WO2007145193A1 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2007145193A1
WO2007145193A1 PCT/JP2007/061780 JP2007061780W WO2007145193A1 WO 2007145193 A1 WO2007145193 A1 WO 2007145193A1 JP 2007061780 W JP2007061780 W JP 2007061780W WO 2007145193 A1 WO2007145193 A1 WO 2007145193A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic resonance
flip angle
pulse
magnetic field
imaging
Prior art date
Application number
PCT/JP2007/061780
Other languages
English (en)
French (fr)
Inventor
Yo Taniguchi
Hisaaki Ochi
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2008521202A priority Critical patent/JP4864969B2/ja
Priority to US12/308,186 priority patent/US7868618B2/en
Publication of WO2007145193A1 publication Critical patent/WO2007145193A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5613Generating steady state signals, e.g. low flip angle sequences [FLASH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/543Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
    • G01R33/583Calibration of signal excitation or detection systems, e.g. for optimal RF excitation power or frequency
    • G01R33/586Calibration of signal excitation or detection systems, e.g. for optimal RF excitation power or frequency for optimal flip angle of RF pulses

Definitions

  • the present invention relates to a magnetic resonance imaging technique.
  • a nuclear magnetic resonance imaging (MRI) system is a medical device that causes nuclear magnetic resonance to occur in a hydrogen atomic nucleus in an arbitrary plane that crosses a subject, and generates a nuclear magnetic resonance signal force.
  • This is a diagnostic imaging apparatus.
  • an excitation pulse that excites the magnetic field in the section is applied, and this occurs when the excited magnetization converges.
  • Position information is given to the echo by a gradient magnetic field, and image reconstruction is performed by Fourier transforming this.
  • the angle at which the magnetization is tilted with respect to the direction of the static magnetic field is determined by the time integral value of the amplitude of the excitation noise, and an angle at which an appropriate image contrast is obtained is selected according to the imaging method.
  • a pulse for generating an echo and each gradient magnetic field are applied based on a pre-set pulse sequence.
  • Various pulse sequences are known depending on the purpose.
  • the gradient echo (GrE) type high-speed imaging method is necessary to obtain a single tomographic image by repeatedly operating the noise sequence and sequentially changing the phase encoding gradient magnetic field for each repetition. This is a method of measuring the number of echoes sequentially.
  • GrE pulse sequence there is a phase compensation type pulse sequence.
  • a gradient magnetic field pulse is added to GrE to make the time integral value of the gradient magnetic field of each axis zero.
  • the size of the flip angle is generally larger than that of the GrE method, and its phase is inverted alternately.
  • the repetition time TR is shorter, around 5ms.
  • the flip angle greatly affects the image contrast. Therefore, the strength of the flip angle in the shooting mode is generally selected as an angle that gives a specific image contrast even in the range of 10 to 90 degrees, and the flip angle is not normally changed during the shooting of one image.
  • SAR specific absorption rate
  • the phase-compensated GrE pulse sequence has a short TR and a large flip angle, which makes it difficult to apply to the human body for high magnetic field devices with a magnetic field strength of about 3 Tesla or higher.
  • the estimated SAR for a phase compensated GrE pulse sequence with a flip angle of 60 degrees and TR3ms is 4.7 W / kg. Since this exceeds the reference value, shooting cannot be performed.
  • Patent Document 1 (hereinafter referred to as Prior Art 1). This method is based on the fact that the MRI image contrast is generally determined by the contrast of the echo with a small phase encoding amount. To prevent the image contrast from being lowered even if the flip angle is changed, When the phase encode amount is small, the flip angle is changed to be large.
  • Patent Document 1 Japanese Translation of Special Publication 2005-524453 Disclosure of the invention
  • the non-imaging mode is not considered at all.
  • the main factor determining the contrast of the echo is It is in a steady state created in a non-photographing mode that is not at the flip angle of the RF pulse that generated the echo. For this reason, there is a case where the intended image contrast is not always obtained even if only the flip angle of the RF pulse that generates an echo with a small phase encoding according to the prior art 1 is increased.
  • An object of the present invention is to provide an MRI apparatus capable of reducing the SAR without reducing the image contrast and thereby reducing the influence on the human body for a given GrE pulse sequence.
  • the present invention reduces the SAR without reducing the image contrast by changing the flip angle in the GrE pulse sequence imaging mode within a certain range.
  • the fixed value that is the upper limit of the flip angle in shooting mode is defined by the flip angle in non-shooting mode.
  • the MRI apparatus of the present invention irradiates excitation RF pulses to a means for generating a static magnetic field, means for generating a gradient magnetic field superimposed on the static magnetic field, and an inspection object placed in the static magnetic field.
  • Means a means for detecting a nuclear magnetic resonance signal from the examination object, a means for constructing an image from the nuclear magnetic resonance signal, a non-imaging mode without measurement of the nuclear magnetic resonance signal after irradiation with an excitation RF pulse, and A means for irradiating the excitation RF pulse so as to execute an imaging mode for measuring a nuclear magnetic resonance signal after irradiation with the excitation RF pulse; and a means for controlling the means for detecting the nuclear magnetic resonance signal.
  • the means for irradiating is characterized in that the flip angle of the magnetic field in the imaging mode is changed within a range equal to or less than a predetermined value defined by the flip angle of the nuclear magnetization in the non-imaging mode.
  • the constant value is, for example, the maximum value of the flip angle of the magnetic field in the non-imaging mode.
  • the flip angle of the magnetic field at the end of the non-photographing mode is monotonically decreasing, monotonically decreasing, and monotonically increasing It is preferable that the force change that various modes such as additional combinations can take is almost continuous.
  • the means for constructing the image includes a nuclear magnetic resonance signal measured in the imaging mode and a flip angle of an excitation RF pulse used to generate the nuclear magnetic resonance signal.
  • a means for correcting according to the above is provided.
  • SAR is RF irradiation power per unit time. Therefore, in order to reduce the SAR, it is necessary to reduce the clip angle for increasing the repetition time TR. However, it is not desirable to change TR because it strongly affects the contrast of water and fat. Therefore, reduce the flip angle. In this case, if the flip angle is simply reduced, the contrast will drop, but by modulating the flip angle below the upper limit of the flip angle at which the desired image contrast can be obtained, the SAR is reduced while maintaining the image contrast.
  • the shooting method includes shooting in the non-shooting mode
  • the image contrast is determined in a steady state in the non-shooting mode. Therefore, by defining the maximum value (constant value) of the flip angle of the magnetic field in the shooting mode with the flip angle in the non-shooting mode, an image with good image contrast can be obtained. This SAR reduction effect is especially great for phase compensated GrE pulse sequences with short TR and large flip angle! /.
  • FIG. 1 is a block diagram showing a schematic configuration of an MRI apparatus to which the present invention is applied.
  • This MRI apparatus irradiates a magnetic field pulse (hereinafter referred to as RF pulse) to a magnet 101 that generates a static magnetic field, a gradient magnetic field coil 102 that generates a gradient magnetic field to the static magnetic field generated by the magnet 101, and a subject 103.
  • RF pulse magnetic field pulse
  • the probe 107 is provided.
  • a subject (for example, a living body) 103 is placed on a bed (table) in a static magnetic field space generated by a magnet 101.
  • the gradient magnetic field coil 102 is connected to a gradient magnetic field power source 105.
  • the probe 107 is connected to the high-frequency magnetic field generator 106 or the receiver 108 via a switching device (not shown).
  • the gradient magnetic field power supply 105, the high-frequency magnetic field generator 106, and the receiver 108 operate according to instructions from the sequencer 104, and generate a gradient magnetic field and a high-frequency magnetic field, respectively.
  • an RF pulse is applied to the subject 103 through the probe 107, and a gradient magnetic field pulse for applying position information such as slice selection and phase encoding to the echo signal is applied by the gradient magnetic field coil 102.
  • a signal generated from the subject 103 is received by the probe 107 and detected by the receiver 108.
  • a frequency used as a reference for detection (hereinafter referred to as a detection reference frequency) is set by the sequencer 104.
  • the detected signal is sent to the computer 109, where signal processing such as image reconstruction is performed.
  • the result is displayed on the display 110. If necessary, the detected signal and measurement conditions are stored in the storage medium 111.
  • the sequencer 104 is a means for controlling the operation of each device, and performs control so that each device operates at a preprogrammed timing and intensity.
  • the MRI apparatus of the present embodiment is equipped with a GrE pulse sequence, an imaging mode for measuring echoes necessary for image reconstruction, and a non-imaging mode for steadying the magnetic field prior to the imaging mode. Is executed. At this time, the flip angle of the RF pulse in the imaging mode is controlled based on the flip angle in the non-imaging mode. A specific embodiment of the control will be described later.
  • Various GrE pulse sequences are known, but any GrE pulse sequence can be used in accordance with the target region or tissue for imaging. Specific examples are shown in Figs.
  • the pulse sequence shown in Fig. 2 is a basic GrE system pulse sequence.
  • a high-frequency magnetic field (RF) pulse 202 is irradiated along with the application of a slice gradient magnetic field pulse 201 in the z direction, Excites the magnetic field of a slice.
  • the position information in the phase encoding direction (y direction) is added to the phase of the slice rephase gradient magnetic field pulse 203 and the magnetic field.
  • the readout gradient magnetic field pulse 206 for adding position information in the readout direction (X) is applied.
  • the magnetic resonance signal (echo) 207 is measured.
  • the procedure from the slice gradient magnetic field pulse imprinting to the echo measurement is repeated with the time TR, while changing the intensity of the phase encode gradient magnetic field pulse 204 (phase encoding amount kp), and one image is obtained.
  • Measure the echo required for Each echo is placed in the k space as shown in (b), and the image is reconstructed by two-dimensional inverse Fourier transform.
  • This pulse sequence has the characteristic that an image with enhanced T1 (longitudinal relaxation time) can be obtained.
  • the pulse sequence shown in FIG. 3 is a pulse sequence known as a phase compensation type, and the gradient magnetic field pulse 208 for making the time integral value of the gradient magnetic field of each axis zero with respect to the pulse sequence shown in FIG. 209 and 210 have been added.
  • This pulse sequence shows a contrast reflecting T2 (lateral relaxation time) / Tl, and is suitable for a heart morphological diagnosis and abdominal morphological diagnosis in which the contrast between tissue and blood is good.
  • a 3D-GrE pulse sequence that uses phase encoding for a radial scan that combines two-axis readouts and a slice axis may also be used.
  • the magnetic resonance signal (echo) 207 is measured while applying the gradient magnetic field pulse 206 in the readout direction (X) as shown in the figure.
  • the phase-encoded gradient magnetic field is Without using it, the excitation lens 202 is irradiated for the same repetition time TR as in the imaging mode without measuring the echo.
  • the control performed by the sequencer 104 is the timing control 401 for controlling the application timing and echo measurement timing of each magnetic field pulse in the above-described pulse sequence, the mode control 402 for switching between the non-imaging mode and the imaging mode, and the gradient magnetic field pulse intensity. It consists of GC control 403 that controls the RF pulse control 404 and RF pulse control 404 that controls the frequency and intensity of the RF pulse. Flip angle control is performed as part of the RF pulse control 404.
  • These are Sike Necessary conditions and parameters can be set via an input means (not shown) provided in the force calculator 109 incorporated in the sensor 104 as a program in advance.
  • the user may set the modulation width, modulation pattern, etc. (step 412).
  • the high-frequency magnetic field generator 106 controls the amplitude of the high-frequency magnetic field, and the probe 107 generates a high-frequency magnetic field pulse with a predetermined flip angle.
  • the echo signal obtained by shooting is corrected as necessary, and the image is reconstructed (step 414).
  • the flip angle control in the non-photographing mode will be described.
  • the flip angle of the RF pulse may be constant or may be changed.
  • the maximum value of the flip angle in the non-shooting mode defines the upper limit of the flip angle in the shooting mode.
  • the flip angle immediately before shifting to the shooting mode is maximized. As a result, a sufficient image contrast can be secured in a shooting mode in which the flip angle is defined by the maximum value.
  • the modulation that maximizes the flip angle immediately before entering the shooting mode also has the effect of reducing the SAR.
  • the flip angle is changed with the maximum value of the flip angle in the non-shooting mode as an upper limit.
  • the modulation of the flip angle is, for example, monotonically decreasing or a combination of monotonic decreasing and monotonic increasing. It may be either linear or non-linear, but is preferably substantially continuous. That is, it is preferable that the flip angle change is almost continuous between echoes measured adjacent in time. Also, it is preferable that the flip angle immediately after the start of the shooting mode is the same as the last flip angle in the non-shooting mode, but it may be different.
  • Embodiments of modulation patterns are shown in FIGS. 5 to 7 (a).
  • the vertical axis represents the flip angle
  • the horizontal axis represents the number of repetitions.
  • (b) to (d) are based on these embodiments.
  • the imaging result is shown.
  • the phase compensation type two-dimensional pulse sequence shown in Fig. 3 is used as the pulse sequence
  • the shooting parameters are TR / TE: 5/2.
  • the photo was taken with a 26 cm, matrix size of 128 X 128, and the phase encoding kp changed from -64 to +63 in order for each TR.
  • four types of subjects 511 to 514 having different T1 / T2 were used.
  • T1 / T2 of each subject is 800 ms / 200 ms (511), 800 ms / 100 ms (512), 400 ms / 200 ms (513), and 400 ms / 100 ms (514).
  • (b) is a profile showing the contrast of each subject image
  • (c) is an image
  • (d) is the luminance in the line 520
  • 521 is the edge portion of the subject.
  • FIG. 8 shows a profile in which the flip angle is constant in non-shooting mode and shooting mode (Pattern D has a flip angle of 60 degrees and Pattern E has a flip angle of 30 degrees). And the image and the profile and image when the flip angle in the shooting mode is changed within the angle range (pattern F) are larger than the flip angle in the non-shooting mode!
  • the non-shooting mode 501 has a constant flip angle (60 degrees in the illustrated example), and in the shooting mode 502, the non-shooting mode 501 has a flip angle as an upper limit. It is gradually decreasing.
  • the flip angle was reduced from 60 degrees to 30 degrees according to a half-cycle sine function.
  • the image obtained by the present embodiment has almost the same image contrast as compared with the case where the image is taken with a constant flip angle of 60 degrees (pattern D in FIG. 8).
  • SAR is 41% lower than pattern D in Fig. 8. This SAR reduction effect makes it possible to realize an imaging method that has little effect on the human body.
  • the phase compensation type for example, the SAR of 4.7 W / kg, which exceeds the reference value with 3 Tesla, can be reduced to 2. 77 W / kg by applying this embodiment. You will be able to take a picture.
  • the flip angle is made constant in the non-shooting mode 601 and the flip angle in the shooting mode 602 is set within a range smaller than the flip angle in the non-shooting mode 601.
  • the change is the same as in Fig. 5 (a).
  • monotonic decrease and monotonic increase are combined rather than monotonically decreasing the flip angle during measurement of all phase encoding.
  • Modulation pattern A decreases from 60 degrees to 30 degrees according to a sine function of one period, and then increases to 60 degrees.
  • Ma Modulation pattern B repeats modulation pattern A twice during all phase encoding measurements.
  • Modulation pattern C is fixed at 30 degrees after modulation pattern A is repeated 1.5 times during all phase encoding measurements.
  • modulation pattern A the same image contrast is obtained even if the flip angle at the time of measurement in the low phase encoding region 603 is small, and the relationship between the phase encoding and the flip angle has almost no effect on the image contrast. I understand that there is no.
  • modulation pattern F shown in FIG. 8 the non-shooting mode 811 has a constant flip angle of 30 degrees, and changes so that the flip angle is 60 degrees when measuring the low phase encoding region 813 in the shooting mode 812. In this case, the image contrast is different from that of NOTAN D (constant 60 degrees), which is close to the contrast of pattern E (constant 30 degrees).
  • the image contrast is strongly influenced by the steady state created in the non-shooting mode and does not depend much on the flip angle of the shooting mode. Therefore, to reduce the SAR, the flip of the shooting mode It can be seen that the angle should be smaller than the non-shooting mode flip angle.
  • the modulation pattern shown in FIG. 7 (a) modulates the flip angle even in the non-photographing mode 701. Modulation is increased in the first half and larger in the second half.
  • the flip angle in the shooting mode 702 is changed to be equal to or less than the maximum flip angle in the non-shooting mode 701 as in FIG. Also in the present embodiment, it is understood that the image contrast is equivalent to the pattern D in FIG. 8, as shown in (b) and (c).
  • the effect of reducing the SAR in the shooting mode is the same as in Fig. 5 (a). However, in this embodiment, the modulation is performed even in the non-shooting mode, so the number of repetitions is as short as several tens of times.
  • FIG. 7 (a) the same effect can be obtained by adopting any one of the modulation patterns A, B, and C shown in FIG. 6 (a) as the modulation pattern of the shooting mode 702.
  • the flip angle modulation pattern takes into consideration SAR, its reduction rate, image contrast, etc. However, when shooting multiple images continuously in shooting mode, the flip angle is set at the end of each shot as shown in modulation patterns A and B in Fig. 6. A pattern that approaches the initial flip angle of photographing is preferable.
  • Figure 9 shows a modulation method suitable for continuous shooting. In the example shown in the figure, the non-shooting mode 901 has a constant flip angle (60 degrees), and in the shooting mode 902, the same modulation pattern as the modulation pattern B in FIG. 6 is repeated five times to continuously shoot five images. ing. In the figure, (a) shows the change in the flip angle with respect to the number of repetitions, and (b) shows the profile of five images superimposed.
  • the five profiles almost overlap, indicating that the contrast of the continuously shot images is stable!
  • the image contrast is equivalent to that shown in Fig. 4.
  • the SAR can be reduced without reducing the image contrast by acquiring the flip angle close to a constant value at the beginning and end of each image acquisition, and the image can be acquired stably. It becomes possible to do.
  • the SAR reduction rate by the modulation pattern in FIG. 9 is 41%, which is the same as the modulation pattern B in FIG.
  • each modulation pattern of the flip angle modulation has been described together with the effects when the stricter phase compensation type GrE noise sequence of the SAR condition is used in the imaging method.
  • the effect is not limited to the phase-compensated GrE pulse sequence, but is common to GrE pulse sequences.
  • the computer 109 performs an operation such as Fourier transform using the echo measured in the photographing mode to reconstruct an image.
  • the MRI apparatus of the present invention can provide the same image contrast as when the flip angle is fixed at a constant value.
  • the intensity of the echo is modulated in proportion to the flip angle.
  • the edge of the image is emphasized or the image is blurred depending on the relationship between the flip angle and the phase encoding.
  • the edge 521 of the subject shows the same luminance as the intermediate portion as shown in (d), but in the image (c) of FIG.
  • the edge 62 1 is highlighted.
  • the number of pulling points, fa is the flip angle of the excitation pulse just before measuring s.
  • step 1003 for measuring a reference echo for correcting the influence of flip angle modulation is inserted between non-shooting mode 1001 and shooting mode 1002. .
  • the reference echo is measured, for example, by executing a shooting mode once in a state where all phase encodings are set to zero and measuring a series of echoes (reference echoes) (1003).
  • the measured reference echo is stored in the storage medium 111 and is used for correcting the echo measured in the imaging mode.
  • the intensity A of each reference echo is calculated according to the following equation (2).
  • the reference echo intensity A is, for example, the integral value of the absolute value of the reference echo.
  • the product of the reciprocal of the reference echo intensity (1 / A) and each reconstructed echo is calculated by Equation (3) to obtain the corrected echo.
  • r is the value at the sample point of the reference echo
  • s is the value at the sample point of the echo before and after correction
  • n is the number of sampling points.
  • A is the intensity of the reference echo, and here it is the integral value of the absolute value of the reference echo. It is possible to obtain a good image by reconstructing the corrected echo by Fourier transform.
  • the SAR by changing the flip angle of the RF pulse in the imaging mode within a range determined by the flip angle in the non-imaging mode, the SAR In addition to reducing image contrast, it is possible to obtain a good image free from the influence of flip angle modulation such as edge rounding and enhancement.
  • FIG. 1 is a diagram showing an overall configuration of an MRI to which the present invention is applied.
  • FIG. 2 Diagram showing gradient echo pulse sequence and k-space.
  • FIG. 3 is a diagram showing a pulse sequence of a phase compensation gradient echo method.
  • FIG. 4 is a diagram showing details of control by the sequencer.
  • FIG. 5 is a diagram showing a flip angle and a photographing result in an embodiment of the present invention.
  • FIG. 6 is a diagram showing flip angles and imaging results in another embodiment of the present invention.
  • FIG. 7 is a view showing a flip angle and a photographing result in another embodiment of the present invention.
  • FIG. 8 is a diagram showing a flip angle and a photographing result by a conventional photographing method.
  • FIG. 9 is a view showing a flip angle and a photographing result in another embodiment of the present invention.
  • FIG. 10 is a view for explaining photographing according to the second embodiment of the present invention.
  • 101 Magnet for generating a static magnetic field
  • 102 Gradient magnetic field coil
  • 103 Subject
  • 104 Sequencer
  • 105 Gradient magnetic field power supply
  • 106 High frequency magnetic field generator
  • 107 ... Probe
  • 108 ... ⁇ Receiver
  • 109 "Computer, 110 ... display, 111 ... storage medium.

Abstract

 本発明のMRI装置は、核磁化を定常状態にするための非撮影モード501と画像用のエコーを計測するための撮影モード502とを実行する。非撮影モード501および撮影モード502では、GrE系パルスシーケンスによる撮影を行なう。この際、撮影モード502における核磁化のフリップ角を、非撮影モード502における核磁化のフリップ角で決まる一定値以下の範囲で変化させるRFパルスを照射する。この一定値は、例えば、非撮影モードのときの核磁化のフリップ角の最大値あるいは非撮影モードの最後で用いたRFパルスによるフリップ角とする。これにより、GrE系のパルスシーケンスに対して、画像コントラストを低下させることなくSARを低減することができ、人体への影響を軽減できる。

Description

明 細 書
磁気共鳴イメージング装置
技術分野
[0001] 本発明は、磁気共鳴イメージング技術に関する。
背景技術
[0002] 核磁気共鳴イメージング (MRI)装置は、被検体を横切る任意の平面内の水素原 子核に核磁気共鳴を起こさせ、発生する核磁気共鳴信号力 その平面内における 断層像を得る医用画像診断装置である。一般的には、被検体の撮影断面を特定す るスライス傾斜磁場の印加と同時に、その断面内の磁ィ匕を励起させる励起パルスを 与え、これにより励起された磁化が収束する段階で発生する核磁気共鳴信号 (ェコ 一)を得る。エコーには傾斜磁場により位置情報が付与されており、これをフーリエ変 換することにより画像再構成が行われる。ここで、磁化が静磁場方向に対し倒れる角 度、すなわちフリップ角は励起ノ ルスの振幅の時間積分値によって決まり、撮影方法 に応じて、適切な画像コントラストが得られる角度が選択される。
[0003] エコーを発生させるためのパルスと各傾斜磁場は、あら力じめ設定されたパルスシ 一ケンスに基づいて印加されるようになっている。このパルスシーケンスは、 目的に応 じて種々のものが知られている。例えば、グラディエントエコー(GrE)タイプの高速撮 影法は、そのノ ルスシーケンスを繰り返して作動させ、繰り返しごとに位相エンコード 傾斜磁場を順次変化させることにより、 1枚の断層像を得るために必要な数のエコー を順次計測して 、く方法である。
[0004] また GrE系の別のパルスシーケンスとして、位相補償型のパルスシーケンスがある 。このパルスシーケンスでは、 GrEに対して各軸の傾斜磁場の時間積分値をゼロに するための傾斜磁場パルスが追加される。フリップ角の大きさは GrE法よりも一般に 大きぐその位相は交互に反転される。また、繰り返し時間 TRは、より短かく 5ms前後 である。
[0005] こうした GrE系の撮影法では、画像再構成に必要なエコーを計測するためのパル スシーケンス実行 (撮影モード)の前に、磁化を定常状態にするために磁化を繰り返 し励起する。これを非撮影モードという。非撮影モードにおいては、エコーを計測せ ずに撮影モードと同じパルスシーケンスを与えられた回数だけ実行する。ただし、非 撮影モードにおける核磁ィ匕のフリップ角は、少な 、回数で磁化を定常状態へ移行さ せるために、小さい角度力も徐々に撮影モードの角度に近づける方法がとられる場 合もある。
[0006] また、これら高速撮影法では、フリップ角が画像コントラストに大きく影響する。その ため、撮影モードにおけるフリップ角の強度は一般に 10度から 90度の範囲力も特定 の画像コントラストが得られる角度が選択され、通常、 1枚の画像撮影中にフリップ角 を変化させることはない。
[0007] 一方、 MRIでは、磁場強度と比例して磁気共鳴周波数が高くなる。これに伴!、比吸 収率 SAR (specific absorption rate)と呼ばれる人体への RF電力吸収が増大するとい う問題が生じており、それに対する対策が課題になっている。 SARは単位時間当たり の RF照射パワーであり、フリップ角の 2乗の時間積分値に比例し、 TRに反比例する 。人体に対する上限の基準値は 4W/kgと定められている。 GrE系のパルスシーケン スは、短時間に RFの照射を繰り返すため SARは大きい。特に、位相補償型 GrEパ ルスシーケンスは TRが短くフリップ角が大きいため、磁場強度が 3テスラ程度以上の 高磁場装置にぉ 、ては、人体に対して適用することは安全面から困難となって 、る。 例えば、 3テスラの装置について、フリップ角 60度、 TR3msで位相補償型 GrEパルス シーケンスを実行する場合の SARを試算すると 4. 7W/kgとなる。これでは基準値を 越えているため、撮影を実施することができない。
[0008] この問題に対して、比吸収率 SARを考慮して、画像コントラストが低下しないように 撮影モードにおける RF励起パルスのフリップ角を位相エンコード量に依存して変化 させる方法が提案されている(特許文献 1) (以下、従来技術 1という)。この方法は、一 般に MRIの画像コントラストは位相エンコード量が小さいエコーがもつコントラストで 決定されるという事実に基いており、フリップ角を変化させても画像コントラストが低下 しないようにするために、位相エンコード量が小さい場合にフリップ角を大きくするよう に変化させる。
特許文献 1:特表 2005 -524453号公報 発明の開示
発明が解決しょうとする課題
[0009] 上記従来技術 1では、非撮影モードについては全く考慮されていないが、本発明 者らの研究によれば、 GrE系のパルスシーケンスでは、エコーのもつコントラストを決 定する主な要因は、そのエコーを生成した RFパルスのフリップ角ではなぐ非撮影モ ードで作られた定常状態にある。このため従来技術 1に従って位相エンコードが小さ いエコーを生成する RFパルスのフリップ角だけを大きくしても必ずしも意図した画像 コントラストが得られない場合があった。
本発明の目的は、与えられた GrE系のパルスシーケンスに対して、画像コントラスト を低下させることなく SARを低減すること及びこれにより人体への影響を軽減できる MRI装置を提供することにある。
課題を解決するための手段
[0010] 上記目的を達成するために、本発明は、 GrE系パルスシーケンスの撮影モードに おけるフリップ角を一定値以下の範囲で変化させることによって画像コントラストの低 下なく SARを低減する。撮影モードのフリップ角の上限となる一定値は、非撮影モー ドにおけるフリップ角によって規定される。
[0011] すなわち本発明の MRI装置は、静磁場を発生する手段と、前記静磁場に重畳する 傾斜磁場を発生する手段と、前記静磁場に置かれた検査対象に励起 RFパルスを照 射する手段と、前記検査対象から核磁気共鳴信号を検出する手段と、前記核磁気共 鳴信号から画像を構成する手段と、励起 RFパルス照射後に核磁気共鳴信号の計測 を伴わな 、非撮影モードおよび励起 RFパルス照射後に核磁気共鳴信号を計測する 撮影モードを実行するように前記励起 RFノ ルスを照射する手段および核磁気共鳴 信号を検出する手段を制御する手段とを有し、前記励起 RFパルスを照射する手段 は、前記撮影モードにおける核磁ィ匕のフリップ角を前記非撮影モードにおける核磁 化のフリップ角で規定される一定値以下の範囲で変化させることを特徴とする。
[0012] 前記一定値は、例えば、非撮影モードにおける核磁ィ匕のフリップ角の最大値である 。或いは非撮影モードの終了時の核磁ィ匕のフリップ角である。一定値以下の範囲で のフリップ角の変化のさせ方 (変調パターン)としては単調減少、単調減少と単調増 加の組み合わせなど種々の態様が取りえる力 変化は、ほぼ連続的であることが好ま しい。
また本発明の MRI装置は、好適には、画像を構成する手段は、前記撮影モードで 計測した核磁気共鳴信号を、当該核磁気共鳴信号を発生させるために用いられた 励起 RFパルスのフリップ角に応じて補正する手段を備える。
発明の効果
[0013] 本発明によれば、フリップ角を一定値以下にして RFパルス照射による加熱効果を 防ぎながら、フリップ角を一定値とした場合と同等の画像コントラストを得ることが可能 となる。
SARは、単位時間当たりの RF照射パワーである。従って、 SARを低減するために は、繰り返し時間 TRを長くするカ リップ角を小さくする必要がある。しかし、 TRは水 •脂肪のコントラストに強く影響を与えるため変化させることは好ましくない。そこで、フ リップ角を小さくする。この場合、単にフリップ角を小さくした場合にはコントラストが低 下するが、所望の画像コントラストが得られるフリップ角を上限としてそれ以下の範囲 で変調することにより、画像コントラストを維持したまま SARを低減させる。
[0014] 特に撮影方法が非撮影モードの撮影を含む場合、画像コントラストは非撮影モード における定常状態で決まる。そこで撮影モードの磁ィ匕のフリップ角の最大値 (一定値 )を非撮影モードのフリップ角で規定することにより、画像コントラストの良好な画像を 得ることができる。この SAR低減効果は、 TRが短くフリップ角が大きい位相補償型 G rEパルスシーケンスにお!/、て特に大き!/、。
また本発明では、フリップ角の変調が画質に与える影響を補正する手段を設けたこ とにより、さらに画質の良好な画像の提供が可能となる。
発明を実施するための最良の形態
[0015] 以下、本発明の実施例について、図面を参照して詳述する。
図 1は、本発明が適用される MRI装置の概略構成を示すブロック図である。この M RI装置は、静磁場を発生するマグネット 101、マグネット 101が発生する静磁場に傾斜 磁場を発生する傾斜磁場コイル 102、被検体 103に高周波磁場パルス(以下、 RFパ ルス)を照射するとともに被検体 103から発生する核磁気共鳴信号 (エコー)を検出す るプローブ 107を備えている。被検体(例えば、生体) 103は、マグネット 101の発生す る静磁場空間内の寝台 (テーブル)に設置される。
[0016] 傾斜磁場コイル 102は、傾斜磁場電源 105に接続されている。プローブ 107は図示し な 、切換え器を介して、高周波磁場発生器 106または受信器 108に接続されて 、る。 傾斜磁場電源 105、高周波磁場発生器 106および受信器 108は、シーケンサ 104から の命令により動作し、それぞれ傾斜磁場および高周波磁場を発生させる。これにより RFパルスがプローブ 107を通じて被検体 103に印加されるとともに、スライス選択や位 相エンコードなどの位置情報をエコー信号に与えるための傾斜磁場パルスが傾斜磁 場コイル 102により印加される。被検体 103から発生した信号はプローブ 107によって 受波され、受信器 108で検波が行われる。検波の基準とする周波数 (以下、検波基準 周波数と記す。)は、シーケンサ 104によりセットされる。検波された信号は、計算機 10 9に送られ、ここで画像再構成などの信号処理が行われる。その結果は、ディスプレイ 110に表示される。必要に応じて、記憶媒体 111に検波された信号や測定条件を記憶 させることちでさる。
[0017] シーケンサ 104は、各装置の動作を制御する手段であり、予めプログラムされたタイ ミング、強度で各装置が動作するように制御を行う。上記プログラムのうち、特に、高 周波磁場、傾斜磁場、信号受信のタイミングや強度を記述したものはパルスシーケン スと呼ばれている。本実施の形態の MRI装置では、 GrE系のパルスシーケンスが搭 載され、画像再構成に必要なエコーを計測する撮影モードと、撮影モードに先立つ て核磁ィ匕を定常状態するための非撮影モードが実行される。この際、撮影モードに おける RFパルスのフリップ角は、非撮影モードにおけるフリップ角をもとに制御される 。制御の具体的な実施の形態にっ 、ては後述する。
[0018] GrE系のパルスシーケンスとして種々のものが公知であるが、撮影の目的とする部 位や組織に合わせて、任意のものを採用することができる。その具体例を図 2および 図 3に示す。図 2に示すパルスシーケンスは、基本的な GrE系パルスシーケンスで、 ( a)に示すように、 z方向のスライス傾斜磁場パルス 201の印加とともに高周波磁場 (RF )パルス 202を照射し、対象物体内のあるスライスの磁ィ匕を励起する。次いでスライスリ フェーズ傾斜磁場パルス 203と磁ィ匕の位相に位相エンコード方向(y方向)の位置情 報を付加するための位相エンコード傾斜磁場パルス 204、ディフェーズ用リードアウト 傾斜磁場 205を印加した後、リードアウト方向(X)の位置情報を付加するためのリード アウト傾斜磁場パルス 206を印カロしながら磁気共鳴信号 (エコー) 207を計測する。以 上のスライス傾斜磁場パルス印カ卩からエコー計測までの手順を位相エンコード傾斜 磁場パルス 204の強度 (位相エンコード量 kp)を変化させながら繰り返し時間 TRで繰 り返し、 1枚の画像を得るのに必要なエコーを計測する。各エコーは (b)に示すように k空間上に配置され、 2次元逆フーリエ変換によって画像が再構成される。このパル スシーケンスは、 T1 (縦緩和時間)を強調した画像が得られる特徴をもつ。
[0019] 図 3に示すパルスシーケンスは、位相補償型として知られるパルスシーケンスで、図 2に示すパルスシーケンスに対して各軸の傾斜磁場の時間積分値をゼロにするため の傾斜磁場パルス 208、 209、 210が追加されている。このパルスシーケンスは、 T2 ( 横緩和時間)/ Tlを反映したコントラストを示し、組織と血液のコントラストが良ぐ心臓 の形態'機能診断や腹部の形態診断に好適である。
[0020] 図 2および図 3に示すパルスシーケンスの他、さらに 2軸のリードアウトを組み合わせ るラジアルスキャンやスライス軸にも位相エンコードを用いる 3D - GrEパルスシーケン スでもよい。
[0021] 撮影モードでは、図示するようにリードアウト方向(X)の傾斜磁場パルス 206を印加 しながら磁気共鳴信号 (エコー) 207を計測するが、非撮影モードでは、位相ェンコ一 ド傾斜磁場は用いず、エコーを計測することなぐ撮影モードと同じ繰り返し時間 TR で励起ノ ルス 202の照射を行なう。
[0022] 以下、非撮影モードと撮影モードにおける RFパルスのフリップ角の制御について 説明する。
04(a)、 (b)に、パルスシーケンス制御のためのシーケンサ 104の構成および手順 を示す。図示するように、シーケンサ 104が行なう制御は、上述したパルスシーケンス の各磁場パルス印加およびエコー計測のタイミングを制御するタイミング制御 401、非 撮影モードと撮影モードを切替えるモード制御 402、傾斜磁場パルスの強度を制御す る GC制御 403、 RFパルスの周波数および強度を制御する RFパルス制御 404などか らなる。フリップ角制御は RFパルス制御 404の一部として実行される。これらはシーケ ンサ 104に予めプログラムとして組み込まれている力 計算機 109に備えられた入力手 段(図示せず)を介して必要な条件やパラメータを設定することができる。
[0023] 例えば、入力手段を介して、撮影方法 (パルスシーケンス)やそのノ メータを設定 した後 (ステップ 411)、フリップ角制御の条件として、非撮影モードおよび撮影モード におけるフリップ角の最大値、変調幅、変調パターンなどをユーザーが設定するよう にしてもよい (ステップ 412)。撮影が開始されると、シーケンサ 104からのタイミング制 御 401および RF制御 404を受けて、高周波磁場発生器 106は高周波磁場の振幅を制 御し、プローブ 107より所定のフリップ角の高周波磁場パルスを発生させる (ステップ 4 13)。撮影によって得られたエコー信号を、必要に応じて補正し、画像再構成する (ス テツプ 414)。
[0024] まず非撮影モードのフリップ角制御を説明する。非撮影モードにつ!、ては、画像コ ントラストの観点からは、 RFパルスのフリップ角は一定でもよいし、変化させてもよい。 ただし、非撮影モードにおけるフリップ角の最大値が撮影モードにおけるフリップ角 の上限を規定する。非撮影モードにおいてフリップ角を変調する場合には、撮影モ ードに移行する直前のフリップ角が最大となることが好ましい。これにより、その最大 値でフリップ角が規定される撮影モードにおいて、充分な画像コントラストを確保でき る。なお、非撮影モードにおけるフリップ角の変調を、前半を小さく後半ほど大きくす ることにより、数十回程度の少ない繰り返し回数で短時間に撮影モードに移行するこ とが可能であることが知られている。従って、撮影モードに移行する直前のフリップ角 が最大となる変調は、 SARを低減する効果もある。
[0025] 撮影モードでは、非撮影モードにおけるフリップ角の最大値を上限としてフリップ角 を変化させる。フリップ角の変調は、例えば単調減少あるいは単調減少と単調増加の 組み合わせとする。線形或いは非線形のいずれでもよいが、ほぼ連続的であることが 好ましい。すなわち、時間的に隣接して計測されるエコー間でフリップ角の変化がほ ぼ連続的であることが好ましい。また、撮影モード開始直後のフリップ角が非撮影モ ードの最後のフリップ角と同じであることが好まし 、が、異なっても良 、。
[0026] 変調パターンの実施の形態を図 5〜図 7の各(a)図に示す。これらの図において、 縦軸はフリップ角、横軸は繰り返し回数である。 (b)〜(d)は、これら実施の形態によ る撮像結果を示す。図示する例では、パルスシーケンスとして、図 3に示す位相補償 型の 2次元パルスシーケンスを用い、撮影パラメータは TR/TE : 5/2. 5ms、非撮影 モードの繰り返し回数 (TR回数) 150、視野 26cm、マトリックスサイズ 128 X 128とし 、位相エンコード kpを TRごとに- 64から +63まで順に変化させて撮影を行なった。被 検体は、 T1/T2の異なる 4種類の被検体 511〜514を用いた。各被検体の T1/T2は 、 800ms/200ms (511)、 800ms/100ms (512)、 400ms/200ms (513)、 400ms/100 ms (514)である。図中(b)は各被検体画像のコントラストを示すプロファイル、(c)は画 像、(d)はライン 520における輝度であり、 521は被検体のエッジ部分である。
[0027] また比較のために、図 8に、非撮影モードおよび撮影モードでフリップ角を一定にし た場合 (パターン Dはフリップ角が 60度、パターン Eはフリップ角が 30度)のプロファ ィルおよび画像と、非撮影モードにおけるフリップ角よりも大き!、角度の範囲で撮影 モードのフリップ角を変化させた場合 (パターン F)のプロファイルおよび画像を示す。
[0028] 図 5 (a)に示す実施の形態は、非撮影モード 501ではフリップ角は一定(図示する例 では 60度)とし、撮影モード 502では、非撮影モード 501のフリップ角を上限として、漸 減させている。図示する例では、フリップ角を半周期のサイン関数に従って 60度から 30度に減少させた。本実施の形態により得られる画像は、フリップ角を 60度に一定 にした撮影した場合(図 8のパターン D)と比較すると、画像コントラストはほとんど変 化せず、ほぼ同等のものが得られる。一方、 SARは図 8のパターン Dと比較して 41% 減少する。この SAR低減効果により、人体に対する影響の少ない撮影法が実現でき る。特に位相補償型の場合には、例えば 3テスラ機で基準値を超える 4. 7W/kgとな る SARを、本実施の形態を適用することにより 2. 77W/kgに低減でき、不可能であつ た撮影を実施することができるようになる。
[0029] 図 6 (a)に示す実施の形態では、非撮影モード 601でフリップ角を一定にすること、 および撮影モード 602のフリップ角を非撮影モード 601のフリップ角よりも小さい角度の 範囲で変化させることは、図 5 (a)の場合と同じである。ただし、本実施の形態では、 撮影モード 602において、全位相エンコードの計測の間にフリップ角を単調に減少さ せるのではなぐ単調減少と単調増加が組み合わされている。変調パターン Aは、一 周期のサイン関数に従って 60度から 30度に減少させた後 60度に増加して 、る。ま た変調パターン Bは、全位相エンコードの計測の間に変調パターン Aを 2回繰り返し ている。変調パターン Cは、全位相エンコードの計測の間に変調パターン Aを 1. 5回 繰り返した後、 30度に固定している。 A〜Cのいずれの変調パターンを採用した場合 にも、フリップ角を 60度に固定した場合(図 8のパターン D)と同等の画像コントラスト が得られていることがわかる。撮影モードにおける SAR低減率は、図 8のパターン D に対して、 A、 Bが 41%、 Cが後半のフリップ角を 30度一定としたために 49%となつ ている。
[0030] また変調パターン Aからは、たとえ低位相エンコード領域 603計測時におけるフリツ プ角が小さくても、同等の画像コントラストが得られ、位相エンコードとフリップ角の関 係は画像コントラストにはほとんど影響のないことがわかる。これに対し、図 8に示す 変調パターン Fのように、非撮影モード 811のフリップ角を 30度一定とし、撮影モード 8 12の低位相エンコード領域 813の計測時にフリップ角 60度となるように変化させた場 合には、ノターン D (60度一定)とは異なる画像コントラストとなり、パターン E (30度 一定)のコントラストに近くなつている。このことから、画像コントラストは非撮影モード で作られた定常状態の影響を強く受けており、撮影モードのフリップ角にはあまり依 存しないこと、従って SARを低減するためには、撮影モードのフリップ角を非撮影モ 一ドのフリップ角よりも小さな角度にすると良いことが分かる。
[0031] 図 7 (a)に示す変調パターンは、非撮影モード 701でもフリップ角を変調する。変調 は、前半を小さく後半ほど大きくする。撮影モード 702におけるフリップ角は、図 5 (a) と同様に、非撮影モード 701の最大のフリップ角以下となるように変化させている。本 実施の形態においても、画像コントラストは、(b)および (c)に示したように、図 8のパ ターン Dと同等になることがわかる。撮影モードにおける SARの低減効果は、図 5 (a) の場合と同じであるが、本実施の形態では、非撮影モードにおいても変調を行ってい るので、数十回程度の少ない繰り返し回数で短時間に撮影モードに移行することが 可能であり、さらに SARを低減できる。なお図 7 (a)において、撮影モード 702の変調 パターンとして、図 6 (a)に示す変調パターン A、 B、 Cのいずれかを採用してもよぐ 同様の効果が得られる。
[0032] 上記フリップ角変調パターンは、 SAR、その低減率、画像コントラストなどを考慮し て任意に設定することが可能であるが、撮影モードにおいて連続して複数の画像を 撮影する場合には、図 6の変調パターン A、 Bのように、 1回の撮影の終わりにフリップ 角が撮影の最初のフリップ角に近づくようなパターンが好適である。連続撮影に好適 な変調方法を図 9に示す。図示する例では、非撮影モード 901はフリップ角を一定 (6 0度)にし、撮影モード 902では、図 6の変調パターン Bと同じ変調パターンを 5回繰り 返して 5枚の画像を連続撮影している。図中(a)は繰り返し回数に対するフリップ角の 変化を示し、 (b)は 5枚の画像のプロファイルを重ねて表示したものである。 (b)に示 すように、 5枚のプロファイルはほぼ重なっており、連続撮影した画像のコントラストが 安定して!/ヽることを示して ヽる。その画像コントラストも図 4と同等のものが得られて ヽ る。このように複数の画像を連続撮影する場合には、各画像の撮影の始めと終わりで フリップ角を一定値に近づけることにより、画像コントラストの低下なく SARを低減し、 し力も安定に画像を取得することが可能となる。なお、図 9の変調パターンによる SA Rの低減率は、図 6の変調パターン Bと同じ 41%である。
[0033] 以上、フリップ角変調の各変調パターンの実施の形態について、より SAR条件の 厳 ヽ位相補償型 GrEノ ルスシーケンスを撮影法に用いた場合の効果とともに説明 したが、上記フリップ角変調の効果は、位相補償型 GrEパルスシーケンスに限定され るものではなぐ GrE系のパルスシーケンスに共通である。
[0034] 次に画像再構成につ 、て説明する。計算機 109は、撮影モードで計測されたェコ 一を用いてフーリエ変換等の演算を行い、画像を再構成する。図 5〜図 7のプロファ ィルおよび画像に示したように、本発明の MRI装置では、フリップ角を一定値に固定 にした場合と同様の画像のコントラストが得られる。しかし、撮影モードにおいてフリツ プ角を変調すると、フリップ角にほぼ比例してエコーの強度が変調される。このため、 フリップ角と位相エンコードの関係に応じて画像のエッジが強調されたり、画像がぼ けたりする。例えば、図 5の画像 (c)は、(d)に示すように、被検体のエッジ 521は中間 部分と同様の輝度を示しているが、図 6Aの画像 (c)では、被検体の上下のエッジ 62 1が強調されている。また図 6B、 Cでは被検体の上下のエッジがなまっている。このよ うな現象を回避するため、画像再構成に際し、次式(1)で示すように、フリップ角 faの 逆数と各エコー (信号値)との積をとることによりエコーを補正する。 [0035] s ' = 1/fa X s (i = 1 , n) ( 1)
ここで、 s s 'はそれぞれ補正前後のエコーのサンプル点における値であり、 nはサン 、 i
プリング点数、 faは sを計測する直前の励起パルスのフリップ角である。
[0036] 補正後のエコーを用いてフーリエ変換によって再構成することにより、良好な画像 を得ることが可能となる。ただし、厳密には各エコーの強度がフリップ角に比例してい るわけではない。従って厳密な強度補正を行なうためには、フリップ角とエコー強度と の関係を、例えばリファレンスエコーにより計測し、それに基きエコーを補正すること が好ましい。
[0037] 次に他の実施の形態として、リファレンスエコーによる補正する手段を備えた MRI 装置を説明する。本実施の形態の装置の構成および、 RFパルスのフリップ角変調パ ターンとして、例えば図 5〜図 7に示すような変調パターンのいずれかを採用すること は、上記実施の形態と同様である。ただし本実施の形態においては、図 10に示すよ うに、非撮影モード 1001と撮影モード 1002との間で、フリップ角変調の影響を補正す るためのリファレンスエコーを計測するステップ 1003が挿入される。
[0038] リファレンスエコーの計測は、例えば位相エンコードをすベてゼロにした状態で一度 撮影モードを実行して一連のエコー (リファレンスエコー)を計測することにより行なう(1 003)。計測されたリファレンスエコーは、記憶媒体 111に保存され、撮影モードで計測 されたエコーの補正に用いられる。
[0039] 画像再構成においては、まず次式(2)に従い、各リファレンスエコーの強度 Aを計 算する。リファレンスエコーの強度 Aとは、例えば、リファレンスエコーの絶対値の積分 値である。次に式(3)により、リファレンスエコーの強度の逆数(1/A)と再構成用の各 エコーとの積をとり、補正後のエコーとする。
[0040] A = ∑ |r | (i = 1 , ..., η) (2)
s ' = 1/A X s (3)
式(2)および(3)において、 rはリファレンスエコーのサンプル点における値であり、 s、 はそれぞれ補正前後のエコーのサンプル点における値、 nはサンプリング点数 である。また、 Aはリファレンスエコーの強度であり、ここでは、リファレンスエコーの絶 対値の積分値としている。 補正後のエコーをフーリエ変換によって再構成することにより、良好な画像を得るこ とが可能である。
[0041] 本実施の形態によれば、第 1の実施の形態と同様に撮影モードにおける RFパルス のフリップ角を非撮影モードのフリップ角で決まる値以下の範囲で変化させることによ り、 SARを低減することができるとともに、画像コントラストの劣化がないだけでなぐ エッジのなまりや強調などのフリップ角変調の影響のない良好な画像を得ることがで きる。
図面の簡単な説明
[0042] [図 1]本発明が適用される MRIの全体構成を示す図。
[図 2]グラディエントエコー法のパルスシーケンスと k空間を示す図。
[図 3]位相補償型グラディエントエコー法のパルスシーケンスを示す図。
[図 4]シーケンサによる制御の詳細を示す図。
[図 5]本発明の一実施の形態におけるフリップ角と撮影結果を示す図。
[図 6]本発明の他の実施の形態におけるフリップ角と撮影結果を示す図。
[図 7]本発明の他の実施の形態におけるフリップ角と撮影結果を示す図。
[図 8]従来の撮影法によるフリップ角と撮影結果を示す図。
[図 9]本発明の他の実施の形態におけるフリップ角と撮影結果を示す図。
[図 10]本発明の第 2の実施の形態による撮影を説明する図。
符号の説明
[0043] 101…静磁場を発生するマグネット、 102…傾斜磁場コイル、 103…被検体、 104· ··シ ーケンサ、 105…傾斜磁場電源、 106…高周波磁場発生器、 107…プローブ、 108· ·· 受信器、 109· "計算機、 110…ディスプレイ、 111…記憶媒体。

Claims

請求の範囲
[1] 静磁場を発生する手段と、前記静磁場に重畳する傾斜磁場を発生する手段と、前 記静磁場に置かれた検査対象に励起 RFパルスを照射する手段と、前記検査対象か ら核磁気共鳴信号を検出する手段と、前記核磁気共鳴信号から画像を構成する手 段と、励起 RFパルス照射後に核磁気共鳴信号の計測を伴わな!/、非撮影モードおよ び励起 RFパルス照射後に核磁気共鳴信号を計測する撮影モードを実行するように 前記励起 RFパルスを照射する手段および核磁気共鳴信号を検出する手段を制御 する手段とを有し、
前記励起 RFパルスを照射する手段は、前記撮影モードにおける核磁ィ匕のフリップ 角を前記非撮影モードにおける核磁ィ匕のフリップ角で規定される一定値以下の範囲 で変化させることを特徴とする磁気共鳴イメージング装置。
[2] 請求項 1記載の磁気共鳴イメージング装置にぉ 、て、
前記励起 RFパルスを照射する手段は、前記撮影モードにおける核磁ィ匕のフリップ 角を前記非撮影モードにおける核磁ィ匕のフリップ角の最大値以下の範囲で変化させ ることを特徴とする磁気共鳴イメージング装置。
[3] 請求項 1記載の磁気共鳴イメージング装置にぉ 、て、
前記制御する手段は、前記非撮影モードに引き続き前記撮影モードを実行し、 前記励起 RFパルスを照射する手段は、前記撮影モードにおける核磁ィ匕のフリップ 角を前記非撮影モードにおける最後の核磁ィ匕のフリップ角を前記一定値として、前 記撮影モードにおける核磁ィ匕のフリップ角を当該一定値以下の範囲で変化させるこ とを特徴とする磁気共鳴イメージング装置。
[4] 請求項 1な 、し 3の 、ずれか 1項に記載の磁気共鳴イメージング装置にぉ 、て、 前記励起 RFパルスを照射する手段は、前記撮影モードにおける核磁ィ匕のフリップ 角をほぼ連続的に変調することを特徴とする磁気共鳴イメージング装置。
[5] 請求項 4記載の磁気共鳴イメージング装置にぉ 、て、
前記励起 RFパルスを照射する手段は、前記撮影モードの 1回の撮影における核磁 化のフリップ角を単調減少する関数に従い変調することを特徴とする磁気共鳴ィメー ジング装置。
[6] 請求項 4記載の磁気共鳴イメージング装置にぉ 、て、
前記励起 RFパルスを照射する手段は、前記撮影モードの 1回の撮影における核磁 化のフリップ角を、撮影の始めのフリップ角と終わりのフリップ角が同一またはほぼ同 一となるように変調することを特徴とする磁気共鳴イメージング装置。
[7] 請求項 6記載の磁気共鳴イメージング装置にぉ 、て、
前記制御する手段は、前記撮影モードにぉ 、て複数回の撮影を実行することを特 徴とする磁気共鳴イメージング装置。
[8] 請求項 1な 、し 7の 、ずれか 1項に記載の磁気共鳴イメージング装置にぉ 、て、 前記制御する手段は、前記非撮影モードおよび撮影モードの撮影をグラディエント エコー系のノ ルスシーケンスに従い実行することを特徴とする磁気共鳴イメージング 装置。
[9] 請求項 8記載の磁気共鳴イメージング装置にぉ 、て、
前記制御する手段は、前記グラディエントエコー系のノ ルスシーケンスによる撮影 の実行にぉ 、て、 2個の連続した RFパルス照射の間における傾斜磁場の時間積分 値をゼロとすることを特徴とする磁気共鳴イメージング装置。
[10] 請求項 1な!、し 9の 、ずれか 1項に記載の磁気共鳴イメージング装置にぉ 、て、 前記画像を構成する手段は、前記撮影モードで計測した核磁気共鳴信号を、当該 核磁気共鳴信号を発生させるために用いられた励起 RFパルスのフリップ角に応じて 補正する手段を備えたことを特徴とする磁気共鳴イメージング装置。
[11] 請求項 10に記載の磁気共鳴イメージング装置において、
前記画像を構成する手段は、フリップ角の逆数で信号強度を補正することを特徴と する磁気共鳴イメージング装置。
[12] 請求項 10に記載の磁気共鳴イメージング装置において、
前記制御する手段は、前記非撮影モードの後に、励起 RFパルス照射後に位相ェ ンコード 0の核磁気共鳴信号を計測するリファレンス撮影モードを実行し、
前記画像を構成する手段は、前記リファレンス撮影モードにより得られたリファレン ス信号を用いて前記撮影モードで計測した核磁気共鳴信号を補正することを特徴と する磁気共鳴イメージング装置。
PCT/JP2007/061780 2006-06-16 2007-06-12 磁気共鳴イメージング装置 WO2007145193A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008521202A JP4864969B2 (ja) 2006-06-16 2007-06-12 磁気共鳴イメージング装置
US12/308,186 US7868618B2 (en) 2006-06-16 2007-06-12 Magnetic resonance imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006167868 2006-06-16
JP2006-167868 2006-06-16

Publications (1)

Publication Number Publication Date
WO2007145193A1 true WO2007145193A1 (ja) 2007-12-21

Family

ID=38831707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061780 WO2007145193A1 (ja) 2006-06-16 2007-06-12 磁気共鳴イメージング装置

Country Status (3)

Country Link
US (1) US7868618B2 (ja)
JP (1) JP4864969B2 (ja)
WO (1) WO2007145193A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295925A (ja) * 2007-06-04 2008-12-11 Hitachi Medical Corp 核磁気共鳴イメージング装置
WO2009034115A1 (de) * 2007-09-12 2009-03-19 Siemens Aktiengesellschaft Mrt mit variierender hf-pulsfolge

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384382B2 (en) * 2007-10-18 2013-02-26 Hitachi Medical Corporation Magnetic resonance imaging apparatus
JP5236356B2 (ja) * 2008-05-22 2013-07-17 株式会社日立メディコ 核磁気共鳴イメージング装置
US8049499B2 (en) * 2009-03-20 2011-11-01 Case Western Reserve University Controlling multi-channel transmitter effects on specific absorption rate
WO2012005137A1 (ja) * 2010-07-07 2012-01-12 株式会社 日立メディコ 磁気共鳴イメージング装置及びrfパルス制御方法
DE102011005649B4 (de) 2011-03-16 2013-07-04 Siemens Aktiengesellschaft Bestimmung des tatsächlichen Kippwinkels und Justierung der Transmitterspannung bei der MR-Bildgebung eines kontinuierlich verfahrenen Untersuchungsobjekts
JP5978431B2 (ja) * 2011-06-09 2016-08-24 株式会社日立製作所 磁気共鳴イメージング装置およびフリップ角決定方法
CN115412116A (zh) * 2021-05-27 2022-11-29 北京小米移动软件有限公司 调整sar值的方法及装置、电子设备、计算机可读存储介质
US20230030895A1 (en) * 2021-07-20 2023-02-02 Canon Medical Systems Corporation Magnetic resonance imaging apparatus and magnetic resonance imaging method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133427A (ja) * 1989-10-18 1991-06-06 Yokogawa Medical Syst Ltd Mri装置
JPH09262220A (ja) * 1996-03-29 1997-10-07 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2004237102A (ja) * 2003-02-06 2004-08-26 Ge Medical Systems Global Technology Co Llc Nmr検査の間の励起方法
JP2005021690A (ja) * 2003-07-02 2005-01-27 Ge Medical Systems Global Technology Co Llc 多相型rfパルス・フリップ角を組み入れて高磁場mr撮像でのrf電力を低減する方法及び装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3637998A1 (de) * 1986-11-07 1988-05-11 Max Planck Gesellschaft Verfahren zur schnellen akquisition von spinresonanzdaten fuer eine ortsaufgeloeste untersuchung eines objekts
US5307015A (en) * 1990-06-29 1994-04-26 The Regents Of The University Of California NMR relaxometry using variable initial flip angle
JP2001515736A (ja) * 1997-08-13 2001-09-25 ビー・ティー・ジー・インターナショナル・リミテッド 緩和パラメータ値決定装置および方法
US7367155B2 (en) * 2000-12-20 2008-05-06 Monsanto Technology Llc Apparatus and methods for analyzing and improving agricultural products
DE10219528A1 (de) 2002-05-02 2003-11-13 Philips Intellectual Property Schnelles Kernresonanz-Bildgebungsverfahren mit Gradienten-Echos
US6958606B2 (en) 2003-12-03 2005-10-25 Ge Medical Systems Global Technology Co., Llc NMR excitation method
FR2851050B1 (fr) 2003-02-06 2005-10-28 Ge Med Sys Global Tech Co Llc Procede d'excitation au cours d'un examen de rmn
US7403006B2 (en) * 2005-10-11 2008-07-22 Regents Of The University Of Minnesota Frequency swept excitation for magnetic resonance
US7425828B2 (en) * 2005-10-11 2008-09-16 Regents Of The University Of Minnesota Frequency swept excitation for magnetic resonance
WO2007098011A2 (en) * 2006-02-17 2007-08-30 Regents Of The University Of Minnesota High field magnetic resonance
US8103068B2 (en) * 2006-09-29 2012-01-24 Cornell Research Foundation, Inc. Methods and systems for reconstruction of objects
US8143890B2 (en) * 2008-05-27 2012-03-27 Trustees Of Columbia University In The City Of New York Spectral resolution enhancement of magnetic resonance spectroscopic imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133427A (ja) * 1989-10-18 1991-06-06 Yokogawa Medical Syst Ltd Mri装置
JPH09262220A (ja) * 1996-03-29 1997-10-07 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2004237102A (ja) * 2003-02-06 2004-08-26 Ge Medical Systems Global Technology Co Llc Nmr検査の間の励起方法
JP2005021690A (ja) * 2003-07-02 2005-01-27 Ge Medical Systems Global Technology Co Llc 多相型rfパルス・フリップ角を組み入れて高磁場mr撮像でのrf電力を低減する方法及び装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BERNSTEIN M.A. ET AL.: "Handbook of MRI Pulse Sequences, chapter 14 "Basic Pulse Sequences"", 11 September 2004, ELSEVIER ACADEMIC PRESS, pages: 596 - 600, XP003020642 *
DESHPANDE V.S. ET AL.: "Improved Cardiac Cine Imaging at 3T Using Modulated Flip Angles", PROC. INTL. SOC. MAG. RESON. MED., vol. 11, May 2004 (2004-05-01), pages #1813, XP003020640 *
HENNIG J. ET AL.: "TIDE (transition into driven equilibrium) -Sequences for Brain Imaging with Improved Signal and Contrast Behaviour", PROC. INTL. SOC. MAG. RESON. MED., vol. 11, July 2003 (2003-07-01), pages #973, XP003020641 *
PAUL D. ET AL.: "T2-weighted b-SSFP imaging using TIDE", PROC. INTL. SOC. MAG. RESON. MED., vol. 13, May 2005 (2005-05-01), pages #98, XP003020639 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295925A (ja) * 2007-06-04 2008-12-11 Hitachi Medical Corp 核磁気共鳴イメージング装置
WO2009034115A1 (de) * 2007-09-12 2009-03-19 Siemens Aktiengesellschaft Mrt mit variierender hf-pulsfolge

Also Published As

Publication number Publication date
JPWO2007145193A1 (ja) 2009-10-29
JP4864969B2 (ja) 2012-02-01
US7868618B2 (en) 2011-01-11
US20090251142A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
WO2007145193A1 (ja) 磁気共鳴イメージング装置
CN105182264B (zh) 磁共振技术中参数图的产生
US8436611B2 (en) Magnetic resonance imaging (MRI) using SPIR and/or CHESS suppression pulses
US9687172B2 (en) System for motion corrected MR diffusion imaging
US8466679B2 (en) Magnetic resonance imaging apparatus and method configured for susceptibility-emphasized imaging with improved signal-to-noise ratio
JP5523564B2 (ja) 磁気共鳴イメージング装置および送信感度分布算出方法
JP5917077B2 (ja) 磁気共鳴イメージング装置
US8571631B2 (en) Method for contrast-agent-free angiographic imaging in magnetic resonance tomography
US8283925B2 (en) Magnetic resonance method and apparatus to reduce distortions in diffusion imaging
US9476956B2 (en) Magnetic resonance imaging apparatus with correction of magnetic field gradient waveform distortion
JP4610611B2 (ja) 磁気共鳴撮影装置
JP5726203B2 (ja) 磁気共鳴撮像装置、照射磁場計測方法
WO2015190508A1 (ja) 磁気共鳴イメージング装置及び水脂肪分離画像作成方法
JP2014511742A (ja) Mrデータを収集する方法及び装置
US10156624B2 (en) Method and magnetic resonance apparatus for reconstructing an MR image dependent on the chemical shift
JP2007190114A (ja) 磁気共鳴イメージング装置
US20110210736A1 (en) Magnetic resonance imaging apparatus and method
WO2002053031A1 (fr) Appareil et procede d'imagerie par resonance magnetique
JP5377838B2 (ja) 磁気共鳴イメージング装置
WO2010064572A1 (ja) 磁気共鳴イメージング装置および同期撮像方法
US9772390B2 (en) Magnetic resonance imaging device and method for generating image using same
WO2009081786A1 (ja) 磁気共鳴イメージング装置及び磁化率強調画像撮影方法
JP5336731B2 (ja) 磁気共鳴イメージング装置
US9500733B2 (en) Method and apparatus for obtaining main magnetic field information and radio pulse related information in a magnetic resonance imaging system with different flip angles
JP5564213B2 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745067

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008521202

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12308186

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745067

Country of ref document: EP

Kind code of ref document: A1