WO2008039637A2 - Electro-optic display and materials for use therein - Google Patents

Electro-optic display and materials for use therein Download PDF

Info

Publication number
WO2008039637A2
WO2008039637A2 PCT/US2007/077840 US2007077840W WO2008039637A2 WO 2008039637 A2 WO2008039637 A2 WO 2008039637A2 US 2007077840 W US2007077840 W US 2007077840W WO 2008039637 A2 WO2008039637 A2 WO 2008039637A2
Authority
WO
WIPO (PCT)
Prior art keywords
electro
layer
optic
binder
display
Prior art date
Application number
PCT/US2007/077840
Other languages
French (fr)
Other versions
WO2008039637A3 (en
Inventor
Lan Cao
David D. Miller
Eric H. Klingenberg
Shafiq N. Fazel
Jared Bender
Original Assignee
E Ink Corporation
Air Products And Chemicals, Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Corporation, Air Products And Chemicals, Inc filed Critical E Ink Corporation
Priority to EP07814732A priority Critical patent/EP2064580A4/en
Priority to JP2009529300A priority patent/JP5452225B2/en
Publication of WO2008039637A2 publication Critical patent/WO2008039637A2/en
Publication of WO2008039637A3 publication Critical patent/WO2008039637A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details

Definitions

  • This invention relates to electro-optic displays and to materials, especially binders, for use therein.
  • This invention relates in part to binders with electrical and other properties which render them especially suitable for use in electro-optic displays.
  • the invention also provides polyurethanes which may also be useful in applications other than electro-optic displays.
  • This invention also relates to certain electro-optic display films useful in the production of electro-optic displays.
  • Electro-optic displays comprise a layer of electro-optic material, a term which is used herein in its conventional meaning in the art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material.
  • the optical property is typically color perceptible to the human eye, but may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
  • the electro-optic displays of the present invention typically contain an electro- optic material which is a solid in the sense that the electro-optic material has solid external surfaces, although the material may, and often does, have internal liquid- or gas-filled spaces, and to methods for assembling displays using such an electro-optic material.
  • Such displays using solid electro-optic materials may hereinafter for convenience be referred to as "solid electro-optic displays”.
  • solid electro-optic displays includes rotating bichromal member displays (see below), encapsulated electrophoretic displays, microcell electrophoretic displays and encapsulated liquid crystal displays.
  • electro-optic displays are known.
  • One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Patents Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a "rotating bichromal ball” display, the term "rotating bichromal member" is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical).
  • Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed to applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface.
  • This type of electro-optic medium is typically bistable.
  • an electrochromic medium for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al., Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Patents Nos. 6,301,038; 6,870.657; and 6,950,220. This type of medium is also typically bistable.
  • Electrophoretic display Another type of electro-optic display, which has been the subject of intense research and development for a number of years, is the particle-based electrophoretic display, in which a plurality of charged particles move through a fluid under the influence of an electric field. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays. [Para 1 0] As noted above, electrophoretic media require the presence of a fluid.
  • electrophoretic media In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., "Electrical toner movement for electronic paper-like display", IDW Japan, 2001, Paper HCSl-I, and Yamaguchi, Y., et al., "Toner display using insulative particles charged triboelectrically", IDW Japan, 2001, Paper AMD4-4). See also U.S. Patent Publication No.
  • gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles.
  • encapsulated electrophoretic media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase.
  • the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes.
  • Encapsulated media of this type are described, for example, in U.S. Patents Nos.
  • such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.
  • the continuous phase of such a polymer-dispersed electrophoretic medium may be regarded as a binder since it surrounds and encapsulates the individual droplets in the same manner that a binder surrounds the individual capsules in a conventional encapsulated electrophoretic display.
  • a related type of electrophoretic display is a so-called "microcell electrophoretic display".
  • the charged particles and the fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film.
  • the material as the carrier medium may be regarded as the binder of the microcell display in as much as it forms a continuous phase which surrounds and encapsulates discrete droplets of an internal phase (electrophoretic particles and surrounding fluid) in a manner exactly analogous to the continuous phase or binder of a polymer-dispersed electrophoretic medium.
  • Microcell displays are described for example, in International Application Publication No. WO 02/01281, and published US Application No.
  • microcavity electrophoretic display may be used to cover both encapsulated and microcell electrophoretic displays.
  • An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates.
  • the word “printing” is intended to include all forms of printing and coating, including, but without limitation: premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; inkjet printing processes; and other similar techniques.
  • premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating
  • roll coating such as knife over roll coating, forward and reverse roll coating
  • gravure coating dip coating
  • spray coating meniscus coating
  • spin coating spin coating
  • brush coating air knife coating
  • silk screen printing processes electrostatic printing processes
  • thermal printing processes inkjet printing processes; and other similar techniques.
  • electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode
  • many electrophoretic displays can be made to operate in a so-called "shutter mode" in which one display state is substantially opaque and one is light-transmissive.
  • Shutter mode in which one display state is substantially opaque and one is light-transmissive.
  • Dielectrophoretic displays which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Patent No. 4,418,346.
  • this patent describes a so-called “front plane laminate” (“FPL”) which comprises, in order, a light-transmissive electrically- conductive layer; a layer of a solid electro-optic medium in electrical contact with the electrically-conductive layer; an adhesive layer; and a release sheet.
  • FPL front plane laminate
  • the light- transmissive electrically-conductive layer will be carried on a light-transmissive substrate, which is preferably flexible, in the sense that the substrate can be manually wrapped around a drum (say) 10 inches (254 mm) in diameter without permanent deformation.
  • the term "light- transmissive" is used in this patent and herein to mean that the layer thus designated transmits sufficient light to enable an observer, looking through that layer, to observe the change in display states of the electro-optic medium, which will be normally be viewed through the electrically-conductive layer and adjacent substrate (if present).
  • the substrate will be typically be a polymeric film, and will normally have a thickness in the range of about 1 to about 25 mil (25 to 634 ⁇ m), preferably about 2 to about 10 mil (51 to 254 ⁇ m).
  • the electrically-conductive layer is conveniently a thin metal oxide layer of, for example, aluminum or indium tin oxide (ITO), or may be a conductive polymer.
  • PET films coated with aluminum or ITO are available commercially, for example as "aluminized Mylar” ("Mylar” is a Registered Trade Mark) from E. I. du Pont de Nemours & Company, Wilmington DE, and such commercial materials may be used with good results in the front plane laminate.
  • aluminized Mylar (“Mylar” is a Registered Trade Mark) from E. I. du Pont de Nemours & Company, Wilmington DE, and such commercial materials may be used with good results in the front plane laminate.
  • Assembly of an electro-optic display using such a front plane laminate may be effected by removing the release sheet from the front plane laminate and contacting the adhesive layer with the backplane under conditions effective to cause the adhesive layer to adhere to the backplane, thereby securing the adhesive layer, layer of electro-optic medium and electrically-conductive layer to the backplane.
  • This process is well-adapted to mass production since the front plane laminate may be mass produced, typically using roll-to-roll coating techniques, and then cut into pieces of any size needed for use with specific backplanes.
  • Another form of the double release sheet comprises a layer of a solid electro- optic medium sandwiched between two release sheets.
  • Both forms of the double release film are intended for use in a process generally similar to the process for assembling an electro- optic display from a front plane laminate already described, but involving two separate laminations; typically, in a first lamination the double release sheet is laminated to a front electrode to form a front sub-assembly, and then in a second lamination the front sub- assembly is laminated to a backplane to form the final display.
  • the electro-optic layer normally comprises, in addition to the capsules themselves, a polymeric binder which, upon drying or curing, serves to form the capsules into a mechanically coherent layer especially when, as this patent teaches is desirable, the capsules are present in the form of a monolayer of capsules.
  • the binder is also present between the electrodes in the final display and hence also affects the electro-optic properties of the display.
  • the binder may have a greater effect on the electro-optic properties of a display than the lamination adhesive.
  • the continuous matrix of a rotating bichromal member medium, the continuous phase of a polymer-dispersed electrophoretic display and the wall material used in a microcell display can have major effects on the electro- optic properties of the display.
  • the present invention relates to binders with improved electrical and mechanical properties for use in electro-optic displays, and to displays, front plane laminates, inverted front plane laminates and double release films incorporating such binders.
  • this invention provides a first polyurethane, this first polyurethane being formed from an isocyanate and a polyester diol having a molecular weight less than about 2000, or a polyester diol containing two polyester diol segments connecting by a steric hindrance group, each of the polyester diol segments having a molecular weight less than about 2000.
  • steric hindrance group is used herein to denote any group capable of connecting two polyester diol segments together and having sufficient bulk to provide steric hindrance to the crystallization of the segments.
  • the steric hindrance group may comprise, for example, a quaternary carbon atom; a specific useful group being a -C(CH 3 ) 2 - grouping.
  • This first polyurethane of the present invention may be formed from a polycaprolactone diol having a molecular weight less than about 1500. When the polycaprolactone diol comprises two polycaprolactone segments connected by a steric hindrance group, each of the segments may have a molecular weight not greater than about 1500.
  • the polyurethane may be in the form of an aqueous latex.
  • This invention also provides a second polyurethane of the present invention, this second polyurethane being formed from an isocyanate and a polyester diol, the polyurethane not crystallizing between about -10 0 C and about 70 0 C when coated as a thin film.
  • the term "thin film” is used herein to denote a film having a thickness of the order of about 20 ⁇ m.
  • the second polyurethane may be in the form of an aqueous latex.
  • This invention extends to an electro-optic display comprising a layer of a solid electro-optic material, and at least one electrode arranged to apply an electric field to the layer of electro-optic material, the layer of electro-optic material comprising a binder, wherein the binder comprises a first or second polyurethane of the present invention.
  • This invention also provides an electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display of the present invention.
  • This invention also extends to electro-optic display film (a front plane laminate) comprising in order: a light-transmissive electrically-conductive layer; a layer of a solid electro-optic medium comprising a binder and in electrical contact with the electrically- conductive layer; an adhesive layer; and a release sheet, wherein the binder comprises a first or second polyurethane of the present invention.
  • This invention also extends to an electro-optic display film (a double release film) comprising a layer of a solid electro-optic medium comprising a binder and having first and second surfaces on opposed sides thereof; a first adhesive layer on the first surface of the layer of electro-optic medium; a release sheet disposed on the opposed side of the first adhesive layer from the layer of electro-optic medium; and a second adhesive layer on the second surface of the layer of electro-optic medium, wherein the binder comprises a first or second polyurethane of the present invention.
  • This invention also extends to an electro-optic display film (an inverted front plane laminate) comprising, in order: at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer; an adhesive layer; a layer of a solid electro- optic medium comprising a binder; and a release sheet, wherein the binder comprises a first or second polyurethane of the present invention.
  • This invention also extends to an electro-optic display film (a double release film) comprising: a layer of a solid electro-optic medium comprising a binder and having first and second surfaces on opposed sides thereof; a first release sheet covering the first surface of the layer of solid electro-optic medium; and a second release sheet covering the second surface of the layer of solid electro- optic medium, wherein the binder comprises a polyurethane of the present invention.
  • an electro-optic display film comprising: a first release sheet; a layer of a solid electro-optic medium comprising a binder; an adhesive layer; and a second release sheet, wherein the binder comprises a polyurethane of the present invention.
  • Figure. 1 is a schematic cross-section through a front plane laminate of the present invention.
  • Figure 2 is a schematic cross-section through a double release film of the present invention.
  • Figure 3 shows the results of the differential scanning calorimetry tests carried out in Example 3 below.
  • Figure 4 shows the results of the storage stability tests carried out in Example 4 below.
  • Figure 1 is a schematic section through one subassembly (a front plane laminate, or FPL) used in a such a process; this subassembly comprises a substrate, a conductive layer, an electro-optic layer and an adhesive layer, the subassembly being illustrated at an intermediate stage of the process before this subassembly is laminated to a second subassembly.
  • FPL front plane laminate
  • the front plane laminate (generally designated 100) shown in Figure 1 comprises a light-transmissive substrate 110, a light-transmissive electrode layer 120, an electro-optic layer 130, a lamination adhesive layer 180 and a release sheet 190; the release sheet is illustrated in the process of being removed from the lamination adhesive layer 180 preparatory to lamination of the FPL 100 to a backplane.
  • the substrate 110 is typically a transparent plastic film, such as a 7 mil (177 ⁇ m) poly(ethylene terephthalate) (PET) sheet.
  • the lower surface (in Figure 1) of substrate 110, which forms the viewing surface of the final display, may have one or more additional layers (not shown), for example a protective layer to absorb ultra-violet radiation, barrier layers to prevent ingress of oxygen or moisture into the final display, and anti-reflection coatings to improve the optical properties of the display.
  • a protective layer to absorb ultra-violet radiation
  • barrier layers to prevent ingress of oxygen or moisture into the final display
  • anti-reflection coatings to improve the optical properties of the display.
  • Coated on to the upper surface of substrate 110 is the thin light-transmissive electrically conductive layer 120, preferably of ITO, which acts as the common front electrode in the final display.
  • PET films coated with ITO are available commercially.
  • the electro-optic layer 130 may be deposited on the conductive layer 120, typically by slot coating, the two layers being in electrical contact.
  • the electro-optic layer 130 shown in Figure 1 is an encapsulated electrophoretic medium and comprises microcapsules 140, each of which comprises negatively charged white particles 150 and positively charged black particles 160 in a hydrocarbon-based fluid.
  • the microcapsules 140 are held retained within a polymeric binder 170.
  • white particles 150 move to the positive electrode and black particles 160 move to the negative electrode, so that electro-optic layer 130 appears, to an observer viewing the display through substrate 110, white or black depending on whether conductive layer 120 is positive or negative relative to the adjacent pixel electrode in the backplane.
  • the FPL 100 is desirably prepared by coating the lamination adhesive 180, in liquid form, conveniently by slot coating, on to release sheet 190, drying (or otherwise curing) the adhesive to form a solid layer and then laminating the adhesive and release sheet to the electro-optic layer 130, which has previously been coated on to the substrate 110 bearing the conductive layer 120; this lamination may conveniently be effected using hot roll lamination.
  • the lamination adhesive may be applied over the electro-optic layer 130 and there dried or otherwise cured before being covered with the release sheet 190.
  • the release sheet 190 is conveniently a 7 mil (177 ⁇ m) film; depending upon the nature of the electro-optic medium used, it may be desirable to coat this film with a release agent, for example a silicone. As illustrated in Figure 1, the release sheet 190 is peeled or otherwise removed from the lamination adhesive 180 before the FPL 100 is laminated to a backplane (not shown) to form the final display.
  • a double release sheet (generally designated 300) of the present invention is shown in Figure 2 of the accompanying drawings.
  • the double release sheet 300 comprises a central layer 302 of electro-optic material, specifically in Figure 2 a layer comprising capsules 304 in a polymeric binder 306.
  • the capsules 304 may be similar to those described above with reference to Figure 1.
  • the sheet 300 further comprises a first adhesive layer 308, a first release sheet 310 covering the first adhesive layer 308, a second adhesive layer 312 disposed on the opposed side of the electro-optic layer 302 from the first adhesive layer 308, and a second release sheet 314 covering the second adhesive layer 312.
  • the sheet 300 may be formed by first coating the release sheet 310 with a layer of adhesive, which is then dried or cured to form the first adhesive layer 308. Next, a mixture of the capsules 304 and binder 306 is printed or otherwise deposited on the first adhesive layer 308, and then the mixture is dried or cured to form a coherent layer 302. Finally, a layer of adhesive is deposited over the layer 302, dried or cured to form the second adhesive layer 312, and covered by the second release sheet 314.
  • the front substrate may include additional layers, such as an ultra-violet filter or a protective layer intended to protect the conductive layer from mechanical damage. Thereafter, the other release sheet is peeled away, thereby exposing the second adhesive layer, which is used to attach the electro-optic material coating assembly to a backplane.
  • a thermal, radiation, or chemically based lamination process may be used. It will be appreciated that the order of the two laminations described is essentially arbitrary and could be reversed, although it practice it is almost always more convenient to laminate the double release film to the front substrate first, and thereafter to laminate the resulting front subassembly to the backplane.
  • the displays of the present invention may be used in any application in which prior art electro-optic displays have been used.
  • the present displays may be used in electronic book readers, portable computers, tablet computers, cellular telephones, smart cards, signs, watches, shelf labels and flash drives.
  • the present invention relates to "custom" polyurethanes having properties which render them especially useful as binders in encapsulated electrophoretic and other types of electro-optic displays.
  • polyurethanes are preferred as binders in electro-optic displays.
  • NeoRez R 9314 and R 9621 are especially useful, a preferred blend comprising 75 weight per cent of the former and 25 weight per cent of the latter.
  • the present invention controls the length of the polyester segment in a polyurethane. It is known that the crystalline transition in polyurethanes such as R 9314 is due to the long polyester segments present between the urethane linkages on the polymer backbone. By reducing the length of the polyester segments (below a partial molecular weight of about 2000) between the urethane groups, the polyester segments are rendered incapable of chain folding crystallization, thus eliminating the crystallization of the polymer as a whole. To synthesize such a polymer, one uses a polyester diol with a relatively short chain length. The diol may be polycaprolactone diol having a molecular weight not greater than about 1500.
  • polyester diols Two different types may be used in the present process.
  • the first type is typified by the following Formula I:
  • This first type of polyester diol contains two polyester segments (polycaprolactone segments in Formula I) linked by a group which does not provide any hindrance to crystallization of the polyester segments.
  • the molecular weight of this type of polyester diol should not exceed about 2000.
  • polyester diol contains two polyester segments (polycaprolactone segments in Formula II) linked by a steric hindrance group which is sufficiently bulky and thus provides sufficient steric hindrance to hinder the crystallization of the polyester segments.
  • the two polyester segments are in effect isolated from each other by the steric hindrance group and each segment can have a molecular weight up to about 2000.
  • the reactor temperature was then further lowered to 30 0 C and de-ionized water (105 g) was added to convert the prepolymer to a water-borne dispersion.
  • Chain extension was carried out immediately after the dispersing step with hexamethylenediamine (3.5 g, Aldrich) dissolved in a small amount of de-ionized water over 1 hour at 30 0 C.
  • the dispersion was heated at 60 0 C for one hour to ensure that all the residual isocyanate groups had reacted.
  • Example 2 Custom polyurethane with polyester containing steric hindrance group
  • Prepolymer 80 g was then slowly transferred from the first reactor to the second reactor with stirring.
  • Hexamethylenediamine 2.7g of a 70% solution was added to the second reactor for chain extension, and the resultant dispersion was heated to 80 0 C for 1 hour to complete the reaction.

Abstract

A polyurethane is formed from an isocyanate and a polyester diol having a molecular weight less than about 2000, or a polyester diol comprising two polyester diol segments connected by a steric hindrance group, each of the polyester diol segments having a molecular weight less than about 2000. The polyurethane is useful as a binder in electro-optic displays, and in components used to form such displays.

Description

ELECTRO-OPTIC DISPLAY AND MATERIALS FOR USE THEREIN
[Para 1 ] For background information relating to electro-optic displays, the reader is referred to the following U.S. and International patents and published applications:
Publication No. 2004/0252360;
Patent No. 6,831,769;
Publication No. 2004/0155857;
Publication No. 2005/0146774;
Patent No. 6,982,178;
Patent 6,727,881;
Patent No. 6,727,881;
Patent No. 6,124,851;
International Application Publication No. WO 97/04398;
Patent No. 6,120,588;
Patent No. 6,657,772;
Patent No. 6,982,178; and
Patent No. 6,312,304.
[Para 2] This invention relates to electro-optic displays and to materials, especially binders, for use therein. This invention relates in part to binders with electrical and other properties which render them especially suitable for use in electro-optic displays. The invention also provides polyurethanes which may also be useful in applications other than electro-optic displays. This invention also relates to certain electro-optic display films useful in the production of electro-optic displays.
[Para 3] Electro-optic displays comprise a layer of electro-optic material, a term which is used herein in its conventional meaning in the art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. The optical property is typically color perceptible to the human eye, but may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
[Para 4] The electro-optic displays of the present invention typically contain an electro- optic material which is a solid in the sense that the electro-optic material has solid external surfaces, although the material may, and often does, have internal liquid- or gas-filled spaces, and to methods for assembling displays using such an electro-optic material. Such displays using solid electro-optic materials may hereinafter for convenience be referred to as "solid electro-optic displays". Thus, the term "solid electro-optic displays" includes rotating bichromal member displays (see below), encapsulated electrophoretic displays, microcell electrophoretic displays and encapsulated liquid crystal displays.
[Para 5] The terms "bistable" and "bistability" are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in published U.S. patent application Ser. No. 2002/0180687 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called "multi-stable" rather than bistable, although for convenience the term "bistable" may be used herein to cover both bistable and multi-stable displays.
[Para 6] Several types of electro-optic displays are known. One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Patents Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a "rotating bichromal ball" display, the term "rotating bichromal member" is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical). Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed to applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface. This type of electro-optic medium is typically bistable. [Para 7] Another type of electro-optic display uses an electrochromic medium, for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al., Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Patents Nos. 6,301,038; 6,870.657; and 6,950,220. This type of medium is also typically bistable.
[Para 8] Another type of electro-optic display is an electro-wetting display developed by Philips and described in an article in the September 25, 2003 issue of the Journal "Nature" and entitled "Performing Pixels: Moving Images on Electronic Paper", Hayes, R.A., et al., "Video-Speed Electronic Paper Based on Electrowetting", Nature, 425, 383-385 (2003). It is shown in U.S. Patent Publication No. 2005/0151709 that such electro-wetting displays can be made bistable.
[Para 9] Another type of electro-optic display, which has been the subject of intense research and development for a number of years, is the particle-based electrophoretic display, in which a plurality of charged particles move through a fluid under the influence of an electric field. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays. [Para 1 0] As noted above, electrophoretic media require the presence of a fluid. In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., "Electrical toner movement for electronic paper-like display", IDW Japan, 2001, Paper HCSl-I, and Yamaguchi, Y., et al., "Toner display using insulative particles charged triboelectrically", IDW Japan, 2001, Paper AMD4-4). See also U.S. Patent Publication No. 2005/0001810; European Patent Applications 1,462,847; 1,482,354; 1,484,635; 1,500,971; 1,501,194; 1,536,271; 1,542,067; 1,577,702; 1,577,703; and 1,598,694; and International Applications WO 2004/090626; WO 2004/079442; and WO 2004/001498. Such gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles.
[Para 1 1 ] Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation have recently been published describing encapsulated electrophoretic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. Encapsulated media of this type are described, for example, in U.S. Patents Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; 6,130,774; 6,172,798; 6,177,921; 6,232,950; 6,249,271; 6,252,564; 6,262,706; 6,262,833; 6,300,932; 6,312,304; 6,312,971; 6,323,989; 6,327,072; 6,376,828; 6,377,387; 6,392,785; 6,392,786; 6,413,790; 6,422,687; 6,445,374; 6,445,489; 6,459,418; 6,473,072; 6,480,182; 6,498,114; 6,504,524; 6,506,438; 6,512,354; 6,515,649; 6,518,949; 6,521,489; 6,531,997; 6,535,197; 6,538,801; 6,545,291; 6,580,545; 6,639,578; 6,652,075; 6,657,772; 6,664,944; 6,680,725; 6,683,333; 6,704,133; 6,710,540; 6,721,083; 6,724,519; 6,727,881; 6,738,050; 6,750,473; 6,753,999; 6,816,147; 6,819,471; 6,822,782; 6,825,068; 6,825,829; 6,825,970; 6,831,769; 6,839,158; 6,842,167; 6,842,279; 6,842,657; 6,864,875; 6,865,010; 6,866,760; 6,870,661; 6,900,851; 6,922,276; 6,950,200; 6,958,848; 6,967,640; 6,982,178; 6,987,603; 6,995,550; 7,002,728; 7,012,600; 7,012,735; 7,023,430; 7,030,412; 7,030,854; 7,034,783; 7,038,655; 7,061,663; 7,071,913; 7,075,502; 7,075,703; 7,079,305; 7,106,296; 7,109,968; 7,110,163 and 7,110,164; and U.S. Patent Applications Publication Nos. 2002/0060321; 2002/0090980; 2002/0113770; 2002/0180687; 2003/0011560; 2003/0102858; 2003/0151702; 2003/0222315; 2004/0014265; 2004/0075634; 2004/0094422; 2004/0105036; 2004/0112750; 2004/0119681; 2004/0136048; 2004/0155857; 2004/0180476; 2004/0190114; 2004/0196215; 2004/0226820; 2004/0239614; 2004/0257635; 2004/0263947; 2005/0000813; 2005/0001812; 2005/0007336; 2005/0012980; 2005/0017944; 2005/0018273; 2005/0024353; 2005/0062714; 2005/0067656; 2005/0078099; 2005/0099672; 2005/0122284; 2005/0122306; 2005/0122563; 2005/0122564; 2005/0122565; 2005/0134554; 2005/0146774; 2005/0151709; 2005/0152018; 2005/0152022; 2005/0156340; 2005/0168799; 2005/0179642; 2005/0190137; 2005/0212747; 2005/0213191; 2005/0219184; 2005/0253777; 2005/0270261; 2005/0280626; 2006/0007527; 2006/0023296; 2006/0024437; and 2006/0038772; and International Applications Publication Nos. WO 00/38000; WO 00/36560; WO 00/67110; and WO 01/07961; and European Patents Nos. 1,099,207 Bl; and 1,145,072 Bl.
[Para 1 2] Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called "polymer-dispersed electrophoretic display" in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned U.S. Patent No. 6,866,760. Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media. Furthermore, the continuous phase of such a polymer-dispersed electrophoretic medium may be regarded as a binder since it surrounds and encapsulates the individual droplets in the same manner that a binder surrounds the individual capsules in a conventional encapsulated electrophoretic display.
[Para 1 3] A related type of electrophoretic display is a so-called "microcell electrophoretic display". In a microcell electrophoretic display, the charged particles and the fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. The material as the carrier medium may be regarded as the binder of the microcell display in as much as it forms a continuous phase which surrounds and encapsulates discrete droplets of an internal phase (electrophoretic particles and surrounding fluid) in a manner exactly analogous to the continuous phase or binder of a polymer-dispersed electrophoretic medium. Microcell displays are described for example, in International Application Publication No. WO 02/01281, and published US Application No. 2002/0075556, both assigned to Sipix Imaging, Inc. Hereinafter, the term "microcavity electrophoretic display" may be used to cover both encapsulated and microcell electrophoretic displays. [Para 1 4] An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word "printing" is intended to include all forms of printing and coating, including, but without limitation: premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; inkjet printing processes; and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed (using a variety of methods), the display itself can be made inexpensively.
[Para 1 5] Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called "shutter mode" in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Patents Nos. 6,130,774 and 6,172,798, and U.S. Patents Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Patent No. 4,418,346.
[Para 1 6] Other types of electro-optic materials, for example, polymer-dispersed liquid crystal, may also be used in some of the displays of the present invention. [Para 1 7] In considering the choice of materials for use in an electro-optic display, attention must be paid to the process by which the display is to be assembled. Most prior art methods for final production of electrophoretic displays are essentially batch methods in which the electro-optic medium, a lamination adhesive and the backplane are only brought together immediately prior to final assembly, and it is desirable to provide methods better adapted for mass production. The aforementioned U.S. Patent No. 6,982,178 describes a method of assembling a solid electro-optic display (including a particle-based electrophoretic display) which is well adapted for mass production. Essentially, this patent describes a so-called "front plane laminate" ("FPL") which comprises, in order, a light-transmissive electrically- conductive layer; a layer of a solid electro-optic medium in electrical contact with the electrically-conductive layer; an adhesive layer; and a release sheet. Typically, the light- transmissive electrically-conductive layer will be carried on a light-transmissive substrate, which is preferably flexible, in the sense that the substrate can be manually wrapped around a drum (say) 10 inches (254 mm) in diameter without permanent deformation. The term "light- transmissive" is used in this patent and herein to mean that the layer thus designated transmits sufficient light to enable an observer, looking through that layer, to observe the change in display states of the electro-optic medium, which will be normally be viewed through the electrically-conductive layer and adjacent substrate (if present). The substrate will be typically be a polymeric film, and will normally have a thickness in the range of about 1 to about 25 mil (25 to 634 μm), preferably about 2 to about 10 mil (51 to 254 μm). The electrically-conductive layer is conveniently a thin metal oxide layer of, for example, aluminum or indium tin oxide (ITO), or may be a conductive polymer. Polyethylene terephthalate (PET) films coated with aluminum or ITO are available commercially, for example as "aluminized Mylar" ("Mylar" is a Registered Trade Mark) from E. I. du Pont de Nemours & Company, Wilmington DE, and such commercial materials may be used with good results in the front plane laminate.
[Para 1 8] Assembly of an electro-optic display using such a front plane laminate may be effected by removing the release sheet from the front plane laminate and contacting the adhesive layer with the backplane under conditions effective to cause the adhesive layer to adhere to the backplane, thereby securing the adhesive layer, layer of electro-optic medium and electrically-conductive layer to the backplane. This process is well-adapted to mass production since the front plane laminate may be mass produced, typically using roll-to-roll coating techniques, and then cut into pieces of any size needed for use with specific backplanes.
[Para 1 9] The aforementioned U.S. Patent No. 6,982,178 also describes a method for testing the electro-optic medium in a front plane laminate prior to incorporation of the front plane laminate into a display. In this testing method, the release sheet is provided with an electrically conductive layer, and a voltage sufficient to change the optical state of the electro-optic medium is applied between this electrically conductive layer and the electrically conductive layer on the opposed side of the electro-optic medium. Observation of the electro- optic medium will then reveal any faults in the medium, thus avoiding laminating faulty electro-optic medium into a display, with the resultant cost of scrapping the entire display, not merely the faulty front plane laminate.
[Para 20] The aforementioned U.S. Patent No. 6,982,178 also describes a second method for testing the electro-optic medium in a front plane laminate by placing an electrostatic charge on the release sheet, thus forming an image on the electro-optic medium. This image is then observed in the same way as before to detect any faults in the electro-optic medium. [Para 21 ] The aforementioned 2004/0155857 describes a so-called "double release film" which is essentially a simplified version of the front plane laminate previously described. One form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two adhesive layers, one or both of the adhesive layers being covered by a release sheet. Another form of the double release sheet comprises a layer of a solid electro- optic medium sandwiched between two release sheets. Both forms of the double release film are intended for use in a process generally similar to the process for assembling an electro- optic display from a front plane laminate already described, but involving two separate laminations; typically, in a first lamination the double release sheet is laminated to a front electrode to form a front sub-assembly, and then in a second lamination the front sub- assembly is laminated to a backplane to form the final display.
[Para 22] The aforementioned U.S. Patent No. 7,110,164 describes a process for assembling an electro-optic display in which a layer of an electro-optic medium is coated on a first release sheet, a layer of lamination adhesive is coated on a second release sheet, and the two resulting structures are laminated together to form a structure comprising, in order, the first release sheet, the electro-optic layer, the adhesive layer and the second release sheet. [Para 23] In view of the advantages of the assembly method using a front plane laminate described in the aforementioned U.S. Patent No. 6,982,178, it is desirable that materials intended for use in an electro-optic display be capable of being incorporated into such a front plane laminate. It is also desirable that such materials be capable of being incorporated into a double release film as previously described, and in the aforementioned structure described in U.S. Patent No. 7,110,164.
[Para 24] As already indicated, when an electro-optic display is produced using a front plane laminate or double release film, a layer of lamination adhesive is normally present between the electrodes in the final display. (More than one layer of adhesive may be present between the electrodes; see for example copending Application Serial No. 60/596,743, filed October 18, 2005, which describes a form of double release film referred to as an "inverted front plane laminate".) As discussed in the aforementioned U.S. Patent 6,831,769, the electrical properties of the lamination adhesive can have a substantial effect on the electro- optic properties of the display. However, the lamination adhesive is not necessarily the only polymeric component present between the electrodes in an electro-optic display. As described in, for example, the aforementioned U.S. Patent No. 6,839,158, in an encapsulated electrophoretic display the electro-optic layer normally comprises, in addition to the capsules themselves, a polymeric binder which, upon drying or curing, serves to form the capsules into a mechanically coherent layer especially when, as this patent teaches is desirable, the capsules are present in the form of a monolayer of capsules. The binder is also present between the electrodes in the final display and hence also affects the electro-optic properties of the display. Indeed, to the extent that the binder lies closer to the capsules of an encapsulated electrophoretic display than does the lamination adhesive (which is typically separated from the internal phase by some thickness of binder), the binder may have a greater effect on the electro-optic properties of a display than the lamination adhesive. Similarly the continuous matrix of a rotating bichromal member medium, the continuous phase of a polymer-dispersed electrophoretic display and the wall material used in a microcell display (all of which essentially correspond to the binder of an encapsulated electrophoretic display, and all of which will hereinafter be considered binders) can have major effects on the electro- optic properties of the display. The present invention relates to binders with improved electrical and mechanical properties for use in electro-optic displays, and to displays, front plane laminates, inverted front plane laminates and double release films incorporating such binders.
[Para 25] Accordingly, this invention provides a first polyurethane, this first polyurethane being formed from an isocyanate and a polyester diol having a molecular weight less than about 2000, or a polyester diol containing two polyester diol segments connecting by a steric hindrance group, each of the polyester diol segments having a molecular weight less than about 2000.
[Para 26] The term "steric hindrance group" is used herein to denote any group capable of connecting two polyester diol segments together and having sufficient bulk to provide steric hindrance to the crystallization of the segments. The steric hindrance group may comprise, for example, a quaternary carbon atom; a specific useful group being a -C(CH3)2- grouping. [Para 27] This first polyurethane of the present invention may be formed from a polycaprolactone diol having a molecular weight less than about 1500. When the polycaprolactone diol comprises two polycaprolactone segments connected by a steric hindrance group, each of the segments may have a molecular weight not greater than about 1500. The polyurethane may be in the form of an aqueous latex.
[Para 28] This invention also provides a second polyurethane of the present invention, this second polyurethane being formed from an isocyanate and a polyester diol, the polyurethane not crystallizing between about -100C and about 700C when coated as a thin film. The term "thin film" is used herein to denote a film having a thickness of the order of about 20 μm. [Para 29] The second polyurethane may be in the form of an aqueous latex. [Para 30] This invention extends to an electro-optic display comprising a layer of a solid electro-optic material, and at least one electrode arranged to apply an electric field to the layer of electro-optic material, the layer of electro-optic material comprising a binder, wherein the binder comprises a first or second polyurethane of the present invention. [Para 31 ] This invention also provides an electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display of the present invention.
[Para 32] This invention also extends to electro-optic display film (a front plane laminate) comprising in order: a light-transmissive electrically-conductive layer; a layer of a solid electro-optic medium comprising a binder and in electrical contact with the electrically- conductive layer; an adhesive layer; and a release sheet, wherein the binder comprises a first or second polyurethane of the present invention.
[Para 33] This invention also extends to an electro-optic display film (a double release film) comprising a layer of a solid electro-optic medium comprising a binder and having first and second surfaces on opposed sides thereof; a first adhesive layer on the first surface of the layer of electro-optic medium; a release sheet disposed on the opposed side of the first adhesive layer from the layer of electro-optic medium; and a second adhesive layer on the second surface of the layer of electro-optic medium, wherein the binder comprises a first or second polyurethane of the present invention. [Para 34] This invention also extends to an electro-optic display film (an inverted front plane laminate) comprising, in order: at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer; an adhesive layer; a layer of a solid electro- optic medium comprising a binder; and a release sheet, wherein the binder comprises a first or second polyurethane of the present invention.
[Para 35] This invention also extends to an electro-optic display film (a double release film) comprising: a layer of a solid electro-optic medium comprising a binder and having first and second surfaces on opposed sides thereof; a first release sheet covering the first surface of the layer of solid electro-optic medium; and a second release sheet covering the second surface of the layer of solid electro- optic medium, wherein the binder comprises a polyurethane of the present invention. [Para 36] Finally, this invention also extends to an electro-optic display film comprising: a first release sheet; a layer of a solid electro-optic medium comprising a binder; an adhesive layer; and a second release sheet, wherein the binder comprises a polyurethane of the present invention.
[Para 37] Figure. 1 is a schematic cross-section through a front plane laminate of the present invention.
[Para 38] Figure 2 is a schematic cross-section through a double release film of the present invention.
[Para 39] Figure 3 shows the results of the differential scanning calorimetry tests carried out in Example 3 below.
[Para 40] Figure 4 shows the results of the storage stability tests carried out in Example 4 below.
[Para 41 ] The manner in which the binders of the present invention can be used in the production of an electro-optic display will now be described, though by way of illustration only, with reference to Figures 1 and 2 of the accompanying drawings. Figure 1 is a schematic section through one subassembly (a front plane laminate, or FPL) used in a such a process; this subassembly comprises a substrate, a conductive layer, an electro-optic layer and an adhesive layer, the subassembly being illustrated at an intermediate stage of the process before this subassembly is laminated to a second subassembly. [Para 42] The front plane laminate (generally designated 100) shown in Figure 1 comprises a light-transmissive substrate 110, a light-transmissive electrode layer 120, an electro-optic layer 130, a lamination adhesive layer 180 and a release sheet 190; the release sheet is illustrated in the process of being removed from the lamination adhesive layer 180 preparatory to lamination of the FPL 100 to a backplane.
[Para 43] The substrate 110 is typically a transparent plastic film, such as a 7 mil (177 μm) poly(ethylene terephthalate) (PET) sheet. The lower surface (in Figure 1) of substrate 110, which forms the viewing surface of the final display, may have one or more additional layers (not shown), for example a protective layer to absorb ultra-violet radiation, barrier layers to prevent ingress of oxygen or moisture into the final display, and anti-reflection coatings to improve the optical properties of the display. Coated on to the upper surface of substrate 110 is the thin light-transmissive electrically conductive layer 120, preferably of ITO, which acts as the common front electrode in the final display. PET films coated with ITO are available commercially.
[Para 44] The electro-optic layer 130 may be deposited on the conductive layer 120, typically by slot coating, the two layers being in electrical contact. The electro-optic layer 130 shown in Figure 1 is an encapsulated electrophoretic medium and comprises microcapsules 140, each of which comprises negatively charged white particles 150 and positively charged black particles 160 in a hydrocarbon-based fluid. The microcapsules 140 are held retained within a polymeric binder 170. Upon application of an electrical field across electro-optic layer 130, white particles 150 move to the positive electrode and black particles 160 move to the negative electrode, so that electro-optic layer 130 appears, to an observer viewing the display through substrate 110, white or black depending on whether conductive layer 120 is positive or negative relative to the adjacent pixel electrode in the backplane. [Para 45] The FPL 100 is desirably prepared by coating the lamination adhesive 180, in liquid form, conveniently by slot coating, on to release sheet 190, drying (or otherwise curing) the adhesive to form a solid layer and then laminating the adhesive and release sheet to the electro-optic layer 130, which has previously been coated on to the substrate 110 bearing the conductive layer 120; this lamination may conveniently be effected using hot roll lamination. (Alternatively, but less desirably, the lamination adhesive may be applied over the electro-optic layer 130 and there dried or otherwise cured before being covered with the release sheet 190.) The release sheet 190 is conveniently a 7 mil (177 μm) film; depending upon the nature of the electro-optic medium used, it may be desirable to coat this film with a release agent, for example a silicone. As illustrated in Figure 1, the release sheet 190 is peeled or otherwise removed from the lamination adhesive 180 before the FPL 100 is laminated to a backplane (not shown) to form the final display.
[Para 46] For further details regarding front plane laminates and processes for the preparation and use thereof, the reader is respectfully directed to the aforementioned U.S. Patent No. 6,982,178.
[Para 47] A double release sheet (generally designated 300) of the present invention is shown in Figure 2 of the accompanying drawings. The double release sheet 300 comprises a central layer 302 of electro-optic material, specifically in Figure 2 a layer comprising capsules 304 in a polymeric binder 306. The capsules 304 may be similar to those described above with reference to Figure 1. The sheet 300 further comprises a first adhesive layer 308, a first release sheet 310 covering the first adhesive layer 308, a second adhesive layer 312 disposed on the opposed side of the electro-optic layer 302 from the first adhesive layer 308, and a second release sheet 314 covering the second adhesive layer 312. [Para 48] The sheet 300 may be formed by first coating the release sheet 310 with a layer of adhesive, which is then dried or cured to form the first adhesive layer 308. Next, a mixture of the capsules 304 and binder 306 is printed or otherwise deposited on the first adhesive layer 308, and then the mixture is dried or cured to form a coherent layer 302. Finally, a layer of adhesive is deposited over the layer 302, dried or cured to form the second adhesive layer 312, and covered by the second release sheet 314.
[Para 49] It will be apparent to those skilled in coating technology that this sequence of operations used to form the sheet 300 is well adapted for continuous production and that, by careful choice of materials and process conditions, it may be possible to carry out the entire sequence of operations in a single pass through conventional roll-to-roll coating apparatus. [Para 50] To assemble a display using a double release film such as the film 300, one release sheet (typically that on to which the electro-optic material was coated) is peeled away, and the remaining layers of the double release film are attached to a front substrate using, for example a thermal, radiation, or chemically based lamination process. Typically, the front substrate will include a conductive layer which will form the front electrode of the final display. The front substrate may include additional layers, such as an ultra-violet filter or a protective layer intended to protect the conductive layer from mechanical damage. Thereafter, the other release sheet is peeled away, thereby exposing the second adhesive layer, which is used to attach the electro-optic material coating assembly to a backplane. Again, a thermal, radiation, or chemically based lamination process may be used. It will be appreciated that the order of the two laminations described is essentially arbitrary and could be reversed, although it practice it is almost always more convenient to laminate the double release film to the front substrate first, and thereafter to laminate the resulting front subassembly to the backplane. [Para 51 ] For further details regarding double release films and processes for the preparation and use thereof, the reader is respectfully directed to the aforementioned 2004/0155857. [Para 52] The displays of the present invention may be used in any application in which prior art electro-optic displays have been used. Thus, for example, the present displays may be used in electronic book readers, portable computers, tablet computers, cellular telephones, smart cards, signs, watches, shelf labels and flash drives.
[Para 53] As already mentioned, the present invention relates to "custom" polyurethanes having properties which render them especially useful as binders in encapsulated electrophoretic and other types of electro-optic displays. The general reasons why polyurethanes are preferred as binders in electro-optic displays have already been summarized above; of the commercially available polyurethanes, NeoRez R 9314 and R 9621 are especially useful, a preferred blend comprising 75 weight per cent of the former and 25 weight per cent of the latter.
[Para 54] However, although this 75/25 blend provides good overall display performance, there are some drawbacks associated with its use. Firstly, due to the presence of a higher weight fraction of polyester segments in R 9314, this material undergoes a melting/crystallization transition around 400C. The polymer crystallization results in changes in electrical properties of the material, which affect the display performance over time. Secondly, the use of a polymer blend is generally undesirable because the polymers in the blend could potentially undergo a macrophase separation, resulting in a heterogeneous material. Thirdly, use in electro-optic displays is a very minor use of commercial polyurethanes, so that the manufacturers of such materials may change them to improve their performance in larger scale uses in a manner which compromises their effectiveness as binders in electro-optic displays. Thus, there is a need for a single component "custom" polyurethane of known composition having properties optimized for use as a binder in electro-optic displays.
[Para 55] The present invention controls the length of the polyester segment in a polyurethane. It is known that the crystalline transition in polyurethanes such as R 9314 is due to the long polyester segments present between the urethane linkages on the polymer backbone. By reducing the length of the polyester segments (below a partial molecular weight of about 2000) between the urethane groups, the polyester segments are rendered incapable of chain folding crystallization, thus eliminating the crystallization of the polymer as a whole. To synthesize such a polymer, one uses a polyester diol with a relatively short chain length. The diol may be polycaprolactone diol having a molecular weight not greater than about 1500.
[Para 56] Two different types of polyester diols may be used in the present process. The first type is typified by the following Formula I:
Figure imgf000016_0001
where m + n < 13.
[Para 57] This first type of polyester diol contains two polyester segments (polycaprolactone segments in Formula I) linked by a group which does not provide any hindrance to crystallization of the polyester segments. The molecular weight of this type of polyester diol should not exceed about 2000.
[Para 58] The second type of polyester diol is typified by the following Formula II:
Figure imgf000016_0002
where m < 13 and n < 13. [Para 59] This second type of polyester diol contains two polyester segments (polycaprolactone segments in Formula II) linked by a steric hindrance group which is sufficiently bulky and thus provides sufficient steric hindrance to hinder the crystallization of the polyester segments. In this type of polyester diol, the two polyester segments are in effect isolated from each other by the steric hindrance group and each segment can have a molecular weight up to about 2000.
[Para 60] The following Examples are given, though by way of illustration only, to show details of preferred polyurethanes of the present invention. [Para 61 ] Example 1 : Custom polyurethane with short polyester segments [Para 62] A polyurethane prepolymer was synthesized under a nitrogen atmosphere in a jacketed 500 mL glass reactor equipped with a mechanical stirrer, a thermometer, and a nitrogen inlet. 4,4'-Methylenebis(cyclohexyl isocyanate) (20.99 g, Bayer Desmodur W), polycaprolactone diol (31.25 g, Aldrich, average Mn ca. 1250), and dibutyltin dilaurate (0.04 g, Aldrich) were charged into the reactor and the mixture was heated at 800C for 2 hours. Thereafter, a solution of 2,2-bis(hydroxymethyl)propionic acid (3.35 g, Aldrich) in 1-methyl- 2-pyrrolidinone (10 g, Aldrich) was added into the reactor and the reaction allowed to proceed at 800C for another hour to give an isocyanate-terminated prepolymer. The reactor temperature was then lowered to 600C for 30 minutes, and triethylamine (2.4 g, Aldrich) was added to neutralize the carboxylic acid. The reactor temperature was then further lowered to 300C and de-ionized water (105 g) was added to convert the prepolymer to a water-borne dispersion. Chain extension was carried out immediately after the dispersing step with hexamethylenediamine (3.5 g, Aldrich) dissolved in a small amount of de-ionized water over 1 hour at 300C. Finally, the dispersion was heated at 600C for one hour to ensure that all the residual isocyanate groups had reacted.
[Para 63] Example 2 : Custom polyurethane with polyester containing steric hindrance group
[Para 64] A polyurethane prepolymer was synthesized under a nitrogen atmosphere in a jacketed glass reactor equipped with a mechanical stirrer, a thermometer, and a nitrogen inlet. 4.4'-Methylenebis(cyclohexyl isocyanate (18.3 g) is added to the reactor, followed by 1- methyl-2-pyrrolidone (27 g), polycaprolactone (2000 molecular weight, 49.3 g), and 2,2- bis(hydroxymethyl)propionic acid (3.4 g). The reactor was heated to 95°C for 4 hours and then cooled to 700C to form an isocyanate-terminated prepolymer. Triethylamine (2.0 g) was added slowly to the prepolymer and the resultant mixture mixed for 30 minutes. Water (84 g) was added to a second reactor equipped with a mechanical stirrer and a thermocouple.
Prepolymer (80 g) was then slowly transferred from the first reactor to the second reactor with stirring. Hexamethylenediamine (2.7g of a 70% solution) was added to the second reactor for chain extension, and the resultant dispersion was heated to 800C for 1 hour to complete the reaction.
[Para 65] Example 3 : Thermal properties of polyurethane
[Para 66] The polyurethanes prepared in Examples 1 and 2 above were subjected to differential scanning calorimetry. To provide a control, the aforementioned 75:25
R 9314/R 9621 blend (designated simply "Blend" in Figure 3) was also tested in the same manner. The results are shown in Figure 3.
[Para 67] From Figure 3, it will be seen that the blend shows a marked exothermic peak at about 400C, corresponding to the melting of the polyester segments in R 9314; this peak does not disappear upon re-heating. No comparable peak is present in the curve for the polyurethanes of the present invention, thus indicating that the use of short polyester segments, with or without a steric hindrance group, was indeed effective in eliminating the type of thermal transition seen with R 9314, and ensuring long term thermal stability of polyurethane binders of the present invention.
[Para 68] Example 4 : Storage stability of polyurethane
[Para 69] Tests were conducted to determine whether the polyurethane of Example 2 had better storage stability than that of the aforementioned R 9314/R 9621 blend. For this purpose, a dried film of each binder was laminated between two ITO-coated polyester poly(ethylene terephthalate) films, the ITO layers of course being in direct contact with the polyurethane. To ensure that all samples had the same thermal history, they were heated in an oven at 700C for a few hours and then equilibrated at 25°C and 50 per cent relative humidity for five days. The time zero in the test described below was taken at the end of this period of storage.
[Para 70] The samples were then stored at 25°C and 50 per cent relative humidity for six weeks, and the resistance of the binder layer was measured at intervals. The results obtained are shown in Figure 4. From this Figure it will be seen that the resistance of the blend increased by about 50 per cent over the course of the experiment, whereas the resistance of the Example 2 polyurethane of the present invention did not vary from its initial value by more than about 10 per cent. Indeed, the apparent variation of the present polyurethane may be a result of experimental error; since the experiment did not permit control of relative humidity during the resistance measurements, some random variation, up to about 10 per cent, could be expected from this cause.
[Para 71 ] The results in Figure 4 suggest that avoiding the polymer crystallization experienced with the prior art polyurethane blend helps to stabilize the electrical properties of the binder. As previously noted, the electrical properties of the binder significantly affect the electro-optic properties of an electro-optic display, and accordingly the results in Figure 4 indicate that use of a polyurethane binder of the present invention should help to provide time stable electro-optic properties in such displays.
[Para 72] Although the invention has been described above mainly in connection with encapsulated electrophoretic media having discrete capsules, similar advantages can be achieved by the use of the binders of the present invention in the other types of electro-optic displays previously discussed.

Claims

1. A polyurethane formed from an isocyanate and a polyester diol having a molecular weight less than about 2000, or a polyester diol comprising two polyester diol segments connected by a steric hindrance group, each of the polyester diol segments having a molecular weight less than about 2000.
2. A polyurethane according to claim 1 formed from polycaprolactone diol having a molecular weight less than about 1500.
3. A polyurethane according to claim 2 wherein the polycaprolactone diol comprises two polycaprolactone segments connected by a bending group, each of the polycaprolactone segments having a molecular weight not greater than about 1500.
4. A polyurethane according to claim 3 wherein the steric hindrance group comprises a quaternary carbon atom.
5. A polyurethane according to claim 4 wherein the steric hindrance group comprises a -C(CH3)2- grouping.
6. A polyurethane formed from an isocyanate and a polyester diol, the polyurethane not crystallizing between about -100C and about 700C when coated as a thin film.
7. A polyurethane according to claim 1 or 6 in the form of an aqueous latex.
8. An electro-optic display comprising a layer of a solid electro-optic material, and at least one electrode arranged to apply an electric field to the layer of electro- optic material, the layer of electro-optic material comprising a binder, wherein the binder comprises a polyurethane according to claim 1 or 6.
9. An electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display according to claim 8.
10. An electro-optic display film comprising in order: a light-transmissive electrically-conductive layer; a layer of a solid electro-optic medium comprising a binder and in electrical contact with the electrically-conductive layer; an adhesive layer; and a release sheet, wherein the binder comprises a polyurethane according to claim 1 or 6.
11. An electro-optic display film comprising: a layer of a solid electro-optic medium comprising a binder and having first and second surfaces on opposed sides thereof; a first adhesive layer on the first surface of the layer of electro-optic medium; a release sheet disposed on the opposed side of the first adhesive layer from the layer of electro-optic medium; and a second adhesive layer on the second surface of the layer of electro-optic medium, wherein the binder comprises a polyurethane according to claim 1 or 6.
12. An electro-optic display film for use in forming an electro-optic display, the article of manufacture comprising, in order: at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer; an adhesive layer; a layer of a solid electro-optic medium comprising a binder; and a release sheet, wherein the binder comprises a polyurethane according to claim 1 or 6.
13. An electro-optic display film for use in forming an electro-optic display, the article of manufacture comprising: a layer of a solid electro-optic medium comprising a binder and having first and second surfaces on opposed sides thereof; a first release sheet covering the first surface of the layer of solid electro-optic medium; and a second release sheet covering the second surface of the layer of solid electro- optic medium, wherein the binder comprises a polyurethane according to claim 1 or 6.
14. An electro-optic display film for use in forming an electro-optic display, the article of manufacture comprising, in order: a first release sheet; a layer of a solid electro-optic medium comprising a binder; an adhesive layer; and a second release sheet, wherein the binder comprises a polyurethane according to claim 1 or 6.
PCT/US2007/077840 2006-09-22 2007-09-07 Electro-optic display and materials for use therein WO2008039637A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07814732A EP2064580A4 (en) 2006-09-22 2007-09-07 Electro-optic display and materials for use therein
JP2009529300A JP5452225B2 (en) 2006-09-22 2007-09-07 Electro-optical display and materials for use therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/534,336 2006-09-22
US11/534,336 US7477444B2 (en) 2006-09-22 2006-09-22 Electro-optic display and materials for use therein

Publications (2)

Publication Number Publication Date
WO2008039637A2 true WO2008039637A2 (en) 2008-04-03
WO2008039637A3 WO2008039637A3 (en) 2009-01-08

Family

ID=39224635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/077840 WO2008039637A2 (en) 2006-09-22 2007-09-07 Electro-optic display and materials for use therein

Country Status (4)

Country Link
US (1) US7477444B2 (en)
EP (2) EP2309322A1 (en)
JP (2) JP5452225B2 (en)
WO (1) WO2008039637A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017059011A1 (en) 2015-09-30 2017-04-06 E Ink Corporation Polyurethane adhesive layers for electro-optic assemblies

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7848006B2 (en) * 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
WO2000003291A1 (en) 1998-07-08 2000-01-20 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
AU2002250304A1 (en) * 2001-03-13 2002-09-24 E Ink Corporation Apparatus for displaying drawings
US8390918B2 (en) * 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US7223672B2 (en) * 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US8363299B2 (en) * 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7583427B2 (en) * 2002-06-10 2009-09-01 E Ink Corporation Components and methods for use in electro-optic displays
US8049947B2 (en) * 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US7843621B2 (en) * 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US20110199671A1 (en) * 2002-06-13 2011-08-18 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
EP3056941B1 (en) 2002-09-03 2019-01-09 E Ink Corporation Electro-phoretic medium
US7839564B2 (en) * 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
US7910175B2 (en) * 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
US7551346B2 (en) * 2003-11-05 2009-06-23 E Ink Corporation Electro-optic displays, and materials for use therein
US20110164301A1 (en) 2003-11-05 2011-07-07 E Ink Corporation Electro-optic displays, and materials for use therein
US8177942B2 (en) * 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US20080043318A1 (en) 2005-10-18 2008-02-21 E Ink Corporation Color electro-optic displays, and processes for the production thereof
US8390301B2 (en) * 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US7843624B2 (en) * 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
TWI350793B (en) * 2006-03-08 2011-10-21 E Ink Corp Methods for production of electro-optic displays
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US7903319B2 (en) * 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US20080024429A1 (en) * 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
US7492497B2 (en) * 2006-08-02 2009-02-17 E Ink Corporation Multi-layer light modulator
US7986450B2 (en) * 2006-09-22 2011-07-26 E Ink Corporation Electro-optic display and materials for use therein
US7649666B2 (en) * 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
US7688497B2 (en) * 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
EP2111562B1 (en) 2007-01-22 2018-09-19 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7826129B2 (en) * 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
CN101681211A (en) * 2007-05-21 2010-03-24 伊英克公司 Methods for driving video electro-optic displays
US9199441B2 (en) 2007-06-28 2015-12-01 E Ink Corporation Processes for the production of electro-optic displays, and color filters for use therein
WO2009006248A1 (en) 2007-06-29 2009-01-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US20090122389A1 (en) 2007-11-14 2009-05-14 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
KR101237263B1 (en) * 2008-03-21 2013-02-27 이 잉크 코포레이션 Electro-optic displays and color filters
CN102067200B (en) 2008-04-11 2013-11-13 伊英克公司 Methods for driving electro-optic displays
TWI380254B (en) * 2008-08-08 2012-12-21 Prime View Int Co Ltd Flexible display panel and fabricating method thereof
US8234507B2 (en) 2009-01-13 2012-07-31 Metrologic Instruments, Inc. Electronic-ink display device employing a power switching mechanism automatically responsive to predefined states of device configuration
US8457013B2 (en) 2009-01-13 2013-06-04 Metrologic Instruments, Inc. Wireless dual-function network device dynamically switching and reconfiguring from a wireless network router state of operation into a wireless network coordinator state of operation in a wireless communication network
US20100177080A1 (en) * 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Electronic-ink signage device employing thermal packaging for outdoor weather applications
US20100177076A1 (en) * 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Edge-lit electronic-ink display device for use in indoor and outdoor environments
US20100177750A1 (en) * 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Wireless Diplay sensor communication network
TWI484273B (en) * 2009-02-09 2015-05-11 E Ink Corp Electrophoretic particles
US8098418B2 (en) * 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
JP5449617B2 (en) 2010-04-02 2014-03-19 イー インク コーポレイション Electrophoresis medium
TWI484275B (en) 2010-05-21 2015-05-11 E Ink Corp Electro-optic display, method for driving the same and microcavity electrophoretic display
CN102336082B (en) * 2010-07-19 2014-03-12 元太科技工业股份有限公司 Transfer printing structure and method for manufacturing transfer printing structure
WO2012043971A2 (en) * 2010-09-29 2012-04-05 포항공과대학교 산학협력단 Method for manufacturing a flexible electronic device using a roll-shaped motherboard, flexible electronic device, and flexible substrate
TWI449007B (en) * 2011-09-16 2014-08-11 E Ink Holdings Inc Manufacturing method for felxible display apparatus
EP3060960B1 (en) 2013-10-22 2018-12-05 Vlyte Innovations Limited A wide operating temperature range electrophoretic device
CN109491173B (en) 2014-01-17 2022-07-12 伊英克公司 Electro-optic display with dual phase electrode layers
US9506243B1 (en) 2014-03-20 2016-11-29 E Ink Corporation Thermally-responsive film
WO2016073914A1 (en) 2014-11-07 2016-05-12 E Ink Corporation Applications of electro-optic displays
US10809590B2 (en) 2017-06-16 2020-10-20 E Ink Corporation Variable transmission electrophoretic devices
ES2963164T3 (en) 2017-06-16 2024-03-25 E Ink Corp Electro-optical media including pigments encapsulated in gelatin binder
US11079651B2 (en) 2017-12-15 2021-08-03 E Ink Corporation Multi-color electro-optic media
US11175561B1 (en) 2018-04-12 2021-11-16 E Ink Corporation Electrophoretic display media with network electrodes and methods of making and using the same
JP2021532415A (en) 2018-08-07 2021-11-25 イー インク コーポレイション Flexible capsule type electro-optic medium
US11754903B1 (en) 2018-11-16 2023-09-12 E Ink Corporation Electro-optic assemblies and materials for use therein
KR20240015750A (en) 2019-02-25 2024-02-05 이 잉크 코포레이션 Composite electrophoretic particles and variable transmission films containing the same
US11761123B2 (en) 2019-08-07 2023-09-19 E Ink Corporation Switching ribbons for textiles
JP7281599B2 (en) * 2019-08-26 2023-05-25 イー インク コーポレイション Electro-optical device with identification markers
GB201914105D0 (en) 2019-09-30 2019-11-13 Vlyte Innovations Ltd A see-through electrophoretic device having a visible grid
CN117625109A (en) 2019-10-07 2024-03-01 伊英克公司 Adhesive composition comprising polyurethane and cationic dopant
WO2021133794A1 (en) 2019-12-23 2021-07-01 E Ink Corporation Color electrophoretic layer including microcapsules with nonionic polymeric walls

Family Cites Families (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3169945A (en) * 1956-04-13 1965-02-16 Union Carbide Corp Lactone polyesters
NL7005615A (en) 1969-04-23 1970-10-27
US3870517A (en) * 1969-10-18 1975-03-11 Matsushita Electric Ind Co Ltd Color image reproduction sheet employed in photoelectrophoretic imaging
US3668106A (en) * 1970-04-09 1972-06-06 Matsushita Electric Ind Co Ltd Electrophoretic display device
US3767392A (en) 1970-04-15 1973-10-23 Matsushita Electric Ind Co Ltd Electrophoretic light image reproduction process
US3792308A (en) * 1970-06-08 1974-02-12 Matsushita Electric Ind Co Ltd Electrophoretic display device of the luminescent type
JPS4917079B1 (en) 1970-12-21 1974-04-26
US4418346A (en) 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
US4820830A (en) * 1987-03-02 1989-04-11 King Industries, Inc. Certain hydroxyalkyl carbamates, polymers and uses thereof
DE3712805A1 (en) * 1987-04-15 1988-10-27 Herberts Gmbh AQUEOUS COATING AGENT, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF FOR ELECTROPHORETIC COATING
US5163060A (en) * 1989-06-14 1992-11-10 Minnesota Mining And Manufacturing Company Second harmonic generator comprising an NLO-active polymer derived from monocarbamate diols
US5093456A (en) * 1989-06-14 1992-03-03 Minnesota Mining And Manufacturing Company Monocarbamate diols, polymers derived from them and nlo-active materials therefrom
US5212015A (en) * 1989-06-14 1993-05-18 Minnesota Mining And Manufacturing Company Coated substrates comprising polymers derived from monocarbamate diols
JPH06100674A (en) * 1992-09-18 1994-04-12 Kyowa Hakko Kogyo Co Ltd Polyester polyol
US5745094A (en) * 1994-12-28 1998-04-28 International Business Machines Corporation Electrophoretic display
US6137467A (en) 1995-01-03 2000-10-24 Xerox Corporation Optically sensitive electric paper
US6515649B1 (en) * 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US6866760B2 (en) * 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US7109968B2 (en) 1995-07-20 2006-09-19 E Ink Corporation Non-spherical cavity electrophoretic displays and methods and materials for making the same
US7352353B2 (en) * 1995-07-20 2008-04-01 E Ink Corporation Electrostatically addressable electrophoretic display
US7079305B2 (en) 2001-03-19 2006-07-18 E Ink Corporation Electrophoretic medium and process for the production thereof
US6017584A (en) * 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6639578B1 (en) 1995-07-20 2003-10-28 E Ink Corporation Flexible displays
US7193625B2 (en) * 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US6124851A (en) * 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US6727881B1 (en) * 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US7327511B2 (en) * 2004-03-23 2008-02-05 E Ink Corporation Light modulators
US6459418B1 (en) 1995-07-20 2002-10-01 E Ink Corporation Displays combining active and non-active inks
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6118426A (en) 1995-07-20 2000-09-12 E Ink Corporation Transducers and indicators having printed displays
US7999787B2 (en) * 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US6664944B1 (en) 1995-07-20 2003-12-16 E-Ink Corporation Rear electrode structures for electrophoretic displays
US7411719B2 (en) * 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US7106296B1 (en) 1995-07-20 2006-09-12 E Ink Corporation Electronic book with multiple page displays
US7167155B1 (en) * 1995-07-20 2007-01-23 E Ink Corporation Color electrophoretic displays
US6710540B1 (en) * 1995-07-20 2004-03-23 E Ink Corporation Electrostatically-addressable electrophoretic display
US7071913B2 (en) 1995-07-20 2006-07-04 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6120839A (en) 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US7259744B2 (en) 1995-07-20 2007-08-21 E Ink Corporation Dielectrophoretic displays
JP3303961B2 (en) * 1995-12-01 2002-07-22 北辰工業株式会社 Method for producing kneaded polyurethane elastomer and polyurethane molded member
EP0783009B1 (en) * 1995-12-01 2005-01-26 Hokushin Corporation Method for producing millable polyurethanes and polyurethane elastomers
US5760761A (en) * 1995-12-15 1998-06-02 Xerox Corporation Highlight color twisting ball display
US5808783A (en) 1996-06-27 1998-09-15 Xerox Corporation High reflectance gyricon display
US6055091A (en) * 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
US6538801B2 (en) * 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US6721083B2 (en) * 1996-07-19 2004-04-13 E Ink Corporation Electrophoretic displays using nanoparticles
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5777782A (en) 1996-12-24 1998-07-07 Xerox Corporation Auxiliary optics for a twisting ball display
WO1998035267A1 (en) 1997-02-06 1998-08-13 University College Dublin Electrochromic system
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6980196B1 (en) 1997-03-18 2005-12-27 Massachusetts Institute Of Technology Printable electronic display
JPH10338730A (en) * 1997-06-09 1998-12-22 Sekisui Chem Co Ltd Production of urethane emulsion
US7247379B2 (en) 1997-08-28 2007-07-24 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6839158B2 (en) * 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US7002728B2 (en) * 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6825829B1 (en) 1997-08-28 2004-11-30 E Ink Corporation Adhesive backed displays
US6067185A (en) * 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6232950B1 (en) * 1997-08-28 2001-05-15 E Ink Corporation Rear electrode structures for displays
US6300932B1 (en) 1997-08-28 2001-10-09 E Ink Corporation Electrophoretic displays with luminescent particles and materials for making the same
US6177921B1 (en) * 1997-08-28 2001-01-23 E Ink Corporation Printable electrode structures for displays
US6252564B1 (en) * 1997-08-28 2001-06-26 E Ink Corporation Tiled displays
US6054071A (en) * 1998-01-28 2000-04-25 Xerox Corporation Poled electrets for gyricon-based electric-paper displays
WO1999047970A1 (en) 1998-03-18 1999-09-23 E-Ink Corporation Electrophoretic displays and systems for addressing such displays
US6753999B2 (en) 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US6704133B2 (en) * 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
DE69918308T2 (en) * 1998-04-10 2004-10-21 E Ink Corp ELECTRONIC DISPLAY BASED ON ORGANIC FIELD EFFECT TRANSISTORS
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
JP2002513169A (en) * 1998-04-27 2002-05-08 イー−インク コーポレイション Microencapsulated electrophoretic display in shutter mode
WO1999059101A2 (en) * 1998-05-12 1999-11-18 E-Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6241921B1 (en) * 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
WO1999067678A2 (en) 1998-06-22 1999-12-29 E-Ink Corporation Means of addressing microencapsulated display media
WO2000003291A1 (en) 1998-07-08 2000-01-20 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US20030102858A1 (en) * 1998-07-08 2003-06-05 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
EP1095354B1 (en) * 1998-07-08 2002-11-27 E Ink Corporation Method and apparatus for sensing the state of an electrophoretic display
USD485294S1 (en) * 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
ATE215255T1 (en) 1998-07-22 2002-04-15 E Ink Corp ELECTRONIC DISPLAY
US7256766B2 (en) * 1998-08-27 2007-08-14 E Ink Corporation Electrophoretic display comprising optical biasing element
US6144361A (en) 1998-09-16 2000-11-07 International Business Machines Corporation Transmissive electrophoretic display with vertical electrodes
US6225971B1 (en) * 1998-09-16 2001-05-01 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using an absorbing panel
US6271823B1 (en) 1998-09-16 2001-08-07 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using a reflective panel
US6184856B1 (en) * 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6262833B1 (en) 1998-10-07 2001-07-17 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
EP1118039B1 (en) * 1998-10-07 2003-02-05 E Ink Corporation Illumination system for nonemissive electronic displays
US6128124A (en) 1998-10-16 2000-10-03 Xerox Corporation Additive color electric paper without registration or alignment of individual elements
EP1127309A1 (en) 1998-11-02 2001-08-29 E Ink Corporation Broadcast system for display devices made of electronic ink
US6147791A (en) 1998-11-25 2000-11-14 Xerox Corporation Gyricon displays utilizing rotating elements and magnetic latching
US6097531A (en) 1998-11-25 2000-08-01 Xerox Corporation Method of making uniformly magnetized elements for a gyricon display
US6312304B1 (en) 1998-12-15 2001-11-06 E Ink Corporation Assembly of microencapsulated electronic displays
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
WO2000036560A1 (en) 1998-12-18 2000-06-22 E Ink Corporation Electronic ink display media for security and authentication
US6724519B1 (en) * 1998-12-21 2004-04-20 E-Ink Corporation Protective electrodes for electrophoretic displays
AU2591400A (en) 1998-12-22 2000-07-12 E-Ink Corporation Method of manufacturing of a discrete electronic device
US6327072B1 (en) 1999-04-06 2001-12-04 E Ink Corporation Microcell electrophoretic displays
JP4582914B2 (en) * 1999-04-06 2010-11-17 イー インク コーポレイション Method for making droplets for use in capsule-based electromotive displays
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6842657B1 (en) * 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US6531997B1 (en) * 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US7012600B2 (en) * 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7119772B2 (en) * 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6693620B1 (en) * 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
WO2000067110A1 (en) 1999-05-03 2000-11-09 E Ink Corporation Display unit for electronic shelf price label system
US7119759B2 (en) 1999-05-03 2006-10-10 E Ink Corporation Machine-readable displays
US7038655B2 (en) * 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
US7030412B1 (en) * 1999-05-05 2006-04-18 E Ink Corporation Minimally-patterned semiconductor devices for display applications
EP1192504B1 (en) * 1999-07-01 2011-03-16 E Ink Corporation Electrophoretic medium provided with spacers
DE60043441D1 (en) * 1999-07-21 2010-01-14 E Ink Corp PREFERRED METHOD, ELECTRIC LADDER RAILS FOR DELLEN
JP4744757B2 (en) 1999-07-21 2011-08-10 イー インク コーポレイション Use of storage capacitors to enhance the performance of active matrix driven electronic displays.
US6545291B1 (en) * 1999-08-31 2003-04-08 E Ink Corporation Transistor design for use in the construction of an electronically driven display
US6312971B1 (en) 1999-08-31 2001-11-06 E Ink Corporation Solvent annealing process for forming a thin semiconductor film with advantageous properties
JP3934420B2 (en) * 1999-10-11 2007-06-20 ユニバーシティ・カレッジ・ダブリン Electrochromic element
JP4114288B2 (en) 1999-10-18 2008-07-09 コニカミノルタビジネステクノロジーズ株式会社 Image data output device and image data output method
US6672921B1 (en) 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
US6788449B2 (en) 2000-03-03 2004-09-07 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
CN1237623C (en) 2000-04-18 2006-01-18 伊英克公司 Process for fabricating thin transistor
US20060160979A1 (en) * 2000-05-25 2006-07-20 Benecke Herman P Method for forming a crosslinked polymer by temperature control
US20020060321A1 (en) * 2000-07-14 2002-05-23 Kazlas Peter T. Minimally- patterned, thin-film semiconductor devices for display applications
US6816147B2 (en) 2000-08-17 2004-11-09 E Ink Corporation Bistable electro-optic display, and method for addressing same
AU2002230520A1 (en) * 2000-11-29 2002-06-11 E-Ink Corporation Addressing circuitry for large electronic displays
WO2002047363A2 (en) 2000-12-05 2002-06-13 E Ink Corporation Portable eclectronic apparatus with additional electro-optical display
AU2002250304A1 (en) * 2001-03-13 2002-09-24 E Ink Corporation Apparatus for displaying drawings
US7230750B2 (en) 2001-05-15 2007-06-12 E Ink Corporation Electrophoretic media and processes for the production thereof
US20050156340A1 (en) 2004-01-20 2005-07-21 E Ink Corporation Preparation of capsules
JP4568477B2 (en) * 2001-04-02 2010-10-27 イー インク コーポレイション Electrophoretic media with improved image stability
US6580545B2 (en) 2001-04-19 2003-06-17 E Ink Corporation Electrochromic-nanoparticle displays
US6870661B2 (en) * 2001-05-15 2005-03-22 E Ink Corporation Electrophoretic displays containing magnetic particles
EP1393122B1 (en) 2001-05-15 2018-03-28 E Ink Corporation Electrophoretic particles
US7110163B2 (en) 2001-07-09 2006-09-19 E Ink Corporation Electro-optic display and lamination adhesive for use therein
WO2003007066A2 (en) 2001-07-09 2003-01-23 E Ink Corporation Electro-optical display having a lamination adhesive layer
US7535624B2 (en) * 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
US6982178B2 (en) * 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
ATE349028T1 (en) 2001-07-09 2007-01-15 E Ink Corp ELECTRO-OPTICAL DISPLAY AND ADHESIVE COMPOSITION
US6967640B2 (en) 2001-07-27 2005-11-22 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
US6819471B2 (en) 2001-08-16 2004-11-16 E Ink Corporation Light modulation by frustration of total internal reflection
US6825970B2 (en) 2001-09-14 2004-11-30 E Ink Corporation Methods for addressing electro-optic materials
WO2003027764A1 (en) * 2001-09-19 2003-04-03 Bridgestone Corporation Particles and device for displaying image
TW581305U (en) 2001-10-05 2004-03-21 High Tech Comp Corp Ejecting device of touch control pen
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US7202847B2 (en) * 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US7528822B2 (en) * 2001-11-20 2009-05-05 E Ink Corporation Methods for driving electro-optic displays
WO2003050606A1 (en) 2001-12-10 2003-06-19 Bridgestone Corporation Image display
US6865010B2 (en) * 2001-12-13 2005-03-08 E Ink Corporation Electrophoretic electronic displays with low-index films
US6995231B2 (en) * 2001-12-21 2006-02-07 Noveon Ip Holdings, Corp. Extrudable highly crystalline thermoplastic polyurethanes
US6900851B2 (en) * 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
AU2003207186A1 (en) 2002-02-15 2003-09-04 Bridgestone Corporation Image display unit
AU2003213409A1 (en) * 2002-03-06 2003-09-16 Bridgestone Corporation Image displaying apparatus and method
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
EP2299318A3 (en) 2002-04-17 2011-04-06 Bridgestone Corporation Surface texture parameters (Ra, Sm) of a substrate in a dry-toner type coloured particle display
US7223672B2 (en) * 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
KR100867286B1 (en) 2002-04-24 2008-11-06 이 잉크 코포레이션 Electronic displays
US7190008B2 (en) * 2002-04-24 2007-03-13 E Ink Corporation Electro-optic displays, and components for use therein
CN1324392C (en) 2002-04-26 2007-07-04 株式会社普利司通 Particle for image display and its apparatus
US6958848B2 (en) 2002-05-23 2005-10-25 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US7110164B2 (en) 2002-06-10 2006-09-19 E Ink Corporation Electro-optic displays, and processes for the production thereof
JPWO2004001498A1 (en) * 2002-06-21 2005-10-20 株式会社ブリヂストン Image display device and method of manufacturing image display device
US6842279B2 (en) * 2002-06-27 2005-01-11 E Ink Corporation Illumination system for nonemissive electronic displays
AU2003252656A1 (en) * 2002-07-17 2004-02-02 Bridgestone Corporation Image display
JP2005534996A (en) 2002-08-06 2005-11-17 イー−インク コーポレイション Protection of electro-optic display against thermal effects
US7312916B2 (en) 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
US7571206B2 (en) 2002-08-12 2009-08-04 Equallogic, Inc. Transparent request routing for a partitioned application service
EP3056941B1 (en) * 2002-09-03 2019-01-09 E Ink Corporation Electro-phoretic medium
WO2004023202A1 (en) 2002-09-03 2004-03-18 E Ink Corporation Electrophoretic medium with gaseous suspending fluid
US20040087754A1 (en) * 2002-10-31 2004-05-06 Paul Foley Polyurethane compounds and articles prepared therefrom
KR20050086917A (en) * 2002-12-16 2005-08-30 이 잉크 코포레이션 Backplanes for electro-optic displays
AU2003289411A1 (en) 2002-12-17 2004-07-09 Bridgestone Corporation Image display panel manufacturing method, image display device manufacturing method, and image display device
US6922276B2 (en) 2002-12-23 2005-07-26 E Ink Corporation Flexible electro-optic displays
US20060214906A1 (en) 2002-12-24 2006-09-28 Bridgestone Corporation Image display
US6987603B2 (en) * 2003-01-31 2006-01-17 E Ink Corporation Construction of electrophoretic displays
US7369299B2 (en) 2003-02-25 2008-05-06 Bridgestone Corporation Image display panel and image display device
WO2004079442A1 (en) 2003-03-06 2004-09-16 Bridgestone Corporation Production method for iamge display unit and image display unit
US7339715B2 (en) 2003-03-25 2008-03-04 E Ink Corporation Processes for the production of electrophoretic displays
EP2273307B1 (en) * 2003-03-27 2012-08-22 E Ink Corporation Electrophoretic medium for an electrophoretic display
JP4579823B2 (en) 2003-04-02 2010-11-10 株式会社ブリヂストン Particles used for image display medium, image display panel and image display device using the same
WO2004099862A2 (en) * 2003-05-02 2004-11-18 E Ink Corporation Electrophoretic displays
US20050122563A1 (en) 2003-07-24 2005-06-09 E Ink Corporation Electro-optic displays
EP2698784B1 (en) * 2003-08-19 2017-11-01 E Ink Corporation Electro-optic display
WO2005029458A1 (en) * 2003-09-19 2005-03-31 E Ink Corporation Methods for reducing edge effects in electro-optic displays
CN101930118B (en) 2003-10-08 2013-05-29 伊英克公司 Electro-wetting displays
JP2007509379A (en) * 2003-10-24 2007-04-12 イー インク コーポレイション Electro-optic display
US20050122306A1 (en) 2003-10-29 2005-06-09 E Ink Corporation Electro-optic displays with single edge addressing and removable driver circuitry
US7173752B2 (en) * 2003-11-05 2007-02-06 E Ink Corporation Electro-optic displays, and materials for use therein
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US7206119B2 (en) * 2003-12-31 2007-04-17 E Ink Corporation Electro-optic displays, and method for driving same
US7075703B2 (en) 2004-01-16 2006-07-11 E Ink Corporation Process for sealing electro-optic displays
JP4665529B2 (en) * 2004-01-27 2011-04-06 寛治 林 Polyurethane resin composition and method for producing the same
US7388572B2 (en) 2004-02-27 2008-06-17 E Ink Corporation Backplanes for electro-optic displays
US7492339B2 (en) 2004-03-26 2009-02-17 E Ink Corporation Methods for driving bistable electro-optic displays
US20050253777A1 (en) 2004-05-12 2005-11-17 E Ink Corporation Tiled displays and methods for driving same
WO2006015044A1 (en) 2004-07-27 2006-02-09 E Ink Corporation Electro-optic displays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2064580A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017059011A1 (en) 2015-09-30 2017-04-06 E Ink Corporation Polyurethane adhesive layers for electro-optic assemblies
KR20180045032A (en) * 2015-09-30 2018-05-03 이 잉크 코포레이션 Polyurethane adhesive layer for electro-optical assemblies
EP3356445A4 (en) * 2015-09-30 2018-11-14 E Ink Corporation Polyurethane adhesive layers for electro-optic assemblies
KR102044643B1 (en) * 2015-09-30 2019-11-13 이 잉크 코포레이션 Polyurethane adhesive layer for electro-optical assembly

Also Published As

Publication number Publication date
JP5452225B2 (en) 2014-03-26
US7477444B2 (en) 2009-01-13
WO2008039637A3 (en) 2009-01-08
EP2064580A4 (en) 2010-01-06
EP2309322A1 (en) 2011-04-13
JP2010504403A (en) 2010-02-12
JP2013231972A (en) 2013-11-14
US20080074730A1 (en) 2008-03-27
EP2064580A2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
US7477444B2 (en) Electro-optic display and materials for use therein
US7986450B2 (en) Electro-optic display and materials for use therein
US7173752B2 (en) Electro-optic displays, and materials for use therein
EP2217440B1 (en) Adhesives and binders for use in electro-optic assemblies
US10324354B2 (en) Electro-optic displays, and materials for use therein
US7672040B2 (en) Electro-optic displays, and materials for use therein
US9152004B2 (en) Electro-optic displays, and materials for use therein
WO2007104020A2 (en) Electro-optic display with edge seal
US11934081B2 (en) Transferrable light-transmissive electrode films for electro-optic devices
WO2007121104A2 (en) Electro-optic displays, and materials for use therein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07814732

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007814732

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009529300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE