugation may be performed.
  • the dispersed particle size of the polishing slurry is preferably 10 to 300 nm because the polishing rate is excellent. Particularly preferably, the dispersed particle size is 20 to 200 nm.
  • the resin used as a dispersant, a pH adjuster, a pH buffer, an oxidizer, and a fine particle stabilizer depending on the application within a range that does not impair the excellent polishing characteristics of the polishing slurry of the present invention.
  • a dipping and erosion inhibitor may be included in the slurry.
  • the dispersant include polycarboxylic acid ammonium and polyacrylic acid ammonium.
  • inorganic acids such as nitric acid as a pH adjusting agent and P H buffer, succinic acid, carboxylic acids such Kuen acid, Ryo Preferred examples include ammonia water, quaternary ammonium hydroxides such as tetramethyl ammonium hydroxide, and alkali metal hydroxides.
  • the pH of the slurry is preferably controlled to 2 to 10, particularly 4 to 9.
  • Cerium oxide (CeO), RCO (R Ba and Z or Sr) and boron oxide (B 2 O 3)
  • the obtained raw material powder was filled in a platinum crucible containing 10% by mass of rhodium with a nozzle and heated at 1500 ° C for 1 hour in an electric furnace using molybdenum kaide as a heating element. It was completely melted.
  • the melt is dripped while heating the lower end of the nozzle in an electric furnace, and the droplet is rapidly passed in about 1 X 10 5 ° CZ seconds by passing through a twin roller with a diameter of about 15 cm rotating at 300 rpm. Cooled to obtain a flaky solid. The obtained flakes were brown and were transparent amorphous substances. When the flake thickness was measured with a micrometer, it was 30-50 ⁇ m o
  • a part of the obtained flakes was used to obtain a crystallizing temperature in advance by differential scanning calorimetry (DSC), and the flakes at 8:00 hours at a temperature higher than the crystallization start temperature and shown in Table 1 Heating was performed for precipitation of plate-like CeO crystals.
  • Figure 1 shows the X-ray diffraction pattern of the fine particles obtained in Example 5.
  • the average primary particle size was determined.
  • the average primary particle size is the crystallite size, and the particle size calculated from the spread of the X-ray diffraction line based on the Scherrer equation.
  • the results are shown in Table 1. From Table 1, it is clear that all the fine particles obtained have a very fine particle size.
  • CeO fine particles were obtained in the same manner as in Example 1 except that the chemical composition of the raw material mixture was changed to the ratio shown in Table 2 and the flakes were heated at the crystallization temperature shown in Table 2 for 8 hours.
  • the mineral phase of the obtained CeO fine particles was identified by the same method as in Example 1.
  • Example 1 8 Same as Example 5 670 1 5
  • Example 1 9 Same as Example 5 700 24
  • Example 20 Same as Example 5 720 30
  • Example 2 1 Same as Example 5 800 58
  • Example 22 Same as Example 1 1 7 1 0 46
  • Example 23 Example 1 Same as 1 770 60
  • Example 24 Same as Example 1 3 720 46
  • Example 5 When the melt obtained by mixing and crushing operation and melting operation in the same manner as in Example 5 was cooled to room temperature at a rate of 300 ° CZh in an electric furnace, an opaque solid was formed and amorphous. No material was obtained.
  • Example 5 was weighed so that the proportions shown in Table 3 were expressed in terms of mol% based on CeO, BaO and B 2 O.
  • Example 1 was weighed to obtain the ratio shown in Table 3 in terms of mol% based on CeO, BaO and B 2 O.
  • Example 26 60. 0 1 0. 0 30. 0
  • Example 27 60. 0 20. 0 20. 0
  • Example 24 Made.
  • the CeO fine particle lOOg obtained in Example 24 was added to about 800 mL of distilled water.
  • Liquid B was prepared. Furthermore, commercially available CeO fine particles (Chi Kasei Co., Ltd., trade name: NanoTe
  • a pH adjusting agent and a dispersing agent were added as shown in Table 4, and then wet pulverized by a wet jet mill, and coarse particles were removed by centrifugation, and the examples 30 to 35 polishing slurries were prepared.
  • the pH adjuster D 0.1 mol mol of nitric acid was used
  • the pH adjuster E 0.5 mol / L aqueous ammonia was used.
  • ammonium polyacrylate was used as a dispersant.
  • a good dispersion was obtained in any of Examples 30 to 35.
  • Polishing was performed with the following apparatus and conditions.
  • Polishing machine Fully automatic CMP machine MIRRA (Applied Materials, trade name: Compass),
  • Rotation speed Platen (surface plate) 105rpm, Head (base holding part): 98rpm,
  • Polishing slurry supply rate 200mLZ min.
  • Polishing pad IC1000 (Mouth Dale).
  • SiO (insulating layer) polishing rate evaluation wafer An SiO layer with a thickness of 800 nm is formed on a Si substrate.
  • SiN (stopper layer) polishing rate evaluation wafer An 8-inch wafer in which SiOO of lOOnm thickness is deposited on a Si substrate by thermal CVD.
  • the polishing rate was calculated from the film thickness before and after polishing.
  • an optical interference type fully automatic film thickness measuring device UV1280SE manufactured by KLA Tencor
  • the evaluation of the polishing rate of each of the insulating layer and the stopper layer the above (a) and (b) were used, and the polishing slurry having the composition of Examples 30 to 35 was used for this evaluation.
  • polishing slurry having the composition of Examples 30 to 35 was used, and the wafer after polishing (a) for 60 seconds under the above-described conditions was washed and dried, and then the scratch on the wafer generated by polishing was obtained.
  • a scratch detector 2132 manufactured by KLA Tencor
  • Table 5 shows polishing rates [nmZ of SiO and SiN films obtained using (a) and (b)].
  • polishing slurry according to the present invention is SiO 2
  • the SiO layer is polished at a high polishing rate
  • polishing slurry suitable for realizing highly accurate CMP polishing can be obtained in the STI process that requires polishing to be completed when the SiN layer is exposed.
  • CeO fine particles obtained by the present invention have a highly crystalline composition and uniform particle size.
  • the fine particles are also effective as an abrasive material for glass, an ultraviolet absorber for ultraviolet absorbing glass and ultraviolet film, a gas sensor, or an electrode material for a solid oxide fuel cell.

Abstract

 結晶性が高く、組成及び粒子径の均一性に優れ、粒子径の小さいCeO2微粒子の製造方法、及び該微粒子を含む研磨用スラリーの提供。  酸化物基準のモル%表示で、CeO2を5~50%、RO(RはMg、Ca、Sr、Baからなる群より選ばれる1種以上)を10~50%、B2O3を30~75%含む溶融物を得る工程と、前記溶融物を急速冷却して非晶質物質とする工程と、前記非晶質物質からCeO2結晶を析出させる工程と、得られた結晶化物から前記CeO2結晶を分離する工程と、をこの順に含むことを特徴とするCeO2微粒子の製造方法。また、該微粒子を0.1~20質量%含む研磨用スラリー。

Description

明 細 書
CeO微粒子の製造方法及び該微粒子を含む研磨用スラリー
2
技術分野
[0001] 本発明は、 CeO微粒子の製造方法及び該微粒子を含む研磨用スラリーに関し、
2
特に結晶性が高ぐ組成及び粒子径の均一性に優れ、粒子径の小さい CeO微粒子
2 を容易に得るための方法及び該微粒子を含む研磨用スラリーに関する。
背景技術
[0002] 近年、特に半導体集積回路の高集積化'高機能化に伴い、微細化'高密度化のた めの微細加工技術の開発が求められている。半導体デバイス製造工程、特に多層 配線形成工程においては、層間絶縁膜や埋め込み配線の平坦ィ匕技術が重要である 。すなわち、半導体製造プロセスの微細化 ·高密度化により配線が多層化するにつ れ、各層での表面の凸凹が大きくなりやすぐその段差がリソグラフィの焦点深度を越 える等の問題を防ぐために、多層配線形成工程での高平坦ィ匕技術が重要となってき ている。
[0003] 配線材料としては、従来使われてきた A1合金に比べて比抵抗が低ぐエレクトロマ ィグレーシヨン耐性に優れることから、 Cuが着目されている。 Cuはその塩化物ガスの 蒸気圧が低ぐ従来力 用いられてきた反応性イオンエッチング法 (RIE : Reactive Ion Etching)では配線形状への加工が難しいため、配線の形成にはダマシーン 法 (Damascene)が用いられる。これは絶縁層に配線用の溝パターンやビア等の凹 部を形成し、次にノリア層を形成した後に、 Cuを溝部に埋め込むようにスパッタ法ゃ メツキ法等で成膜し、その後凹部以外の絶縁層表面が露出するまで余分な Cuとバリ ァ層を化学的機械的研磨法(CMP : Chemical Mechanical Polishing、以下 C MPという。)で除去して表面を平坦化し、埋め込み金属配線を形成する方法である。 さらに、 SiO力もなる層間絶縁膜を埋め込み配線の上に堆積させ、 CMPによって Si
2
O膜を平坦化し、次の埋め込み配線を形成することによって Cuと SiO膜とからなる
2 2
多層配線を形成することもできる。近年は、このようにして凹部に Cuが埋め込まれた Cu配線とビア部とを同時に形成するデュアルダマシーン法(Dual Damascene)が 主流となっている(例えば、特許文献 1参照)。
また、トランジスタ等の素子間を電気的に分離するために、シヤロートレンチによる 素子分離法(Shallow Trench Isolation、以下 STIという。)が用いられている。こ れは、素子領域を SiN膜でマスクしてシリコン基板にトレンチ溝を形成した後、トレン チ溝を埋め込むように SiO膜を堆積させ、 SiN膜上の余分な SiO膜を CMPによつ
2 x 2
て除去し、素子領域を電気的に分離する方法である。 CMPの際、 SiN膜の研磨速 度と SiO膜の研磨速度に選択比を持たせ、 SiN膜が露出した時点で研磨が終了す
2
るように、 SiN膜をストッパーとして使用するのが一般的である。
[0004] このような Cu埋め込み配線形成においては、層間絶縁膜の平坦ィ匕のために、 SiO 膜の研磨速度が大きぐ SiN膜の研磨速度が小さい研磨剤の開発が求められてい
2
る。従来では、上記したような CMPに用いられる研磨砲粒としてはシリカ砲粒が一般 的であつたが、 SiN膜の研磨速度と SiO膜の研磨速度の選択比が小さいため、こ
2
れらに対する研磨選択性に優れた酸化セリウム (以下、 CeO
2という。)砥粒が用いら れるようになってきている。
[0005] 例えば、高純度 CeOの超微粒子を含むスラリー状の研磨剤を上記の半導体デバ
2
イスの製造工程に用いる試みがなされている(例えば、特許文献 2参照)。しかし、結 晶性の低い状態の CeOは化学的に反応性が高いため、これを含む研磨剤スラリー
2
を使用すると被研磨表面に焼け、オレンジ皮、付着等の問題が生じるので、精密研 磨には使えないという問題があった。この問題を解決するために、硝酸第一セリウム の水溶液と塩基とを pHが 5〜: L0となる量比で撹拌混合し、 70〜: L00°Cで熟成して得 られる CeOの超微粒子を用いる試みもなされている(特許文献 3参照)。しかし、この
2
方法では反応条件の設定が容易ではなぐまた、反応の終点を制御しがたいため、 微粒子の粒子径及び粒子径分布の制御が困難であり、半導体デバイス製造工程に おける精密研磨用スラリーとしての適用に際し充分な特性を有していな力つた。
[0006] 一方、特許文献 4には、ガラスをガラス転移点以上の温度で加熱処理してガラスマ トリックス中にセラミックス結晶を析出させた後、ガラスを弱酸で溶解除去して析出結 晶のみを分離するガラス結晶化法によるマグネトプランバイト型フェライト (MFe O
12 19
)粉末の製造方法が開示されている。このガラス結晶化法は、析出結晶以外の物質 を完全に除去することが可能な場合には、高純度のセラミックス粒子の合成手段とし て有効であり、かつ、粒子の粒子径、粒子径分布及び形状の制御が容易であるとい う特徴を有する。
[0007] 特許文献 1:特開 2004— 55861号公報 (特許請求の範囲)
特許文献 2:特開平 8 - 134435号公報 (特許請求の範囲)
特許文献 3 :USP5, 938, 837号公報
特許文献 4:USP4, 569, 775号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、 CeO微粒子の製造方法及び該微粒子を含む研磨用スラリーに関し、
2
特に結晶性が高ぐ組成及び粒子径の均一性に優れ、粒子径が小さく半導体デバイ ス製造工程における精密研磨に好適な CeO微粒子を容易に得るための方法及び
2
該微粒子を含む研磨用スラリーを提供することを目的とする。
課題を解決するための手段
[0009] 本発明は、下記の構成を有することを特徴とするものである。
[0010] (1)酸化物基準のモル%表示で、 CeOを 5〜50%、 RO (Rは Mg、 Ca、 Sr及び Ba
2
力もなる群より選ばれる 1種以上)を 10〜50%、 B Oを 30〜75%含む溶融物を得
2 3
る工程と、前記溶融物を急速冷却して非晶質物質とする工程と、前記非晶質物質か ら CeO結晶を析出させる工程と、得られた結晶化物から前記 CeO結晶を分離する
2 2 工程と、をこの順に含むことを特徴とする CeO微粒子の製造方法。
2
[0011] (2)前記溶融物中に、前記 CeO、前記 RO及び前記 B Oを CeO: (RO + B O )
2 2 3 2 2 3
= 5: 95〜50: 50のモル比で含む(1)に記載の CeO微粒子の製造方法。
2
[0012] (3)前記溶融物中に、前記 RO及び前記 B Oを RO : B O = 20 : 80〜50 : 50のモ
2 3 2 3
ル比で含む(1)又は(2)に記載の CeO微粒子の製造方法。
2
[0013] (4)前記溶融物を急速冷却してフレーク状又はファイバー状の非晶質物質を得る( 1)〜(3)の 、ずれかに記載の CeO微粒子の製造方法。
2
[0014] (5)前記非晶質物質力も CeO結晶を析出させる工程を 600〜900°Cで行う(1)〜
2
(4)のいずれかに記載の CeO微粒子の製造方法。 [0015] (6)前記 CeO結晶を分離する工程を酸を用いて行う(1)〜(5)のいずれかに記載
2
の CeO微粒子の製造方法。
2
[0016] (7)前記 CeO微粒子の平均一次粒子径が 5〜200nmである(1)〜(6)の!/、ずれ
2
かに記載の前記 CeO微粒子の製造方法。
2
[0017] (8) (1)〜(7)のいずれかに記載の CeO微粒子が液状媒体中に分散してなり、ス
2
ラリー全質量中に、前記微粒子を 0. 1〜20質量%含む研磨用スラリー。
[0018] (9)分散粒子径が 10〜300nmである(8)に記載の研磨用スラリー。
発明の効果
[0019] 本発明によれば、結晶性が高ぐ組成及び粒子径の均一性に優れ、かつ粒子径の 小さい CeO微粒子を容易に得ることができる。そのため、該微粒子を用いれば、半
2
導体デバイス製造工程における精密研磨に好適な研磨用スラリーを提供可能となる 。また、粒子径の小さい微粒子であるため、製造工程において焼成温度及び焼成時 間を短縮できる等の利点もある。さらに、該微粒子は光ディスク、磁気ディスク用基板 、ディスプレイ用基板、光学用レンズ等のガラス用の研磨材料としても有効である。
[0020] なお、該微粒子は紫外線吸収ガラスや紫外線吸収フィルム用の紫外線吸収剤、ガ スセンサー、もしくは固体酸ィ匕物燃料電池用の電極材料としても好適に使用される。 図面の簡単な説明
[0021] [図 1]実施例の例 5で得られた CeO微粒子の X線回折パターン図
2
発明を実施するための最良の形態
[0022] 本発明の CeO微粒子の製造方法にお!、て、溶融物は、 CeO源、 RO (Rは Mg、
2 2
Ca、 Sr、 Baからなる群より選ばれる 1種以上)源及び B O源を含む混合物を溶融し
2 3
て得る。
[0023] まず、 CeO源としては酸化セリウム(CeO、 Ce O )及び炭酸セリウム(Ce (CO )
2 2 2 3 2 3 3
•yH O)からなる群より選ばれる 1種以上を用いると好ましい。一方、塩ィ匕セリウム (C
2
eCl ·νΗ 0)、硝酸セリウム(Ce (NO ) -yH 0)、硫酸セリウム(Ce (SO ) -yH O
3 2 3 3 2 2 4 3 2
)、硝酸二アンモニゥムセリウム(Ce (NH ) (NO ) )及びフッ化セリウム(CeF )から
4 2 3 6 3 なる群より選ばれる 1種以上を用いてもよい(上記式において、 yは水和数を示し、 y =0の場合も含む)。 CeO源は溶融により、後述の RO源及び B O源と協働してガラ ス形成成分として働く。
[0024] 次に、 RO源としては Rの酸ィ匕物 (RO)又は炭酸塩 (RCO )力もなる群より選ばれる
3
1種以上を用いることが好ましい。さらに、 Rの硝酸塩 (R (NO ) )、Rの硫酸塩 (RSO
3 2
)及び Rのフッ化物 (RF )からなる群より選ばれる 1種以上を用いてもよい。ここで、 C
4 2
eOとの固溶度の観点から、 R=Ba又は Srであると好ましい。
2
[0025] さらに、 B O源としては酸ィ匕ホウ素(B O )又はホウ酸 (H BO )を用いることが好
2 3 2 3 3 3 ましいが、アルカリ土類金属のホウ酸塩を用いてもよい。
[0026] 所望の特性を低下させない範囲であれば、混合物中の構成材料の純度は特に限 定されないが、水和水を除いた純度が 99%以上であると好ましぐより好ましくは純 度 99. 9%以上のものを用いるとよい。また、溶融して均一な溶融物が得られる範囲 であれば、上記構成材料の粒度も特に限定されない。また、上記構成材料は、ボー ルミル、遊星ミル等の混合'粉砕手段を用いて、乾式又は湿式で混合してから溶融す ると好まし ヽ。
[0027] 溶融は、大気雰囲気で行ってもよいが、酸素分圧や酸素流量を制御しながら行うこ とが好ましい。また、溶融に用いるるつぼはアルミナ製、白金製、又はロジウムを含む 白金製であると好ましいが、耐火物を用いることもできる。また、溶融を抵抗加熱炉、 高周波誘導炉又はプラズマアーク炉を用いて行うと好ましい。抵抗加熱炉は、二クロ ム合金等の金属製、炭化ケィ素質又はケィ化モリブデン製等の発熱体を備えた電気 炉であると好ましい。高周波誘導炉は、誘導コイルを備えており、出力を制御できるも のであればよぐまた、プラズマアーク炉は、カーボン等を電極とし、これによつて発生 するプラズマアークを利用できるものであればよい。さらに、赤外線又はレーザー直 接加熱によって溶融してもよい。溶融は 1200°C以上、特に 1300〜1500°Cで行うこ とが好ましぐまた、得られた溶融物は、均一性を高めるために撹拌してもよい。
[0028] なお、構成材料を混合した混合物は粉体状態で溶融してもよ!ヽし、あらかじめ成型 した混合物を溶融してもよい。プラズマアーク炉を利用する場合には、あらカゝじめ成 型した混合物をそのまま溶融し、さらに急速冷却することもできる。
[0029] 溶融物の組成は、酸化物基準のモル%表示で、 CeOを 5〜50%、 ROを 10〜50
2
%、 B Oを 30〜75%含むものとする。上記の組成域の溶融物は適度な粘性を有す るうえ、続く急速冷却操作により溶融物が結晶化することなく非晶質物質を得ることが できるため好ましい。なお、この組成は溶融前の構成材料の化学組成とも対応してい る。溶融操作中に構成材料の揮発等が生じて、所望の組成の溶融物が得られない 場合には、構成材料の添加割合を調整すればょ ヽ。
[0030] CeO力 0%を超え、 ROが 10%未満で、かつ B O力 30%未満の場合には、溶
2 2 3
融物は急速冷却により結晶化しやすぐガラス化して非晶質物質とすることが困難に なるため、目的の特性を有する CeO微粒子を得がたくなり好ましくない。一方、 CeO
2
力 未満で、 ROが 50%を超えるか又は B Oが 75%を超える場合には、後に続く
2 2 3
結晶化において、 CeO結晶が充分に析出しないおそれがあるため好ましくない。な
2
かでも、 CeOを 20
2 〜40%、 ROを 10〜40%、 B Oを 40
2 3 〜60%含む溶融物とする と、目的の特性を有する CeO微粒子が得られやすくなり、かつ、その収率を高くでき
2
るため好ましい。
[0031] また、前記溶融物中に、前記 CeO、前記 RO及び前記 B Oを CeO: (RO + B O
2 2 3 2 2 3
) = 5 : 95〜50: 50、特に 20: 80〜35: 65のモル比で含む溶融物であると、溶融物 がガラス化しやすくなるため、かつ CeO微粒子が得られやすくなるため好ましい。
2
[0032] さらに、前記 RO及び前記 B Oを RO : B O = 20 : 80〜50 : 50、特に 20 : 80
2 3 2 3 〜40
: 60のモル比で含む溶融物とすると、溶融物がガラス化しやすくなるため好ま 、。
[0033] 次に、得られた溶融物を急速冷却して非晶質物質とする工程には、高速で回転す る双ローラーの間に溶融物を滴下してフレーク状の非晶質物質を得る方法や、高速 で回転するドラムにより、溶融物力 連続的にファイバー状の非晶質物質 (長繊維)を 巻き取る方法が好適に用いられる。急速冷却する際の温度は例えば 100°CZ秒以 上、好ましくは 1 X 104°CZ秒以上であると好ましい。ここで、双ローラー及びドラムと しては金属製又はセラミックス製のものを用いる。また、高速で回転し、側壁に細孔を 設けたスピナ一を用いてファイバー状の非晶質物質 (短繊維)を得てもょ 、。これらの 装置を用いれば、溶融物を効果的に急速冷却して高純度の非晶質物質にできる。
[0034] 非晶質物質がフレーク状の場合には、その厚さが 200 m以下、より好ましくは 10 0 m以下となるように、また、繊維状の場合には、その直径が 50 m以下、より好ま しくは 30 μ m以下となるように急速冷却することが好ましい。これ以下の厚さ又は直 径の非晶質物質が形成するように急速冷却すると、続く結晶化工程における結晶化 効率を高くできるため好ましぐ上記以上の厚さ又は直径を有する非晶質物質が得ら れた場合には、粉砕を行ったうえで、続く結晶化工程に供することが好ましい。
[0035] 次に、非晶質物質力 CeO結晶を析出させる。非晶質物質力も CeO結晶を析出
2 2 させる工程は大気中、 600〜900°Cで行うことが好ましい。 600°C未満で 24時間程 度、連続して加熱を行っても結晶が析出しにくぐまた、 900°Cを超えると、非晶質物 質を含む結晶化物が融解するおそれがあるためいずれも好ましくない。さらに好まし くは、 650〜850°Cで行う。この結晶析出工程は、核生成、それに続く結晶成長の 2 段階力もなるため、この 2段階をそれぞれ異なる温度で行ってもよい。なお、加熱を高 温で行うほど、析出する結晶の粒子径が大きくなる傾向があるので、所望の粒子径に 応じて結晶化温度を設定すればよい。本発明においては、非晶質物質の結晶化に より、結晶として主に CeOが析出する。混合物の組成により Rのホウ酸塩や CeO、 R
2 2 o及びホウ酸の複塩が析出することもある力 その場合には続く溶脱処理によって同 時に除去できる。
[0036] また、結晶化にあたっては、上記の温度範囲に 4時間〜 96時間、特に 8〜32時間 保つと、 CeOを充分に結晶化できるため好ましい。その際、保持時間が長くなるほど
2
、析出する結晶の粒子径が大きくなる傾向があるので、所望の粒子径に応じて保持 時間を設定すればよい。
[0037] 次に、上記によって得られた CeO結晶を含む結晶化物から、 CeO結晶を分離す
2 2
る。酸を用いれば、結晶化物力も CeO結晶以外の物質を容易に溶脱除去できる。
2
酸としては、酢酸、塩酸、硝酸等の無機酸や、シユウ酸、クェン酸等の有機酸を用い ることができる。また、反応を促進するために、酸を温めて用いてもよぐまた、超音波 照射を併用してもよい。この溶脱処理により、 CeO結晶の一部が溶解する場合もあ
2
る力 粒子径を均一化できる点ではむしろ好まし 、。
[0038] 溶脱処理後、必要に応じて純水による洗浄を行 ヽ、 CeO微粒子を得る。得られる
2
微粒子の平均一次粒子径 (異方性粒子の場合には長径を指すものとする。 )は 5〜2 OOnmであると好ましい。得られる微粒子の平均一次粒子径が細かいほど、より微細 な研磨が可能となり、かつスクラッチ等の発生を抑制できるため好ましい。平均一次 粒子径が 5〜: LOOnmであるとさらに好ましぐ特に好ましくは 10〜50nmである。
[0039] 次に、上記で得られた CeO微粒子を、適当な液状媒体中に分散して研磨用スラリ
2
一を調製する。
[0040] このとき、液状媒体としては特に限定はされないが、スラリーの粘性すなわち流動性 を好適に保つうえで、水又は水を主体とする水系媒体を用いることが好ましい。ここで 、所望の粘性が得られない場合には、スラリー中に粘性制御剤を添加してよい。また 、研磨特性や分散安定性を高める目的で、メタノール、エタノール、プロパノール、ェ チレングリコール、プロピレングリコール等、比誘電率の高い溶媒を含有させることも できる。
[0041] 研磨用スラリー中の CeO微粒子の含有割合は、研磨速度、均一分散性及び分散
2
時の安定性等を考慮して設定すればよいが、本発明においては、研磨用スラリー全 質量中に CeO微粒子を 0. 1〜20質量%含むものとする。含有割合が 0. 1質量%
2
未満では研磨速度が充分ではなぐ一方、 20質量%を超えるとスラリーの粘度が高く なり、研磨用スラリーとしての取扱いが困難となる。さらに好ましくは、含有割合を 0. 5 〜5質量%とする。
[0042] 上記 CeO微粒子は、そのままスラリーに供してもよ!ヽが、粉体状態のままで粉砕す
2
る力、より好ましくは水又は水系媒体を加えてなる懸濁液を湿式粉砕したものを分散 してスラリーとすることが好ましい。例えば、粉体同士を高速で衝突させる乾式ジェット ミル、ボール (ビーズ)ミルや遊星ミル、複数の流体を衝突させる高圧ホモジナイザー 、超音波照射等の装置を用いて上記の粉砕及び分散を行う。さらに、凝集粒子や粗 大粒子を除去するために、フィルターによる濾過処理や遠心分離を施してもよい。こ こで、研磨用スラリーの分散粒子径が 10〜300nmであると、研磨速度に優れるため 好ましい。特に好ましくは、分散粒子径を 20〜200nmとする。
[0043] さらに、本発明の研磨用スラリーの優れた研磨特性をそこなわない範囲で、用途に 応じて分散剤、 pH調整剤、 pH緩衝剤、酸化剤、微粒子の安定化剤となる榭脂、デッ シング及びエロージョン防止剤等をスラリー中に含有せしめてもよい。分散剤としては 、ポリカルボン酸アンモ-ゥム、ポリアクリル酸アンモ-ゥム等が挙げられる。 pH調整 剤及び PH緩衝剤としては硝酸等の無機酸、コハク酸、クェン酸等のカルボン酸、了 ンモ-ァ水、テトラメチルアンモ-ゥムヒドロキシド等の 4級アンモ-ゥムヒドロキシド及 びアルカリ金属水酸化物等が好適に用いられる。ここで、スラリーの pHは、好ましくは 2〜10、特には 4〜9に制御することが好ましい。
実施例
[0044] 以下、本発明を実施例によって説明するが、本発明はこれらにより限定されるもの ではない。
[0045] (l) CeO微粒子の調製
2
[例 1〜17]
酸化セリウム(CeO ) , RCO (R=Ba及び Z又は Sr)及び酸化ホウ素(B O )を、
2 3 2 3 それぞれ CeO、RO及び B O基準のモル%表示で表 1に示す割合となるように秤
2 2 3
量し、少量のエタノールを添加して自動乳鉢で混合 '粉砕した。その後、乾燥させて 原料粉末を得た。
[0046] 得られた原料粉末を、ロジウムを 10質量%含む白金製の、ノズル付きのるつぼに充 填し、ケィ化モリブデンを発熱体とした電気炉で、 1500°Cで 1時間加熱して完全溶 融させた。
[0047] 次に、ノズルの下端部を電気炉で加熱しながら溶融物を滴下させ、 300rpmで回転 する直径約 15cmの双ローラーを通すことにより液滴を 1 X 105°CZ秒程度で急速冷 却し、フレーク状の固形物を得た。得られたフレークは茶褐色を呈し、透明な非晶質 物質であった。マイクロメーターでフレークの厚さを測定したところ、 30〜50 μ mであ つた o
[0048] 得られたフレークの一部を用い、あらかじめ示差走査熱量測定 (DSC)にて結晶ィ匕 温度を求めておき、この結晶化開始温度より高い、表 1に示す温度でフレークを 8時 間加熱して板状の CeO結晶を析出させた。
2
[0049] 次に、結晶化処理後のフレークを 70°Cの ImolZL酢酸溶液中に 20時間放置して 可溶性物質を溶脱した。溶脱した液を遠心分離し、上澄みを捨てて水洗し、さらに高 圧分散させ、乾燥させ、さらに水洗、乾燥を経て粒子径 5〜: LOOnmの微粒子を得た
[0050] 得られた CeO微粒子の鉱物相を、 X線回折装置を用いて同定した。その結果、 Vヽ ずれも立方晶であり、公知の CeOの回折ピークと一致し、 CeO単相力もなる結晶性
2 2
の高 、粒子であることが判明した。例 5で得られた微粒子の X線回折パターンを図 1 に示す。
[0051] 次に、平均一次粒子径を求めた。ここで、平均一次粒子径は結晶子径とし、 X線回 折線の広がりから Scherrerの式に基づき算出した粒子径とする。その結果を表 1に 示す。表 1より、得られた微粒子がいずれも非常に細かい粒子径を有していることが わカゝる。
[0052] [表 1]
Figure imgf000012_0001
[0053] [例 18〜24]
原料混合物の化学組成をそれぞれ表 2に示す割合に変更し、かつ、表 2に示す結 晶化温度でフレークを 8時間加熱した以外は例 1と同様にして、 CeO微粒子を得た
2
。得られた CeO微粒子の鉱物相を例 1と同じ方法で同定したところ、いずれも CeO
2 2 単相からなる結晶性の高い粒子であった。また、得られた微粒子の結晶子径を例 1と 同じ方法で測定したところ、表 2に示すように、いずれも非常に細かい粒子径を有し ていた。さらに、結晶化温度の上昇に伴い、結晶子径が増加することが確認された。
[0054] [表 2] 化学組成 $。BB し;皿 [ 結晶子径 [nm]
例 1 8 例 5と同じ 670 1 5
例 1 9 例 5と同じ 700 24
例 20 例 5と同じ 720 30
例 2 1 例 5と同じ 800 58
例 22 例 1 1 と同じ 7 1 0 46
例 23 例 1 1 と同じ 770 60
例 24 例 1 3と同じ 720 46
[0055] [例 25 (比較例)]
例 5と同様にして混合'粉砕操作、溶融操作を行って得られた溶融物を、電気炉内 で 300°CZhの速度で室温まで冷却したところ、不透明な固形物が生成し、非晶質 物質は得られなかった。
[0056] [例 26、 27 (V、ずれも比較例) ]
酸ィ匕セリウム (CeO )、炭酸バリウム (BaCO )及び酸化ホウ素(B O )を、それぞれ
2 3 2 3
CeO、 BaO及び B O基準のモル%表示で表 3に示す割合となるように秤量し、例 5
2 2 3
と同様にして混合'粉砕操作、溶融操作を行ったところ、不透明な固形物が生成し、 非晶質物質は得られな力 た。
[0057] [例 28、 29 (V、ずれも比較例) ]
酸ィ匕セリウム (CeO )、炭酸バリウム (BaCO )及び酸化ホウ素(B O )を、それぞれ
2 3 2 3
CeO、 BaO及び B O基準のモル%表示で表 3に示す割合となるように秤量し、例 1
2 2 3
と同様にして混合'粉砕操作、溶融操作及び急速冷却操作を行ったところ、透明なフ レークが得られた。しかし、例 1と同様にして結晶化操作、溶脱操作を行った結果、結 晶性の CeO微粒子はほとんど得られな力つた。
2
[0058] [表 3] 化学組成 [モル%]
C e 02 B aO B203
例 26 60. 0 1 0. 0 30. 0
例 27 60. 0 20. 0 20. 0
例 28 3. 0 32. 3 64. 7
例 29 5. 0 1 0. 0 85. 0 [0059] (2)研磨用スラリーの調製
上記例 19で得られた CeO微粒子 lOOgを約 800mLの蒸留水に添加し、撹拌しつ
2
つ、 0. ImolZLの硝酸を徐々に加えて pH4. 0に調整したものに対し、さらに全体 積が 1Lとなるまで蒸留水を添加して、 10質量%の CeOを含むスラリー原液 Aを調
2
製した。また、上記例 24で得られた CeO微粒子 lOOgを約 800mLの蒸留水に添カロ
2
し、撹拌しつつ、 0. ImolZLの硝酸を徐々に加えて pH4. 0に調整したものに対し、 さらに全体積が 1Lとなるまで蒸留水を添加して、 10質量%の CeOを含むスラリー原
2
液 Bを調製した。さらに、市販の CeO微粒子 (シーアィ化成社製、商品名: NanoTe
2
k、平均一次粒子径: 14nm)を蒸留水に添加して 10質量0 /oのスラリー原液 Cとした。
[0060] これらのスラリー原液 A〜Cに対し、表 4に示すように pH調整剤及び分散剤を加え た後、湿式ジェットミルで湿式粉砕し、遠心分離により粗大粒を除去して例 30〜35の 研磨用スラリーを調製した。ここで、 pH調整剤 Dとしては 0. ImolZLの硝酸を用い、 pH調整剤 Eとしては 0. 5mol/Lのアンモニア水を用いた。さらに、分散剤としては ポリアクリル酸アンモ-ゥムを用いた。また、該スラリーの分散粒子径をレーザー散乱 粒度分布計により測定した結果、表 4に示すとおり、例 30〜35のいずれにおいても 良好な分散体が得られた。
[0061] [表 4]
Figure imgf000014_0001
[0062] (3)研磨条件
研磨は、以下の装置及び条件で行った。
研磨機:全自動 CMP装置 MIRRA (Applied Materials社製、商品名: Compass )、
研磨圧: 20kPa、
回転数:プラテン (定盤) 105rpm、 ヘッド (基盤保持部): 98rpm、
研磨用スラリー供給速度: 200mLZ分、
研磨パッド: IC1000 (口デール社製)。
[0063] (4)被研磨物
被研磨物としては、以下の(a)及び (b)を用いた ( 、ずれも Sematech社製)。
(a) SiO (絶縁層)研磨速度評価用ウェハ: Si基板上に厚さ 800nmの SiO層をプ
2 2 ラズマ CVDで成膜した 8インチウェハ。
(b) SiN (ストッパー層)研磨速度評価用ウェハ: Si基板上に厚さ lOOnmの SiNを 熱 CVDで成膜した 8インチウェハ。
[0064] (5)研磨特性評価方法
研磨速度は、研磨前後の膜厚から算出した。膜厚の測定には、光干渉式全自動膜 厚測定装置 UV1280SE (KLAテンコール社製)を用いた。絶縁層、ストッパー層の それぞれの研磨速度の評価として、上記 (a)及び (b)を使用し、この評価には、上記 例 30〜35の組成の研磨用スラリーを使用した。
[0065] また、例 30〜35の組成の研磨用スラリーを用い、上記の条件により上記(a)を 60 秒間研磨した後のウェハを洗浄、乾燥した後、研磨によって生じたウェハ上のスクラッ チの個数をスクラッチ検出装置 2132 (KLAテンコール社製)を用いて測定した。
[0066] 表 5に、 (a)及び (b)を使用して得られた、 SiO及び SiN各膜の研磨速度 [nmZ
2
分]、及びスクラッチ数を示す。この結果より、本発明に係る研磨用スラリーは、 SiO
2 の研磨速度が大きぐ SiNの研磨速度が相対的に小さぐかつ SiOウェハ上のスク
2
ラッチ数が少ない。このような性質を利用すれば、 SiO層を高い研磨速度で研磨し、
2
かつ SiN層が露出した時点で研磨が終了することが要求される STI工程において、 精度の高い CMP研磨を実現するのに好適な研磨用スラリーが得られることが理解さ れる。
[0067] [表 5] 研磨速度 スクラッチ数
( a ) ( b )
例 3 0 2 4 0 8 7 0 0
例 3 1 2 6 0 8 2 8 0 0
例 3 2 2 3 0 7 6 0 0
例 3 3 3 6 0 1 2 2 2 0 0
例 3 4 3 4 0 8 9 0 0
例 3 5 6 0 1 0 4 3 0 0
(比較例) 産業上の利用可能性
本発明により得られる CeO微粒子は結晶性が高ぐ組成及び粒子径の均一性に
2
優れかつ粒子径が小さいので、該微粒子を用いれば、半導体デバイス製造工程に おける精密研磨に好適な研磨用スラリーを提供できる。さら〖こ、該微粒子はガラス用 の研磨材料、紫外線吸収ガラスや紫外線フィルム用の紫外線吸収剤、ガスセンサー 、もしくは固体酸ィ匕物燃料電池用の電極材料としても有効である。 なお、 2004年 11月 8曰に出願された曰本特許出願 2004— 323854号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 酸化物基準のモル%表示で、 CeOを 5〜50%、 RO (Rは Mg、 Ca、 Sr及び Baか
2
らなる群より選ばれる 1種以上)を 10〜50%、 B Oを 30〜75%含む溶融物を得る
2 3
工程と、前記溶融物を急速冷却して非晶質物質とする工程と、前記非晶質物質から
CeO結晶を析出させる工程と、得られた結晶化物力 前記 CeO結晶を分離するェ
2 2
程と、をこの順に含むことを特徴とする CeO微粒子の製造方法。
2
[2] 前記溶融物中に、前記 CeO、前記 RO及び前記 B Oを CeO: (RO + B O ) = 5
2 2 3 2 2 3
: 95-50: 50のモル比で含む請求項 1に記載の CeO微粒子の製造方法。
2
[3] 前記溶融物中に、前記 RO及び前記 B Oを RO : B O = 20 : 80〜50 : 50のモル
2 3 2 3
比で含む請求項 1又は 2に記載の CeO微粒子の製造方法。
2
[4] 前記溶融物を急速冷却してフレーク状又はファイバー状の非晶質物質を得る請求 項 1〜3のいずれか 1項に記載の CeO微粒子の製造方法。
2
[5] 前記非晶質物質から CeO結晶を析出させる工程を 600〜900°Cで行う請求項 1
2
〜4のいずれか 1項に記載の CeO微粒子の製造方法。
2
[6] 前記 CeO結晶を分離する工程を酸を用いて行う請求項 1〜5のいずれ力 1項に記
2
載の CeO微粒子の製造方法。
2
[7] 前記 CeO微粒子の平均一次粒子径が 5〜200nmである請求項 1〜6のいずれか
2
1項に記載の前記 CeO微粒子の製造方法。
2
[8] 請求項 1〜7のいずれか 1項に記載の CeO微粒子が液状媒体中に分散してなり、
2
スラリー全質量中に、前記微粒子を 0. 1〜20質量%含む研磨用スラリー。
[9] 分散粒子径が 10〜300nmである請求項 8に記載の研磨用スラリー。
PCT/JP2005/020188 2004-11-08 2005-11-02 CeO2微粒子の製造方法及び該微粒子を含む研磨用スラリー WO2006049197A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006542417A JP5012026B2 (ja) 2004-11-08 2005-11-02 CeO2微粒子の製造方法
EP05805415A EP1818312A4 (en) 2004-11-08 2005-11-02 PROCESS FOR PREPARING FINE CEO2 PARTICLES AND POLISHER SUSPENSION CONTAINING SUCH FINE PARTICLES
US11/745,024 US7381232B2 (en) 2004-11-08 2007-05-07 Process for producing CeO2 fine particles and polishing slurry containing such fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-323854 2004-11-08
JP2004323854 2004-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/745,024 Continuation US7381232B2 (en) 2004-11-08 2007-05-07 Process for producing CeO2 fine particles and polishing slurry containing such fine particles

Publications (1)

Publication Number Publication Date
WO2006049197A1 true WO2006049197A1 (ja) 2006-05-11

Family

ID=36319202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020188 WO2006049197A1 (ja) 2004-11-08 2005-11-02 CeO2微粒子の製造方法及び該微粒子を含む研磨用スラリー

Country Status (5)

Country Link
US (1) US7381232B2 (ja)
EP (1) EP1818312A4 (ja)
JP (1) JP5012026B2 (ja)
TW (1) TW200630304A (ja)
WO (1) WO2006049197A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008799A (ja) * 2005-06-01 2007-01-18 Asahi Glass Co Ltd 希土類元素ドープCeO2微粒子の製造方法
JP2007326735A (ja) * 2006-06-07 2007-12-20 Asahi Glass Co Ltd セリア−ジルコニア固溶体微粒子の製造方法
JP2008143733A (ja) * 2006-12-08 2008-06-26 Asahi Glass Co Ltd ジルコニア微粒子の製造方法
WO2009031447A1 (ja) * 2007-09-07 2009-03-12 Asahi Glass Company, Limited 酸化物結晶微粒子の製造方法
US7857680B2 (en) 2006-04-28 2010-12-28 Asahi Glass Company, Limited Method for producing glass substrate for magnetic disk, and magnetic disk
US8133836B2 (en) 2007-12-10 2012-03-13 Asahi Glass Company, Limited Ceria-zirconia solid solution crystal fine particles and their production process
JP5251521B2 (ja) * 2007-02-02 2013-07-31 旭硝子株式会社 固溶体微粒子の製造方法
WO2014122992A1 (ja) * 2013-02-05 2014-08-14 コニカミノルタ株式会社 コア・シェル型無機粒子
WO2014122978A1 (ja) * 2013-02-05 2014-08-14 コニカミノルタ株式会社 研磨材の製造方法
WO2014122982A1 (ja) * 2013-02-05 2014-08-14 コニカミノルタ株式会社 研磨材スラリー
WO2014122976A1 (ja) * 2013-02-05 2014-08-14 コニカミノルタ株式会社 研磨材スラリー
WO2021241490A1 (ja) * 2020-05-25 2021-12-02 東レ株式会社 酸化セリウムのナノ粒子、酸化セリウムのナノ粒子を含む分散液、酸化剤、抗ウイルス剤および抗菌剤

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2011765A4 (en) * 2006-04-27 2010-07-28 Asahi Glass Co Ltd FINE OXIDE CRYSTAL PARTICLES AND POLISHER PENSION THEREWITH
JP5454580B2 (ja) * 2009-08-28 2014-03-26 旭硝子株式会社 造粒体の製造方法およびガラス製品の製造方法
US9796894B2 (en) * 2011-12-22 2017-10-24 Konica Minolta, Inc. Abrasive material regeneration method and regenerated abrasive material
SG11201403175PA (en) * 2011-12-27 2014-08-28 Konica Minolta Inc Method for separating polishing material and regenerated polishing material
FR2999560B1 (fr) * 2012-12-18 2015-01-23 Saint Gobain Ct Recherches Poudre de cristallites
WO2018100686A1 (ja) * 2016-11-30 2018-06-07 日立化成株式会社 スラリ、研磨液及びそれらの製造方法、並びに基板の研磨方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169128A (en) * 1980-05-27 1981-12-25 Toshiba Corp Manufacture of magnetic powder for magnetic recording
JPH1094955A (ja) * 1996-08-01 1998-04-14 Nissan Chem Ind Ltd 表面改質された酸化第二セリウム粒子からなる研磨剤及び研磨方法
JPH10298537A (ja) * 1997-04-25 1998-11-10 Mitsui Mining & Smelting Co Ltd 研磨材、その製造方法、及び半導体装置の製造方法
JP2003027045A (ja) * 2000-12-25 2003-01-29 Nissan Chem Ind Ltd 酸化セリウムゾル及び研磨剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663193A (en) * 1969-06-30 1972-05-16 Corning Glass Works Strengthened photosensitive opal glass
US3646713A (en) * 1970-03-16 1972-03-07 Norton Co Method of making fragmented crystalline material
JP2864451B2 (ja) 1994-11-07 1999-03-03 三井金属鉱業株式会社 研磨材及び研磨方法
JP2746861B2 (ja) 1995-11-20 1998-05-06 三井金属鉱業株式会社 酸化セリウム超微粒子の製造方法
US5962343A (en) 1996-07-30 1999-10-05 Nissan Chemical Industries, Ltd. Process for producing crystalline ceric oxide particles and abrasive
US7887714B2 (en) * 2000-12-25 2011-02-15 Nissan Chemical Industries, Ltd. Cerium oxide sol and abrasive
JP2003007421A (ja) * 2001-06-26 2003-01-10 Ngk Spark Plug Co Ltd スパークプラグ
JP4206233B2 (ja) 2002-07-22 2009-01-07 旭硝子株式会社 研磨剤および研磨方法
WO2004083122A1 (ja) * 2003-03-20 2004-09-30 Asahi Glass Company, Limited チタン酸ビスマス微粒子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169128A (en) * 1980-05-27 1981-12-25 Toshiba Corp Manufacture of magnetic powder for magnetic recording
JPH1094955A (ja) * 1996-08-01 1998-04-14 Nissan Chem Ind Ltd 表面改質された酸化第二セリウム粒子からなる研磨剤及び研磨方法
JPH10298537A (ja) * 1997-04-25 1998-11-10 Mitsui Mining & Smelting Co Ltd 研磨材、その製造方法、及び半導体装置の製造方法
JP2003027045A (ja) * 2000-12-25 2003-01-29 Nissan Chem Ind Ltd 酸化セリウムゾル及び研磨剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1818312A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008799A (ja) * 2005-06-01 2007-01-18 Asahi Glass Co Ltd 希土類元素ドープCeO2微粒子の製造方法
US7857680B2 (en) 2006-04-28 2010-12-28 Asahi Glass Company, Limited Method for producing glass substrate for magnetic disk, and magnetic disk
JP2007326735A (ja) * 2006-06-07 2007-12-20 Asahi Glass Co Ltd セリア−ジルコニア固溶体微粒子の製造方法
JP2008143733A (ja) * 2006-12-08 2008-06-26 Asahi Glass Co Ltd ジルコニア微粒子の製造方法
JP5251521B2 (ja) * 2007-02-02 2013-07-31 旭硝子株式会社 固溶体微粒子の製造方法
WO2009031447A1 (ja) * 2007-09-07 2009-03-12 Asahi Glass Company, Limited 酸化物結晶微粒子の製造方法
US8133836B2 (en) 2007-12-10 2012-03-13 Asahi Glass Company, Limited Ceria-zirconia solid solution crystal fine particles and their production process
WO2014122992A1 (ja) * 2013-02-05 2014-08-14 コニカミノルタ株式会社 コア・シェル型無機粒子
WO2014122978A1 (ja) * 2013-02-05 2014-08-14 コニカミノルタ株式会社 研磨材の製造方法
WO2014122982A1 (ja) * 2013-02-05 2014-08-14 コニカミノルタ株式会社 研磨材スラリー
WO2014122976A1 (ja) * 2013-02-05 2014-08-14 コニカミノルタ株式会社 研磨材スラリー
JPWO2014122992A1 (ja) * 2013-02-05 2017-02-02 コニカミノルタ株式会社 コア・シェル型無機粒子
WO2021241490A1 (ja) * 2020-05-25 2021-12-02 東レ株式会社 酸化セリウムのナノ粒子、酸化セリウムのナノ粒子を含む分散液、酸化剤、抗ウイルス剤および抗菌剤

Also Published As

Publication number Publication date
EP1818312A4 (en) 2010-09-08
JP5012026B2 (ja) 2012-08-29
JPWO2006049197A1 (ja) 2008-05-29
US7381232B2 (en) 2008-06-03
EP1818312A1 (en) 2007-08-15
TW200630304A (en) 2006-09-01
US20070204519A1 (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP5012026B2 (ja) CeO2微粒子の製造方法
EP1756244B1 (en) Cerium oxide abrasive and slurry containing the same
CN101909816B (zh) 研磨浆料、其制造方法、研磨方法及磁盘用玻璃基板的制造方法
US20100159246A1 (en) Process for producing oxide crystal fine particles
JP5475642B2 (ja) 研磨材用酸化セリウム粉末及びこれを含むcmpスラリー
US20110045745A1 (en) Doped Ceria Abrasives with Controlled Morphology and Preparation Thereof
EP0826757A1 (en) Abrasive composition and use of the same
TW201226547A (en) Polishing slurry including zirconia particles and a method of using the polishing slurry
JP2005509725A (ja) ケミカルメカニカルポリシングスラリにおける使用のための粒子の形成方法及び該方法で形成された粒子
WO2007126030A1 (ja) 酸化物結晶微粒子及び該微粒子を含む研磨用スラリー
KR102339476B1 (ko) 연마 조성물 및 연마 방법, 그리고 연마 조성물의 제조 방법
TW201700708A (zh) 磨料粒子、研磨漿料以及製造磨料粒子的方法
KR100560223B1 (ko) 고정도 연마용 금속 산화물 분말 및 이의 제조방법
JP2000026840A (ja) 研磨材
KR101196757B1 (ko) 고정도 연마용 산화세륨의 제조방법
JP2000188270A (ja) 酸化セリウム研磨剤及び基板の研磨法
KR101171805B1 (ko) 반도체 박막 연마용 산화세륨의 제조방법
KR100613836B1 (ko) 연마용 슬러리 및 이의 제조 방법 및 기판 연마 방법
KR100584007B1 (ko) 연마용 슬러리 및 이의 제조 방법
KR100819769B1 (ko) Cmp 슬러리 조성물 및 이를 이용한 연마방법
JP2022137999A (ja) 酸化珪素膜用研磨液組成物
KR20070074725A (ko) 반도체 박막 연마용 산화세륨 슬러리
JP2003051467A (ja) 酸化セリウム研磨剤及び基板の研磨法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542417

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005805415

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11745024

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005805415

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11745024

Country of ref document: US