WO2010018282A1 - Method and apparatus for correcting ultrasound images by means of phase analysis - Google Patents

Method and apparatus for correcting ultrasound images by means of phase analysis Download PDF

Info

Publication number
WO2010018282A1
WO2010018282A1 PCT/ES2009/070303 ES2009070303W WO2010018282A1 WO 2010018282 A1 WO2010018282 A1 WO 2010018282A1 ES 2009070303 W ES2009070303 W ES 2009070303W WO 2010018282 A1 WO2010018282 A1 WO 2010018282A1
Authority
WO
WIPO (PCT)
Prior art keywords
phases
correction
ultrasonic images
phase coherence
opening data
Prior art date
Application number
PCT/ES2009/070303
Other languages
Spanish (es)
French (fr)
Inventor
Carlos Fritsch Yusta
Montserrat Parrilla Romero
Jorge CAMACHO SOSA DÍAS
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2010018282A1 publication Critical patent/WO2010018282A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/06Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52047Techniques for image enhancement involving transmitter or receiver for elimination of side lobes or of grating lobes; for increasing resolving power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52049Techniques for image enhancement involving transmitter or receiver using correction of medium-induced phase aberration

Definitions

  • the object of this invention is to provide a method for correcting and improving, in real time, the quality of the ultrasonic images obtained by conventional methods by means of arrays or arrays of transducer elements and digital beam shaping techniques.
  • an apparatus for carrying out the process of the invention is also described, and which can be easily incorporated and adapted to existing beam shapers.
  • a focal law is the set of delays calculated to deflect and focus the beam in a certain direction and range depending on the geometry of the array, the coupling to the medium to be inspected and the propagation speeds of the ultrasound. Changing the focal law modifies the direction and focal length of the beam, which allows sweeping the region of interest with foci located at the same or at different depths. With linear arrays the scanning is flat and, with the two-dimensional scanning of a volume can be performed.
  • the echoes that reach the receiving array (usually the same as the emitter) as a result of reflections in discontinuities in the medium, are amplified, digitized and delayed individually for each element / N of the receiving array, 1 ⁇ i ⁇ N, obtaining the data of the aperture S, (7cJ, where k represents an index in the signal of length L (1 ⁇ k ⁇ L).
  • the focal law applied in reception compensates for differences in the flight time of the ultrasound from Ia emission to the focus and to each element
  • constructive interferences occur if they come from the focus or destructive if they come from other regions, a process called coherent sum.
  • coherent sum a process called coherent sum.
  • the most advanced systems dynamically vary the focal law so that the focus is placed, at all times, on the position occupied by the ultrasonic pulse in its propagation through the medium, thus obtaining an image focused on its entire length ( dynamic focusing technique).
  • the image When visualizing the intensity of the received signals, the image shows the amplitude of the reflectors in the positions they occupy.
  • the element that performs the focusing of the received signals is called a beam shaper.
  • Methods for performing conformators with dynamic focusing are described, for example, in C. Fritsch et al., "Consistent composition of signals by progressive focal correction", Pat. 2004/00203, 30 Jan. 2004, or in M. D. Poland, “Ultrasonic diagnostic imaging with automatic adjustment of beamforming parameters", US2007 / 0088213 A1, Apr. 19, 2007.
  • the lateral and grid lobes significantly deteriorate the quality of the image obtained. Both produce indications where there are no reflectors, limiting the dynamic range and contrast of the images. In particular, anechoic areas where indications should not appear are contaminated by those corresponding to the lateral or grid lobes of nearby reflectors or dispersers.
  • the width of the main lobe in the lateral pattern of the beam primarily determines the lateral resolution of the image for intense signals.
  • the lateral resolution is determined by the width of the lateral lobes on both sides of the main.
  • the apodization techniques standardize the lateral resolution, reducing the amplitude of the lateral lobes at the expense of widening the main lobe, with the consequent loss of lateral resolution for intense signals.
  • d) The appearance of phase aberrations, which are produced by the variations in ultrasonic propagation speed in non-homogeneous media, causing focalization errors when modifying the trajectory and / or the flight time of the ultrasonic pulse. These focusing errors blur the image and cause loss of resolution and contrast.
  • the first three limitations are a function of the geometry of the array and the wavelength. Thus, for a long time, it was considered that these limits could not be exceeded.
  • techniques have been proposed that allow the introduction of corrections in the images obtained, with the aim of reducing or canceling unwanted indications in the image, produced by lateral or grid lobes, maintaining or improving other aspects such as resolution. lateral and the signal-to-noise ratio.
  • a shaped sample is the result of adding the signals received once focused.
  • the coherence factor can be used to adjust emission or reception parameters in an iterative process and optimize some quality criteria (KF Ustuner et al., "Coherence Factor adaptive ultrasound imaging methods and systems", Pat. US2005 / 0228279, Oct 13. 2005).
  • Equation (2) GCF (k) ⁇ C (k), which decreases the correction of non-coherent signals, as are the indications of diffuse reflectors.
  • opening data refers to the signals received by the transducers, once amplified, digitized and temporarily delayed (focused), as defined above in this document.
  • the opening data then, are added together to obtain a single value, which will be called a "conformed sample”.
  • the element that performs, at least, the targeting of the received signals and the subsequent sum of the opening data is a "beam shaper”.
  • the image quality improvement procedures of the prior art are based on weighing the formed sample using coherence factors obtained from amplitude relations of the opening data, without explicitly considering the important phase information contained in the signals. That is why they fail to cancel or reduce the grid lobes, where the amplitudes of the coherent and incoherent sums are similar, producing a coherence factor close to the unit that leaves the shaped sample virtually invariable and, therefore, keeps the false ones. indications of the grid lobes.
  • the present invention overcomes these limitations of conventional procedures by analyzing the variability of the phases in the opening data, evaluating a phase coherence factor with values between 0 and 1. Therefore, from The phases of the opening data calculate a phase coherence factor that is independent of the amplitude of the signals.
  • the process of the invention produces phase coherence factors of lower values, thus achieving a more effective cancellation of inconsistent data.
  • This new procedure improves the quality of the images obtained by an ultrasonic imaging system in all the aspects defined above. That is, it is possible to reduce the lateral lobes, the grid lobes, the effects of the phase aberrations and the main lobe is narrowed to improve the lateral resolution, contrast and dynamic range of the image and the signal-to-noise ratio.
  • the method proposed in this invention allows adjusting the level of the correction, either automatically or by the operator of the system, being able to reach in the limit to cancel all the indications of the lateral lobes and reduce the width of the main lobe, with the consequent increase in lateral resolution and contrast.
  • a method for the correction of ultrasonic images comprises the operation of multiplying the sample formed by a phase coherence factor based on the dispersion of the phases of the opening data.
  • phase dispersion refers to the degree of diversity of the phases of the signals that make up the opening data.
  • a low phase dispersion corresponds to a set of signals that are all in phase or almost in phase or, in other words, that has a high phase similarity. Therefore, the terms “dispersion” and “similarity” of phases are in inverse relationship.
  • a set of signals have a high “phase coherence” if the dispersion of its phases is low or, equivalently, if its similarity is high.
  • dispersion in this context, intends to refer to any parameter that reflects the distribution of the phases, without necessarily being limited to the parameters that are commonly known as “dispersion” in the field of statistics. As will be described later in the present document, there are different ways of quantifying the dispersion of the phases corresponding to different preferred embodiments of the invention.
  • phase coherence factor CF (k)
  • a high value of the phase coherence factor (close to 1) means that the delays applied have correctly compensated for the differences in flight time to each element and, therefore, come from the focus.
  • a reduced value of the phase coherence factor (close to 0) means that the delays applied have not adequately compensated for differences in flight times and, consequently, the signals do not come from the focus.
  • the phase coherence factor is used to weigh the result of the sample formed according to the following expression:
  • the procedure proposed in this invention recognizes the origin of the signals and acts to correct the unwanted effects on the image or to improve its quality.
  • phase coherence factor CF (TcJ is maximum, with a unit value (zero phase dispersion).
  • the signals are no longer constructively composed.
  • the phases of the opening data show a great disparity that produces a very low phase coherence factor, CF (k) to O.
  • CF (k) phase coherence factor
  • the grid lobes result from distributed replication of indications of reflectors located on the main lobe.
  • phase Sl, (k) and quadrature SQ, (k) tan (5)
  • the beam shapers that operate in the baseband directly have the analytical signal in phase and quadrature, so that the application of Equation (5) is enough to obtain the phase ⁇ , (k) in each channel / for each range k .
  • the resulting phase must be in the interval (- ⁇ , ⁇ ).
  • the instantaneous phase of the opening data can be obtained with arbitrary precision. Greater precision requires greater electronic complexity, but does not provide a corresponding improvement in the suppression of non-coherent signals. For this reason the phases will preferably be calculated with relatively low accuracy, typically with a resolution between 1 and 8 bits.
  • ⁇ (k) is' f ase of the sample k of the signal / data of the opening; a is an adjustment parameter; Y
  • J is an estimator of the dispersion (or similarity) of the phases of the signals of the opening. It can be a dispersion measurement statistic, such as the range, the
  • JW i ⁇ ) ⁇ o, that is, when the dispersion of the phases is minimal or, equivalently, their similarity is maximum.
  • the minimum CF (k) 0 is obtained when • / l ⁇ v ⁇ ll> 1 / Qi that is, when the dispersion of the phases reaches a certain programmable value by means of the ⁇ parameter.
  • the standard deviation J is used as estimator.
  • the coherence factor It is calculated as:
  • cr [ ⁇ p, (£)] represents the standard deviation of the phases of the opening data
  • CU 1 preferably takes
  • Equation (8) has a unit value when all phases are equal, and therefore the standard deviation is zero, and a zero value when
  • the standard deviation of the phases reaches or exceeds the value -.
  • the variance is used as estimator J :
  • ⁇ 2 [#>, (&)] represents the variance of the phases of the opening data
  • the normalization coefficient at 2 takes, preferably,
  • equations can be defined to calculate the phase coherence coefficient based on other statistical moments that measure the dispersion of the random variable ⁇ t (k), such as kurtosis or other higher order moments.
  • the phases of the signals of the opening data which occupy the interval (- ⁇ , ⁇ ), are evaluated with a single bit b to which the values -1 and +1 are assigned for the angular intervals (0, ⁇ ] and [ - ⁇ , 0], respectively.
  • the dispersion of the phases corresponds to that of a discrete random variable with two values, so the Equations (7) to (9) above apply, substituting ⁇ Xk) for bXK).
  • the variance of the variable b ⁇ for a given range / c is:
  • Equation (9) the coherence factor of phase by polarity CFP (k) as:
  • CFP (k) The variation range of CFP (k) is 0 to 1, for any value of the exponent P.
  • CFP (k) is zero when the variance is maximum and equal to 1 (see Equation 12), which represents signals with a great diversity of phases and, therefore, of low coherence.
  • CFP (k) is unitary when the variance is canceled, a situation that occurs when all signals are in phase and, therefore, are consistent.
  • the factor CFP (k) can be used to correct the ultrasonic images by application of Equation (4) by substituting CF (TcJ for CFP (k).
  • a second aspect of the invention is directed to an apparatus for the correction of ultrasonic images, which comprises means to calculate a coefficient of phase coherence from the phases of the opening data and a means to multiply said coherence factor by The formed sample.
  • the apparatus of the invention uses all the information of the phases of the opening data to calculate the phase coherence coefficient.
  • the means to calculate the phase coherence coefficient include:
  • phase and quadrature signals of the opening data are available directly, for example, when a baseband beam shaper is used.
  • an additional calculation means is necessary connected to the first calculation means, which receives the opening data and calculates the signals in phase and quadrature according to The equation:
  • the apparatus of the invention takes only the signs of the phases of the opening data.
  • the means to calculate the phase coherence coefficient include:
  • the apparatus further comprises a means for detecting equality of signs, which detects the equality of all signs b ⁇ and sends an indicative signal to the table.
  • the apparatus of the invention comprises means for manually selecting the value of the coefficient P.
  • the invention also extends to computer programs, particularly computer programs that are located on or within a carrier, adapted to carry out the process of the invention.
  • the program may have the form of source code, object code, an intermediate source of code and object code, for example, as in partially compiled form, or in any other form suitable for use in the implementation of the processes according to the invention .
  • the carrier can be any entity or device capable of supporting the program.
  • the carrier could include a storage medium, for example, a ROM, a CD ROM or a semiconductor ROM, or a magnetic recording medium, for example, a flexible disk or a hard disk.
  • the carrier can be a transmissible carrier, for example, an electrical or optical signal that could be transported through electrical or optical cable, by radio or by any other means.
  • the carrier can be constituted by said cable or another device or means.
  • the carrier could be an integrated circuit in which the program is included, the integrated circuit being adapted to execute, or to be used in the execution of, the corresponding processes.
  • Fig. 1 shows the typical architecture of a conventional digital beam shaper, highlighting the place of insertion of the image corrector proposed in this invention.
  • Fig. 2 shows a lateral pattern of the ultrasonic beam, to facilitate the identification of the different lobes involved in the formation of the image.
  • Fig. 3 shows the principle of obtaining the CF phase coherence factor for baseband and radiofrequency beam shapers.
  • Fig. 4 shows the general circuit to obtain the phase coherence factor by polarity CFP in any beamformer and the possible inclusion of optimizations.
  • Fig. 5 shows an embodiment example for 32 channels, which calculates the phase coherence factor by CFP polarity in real time, with which it corrects the images obtained by the beam shaper, highlighting the innovation introduced by this invention.
  • Fig. 6 presents a graph that relates the values of the phase coherence factor by polarity CFP with the number of coherent signals in a 32-channel system, for different values of the exponent P.
  • a system according to the prior art has the structure and devices shown in Figure 1, general architecture that is well known in the field with various variants.
  • the array (10) of transducers is composed of the N numbered transducer elements (1), (2), ..., (N). Each element generates an ultrasonic pulse when excited by an electrical signal and, reciprocally, generates electrical signals by receiving ultrasonic echoes.
  • the switch (11) connects the array elements (10) to the drivers (19) and, in reception, to the amplifiers (12).
  • the N exciters (19) are activated at calculated and coordinated time intervals to produce the deflection and focus of the beam in one direction and depth determined.
  • the switch (11) goes to the receiving position.
  • the generated ultrasonic beam propagates through the inspected medium (21), producing echoes in each discontinuity. These echoes return to the array (10) where they are received by the N elements (1) through (N).
  • the signals pass through the switch (11) and are amplified by N amplifiers (12), optionally with different gains to perform the apodization operation.
  • the amplified signals are digitized by N analog-digital converters (13) independently.
  • the outputs R 1 , R 2 , ..., R N of the A / D converters are connected to independent delay devices (14) for each signal. The delays are adjusted to compensate for differences in flight time from the emission to the focus and to each element from the control device (22).
  • the data set of the opening (20) is obtained, composed of the N delayed signals S ?, S 2 , ..., S N -
  • An adder (15) performs the sum of these signals to obtain the output x, which is focused by the delays applied to the set of signals Ri, R 2 , ..., R N - THE most advanced systems dynamically modify these delays, in a beam shaper, to follow the ultrasonic pulse in its propagation through the medium ( 21), so that the signal x obtained is focused on its entire length (dynamic focusing technique).
  • the signal x passes to an envelope detector
  • the effect of the conformation of the ultrasonic beam in emission is that a reflector in the vicinity of the focus produces a high intensity echo which, in turn, is focused on reception by compensating the flight times to each element by the introduction of the corresponding delays.
  • the presence of lateral lobes (B) is observed, especially high in the vicinity of the main lobe to which they widen, and a large grid lobe (C).
  • the grid lobe appears when the distance between array elements is greater than half a wavelength ( ⁇ / 2), as usual with scattered openings.
  • the lateral lobes next to the main one reduce the lateral resolution of the imaging system.
  • a reflector located in the direction ⁇ o of the main lobe (A) produces a maximum amplitude at the output of the shaper (0 dB) for the focal law that corresponds to the deflection ⁇ o and its range.
  • the focal law is modified to visualize the signals coming from the ⁇ i direction, where there is no reflector, at the exit of the shaper a signal is obtained with the amplitude corresponding to the grid lobe, due to the replica of the reflector in ⁇ o.
  • the corresponding amplitudes will be obtained, although there are no reflectors.
  • the delays are calculated for a given ultrasound propagation speed, but the variations that it suffers in its propagation by non-homogeneous means are unknown, producing focusing errors or phase aberrations that blur the image.
  • the width of the main lobe and the nearest lateral lobes determines the lateral resolution of the imaging system, that is, its ability to discriminate between two nearby reflectors.
  • FIG. 3 shows the block diagram of an apparatus (55a) according to the invention, in which the phase coherence factors are calculated, according to the procedure described above in this document, using all the information of the phase of the opening data.
  • Equation (6) for example when a baseband beam shaper is used, only one block (31) is required to evaluate the instantaneous phase of the opening data by application of Equation (5).
  • a Hilbert transformer (30) to carry out the operation of Equation (6).
  • f [ ⁇ t (k)] is a dispersion estimator, preferably the standard deviation or the variance of the N phases ⁇ t (k) for each range k, it is already an adjustable constant that determines the sensitivity of the factor CF (k ) to the dispersion of the phases.
  • FIG. 4 shows a simple electronic scheme used to implement Equation (15).
  • the sum SQ of the N signs can only produce values in a set that has ⁇ // 2 + 1 elements. This is the maximum number of entries needed in the table (41) for each value of P. There are some optimizations that can be made to further reduce the amount of resources used. So, the case
  • the output of the equal sign detector (43) activates the input U of the table (41) so that it provides a unit value at its output, reducing the total number of inputs required in the table (41) to ⁇ // 2 .
  • each change in the value of P loads new values in the table (41).
  • the time invested in this operation can be ignored (writing some tens of data).
  • P can be encoded to act jointly with SQ as an address in a single table, avoiding reloading of the table (41) (in Figure 4 the input of encoded P is indicated by dashed line).
  • the access address to the table (41) consists of two fields: the selector for the exponent P and the selector of the CFP value for the current SQ value.
  • the CFP value obtained from the table (41) weights in the multiplier (42) the signal x corresponding to the sample formed, to deliver the signal to the output and duly corrected with phase coherence by polarity.
  • the addition of a smoothing filter between the output of the table and the input in the multiplier will allow the elimination of transients in CFP, without this implying a substantial change, which is why it is not indicated in the figure.
  • the inputs to the corrector (55c) S- ⁇ , S 2 , ..., S 32 were the signals obtained after applying the focusing delays to the signals received by the N elements of the array.
  • Each S signal is expressed in complement to 2 with 12 bits. The sign is indicated by the most significant bit g ?, g 2 , --- Q32, which is interpreted by the adder (51) as +1 if the signal is positive and by -1 if it is negative.
  • Figure 5 includes the adder (50), which belongs to the shaper, to which 12-bit inputs arrive, producing the 17-bit x output (sum of 2 5 12-bit values) .
  • the sign bits qi, q 2 , ... q ⁇ were added in the adder (51), which produces the SQ output, expressed in the range (-32, 32).
  • Table (52) is a RAM memory to be able to modify its content, in which SQ acts as an address in reading, providing the following CF outputs depending on the value of the possible values of the absolute value
  • the values in the table are between 0 and 1, and can be expressed with fractional arithmetic. In this case, they are expressed with 10 bits.
  • the set of devices (55b) constitutes the phase coherence corrector that must be added to the beam shaper to improve the ultrasonic images in lateral resolution, dynamic range, contrast and signal / noise ratio according to the principles set forth in this invention.

Abstract

The invention relates to a method and apparatus enabling the real-time correction and improvement of the quality of ultrasound images obtained using traditional methods. For this purpose, the invention consists of multiplying the formed samples by phase coherence factors (CF(κ)) based on an analysis of the dispersion of the phases of the aperture data (S i )(κ)).

Description

PROCEDIMIENTO Y APARATO PARA LA CORRECCIÓN DE IMÁGENES ULTRASÓNICAS POR ANÁLISIS DE FASE PROCEDURE AND APPARATUS FOR THE CORRECTION OF ULTRASONIC IMAGES BY PHASE ANALYSIS
D E S C R I P C I Ó ND E S C R I P C I Ó N
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
El objeto de esta invención es proporcionar un procedimiento para corregir y mejorar, en tiempo real, Ia calidad de las imágenes ultrasónicas obtenidas por métodos convencionales mediante conjuntos o arrays de elementos transductores y técnicas digitales de conformación de haces. Además, se describe también un aparato para llevar a cabo el procedimiento de Ia invención, y que se puede incorporar y adaptar fácilmente a conformadores de haz existentes.The object of this invention is to provide a method for correcting and improving, in real time, the quality of the ultrasonic images obtained by conventional methods by means of arrays or arrays of transducer elements and digital beam shaping techniques. In addition, an apparatus for carrying out the process of the invention is also described, and which can be easily incorporated and adapted to existing beam shapers.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Los sistemas de imágenes ultrasónicas convencionales se basan en un conjunto o array de N elementos transductores, normalmente piezoeléctricos, que emiten pulsos ultrasónicos en dirección al medio que se desea inspeccionar, donde el instante de emisión de los pulsos está temporizado de tal modo que los pulsos individuales se suman formando un haz ultrasónico. Una ley focal es el conjunto de retardos calculados para deflectar y enfocar el haz en una dirección y rango determinados en función de Ia geometría del array, del acoplamiento al medio a inspeccionar y de las velocidades de propagación del ultrasonido. Cambiando Ia ley focal se modifican Ia dirección y distancia focal del haz, Io que permite barrer Ia región de interés con focos situados a las mismas o a diferentes profundidades. Con arrays lineales el barrido es plano y, con los bidimensionales se puede realizar el barrido de un volumen. En recepción, los ecos que llegan al array receptor (habitualmente el mismo que el emisor) como consecuencia de reflexiones en discontinuidades en el medio, son amplificados, digitalizados y retrasados individualmente para cada elemento / de los N del array receptor, 1≤i≤N, obteniendo los datos de Ia apertura S,(7cJ, donde k representa un índice en Ia señal de longitud L (1≤k≤L). La ley focal aplicada en recepción compensa las diferencias en el tiempo de vuelo del ultrasonido desde Ia emisión al foco y a cada elemento. Al sumar los N datos de Ia apertura (retrasados previamente), se producen interferencias constructivas si proceden del foco o destructivas si provienen de otras regiones, proceso que se denomina suma coherente. Los sistemas más avanzados varían dinámicamente Ia ley focal para que el foco se sitúe, en todo momento, sobre Ia posición que ocupa el pulso ultrasónico en su propagación por el medio, obteniendo así una imagen enfocada en toda su extensión (técnica de focalización dinámica).Conventional ultrasonic imaging systems are based on a set or array of N transducer elements, usually piezoelectric, that emit ultrasonic pulses in the direction of the medium to be inspected, where the moment of emission of the pulses is timed so that the pulses Individuals are added forming an ultrasonic beam. A focal law is the set of delays calculated to deflect and focus the beam in a certain direction and range depending on the geometry of the array, the coupling to the medium to be inspected and the propagation speeds of the ultrasound. Changing the focal law modifies the direction and focal length of the beam, which allows sweeping the region of interest with foci located at the same or at different depths. With linear arrays the scanning is flat and, with the two-dimensional scanning of a volume can be performed. On reception, the echoes that reach the receiving array (usually the same as the emitter) as a result of reflections in discontinuities in the medium, are amplified, digitized and delayed individually for each element / N of the receiving array, 1≤i≤ N, obtaining the data of the aperture S, (7cJ, where k represents an index in the signal of length L (1≤k≤L). The focal law applied in reception compensates for differences in the flight time of the ultrasound from Ia emission to the focus and to each element When adding the N opening data (previously delayed), constructive interferences occur if they come from the focus or destructive if they come from other regions, a process called coherent sum.The most advanced systems dynamically vary the focal law so that the focus is placed, at all times, on the position occupied by the ultrasonic pulse in its propagation through the medium, thus obtaining an image focused on its entire length ( dynamic focusing technique).
Al visualizar Ia intensidad de las señales recibidas, Ia imagen muestra Ia amplitud de los reflectores en las posiciones que ocupan. El elemento que realiza Ia focalización de las señales recibidas se denomina conformador de haz. Métodos para Ia realización de conformadores con focalización dinámica se describen, por ejemplo, en C. Fritsch et al., "Composición coherente de señales por corrección focal progresiva" , Pat. 2004/00203, 30 Ene. 2004, o en M. D. Poland, "Ultrasonic diagnostic imaging with automatic adjustment of beamforming parameters", US2007/0088213 A1 , Apr. 19, 2007.When visualizing the intensity of the received signals, the image shows the amplitude of the reflectors in the positions they occupy. The element that performs the focusing of the received signals is called a beam shaper. Methods for performing conformators with dynamic focusing are described, for example, in C. Fritsch et al., "Consistent composition of signals by progressive focal correction", Pat. 2004/00203, 30 Jan. 2004, or in M. D. Poland, "Ultrasonic diagnostic imaging with automatic adjustment of beamforming parameters", US2007 / 0088213 A1, Apr. 19, 2007.
Es bien conocido (por ejemplo, G. S. Kino, "Acoustic waves: devices, imaging and analog signal processing", Prentice Hall Inc., 1987) que Ia calidad de las imágenes ultrasónicas obtenidas con un conformador de haz como el descrito está limitada, principalmente, por: a) La resolución lateral o capacidad para distinguir dos reflectores próximos entre sí.It is well known (for example, GS Kino, "Acoustic waves: devices, imaging and analog signal processing", Prentice Hall Inc., 1987) that the quality of the ultrasonic images obtained with a beam former as described above is mainly limited , by: a) The lateral resolution or ability to distinguish two nearby reflectors from each other.
b) El rango dinámico o relación entre las señales de mayor y menor intensidad detectables sobre el ruido de fondo sin saturación que, a su vez, limita el contraste.b) The dynamic range or ratio between the highest and lowest intensity signals detectable over the background noise without saturation, which in turn limits the contrast.
c) La presencia de artefactos y, particularmente, de lóbulos de rejilla que aparecen cuando Ia distancia efectiva entre elementos es mayor que media longitud de onda. El límite de distancia entre elementos inferior a λ/2 se supera frecuentemente con arrays bidimensionales, para mantener Ia complejidad electrónica en dimensiones razonables y también en aplicaciones de imagen para Evaluación No Destructiva (END).c) The presence of artifacts and, in particular, of grid lobes that appear when the effective distance between elements is greater than half a wavelength. The limit of distance between elements less than λ / 2 is frequently exceeded with two-dimensional arrays, to maintain electronic complexity in reasonable dimensions and also in image applications for Non-Destructive Evaluation (END).
Los lóbulos laterales y de rejilla deterioran significativamente Ia calidad de Ia imagen obtenida. Ambos producen indicaciones donde no existen reflectores, limitando el rango dinámico y el contraste de las imágenes. En particular, zonas anecoicas en las que no deben aparecer indicaciones, quedan contaminadas por las que corresponden a los lóbulos laterales o de rejilla de reflectores o dispersores cercanos.The lateral and grid lobes significantly deteriorate the quality of the image obtained. Both produce indications where there are no reflectors, limiting the dynamic range and contrast of the images. In particular, anechoic areas where indications should not appear are contaminated by those corresponding to the lateral or grid lobes of nearby reflectors or dispersers.
Por su parte, Ia anchura del lóbulo principal en el patrón lateral del haz determina primariamente Ia resolución lateral de Ia imagen para señales intensas. Para las más débiles, Ia resolución lateral está determinada por Ia anchura de los lóbulos laterales a ambos lados del principal. Las técnicas de apodización uniformizan Ia resolución lateral, reduciendo Ia amplitud de los lóbulos laterales a expensas de ensanchar el lóbulo principal, con Ia consiguiente pérdida de resolución lateral para señales intensas. d) La aparición de aberraciones de fase, que se producen por las variaciones de velocidad de propagación ultrasónica en medios no homogéneos, provocando errores de focalización al modificar Ia trayectoria y/o el tiempo de vuelo del pulso ultrasónico. Estos errores de focalización, emborronan Ia imagen y provocan pérdidas de resolución y contraste.On the other hand, the width of the main lobe in the lateral pattern of the beam primarily determines the lateral resolution of the image for intense signals. For the weakest, the lateral resolution is determined by the width of the lateral lobes on both sides of the main. The apodization techniques standardize the lateral resolution, reducing the amplitude of the lateral lobes at the expense of widening the main lobe, with the consequent loss of lateral resolution for intense signals. d) The appearance of phase aberrations, which are produced by the variations in ultrasonic propagation speed in non-homogeneous media, causing focalization errors when modifying the trajectory and / or the flight time of the ultrasonic pulse. These focusing errors blur the image and cause loss of resolution and contrast.
Las tres primeras limitaciones son función de Ia geometría del array y de Ia longitud de onda. Así, durante mucho tiempo, se consideró que dichos límites no podían ser superados. Sin embargo, más recientemente, se han propuesto técnicas que permiten introducir correcciones en las imágenes obtenidas, con el objetivo de reducir o cancelar las indicaciones no deseadas en Ia imagen, producidas por lóbulos laterales o de rejilla, manteniendo o mejorando otros aspectos como Ia resolución lateral y Ia relación señal/ruido.The first three limitations are a function of the geometry of the array and the wavelength. Thus, for a long time, it was considered that these limits could not be exceeded. However, more recently, techniques have been proposed that allow the introduction of corrections in the images obtained, with the aim of reducing or canceling unwanted indications in the image, produced by lateral or grid lobes, maintaining or improving other aspects such as resolution. lateral and the signal-to-noise ratio.
La idea generalmente seguida hasta ahora consiste en estimar un factor de coherencia indicativo de Ia calidad de Ia focalización para cada muestra k conformada. Una muestra conformada es el resultado de sumar las señales recibidas una vez focalizadas. Así, al aplicar el factor de coherencia a Ia salida del conformador, las muestras con un alto valor de coherencia se mantienen, mientras que se reducen las que presentan un bajo valor de coherencia.The idea generally followed so far is to estimate a coherence factor indicative of the quality of the targeting for each sample k conformed. A shaped sample is the result of adding the signals received once focused. Thus, when applying the coherence factor to the output of the shaper, samples with a high coherence value are maintained, while those with a low coherence value are reduced.
En Ia propuesta original (K. W. Rigby, "Method and apparatus for coherence filtering of ultrasound images", US. Pat. 5.910.115, Jun. 8, 1999), para cada rango k, se calcula el factor de coherencia C(TcJ a partir de los datos de Ia apertura S,(k), λ ≤i≤N, como Ia relación entre el valor absoluto de Ia suma coherente y de Ia suma incoherente, esto es:
Figure imgf000007_0001
In the original proposal (KW Rigby, "Method and apparatus for coherence filtering of ultrasound images", US Pat. 5,910,115, Jun. 8, 1999), for each rank k, the coherence factor C (TcJ a from the data of the opening S, (k), λ ≤i≤N, as the ratio between the absolute value of the coherent sum and the incoherent sum, that is:
Figure imgf000007_0001
Una variante (K. W. Hollman et al., "Coherence factor of speckle from a multi-row probé" , Proc. IEEE Ultrasonic Symposium, pp. 1257-1260, 1999) es:A variant (K. W. Hollman et al., "Coherence factor of speckle from a multi-row I tried", Proc. IEEE Ultrasonic Symposium, pp. 1257-1260, 1999) is:
Figure imgf000007_0002
Figure imgf000007_0002
donde se relacionan energías en lugar de amplitudes. Otra variante (A. L. Hall et al, "Method and apparatus for coherent imaging", US. Pat. 6.071240, 6 Jun. 2000) relaciona Ia suma coherente con Ia obtenida por un segundo conformador con retardos de focalización iguales a cero. En este caso, Ia coherencia aumenta con Ia disimilitud entre ambas magnitudes.where energies are related instead of amplitudes. Another variant (A. L. Hall et al., "Method and apparatus for coherent imaging", US Pat. 6.071240, 6 Jun. 2000) relates the sum consistent with that obtained by a second shaper with focalization delays equal to zero. In this case, the coherence increases with the dissimilarity between both magnitudes.
El factor de coherencia puede usarse para ajustar parámetros de emisión o recepción en un proceso iterativo y optimizar algún criterio de calidad (K. F. Ustuner et al., "Coherence Factor adaptive ultrasound imaging methods and systems", Pat. US2005/0228279, 13 Oct. 2005).The coherence factor can be used to adjust emission or reception parameters in an iterative process and optimize some quality criteria (KF Ustuner et al., "Coherence Factor adaptive ultrasound imaging methods and systems", Pat. US2005 / 0228279, Oct 13. 2005).
Otra variante es el factor de coherencia generalizado (P. C. Li, M. Li,Another variant is the generalized coherence factor (P. C. Li, M. Li,
"Adaptive Imaging using the Generalized Coherence Factor", IEEE Trans. Ultr., Ferroelec. and Freq, Contr., 50, 2, pp. 128-141 , 2003) que se obtiene del espectro PQM) de los datos de Ia apertura:
Figure imgf000008_0001
"Adaptive Imaging using the Generalized Coherence Factor", IEEE Trans. Ultr., Ferroelec. and Freq, Contr., 50, 2, pp. 128-141, 2003) that is obtained from the PQM spectrum) of the opening data:
Figure imgf000008_0001
donde el parámetro M«N, elige una banda de bajas frecuencias del espectro. Para M=O el resultado equivale al de Ia Ecuación (2). Para M>0, GCF(k) ≥ C(k), con Io que disminuye Ia corrección de señales no coherentes, como son las indicaciones de los reflectores difusos.where the parameter M «N, chooses a low frequency band of the spectrum. For M = O the result is equivalent to that of Equation (2). For M> 0, GCF (k) ≥ C (k), which decreases the correction of non-coherent signals, as are the indications of diffuse reflectors.
Recientemente, se ha propuesto un método específico para suprimir las indicaciones de los lóbulos de rejilla (K. F. Ustuner et al., "Adaptive grating lobe suppression in ultrasound imaging", US Pat. 7207942 B2, 24 Abr. 2007). Utilizando técnicas de correlación cruzada, el método determina si una indicación procede del foco o de un lóbulo de rejilla, filtrando los datos de Ia apertura o el resultado de Ia suma coherente en función del resultado.Recently, a specific method has been proposed to suppress the indications of the grid lobes (K. F. Ustuner et al., "Adaptive grating lobe suppression in ultrasound imaging", US Pat. 7207942 B2, Apr 24, 2007). Using cross-correlation techniques, the method determines whether an indication comes from the focus or from a grid lobe, filtering the data of the aperture or the result of the coherent sum based on the result.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
En el presente documento, el término "datos de Ia apertura" hace referencia a las señales recibidas por los transductores, una vez amplificadas, digitalizadas y temporalmente retardadas (focalizadas), según se ha definido más arriba en el presente documento. Los datos de Ia apertura, a continuación, se suman para obtener un solo valor, que se denominará "muestra conformada". El elemento que realiza, al menos, Ia focalización de las señales recibidas y Ia posterior suma de los datos de apertura es un "conformador de haz".In this document, the term "opening data" refers to the signals received by the transducers, once amplified, digitized and temporarily delayed (focused), as defined above in this document. The opening data, then, are added together to obtain a single value, which will be called a "conformed sample". The element that performs, at least, the targeting of the received signals and the subsequent sum of the opening data is a "beam shaper".
Los procedimientos de mejora de calidad de imágenes de las técnicas anteriores se basan en ponderar Ia muestra conformada utilizando factores de coherencia obtenidos a partir de relaciones de amplitud de los datos de Ia apertura, sin considerar explícitamente Ia importante información de fase contenida en las señales. Por eso fallan en Ia cancelación o reducción de los lóbulos de rejilla, donde las amplitudes de las sumas coherente e incoherente son similares, produciendo un factor de coherencia próximo a Ia unidad que deja prácticamente invariable Ia muestra conformada y, por tanto, mantiene las falsas indicaciones de los lóbulos de rejilla.The image quality improvement procedures of the prior art are based on weighing the formed sample using coherence factors obtained from amplitude relations of the opening data, without explicitly considering the important phase information contained in the signals. That is why they fail to cancel or reduce the grid lobes, where the amplitudes of the coherent and incoherent sums are similar, producing a coherence factor close to the unit that leaves the shaped sample virtually invariable and, therefore, keeps the false ones. indications of the grid lobes.
La presente invención, en cambio, supera estas limitaciones de los procedimientos convencionales mediante el análisis de Ia variabilidad de las fases en los datos de Ia apertura, evaluando un factor de coherencia de fase con valores entre 0 y 1. Por tanto, a partir de las fases de los datos de Ia apertura se calcula un factor de coherencia de fase que es independiente de Ia amplitud de las señales. Así, mientras que Ia relación de amplitudes de otras aproximaciones produce factores de coherencia cuyos valores son del orden del cociente entre Ia amplitud del lóbulo lateral y el lóbulo principal, el procedimiento de Ia invención produce factores de coherencia de fase de valores inferiores, consiguiendo así una cancelación más efectiva de los datos incoherentes.The present invention, on the other hand, overcomes these limitations of conventional procedures by analyzing the variability of the phases in the opening data, evaluating a phase coherence factor with values between 0 and 1. Therefore, from The phases of the opening data calculate a phase coherence factor that is independent of the amplitude of the signals. Thus, while the ratio of amplitudes of other approaches produces coherence factors whose values are of the order of the quotient between the amplitude of the lateral lobe and the main lobe, the process of the invention produces phase coherence factors of lower values, thus achieving a more effective cancellation of inconsistent data.
Este nuevo procedimiento mejora Ia calidad de las imágenes obtenidas por un sistema de imágenes ultrasónicas en todos los aspectos definidos anteriormente. Es decir, se consigue reducir los lóbulos laterales, los lóbulos de rejilla, los efectos de las aberraciones de fase y se estrecha el lóbulo principal para mejorar Ia resolución lateral, contraste y rango dinámico de Ia imagen y Ia relación señal-ruido.This new procedure improves the quality of the images obtained by an ultrasonic imaging system in all the aspects defined above. That is, it is possible to reduce the lateral lobes, the grid lobes, the effects of the phase aberrations and the main lobe is narrowed to improve the lateral resolution, contrast and dynamic range of the image and the signal-to-noise ratio.
Además, el método propuesto en esta invención permite ajustar el nivel de Ia corrección, bien automáticamente o bien por parte del operador del sistema, pudiendo llegar en el límite a anular todas las indicaciones de los lóbulos laterales y reducir Ia anchura del lóbulo principal, con el consiguiente aumento de Ia resolución lateral y del contraste.In addition, the method proposed in this invention allows adjusting the level of the correction, either automatically or by the operator of the system, being able to reach in the limit to cancel all the indications of the lateral lobes and reduce the width of the main lobe, with the consequent increase in lateral resolution and contrast.
Por tanto, de acuerdo con un primer aspecto de Ia invención, se describe un procedimiento para Ia corrección de imágenes ultrasónicas, caracterizado porque comprende Ia operación de multiplicar Ia muestra conformada por un factor de coherencia de fase basado en Ia dispersión de las fases de los datos de Ia apertura.Therefore, according to a first aspect of the invention, a method for the correction of ultrasonic images is described, characterized in that it comprises the operation of multiplying the sample formed by a phase coherence factor based on the dispersion of the phases of the opening data.
El término "dispersión de las fases", en el presente documento, hace referencia al grado de diversidad de las fases de las señales que conforman los datos de Ia apertura. Por ejemplo, una dispersión de las fases baja corresponde a un conjunto de señales que están todas en fase o casi en fase o, en otros términos, que posee una elevada similitud de fases. Por consiguiente, los términos "dispersión" y "similitud" de fases están en relación inversa. Del mismo modo, diremos que un conjunto de señales poseen una elevada "coherencia de fase" si Ia dispersión de sus fases es baja o, equivalentemente, si su similitud es elevada. Es necesario remarcar que el término "dispersión", en este contexto, pretende hacer referencia a cualquier parámetro que refleje Ia distribución de las fases, sin quedar necesariamente limitado a los parámetros que comúnmente se conocen como "dispersión" en el campo de Ia estadística. Como se describirá posteriormente en el presente documento, existen diferentes modos de cuantificar Ia dispersión de las fases que corresponden a diferentes realizaciones preferidas de Ia invención.The term "phase dispersion", in this document, refers to the degree of diversity of the phases of the signals that make up the opening data. For example, a low phase dispersion corresponds to a set of signals that are all in phase or almost in phase or, in other words, that has a high phase similarity. Therefore, the terms "dispersion" and "similarity" of phases are in inverse relationship. In the same way, we will say that a set of signals have a high "phase coherence" if the dispersion of its phases is low or, equivalently, if its similarity is high. It is necessary to emphasize that the term "dispersion", in this context, intends to refer to any parameter that reflects the distribution of the phases, without necessarily being limited to the parameters that are commonly known as "dispersion" in the field of statistics. As will be described later in the present document, there are different ways of quantifying the dispersion of the phases corresponding to different preferred embodiments of the invention.
Por tanto, del análisis de Ia dispersión de las fases de las señales de eco recibidas por los diferentes elementos del array, una vez amplificadas, digitalizadas, y retrasadas para crear un foco en una dirección θo y una profundidad rk determinadas, se obtiene el factor de coherencia de fase, CF(k), con un valor comprendido entre 0 y 1 para cada rango k, 1≤ k ≤ L. Un valor elevado del factor de coherencia de fase (próximo a 1 ) significa que los retardos aplicados han compensado correctamente las diferencias en tiempo de vuelo a cada elemento y, por tanto, proceden del foco. Un valor reducido del factor de coherencia de fase (próximo a 0) significa que los retardos aplicados no han compensado debidamente las diferencias en los tiempos de vuelo y, consecuentemente, las señales no proceden del foco. El factor de coherencia de fase se utiliza para ponderar el resultado de Ia muestra conformada según Ia siguiente expresión:Therefore, from the analysis of the dispersion of the phases of the echo signals received by the different elements of the array, once amplified, digitized, and delayed to create a focus in a given direction profundidado and a depth r k , the phase coherence factor, CF (k), with a value between 0 and 1 for each range k, 1≤ k ≤ L. A high value of the phase coherence factor (close to 1) means that the delays applied have correctly compensated for the differences in flight time to each element and, therefore, come from the focus. A reduced value of the phase coherence factor (close to 0) means that the delays applied have not adequately compensated for differences in flight times and, consequently, the signals do not come from the focus. The phase coherence factor is used to weigh the result of the sample formed according to the following expression:
y(k) = CF(k)-χ(k) = CF(k)∑ S1 (k) (4)y (k) = CF (k) -χ (k) = CF (k) ∑ S 1 (k) (4)
de forma que, cuando CF(TcJ » 1 , Ia el resultado y(k) de Ia ponderación será básicamente igual a Ia simple suma x(k) de los datos de Ia apertura, mientras que, cuando CF(k) « 0, Ia salida y(k) tenderá a cero, limitando significativamente Ia amplitud correspondiente a muestras conformadas con una baja coherencia.so that, when CF (TcJ »1, the result y (k) of the weighting will be basically equal to the simple sum x (k) of the opening data, whereas, when CF (k)« 0, The output and (k) will tend to zero, significantly limiting the amplitude corresponding to samples formed with a low coherence.
De este modo, el procedimiento propuesto en esta invención reconoce Ia procedencia de las señales y actúa para corregir los efectos no deseados en Ia imagen o para mejorar su calidad.Thus, the procedure proposed in this invention recognizes the origin of the signals and acts to correct the unwanted effects on the image or to improve its quality.
Así, un reflector situado en Ia dirección central del lóbulo principal produce señales en fase, con Io que Ia suma es constructiva y da lugar al máximo de amplitud en el patrón lateral del haz. En estas condiciones, el factor de coherencia de fase CF(TcJ es máximo, con un valor unitario (dispersión de fases nula).Thus, a reflector located in the central direction of the main lobe produces signals in phase, so that the sum is constructive and gives rise to the maximum amplitude in the lateral pattern of the beam. Under these conditions, the phase coherence factor CF (TcJ is maximum, with a unit value (zero phase dispersion).
Sin embargo, al desplazarse el reflector lateralmente dentro del lóbulo principal, algunas señales dejan de estar en fase. Al aumentar Ia disparidad de las fases, se reduce el factor de coherencia de fase CF(k). De esta forma, al realizar Ia corrección de Ia suma de los datos de Ia apertura por aplicación de (4), se reduce Ia anchura del lóbulo principal y, por consiguiente, mejora Ia resolución lateral.However, when the reflector moves laterally within the main lobe, some signals are no longer in phase. By increasing Ia phase disparity, the phase coherence factor CF (k) is reduced. Thus, when correcting the sum of the data of the opening by application of (4), the width of the main lobe is reduced and, consequently, the lateral resolution is improved.
Si el reflector se sitúa sobre un lóbulo lateral, las señales ya no se componen constructivamente. Las fases de los datos de apertura muestran una gran disparidad que produce un muy bajo factor de coherencia de fase, CF(k)aO. Al multiplicar Ia suma de los datos de Ia apertura por este valor bajo según (4), se reducen o cancelan las indicaciones de los lóbulos laterales.If the reflector is placed on a lateral lobe, the signals are no longer constructively composed. The phases of the opening data show a great disparity that produces a very low phase coherence factor, CF (k) to O. By multiplying the sum of the opening data by this low value according to (4), they are reduced or cancel the indications of the lateral lobes.
Los lóbulos de rejilla resultan de replicar de forma distribuida indicaciones de reflectores situados sobre el lóbulo principal. Con las señales de banda ancha utilizadas en imagen ultrasónica, las réplicas son composiciones parcialmente coherentes: sólo una pequeña fracción de los N datos de Ia apertura están en fase y el resto muestra fases diversas. En conjunto, Ia dispersión de las fases es elevada, produciendo un bajo valor del factor de coherencia de fase CF(k)=O. Al multiplicar Ia suma de los datos de Ia apertura por este valor, según Ia ecuación (4), se limitan las indicaciones de los lóbulos de rejilla.The grid lobes result from distributed replication of indications of reflectors located on the main lobe. With the broadband signals used in ultrasonic imaging, the replicas are partially coherent compositions: only a small fraction of the N opening data is in phase and the rest shows diverse phases. Overall, the dispersion of the phases is high, producing a low value of the phase coherence factor CF (k) = O. By multiplying the sum of the opening data by this value, according to equation (4), the indications of the grid lobes are limited.
Asimismo, las señales recibidas cuando se producen aberraciones de fase muestran una elevada dispersión de fases, que resulta en un bajo factor de coherencia de fase CF(k)»0. AI multiplicar Ia suma de las señales de apertura por este valor bajo según (4), se reducen estas indicaciones.Likewise, the signals received when phase aberrations occur show a high phase dispersion, resulting in a low phase coherence factor CF (k) »0. By multiplying the sum of the opening signals by this low value according to (4), these indications are reduced.
Las fases de los datos de apertura se obtienen de Ia señal analítica expresada con sus componentes en fase Sl,(k) y en cuadratura SQ,(k) como: -i SQXk) φ, (k) = tan (5)The phases of the opening data are obtained from the analytical signal expressed with its components in phase Sl, (k) and quadrature SQ, (k) as: -i SQXk) φ, (k) = tan (5)
SI Xk)YES Xk)
Los conformadores de haz que operan en banda base disponen directamente de Ia señal analítica en fase y en cuadratura, con Io que basta Ia aplicación de Ia Ecuación (5) para obtener Ia fase φ,(k) en cada canal / para cada rango k. La fase resultante debe quedar comprendida en el intervalo (-π, π).The beam shapers that operate in the baseband directly have the analytical signal in phase and quadrature, so that the application of Equation (5) is enough to obtain the phase φ, (k) in each channel / for each range k . The resulting phase must be in the interval (-π, π).
En caso de utilizar un conformador de haz operando en radiofrecuencia, sin embargo, se requiere una operación previa para obtener Ia señal en cuadratura mediante un transformador de Hilbert, cuya realización es conocida (A.V. Oppenheim, R. W. Schafer: "Digital SignalIn case of using a beamformer operating in radiofrequency, however, a previous operation is required to obtain the quadrature signal by means of a Hilbert transformer, whose realization is known (A.V. Oppenheim, R. W. Schafer: "Digital Signal
Processing", Prentice-Hall, 1975):Processing ", Prentice-Hall, 1975):
SQXk) = Hilbert [SXk)] siχk) = sχk)SQXk) = Hilbert [SXk)] siχk) = sχk)
También existen otras técnicas conocidas que permiten obtener una aproximación a Ia señal analítica mediante el muestreo en cuadratura [K.There are also other known techniques that allow an approximation to the analytical signal to be obtained through quadrature sampling [K.
Ranganathan et al., "Direct sampled I/Q beamforming for compact and very low-cost ultrasound imaging", IEEE Trans. on Ultrason., Ferroelect.Ranganathan et al., "Direct sampled I / Q beamforming for compact and very low-cost ultrasound imaging", IEEE Trans. on Ultrason., Ferroelect.
Freq. Contr., 51 , 9, pp. 1082-1094, 2004].Freq. Contr., 51, 9, pp. 1082-1094, 2004].
Con los procedimientos descritos, se puede obtener con una precisión arbitraria Ia fase instantánea de los datos de Ia apertura. Una mayor precisión requiere una complejidad electrónica mayor, pero no proporciona una mejora correspondiente en Ia supresión de las señales no coherentes. Por esta razón las fases se calcularán, preferentemente, con una precisión relativamente baja, típicamente con una resolución entre 1 y 8 bits. Una vez evaluadas las fases de las señales a partir de Ia Ecuación (5), el coeficiente de coherencia de fase preferido se calcula a partir de Ia siguiente expresión, donde Ia función max() sirve para evitar que CF (k) tome valores negativos:With the described procedures, the instantaneous phase of the opening data can be obtained with arbitrary precision. Greater precision requires greater electronic complexity, but does not provide a corresponding improvement in the suppression of non-coherent signals. For this reason the phases will preferably be calculated with relatively low accuracy, typically with a resolution between 1 and 8 bits. Once the phases of the signals from Equation (5) have been evaluated, the preferred phase coherence coefficient is calculated from the following expression, where the max () function serves to prevent CF (k) from taking negative values :
CF(Jc) = max(0, l - a- f[φ, (k)]) (7)CF (Jc) = max (0, l - a- f [φ, (k)]) (7)
donde:where:
Ψ,(k) es 'a fase de Ia muestra k de Ia señal / de los datos de Ia apertura; a es un parámetro de ajuste; yΨ (k) is' f ase of the sample k of the signal / data of the opening; a is an adjustment parameter; Y
J es un estimador de Ia dispersión (o similitud) de las fases de las señales de Ia apertura. Puede ser un estadístico de medida de dispersión, como, por ejemplo, el rango, Ia J is an estimator of the dispersion (or similarity) of the phases of the signals of the opening. It can be a dispersion measurement statistic, such as the range, the
2 desviación estándar ( σ ), Ia varianza ( σ ), Ia curtosis, etc. Alternativamente, pueden elegirse funciones de medida de Ia similitud, en los que f( ) decrezca con incrementos en Ia similitud de las fases.2 standard deviation ( σ ), the variance ( σ ), the kurtosis, etc. Alternatively, similarity measurement functions may be chosen, in which f () decreases with increments in the similarity of the phases.
De Ia definición dada por Ia Ecuación (7), los valores de CF(k) estarán comprendidos entre 0 y 1. El máximo CF(k)=1 se obtiene cuandoFrom the definition given by Equation (7), the values of CF (k) will be between 0 and 1. The maximum CF (k) = 1 is obtained when
J Wi \ )\ =o, esto es, cuando Ia dispersión de las fases es mínima o, equivalentemente, su similitud es máxima. El mínimo CF(k)=0 se obtiene cuando •/ l^v^ll >1/Qi esto es, cuando Ia dispersión de las fases alcanza cierto valor programable mediante el parámetro α.JW i \) \ = o, that is, when the dispersion of the phases is minimal or, equivalently, their similarity is maximum. The minimum CF (k) = 0 is obtained when • / l ^ v ^ ll> 1 / Qi that is, when the dispersion of the phases reaches a certain programmable value by means of the α parameter.
En una realización preferida de Ia invención, se emplea como estimador J Ia desviación estándar. En este caso, el factor de coherencia se calcula como:In a preferred embodiment of the invention, the standard deviation J is used as estimator. In this case, the coherence factor It is calculated as:
CFx (Jc) = max(0, 1 - a, .σ[φ, (Jc)]) (8)CF x (Jc) = max (0, 1 - a, .σ [φ, (Jc)]) (8)
donde cr[<p,(£)] representa Ia desviación estándar de las fases de los datos de Ia apertura, y el coeficiente de normalización CU1 toma, preferentemente,where cr [<p, (£)] represents the standard deviation of the phases of the opening data, and the normalization coefficient CU 1 preferably takes
valores entre O y - . πvalues between O and -. π
La Ecuación (8) tiene un valor unidad cuando todas las fases son iguales, y por tanto Ia desviación estándar es nula, y un valor cero cuandoEquation (8) has a unit value when all phases are equal, and therefore the standard deviation is zero, and a zero value when
Ia desviación estándar de las fases alcanza o supera el valor — .The standard deviation of the phases reaches or exceeds the value -.
En otra realización preferida de Ia invención, se emplea como estimador J Ia varianza:In another preferred embodiment of the invention, the variance is used as estimator J :
CF2 (Jc) = max(0, 1 - a2σ2 [φ, (Jc)]) (9)CF 2 (Jc) = max (0, 1 - a 2 σ 2 [φ, (Jc)]) (9)
donde σ2 [#>, (&)] representa Ia varianza de las fases de los datos de Ia apertura, y el coeficiente de normalización a2 toma, preferentemente,where σ 2 [#>, (&)] represents the variance of the phases of the opening data, and the normalization coefficient at 2 takes, preferably,
valores entre 0 y πvalues between 0 and π
Análogamente, pueden definirse ecuaciones para calcular el coeficiente de coherencia de fase basadas en otros momentos estadísticos que midan Ia dispersión de Ia variable aleatoria φt(k), como por ejemplo Ia kurtosis u otros momentos de orden superior.Similarly, equations can be defined to calculate the phase coherence coefficient based on other statistical moments that measure the dispersion of the random variable φ t (k), such as kurtosis or other higher order moments.
En una realización preferida particularmente interesante, las fases de las señales de los datos de Ia apertura, que ocupan el intervalo (-π, π), se evalúan con un único bit b al que se asigna los valores -1 y +1 para los intervalos angulares (0, π] y [-π, 0], respectivamente. En esta situación Ia complejidad electrónica es mínima, pues basta considerar el signo de cada señal: las señales positivas toman un valor b=+λ y las negativas b=-λ , esto es:In a particularly interesting preferred embodiment, the phases of the signals of the opening data, which occupy the interval (-π, π), are evaluated with a single bit b to which the values -1 and +1 are assigned for the angular intervals (0, π] and [ -π, 0], respectively.In this situation the electronic complexity is minimal, since it is sufficient to consider the sign of each signal: the positive signals take a value b = + λ and the negative signals b = -λ, that is:
Figure imgf000016_0001
Figure imgf000016_0001
La dispersión de las fases corresponde a Ia de una variable aleatoria discreta con dos valores, por Io que son de aplicación las Ecuaciones (7) a (9) anteriores sustituyendo φXk) por bXK) .The dispersion of the phases corresponds to that of a discrete random variable with two values, so the Equations (7) to (9) above apply, substituting φXk) for bXK).
En una realización aún más particular, Ia varianza de Ia variable b¡ para un rango /c determinado es:In an even more particular embodiment, the variance of the variable b¡ for a given range / c is:
Figure imgf000016_0002
Figure imgf000016_0002
De esta ecuación se deduce que el mínimo de σ2 es 0 y, el máximo 1. Lógicamente, también Ia desviación estándar σ tiene un rango de valores (0, 1 ). De este modo, en Ia Ecuación (9), puede hacerse 02 = 1 y eliminar Ia función max(-), ya que el factor CF(k) tomará valores entre 0 y 1. Con esto, se define el factor de coherencia de fase por polaridad CFP(k) como:From this equation it follows that the minimum of σ 2 is 0 and, the maximum 1. Logically, also the standard deviation σ has a range of values (0, 1). Thus, in Equation (9), 02 = 1 can be made and the max (-) function eliminated, since the CF factor (k) will take values between 0 and 1. With this, the coherence factor of phase by polarity CFP (k) as:
CFP(k) = (\ - σ2 [bχk)f (12) donde el exponente P≥O es un parámetro que permite ajustar el nivel de corrección. Por otra parte, el primer término del numerador de Ia Ecuación (11 ) es:CFP (k) = (\ - σ 2 [bχk) f (12) where the P≥O exponent is a parameter that allows adjusting the correction level. On the other hand, the first term of the numerator of Equation (11) is:
N∑b> = N2 (13)N∑b > = N 2 (13)
¡=i¡= I
Sustituyendo en (11 ) resulta:Substituting in (11) results:
Figure imgf000017_0001
Figure imgf000017_0001
Sustituyendo en (12):Substituting in (12):
Figure imgf000017_0002
Figure imgf000017_0002
El intervalo de variación de CFP(k) es de 0 a 1 , para cualquier valor del exponente P. En particular, CFP(k) es cero cuando Ia varianza es máxima e igual a 1 (ver Ecuación 12), Io que representa señales con una gran diversidad de fases y, por tanto, de baja coherencia. Recíprocamente, CFP(k) es unitario cuando Ia varianza se anula, situación que se produce cuando todas las señales están en fase y, por tanto, son coherentes. De este modo el factor CFP(k) puede utilizarse para corregir las imágenes ultrasónicas por aplicación de Ia Ecuación (4) sustituyendo CF(TcJ por CFP(k). Debe observarse que, de Ia ecuación (14), se puede despejar σ2(b¡) y, extrayendo Ia raíz cuadrada, obtener Ia desviación estándar σ(b¡) con Ia que se calcule un factor CFP(k) análogo, sin que el método propuesto se modifique sustancialmente. La acción del exponente P, que puede ser programado por el usuario, es enfatizar o atenuar el efecto de Ia corrección. Así, para su valor mínimo P=O, resulta CFP(TcJ=I con independencia de las fases de los datos de apertura. En este caso al aplicar Ia corrección según Ia Ecuación (4) los datos de salida igualan a los de entrada: y(k) = x(k), esto es, no se realiza ninguna corrección obteniéndose Ia imagen original. Para valores 0 < P <1 se obtienen correcciones moderadas, que se van acentuando al aumentar P. Para valores P elevados el efecto de Ia corrección aumenta, llegando un punto en el que sólo se hacen visibles las señales totalmente coherentes. Puesto que todas las señales tienen cierta cantidad de ruido, que no es coherente, a partir de cierto valor de P pueden llegar a desaparecer en Ia imagen los verdaderos reflectores. No obstante, el rango de variación de P puede ser muy alto, habiéndose comprobado su eficacia en intervalos de 0 a 50.The variation range of CFP (k) is 0 to 1, for any value of the exponent P. In particular, CFP (k) is zero when the variance is maximum and equal to 1 (see Equation 12), which represents signals with a great diversity of phases and, therefore, of low coherence. Conversely, CFP (k) is unitary when the variance is canceled, a situation that occurs when all signals are in phase and, therefore, are consistent. Thus, the factor CFP (k) can be used to correct the ultrasonic images by application of Equation (4) by substituting CF (TcJ for CFP (k). It should be noted that, from equation (14), σ 2 can be cleared) (b¡) and, extracting the square root, obtain the standard deviation σ (b¡) with which an analogous CFP factor (k) is calculated, without the proposed method being substantially modified. The action of the exponent P, which can be programmed by the user, is to emphasize or mitigate the effect of the correction. Thus, for its minimum value P = O, CFP (TcJ = I is independent of the phases of the opening data. In this case, when applying the correction according to Equation (4), the output data equals the input data: y (k) = x (k), that is, no correction is made to obtain the original image.For values 0 <P <1 moderate corrections are obtained, which are accentuated when increasing P. For high P values the effect of The correction increases, reaching a point where only the totally coherent signals are visible, since all the signals have a certain amount of noise, which is not coherent, from a certain value of P they can disappear in the image. true reflectors However, the range of variation of P can be very high, having proven its effectiveness in intervals of 0 to 50.
Un segundo aspecto de Ia invención está dirigido a un aparato para Ia corrección de imágenes ultrasónicas, que comprende medios para calcular un coeficiente de coherencia de fase a partir de las fases de los datos de Ia apertura y un medio para multiplicar dicho factor de coherencia por Ia muestra conformada.A second aspect of the invention is directed to an apparatus for the correction of ultrasonic images, which comprises means to calculate a coefficient of phase coherence from the phases of the opening data and a means to multiply said coherence factor by The formed sample.
En una primera realización particular, el aparato de Ia invención utiliza toda Ia información de las fases de los datos de Ia apertura para calcular el coeficiente de coherencia de fase. En ese caso, los medios para calcular el coeficiente de coherencia de fase comprenden:In a first particular embodiment, the apparatus of the invention uses all the information of the phases of the opening data to calculate the phase coherence coefficient. In that case, the means to calculate the phase coherence coefficient include:
a) Un primer medio de cálculo, que recibe las señales en fase y en cuadratura de los datos de apertura, y evalúa Ia fase instantánea de los datos de Ia apertura aplicando Ia ecuación: Λ(i) = to-iWÍ2a) A first means of calculation, which receives the signals in phase and quadrature of the opening data, and evaluates the instantaneous phase of the opening data by applying the equation: Λ (i) = to -iWÍ2
Ψι SI Xk) Ψι YES Xk)
Las señales en fase y en cuadratura de los datos de Ia apertura está disponible directamente, por ejemplo, cuando se utiliza un conformador de haz en banda base. En caso de no disponer de esas señales, por ejemplo cuando el conformador es en radiofrecuencia, es necesario un medio de cálculo adicional conectado al primer medio de cálculo, que recibe los datos de apertura y calcula las señales en fase y en cuadratura de acuerdo con Ia ecuación:The phase and quadrature signals of the opening data are available directly, for example, when a baseband beam shaper is used. In case of not having these signals, for example when the shaper is in radiofrequency, an additional calculation means is necessary connected to the first calculation means, which receives the opening data and calculates the signals in phase and quadrature according to The equation:
SQ1 (k) = Hilbert [S1 (*)]SQ 1 (k) = Hilbert [S 1 (*)]
SIXk) = SXk)SIXk) = SXk)
b) Un segundo medio de cálculo, conectado al primer medio de cálculo, que determina los factores de coherencia de fase de acuerdo con Ia ecuación:b) A second means of calculation, connected to the first means of calculation, which determines the phase coherence factors according to the equation:
CF(k) = max(O, l -a-f[φ,(k)])CF (k) = max (O, l -a-f [φ, (k)])
En una segunda realización particular, el aparato de Ia invención toma únicamente los signos de las fases de los datos de Ia apertura. En este segundo caso, los medios para calcular el coeficiente de coherencia de fase comprenden:In a second particular embodiment, the apparatus of the invention takes only the signs of the phases of the opening data. In this second case, the means to calculate the phase coherence coefficient include:
a) Un sumador, que suma los signos de las fases de los datos de Ia apertura.a) An adder, which adds the signs of the phases of the opening data.
b) Una tabla, que recibe Ia salida del sumador y el coeficiente P, y que calcula el coeficiente de coherencia de fase de acuerdo con Ia ecuación
Figure imgf000020_0001
b) A table, which receives the output of the adder and the P coefficient, and calculates the phase coherence coefficient according to the equation
Figure imgf000020_0001
Además, en otra realización preferida de Ia invención, el aparato comprende además un medio de detección de igualdad de signos, que detecta Ia igualdad de todos los signos b¡ y envía una señal indicativa a Ia tabla.In addition, in another preferred embodiment of the invention, the apparatus further comprises a means for detecting equality of signs, which detects the equality of all signs b¡ and sends an indicative signal to the table.
En otra realización preferida más de Ia invención, el aparato de Ia invención comprende medios para seleccionar manualmente el valor del coeficiente P.In another preferred embodiment of the invention, the apparatus of the invention comprises means for manually selecting the value of the coefficient P.
Aunque no se menciona explícitamente en Ia descripción precedente, Ia invención se extiende igualmente a programas de ordenador, particularmente los programas de ordenador que se encuentran situados sobre o dentro de una portadora, adaptados para llevar a Ia práctica el procedimiento de Ia invención. El programa puede tener Ia forma de código fuente, código objeto, una fuente intermedia de código y código objeto, por ejemplo, como en forma parcialmente compilada, o en cualquier otra forma adecuada para uso en Ia puesta en práctica de los procesos según Ia invención. La portadora puede ser cualquier entidad o dispositivo capaz de soportar el programa.Although not explicitly mentioned in the preceding description, the invention also extends to computer programs, particularly computer programs that are located on or within a carrier, adapted to carry out the process of the invention. The program may have the form of source code, object code, an intermediate source of code and object code, for example, as in partially compiled form, or in any other form suitable for use in the implementation of the processes according to the invention . The carrier can be any entity or device capable of supporting the program.
Por ejemplo, Ia portadora podría incluir un medio de almacenamiento, por ejemplo, una memoria ROM, una memoria CD ROM o una memoria ROM de semiconductor, o un soporte de grabación magnética, por ejemplo, un disco flexible o un disco duro. Además, Ia portadora puede ser una portadora transmisible, por ejemplo, una señal eléctrica u óptica que podría transportarse a través de cable eléctrico u óptico, por radio o por cualesquiera otros medios. Cuando el programa va incorporado en una señal que puede ser transportada directamente por un cable u otro dispositivo o medio, Ia portadora puede estar constituida por dicho cable u otro dispositivo o medio.For example, the carrier could include a storage medium, for example, a ROM, a CD ROM or a semiconductor ROM, or a magnetic recording medium, for example, a flexible disk or a hard disk. In addition, the carrier can be a transmissible carrier, for example, an electrical or optical signal that could be transported through electrical or optical cable, by radio or by any other means. When the program is incorporated into a signal that can be directly transported by a cable or other device or means, the carrier can be constituted by said cable or another device or means.
Como variante, Ia portadora podría ser un circuito integrado en el que va incluido el programa, estando el circuito integrado adaptado para ejecutar, o para ser utilizado en Ia ejecución de, los procesos correspondientes.As a variant, the carrier could be an integrated circuit in which the program is included, the integrated circuit being adapted to execute, or to be used in the execution of, the corresponding processes.
DESCRIPCIÓN DE LOS DIBUJOSDESCRIPTION OF THE DRAWINGS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, de acuerdo con un ejemplo preferente de realización práctica de Ia misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. where, for the purposes of illustration and not limitation, the following has been represented:
La Fig. 1 muestra Ia arquitectura típica de un conformador de haz digital convencional, destacando el lugar de inserción del corrector de imágenes propuesto en esta invención.Fig. 1 shows the typical architecture of a conventional digital beam shaper, highlighting the place of insertion of the image corrector proposed in this invention.
La Fig. 2 muestra un patrón lateral del haz ultrasónico, para facilitar Ia identificación de los diferentes lóbulos que intervienen en Ia formación de Ia imagen.Fig. 2 shows a lateral pattern of the ultrasonic beam, to facilitate the identification of the different lobes involved in the formation of the image.
La Fig. 3 muestra el principio de obtención del factor de coherencia de fase CF para conformadores de haz de banda base y de radiofrecuencia. La Fig. 4 muestra el circuito general para obtener el factor de coherencia de fase por polaridad CFP en cualquier conformador de haz y Ia posible inclusión de optimizaciones.Fig. 3 shows the principle of obtaining the CF phase coherence factor for baseband and radiofrequency beam shapers. Fig. 4 shows the general circuit to obtain the phase coherence factor by polarity CFP in any beamformer and the possible inclusion of optimizations.
La Fig. 5 muestra un ejemplo de realización para 32 canales, que calcula el factor de coherencia de fase por polaridad CFP en tiempo real, con el que corrige las imágenes obtenidas por el conformador de haz, destacando Ia innovación introducida por esta invención.Fig. 5 shows an embodiment example for 32 channels, which calculates the phase coherence factor by CFP polarity in real time, with which it corrects the images obtained by the beam shaper, highlighting the innovation introduced by this invention.
La Fig. 6 presenta un gráfico que relaciona los valores del factor de coherencia de fase por polaridad CFP con el número de señales coherentes en un sistema de 32 canales, para diferentes valores del exponente P.Fig. 6 presents a graph that relates the values of the phase coherence factor by polarity CFP with the number of coherent signals in a 32-channel system, for different values of the exponent P.
REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION
Técnica anteriorPrior art
Un sistema de acuerdo con Ia técnica anterior tiene Ia estructura y dispositivos mostrados en Ia Figura 1 , arquitectura general que es bien conocida en el ámbito con diversas variantes. El array (10) de transductores está compuesto por los N elementos transductores numerados (1 ), (2), ..., (N). Cada elemento genera un impulso ultrasónico al ser excitado por una señal eléctrica y, recíprocamente, genera señales eléctricas al recibir ecos ultrasónicos. En emisión el conmutador (11 ) conecta los elementos del array (10) a los excitadores (19) y, en recepción, a los amplificadores (12).A system according to the prior art has the structure and devices shown in Figure 1, general architecture that is well known in the field with various variants. The array (10) of transducers is composed of the N numbered transducer elements (1), (2), ..., (N). Each element generates an ultrasonic pulse when excited by an electrical signal and, reciprocally, generates electrical signals by receiving ultrasonic echoes. In emission, the switch (11) connects the array elements (10) to the drivers (19) and, in reception, to the amplifiers (12).
Para generar un haz ultrasónico en emisión, los N excitadores (19) se activan a intervalos de tiempo calculados y coordinados para producir Ia deflexión y focalización del haz en una dirección y profundidad determinadas. Al finalizar Ia excitación de los elementos, el conmutador (11 ) pasa a Ia posición de recepción.To generate an ultrasonic beam in emission, the N exciters (19) are activated at calculated and coordinated time intervals to produce the deflection and focus of the beam in one direction and depth determined. At the end of the excitation of the elements, the switch (11) goes to the receiving position.
El haz ultrasónico generado se propaga por el medio inspeccionado (21 ), produciendo ecos en cada discontinuidad. Estos ecos regresan al array (10) donde son recibidos por los N elementos (1 ) a (N). Las señales pasan a través del conmutador (11 ) y son amplificadas por N amplificadores (12), opcionalmente con diferentes ganancias para realizar Ia operación de apodización. Las señales amplificadas son digitalizadas por N conversores analógico-digital (13) de forma independiente. Las salidas R1, R2, ..., RN de los conversores A/D están conectadas a unos dispositivos (14) de retardo independientes para cada señal. Los retardos se ajustan para compensar las diferencias en el tiempo de vuelo desde Ia emisión al foco y a cada elemento desde el dispositivo de control (22).The generated ultrasonic beam propagates through the inspected medium (21), producing echoes in each discontinuity. These echoes return to the array (10) where they are received by the N elements (1) through (N). The signals pass through the switch (11) and are amplified by N amplifiers (12), optionally with different gains to perform the apodization operation. The amplified signals are digitized by N analog-digital converters (13) independently. The outputs R 1 , R 2 , ..., R N of the A / D converters are connected to independent delay devices (14) for each signal. The delays are adjusted to compensate for differences in flight time from the emission to the focus and to each element from the control device (22).
Se obtiene así el conjunto de datos de Ia apertura (20), compuesto por las N señales retrasadas S?, S2, ..., SN- Un sumador (15) realiza Ia suma de estas señales para obtener Ia salida x, que está enfocada por los retardos aplicados al conjunto de señales Ri, R2, ..., RN- LOS sistemas más avanzados modifican dinámicamente estos retardos, en un conformador de haz, para seguir al pulso ultrasónico en su propagación por el medio (21 ), de forma que Ia señal x obtenida quede focalizada en toda su longitud (técnica de focalización dinámica).Thus, the data set of the opening (20) is obtained, composed of the N delayed signals S ?, S 2 , ..., S N - An adder (15) performs the sum of these signals to obtain the output x, which is focused by the delays applied to the set of signals Ri, R 2 , ..., R N - THE most advanced systems dynamically modify these delays, in a beam shaper, to follow the ultrasonic pulse in its propagation through the medium ( 21), so that the signal x obtained is focused on its entire length (dynamic focusing technique).
Una vez conformada, Ia señal x pasa a un detector de envolventeOnce formed, the signal x passes to an envelope detector
(16) y posteriormente a un conversor de coordenadas de barrido (17), visualizándose finalmente en Ia pantalla (18).(16) and subsequently to a sweep coordinate converter (17), finally being displayed on the screen (18).
Este proceso se repite para una diversidad de direcciones, cambiando los retardos en emisión y recepción, de forma que se explora una región de interés. Si el array es lineal, el barrido se produce en un plano y, si es bidimensional, en un volumen.This process is repeated for a variety of addresses, changing the delays in emission and reception, so that a region of interest is explored. If the array is linear, the scan occurs in a flat and, if two-dimensional, in one volume.
El efecto de Ia conformación del haz ultrasónico en emisión es que un reflector en las proximidades del foco produce un eco de alta intensidad que, a su vez, es enfocado en recepción mediante Ia compensación de los tiempos de vuelo a cada elemento por Ia introducción de los retardos correspondientes.The effect of the conformation of the ultrasonic beam in emission is that a reflector in the vicinity of the focus produces a high intensity echo which, in turn, is focused on reception by compensating the flight times to each element by the introduction of the corresponding delays.
Sin embargo, Ia conformación del haz no es perfecta. Habitualmente, Ia amplitud de Ia salida del conformador se describe mediante el patrón lateral del haz. La Figura 2 muestra en escala logarítmica (dB), el patrón lateral del haz de un array de 64 elementos distanciados λ y un ancho de banda relativo de un 40%, para un ángulo de deflexión θ0 = 20°, posición en Ia que se encuentra el lóbulo principal (A). Se observa Ia presencia de lóbulos laterales (B), especialmente elevados en las proximidades del lóbulo principal al que ensanchan, y un gran lóbulo de rejilla (C). El lóbulo de rejilla aparece cuando Ia distancia entre elementos del array es mayor que media longitud de onda (λ/2), como es habitual con aperturas dispersas. Los lóbulos laterales próximos al principal reducen Ia resolución lateral del sistema de imagen.However, the conformation of the beam is not perfect. Usually, the amplitude of the output of the shaper is described by the lateral pattern of the beam. Figure 2 shows in logarithmic scale (dB), the lateral beam pattern of an array of 64 distanced elements λ and a relative bandwidth of 40%, for a deflection angle θ 0 = 20 °, position in which is the main lobe (A). The presence of lateral lobes (B) is observed, especially high in the vicinity of the main lobe to which they widen, and a large grid lobe (C). The grid lobe appears when the distance between array elements is greater than half a wavelength (λ / 2), as usual with scattered openings. The lateral lobes next to the main one reduce the lateral resolution of the imaging system.
Un reflector situado en Ia dirección θo del lóbulo principal (A) produce una amplitud máxima a Ia salida del conformador (0 dB) para Ia ley focal que corresponde a Ia deflexión θo y a su rango. Pero, cuando Ia ley focal se modifica para visualizar las señales procedentes de Ia dirección θi, donde no existe reflector, a Ia salida del conformador se obtiene una señal con Ia amplitud correspondiente al lóbulo de rejilla, debido a Ia réplica del reflector en θo. Análogamente, en las direcciones de los lóbulos laterales, a Ia salida del conformador se obtendrán las amplitudes correspondientes, aunque no existan reflectores. Por otra parte, los retardos se calculan para una velocidad de propagación del ultrasonido determinada, pero las variaciones que sufre en su propagación por medios no homogéneos son desconocidas, produciendo errores de focalización o aberraciones de fase que desenfocan Ia imagen.A reflector located in the direction θo of the main lobe (A) produces a maximum amplitude at the output of the shaper (0 dB) for the focal law that corresponds to the deflection θo and its range. But, when the focal law is modified to visualize the signals coming from the θi direction, where there is no reflector, at the exit of the shaper a signal is obtained with the amplitude corresponding to the grid lobe, due to the replica of the reflector in θo. Similarly, in the directions of the lateral lobes, at the exit of the shaper, the corresponding amplitudes will be obtained, although there are no reflectors. On the other hand, the delays are calculated for a given ultrasound propagation speed, but the variations that it suffers in its propagation by non-homogeneous means are unknown, producing focusing errors or phase aberrations that blur the image.
El nivel de estas indicaciones falsas limita el rango dinámico de Ia imagen, así como el contraste entre zonas anecoicas y zonas con reflectores o dispersores, por Io que es muy conveniente disponer de medios que reduzcan el nivel de los lóbulos laterales y de rejilla.The level of these false indications limits the dynamic range of the image, as well as the contrast between anechoic zones and areas with reflectors or dispersers, so it is very convenient to have means that reduce the level of the lateral and grid lobes.
Además, Ia anchura del lóbulo principal y de los lóbulos laterales más próximos determina Ia resolución lateral del sistema de imagen, esto es, su capacidad para discriminar dos reflectores próximos entre sí. De este modo, también es deseable reducir Ia anchura del lóbulo principal simultáneamente con una reducción del nivel de los lóbulos laterales para mejorar Ia resolución del sistema de imagen ultrasónica.In addition, the width of the main lobe and the nearest lateral lobes determines the lateral resolution of the imaging system, that is, its ability to discriminate between two nearby reflectors. Thus, it is also desirable to reduce the width of the main lobe simultaneously with a reduction in the level of the lateral lobes to improve the resolution of the ultrasonic imaging system.
Ejemplo 1Example 1
La Figura 3 muestra el diagrama de bloques de un aparato (55a) de acuerdo con Ia invención, en el que los factores de coherencia de fase se calculan, según el procedimiento descrito más arriba en el presente documento, utilizando toda Ia información de Ia fase de los datos de Ia apertura.Figure 3 shows the block diagram of an apparatus (55a) according to the invention, in which the phase coherence factors are calculated, according to the procedure described above in this document, using all the information of the phase of the opening data.
En una realización de Ia invención, por ejemplo cuando se emplea un conformador de haz en banda base, sólo se requiere un bloque (31 ) para evaluar Ia fase instantánea de los datos de Ia apertura por aplicación de Ia Ecuación (5). En otra realización, por ejemplo cuando se emplea un conformador de haz en radiofrecuencia, se requiere previamente un transformador de Hilbert (30) para llevar a cabo Ia operación de Ia Ecuación (6).In an embodiment of the invention, for example when a baseband beam shaper is used, only one block (31) is required to evaluate the instantaneous phase of the opening data by application of Equation (5). In another embodiment, for example when a radio frequency beamformer is used, a Hilbert transformer (30) to carry out the operation of Equation (6).
A Ia salida del bloque (31 ) se obtienen, por tanto, las fases de los datos de Ia apertura, a partir de las cuales el bloque (32) determina los valores de los factores de coherencia de fase de acuerdo con Ia fórmula:At the exit of the block (31), therefore, the phases of the opening data are obtained, from which the block (32) determines the values of the phase coherence factors according to the formula:
CF(k) = maχ(O, \ - a-f[φXk)]) (16)CF (k) = m a χ (O, \ - af [φXk)]) (16)
donde f[φt (k)] es un estimador de dispersión, preferentemente Ia desviación estándar o Ia varianza de las N fases φt(k) para cada rango k, y a es una constante ajustable que determina Ia sensibilidad del factor CF(k) a Ia dispersión de las fases.where f [φ t (k)] is a dispersion estimator, preferably the standard deviation or the variance of the N phases φ t (k) for each range k, it is already an adjustable constant that determines the sensitivity of the factor CF (k ) to the dispersion of the phases.
Ejemplo 2Example 2
Se describe un ejemplo de realización de un aparato (55b) de acuerdo con Ia invención en el caso de emplear únicamente los signos de los datos de Ia apertura para calcular los factores de coherencia de fase. En Ia Figura 4 se muestra un sencillo esquema electrónico utilizado para implementar Ia Ecuación (15). Un sumador (40) obtiene Ia salida SQ=Zq,, que es Ia suma de los bits de signo qi, Q2, ..., QN de los datos de Ia apertura Si, S2, ..., SN obtenidos por un aparato convencional (ver Figura 1 ). Debe destacarse que el sumador (40) interpreta el valor del signo q de las señales en complemento a 2, esto es, q=0 para las señales positivas {b=+^ ) y q=1 para las negativas (6=-1 ).An example of embodiment of an apparatus (55b) according to the invention is described in the case of using only the signs of the opening data to calculate the phase coherence factors. Figure 4 shows a simple electronic scheme used to implement Equation (15). An adder (40) obtains the output SQ = Zq ,, which is the sum of the sign bits qi, Q2, ..., QN of the data of the opening Si, S2, ..., SN obtained by an apparatus conventional (see Figure 1). It should be noted that the adder (40) interprets the value of the sign q of the signals in complement to 2, that is, q = 0 for the positive signals {b = + ^) and q = 1 for the negative signals (6 = -1) .
La suma SQ de los N signos sólo puede producir valores en un conjunto que tiene Λ//2+1 elementos. Este es el número máximo de entradas necesarias en Ia tabla (41 ) para cada valor de P. Hay algunas optimizaciones que pueden realizarse para reducir aún más Ia cantidad de recursos utilizados. Así, el caso | SQ\=N, que se produce exclusivamente con una igualdad de todos los signos qh se puede detectar aparte con el circuito (43), señalado con trazos pues su presencia es opcional. La igualdad de signos equivale a una varianza nula, con Io que CFP=I según Ia Ecuación (12). La salida del detector de igualdad de signos (43) activa Ia entrada U de Ia tabla (41 ) para que ésta proporcione un valor unitario a su salida, reduciendo a Λ//2 el número total de entradas requeridas en Ia tabla (41 ). Alternativamente, se puede detectar el caso en que |SQ| = 0, situación en Ia que CFP=O. En este caso, Ia entrada U de Ia tabla (41 ) se utiliza para proporcionar un valor nulo a su salida, reduciendo también a N/2 el número total de entradas requeridas en Ia tabla (41 ). Por ejemplo, en un caso típico con Λ/=128, Ia tabla (41 ) contiene 64 entradas con las optimizaciones descritas.The sum SQ of the N signs can only produce values in a set that has Λ // 2 + 1 elements. This is the maximum number of entries needed in the table (41) for each value of P. There are some optimizations that can be made to further reduce the amount of resources used. So, the case | SQ \ = N, which occurs exclusively with an equality of all the signs that h can be detected separately with the circuit (43), indicated by strokes as its presence is optional. The equality of signs is equivalent to a zero variance, with which CFP = I according to Equation (12). The output of the equal sign detector (43) activates the input U of the table (41) so that it provides a unit value at its output, reducing the total number of inputs required in the table (41) to Λ // 2 . Alternatively, the case in which | SQ | = 0, situation in which CFP = O. In this case, the input U of the table (41) is used to provide a null value at its output, also reducing to N / 2 the total number of entries required in the table (41). For example, in a typical case with Λ / = 128, the table (41) contains 64 entries with the optimizations described.
En una posible realización, cada cambio en el valor de P carga nuevos valores en Ia tabla (41 ). En general, el tiempo invertido en esta operación puede ser ignorado (escritura de algunas decenas de datos).In a possible embodiment, each change in the value of P loads new values in the table (41). In general, the time invested in this operation can be ignored (writing some tens of data).
En otra posible realización, se puede codificar P para actuar conjuntamente con SQ como dirección en una tabla única, evitando Ia recarga de Ia tabla (41 ) (en Ia Figura 4 Ia entrada de P codificado se indica con línea de trazos). En el ejemplo anterior, para 16 valores de P, Ia tabla (41 ) total contendría 16x64 = 1024 entradas. La dirección de acceso a Ia tabla (41 ) se compone de dos campos: el selector para el exponente P y el selector del valor CFP para el valor SQ actual. Debe destacarse que el selector del exponente P no tiene por qué coincidir con el valor del exponente, sino que es un código asignado a un valor no necesariamente entero. Por ejemplo, los selectores consecutivos 0, 1 , 2, 3, etc. se pueden asignar a valores P= 0, 0'5, 1 , 1 '5, etc. El valor CFP obtenido de Ia tabla (41 ) pondera en el multiplicador (42) Ia señal x correspondiente a Ia muestra conformada, para entregar a Ia salida Ia señal y debidamente corregida con coherencia de fase por polaridad. La adición de un filtro de suavizado entre Ia salida de Ia tabla y Ia entrada en el multiplicador permitirá eliminar transitorios en CFP, sin que ello suponga un cambio sustancial, por Io que no se indica en Ia figura.In another possible embodiment, P can be encoded to act jointly with SQ as an address in a single table, avoiding reloading of the table (41) (in Figure 4 the input of encoded P is indicated by dashed line). In the previous example, for 16 P values, the total table (41) would contain 16x64 = 1024 entries. The access address to the table (41) consists of two fields: the selector for the exponent P and the selector of the CFP value for the current SQ value. It should be noted that the selector of the exponent P does not have to match the value of the exponent, but is a code assigned to a value not necessarily integer. For example, consecutive selectors 0, 1, 2, 3, etc. can be assigned to values P = 0, 0'5, 1, 1 '5, etc. The CFP value obtained from the table (41) weights in the multiplier (42) the signal x corresponding to the sample formed, to deliver the signal to the output and duly corrected with phase coherence by polarity. The addition of a smoothing filter between the output of the table and the input in the multiplier will allow the elimination of transients in CFP, without this implying a substantial change, which is why it is not indicated in the figure.
Ejemplo 3Example 3
La Figura 5 muestra el esquema de una realización particular de un corrector (55c) de imágenes ultrasónicas por coherencia de fase de Ia invención para un sistema de N=32 elementos. En este caso se utilizó Ia coherencia de fase por polaridad, ya que su implementación es más sencilla y, además, se consideró el exponente P= 1 (ecuaciones 15 y 18).Figure 5 shows the scheme of a particular embodiment of a corrector (55c) of ultrasonic images by phase coherence of the invention for a system of N = 32 elements. In this case, phase coherence by polarity was used, since its implementation is simpler and, in addition, the exponent P = 1 (equations 15 and 18) was considered.
Las entradas al corrector (55c) S-\, S2, ..., S32 fueron las señales obtenidas tras aplicar los retardos de focalización a las señales recibidas por los N elementos del array. Cada señal S, está expresada en complemento a 2 con 12 bits. El signo está indicado por el bit más significativo g?, g2, --- Q32, que es interpretado por el sumador (51 ) como +1 si Ia señal es positiva y por -1 si es negativa.The inputs to the corrector (55c) S- \ , S 2 , ..., S 32 were the signals obtained after applying the focusing delays to the signals received by the N elements of the array. Each S signal is expressed in complement to 2 with 12 bits. The sign is indicated by the most significant bit g ?, g 2 , --- Q32, which is interpreted by the adder (51) as +1 if the signal is positive and by -1 if it is negative.
Para facilitar Ia interpretación del proceso, en Ia Figura 5 se incluye el sumador (50), que pertenece al conformador, al que llegan entradas de 12 bits, produciendo Ia salida x, de 17 bits (suma de 25 valores de 12 bits). Por otra parte, los bits de signo qi, q2, ... q∞ se sumaron en el sumador (51 ), que produce Ia salida SQ, expresada en el rango (-32, 32). La tabla (52) se construyó con las entradas que corresponden a Ia Ecuación (15) para Λ/=32 y P= 1 utilizando aritmética fraccional.To facilitate the interpretation of the process, Figure 5 includes the adder (50), which belongs to the shaper, to which 12-bit inputs arrive, producing the 17-bit x output (sum of 2 5 12-bit values) . On the other hand, the sign bits qi, q 2 , ... q∞ were added in the adder (51), which produces the SQ output, expressed in the range (-32, 32). Table (52) was constructed with the entries corresponding to Equation (15) for Λ / = 32 and P = 1 using fractional arithmetic.
La tabla (52) es una memoria RAM para poder modificar su contenido, en Ia que SQ actúa como dirección en lectura, proporcionando las salidas CF siguientes en función del valor de los posibles valores del valor absoluto |SQ|:Table (52) is a RAM memory to be able to modify its content, in which SQ acts as an address in reading, providing the following CF outputs depending on the value of the possible values of the absolute value | SQ |:
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0001
Figure imgf000029_0002
Para SQ=O, CF=O, excepción que podría detectarse por separado para reducir el número de entradas en Ia tabla (52) de 17 a 16, aspecto no optimizado en el ejemplo actual.For SQ = O, CF = O, exception that could be detected separately to reduce the number of entries in table (52) from 17 to 16, aspect not optimized in the current example.
Los valores de Ia tabla están comprendidos entre 0 y 1 , pudiendo expresarse con aritmética fraccional. En este caso, se expresan con 10 bits.The values in the table are between 0 and 1, and can be expressed with fractional arithmetic. In this case, they are expressed with 10 bits.
La salida CF de Ia tabla (52) (10 bits) se multiplica en (53) por Ia salida x de Ia suma coherente (17 bits) para obtener Ia señal xc de 17+10=27 bits de los que únicamente se seleccionan los 17 más significativos por operar con aritmética fraccional.The CF output of the table (52) (10 bits) is multiplied by (53) by the output x of the coherent sum (17 bits) to obtain the xc signal of 17 + 10 = 27 bits of which only the 17 most significant for operating with fractional arithmetic.
El conjunto de dispositivos (55b) constituye el corrector por coherencia de fase que hay que añadir al conformador de haz para mejorar las imágenes ultrasónicas en resolución lateral, rango dinámico, contraste y relación señal/ruido según los principios expuestos en esta invención.The set of devices (55b) constitutes the phase coherence corrector that must be added to the beam shaper to improve the ultrasonic images in lateral resolution, dynamic range, contrast and signal / noise ratio according to the principles set forth in this invention.
La Figura 6 muestra gráficamente el valor resultante de CFP en 2 íFigure 6 graphically shows the resulting value of CFP in 2 í
función de SQ para distintos valores de P y el ejemplo 3 considerado en Ia Figura 5. Con línea continua se representan los valores que corresponden a este ejemplo con P=1 ; con línea de trazos se muestran los valores correspondientes a un caso P=2 y, con línea de puntos, al caso P=O.5. La gráfica ilustra Ia más rápida reducción de CFP al aumentar el valor de P, Io que enfatiza el efecto de Ia corrección con una mayor reducción de las señales detectadas como no coherentes. SQ function for different values of P and example 3 considered in Figure 5. With a solid line the values corresponding to this example are represented with P = 1; with lines of lines the values corresponding to a case P = 2 are shown and, with dotted line, to the case P = O.5. The graph illustrates the faster reduction of CFP by increasing the value of P, which emphasizes the effect of the correction with a greater reduction of the signals detected as non-coherent.

Claims

R E I V I N D I C A C I O N E S
1. Procedimiento para Ia corrección de imágenes ultrasónicas por análisis de fase, caracterizado porque comprende Ia operación de multiplicar Ia muestra conformada por un factor de coherencia de fase ( CF(k) ) basado en Ia dispersión de las fases de los datos de Ia apertura1. Procedure for the correction of ultrasonic images by phase analysis, characterized in that it comprises the operation of multiplying the sample formed by a phase coherence factor (CF (k)) based on the dispersion of the phases of the opening data
(SXk) ).(SXk)).
2. Procedimiento para Ia corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 1 , caracterizado porque el factor de coherencia de fase (CF(Jc) ) se calcula de acuerdo con Ia expresión:2. Procedure for the correction of ultrasonic images according to claim 1, characterized in that the phase coherence factor (CF (Jc)) is calculated according to the expression:
CF(k) = max(O, l - a-f[φχk)])CF (k) = max (O, l - a-f [φχk)])
donde f[φχk)] es una función de medida de Ia dispersión de las fases φXk) de los datos de Ia apertura y a un parámetro de ajuste modificable.where f [φχk)] is a function of measuring the dispersion of the phases φXk) of the opening data and a modifiable adjustment parameter.
3. Procedimiento para Ia corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 2, caracterizado porque Ia función f[φXk)] de medida de Ia dispersión de las fases φXk) de los datos de Ia apertura es Ia desviación estándar σ .3. Procedure for the correction of ultrasonic images according to claim 2, characterized in that the function f [φXk)] of measuring the dispersion of the phases φXk) of the opening data is the standard deviation σ.
4. Procedimiento para Ia corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 3, caracterizado porque el coeficiente a4. Procedure for the correction of ultrasonic images according to claim 3, characterized in that the coefficient a
toma valores pertenecientes al rango πtakes values belonging to the range π
5. Procedimiento de corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 2, caracterizado porque Ia función f[φχk)] de medida de Ia dispersión de las fases φt(k) de los datos de Ia apertura es varianza σ .5. Procedure for correction of ultrasonic images according to claim 2, characterized in that the measurement function f [φχk)] of the dispersion of the phases φ t (k) of the opening data is variance σ.
6. Procedimiento para Ia corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 5, caracterizado porque el coeficiente a6. Procedure for the correction of ultrasonic images according to claim 5, characterized in that the coefficient a
toma valores pertenecientes al rango oΛ πtakes values belonging to the range oΛ π
7. Procedimiento para Ia corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 1 , caracterizado porque el factor de coherencia de fase CF(Jc) se calcula a partir de los signos de las fases de los datos de Ia apertura (S1(Jc) ).7. Procedure for the correction of ultrasonic images according to claim 1, characterized in that the phase coherence factor CF (Jc) is calculated from the signs of the phases of the opening data (S 1 (Jc) ).
8. Procedimiento para Ia corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 7, caracterizado porque el factor de coherencia de fase CF(Jc) se calcula de acuerdo con Ia expresión:8. Procedure for the correction of ultrasonic images according to claim 7, characterized in that the phase coherence factor CF (Jc) is calculated according to the expression:
Figure imgf000032_0001
Figure imgf000032_0001
donde y P es un parámetro de ajuste modificable.
Figure imgf000032_0002
where and P is a modifiable adjustment parameter.
Figure imgf000032_0002
9. Programa de ordenador que comprende instrucciones del programa para hacer que un ordenador lleve a Ia práctica el procedimiento según cualquiera de las reivindicaciones 1 a 8.9. Computer program comprising instructions of the program to make a computer carry out the method according to any of claims 1 to 8.
10. Programa de ordenador según Ia reivindicación 9, incorporado en medios de almacenamiento. 10. Computer program according to claim 9, incorporated into storage media.
11. Programa de ordenador según Ia reivindicación 9, soportado en una señal portadora.11. Computer program according to claim 9, supported on a carrier signal.
12. Aparato (55a, 55b, 55c) para Ia corrección de imágenes ultrasónicas por análisis de fase de acuerdo con el procedimiento de cualquiera de las reivindicaciones anteriores, caracterizado porque comprende:12. Apparatus (55a, 55b, 55c) for the correction of ultrasonic images by phase analysis according to the method of any of the preceding claims, characterized in that it comprises:
unos medios (30, 31 , 32, 40, 41 , 43, 51 , 52) para calcular el factor de coherencia de fase a partir de las fases de los datos de Ia apertura; ymeans (30, 31, 32, 40, 41, 43, 51, 52) to calculate the phase coherence factor from the phases of the opening data; Y
un medio (33, 42, 53) para multiplicar dicho factor de coherencia de fase por el valor de Ia muestra conformada.a means (33, 42, 53) to multiply said phase coherence factor by the value of the formed sample.
13. Aparato (55a) para Ia corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 12, caracterizado porque el factor de coherencia de fase se determina empleando toda Ia información de las fases de los datos de Ia apertura, donde los medios para calcular el factor de coherencia de fase comprenden:13. Apparatus (55a) for the correction of ultrasonic images according to claim 12, characterized in that the phase coherence factor is determined using all the information of the phases of the opening data, where the means to calculate the factor Phase coherence include:
un primer medio de cálculo (31 ), que determina las fases instantáneas de los datos de Ia apertura; ya first means of calculation (31), which determines the instantaneous phases of the opening data; Y
un segundo medio de cálculo (32), conectado al primer medio de cálculo (31 ), que determina los factores de coherencia de fase de acuerdo con Ia ecuación:A second calculation means (32), connected to the first calculation means (31), which determines the phase coherence factors according to the equation:
CF Xk) = max(0, 1 - a-f[φ, (£)]) CF Xk) = max (0, 1 - af [φ, (£)])
14. Aparato (55b, 55c) para Ia corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 12, caracterizado porque el factor de coherencia de fase se determina empleando los signos de las fases de los datos de apertura, donde los medios para calcular el factor de coherencia de fase comprenden:14. Apparatus (55b, 55c) for the correction of ultrasonic images according to claim 12, characterized in that the phase coherence factor is determined using the signs of the phases of the opening data, where the means for calculating the factor Phase coherence include:
un sumador (40, 51 ), que suma los signos b¡ de las fases de los datos de Ia apertura; yan adder (40, 51), which adds the signs b¡ of the phases of the opening data; Y
- una tabla (41 , 52), que recibe Ia salida del sumador (40, 51 ) y un coeficiente P, y calcula el factor de coherencia de fase de acuerdo con Ia ecuación:- a table (41, 52), which receives the output of the adder (40, 51) and a coefficient P, and calculates the phase coherence factor according to the equation:
Figure imgf000034_0001
Figure imgf000034_0001
15. Aparato (55b) para Ia corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 14, caracterizado porque comprende además un medio de detección de igualdad de signos (43), que detecta Ia igualdad de todos los signos b¡ y envía una señal indicativa a Ia tabla (41 ).15. Apparatus (55b) for the correction of ultrasonic images according to claim 14, characterized in that it also comprises a means for detecting equality of signs (43), which detects the equality of all signs b¡ and sends an indicative signal to the table (41).
16. Aparato (55b) para Ia corrección de imágenes ultrasónicas de acuerdo con Ia reivindicación 14, caracterizado porque además comprende medios para seleccionar manualmente el valor del coeficiente P. 16. Apparatus (55b) for the correction of ultrasonic images according to claim 14, characterized in that it further comprises means for manually selecting the value of the coefficient P.
PCT/ES2009/070303 2008-08-08 2009-07-23 Method and apparatus for correcting ultrasound images by means of phase analysis WO2010018282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200802402 2008-08-08
ES200802402A ES2332637B1 (en) 2008-08-08 2008-08-08 PROCEDURE AND APPARATUS FOR THE CORRECTION OF ULTRASONIC IMAGES BY PHASE ANALYSIS.

Publications (1)

Publication Number Publication Date
WO2010018282A1 true WO2010018282A1 (en) 2010-02-18

Family

ID=41571176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070303 WO2010018282A1 (en) 2008-08-08 2009-07-23 Method and apparatus for correcting ultrasound images by means of phase analysis

Country Status (2)

Country Link
ES (1) ES2332637B1 (en)
WO (1) WO2010018282A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011095896A1 (en) 2010-02-08 2011-08-11 Dalhousie University Ultrasound imaging system using beamforming techniques for phase coherence grating lobe suppression
EP2442132A1 (en) 2010-10-13 2012-04-18 Hitachi Aloka Medical, Ltd. Ultrasonic diagnosis apparatus
EP2479587A1 (en) 2011-01-25 2012-07-25 Hitachi Aloka Medical, Ltd. Ultrasonic diagnosis apparatus
US10107901B2 (en) 2014-02-18 2018-10-23 Sound Technology Inc. Acoustic signal phase rotation processor
WO2021168565A1 (en) 2020-02-28 2021-09-02 Olympus NDT Canada Inc. Phase-based approach for ultrasonic inspection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623928A (en) * 1994-08-05 1997-04-29 Acuson Corporation Method and apparatus for coherent image formation
US20030199763A1 (en) * 2002-04-05 2003-10-23 Angelsen Bjorn A.J. Corrections for pulse reverberations and phasefront aberrations in ultrasound imaging
US20050228279A1 (en) * 2004-03-31 2005-10-13 Siemens Medical Solutions Usa, Inc. Coherence factor adaptive ultrasound imaging methods and systems
US20070088213A1 (en) * 2003-11-20 2007-04-19 Koninklijke Philips Electronics N.V. Ultrasonic diagnostic imaging with automatic adjustment of beamforming parameters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623928A (en) * 1994-08-05 1997-04-29 Acuson Corporation Method and apparatus for coherent image formation
US20030199763A1 (en) * 2002-04-05 2003-10-23 Angelsen Bjorn A.J. Corrections for pulse reverberations and phasefront aberrations in ultrasound imaging
US20070088213A1 (en) * 2003-11-20 2007-04-19 Koninklijke Philips Electronics N.V. Ultrasonic diagnostic imaging with automatic adjustment of beamforming parameters
US20050228279A1 (en) * 2004-03-31 2005-10-13 Siemens Medical Solutions Usa, Inc. Coherence factor adaptive ultrasound imaging methods and systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011095896A1 (en) 2010-02-08 2011-08-11 Dalhousie University Ultrasound imaging system using beamforming techniques for phase coherence grating lobe suppression
US9033888B2 (en) 2010-02-08 2015-05-19 Dalhousie University Ultrasound imaging system using beamforming techniques for phase coherence grating lobe suppression
EP2534502A4 (en) * 2010-02-08 2017-04-12 Dalhousie University Ultrasound imaging system using beamforming techniques for phase coherence grating lobe suppression
EP2442132A1 (en) 2010-10-13 2012-04-18 Hitachi Aloka Medical, Ltd. Ultrasonic diagnosis apparatus
US9179894B2 (en) 2010-10-13 2015-11-10 Hitachi Aloka Medical, Ltd. Ultrasonic diagnosis apparatus
EP2479587A1 (en) 2011-01-25 2012-07-25 Hitachi Aloka Medical, Ltd. Ultrasonic diagnosis apparatus
US9339258B2 (en) 2011-01-25 2016-05-17 Hitachi Aloka Medical, Ltd. Ultrasonic diagnosis apparatus
US10107901B2 (en) 2014-02-18 2018-10-23 Sound Technology Inc. Acoustic signal phase rotation processor
WO2021168565A1 (en) 2020-02-28 2021-09-02 Olympus NDT Canada Inc. Phase-based approach for ultrasonic inspection

Also Published As

Publication number Publication date
ES2332637A1 (en) 2010-02-09
ES2332637B1 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
Kortbek et al. Sequential beamforming for synthetic aperture imaging
US9064321B2 (en) Imaging or communications system utilizing multisample apodization and method
US8761477B2 (en) Systems and method for adaptive beamforming for image reconstruction and/or target/source localization
Camacho et al. Phase coherence imaging
US9198636B2 (en) Continuous transmit focusing method and apparatus for ultrasound imaging system
US8313436B2 (en) Methods and apparatus for ultrasound imaging
EP1686393A2 (en) Coherence factor adaptive ultrasound imaging
JP2015512301A (en) System and method for improving the quality of ultrasound images by applying weighting factors
ES2332637B1 (en) PROCEDURE AND APPARATUS FOR THE CORRECTION OF ULTRASONIC IMAGES BY PHASE ANALYSIS.
CN108652660B (en) Diffraction correction for attenuation estimation in medical diagnostic ultrasound
CN103536316A (en) Method for self-adaptation ultrasonic imaging of spatio-temporally smoothed coherence factor type
JP2011505173A (en) Method and apparatus for measuring the contents of a search volume
JPH0681616B2 (en) Ultrasonic diagnostic equipment
US10111644B2 (en) Method of coherent flow imaging using synthetic transmit focusing and acoustic reciprocity
CN114176626A (en) Method and system for ultrasonic characterization of a medium
US20230061869A1 (en) System and methods for beamforming sound speed selection
Jensen Linear description of ultrasound imaging systems: Notes for the international summer school on advanced ultrasound imaging at the technical university of denmark
Guenther et al. Generalized cystic resolution: a metric for assessing the fundamental limits on beamformer performance
Guenther et al. Robust finite impulse response beamforming applied to medical ultrasound
KR102530598B1 (en) Ultrasonic diagnosis device and operating method of ultrasonic diagnosis device
Ma A comparative evaluation of two Synthetic Transmit Aperture with Virtual Source beamforming methods in biomedical ultrasound
US20240046467A1 (en) Method and system for evaluating ultrasound data for the purpose of ultrasound attenuation estimation in a medium
Martinez-Graullera et al. A new beamformer based on phase dispersion to improve 2D sparse array response
Martínez-Graullera et al. Statistical beamformer for Synthetic Aperture imaging based on Rician distribution
Hassan Comparison between windowing apodization functions techniques for medical ultrasound imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806472

Country of ref document: EP

Kind code of ref document: A1