WO2010077571A1 - Light emitting diode with improved light extraction - Google Patents

Light emitting diode with improved light extraction Download PDF

Info

Publication number
WO2010077571A1
WO2010077571A1 PCT/US2009/066743 US2009066743W WO2010077571A1 WO 2010077571 A1 WO2010077571 A1 WO 2010077571A1 US 2009066743 W US2009066743 W US 2009066743W WO 2010077571 A1 WO2010077571 A1 WO 2010077571A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting diode
diode according
light
exterior surfaces
Prior art date
Application number
PCT/US2009/066743
Other languages
French (fr)
Inventor
Matthew Donofrio
Hua-Shuang Kong
David Slater
John Edmond
Original Assignee
Cree, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree, Inc. filed Critical Cree, Inc.
Priority to CN2009801491972A priority Critical patent/CN102246325A/en
Priority to EP09775424A priority patent/EP2374162A1/en
Publication of WO2010077571A1 publication Critical patent/WO2010077571A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present invention relates to light emitting devices and in particular to light emitting diodes.
  • Light emitting diodes are a class of photonic semiconductor devices that convert an applied voltage into light by encouraging electron-hole recombination events in an appropriate semiconductor material. In turn, some or all of the energy released in the recombination event produces a photon. When recombination events produce photons, they initiate photons in all directions.
  • Light emitting diodes share a number of the favorable characteristics of other semiconductor solid-state devices. These include generally robust physical characteristics, long lifetime, high reliability, and, depending upon the particular materials, low cost. These physical characteristics, along with relatively low power requirements, make LEDs desirable as light output devices.
  • LEDs are well understood in the art. Appropriate references about the structure and operation of light emitting diodes include S.M. SZE, PHYSICS OF SEMICONDUCTOR DEVICES (2d ed. 1981) and E. FRED SCHUBERT, LIGHT-EMITTING DIODES (2003).
  • an LED's useful emission is best understood and measured by the amount of light that actually leaves the device and can be externally perceived, a factor that is referred to as the external quantum efficiency (EQE) of the diode. Yet, as stated above, the LED generates photons and initiates them in all directions. Accordingly, maximizing the number of photons that actually exit the device in the direction of the desired transmission of light is a practical goal.
  • EQE external quantum efficiency
  • Light emitting diodes typically include multiple layers of different materials. As a result, light emitted from the active portion must typically pass through or across one or more of such layers before exiting the diode. Snell's law dictates that the photons will be refracted as they pass from one material to the next. The angles at which the photons will be refracted will depend upon the difference between the refractive indexes of the two materials and the angle of incidence at which the light strikes the interface. [0005] In a diode, although some reflected light will still escape the diode at some other location, a certain percentage will be totally internally reflected, never escape the diode, and will thus functionally reduce the external efficiency of the diode. Although the individual reduction in the percentage of photons escaping may appear to be relatively small, the cumulative effect can be significant, and diodes that are otherwise very similar
  • the interface reflects the light back into the first medium, a process known as total internal reflection.
  • the loss of light due to this total internal reflection is known as the critical angle loss, and is another factor that reduces the external efficiency of the LED.
  • Fresnel Loss is another factor contributing to the reduction in the percentage of the total light generated by the LED that the LED emits to air.
  • the invention is a light emitting diode with an active region and a plurality of exterior surfaces.
  • the exterior surfaces include light enhancement features, selected from the group consisting of reflectors, shaping and texturing. At least one of the surfaces, however, is other than a reflector.
  • the invention is a light emitting diode that includes a substrate and a Group III nitride active region formed on the substrate.
  • the substrate and the Group III nitride active region define a plurality of exterior surfaces.
  • One of the exterior surfaces has a light enhancement feature selected from the group consisting of shaping and
  • the invention is a light emitting diode that includes a substrate and an active region formed on the substrate.
  • the active region has at least one n-type layer and one p-type layer.
  • the light emitting diode includes a plurality of exterior surfaces, at least four of which have light enhancement features selected from the group consisting of shaping, texturing, and reflectors.
  • Figures 1 through 7 are cross-sectional schematic views illustrating various exemplary embodiments of the present invention.
  • the invention is a light emitting device with improved light output efficiency through the use of a plurality of light enhancement features that are located on the exterior surfaces of the device.
  • a number of aspects of the invention are illustrated in the drawings.
  • the devices are illustrated as light emitting diodes with lateral configurations, but it will be understood that other types of optoelectronic semiconductor devices can utilize some or all of the aspects of the present invention.
  • the LED structures are described in terms of Group III nitrides and silicon carbide, but other materials can be incorporated where appropriate.
  • the use of Group III nitrides and silicon carbide in light emitting diodes is generally well- established in the art and will not be otherwise described in detail.
  • the active region of an LED generates photons when recombination events take place within one or more layers of semiconductor materials.
  • the simplest structure in which this occurs is the p-n junction.
  • Such a p-n junction can comprise the active regions (or active layers) of the LED structures described in this invention.
  • the active region can include more complex structures such as single quantum wells, multiple quantum wells, and superlattice structures, as well as structures that include one or more active layers positioned between respective p-type and n-type layers.
  • the active layer is often positioned between the p and n-type epitaxial layers.
  • the active layer is a multiple-quantum well.
  • such wells usually include between 2 and 25 periods of alternating layers of gallium nitride (GaN) and indium gallium nitride (InGaN).
  • GaN and InGaN layers in the well are grown without proactive doping.
  • the layers are intrinsically n-type.
  • Figure 1 is a schematic cross-sectional diagram of one embodiment of the present invention and is an LED structure broadly designated at 10.
  • a p-layer and an n-layer are illustrated respectively at 11 and 12 with an active layer 22 between them.
  • the p-layer 11, the active layer 22 and the n-layer 12 form the active region of the LED 10.
  • the p-layer 11 and the n-layer 12 are formed from at least one, and typically several, Group III nitride layers epitaxially grown on a substrate 13.
  • the substrate 13 is formed from silicon carbide.
  • the substrate may alternatively be formed from sapphire, silicon, metals, or any other material suitable for supporting the p-layer 11 and the n-layer- 12 and that does not otherwise interfere with the structure or operation of the LED 10.
  • the substrate 13 is a growth substrate; i.e., a material that supports the growth of the p-type and n-type epitaxial layers.
  • the substrate 13 is a carrier substrate (or "submount") which is attached to the epitaxial layers after they have been grown elsewhere.
  • Ohmic contacts, 14 and 15 respectively, provide an electrical connection to the p- layer 11 and the n-layer 12.
  • the ohmic contacts 14 and 15 may be formed from metals such as platinum, nickel, gold, titanium, chromium, aluminum, and silver including alloys of these metals and layers of two or more of these metals.
  • the ohmic contacts 14 and 15 are arranged in a lateral configuration.
  • the substrate 13 is conductive (e.g., n-type SiC)
  • the ohmic contacts 14 and 15 may alternatively be positioned on axially opposite faces of the LED 10 giving the ohmic contacts 14 and 15 a vertical configuration.
  • the LED 10 defines a plurality of exterior surfaces, several of which are illustrated at 17, 18, 19, 20, and 21.
  • exit surface refers to the faces of a solid polygon.
  • LEDs are, of course, solid objects, and thus an LED defines a solid polygon; i.e. a three-dimensional object in which the individual sides are polygons and the
  • the LED 10 has other exterior surfaces not visible in Figure 1.
  • the LED 10 has a light-enhancement feature selected from the group consisting of shaping and texturing on at least portions of one of the exterior surfaces, and a light- enhancement feature on at least portions of each of the other exterior surfaces selected from the group consisting of shaping, texturing and reflectors.
  • shape refers to the overall solid geometry of the diode or the surface and includes surfaces that are beveled, rounded, or shaped in some other fashion.
  • textured refers to surfaces that have smaller optical features and includes mechanically roughened surfaces (e.g., as from a physical saw or laser cut), crystallographic surfaces (e.g., those developed chemically that reflect the low-integer Miller index ratios of the basic crystal), and lenticular surfaces (e.g., regular, lens-like features).
  • mechanically roughened surfaces e.g., as from a physical saw or laser cut
  • crystallographic surfaces e.g., those developed chemically that reflect the low-integer Miller index ratios of the basic crystal
  • lenticular surfaces e.g., regular, lens-like features.
  • Exemplary crystallographic surfaces are described in U.S. Patent Application Publication No. 20060186418 and lenticular surfaces are described in U.S. Patent No. 7,384,809.
  • reflectors refers to metals (e.g., aluminum, silver, or other reflective metals), dielectric reflectors such as a distributed Bragg reflectors (DBRs) and hybrid reflectors that include both metals and dielectric layers.
  • DBRs distributed Bragg reflectors
  • lenticular surface for enhancing the light output of the LED 10.
  • the term lenticular surface refers to a regular pattern of lens-type structures on one or more of the exterior surfaces of the LED 10.
  • a lenticular surface may be formed through photolithography or by using an embossing stamp to imprint the pattern on to an exterior surface.
  • An exemplary (but not limiting) technique for forming lenticular surfaces is set forth in U.S. Patent No. 7,384,809.
  • Figure 1 also illustrates that one or more of the exterior surfaces can include a reflector to enhance the light output of the LED.
  • a reflector is illustrated at 16 on the bottom (relatively speaking) exterior surface 21 of the LED 10.
  • the reflector 16 may be one or more metallic layers formed from Ag, Al, or any another appropriate metal that does not otherwise interfere with the structure or operation of the LED 10.
  • the reflector 16 may be a dielectric mirror such as a distributed Bragg reflector.
  • the reflector 16 may also be a dielectric mirror formed from alternating layers
  • the reflector 16 may be composed of both metallic layers and dielectric mirrors. The design and fabrication of such reflectors is well understood by those having ordinary skill in the art and will not be otherwise described in detail.
  • the exterior surfaces 17, 18, 19, 20, and 21 may in addition or alternatively have light enhancement features such as texturing or a beveled cut, and these features will be described in more detail with respect to Figures 3 and 5.
  • the exterior surfaces 17, 18, 19, 20, and 21 may have one or more light enhancement features such as a reflector, a lenticular surface, a beveled cut, or texturing.
  • Any exterior surface defined by the LED 10 that is not visible in Figure 1 may also have light enhancement features. It will be further appreciated that any other light enhancement feature that does not interfere with the operation of the LED 10 may be used.
  • at least one of the exterior surfaces of the LED 10 must be other than a reflector. Stated differently, if all of the exterior surfaces of the LED 10 were reflectors, photons would fail to exit the LED 10.
  • the preferred top surface enhancement feature is crystallographic (e.g., US Patent Application Publication No. 20060060874); or lenticular (e.g., as described elsewhere herein); or a sub-wavelength periodic patterning (or "photonic crystal”); or random pattering that is greater than the wavelength.
  • the relevant wavelength is, of course, the wavelength produced by the diode.
  • FIG. 1 is a schematic cross-sectional diagram of another embodiment of the present invention and is an LED structure broadly designated at 30, which is substantially
  • the LED 30 has a p-layer 31, an active layer 42, and an n-layer 32 on a substrate 33.
  • Ohmic contacts 34 and 35 provide an electrical connection to the p-layer 31 and the n-layer 32 respectively.
  • the LED 30 has a plurality of exterior surfaces, five of which are illustrated in Figure 2 at 37, 38, 39, 40, and 41. Some of the exterior surfaces (e.g., 37, 38, 39, and 40) have a lenticular surface.
  • One of the exterior surfaces (41) has two light enhancement features, a lenticular surface and a reflector 36.
  • FIG. 3 is a schematic cross-sectional diagram of an LED structure broadly designated at 50, which is similar to the above embodiments of the invention.
  • the LED 50 has a p-layer 51, an active layer 62, and an n-layer 52 on a substrate 53.
  • Ohmic contacts 54 and 55 provide an electrical connection to the p-layer 51 and the n-layer 52 respectively.
  • Figure 3 illustrates five exterior surfaces at 57, 58, 59, 60, and 61. Of these, two exterior surfaces (58 and 59) have a lenticular surface.
  • Another exterior surface (61) has a lenticular surface and a reflector 56. Two of the other exterior surfaces (57 and 60) have a textured surface and a beveled cut.
  • beveled cut refers to an exterior surface (e.g., 57 or 60) that defines a non-perpendicular angle with respect to the predominant horizontal plane defined by one or more of the epitaxial layers; e.g., the n-layer 52.
  • such a bevel will define an angle of more than 0° and less than 90° with respect to the epitaxial layers, but most such bevels will form an angle of between about 30° and 60° with respect to the epilayers.
  • a diamond saw may be used to create beveled and textured exterior surfaces such as 57 and 60.
  • any other appropriate means may be used to create a beveled cut.
  • FIG. 4 is a schematic cross-sectional diagram of an LED structure broadly designated at 70, which is similar to the above embodiments of the invention.
  • the LED 70 has a p-layer 71, an active layer 83, and an n-layer 72 on a substrate 73.
  • Ohmic contacts 74 and 75 provide an electrical connection to the p-layer 71 and the n-layer 72 respectively.
  • Figure 4 illustrates five of the exterior surfaces 77, 78, 79, 80, and 81 of the LED 10. Two of the exterior surfaces (78 and 79) have a lenticular surface. Two other exterior surfaces (77 and 80) have a beveled cut. One of the exterior surfaces 81 has a reflector 76.
  • the LED 70 can also include a hybrid reflector formed by a dielectric layer 82 such as silicon dioxide between the substrate 73 and the reflector 76.
  • a dielectric layer 82 such as silicon dioxide between the substrate 73 and the reflector 76.
  • the dielectric layer 82 provides better reflection than a metal layer (e.g., reflector 76) alone.
  • silicon dioxide is particularly helpful when the substrate (e.g. 73 in Figure4) is silicon carbide.
  • Figure 5 is a schematic cross-sectional diagram of an LED structure broadly designated at 90, which is similar to the above embodiments of the invention.
  • the LED 90 has a p-layer 91, an active layer 102, and an n-layer 92 on a substrate 93.
  • Ohmic contacts 94 and 95 provide an electrical connection to the p-layer 91 and the n-layer 92 respectively.
  • the cross-sectional view of Figure 5 illustrates five exterior surfaces 97, 98, 99, 100, and 101. As illustrated by the dotted lines, some of the larger exterior surfaces (97, 98, 99, and 100) are textured, along with the mesa sidewalls (i.e., 103 and 104 on the layers 91, 92 and 102). As used herein, the term "textured" refers to any small, non-planar features on an exterior surface that are to a greater or lesser extent irregular.
  • U.S. Patent Application Publication No. 20060186418 describes a technique for developing crystal facets on the light emitting surfaces of Group III nitride LEDS.
  • U.S. Patent No. 6,821,804 describes textured surfaces with features that are on the order of a wavelength of light. Such features reflect and refract photons in manners not directly predicted by Snell's law and can improve the overall external efficiency of the LED.
  • Such structures and techniques are, of course, exemplary rather than limiting and other chemical or physical techniques can be used provided they avoid negatively affecting other portions of the LED or its function.
  • FIG. 6 is a schematic cross-sectional diagram of an LED structure broadly designated at 110, which is similar to the above embodiments of the invention.
  • the LED 110 has a p-layer 111, an active layer 124, and an n-layer 112 on a substrate 113.
  • Ohmic contacts 114 and 115 provide an electrical connection to the p-layer 111 and the n-layer 112 respectively.
  • Figure 6 illustrates five exterior surfaces 117, 118, 119, 120, and 121. Two of the exterior surfaces (118 and 119) are lenticular and
  • FIG. 7 is a perspective cross-sectional view of a lateral flip chip design according to the present invention.
  • the diode is broadly designated at 130.
  • the substrate 133 forms the emitting face of the diode 130 and includes a light extraction enhanced surface 141 which is illustrated as being lenticular, but which also can be any of the other enhancement features appropriate for that surface.
  • the substrate 133 includes the beveled side edges 137 and 140.
  • a p-type layer 131, an active layer 142, and an n-type layer 132 are illustrated as forming the light emitting portions of the diode 130.
  • the respective surfaces 139 of the n- type layer and 138 of the p-type layer can include any of the enhancement features previously described.
  • An appropriate ohmic contact 134 (and potentially including bond pad metals in a generally well understood fashion) is made to the p-type layer 131 and an n-type ohmic contact 135 is made to the p-type layer 132.
  • a reflector generally designated at 136 covers the p-type layer 131 with the exception of the portion occupied by the p-type ohmic contact 134.
  • the reflector 136 can be a distributed Bragg refractor, and can also potentially include at least one metal layer (not shown) to increase the range of frequencies reflected.
  • prior devices have broadly included numerous surfaces that include mirrors, bevels, and lapped edges, these have generally been limited to vertical structure chips mounted with the epitaxial side down; i.e., in a flip-chip orientation with the epitaxial layers positioned nearest the mounting structure and with the substrate facing in the preferred direction of light emission. From a light extraction efficiency standpoint such vertical devices can suffer from the absorbing nature of both the n-type contact on the substrate (which is typically silicon carbide) and of the highly doped silicon carbide substrate itself.
  • the laser annealing e.g., US patent Application Publication No.
  • the contacts on the epitaxial layers can be made with metals that offer greater reflectivity (such as aluminum).
  • the lateral design embodiments can also incorporate the reduced conductivity regions in a p-type
  • the lateral designs disclosed herein do not require conductive substrates.
  • these lateral designs can incorporate more transparent (i.e., high resistivity) substrates while still demonstrating good forward voltage characteristics.
  • Lateral designs also provide more options for positioning any desired mirror layer and the lateral design chips can be mounted with the epitaxial layers up or down (i.e., closest to the mounting structure with respect to the substrate or further from the mounting structure with respect to the substrate).
  • the mirror can be positioned on the epitaxial side of the overall device.
  • the invention offers advantages with respect to lateral design diodes, aspects of the invention can enhance the external efficiency of vertical design diodes. This is particularly true for designs in which an epitaxial layer represents the emitting face of the diode (i.e., when the epitaxial layers are "up"). In such designs, the epitaxial layer carries the light enhancement feature. In these vertical designs, the mirror is then necessarily positioned on the backside of the device or the sidewalls or both, but (of course) never on the emitting face. In such vertical designs, the sidewalls can be beveled or roughened as otherwise set forth herein.
  • the light enhancement designs described herein offer additional advantages based upon the refractive index of silicon carbide. Specifically, the difference between the refractive index of silicon carbide and air, and between silicon carbide and most common encapsulants, is usually greater than the difference between the refractive index of other substrate materials (such as sapphire) and air or encapsulants. As a result, silicon carbide tends to refract and internally reflect more light than do some other substrate materials.
  • the invention can also be described as a light emitting diode with a plurality of exterior surfaces in which at least four of the exterior surfaces have light enhancement features selected from the group consisting of beveled cuts, texturing, lenticular surfaces and reflectors.
  • at least six exterior surfaces can have such light enhancement features and in other embodiments at least eight exterior surfaces can have such light enhancement features.
  • At least one of the exterior surfaces carries a light enhancement feature that is something other than a reflector.
  • a reflector on all exterior surfaces would be meaningless because such a structure would prevent any light whatsoever from leaving the diode.

Abstract

A light emitting diode (70) is disclosed that includes an active region (83) and a plurality of exterior surfaces (77-81). A light enhancement feature is present on at least portions of one of the exterior surfaces of the diode, with the light enhancement feature being selected from the group consisting of shaping (77, 80) and texturing (78, 79). A light enhancement feature is present on at least portions of each of the other exterior surfaces (81) of the diode, with these light enhancement features being selected from the group consisting of shaping, texturing, and reflectors (81).

Description

LIGHT EMITTING DIODE WITH IMPROVED LIGHT EXTRACTION
Background
[0001] The present invention relates to light emitting devices and in particular to light emitting diodes. Light emitting diodes (LEDs) are a class of photonic semiconductor devices that convert an applied voltage into light by encouraging electron-hole recombination events in an appropriate semiconductor material. In turn, some or all of the energy released in the recombination event produces a photon. When recombination events produce photons, they initiate photons in all directions. [0002] Light emitting diodes share a number of the favorable characteristics of other semiconductor solid-state devices. These include generally robust physical characteristics, long lifetime, high reliability, and, depending upon the particular materials, low cost. These physical characteristics, along with relatively low power requirements, make LEDs desirable as light output devices. The general theory and operation of LEDs are well understood in the art. Appropriate references about the structure and operation of light emitting diodes include S.M. SZE, PHYSICS OF SEMICONDUCTOR DEVICES (2d ed. 1981) and E. FRED SCHUBERT, LIGHT-EMITTING DIODES (2003). [0003] From a practical standpoint, an LED's useful emission is best understood and measured by the amount of light that actually leaves the device and can be externally perceived, a factor that is referred to as the external quantum efficiency (EQE) of the diode. Yet, as stated above, the LED generates photons and initiates them in all directions. Accordingly, maximizing the number of photons that actually exit the device in the direction of the desired transmission of light is a practical goal.
[0004] Light emitting diodes typically include multiple layers of different materials. As a result, light emitted from the active portion must typically pass through or across one or more of such layers before exiting the diode. Snell's law dictates that the photons will be refracted as they pass from one material to the next. The angles at which the photons will be refracted will depend upon the difference between the refractive indexes of the two materials and the angle of incidence at which the light strikes the interface. [0005] In a diode, although some reflected light will still escape the diode at some other location, a certain percentage will be totally internally reflected, never escape the diode, and will thus functionally reduce the external efficiency of the diode. Although the individual reduction in the percentage of photons escaping may appear to be relatively small, the cumulative effect can be significant, and diodes that are otherwise very similar
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 1 - can have distinctly different performance efficiencies resulting from even these small percentage losses.
[0006] Snell's law dictates that when light crosses an interface into a medium with a higher refractive index, the light bends towards the normal. Similarly, when light travels across an interface from a medium with a higher refractive index to a medium with a lower refractive index, light bends away from the normal. At an angle defined as the critical angle, light traveling from a medium with a higher refractive index to a medium with a lower refractive index will be refracted at an angle of 90°; i.e., parallel to the boundary. At any angle greater than the critical angle, an incident ray undergoes total internal reflection. The critical angle is thus a function of the ratio of the refractive indexes. If the light hits the interface at any angle larger than this critical angle, the light will not pass through to the second medium at all. Instead, the interface reflects the light back into the first medium, a process known as total internal reflection. The loss of light due to this total internal reflection is known as the critical angle loss, and is another factor that reduces the external efficiency of the LED.
[0007] The light reflected at the interface of two materials is often called the Fresnel reflection or Fresnel loss. Any difference in the respective optical refractive indexes of the media would result in Fresnel Losses. Hence, Fresnel Loss is another factor contributing to the reduction in the percentage of the total light generated by the LED that the LED emits to air.
[0008] Accordingly, a need exists for devices with features that maximize the probability that a particular photon will exit the device in a desired direction or range of directions, thus increasing the light output efficiency of the device.
Summary
[0009] In one aspect, the invention is a light emitting diode with an active region and a plurality of exterior surfaces. The exterior surfaces include light enhancement features, selected from the group consisting of reflectors, shaping and texturing. At least one of the surfaces, however, is other than a reflector.
[0010] In another aspect, the invention is a light emitting diode that includes a substrate and a Group III nitride active region formed on the substrate. The substrate and the Group III nitride active region define a plurality of exterior surfaces. One of the exterior surfaces has a light enhancement feature selected from the group consisting of shaping and
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 2 - texturing. The remaining exterior surfaces have light enhancement features selected from the group consisting of shaping, texturing, and reflectors.
[0011] In a further aspect, the invention is a light emitting diode that includes a substrate and an active region formed on the substrate. The active region has at least one n-type layer and one p-type layer. The light emitting diode includes a plurality of exterior surfaces, at least four of which have light enhancement features selected from the group consisting of shaping, texturing, and reflectors.
Brief Description of the Drawings
[0012] Figures 1 through 7 are cross-sectional schematic views illustrating various exemplary embodiments of the present invention.
Detailed Description
[0013] Expressed broadly, the invention is a light emitting device with improved light output efficiency through the use of a plurality of light enhancement features that are located on the exterior surfaces of the device. A number of aspects of the invention are illustrated in the drawings. In the drawings, the devices are illustrated as light emitting diodes with lateral configurations, but it will be understood that other types of optoelectronic semiconductor devices can utilize some or all of the aspects of the present invention. For descriptive purposes, the LED structures are described in terms of Group III nitrides and silicon carbide, but other materials can be incorporated where appropriate. The use of Group III nitrides and silicon carbide in light emitting diodes is generally well- established in the art and will not be otherwise described in detail. [0014] As is familiar to those in the art, the active region of an LED generates photons when recombination events take place within one or more layers of semiconductor materials. The simplest structure in which this occurs is the p-n junction. Such a p-n junction can comprise the active regions (or active layers) of the LED structures described in this invention. It will nevertheless be understood that the active region can include more complex structures such as single quantum wells, multiple quantum wells, and superlattice structures, as well as structures that include one or more active layers positioned between respective p-type and n-type layers. Thus, although most of the discussions and drawings herein are set forth in terms of simple p-n junctions, it will be
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 3 - understood that in addition to simple p-n junctions the invention can incorporate complex structures and variations therebetween.
[0015] As well-understood in this art, in such more complex structures, the active layer (or layers) is often positioned between the p and n-type epitaxial layers. In typical embodiments, the active layer is a multiple-quantum well. As an example, such wells usually include between 2 and 25 periods of alternating layers of gallium nitride (GaN) and indium gallium nitride (InGaN). In many of these, the GaN and InGaN layers in the well are grown without proactive doping. As a result, the layers (although referred to as "undoped") are intrinsically n-type.
[0016] Figure 1 is a schematic cross-sectional diagram of one embodiment of the present invention and is an LED structure broadly designated at 10. A p-layer and an n-layer are illustrated respectively at 11 and 12 with an active layer 22 between them. Combined, the p-layer 11, the active layer 22 and the n-layer 12 form the active region of the LED 10. The p-layer 11 and the n-layer 12 are formed from at least one, and typically several, Group III nitride layers epitaxially grown on a substrate 13. In some embodiments, the substrate 13 is formed from silicon carbide. The substrate may alternatively be formed from sapphire, silicon, metals, or any other material suitable for supporting the p-layer 11 and the n-layer- 12 and that does not otherwise interfere with the structure or operation of the LED 10. In some cases, the substrate 13 is a growth substrate; i.e., a material that supports the growth of the p-type and n-type epitaxial layers. In other cases, the substrate 13 is a carrier substrate (or "submount") which is attached to the epitaxial layers after they have been grown elsewhere.
[0017] Ohmic contacts, 14 and 15 respectively, provide an electrical connection to the p- layer 11 and the n-layer 12. The ohmic contacts 14 and 15 may be formed from metals such as platinum, nickel, gold, titanium, chromium, aluminum, and silver including alloys of these metals and layers of two or more of these metals. The ohmic contacts 14 and 15 are arranged in a lateral configuration. When the substrate 13 is conductive (e.g., n-type SiC), the ohmic contacts 14 and 15 may alternatively be positioned on axially opposite faces of the LED 10 giving the ohmic contacts 14 and 15 a vertical configuration. [0018] The LED 10 defines a plurality of exterior surfaces, several of which are illustrated at 17, 18, 19, 20, and 21. As used herein, the term "exterior surface" refers to the faces of a solid polygon. LEDs are, of course, solid objects, and thus an LED defines a solid polygon; i.e. a three-dimensional object in which the individual sides are polygons and the
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 4 - polygons are joined to one another along straight lines. Thus, it will be understood that in three dimensions, the LED 10 has other exterior surfaces not visible in Figure 1. [0019] The LED 10 has a light-enhancement feature selected from the group consisting of shaping and texturing on at least portions of one of the exterior surfaces, and a light- enhancement feature on at least portions of each of the other exterior surfaces selected from the group consisting of shaping, texturing and reflectors.
[0020] As used herein, the term "shape" or "shaping" refers to the overall solid geometry of the diode or the surface and includes surfaces that are beveled, rounded, or shaped in some other fashion.
[0021] The term "textured" refers to surfaces that have smaller optical features and includes mechanically roughened surfaces (e.g., as from a physical saw or laser cut), crystallographic surfaces (e.g., those developed chemically that reflect the low-integer Miller index ratios of the basic crystal), and lenticular surfaces (e.g., regular, lens-like features). Exemplary crystallographic surfaces are described in U.S. Patent Application Publication No. 20060186418 and lenticular surfaces are described in U.S. Patent No. 7,384,809.
[0022] The term "reflectors" refers to metals (e.g., aluminum, silver, or other reflective metals), dielectric reflectors such as a distributed Bragg reflectors (DBRs) and hybrid reflectors that include both metals and dielectric layers.
[0023] In Figure 1, four of the exterior surfaces (17, 18, 19, and 20) have a lenticular surface for enhancing the light output of the LED 10. As used herein, the term lenticular surface refers to a regular pattern of lens-type structures on one or more of the exterior surfaces of the LED 10. A lenticular surface may be formed through photolithography or by using an embossing stamp to imprint the pattern on to an exterior surface. An exemplary (but not limiting) technique for forming lenticular surfaces is set forth in U.S. Patent No. 7,384,809.
[0024] Figure 1 also illustrates that one or more of the exterior surfaces can include a reflector to enhance the light output of the LED. In Figure 1, such a reflector is illustrated at 16 on the bottom (relatively speaking) exterior surface 21 of the LED 10. The reflector 16 may be one or more metallic layers formed from Ag, Al, or any another appropriate metal that does not otherwise interfere with the structure or operation of the LED 10. Alternatively, the reflector 16 may be a dielectric mirror such as a distributed Bragg reflector. The reflector 16 may also be a dielectric mirror formed from alternating layers
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 5 - OfTiO2 and SiO2. In other embodiments, the reflector 16 may be composed of both metallic layers and dielectric mirrors. The design and fabrication of such reflectors is well understood by those having ordinary skill in the art and will not be otherwise described in detail.
[0025] The exterior surfaces 17, 18, 19, 20, and 21 may in addition or alternatively have light enhancement features such as texturing or a beveled cut, and these features will be described in more detail with respect to Figures 3 and 5. In other words, the exterior surfaces 17, 18, 19, 20, and 21 may have one or more light enhancement features such as a reflector, a lenticular surface, a beveled cut, or texturing. Any exterior surface defined by the LED 10 that is not visible in Figure 1 may also have light enhancement features. It will be further appreciated that any other light enhancement feature that does not interfere with the operation of the LED 10 may be used. Of course, to ensure that the LED 10 emits light, at least one of the exterior surfaces of the LED 10 must be other than a reflector. Stated differently, if all of the exterior surfaces of the LED 10 were reflectors, photons would fail to exit the LED 10.
[0026] Certain of the light enhancement features are most practically or efficiently used with certain of the surfaces. For example, when the top surface of the diode is a Group III nitride (e.g., GaN), the preferred top surface enhancement feature is crystallographic (e.g., US Patent Application Publication No. 20060060874); or lenticular (e.g., as described elsewhere herein); or a sub-wavelength periodic patterning (or "photonic crystal"); or random pattering that is greater than the wavelength. The relevant wavelength is, of course, the wavelength produced by the diode.
[0027] Sidewalls are most efficiently enhanced by being beveled or by being roughened in random manner. Such random roughening can be added (for example) by using a diamond grit during sawing, or when a laser is used to dice a wafer, or by any other appropriate mechanical means.
[0028] The bottom or backside of the device is most efficiently enhanced with a lenticular surface, beveled grooves (or other large scale patterning of the type that would be observed when the surface was sawed), and random roughening; for example as would be produced by lapping. As used herein (and generally in this art) the terms "bottom" or "backside" refers to the portion of the diode that is opposite the active layers(s). [0029] Figure 2 is a schematic cross-sectional diagram of another embodiment of the present invention and is an LED structure broadly designated at 30, which is substantially
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 6 - similar to the LED 10 depicted in Figure 1. The LED 30 has a p-layer 31, an active layer 42, and an n-layer 32 on a substrate 33. Ohmic contacts 34 and 35 provide an electrical connection to the p-layer 31 and the n-layer 32 respectively. The LED 30 has a plurality of exterior surfaces, five of which are illustrated in Figure 2 at 37, 38, 39, 40, and 41. Some of the exterior surfaces (e.g., 37, 38, 39, and 40) have a lenticular surface. One of the exterior surfaces (41) has two light enhancement features, a lenticular surface and a reflector 36.
[0030] Figure 3 is a schematic cross-sectional diagram of an LED structure broadly designated at 50, which is similar to the above embodiments of the invention. The LED 50 has a p-layer 51, an active layer 62, and an n-layer 52 on a substrate 53. Ohmic contacts 54 and 55 provide an electrical connection to the p-layer 51 and the n-layer 52 respectively. Figure 3 illustrates five exterior surfaces at 57, 58, 59, 60, and 61. Of these, two exterior surfaces (58 and 59) have a lenticular surface. Another exterior surface (61) has a lenticular surface and a reflector 56. Two of the other exterior surfaces (57 and 60) have a textured surface and a beveled cut. As used herein, the term "beveled cut" refers to an exterior surface (e.g., 57 or 60) that defines a non-perpendicular angle with respect to the predominant horizontal plane defined by one or more of the epitaxial layers; e.g., the n-layer 52. A beveled cut on an exterior surface, as illustrated in Figure 3 at 57 and 60, creates an angled surface, where light that might otherwise be trapped by total internal reflection can be emitted. In the broadest sense, such a bevel will define an angle of more than 0° and less than 90° with respect to the epitaxial layers, but most such bevels will form an angle of between about 30° and 60° with respect to the epilayers. In the exemplary embodiments, a diamond saw may be used to create beveled and textured exterior surfaces such as 57 and 60. Alternatively, any other appropriate means may be used to create a beveled cut.
[0031] Figure 4 is a schematic cross-sectional diagram of an LED structure broadly designated at 70, which is similar to the above embodiments of the invention. The LED 70 has a p-layer 71, an active layer 83, and an n-layer 72 on a substrate 73. Ohmic contacts 74 and 75 provide an electrical connection to the p-layer 71 and the n-layer 72 respectively. Figure 4 illustrates five of the exterior surfaces 77, 78, 79, 80, and 81 of the LED 10. Two of the exterior surfaces (78 and 79) have a lenticular surface. Two other exterior surfaces (77 and 80) have a beveled cut. One of the exterior surfaces 81 has a reflector 76.
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 7 - [0032] As illustrated in Figure 4, the LED 70 can also include a hybrid reflector formed by a dielectric layer 82 such as silicon dioxide between the substrate 73 and the reflector 76. In exemplary embodiments (which are not limited to the embodiment illustrated in Figure 4) the dielectric layer 82 provides better reflection than a metal layer (e.g., reflector 76) alone. Based upon the differences in refractive index, silicon dioxide is particularly helpful when the substrate (e.g. 73 in Figure4) is silicon carbide. [0033] Figure 5 is a schematic cross-sectional diagram of an LED structure broadly designated at 90, which is similar to the above embodiments of the invention. The LED 90 has a p-layer 91, an active layer 102, and an n-layer 92 on a substrate 93. Ohmic contacts 94 and 95 provide an electrical connection to the p-layer 91 and the n-layer 92 respectively. The cross-sectional view of Figure 5 illustrates five exterior surfaces 97, 98, 99, 100, and 101. As illustrated by the dotted lines, some of the larger exterior surfaces (97, 98, 99, and 100) are textured, along with the mesa sidewalls (i.e., 103 and 104 on the layers 91, 92 and 102). As used herein, the term "textured" refers to any small, non-planar features on an exterior surface that are to a greater or lesser extent irregular. Based upon Snell's law, such a surface presents photons with a larger number of small surfaces at numerous angles, thus increasing the number of photons that refract (and exit externally) rather than reflect internally. As an example, U.S. Patent Application Publication No. 20060186418 describes a technique for developing crystal facets on the light emitting surfaces of Group III nitride LEDS. As another example, U.S. Patent No. 6,821,804 describes textured surfaces with features that are on the order of a wavelength of light. Such features reflect and refract photons in manners not directly predicted by Snell's law and can improve the overall external efficiency of the LED. Such structures and techniques are, of course, exemplary rather than limiting and other chemical or physical techniques can be used provided they avoid negatively affecting other portions of the LED or its function.
[0034] As in other embodiments, one of the exterior surfaces 101 has a reflector 96. [0035] Figure 6 is a schematic cross-sectional diagram of an LED structure broadly designated at 110, which is similar to the above embodiments of the invention. The LED 110 has a p-layer 111, an active layer 124, and an n-layer 112 on a substrate 113. Ohmic contacts 114 and 115 provide an electrical connection to the p-layer 111 and the n-layer 112 respectively. As in the other embodiments, Figure 6 illustrates five exterior surfaces 117, 118, 119, 120, and 121. Two of the exterior surfaces (118 and 119) are lenticular and
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 8 - two of the exterior surfaces (117 and 120) have a beveled cut. Three of the exterior surfaces (117, 120, and 121) have reflectors, 122, 123, and 116 respectively. [0036] Figure 7 is a perspective cross-sectional view of a lateral flip chip design according to the present invention. In Figure 7, the diode is broadly designated at 130. The substrate 133 forms the emitting face of the diode 130 and includes a light extraction enhanced surface 141 which is illustrated as being lenticular, but which also can be any of the other enhancement features appropriate for that surface. The substrate 133 includes the beveled side edges 137 and 140.
[0037] A p-type layer 131, an active layer 142, and an n-type layer 132 are illustrated as forming the light emitting portions of the diode 130. The respective surfaces 139 of the n- type layer and 138 of the p-type layer can include any of the enhancement features previously described. An appropriate ohmic contact 134 (and potentially including bond pad metals in a generally well understood fashion) is made to the p-type layer 131 and an n-type ohmic contact 135 is made to the p-type layer 132.
[0038] A reflector generally designated at 136 covers the p-type layer 131 with the exception of the portion occupied by the p-type ohmic contact 134. As in other embodiments of the invention, the reflector 136 can be a distributed Bragg refractor, and can also potentially include at least one metal layer (not shown) to increase the range of frequencies reflected.
[0039] Although prior devices have broadly included numerous surfaces that include mirrors, bevels, and lapped edges, these have generally been limited to vertical structure chips mounted with the epitaxial side down; i.e., in a flip-chip orientation with the epitaxial layers positioned nearest the mounting structure and with the substrate facing in the preferred direction of light emission. From a light extraction efficiency standpoint such vertical devices can suffer from the absorbing nature of both the n-type contact on the substrate (which is typically silicon carbide) and of the highly doped silicon carbide substrate itself. As another disadvantage of the previous structures, when thin wafers are incorporated, the laser annealing (e.g., US patent Application Publication No. 20050104072) used to form the ohmic contact on the silicon carbide also tends to increase the absorption and further limits the advantages of a reflective layer. [0040] In lateral-design embodiments of the invention, the contacts on the epitaxial layers can be made with metals that offer greater reflectivity (such as aluminum). The lateral design embodiments can also incorporate the reduced conductivity regions in a p-type
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 9 - layer that are congruent with nearby more opaque features, such as the ohmic contact to the p-layer (e.g., US Patent Application Publication No. 20080217635). [0041] As another factor, when transparent silicon carbide is used as the device substrate, its transparency can be defined by the resistivity range of the solid carbide; i.e., in most cases, silicon carbide crystals that contain fewer dopant atoms (and thus have a higher resistivity) will exhibit greater transparency than SiC crystals with more dopant atoms (higher conductivity). Vertical devices generally require higher conductivity substrates. In vertical designs the required higher conductivity substrates tend to absorb more light and thus reduce the external efficiency of the diode.
[0042] Thus, as another advantage, the lateral designs disclosed herein do not require conductive substrates. As a result, these lateral designs can incorporate more transparent (i.e., high resistivity) substrates while still demonstrating good forward voltage characteristics.
[0043] Lateral designs also provide more options for positioning any desired mirror layer and the lateral design chips can be mounted with the epitaxial layers up or down (i.e., closest to the mounting structure with respect to the substrate or further from the mounting structure with respect to the substrate). In circumstances where the epitaxial layers are placed on the mounting structure ("down"), the mirror can be positioned on the epitaxial side of the overall device.
[0044] Although the invention offers advantages with respect to lateral design diodes, aspects of the invention can enhance the external efficiency of vertical design diodes. This is particularly true for designs in which an epitaxial layer represents the emitting face of the diode (i.e., when the epitaxial layers are "up"). In such designs, the epitaxial layer carries the light enhancement feature. In these vertical designs, the mirror is then necessarily positioned on the backside of the device or the sidewalls or both, but (of course) never on the emitting face. In such vertical designs, the sidewalls can be beveled or roughened as otherwise set forth herein.
[0045] The light enhancement designs described herein offer additional advantages based upon the refractive index of silicon carbide. Specifically, the difference between the refractive index of silicon carbide and air, and between silicon carbide and most common encapsulants, is usually greater than the difference between the refractive index of other substrate materials (such as sapphire) and air or encapsulants. As a result, silicon carbide tends to refract and internally reflect more light than do some other substrate materials.
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 10 - Because of that, enhancing the light output characteristics of the surfaces of silicon carbide-based diodes has a proportionally greater positive effect on the external quantum efficiency of these devices.
[0046] As the drawings indicate, the invention can also be described as a light emitting diode with a plurality of exterior surfaces in which at least four of the exterior surfaces have light enhancement features selected from the group consisting of beveled cuts, texturing, lenticular surfaces and reflectors. In some cases, and depending upon the diode structure and the nature of the substrate and the epitaxial layers, at least six exterior surfaces can have such light enhancement features and in other embodiments at least eight exterior surfaces can have such light enhancement features.
[0047] As in the other embodiments, at least one of the exterior surfaces carries a light enhancement feature that is something other than a reflector. As noted earlier, providing a reflector on all exterior surfaces would be meaningless because such a structure would prevent any light whatsoever from leaving the diode.
[0048] In the drawings and specification there have been set forth preferred embodiments of the invention, and although specific terms have been employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being defined in the claims.
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - H

Claims

Claims:
1. A light emitting diode comprising: a plurality of exterior surfaces; a light enhancement feature on at least portions of one of said exterior surfaces of said diode, said light enhancement feature being selected from the group consisting of shaping and texturing; a light enhancement feature on at least portions of each of the other exterior surfaces of said diode, said light enhancement features being selected from the group consisting of shaping, texturing, and reflectors; and ohmic contacts in a lateral orientation to said active region.
2. A light emitting diode according to claim 1 comprising an active region formed from the Group III nitride material system.
3. A light emitting diode according to claim 2 further comprising a substrate supporting said active region.
4. A light emitting diode according to claim 3 wherein said substrate is selected from the group consisting of SiC, sapphire, silicon, and metals.
5. A light emitting diode according to claim 2 wherein said active region includes at least one Group III nitride epitaxial layer; and wherein at least one light enhancement feature on one of said exterior surfaces is a beveled cut in which said exterior surface defines a non-perpendicular angle with respect to said Group III nitride epitaxial layer.
6. A light emitting diode according to claim 1 wherein each exterior surface includes a single light enhancement feature.
7. A light emitting diode according to claim 1 wherein one or more of said exterior surfaces include at least two different light enhancement features.
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 12 -
8. A light emitting diode according to claim 1 wherein at least one exterior surface includes a reflector.
9. A light emitting diode according to claim 8 wherein said reflector comprises one or more metal layers.
10. A light emitting diode according to claim 8 wherein said reflector includes a plurality of dielectric layers.
11. A light emitting diode according to claim 10 wherein said reflector further includes one or more metal layers.
12. A light emitting diode according to claim 1 wherein at least one of said light enhancement features is a textured feature selected from the group consisting of mechanically textured features, crystallographic features, and lenticular features.
13. A light emitting diode according to claim 12 wherein said textured surface comprises a random pattern having features on the order of a wavelength of light.
14. A light emitting diode according to claim 1 wherein at least one of said light enhancement features comprises a lenticular surface.
15. A light emitting diode according to claim 1 wherein said active region includes: at least one n-type layer and one p-type layer; and one of said ohmic contacts is made to said n-type layer and another of said ohmic contacts is made to said p-type layer.
16. A light emitting diode according to claim 15 wherein at least one light enhancement feature on one of said exterior surfaces is a shaped beveled cut in which said exterior surface defines a non-perpendicular angle with respect to said n-type layer;
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 13 -
17. A light emitting diode according to claim 3 wherein at least one exterior surface includes a reflector.
18. A light emitting diode according to claim 17 wherein said reflector is on said substrate opposite said active region.
19. A light emitting diode according to claim 17 wherein said reflector comprises one or more metal layers.
20. A light emitting diode according to claim 17 wherein said reflector includes a plurality of dielectric layers.
21. A light emitting diode according to claim 1 comprising: an active region having at least one n-type layer and one p-type layer; and at least four of said exterior surfaces having light enhancement features selected from the group consisting of beveled cuts, texturing, lenticular surfaces, and reflectors.
22. A light emitting diode according to claim 21 wherein at least two of said surfaces with light enhancement features form angles of between 0° and 90°.
23. A light emitting diode according to claim 21 wherein at least two of said surfaces with light enhancement features form angles of between 30° and 60°.
24. A light emitting diode according to claim 21 wherein at least six of said exterior surfaces have light enhancement features selected from the group consisting of shaping, texturing, and reflectors.
25. A light emitting diode according to claim 21 having at least eight exterior surfaces that have light enhancement features selected from the group consisting of shaping, texturing, and reflectors.
S:\FIRM DOCS\5000\1019WO\P1019WO_Spec.doc - 14 -
PCT/US2009/066743 2008-12-08 2009-12-04 Light emitting diode with improved light extraction WO2010077571A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801491972A CN102246325A (en) 2008-12-08 2009-12-04 Light emitting diode with improved light extraction
EP09775424A EP2374162A1 (en) 2008-12-08 2009-12-04 Light emitting diode with improved light extraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/329,713 US8575633B2 (en) 2008-12-08 2008-12-08 Light emitting diode with improved light extraction
US12/329,713 2008-12-08

Publications (1)

Publication Number Publication Date
WO2010077571A1 true WO2010077571A1 (en) 2010-07-08

Family

ID=41682294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/066743 WO2010077571A1 (en) 2008-12-08 2009-12-04 Light emitting diode with improved light extraction

Country Status (4)

Country Link
US (1) US8575633B2 (en)
EP (1) EP2374162A1 (en)
CN (1) CN102246325A (en)
WO (1) WO2010077571A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019510A1 (en) * 2009-08-10 2011-02-17 Cree, Inc. Light emitting diodes including integrated backside reflector and die attach

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915629B2 (en) 2008-12-08 2011-03-29 Cree, Inc. Composite high reflectivity layer
US9461201B2 (en) 2007-11-14 2016-10-04 Cree, Inc. Light emitting diode dielectric mirror
US8384115B2 (en) * 2008-08-01 2013-02-26 Cree, Inc. Bond pad design for enhancing light extraction from LED chips
US8017963B2 (en) 2008-12-08 2011-09-13 Cree, Inc. Light emitting diode with a dielectric mirror having a lateral configuration
US8529102B2 (en) 2009-04-06 2013-09-10 Cree, Inc. Reflector system for lighting device
US8741715B2 (en) * 2009-04-29 2014-06-03 Cree, Inc. Gate electrodes for millimeter-wave operation and methods of fabrication
KR101658838B1 (en) * 2010-02-04 2016-10-04 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
US9105824B2 (en) 2010-04-09 2015-08-11 Cree, Inc. High reflective board or substrate for LEDs
DE102010023342A1 (en) * 2010-06-10 2011-12-15 Osram Opto Semiconductors Gmbh Light-emitting diode arrangement and light-emitting means, in particular with such a light-emitting diode arrangement
CN101908590A (en) * 2010-07-28 2010-12-08 武汉迪源光电科技有限公司 Efficient light-emitting diode (LED) of triangular cone light-emitting surface
US8764224B2 (en) 2010-08-12 2014-07-01 Cree, Inc. Luminaire with distributed LED sources
US8556469B2 (en) 2010-12-06 2013-10-15 Cree, Inc. High efficiency total internal reflection optic for solid state lighting luminaires
JP5002703B2 (en) * 2010-12-08 2012-08-15 株式会社東芝 Semiconductor light emitting device
US8680556B2 (en) 2011-03-24 2014-03-25 Cree, Inc. Composite high reflectivity layer
JP2012216753A (en) * 2011-03-30 2012-11-08 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element
KR101767101B1 (en) * 2011-05-23 2017-08-24 삼성전자주식회사 Semiconductor light emitting device and manufacturing method of the same
US9269878B2 (en) * 2011-05-27 2016-02-23 Lg Innotek Co., Ltd. Light emitting device and light emitting apparatus
US10243121B2 (en) 2011-06-24 2019-03-26 Cree, Inc. High voltage monolithic LED chip with improved reliability
US8686429B2 (en) 2011-06-24 2014-04-01 Cree, Inc. LED structure with enhanced mirror reflectivity
US9728676B2 (en) 2011-06-24 2017-08-08 Cree, Inc. High voltage monolithic LED chip
KR101888604B1 (en) * 2011-10-28 2018-08-14 엘지이노텍 주식회사 Light emitting device and light emitting device package
CN103137796B (en) * 2011-12-03 2015-07-29 清华大学 The preparation method of light-emitting diode
CN103137797B (en) * 2011-12-03 2015-09-30 清华大学 The preparation method of light-emitting diode
CN103137798B (en) * 2011-12-03 2015-09-30 清华大学 The preparation method of light-emitting diode
JP2013145867A (en) * 2011-12-15 2013-07-25 Hitachi Cable Ltd Nitride semiconductor template, and light-emitting diode
US20130328074A1 (en) * 2012-06-11 2013-12-12 Cree, Inc. Led package with multiple element light source and encapsulant having planar surfaces
CN102779912A (en) * 2012-07-09 2012-11-14 厦门飞德利照明科技有限公司 Structure of white light emitting diode and manufacturing method thereof
WO2015033638A1 (en) * 2013-09-03 2015-03-12 シャープ株式会社 Semiconductor light emitting element
TWI506824B (en) * 2013-10-28 2015-11-01 Lextar Electronics Corp Light-emitting diode package and manufacture method thereof
WO2015112943A1 (en) 2014-01-27 2015-07-30 Glo Ab Led device with bragg reflector and method of singulating led wafer substrates into dice with same
TWI614914B (en) 2014-07-11 2018-02-11 晶元光電股份有限公司 Light emitting device and manufacturing method thereof
CN104091879A (en) * 2014-07-25 2014-10-08 胡溢文 LED chip packaging structure with two luminous surfaces
US10658546B2 (en) 2015-01-21 2020-05-19 Cree, Inc. High efficiency LEDs and methods of manufacturing
US10297722B2 (en) 2015-01-30 2019-05-21 Apple Inc. Micro-light emitting diode with metal side mirror
DE102015116495A1 (en) * 2015-09-29 2017-03-30 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
CN113345988A (en) * 2015-10-01 2021-09-03 克利公司 Light emitting device comprising flip chip light emitting diode
KR102471102B1 (en) * 2015-10-23 2022-11-25 서울바이오시스 주식회사 Light emitting diode chip having distributed bragg reflector
DE102015119353B4 (en) * 2015-11-10 2024-01-25 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
DE102015119553A1 (en) * 2015-11-12 2017-05-18 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip, optoelectronic component with a radiation-emitting semiconductor chip and method for coating a radiation-emitting semiconductor chip
WO2018038927A1 (en) * 2016-08-26 2018-03-01 The Penn State Research Foundation High light-extraction efficiency (lee) light-emitting diode (led)
KR102532743B1 (en) * 2016-12-06 2023-05-16 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 light emitting element
US11387389B2 (en) 2018-01-29 2022-07-12 Creeled, Inc. Reflective layers for light-emitting diodes
US11923481B2 (en) 2018-01-29 2024-03-05 Creeled, Inc. Reflective layers for light-emitting diodes
US11031527B2 (en) 2018-01-29 2021-06-08 Creeled, Inc. Reflective layers for light-emitting diodes
DE102018112255A1 (en) * 2018-05-22 2019-11-28 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
US10879441B2 (en) 2018-12-17 2020-12-29 Cree, Inc. Interconnects for light emitting diode chips
US10985294B2 (en) 2019-03-19 2021-04-20 Creeled, Inc. Contact structures for light emitting diode chips
US11094848B2 (en) 2019-08-16 2021-08-17 Creeled, Inc. Light-emitting diode chip structures

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905797A2 (en) * 1997-09-29 1999-03-31 Siemens Aktiengesellschaft Semiconductor light source and method of fabrication
US6504180B1 (en) * 1998-07-28 2003-01-07 Imec Vzw And Vrije Universiteit Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom
EP1329961A2 (en) * 2002-01-18 2003-07-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and method of manufacturing the same
US6821804B2 (en) 1999-12-03 2004-11-23 Cree, Inc. Enhanced light extraction in LEDs through the use of internal and external optical elements
US20050104072A1 (en) 2003-08-14 2005-05-19 Slater David B.Jr. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US20060011935A1 (en) * 1997-06-03 2006-01-19 Krames Michael R Light extraction from a semiconductor light emitting device via chip shaping
US20060060874A1 (en) 2004-09-22 2006-03-23 Edmond John A High efficiency group III nitride LED with lenticular surface
US20060186418A1 (en) 2004-05-18 2006-08-24 Edmond John A External extraction light emitting diode based upon crystallographic faceted surfaces
DE102006041460A1 (en) * 2006-09-04 2008-03-13 Osram Opto Semiconductors Gmbh Radiation emitting semiconductor chip, has semiconductor layer sequence with active area for producing electromagnetic radiation, which is arranged between base and side surfaces, and reflecting layer is applied on base and side surfaces
US7384809B2 (en) 2004-04-01 2008-06-10 Cree, Inc. Method of forming three-dimensional features on light emitting diodes for improved light extraction
US20080217635A1 (en) 2004-06-30 2008-09-11 David Todd Emerson Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures
DE102007019776A1 (en) * 2007-04-26 2008-10-30 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing a plurality of optoelectronic components

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9807692D0 (en) * 1998-04-14 1998-06-10 Univ Strathclyde Optival devices
JP3881472B2 (en) * 1999-04-15 2007-02-14 ローム株式会社 Manufacturing method of semiconductor light emitting device
TW474033B (en) * 2000-11-03 2002-01-21 United Epitaxy Co Ltd LED structure and the manufacturing method thereof
US6547249B2 (en) * 2001-03-29 2003-04-15 Lumileds Lighting U.S., Llc Monolithic series/parallel led arrays formed on highly resistive substrates
US6784462B2 (en) * 2001-12-13 2004-08-31 Rensselaer Polytechnic Institute Light-emitting diode with planar omni-directional reflector
US6967981B2 (en) * 2002-05-30 2005-11-22 Xerox Corporation Nitride based semiconductor structures with highly reflective mirrors
US6878969B2 (en) * 2002-07-29 2005-04-12 Matsushita Electric Works, Ltd. Light emitting device
US7264378B2 (en) * 2002-09-04 2007-09-04 Cree, Inc. Power surface mount light emitting die package
TW569479B (en) * 2002-12-20 2004-01-01 Ind Tech Res Inst White-light LED applying omnidirectional reflector
US7622742B2 (en) * 2003-07-03 2009-11-24 Epivalley Co., Ltd. III-nitride compound semiconductor light emitting device
JP2007529105A (en) * 2003-07-16 2007-10-18 松下電器産業株式会社 Semiconductor light emitting device, method of manufacturing the same, lighting device and display device
US20050082562A1 (en) * 2003-10-15 2005-04-21 Epistar Corporation High efficiency nitride based light emitting device
KR100576856B1 (en) 2003-12-23 2006-05-10 삼성전기주식회사 Nitride semiconductor light emitting diode and method of manufactruing the same
US20050139252A1 (en) * 2003-12-29 2005-06-30 Youngtack Shim Photovoltaic systems and methods
JP4330476B2 (en) * 2004-03-29 2009-09-16 スタンレー電気株式会社 Semiconductor light emitting device
US20060002442A1 (en) * 2004-06-30 2006-01-05 Kevin Haberern Light emitting devices having current blocking structures and methods of fabricating light emitting devices having current blocking structures
TWI299914B (en) 2004-07-12 2008-08-11 Epistar Corp Light emitting diode with transparent electrically conductive layer and omni directional reflector
TWM265766U (en) * 2004-09-16 2005-05-21 Super Nova Optoelectronics Cor Structure of GaN light emitting device
US20060081858A1 (en) 2004-10-14 2006-04-20 Chung-Hsiang Lin Light emitting device with omnidirectional reflectors
TWI374553B (en) * 2004-12-22 2012-10-11 Panasonic Corp Semiconductor light emitting device, illumination module, illumination apparatus, method for manufacturing semiconductor light emitting device, and method for manufacturing semiconductor light emitting element
US8097897B2 (en) * 2005-06-21 2012-01-17 Epistar Corporation High-efficiency light-emitting device and manufacturing method thereof
JP5059739B2 (en) * 2005-03-11 2012-10-31 ソウル セミコンダクター カンパニー リミテッド Light emitting diode package having an array of light emitting cells connected in series
US8704241B2 (en) * 2005-05-13 2014-04-22 Epistar Corporation Light-emitting systems
TWI248691B (en) * 2005-06-03 2006-02-01 Formosa Epitaxy Inc Light emitting diode and method of fabricating thereof
US20070018182A1 (en) * 2005-07-20 2007-01-25 Goldeneye, Inc. Light emitting diodes with improved light extraction and reflectivity
US7261454B2 (en) * 2005-09-23 2007-08-28 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. System and method for forming a back-lighted array using an omni-directional light source
JP4724618B2 (en) * 2005-11-11 2011-07-13 株式会社 日立ディスプレイズ LIGHTING DEVICE AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
KR100896576B1 (en) * 2006-02-24 2009-05-07 삼성전기주식회사 Nitride-based semiconductor light emitting device and method of manufacturing the same
KR20080087175A (en) * 2006-02-28 2008-09-30 로무 가부시키가이샤 Semiconductor light emitting element
US7573074B2 (en) 2006-05-19 2009-08-11 Bridgelux, Inc. LED electrode
WO2008031280A1 (en) * 2006-09-13 2008-03-20 Helio Optoelectronics Corporation Light emitting diode structure
EP3223313B1 (en) * 2007-01-22 2021-04-14 Cree, Inc. Monolithic light emitter having multiple light emitting sub-devices
TW200837943A (en) * 2007-01-22 2008-09-16 Led Lighting Fixtures Inc Fault tolerant light emitters, systems incorporating fault tolerant light emitters and methods of fabricating fault tolerant light emitters
CN101388161A (en) * 2007-09-14 2009-03-18 科锐香港有限公司 LED surface mounting device and LED display with the device
KR101423723B1 (en) * 2007-10-29 2014-08-04 서울바이오시스 주식회사 Light emitting diode package
US7985970B2 (en) * 2009-04-06 2011-07-26 Cree, Inc. High voltage low current surface-emitting LED
US9634191B2 (en) * 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
US8368100B2 (en) * 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
US7524087B1 (en) * 2007-11-16 2009-04-28 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical device
KR100982986B1 (en) * 2008-04-17 2010-09-17 삼성엘이디 주식회사 Submount, LED Package and Manufacturing Method Thereof
US8049230B2 (en) * 2008-05-16 2011-11-01 Cree Huizhou Opto Limited Apparatus and system for miniature surface mount devices

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060011935A1 (en) * 1997-06-03 2006-01-19 Krames Michael R Light extraction from a semiconductor light emitting device via chip shaping
EP0905797A2 (en) * 1997-09-29 1999-03-31 Siemens Aktiengesellschaft Semiconductor light source and method of fabrication
US6504180B1 (en) * 1998-07-28 2003-01-07 Imec Vzw And Vrije Universiteit Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom
US6821804B2 (en) 1999-12-03 2004-11-23 Cree, Inc. Enhanced light extraction in LEDs through the use of internal and external optical elements
EP1329961A2 (en) * 2002-01-18 2003-07-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and method of manufacturing the same
US20050104072A1 (en) 2003-08-14 2005-05-19 Slater David B.Jr. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US7384809B2 (en) 2004-04-01 2008-06-10 Cree, Inc. Method of forming three-dimensional features on light emitting diodes for improved light extraction
US20060186418A1 (en) 2004-05-18 2006-08-24 Edmond John A External extraction light emitting diode based upon crystallographic faceted surfaces
US20080217635A1 (en) 2004-06-30 2008-09-11 David Todd Emerson Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures
US20060060874A1 (en) 2004-09-22 2006-03-23 Edmond John A High efficiency group III nitride LED with lenticular surface
DE102006041460A1 (en) * 2006-09-04 2008-03-13 Osram Opto Semiconductors Gmbh Radiation emitting semiconductor chip, has semiconductor layer sequence with active area for producing electromagnetic radiation, which is arranged between base and side surfaces, and reflecting layer is applied on base and side surfaces
DE102007019776A1 (en) * 2007-04-26 2008-10-30 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing a plurality of optoelectronic components

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E. FRED SCHUBERT, LIGHT-EMITTING DIODES, 2003
S.M. SZE: "PHYSICS OF SEMICONDUCTOR DEVICES (2d ed.", 1981

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019510A1 (en) * 2009-08-10 2011-02-17 Cree, Inc. Light emitting diodes including integrated backside reflector and die attach
US9437785B2 (en) 2009-08-10 2016-09-06 Cree, Inc. Light emitting diodes including integrated backside reflector and die attach

Also Published As

Publication number Publication date
CN102246325A (en) 2011-11-16
EP2374162A1 (en) 2011-10-12
US20100140636A1 (en) 2010-06-10
US8575633B2 (en) 2013-11-05

Similar Documents

Publication Publication Date Title
US8575633B2 (en) Light emitting diode with improved light extraction
EP2374164B1 (en) Light emitting diode with a dielectric mirror having a lateral configuration
KR100745229B1 (en) Improved light extraction from a semiconductor light-emitting device via chip shaping
US6015719A (en) Transparent substrate light emitting diodes with directed light output
KR101424312B1 (en) Semiconductor chip and method for producing a semiconductor chip
US9142726B2 (en) Semiconductor light emitting device with light extraction structures
JP2009524918A (en) Photoelectric semiconductor chip
KR102284597B1 (en) Method and apparatus for creating a porous reflective contact
EP1577959A2 (en) Semiconductor light emitting devices including in-plane light emitting layers
KR101475963B1 (en) Radiation emitting semi­conductor body having an electrically conductive contact layer permeable to the emitted radiation
RU2231171C1 (en) Light-emitting diode
JP7224020B2 (en) Semiconductor device, semiconductor device package, and lighting system including the same
KR20090064468A (en) Led semiconductor body and use of an led semiconductor body
JP2003179255A (en) Method of selectively providing quantum well in flip chip light emitting diode for improving light extraction
KR102289345B1 (en) Light emitting diode with structured substrate
JP4833537B2 (en) Semiconductor light emitting device
US7592636B2 (en) Radiation-emitting semiconductor component and method for the production thereof
EP2017898A1 (en) Semiconductor light-emitting device and method for the manufacture thereof
KR20120133632A (en) Light emitting diode
WO2023015275A1 (en) Edge structures for light shaping in light-emitting diode chips

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149197.2

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09775424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009775424

Country of ref document: EP