WO2008051841A2 - Location and display of occluded portions of vessels on 3-d angiographic images - Google Patents

Location and display of occluded portions of vessels on 3-d angiographic images Download PDF

Info

Publication number
WO2008051841A2
WO2008051841A2 PCT/US2007/081942 US2007081942W WO2008051841A2 WO 2008051841 A2 WO2008051841 A2 WO 2008051841A2 US 2007081942 W US2007081942 W US 2007081942W WO 2008051841 A2 WO2008051841 A2 WO 2008051841A2
Authority
WO
WIPO (PCT)
Prior art keywords
occluded portion
occluded
blood vessel
identifying
vessel
Prior art date
Application number
PCT/US2007/081942
Other languages
French (fr)
Other versions
WO2008051841A3 (en
Inventor
Walter M. Blume
Jeffrey M. Garibaldi
Heather Drury
Raju R. Viswanathan
Original Assignee
Stereotaxis, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stereotaxis, Inc. filed Critical Stereotaxis, Inc.
Publication of WO2008051841A2 publication Critical patent/WO2008051841A2/en
Publication of WO2008051841A3 publication Critical patent/WO2008051841A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20101Interactive definition of point of interest, landmark or seed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30172Centreline of tubular or elongated structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • Y10S128/921Diet management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • Y10S128/922Computer assisted medical diagnostics including image analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • Y10S128/923Computer assisted medical diagnostics by comparison of patient data to other data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • Y10S128/923Computer assisted medical diagnostics by comparison of patient data to other data
    • Y10S128/924Computer assisted medical diagnostics by comparison of patient data to other data using artificial intelligence

Definitions

  • This invention relates to the treatment of occluded blood vessels, and in particular to the location and display of occluded portions of vessels on 3-D angiographic images.
  • contrast agent is introduced into the subject's vasculature and a three dimensional image of the vasculature is made with an appropriate imaging system such as an x-ray or MR imaging system.
  • an appropriate imaging system such as an x-ray or MR imaging system.
  • Three dimensional angiography provides an accurate image of the vasculature that among other things reveals occluded portions of the vasculature, which, because of the occlusion, contain little or no contrast agent, and thus are not as visible in the
  • angiograms are used for planning and conducting vascular navigation.
  • gaps in angiograms caused by occlusions impair the use of angiograms for planning and conducting navigations. This is particularly true in the treatment of vascular occlusions because to navigate successfully through an occluded vessel, for example to remove the occlusion, it is important to know the location of the vessel.
  • Embodiments of this invention provide methods of locating and displaying the location of occluded blood vessels which are generally difficult or impossible to see in 3D angiograms.
  • One preferred embodiment provides a method of finding the location of an occluded portion of a blood vessel relative to a three-dimensional angiographic image of a subject's vasculature. This method generally comprises identifying the location of the occluded portion of the blood vessel on each of a series of displayed two dimensional images that are derived from the three dimensional image data in pianes that are substantially transverse to the direction of the occluded portion of the vessel. These identified locations are connected together to define the path of the occluded vessel, which can be displayed on the three-dimensional angiographic image.
  • Embodiments of this invention make it possible to locate and display occluded portions of a subject's vasculature that are difficult or impossible to locate in conventional angiograms. With some embodiments it is possible to obtain sufficiently accurate location information to permit remote navigation through the occluded portion, and if desired, to open occluded blood vessels.
  • FIG. 1 is a schematic view of a three dimensional angiogram, showing an occluded potion in the vasculature;
  • Fig. 2 is an enlarged schematic view of a vasculature branch with an occlusion, showing a series of planes from which two dimensional images from the three dimensional images can be displayed to locate the occluded portion of the vessel;
  • FIG. 3 is a schematic view of a two-dimensional image taken along one of the planes shown in Fig. 2, illustrating a first technique identifying the location of the occluded portion of a blood vessel;
  • Fig. 4 is a schematic view of a two-dimensional image taken along one of the planes shown in Fig. 2, illustrating a second technique of identifying the location of the occluded portion of a blood vessel;
  • FIG. 5 is a schematic view of a two-dimensional image taken along one of the planes shown in Fig. 2, illustrating a fourth technique of identifying the location of the occluded portion of a blood vessel;
  • Fig. 6 is a schematic view of a two-dimensional image taken along one of the planes shown in Fig. 2, illustrating a fifth technique of identifying the location of the occluded portion of a blood vessel;
  • Fig. 7 is a schematic view of a two-dimensional image taken along one of the planes shown in Fig. 2, illustrating third technique method of identifying the location of the occluded portion of a blood vessel;
  • FIG. 8 is an enlarged schematic view of a vasculature branch with an occlusion, showing one technique for predicting the path of the occluded portion of the vessel;
  • FIG. 9 is an enlarged schematic view of a vasculature branch with an occlusion, showing a second technique for predicting the path of the occluded portion of the vessel; and
  • Fig. 10 is a schematic view of a two-dimensionai image taken along one of the planes shown in Fig. 2, illustrating a method of adjusting the plane in which the image is taken to facilitate identifying the location of the occluded portion of a blood vessel.
  • Generally embodiments of the present invention provide methods finding the location of an occluded portion of a blood vessel relative to a three-dimensional angiographic image of a subject's vasculature. Once the position of the occluded portion of the blood vessel has been determined, this information can be used to navigate through the occluded vessel, or at least to display the position of the occluded vessel.
  • the method of the preferred embodiment of this invention comprises identifying the location of the occluded portion of the blood vessel on each of a series of displayed two dimensional images derived from the three dimensional image data that are in planes that are substantially transverse to the direction of the occluded portion of the vessel.
  • a three-dimensional vascular tree from a three dimensional angiogram is indicated generally as 20 in Fig. 1.
  • the vascular tree 20 can be generated from any three-dimensional imaging system, including but not limited to x-ray, CT or MR imaging.
  • the vascular tree 20 comprises a plurality of branches, and might represent, for example the coronary vasculature.
  • One of the branches 22 has a gap 24, that is identifiable as having a start 26 and an end 28. This gap 24 is typically indicative of an occluded portion of the blood vessel which has reduced or no flow, so that the contrast agent cannot fill the portion and reveal the occluded portion in an image.
  • occluded vessels are generally not visible or are only minimally visible, in three dimensional volume rendered angiograms, the profile of even an occluded vessel can often be resolved in a two-dimensional cross sectional view.
  • a plurality of two dimensional images in planes generally transverse to the expected path of the occluded portion 24 of the branch 22 are derived from the three dimensional imaging data.
  • images are made in 5 planes 3OA, 3OB, 3OC, 3OD, and 3OE, but the number of images used will depend upon the length of the occluded section, the geometry of the occluded section (i.e. whether it is substantially straight or tortuous), and the anticipated use of the location information (i.e. generally lesser resolution for simple navigations, and generally greater resolution for procedures attempting to remove the occlusion).
  • Each of the images from the planes is displayed, and the user can discern the location of the occluded vessel in the image and mark it in some manner.
  • the path of the vessel can be determined even though it is not readily visible in the three dimensional angiogram.
  • the path of the occluded portion can thus be displayed on the three dimensional angiogram, and the location information can be used to control navigations through the occluded portion and it can be used in a procedure removing the occlusion.
  • the two dimensional image from plane 3OA is displayed and the user can discern the wall 34 from the background 32 of the image and even from the occlusive material 34 inside the vessel.
  • the user can then mark what appears to be the centerline of the occluded portion of the vessel, for example by positioning a cursor 36 (which can be manipulated by a mouse or joystick or other device and clicking.
  • a cursor 36 which can be manipulated by a mouse or joystick or other device and clicking.
  • the user might select an off center location, if desired, for example to stay away from the inside or outside of a bend in the vessel, or in the case of a partially occluded vessel as shown in Fig. 7, to identify a path through the occluded portion of the vessel.
  • the user instead of identifying a position in the vessel, the user might identify the vessel itself.
  • the user might use a conventional oval drawing tool 40 to identify the vessel wall 34, which is typically circular to elliptical.
  • the user might use a conventional line drawing tool to draw two or more chords across the occluded vessel, the ends of which can be used to derive a circle or oval to approximate the vessel wail 24, which approximation is preferably displayed so that the user can adjust it if necessary.
  • image processing programs can automatically detect either a point inside the occlusion or the vessel wali which can either be used directly, or simply displayed to facilitate the user selection, allowing the user to approve or to adjust and approve the automatically selected position.
  • the two-dimensional images are preferably generally transverse, and more preferably generally perpendicular to the direction of the occluded vessel so that the vessel cross section is easier to detect.
  • the user can identify the start 26 and end of 28 of the occluded portion, and as shown in Fig. 8, a straight line path 46 can be predicted between the start and the end of the occluded portion.
  • the two dimensional displayed images can then be taken in planes transverse, more preferably in a plane perpendicular to the predicted path 46. As shown in Fig.
  • a more accurate prediction of the path of the occluded path can be made by using the direction of the non-occluded portion of the vessel adjacent to the start 26 of the occluded portion, and the direction of the non-occluded portion of the vessel adjacent to the end 28, and fitting a smoothly curved path 48 between the start and end points.
  • the two dimensional displayed images can then be taken in planes transverse to the predicted path 48.
  • the path of the occluded portion of the blood vessel can be found using a series of images in parallel or non-parallel planes.
  • the displayed image is manually tillable by the user to adjust the plane in which the image is taken.
  • Tilt controls 50 can be provided on the image so that the user can tilt the image so that the plane of the image is as transverse as possible to the occluded vessel direction, to facilitate the identification of the location of the occluded vessel portion.
  • the vessel will appear most clearly in a perpendicular cross section, although the vessel will also appear smaliest in such a view.
  • a plurality of images can be displayed each in a plane with a slightly different orientation, and the user can use what ever image in which the vessel appears clearest. The selection process can be automated, and through visual processing the image from the most advantageous plane can be automatically selected and displayed for the user.
  • the region in which the occluded portion is located is preferably identified by marking a volume on the three dimensional angiogram, or by at least marking the start and preferably the start and end points of the occlusion, to reduce the amount of data that must be processed, and to facilitate the generation of the two dimensional displays from the three dimensional data set.
  • the identification and recognition of the non-occluded portions can result in the automatic identification of the gaps.
  • x-ray viewing angles for the vessel.
  • the "optima! viewing angles about the x-ray vessel are typically those which rotate the c-arm about the vessel axis. These are optimal because one wants to monitor how well a guidewire or other device remains centered within the vessel lumen, and this needs to be done by rotating the c-arm and taking x-rays from more than one view. Ideally the views would be separated by 90 degrees, but constraints imposed by the navigation system, patient table, and other equipment don't always permit this. However, the software could take this into account to help the user position x-rays optimally for monitoring treatment device positioning within an occluded vessel. Once calculated, the x-ray view angles couid be either transmitted directly to the x-ray system or displayed to the user so that they could move the x-ray system themselves.
  • the treatment device and catheter positions would be localized extremely precisely through a system such as Mediguide (http://www.medi ⁇ uide,co.il/).
  • the computation of the position relative to the catheter could be used to compute a relevant CT image of the vessel cross-section, allowing the user to know whether the treatment device is off center of the vessel lumen, and also to show what is ahead and behind the treatment device as it moves across an occlusion.
  • the position of the catheter and treatment device can be localized by x-ray image processing and used to compute the deviation of the treatment device from the vessel lumen. However, with the x-ray image processing technique, the user would still have to move the x-ray c-arm about the vessel axis in order to monitor the centering in three dimensions. OPERATION
  • the occluded portion of a blood vessel can be quickly and accurately identified by identifying the location of the occluded portion of the blood vessel on each of a series of displayed two dimensional images derived from the three dimensional image data in planes substantially transverse to the direction of the occluded portion of the vessel.
  • the locations identified on each of the images can be used to determine the path of the occluded vessel, even if it not readily visible in three dimensional imaging.
  • This location information can be used to facilitate the operation of medical navigation system and to facilitate procedures for removing the occlusion and opening the vessel.
  • the raw data can be used, or the data can be used to derive and display a construction of the occluded vessel on the three dimensional angiogram, although the display would preferably differentiate between actual portions and constructed portions of the images.
  • a prediction of the path of the occluded portion is preferably made, and the displayed two dimensional images are taken from planes that are perpendicuiar to the displayed path.
  • the predicted path can be derived from the locations of the start and end of the occluded portion, or a more accurate prediction can be made by taking into account the directions of the non-occluded portions of the blood vessel adjacent the occluded portion of the blood vessel.
  • the predicted path of the occluded portion of the blood vessel can be updated as information about the location of the occluded portion of the biood vessel identified on the displayed two dimensional images is obtained.
  • the user can identify a point near the center of the occluded portion of the blood vessel or purposely identify another point away from bending walls of the vessel or through a partial occlusion in the vessel. Rather than identifying a point in the occluded vessel, the user could identify the vessel itself, for example drawing a loop around the vessel or drawing two or more intersecting chords to identify the vessel walls.
  • the displayed images can be from a series of parallel planes or they can be from planes of different orientations according to the contour of the occluded vessel.
  • the orientation can be made adjustable, or a plurality of alternative planes can be displayed to facilitate the identification of the occluded portion of the vessel.

Abstract

A method of finding the location of an occluded portion of a blood vessel relative to a three-dimensional angiographic image of a subject's vasculature includes identifying the location of the occluded portion of the blood vessel on each of a series of displayed two dimensional images derived from the three dimensional image data in planes substantially transverse to direction of the occluded portion of the vessel. The identified locations in the occluded portion of the vessel can then be used to determine the path of the occluded portion of the vessel.

Description

Location and Display of Occluded Portions of Vessels On 3-D Angiographic Images
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority to prior U.S. Provisional
Patent Application Serial No. 60/862,418, filed October 20, 2006, the entire disclosure of which is incorporated herein by reference.
BACKGROUND
[0002] This invention relates to the treatment of occluded blood vessels, and in particular to the location and display of occluded portions of vessels on 3-D angiographic images.
[0003] Three dimensionai angiographic is a valuable imaging
technique in which contrast agent is introduced into the subject's vasculature and a three dimensional image of the vasculature is made with an appropriate imaging system such as an x-ray or MR imaging system. Three dimensional angiography provides an accurate image of the vasculature that among other things reveals occluded portions of the vasculature, which, because of the occlusion, contain little or no contrast agent, and thus are not as visible in the
resulting angiogram.
[0004] With the advent of remote navigation techniques for navigating medical devices through a subject's vasculature, angiograms are used for planning and conducting vascular navigation. However the gaps in angiograms caused by occlusions impair the use of angiograms for planning and conducting navigations. This is particularly true in the treatment of vascular occlusions because to navigate successfully through an occluded vessel, for example to remove the occlusion, it is important to know the location of the vessel.
SUMMARY
[0005] Embodiments of this invention provide methods of locating and displaying the location of occluded blood vessels which are generally difficult or impossible to see in 3D angiograms. One preferred embodiment provides a method of finding the location of an occluded portion of a blood vessel relative to a three-dimensional angiographic image of a subject's vasculature. This method generally comprises identifying the location of the occluded portion of the blood vessel on each of a series of displayed two dimensional images that are derived from the three dimensional image data in pianes that are substantially transverse to the direction of the occluded portion of the vessel. These identified locations are connected together to define the path of the occluded vessel, which can be displayed on the three-dimensional angiographic image.
[0006] Embodiments of this invention make it possible to locate and display occluded portions of a subject's vasculature that are difficult or impossible to locate in conventional angiograms. With some embodiments it is possible to obtain sufficiently accurate location information to permit remote navigation through the occluded portion, and if desired, to open occluded blood vessels. These and other features and advantages wϋl be in part apparent and in part pointed out herein after. BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Fig. 1 is a schematic view of a three dimensional angiogram, showing an occluded potion in the vasculature; [0008] Fig. 2 is an enlarged schematic view of a vasculature branch with an occlusion, showing a series of planes from which two dimensional images from the three dimensional images can be displayed to locate the occluded portion of the vessel;
[0009] Fig. 3 is a schematic view of a two-dimensional image taken along one of the planes shown in Fig. 2, illustrating a first technique identifying the location of the occluded portion of a blood vessel;
[0010] Fig. 4 is a schematic view of a two-dimensional image taken along one of the planes shown in Fig. 2, illustrating a second technique of identifying the location of the occluded portion of a blood vessel;
[0011] Fig. 5 is a schematic view of a two-dimensional image taken along one of the planes shown in Fig. 2, illustrating a fourth technique of identifying the location of the occluded portion of a blood vessel;
[0012] Fig. 6 is a schematic view of a two-dimensional image taken along one of the planes shown in Fig. 2, illustrating a fifth technique of identifying the location of the occluded portion of a blood vessel;
[0013] Fig. 7 is a schematic view of a two-dimensional image taken along one of the planes shown in Fig. 2, illustrating third technique method of identifying the location of the occluded portion of a blood vessel;
[0014] Fig. 8 is an enlarged schematic view of a vasculature branch with an occlusion, showing one technique for predicting the path of the occluded portion of the vessel;
[0015] Fig. 9 is an enlarged schematic view of a vasculature branch with an occlusion, showing a second technique for predicting the path of the occluded portion of the vessel; and [0016] Fig. 10 is a schematic view of a two-dimensionai image taken along one of the planes shown in Fig. 2, illustrating a method of adjusting the plane in which the image is taken to facilitate identifying the location of the occluded portion of a blood vessel.
[0017] Correspondence reference numerals indicate corresponding parts throughout the several views of the drawings. DETAILED DESCRIPTION
[0018] Generally embodiments of the present invention provide methods finding the location of an occluded portion of a blood vessel relative to a three-dimensional angiographic image of a subject's vasculature. Once the position of the occluded portion of the blood vessel has been determined, this information can be used to navigate through the occluded vessel, or at least to display the position of the occluded vessel.
[0019] The method of the preferred embodiment of this invention comprises identifying the location of the occluded portion of the blood vessel on each of a series of displayed two dimensional images derived from the three dimensional image data that are in planes that are substantially transverse to the direction of the occluded portion of the vessel.
[0020] A three-dimensional vascular tree from a three dimensional angiogram is indicated generally as 20 in Fig. 1. The vascular tree 20 can be generated from any three-dimensional imaging system, including but not limited to x-ray, CT or MR imaging. As shown in Fig. 1 , the vascular tree 20 comprises a plurality of branches, and might represent, for example the coronary vasculature. One of the branches 22 has a gap 24, that is identifiable as having a start 26 and an end 28. This gap 24 is typically indicative of an occluded portion of the blood vessel which has reduced or no flow, so that the contrast agent cannot fill the portion and reveal the occluded portion in an image.
[0021] In order to navigate through the branch 22, it is desirable to know the location {i.e. the position and orientation) of the entire branch to minimize damage that the medical device might cause. Knowledge of the location of the branch is particularly desirable in the case of a procedure for removing or treating the occlusion, in order to ensure that the occlusion is being removed, but the vessel remains intact.
[0022] While occluded vessels are generally not visible or are only minimally visible, in three dimensional volume rendered angiograms, the profile of even an occluded vessel can often be resolved in a two-dimensional cross sectional view. Thus as shown schematically in Fig. 2, in accordance with the preferred embodiment of the methods of this invention, a plurality of two dimensional images in planes generally transverse to the expected path of the occluded portion 24 of the branch 22 are derived from the three dimensional imaging data. As shown schematically in Fig. 2, images are made in 5 planes 3OA, 3OB, 3OC, 3OD, and 3OE, but the number of images used will depend upon the length of the occluded section, the geometry of the occluded section (i.e. whether it is substantially straight or tortuous), and the anticipated use of the location information (i.e. generally lesser resolution for simple navigations, and generally greater resolution for procedures attempting to remove the occlusion).
[0023] Each of the images from the planes is displayed, and the user can discern the location of the occluded vessel in the image and mark it in some manner. By marking the location of the vessel in each of a series of images, the path of the vessel can be determined even though it is not readily visible in the three dimensional angiogram. The path of the occluded portion can thus be displayed on the three dimensional angiogram, and the location information can be used to control navigations through the occluded portion and it can be used in a procedure removing the occlusion.
[0024] For example, as shown in Fig. 3, the two dimensional image from plane 3OA is displayed and the user can discern the wall 34 from the background 32 of the image and even from the occlusive material 34 inside the vessel. The user can then mark what appears to be the centerline of the occluded portion of the vessel, for example by positioning a cursor 36 (which can be manipulated by a mouse or joystick or other device and clicking. Of course, as shown in Fig. 4, the user might select an off center location, if desired, for example to stay away from the inside or outside of a bend in the vessel, or in the case of a partially occluded vessel as shown in Fig. 7, to identify a path through the occluded portion of the vessel. Alternatively, instead of identifying a position in the vessel, the user might identify the vessel itself. Thus as shown in Fig, 5, the user might use a conventional oval drawing tool 40 to identify the vessel wall 34, which is typically circular to elliptical. Alternatively, as shown in Fig. 6, the user might use a conventional line drawing tool to draw two or more chords across the occluded vessel, the ends of which can be used to derive a circle or oval to approximate the vessel wail 24, which approximation is preferably displayed so that the user can adjust it if necessary. Alternatively, image processing programs can automatically detect either a point inside the occlusion or the vessel wali which can either be used directly, or simply displayed to facilitate the user selection, allowing the user to approve or to adjust and approve the automatically selected position.
[0025] The two-dimensional images are preferably generally transverse, and more preferably generally perpendicular to the direction of the occluded vessel so that the vessel cross section is easier to detect. To facilitate this, the user can identify the start 26 and end of 28 of the occluded portion, and as shown in Fig. 8, a straight line path 46 can be predicted between the start and the end of the occluded portion. The two dimensional displayed images can then be taken in planes transverse, more preferably in a plane perpendicular to the predicted path 46. As shown in Fig. 9 a more accurate prediction of the path of the occluded path can be made by using the direction of the non-occluded portion of the vessel adjacent to the start 26 of the occluded portion, and the direction of the non-occluded portion of the vessel adjacent to the end 28, and fitting a smoothly curved path 48 between the start and end points. The two dimensional displayed images can then be taken in planes transverse to the predicted path 48. Thus the path of the occluded portion of the blood vessel can be found using a series of images in parallel or non-parallel planes.
[0026] In a first alternative embodiment the displayed image is manually tillable by the user to adjust the plane in which the image is taken. Tilt controls 50 can be provided on the image so that the user can tilt the image so that the plane of the image is as transverse as possible to the occluded vessel direction, to facilitate the identification of the location of the occluded vessel portion. As a genera! rule, the vessel will appear most clearly in a perpendicular cross section, although the vessel will also appear smaliest in such a view. In a second alternative, rather than require the user to adjust the orientation of the plane, a plurality of images can be displayed each in a plane with a slightly different orientation, and the user can use what ever image in which the vessel appears clearest. The selection process can be automated, and through visual processing the image from the most advantageous plane can be automatically selected and displayed for the user.
[0027] The region in which the occluded portion is located is preferably identified by marking a volume on the three dimensional angiogram, or by at least marking the start and preferably the start and end points of the occlusion, to reduce the amount of data that must be processed, and to facilitate the generation of the two dimensional displays from the three dimensional data set. In an automated system, the identification and recognition of the non-occluded portions can result in the automatic identification of the gaps.
[0028] in a user interface that implements the methods of the preferred embodiments of this invention, software would preferably compute optimal x-ray viewing angles for the vessel. The "optima!" viewing angles about the x-ray vessel are typically those which rotate the c-arm about the vessel axis. These are optimal because one wants to monitor how well a guidewire or other device remains centered within the vessel lumen, and this needs to be done by rotating the c-arm and taking x-rays from more than one view. Ideally the views would be separated by 90 degrees, but constraints imposed by the navigation system, patient table, and other equipment don't always permit this. However, the software could take this into account to help the user position x-rays optimally for monitoring treatment device positioning within an occluded vessel. Once calculated, the x-ray view angles couid be either transmitted directly to the x-ray system or displayed to the user so that they could move the x-ray system themselves.
[0029] In x-rays of an occluded vessel, one can normally see the vessel right up to the point of the occlusion, sometimes on either side of the occlusion. A medical device, such as a microcatheter could be pushed right up to the edge of the occlusion, and then be used as a "local reference point" so that the vessel path extracted from the three dimensional dataset can be more precisely registered to an x-ray. This forms a "floating" reference system, in that manipulations of a treatment device extended from microcatheter would always be relative to the "local reference point", and thus positions during the heartbeat and respiration could be more precisely established. In an ideal embodiment, the treatment device and catheter positions would be localized extremely precisely through a system such as Mediguide (http://www.mediρuide,co.il/). The computation of the position relative to the catheter could be used to compute a relevant CT image of the vessel cross-section, allowing the user to know whether the treatment device is off center of the vessel lumen, and also to show what is ahead and behind the treatment device as it moves across an occlusion. In another embodiment, the position of the catheter and treatment device can be localized by x-ray image processing and used to compute the deviation of the treatment device from the vessel lumen. However, with the x-ray image processing technique, the user would still have to move the x-ray c-arm about the vessel axis in order to monitor the centering in three dimensions. OPERATION
[0030] In operation the occluded portion of a blood vessel can be quickly and accurately identified by identifying the location of the occluded portion of the blood vessel on each of a series of displayed two dimensional images derived from the three dimensional image data in planes substantially transverse to the direction of the occluded portion of the vessel. The locations identified on each of the images can be used to determine the path of the occluded vessel, even if it not readily visible in three dimensional imaging. This location information can be used to facilitate the operation of medical navigation system and to facilitate procedures for removing the occlusion and opening the vessel. The raw data can be used, or the data can be used to derive and display a construction of the occluded vessel on the three dimensional angiogram, although the display would preferably differentiate between actual portions and constructed portions of the images.
[0031 ] A prediction of the path of the occluded portion is preferably made, and the displayed two dimensional images are taken from planes that are perpendicuiar to the displayed path. The predicted path can be derived from the locations of the start and end of the occluded portion, or a more accurate prediction can be made by taking into account the directions of the non-occluded portions of the blood vessel adjacent the occluded portion of the blood vessel. Furthermore, the predicted path of the occluded portion of the blood vessel can be updated as information about the location of the occluded portion of the biood vessel identified on the displayed two dimensional images is obtained. [0032] Depending upon user preference and how the information about the location of the occluded portion will be used, the user can identify a point near the center of the occluded portion of the blood vessel or purposely identify another point away from bending walls of the vessel or through a partial occlusion in the vessel. Rather than identifying a point in the occluded vessel, the user could identify the vessel itself, for example drawing a loop around the vessel or drawing two or more intersecting chords to identify the vessel walls.
[0033] The displayed images can be from a series of parallel planes or they can be from planes of different orientations according to the contour of the occluded vessel. The orientation can be made adjustable, or a plurality of alternative planes can be displayed to facilitate the identification of the occluded portion of the vessel.
[0034] Of course some or all of the process can be automated, including the determination of the planes in which to take images, the processing of the imaging data in each plane to identify the occluded portion of the blood vessel, and the processing of the individual locations in the occluded vessel to determine the overall path of the occluded vessel.

Claims

CLAIMS:What is claimed is:
1. A method of finding the location of an occluded portion of a blood vessel relative to a three-dimensional angiographic image of a subject's vasculature, the method comprising: identifying the location of the occluded portion of the blood vessel on each of a series of displayed two dimensional images derived from the three dimensional image data in planes substantially transverse to direction of the occluded portion of the vessel; and displaying the identified locations on the three-dimensional angiographic image to indicate the location of the occluded portions.
2. The method according to claim 1 further comprising predicting the path of occluded portion, and wherein the displayed two dimensional images are from planes perpendicuiar to the displayed path.
3. The method according to claim 1 wherein predicting the path of the occluded portion takes into account the locations of the start and end of the occluded portion.
4. The method according to claim 3 wherein predicting the path of the occluded portion takes into account the direction of the non-occluded portions of the blood vessel adjacent the occluded portion of the blood vessel.
5. The method according to claim 2 wherein the predicted path of the occluded portion of the blood vessel is updated at least once using information about the location of the occluded portion of the blood vessel identified on the displayed two dimensional images.
6. The method according to claim 1 wherein the step of identifying the location of the occluded portion of the blood vessel comprises identifying a point near the center of the occluded portion of the blood vessel.
7. The method according to claim 1 wherein the step of identifying the location of the occluded portion of the biood vessel comprises identifying the cross-section of the occluded portion blood vessel.
8. The method according to claim 7 wherein the step of identifying the cross section of the occluded portion of the blood vessel comprises making a closed loop around the periphery of the occluded portion of the blood vessel.
9. The method according to claim 7 wherein the step of identifying the cross section of the occluded portion of the blood vessel comprises marking two intersecting chords across the cross section.
10. A method of locating an occluded portion of a blood vessel relative to a three-dimensional angiographic image of a subject's vasculature, the method comprising: successively displaying two dimensional images derived from the three dimensional image data of a plane substantially transverse to the expected local direction of the vessel that includes the occluded potion of the vessel; identifying the location of the occluded portion of the vessel on the displayed two dimensional images; and displaying the identified locations on the three-dimensional image to indicate the location of the occluded portions,
11. The method according to claim 10 further comprising identifying the starting point of the occluded portion of the blood vessel.
12. The method according to claim 11 further comprising determining a predicted path of the occluded portion of the blood vessel based upon the direction of the non-occluded portion adjacent the starting point of the occluded portion, and wherein the orientation of the plane of at least the first two dimensional image is perpendicular to the predicted path.
13. The method according to claim 2 further comprising determining a predicted path of the occluded portion or the blood vessel based upon the direction of the non-occluded portion adjacent the starting point of the occluded portion, and wherein the orientation of the plane of the first two dimensional image is perpendicular to the predicted direction, and wherein the orientation of the successive planes is perpendicular to the predicted path of the occluded portion based at least in part upon a location of the occluded portion identified on one of the previous displayed two dimensional image.
14. The method according to claim 10 wherein the step of identifying the location of the occluded portion of the blood vessel comprises identifying a point near the center of the occluded portion of the blood vessel.
15. The method according to claim 10 wherein the step of identifying the location of the occluded portion of the blood vessel comprises identifying the cross-section of the occluded portion blood vessel.
16. The method according to claim 15 wherein the step of identifying the cross section of the occluded portion of the blood vessel comprises making a closed loop around the periphery of the occluded portion of the blood vessel.
17. The method according to claim 15 wherein the step of identifying the cross section of the occluded portion of the blood vessel comprises marking two intersecting chords across the cross section.
18. The method according to claim 10 further comprising identifying the starting and ending points of the occluded portion of the blood vessel, and wherein the planes are perpendicular to a straight line connecting the starting and ending points.
19. The method according to claim 10 further comprising identifying the starting and ending points of the occluded portion of the blood vessel, and wherein the planes are perpendicular to a curve connecting the staring and ending points derived in part from the direction of the non-occluded portions of the blood vessel adjacent the occluded portion.
20. The method according to claim 10 further comprising adjusting the orientation of the plane of the displayed two dimensional image before at least some identification steps.
21. The method according to claim 10 further comprising displaying a plurality of two dimensional images at different angular orientations, and wherein the step of identifying the location of the occluded portion of the lumen comprises identifying the occluded portion of the lumen on one of the displayed images.
22. A method of locating an occluded portion of a blood vessel in a three-dimensional angiographic image of a subject's vasculature, the method comprising; predicting the path of the occluded potion of the blood vessel; displaying two dimensional images derived from the three dimensional image data of a plane substantially transverse to the predicted path of the occluded portion of the vessel that includes the occluded potion of the vessel; identifying the location of the occluded portion of the vessel on the displayed two dimensional image; and displaying the identified locations on the three-dimensional image to indicate the location of the occluded portions.
23. The method according to claim 22 further comprising updating the predicted path of the occluded portion of the blood vessel based in part on at least one of the locations of the occluded potion identified on a displayed two- dimensional image.
24. A method of identifying a navigation path through an occluded portion of a blood vessel that is difficult to see on a three-dimensional angiographic image, the method comprising: identifying the location of the occluded portion of the blood vessel on each of a series of displayed two dimensional images derived from the three dimensional image data in planes substantially transverse to direction of the occluded portion of the vessel; and determining the navigation path by connecting the identified locations.
25. The method according to claim 21 further comprising positioning imaging equipment to image in a direction substantially perpendicular to the navigation path.
PCT/US2007/081942 2006-10-20 2007-10-19 Location and display of occluded portions of vessels on 3-d angiographic images WO2008051841A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86241806P 2006-10-20 2006-10-20
US60/862,418 2006-10-20

Publications (2)

Publication Number Publication Date
WO2008051841A2 true WO2008051841A2 (en) 2008-05-02
WO2008051841A3 WO2008051841A3 (en) 2008-07-03

Family

ID=39325273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/081942 WO2008051841A2 (en) 2006-10-20 2007-10-19 Location and display of occluded portions of vessels on 3-d angiographic images

Country Status (2)

Country Link
US (1) US8135185B2 (en)
WO (1) WO2008051841A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127520A1 (en) * 2017-01-05 2018-07-12 Koninklijke Philips N.V. Visualizing a course of a vasculature structure with an occlusion

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040030244A1 (en) * 1999-08-06 2004-02-12 Garibaldi Jeffrey M. Method and apparatus for magnetically controlling catheters in body lumens and cavities
US7389778B2 (en) 2003-05-02 2008-06-24 Stereotaxis, Inc. Variable magnetic moment MR navigation
US7751867B2 (en) 2004-12-20 2010-07-06 Stereotaxis, Inc. Contact over-torque with three-dimensional anatomical data
US7756308B2 (en) * 2005-02-07 2010-07-13 Stereotaxis, Inc. Registration of three dimensional image data to 2D-image-derived data
US9314222B2 (en) 2005-07-07 2016-04-19 Stereotaxis, Inc. Operation of a remote medical navigation system using ultrasound image
US7495537B2 (en) 2005-08-10 2009-02-24 Stereotaxis, Inc. Method and apparatus for dynamic magnetic field control using multiple magnets
US20070161882A1 (en) * 2006-01-06 2007-07-12 Carlo Pappone Electrophysiology catheter and system for gentle and firm wall contact
US20080114335A1 (en) * 2006-08-23 2008-05-15 William Flickinger Medical Device Guide
US7567233B2 (en) * 2006-09-06 2009-07-28 Stereotaxis, Inc. Global input device for multiple computer-controlled medical systems
EP2087468A2 (en) * 2006-12-01 2009-08-12 Thomson Licensing Estimating a location of an object in an image
US20080294232A1 (en) * 2007-05-22 2008-11-27 Viswanathan Raju R Magnetic cell delivery
US8024024B2 (en) 2007-06-27 2011-09-20 Stereotaxis, Inc. Remote control of medical devices using real time location data
US9111016B2 (en) 2007-07-06 2015-08-18 Stereotaxis, Inc. Management of live remote medical display
US20090105579A1 (en) * 2007-10-19 2009-04-23 Garibaldi Jeffrey M Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data
US8231618B2 (en) 2007-11-05 2012-07-31 Stereotaxis, Inc. Magnetically guided energy delivery apparatus
US20090131798A1 (en) * 2007-11-19 2009-05-21 Minar Christopher D Method and apparatus for intravascular imaging and occlusion crossing
CN101677799B (en) * 2008-03-25 2012-05-30 株式会社东芝 Medical image processor and x-ray diagnostic apparatus
US10537713B2 (en) 2009-05-25 2020-01-21 Stereotaxis, Inc. Remote manipulator device
DE102009031164B4 (en) * 2009-06-30 2013-11-28 Siemens Aktiengesellschaft Automatic layer layer positioning for MR angiography measurements
US20110046618A1 (en) * 2009-08-04 2011-02-24 Minar Christopher D Methods and systems for treating occluded blood vessels and other body cannula
CA2777841C (en) 2009-11-02 2017-01-17 Francis M. Creighton Magnetomotive stator system and methods for wireless control of magnetic rotors
US8934686B2 (en) * 2009-11-26 2015-01-13 Algotec Systems Ltd. User interface for selecting paths in an image
KR101805619B1 (en) * 2011-01-25 2017-12-07 삼성전자주식회사 Apparatus and method for creating optimal 2-dimensional medical image automatically from 3-dimensional medical image
US9883878B2 (en) 2012-05-15 2018-02-06 Pulse Therapeutics, Inc. Magnetic-based systems and methods for manipulation of magnetic particles
KR101989156B1 (en) * 2012-11-01 2019-06-13 삼성전자주식회사 Method, apparatus and medical imaging system for segmenting image of object from image of organ
US10321878B2 (en) 2016-12-22 2019-06-18 Biosense Webster (Israel) Ltd. Pulmonary vein display in two dimensions
US11918315B2 (en) 2018-05-03 2024-03-05 Pulse Therapeutics, Inc. Determination of structure and traversal of occlusions using magnetic particles
US20220104687A1 (en) * 2020-10-06 2022-04-07 Asensus Surgical Us, Inc. Use of computer vision to determine anatomical structure paths

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036303A1 (en) * 1999-12-02 2001-11-01 Eric Maurincomme Method of automatic registration of three-dimensional images
US20040223636A1 (en) * 1999-11-19 2004-11-11 Edic Peter Michael Feature quantification from multidimensional image data
WO2005031635A1 (en) * 2003-09-25 2005-04-07 Paieon, Inc. System and method for three-dimensional reconstruction of a tubular organ
US20060098010A1 (en) * 2004-03-09 2006-05-11 Jeff Dwyer Anatomical visualization and measurement system

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654864A (en) 1994-07-25 1997-08-05 University Of Virginia Patent Foundation Control method for magnetic stereotaxis system
US6128174A (en) 1997-08-29 2000-10-03 Stereotaxis, Inc. Method and apparatus for rapidly changing a magnetic field produced by electromagnets
US6015414A (en) 1997-08-29 2000-01-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter
EP1030589A2 (en) 1997-11-12 2000-08-30 Stereotaxis Inc. Articulated magnetic guidance systems and devices and methods for using same for magnetically-assisted surgery
US6157853A (en) 1997-11-12 2000-12-05 Stereotaxis, Inc. Method and apparatus using shaped field of repositionable magnet to guide implant
US6014580A (en) * 1997-11-12 2000-01-11 Stereotaxis, Inc. Device and method for specifying magnetic field for surgical applications
WO1999024097A1 (en) 1997-11-12 1999-05-20 Stereotaxis, Inc. Intracranial bolt and method of placing and using an intracranial bolt to position a medical device
US7066924B1 (en) 1997-11-12 2006-06-27 Stereotaxis, Inc. Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip
US6212419B1 (en) * 1997-11-12 2001-04-03 Walter M. Blume Method and apparatus using shaped field of repositionable magnet to guide implant
US6505062B1 (en) * 1998-02-09 2003-01-07 Stereotaxis, Inc. Method for locating magnetic implant by source field
US6315709B1 (en) 1998-08-07 2001-11-13 Stereotaxis, Inc. Magnetic vascular defect treatment system
US20040030244A1 (en) * 1999-08-06 2004-02-12 Garibaldi Jeffrey M. Method and apparatus for magnetically controlling catheters in body lumens and cavities
AU5548299A (en) * 1998-08-07 2000-02-28 Stereotaxis, Inc. Method and apparatus for magnetically controlling catheters in body lumens and cavities
US6385472B1 (en) * 1999-09-10 2002-05-07 Stereotaxis, Inc. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
JP2002526148A (en) * 1998-10-02 2002-08-20 ステリオタクシス インコーポレイテツド Magnetically navigable and / or controllable device for removing material from body cavities and sinuses
US6428551B1 (en) 1999-03-30 2002-08-06 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US6241671B1 (en) 1998-11-03 2001-06-05 Stereotaxis, Inc. Open field system for magnetic surgery
US6330467B1 (en) 1999-02-04 2001-12-11 Stereotaxis, Inc. Efficient magnet system for magnetically-assisted surgery
US6375606B1 (en) * 1999-03-17 2002-04-23 Stereotaxis, Inc. Methods of and apparatus for treating vascular defects
US6148823A (en) 1999-03-17 2000-11-21 Stereotaxis, Inc. Method of and system for controlling magnetic elements in the body using a gapped toroid magnet
US6296604B1 (en) * 1999-03-17 2001-10-02 Stereotaxis, Inc. Methods of and compositions for treating vascular defects
US6911026B1 (en) * 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy
US6902528B1 (en) * 1999-04-14 2005-06-07 Stereotaxis, Inc. Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
US6292678B1 (en) * 1999-05-13 2001-09-18 Stereotaxis, Inc. Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor
AU3885801A (en) * 1999-09-20 2001-04-24 Stereotaxis, Inc. Magnetically guided myocardial treatment system
US6298257B1 (en) 1999-09-22 2001-10-02 Sterotaxis, Inc. Cardiac methods and system
US7019610B2 (en) * 2002-01-23 2006-03-28 Stereotaxis, Inc. Magnetic navigation system
US7313429B2 (en) 2002-01-23 2007-12-25 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US6702804B1 (en) 1999-10-04 2004-03-09 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US6975197B2 (en) 2002-01-23 2005-12-13 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US6401723B1 (en) * 2000-02-16 2002-06-11 Stereotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US6940379B2 (en) 2000-04-11 2005-09-06 Stereotaxis, Inc. Magnets with varying magnetization direction and method of making such magnets
WO2001093766A1 (en) * 2000-06-07 2001-12-13 Stereotaxis, Inc. Guide for medical devices
WO2002007794A2 (en) 2000-07-24 2002-01-31 Stereotaxis, Inc. Magnetically navigated pacing leads, and methods for delivering medical devices
US6524303B1 (en) * 2000-09-08 2003-02-25 Stereotaxis, Inc. Variable stiffness magnetic catheter
US6537196B1 (en) * 2000-10-24 2003-03-25 Stereotaxis, Inc. Magnet assembly with variable field directions and methods of magnetically navigating medical objects
US6662034B2 (en) 2000-11-15 2003-12-09 Stereotaxis, Inc. Magnetically guidable electrophysiology catheter
US20030009094A1 (en) 2000-11-15 2003-01-09 Segner Garland L. Electrophysiology catheter
US6677752B1 (en) * 2000-11-20 2004-01-13 Stereotaxis, Inc. Close-in shielding system for magnetic medical treatment instruments
US6643533B2 (en) * 2000-11-28 2003-11-04 Ge Medical Systems Global Technology Company, Llc Method and apparatus for displaying images of tubular structures
US6352363B1 (en) * 2001-01-16 2002-03-05 Stereotaxis, Inc. Shielded x-ray source, method of shielding an x-ray source, and magnetic surgical system with shielded x-ray source
US20020103430A1 (en) 2001-01-29 2002-08-01 Hastings Roger N. Catheter navigation within an MR imaging device
WO2002089872A2 (en) 2001-05-06 2002-11-14 Stereotaxis, Inc. System and methods for advancing a catheter
US7635342B2 (en) * 2001-05-06 2009-12-22 Stereotaxis, Inc. System and methods for medical device advancement and rotation
US6842638B1 (en) * 2001-11-13 2005-01-11 Koninklijke Philips Electronics N.V. Angiography method and apparatus
US7020512B2 (en) * 2002-01-14 2006-03-28 Stereotaxis, Inc. Method of localizing medical devices
US7161453B2 (en) * 2002-01-23 2007-01-09 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US6968846B2 (en) 2002-03-07 2005-11-29 Stereotaxis, Inc. Method and apparatus for refinably accurate localization of devices and instruments in scattering environments
US8721655B2 (en) * 2002-04-10 2014-05-13 Stereotaxis, Inc. Efficient closed loop feedback navigation
US20050256398A1 (en) 2004-05-12 2005-11-17 Hastings Roger N Systems and methods for interventional medicine
US7008418B2 (en) * 2002-05-09 2006-03-07 Stereotaxis, Inc. Magnetically assisted pulmonary vein isolation
US7248914B2 (en) 2002-06-28 2007-07-24 Stereotaxis, Inc. Method of navigating medical devices in the presence of radiopaque material
US7189198B2 (en) * 2002-07-03 2007-03-13 Stereotaxis, Inc. Magnetically guidable carriers and methods for the targeted magnetic delivery of substances in the body
US7769427B2 (en) 2002-07-16 2010-08-03 Magnetics, Inc. Apparatus and method for catheter guidance control and imaging
US20040157082A1 (en) 2002-07-22 2004-08-12 Ritter Rogers C. Coated magnetically responsive particles, and embolic materials using coated magnetically responsive particles
US7630752B2 (en) * 2002-08-06 2009-12-08 Stereotaxis, Inc. Remote control of medical devices using a virtual device interface
EP1581100A4 (en) 2002-09-30 2009-01-21 Stereotaxis Inc A method and apparatus for improved surgical navigation employing electronic identification with automatically actuated flexible medical devices
EP1576625A3 (en) 2002-11-07 2005-10-26 Stereotaxis, Inc. Method of making a compound magnet
US20080016678A1 (en) * 2002-11-07 2008-01-24 Creighton Iv Francis M Method of making a compound magnet
AU2003295741A1 (en) 2002-11-18 2004-06-15 Stereotaxis, Inc. Magnetically navigable balloon catheters
US20040133130A1 (en) 2003-01-06 2004-07-08 Ferry Steven J. Magnetically navigable medical guidewire
US7305263B2 (en) 2003-03-13 2007-12-04 Stereotaxis, Inc. Magnetic navigation system and magnet system therefor
US7774046B2 (en) 2003-03-13 2010-08-10 Stereotaxis, Inc. Magnetic navigation system
JP4421203B2 (en) * 2003-03-20 2010-02-24 株式会社東芝 Luminous structure analysis processing device
US8162920B2 (en) 2003-04-24 2012-04-24 Stereotaxis, Inc. Magnetic navigation of medical devices in magnetic fields
US7389778B2 (en) * 2003-05-02 2008-06-24 Stereotaxis, Inc. Variable magnetic moment MR navigation
US6980843B2 (en) 2003-05-21 2005-12-27 Stereotaxis, Inc. Electrophysiology catheter
US20050065435A1 (en) * 2003-07-22 2005-03-24 John Rauch User interface for remote control of medical devices
US20050119687A1 (en) 2003-09-08 2005-06-02 Dacey Ralph G.Jr. Methods of, and materials for, treating vascular defects with magnetically controllable hydrogels
WO2005029258A2 (en) * 2003-09-16 2005-03-31 Stereotaxis, Inc. User interface for remote control of medical devices
US7280863B2 (en) * 2003-10-20 2007-10-09 Magnetecs, Inc. System and method for radar-assisted catheter guidance and control
US20050182315A1 (en) 2003-11-07 2005-08-18 Ritter Rogers C. Magnetic resonance imaging and magnetic navigation systems and methods
US7543239B2 (en) * 2004-06-04 2009-06-02 Stereotaxis, Inc. User interface for remote control of medical devices
US7769428B2 (en) * 2004-06-29 2010-08-03 Stereotaxis, Inc. Navigation of remotely actuable medical device using control variable and length
US20060036163A1 (en) * 2004-07-19 2006-02-16 Viswanathan Raju R Method of, and apparatus for, controlling medical navigation systems
US20060144407A1 (en) 2004-07-20 2006-07-06 Anthony Aliberto Magnetic navigation manipulation apparatus
US20080006280A1 (en) * 2004-07-20 2008-01-10 Anthony Aliberto Magnetic navigation maneuvering sheath
US20060144408A1 (en) 2004-07-23 2006-07-06 Ferry Steven J Micro-catheter device and method of using same
US7627361B2 (en) * 2004-08-24 2009-12-01 Stereotaxis, Inc. Methods and apparatus for steering medical device in body lumens
US7555331B2 (en) * 2004-08-26 2009-06-30 Stereotaxis, Inc. Method for surgical navigation utilizing scale-invariant registration between a navigation system and a localization system
US7815580B2 (en) * 2004-09-07 2010-10-19 Stereotaxis, Inc. Magnetic guidewire for lesion crossing
US7831294B2 (en) * 2004-10-07 2010-11-09 Stereotaxis, Inc. System and method of surgical imagining with anatomical overlay for navigation of surgical devices
US7983733B2 (en) * 2004-10-26 2011-07-19 Stereotaxis, Inc. Surgical navigation using a three-dimensional user interface
US20060094956A1 (en) * 2004-10-29 2006-05-04 Viswanathan Raju R Restricted navigation controller for, and methods of controlling, a remote navigation system
US7190819B2 (en) * 2004-10-29 2007-03-13 Stereotaxis, Inc. Image-based medical device localization
US7751867B2 (en) 2004-12-20 2010-07-06 Stereotaxis, Inc. Contact over-torque with three-dimensional anatomical data
US8348858B2 (en) 2005-01-05 2013-01-08 Stereotaxis, Inc. Stent delivery guide wire
WO2006078509A2 (en) * 2005-01-10 2006-07-27 Stereotaxis, Inc. Guide wire with magnetically adjustable bent tip and method for using the same
US20070225589A1 (en) 2005-01-11 2007-09-27 Viswanathan Raju R Single catheter diagnosis, navigation and treatment of arrhythmias
WO2006076394A2 (en) 2005-01-11 2006-07-20 Stereotaxis, Inc. Navigation using sensed physiological data as feedback
US20070062546A1 (en) 2005-06-02 2007-03-22 Viswanathan Raju R Electrophysiology catheter and system for gentle and firm wall contact
US20070060992A1 (en) * 2005-06-02 2007-03-15 Carlo Pappone Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery
US20070021744A1 (en) * 2005-07-07 2007-01-25 Creighton Francis M Iv Apparatus and method for performing ablation with imaging feedback
US20070038065A1 (en) * 2005-07-07 2007-02-15 Creighton Francis M Iv Operation of a remote medical navigation system using ultrasound image
US7603905B2 (en) * 2005-07-08 2009-10-20 Stereotaxis, Inc. Magnetic navigation and imaging system
US7769444B2 (en) * 2005-07-11 2010-08-03 Stereotaxis, Inc. Method of treating cardiac arrhythmias
US7690619B2 (en) * 2005-07-12 2010-04-06 Stereotaxis, Inc. Apparatus for pivotally orienting a projection device
US20070016131A1 (en) * 2005-07-12 2007-01-18 Munger Gareth T Flexible magnets for navigable medical devices
US7416335B2 (en) * 2005-07-15 2008-08-26 Sterotaxis, Inc. Magnetically shielded x-ray tube
US8192374B2 (en) * 2005-07-18 2012-06-05 Stereotaxis, Inc. Estimation of contact force by a medical device
US20070062547A1 (en) * 2005-07-21 2007-03-22 Carlo Pappone Systems for and methods of tissue ablation
US20070060829A1 (en) * 2005-07-21 2007-03-15 Carlo Pappone Method of finding the source of and treating cardiac arrhythmias
US20070043455A1 (en) * 2005-07-26 2007-02-22 Viswanathan Raju R Apparatus and methods for automated sequential movement control for operation of a remote navigation system
US20070040670A1 (en) * 2005-07-26 2007-02-22 Viswanathan Raju R System and network for remote medical procedures
US20070060962A1 (en) * 2005-07-26 2007-03-15 Carlo Pappone Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation
US20070060916A1 (en) * 2005-07-26 2007-03-15 Carlo Pappone System and network for remote medical procedures
US7818076B2 (en) 2005-07-26 2010-10-19 Stereotaxis, Inc. Method and apparatus for multi-system remote surgical navigation from a single control center
US7495537B2 (en) * 2005-08-10 2009-02-24 Stereotaxis, Inc. Method and apparatus for dynamic magnetic field control using multiple magnets
US20070049909A1 (en) * 2005-08-26 2007-03-01 Munger Gareth T Magnetically enabled optical ablation device
US20070055124A1 (en) * 2005-09-01 2007-03-08 Viswanathan Raju R Method and system for optimizing left-heart lead placement
US7662126B2 (en) * 2005-09-02 2010-02-16 Stereotaxis, Inc. Ultrasonic disbursement of magnetically delivered substances
WO2007067655A2 (en) 2005-12-06 2007-06-14 Stereotaxis, Inc. Smart card control of medical devices
US20070149946A1 (en) 2005-12-07 2007-06-28 Viswanathan Raju R Advancer system for coaxial medical devices
US20070161882A1 (en) 2006-01-06 2007-07-12 Carlo Pappone Electrophysiology catheter and system for gentle and firm wall contact
US20080015670A1 (en) * 2006-01-17 2008-01-17 Carlo Pappone Methods and devices for cardiac ablation
US20070197899A1 (en) 2006-01-17 2007-08-23 Ritter Rogers C Apparatus and method for magnetic navigation using boost magnets
US20070197906A1 (en) 2006-01-24 2007-08-23 Ritter Rogers C Magnetic field shape-adjustable medical device and method of using the same
US20070250041A1 (en) 2006-04-19 2007-10-25 Werp Peter R Extendable Interventional Medical Devices
US20070270686A1 (en) 2006-05-03 2007-11-22 Ritter Rogers C Apparatus and methods for using inertial sensing to navigate a medical device
US20080039705A1 (en) * 2006-05-03 2008-02-14 Viswanathan Raju R Map based intuitive device control and sensing to navigate a medical device
WO2008003059A2 (en) * 2006-06-28 2008-01-03 Stereotaxis, Inc. Electrostriction devices and methods for assisted magnetic navigation
US20080015427A1 (en) * 2006-06-30 2008-01-17 Nathan Kastelein System and network for remote medical procedures
WO2008022148A2 (en) * 2006-08-14 2008-02-21 Stereotaxis, Inc. Method and apparatus for ablative recanalization of blocked vasculature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040223636A1 (en) * 1999-11-19 2004-11-11 Edic Peter Michael Feature quantification from multidimensional image data
US20010036303A1 (en) * 1999-12-02 2001-11-01 Eric Maurincomme Method of automatic registration of three-dimensional images
WO2005031635A1 (en) * 2003-09-25 2005-04-07 Paieon, Inc. System and method for three-dimensional reconstruction of a tubular organ
US20060098010A1 (en) * 2004-03-09 2006-05-11 Jeff Dwyer Anatomical visualization and measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127520A1 (en) * 2017-01-05 2018-07-12 Koninklijke Philips N.V. Visualizing a course of a vasculature structure with an occlusion
US11000250B2 (en) 2017-01-05 2021-05-11 Koninklijke Philips N.V. Visualizing a course of a vasculature structure with an occlusion

Also Published As

Publication number Publication date
WO2008051841A3 (en) 2008-07-03
US8135185B2 (en) 2012-03-13
US20080097200A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
US8135185B2 (en) Location and display of occluded portions of vessels on 3-D angiographic images
US11857281B2 (en) Robot-assisted driving systems and methods
US7590442B2 (en) Method for determining the position of an instrument with an x-ray system
US7809176B2 (en) Device and method for automated planning of an access path for a percutaneous, minimally invasive intervention
EP1599137B1 (en) Intravascular imaging
US20080275467A1 (en) Intraoperative guidance for endovascular interventions via three-dimensional path planning, x-ray fluoroscopy, and image overlay
EP1267741B1 (en) Trajectory storage apparatus for surgical navigation systems
US8867801B2 (en) Method for determining properties of a vessel in a medical image
EP1865850B1 (en) Method and apparatus for the observation of a catheter in a vessel system
US20070021668A1 (en) Method for pre-interventional planning of a 2D fluoroscopy projection
WO2011086475A1 (en) Navigating an interventional device
WO2008107874A2 (en) Method, system and computer product for planning needle procedures
US7860282B2 (en) Method for supporting an interventional medical operation
US8731643B2 (en) Imaging system and methods for medical needle procedures
EP3389540B1 (en) Navigation assistance system
Goksu et al. Endovascular navigation based on real/virtual environments cooperation for computer-assisted TEAM procedures
EP3454293B1 (en) Method and apparatus for enhancement of bronchial airways representations using vascular morphology
US11707332B2 (en) Image space control for endovascular tools
US11690683B2 (en) Vision-based position and orientation determination for endovascular tools
US20240000517A1 (en) Image space control for endovascular tools
US20220401152A1 (en) Method for visual support in navigation and system
EP3547255B1 (en) Locating an opening of a body cavity
US20230355320A1 (en) Vision-based position and orientation determination for endovascular tools
WO2023096679A1 (en) Image space control for endovascular tools
CN117814823A (en) Laser ablation method and system based on CT guidance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07844448

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07844448

Country of ref document: EP

Kind code of ref document: A2