WO2010122829A1 - Nmr probe - Google Patents

Nmr probe Download PDF

Info

Publication number
WO2010122829A1
WO2010122829A1 PCT/JP2010/051710 JP2010051710W WO2010122829A1 WO 2010122829 A1 WO2010122829 A1 WO 2010122829A1 JP 2010051710 W JP2010051710 W JP 2010051710W WO 2010122829 A1 WO2010122829 A1 WO 2010122829A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
coil
sample
nmr probe
probe according
Prior art date
Application number
PCT/JP2010/051710
Other languages
French (fr)
Japanese (ja)
Inventor
泰昭 寺尾
孝史 三木
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2010122829A1 publication Critical patent/WO2010122829A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34053Solenoid coils; Toroidal coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34061Helmholtz coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34092RF coils specially adapted for NMR spectrometers

Definitions

  • the present invention relates to an NMR probe having an RF coil and a sample space, and more particularly to an NMR probe suitable for measuring a small amount of sample.
  • FIG. 4 is a schematic diagram of an NMR apparatus for explaining an analysis method for a small amount of sample by nuclear magnetic resonance (NMR).
  • NMR nuclear magnetic resonance
  • the sample 102 to be measured is placed in a strong static magnetic field B0 in the Z-axis direction created by the superconducting electromagnet 101 of the NMR apparatus 100, and the high-frequency magnetic field B1 is applied to the RF coil with respect to this sample 102.
  • 103 is applied in the X-axis direction.
  • the nuclear magnetization in the sample 102 is excited by the high-frequency magnetic field B1, and a signal emitted in the process of relaxation after excitation is measured.
  • the present invention relates to a probe used in this NMR analysis, that is, a probe having an RF coil and a sample space. This probe is used particularly for analyzing a small amount of a biological tissue sample whose spatial dimension is on the order of mm.
  • the NMR probe constituent member described in Patent Literature 1 includes a sample chip in which an RF coil and a sample well are integrated, and a gradient magnetic field chip into which the sample chip is inserted.
  • the RF coil of the NMR probe component is a planar coil that irradiates the sample with electromagnetic waves only from one direction on the X axis.
  • sufficient uniformity of the high-frequency magnetic field cannot be ensured.
  • the uniformity of the high frequency magnetic field is low, the nuclear magnetic resonance phenomenon in the sample varies, and the NMR signal is adversely affected.
  • the present invention has been made in view of such problems, and provides an NMR probe that can save the trouble of producing an RF coil for each sample chip and can improve the uniformity of a high-frequency magnetic field as compared with the conventional technique.
  • the purpose is to do.
  • the present invention includes a first substrate including a first RF coil formed by a microfabrication technique, a second RF coil formed by a microfabrication technique, and parallel to the first substrate.
  • a second substrate fixedly disposed on the substrate, a sample substrate disposed between the first substrate and the second substrate and having a sample space formed by a microfabrication technique, the first substrate, and the sample
  • a magnetic susceptibility that is disposed in at least one of the gap between the substrate and the gap between the second substrate and the sample substrate, and is approximately equal to the magnetic susceptibility of the first substrate, the second substrate, and the sample substrate.
  • An NMR probe comprising: a gap filling material having:
  • the RF coil and the sample space are separated.
  • the sample when the sample is replaced, it is only necessary to replace the sample substrate on which the RF coil is not formed, and it is possible to omit the trouble of manufacturing the RF coil for each sample chip (substrate).
  • the sample can be irradiated with electromagnetic waves from both directions on the X-axis, and the uniformity of the high-frequency magnetic field can be improved as compared with the conventional case. it can. Furthermore, by arranging a gap filling material having a magnetic susceptibility comparable to that of the substrate, the continuity of the high-frequency magnetic field is increased, and as a result, the uniformity of the high-frequency magnetic field can be further improved.
  • the first RF coil is formed on an inner surface and an outer surface of the first substrate, and the second RF coil is formed on an inner surface and an outer surface of the second substrate.
  • each of the first RF coil and the second RF coil is a coil wound at least twice with a predetermined interval, and the strength of the high-frequency magnetic field in the sample space is increased and the uniformity is improved.
  • the coil inner diameter of the first RF coil formed on the inner surface of the first substrate is larger than the coil inner diameter of the first RF coil formed on the outer surface of the first substrate
  • the second The coil inner diameter of the second RF coil formed on the inner surface of the substrate is preferably larger than the coil inner diameter of the second RF coil formed on the outer surface of the second substrate.
  • the arrangement of the RF coil becomes a three-dimensional arrangement centering on the sample space, and the uniformity of the high-frequency magnetic field in the sample space can be further improved.
  • the gap filling material is preferably the same solvent as the sample solvent put in the sample space.
  • the magnetic susceptibility of the sample solvent and the magnetic susceptibility of the gap filling material are the same, and as a result, the uniformity of the high-frequency magnetic field can be improved.
  • the gap filling material is preferably a deuterated solvent solution.
  • the magnetic susceptibility of the gap filling material is approximately the same as that of the substrate. Thereby, the uniformity of a high frequency magnetic field can be improved.
  • a spacer substrate that is fixedly disposed between the first substrate and the second substrate and forms a space for inserting the sample substrate
  • the sample substrate has a corner that is continuous in the insertion / removal direction.
  • the portion is smoothly chamfered, and the inner surface of the spacer substrate is formed into a smooth curved surface that matches the corner of the sample substrate. According to this configuration, the sample substrate can be replaced (inserted / removed) more easily.
  • the magnetic susceptibility of the first RF coil and the second RF coil is approximately the same as the magnetic susceptibility of the first substrate, the second substrate, the spacer substrate, and the sample substrate. According to this configuration, the continuity of the high frequency magnetic field is increased, and the uniformity of the high frequency magnetic field can be further improved.
  • the magnetic susceptibility of the first substrate, the second substrate, the spacer substrate, and the sample substrate is approximately the same as the magnetic susceptibility of a solvent (sample solvent) put in the sample space of the sample substrate. It is preferable. According to this configuration, the continuity of the high frequency magnetic field is increased, and the uniformity of the high frequency magnetic field can be further improved.
  • FIG. 1 It is a perspective view which shows the probe for NMR which concerns on one Embodiment of this invention.
  • substrate shown in FIG. 1 (a) is a top view, (b) is the B section enlarged view of (a), (c) is a front view, (d) is a side view.
  • substrate shown in FIG. 1 (a) is a top view, (b) is a front view, (c) is a side view.
  • A) is a schematic diagram of the NMR apparatus for demonstrating the analysis method of a small sample by a nuclear magnetic resonance method (NMR),
  • (b) is the A section enlarged view of (a).
  • FIG. 1 is a perspective view showing an NMR probe 1 according to an embodiment of the present invention.
  • the NMR probe 1 includes a coil substrate 9 and a sample substrate 4 disposed so as to be inserted into the coil substrate 9.
  • the shape of the NMR probe 1 is a rectangular parallelepiped.
  • the NMR probe 1 is, for example, installed in the bore portion of the NMR apparatus 100 shown in FIG. 4.
  • the NMR probe 1 is installed in a strong static magnetic field in the Z-axis direction created by the superconducting electromagnet 101 of the NMR apparatus 100, and a high-frequency magnetic field is applied in the X-axis direction by an RF coil.
  • a high frequency oscillator (not shown) is connected to the RF coil.
  • the shape of the NMR probe 1 is not limited to a rectangular parallelepiped, and may be, for example, a cube.
  • FIG. 2 is a diagram of the coil substrate 9 constituting the NMR probe 1 shown in FIG. 2A is a top view, FIG. 2B is an enlarged view of a portion B of FIG. 2A, FIG. 2C is a front view, and FIG. 2D is a side view.
  • the coil substrate 9 is a spacer substrate that is disposed between the first substrate 2, the second substrate 3, and both the substrates 2 and 3 and forms a space 9 a for inserting the sample substrate 4. 5 and 6.
  • the coil substrate 9 is formed in a rectangular parallelepiped shape and has an insertion space 9a.
  • the insertion space 9a is substantially oval when viewed from above.
  • the material of the first substrate 2, the second substrate 3, and the spacer substrates 5 and 6 constituting the coil substrate 9 is glass. Examples of materials other than glass include quartz and silica.
  • the shape of the coil substrate 9 is not limited to a rectangular parallelepiped, and may be a cube, for example.
  • the first substrate 2 is a rectangular plate having the first RF coil 7 (when the thickness is larger than the width and length, it is more appropriate to call the rectangular parallelepiped rather than the rectangular plate).
  • the first RF coil 7 includes a coil portion 7 b formed on the inner surface of the first substrate 2 and a coil portion 7 a formed on the outer surface of the first substrate 2. That is, the 1st RF coil 7 is a coil of the form wound twice.
  • the inner diameter D1 of the coil portion 7b is larger than the inner diameter D2 of the coil portion 7a.
  • the distance H2 from the center line CL of the coil substrate 9 to the coil part 7a is longer than the distance H1 from the center line CL to the coil part 7b.
  • the coil part 7a and the coil part 7b are formed so that it may become concentric.
  • substrate 2 is not restricted to a rectangle (or rectangular parallelepiped), For example, a square (or cube) etc. may be sufficient. The same applies to the second substrate 3 described later.
  • the coil part 7a and the coil part 7b are formed in a groove formed by etching on the surface of the first substrate 2 by sputtering or plating.
  • Examples of the material of the first RF coil 7 include copper, gold, silver, aluminum, titanium, and chromium. It is possible to adjust the magnetic susceptibility of the substrate and the solvent (sample solvent) by adjusting the type and thickness of these materials.
  • the coil portion 7b is not in contact with the insertion space 9a, but the coil portion 7b may be in contact with the insertion space 9a.
  • the coil portion 7b is not damaged by the microfabrication technique (etching, sputtering, plating, etc.) as described above so as not to damage the surface of the sample substrate 4 or the coil portion 7b. Is preferably formed.
  • the inner diameter D2 of the coil portion 7a and the inner diameter D1 of the coil portion 7b are preferably about 10 ⁇ m to 10 mm (where D1> D2).
  • the distance H2 and the distance H1 are preferably about 20 ⁇ m to 5 mm (where H2> H1).
  • the line width W2 of the coil part 7a and the coil part 7b is preferably about 50 ⁇ m to 150 ⁇ m.
  • the thickness W1 of the coil portion 7a and the coil portion 7b is preferably about 5 ⁇ m to 50 ⁇ m.
  • the cross-sectional shape of the coil part 7a and the coil part 7b is a quadrangle in the example shown by (a) of FIG. 2, etc., a semicircular shape etc. may be sufficient.
  • the same type of metal as that of the coil portion 7a and the coil portion 7b is embedded by sputtering or plating. Thereby, the coil part 7a and the coil part 7b are mutually connected.
  • the second substrate 3 is a rectangular plate having the second RF coil 8 and is configured in the same manner as the first substrate 2.
  • the second RF coil 8 is a coil having the same material and shape as the first RF coil 7.
  • the coil part 8a and the coil part 8b of the second RF coil 8 correspond to the coil part 7a and the coil part 7b of the first RF coil 7, respectively, and the diameter of the coil part 8a and the diameter of the coil part 7a are Are equal, and the diameter of the coil portion 8b is equal to the diameter of the coil portion 7b.
  • the second RF coil 8 and the first RF coil 7 are formed so as to be concentric. That is, the first RF coil 7 and the second RF coil 8 are disposed symmetrically with respect to the center of the coil substrate 9.
  • the 1st RF coil 7 and the 2nd RF coil 8 are not restricted to the coil of the form wound twice, Other forms may be sufficient.
  • the 1st RF coil 7 and the 2nd RF coil 8 may be a coil of the form wound 1 time, and it is only a coil part (coil part 7b, 8b) on each inner surface of the 1st board
  • the coil of the form described above may be used.
  • the spacer substrates 5 and 6 are substrates for forming the insertion space 9 a for the sample substrate 4.
  • the inner side surfaces 5a, 6a of the spacer substrates 5, 6 are smooth curved surfaces so as to be in surface contact with the smoothly chamfered (R-formed) corner portions 4b, 4c (see FIG. 3) of the sample substrate 4. (R is formed).
  • the spacer substrates 5 and 6 are long members having a predetermined thickness.
  • the spacer substrate 5 and the spacer substrate 6 are sandwiched between the first substrate 2 and the second substrate 3 arranged in parallel with a predetermined interval.
  • the coil substrate 9 is formed by bonding these substrates to each other using a chemical solution or heat.
  • FIG. 3 is a diagram of the sample substrate 4 constituting the NMR probe 1 shown in FIG. 3A, 3B, and 3C are a top view, a front view, and a side view of the sample substrate 4, respectively.
  • the sample substrate 4 has a rectangular parallelepiped shape as a whole, and has a sample space 4a in which a biological tissue sample to be analyzed is placed.
  • the shape of the sample substrate 4 in a top view is substantially elliptical.
  • the sample space 4a is a circular hole space in a top view and is formed by a fine processing technique.
  • This fine processing technology includes electron lithography, nano-lithography technology such as short wavelength exposure and polymer processing, etching technology such as wet etching, dry etching, lift-off, thermal NIL, optical NIL, soft NIL, Examples thereof include nanoimprint lithography (NIL) techniques such as direct NIL, and flow path processing is performed by these techniques.
  • NIL nanoimprint lithography
  • the corners 4b and 4c continuous in the direction of inserting and removing the sample substrate 4 are smoothly chamfered (R-formed).
  • the thickness of the sample substrate 4 is substantially equal to the thickness of the spacer substrates 5 and 6.
  • the sample substrate 4 is manufactured so as to fit in the insertion space 9 a formed in the central portion of the coil substrate 9.
  • the diameter of the bottomed cylindrical sample space 4a is preferably about 10 ⁇ m to 1 mm, and the length is preferably about 1 mm to 20 mm.
  • the shape of the sample substrate 4 is not limited to a rectangular parallelepiped shape, and may be a cubic shape, for example.
  • the corners 4b and 4c continuous in the direction of inserting and removing the sample substrate 4 and the inner side surfaces 5a and 6a of the spacer substrates 5 and 6 are chamfered, so that the replacement (insertion and removal) of the sample substrate 4 can be performed. It becomes easy.
  • the dehydrated solvent liquid is applied to the surface of the sample substrate 4 or the inner side surface of the coil substrate 9 (the surface that defines the insertion space 9a). This dehydrated solvent liquid enters a slight gap (space) between the sample substrate 4 and the coil substrate 9 to fill the gap.
  • the dehydrated solvent solution is compatible with the magnetic susceptibility of the coil substrate 9 (the first substrate 2, the second substrate 3, and the spacer substrates 5 and 6) and the sample substrate 4 (having the same magnetic susceptibility).
  • the sample substrate can be easily replaced (inserted / removed), the continuity of the high-frequency magnetic field between the coil substrate 9 and the sample substrate 4 is increased, and the uniformity of the high-frequency magnetic field is improved. improves.
  • the deuterated solvent liquid is a gap filling material arranged in at least one of the slight gap between the first substrate 2 and the sample substrate 4 and the slight gap between the second substrate 3 and the sample substrate 4. It is.
  • the gap filling material may be a thin sheet material, a thin film, or the like disposed in a slight gap between at least one of the first substrate 2 and the second substrate 3 and the sample substrate 4.
  • the gap filling material has a magnetic susceptibility similar to that of the coil substrate 9 (the first substrate 2, the second substrate 3, and the spacer substrates 5 and 6) and the sample substrate 4.
  • the difference between the two magnetic susceptibilities at the flat interface is less than 30% of the sample susceptibility, more preferably less than 10% of the sample susceptibility.
  • This allows the inhomogeneity of the magnetic field that occurs with respect to the range of magnetic susceptibility between these substrates and the sample solvent and the range of magnetic susceptibility between these substrates and the RF coils (7, 8) to It can be compensated by a magnetic field correction coil.
  • the gap filling material is also used to reduce the jump of magnetic susceptibility between the substrates (between the coil substrate 9 and the sample substrate 4). Therefore, it is desirable that the difference in magnetic susceptibility between the substrates (9, 4), the RF coils (7, 8), the sample solvent, and the gap filling material is as small as possible. That is, as described above, the difference between the two magnetic susceptibilities at the flat boundary surface is preferably less than 30% of the sample susceptibility, and more preferably less than 10% of the sample susceptibility.
  • the deuterated solvent solution is a solvent usually used in solution NMR or the like, and is a solvent in which the proton (H1) portion is substituted with heavy water (D).
  • Deuterated solvent solutions include deuterated chloroform (CDCl 3 ), deuterated DMSO ((D 3 C) 2 S ⁇ O), deuterated methanol (CD 3 OD), deuterated water (D 2 O), tetrahydrofuran, acetonitrile, dichloromethane, benzene, and toluene.
  • -N, N-dimethylformamide and the like can be mentioned.
  • the dehydrated solvent solution is compatible with the magnetic susceptibility of the coil substrate 9 (the first substrate 2, the second substrate 3, and the spacer substrates 5 and 6) and the sample substrate 4 (having a similar magnetic susceptibility), It is desirable that the deuterated solvent be the same as the solvent (sample solvent) put in the sample space 4a of the sample substrate 4. In such a case, the uniformity of the high frequency magnetic field is further improved.
  • cyclohexane CCl 4 , CS 2 , dioxane, tetrahydrofuran, HMPA, 1,2,4-trichlorobenzene, vinyl chloride, nitrobenzene, CF 2 BrCl, CFCl 3 or the like can be used.
  • the first RF coil 7 and the second RF coil 8 are magnetized so as to match the magnetic susceptibility of the coil substrate 9 (first substrate 2, second substrate 3, and spacer substrates 5 and 6) and the sample substrate 4. It is preferable to have a magnetic susceptibility comparable to that of the magnetic field. Furthermore, it is preferable that the magnetic susceptibility of the coil substrate 9 and the sample substrate 4 is compatible (similar to that of the solvent) contained in the sample space 4 a of the sample substrate 4. According to such a form, the continuity of the high frequency magnetic field is further increased, and the uniformity of the high frequency magnetic field can be further improved.
  • the magnetic susceptibility of the solvent used as the gap filling material, the sample solvent put in the sample space 4a, and the substrate material is as follows.
  • Water Magnetic susceptibility -9.05 ⁇ 10-6 (used as gap filler and sample solvent)
  • Acetone magnetic susceptibility -5.8 ⁇ 10-6 (used as gap filler, sample solvent)
  • Borosilicate glass Magnetic susceptibility -11.0 ⁇ 10-6 (substrate material)
  • Quartz glass Magnetic susceptibility -15.0 ⁇ 10-6 (substrate material)
  • the sample to be analyzed is enclosed in the sample space 4a of the sample substrate 4, and the sample substrate 4 is inserted into the insertion space 9a of the coil substrate 9 and attached, whereby the NMR probe 1 in which the sample is enclosed is completed.
  • the NMR probe 1 is installed, for example, in a bore portion of the NMR apparatus 100 shown in FIG.
  • a strong static magnetic field generated by the superconducting electromagnet 101 of the NMR apparatus 100 is applied to the NMR probe 1 in the Z-axis direction, and a high-frequency magnetic field is applied in the X-axis direction by the first RF coil 7 and the second RF coil 8. .
  • the RF coil is formed on the coil substrate 9 different from the sample substrate 4 having the sample space 4a, when replacing the sample, the sample substrate on which the RF coil is not formed. Only 4 needs to be replaced. That is, the labor for producing the RF coil for each sample chip (substrate) is saved. Moreover, since the first RF coil 7 and the second RF coil 8 are arranged so as to sandwich the sample space 4a, it is possible to irradiate the sample with electromagnetic waves from both directions on the X axis. As a result, the uniformity of the high-frequency magnetic field can be improved as compared with the conventional case, and the resolution of the NMR spectrum is improved.
  • first RF coil 7 and the second RF coil 8 are coils (coiled by two turns) having coil portions formed on the inner and outer surfaces of the first substrate 2 and the second substrate 3, respectively.
  • the strength of the high frequency magnetic field can be increased and the uniformity can be further improved.
  • the uniformity of the high-frequency magnetic field in the sample space 4a is further improved.
  • NMR probe 2 first substrate 3: second substrate 4: sample substrate 4a: sample space 5, 6: spacer substrate 7: first RF coil 8: second RF coil

Abstract

Disclosed is an NMR probe which enables saving of the labor and time to fabricate an RF coil for each sample chip and improvement of the uniformity of the high-frequency magnetic field. The NMR probe (1) is provided with a first substrate (2) having a first RF coil (7) fabricated by microfabrication, a second substrate (3) fixedly disposed in parallel to the first coil substrate (2) and having a second RF coil (8) fabricated by microfabrication, and a sample substrate (4) disposed between the first substrate (2) and the second substrate (3) and having a sample space (4a) fabricated by microfabrication. A deuterated solvent is applied to the surface of the sample substrate (4) or the inner side surfaces of the coil substrate (9) (the surfaces defining a plug-in space (9a)).

Description

NMR用プローブNMR probe
 本発明は、RFコイルおよび試料空間を有するNMR用プローブに関し、特に少量の試料測定用として好適なNMR用プローブに関する。 The present invention relates to an NMR probe having an RF coil and a sample space, and more particularly to an NMR probe suitable for measuring a small amount of sample.
 図4は、核磁気共鳴法(NMR:Nuclear Magnetic Resonance)による少量の試料の分析手法を説明するためのNMR装置の模式図である。図4に示すように、測定対象の試料102は、NMR装置100の超電導電磁石101によって作られるZ軸方向の強い静磁場B0の中に置かれ、この試料102に対して高周波磁場B1がRFコイル103によりX軸方向に印加される。この高周波磁場B1により試料102内の核磁化が励起され、励起後緩和する過程で放出される信号が測定される。この測定した信号をハードウェアおよびPCで解析することにより、試料の立体構造や機能などの情報が取得される。
 本発明は、このNMRによる分析において用いられるプローブ(Probe)、即ち、RFコイルおよび試料空間を有するプローブに関する。このプローブは、特に試料の空間寸法がmmオーダーの少量の生体組織試料などを分析するために使用される。
FIG. 4 is a schematic diagram of an NMR apparatus for explaining an analysis method for a small amount of sample by nuclear magnetic resonance (NMR). As shown in FIG. 4, the sample 102 to be measured is placed in a strong static magnetic field B0 in the Z-axis direction created by the superconducting electromagnet 101 of the NMR apparatus 100, and the high-frequency magnetic field B1 is applied to the RF coil with respect to this sample 102. 103 is applied in the X-axis direction. The nuclear magnetization in the sample 102 is excited by the high-frequency magnetic field B1, and a signal emitted in the process of relaxation after excitation is measured. By analyzing the measured signal with hardware and a PC, information such as the three-dimensional structure and function of the sample is acquired.
The present invention relates to a probe used in this NMR analysis, that is, a probe having an RF coil and a sample space. This probe is used particularly for analyzing a small amount of a biological tissue sample whose spatial dimension is on the order of mm.
 この種の技術としては、例えば特許文献1に記載された技術がある。特許文献1に記載されたNMRプローブ構成部材は、RFコイルと試料ウェルとが一体となった試料チップと、この試料チップが差し込まれる傾斜磁場チップと、を備える。 As this type of technology, for example, there is a technology described in Patent Document 1. The NMR probe constituent member described in Patent Literature 1 includes a sample chip in which an RF coil and a sample well are integrated, and a gradient magnetic field chip into which the sample chip is inserted.
日本国特開2008-58315号公報Japanese Unexamined Patent Publication No. 2008-58315
 特許文献1に記載されたNMRプローブ構成部材においては、RFコイルと試料ウェルとが一体となっているため、試料毎にRFコイルが形成された試料チップを作製せねばならず、非常に手間がかかる。また、このNMRプローブ構成部材のRFコイルは、試料に対してX軸上の一方向からのみ電磁波を照射する平面型のコイルであるが、この形態では高周波磁場の均一性が十分に確保できない。高周波磁場の均一性が低いと、試料内の核磁気共鳴現象にバラつきが生じ、NMR信号に悪影響が生じる。 In the NMR probe component described in Patent Document 1, since the RF coil and the sample well are integrated, it is necessary to prepare a sample chip in which an RF coil is formed for each sample, which is very troublesome. Take it. The RF coil of the NMR probe component is a planar coil that irradiates the sample with electromagnetic waves only from one direction on the X axis. However, in this embodiment, sufficient uniformity of the high-frequency magnetic field cannot be ensured. When the uniformity of the high frequency magnetic field is low, the nuclear magnetic resonance phenomenon in the sample varies, and the NMR signal is adversely affected.
 本発明は、このような問題に鑑みてなされたものであり、試料チップ毎にRFコイルを作製する手間を省くことができるとともに、高周波磁場の均一性を従来よりも向上できるNMR用プローブを提供することを目的とする。 The present invention has been made in view of such problems, and provides an NMR probe that can save the trouble of producing an RF coil for each sample chip and can improve the uniformity of a high-frequency magnetic field as compared with the conventional technique. The purpose is to do.
 上記目的を達成するために本発明は、微細加工技術により形成された第1RFコイルを備える第1基板と、微細加工技術により形成された第2RFコイルを備えるとともに、前記第1基板に対して並行に固定配置された第2基板と、前記第1基板と前記第2基板との間に配置されるとともに、微細加工技術により形成された試料空間を備える試料基板と、前記第1基板と前記試料基板との隙間および前記第2基板と前記試料基板との隙間の少なくともいずれか一方に配置されるとともに、前記第1基板、前記第2基板、および前記試料基板の磁化率と同程度の磁化率を有する隙間埋材と、を備えるNMR用プローブを提供する。 In order to achieve the above object, the present invention includes a first substrate including a first RF coil formed by a microfabrication technique, a second RF coil formed by a microfabrication technique, and parallel to the first substrate. A second substrate fixedly disposed on the substrate, a sample substrate disposed between the first substrate and the second substrate and having a sample space formed by a microfabrication technique, the first substrate, and the sample A magnetic susceptibility that is disposed in at least one of the gap between the substrate and the gap between the second substrate and the sample substrate, and is approximately equal to the magnetic susceptibility of the first substrate, the second substrate, and the sample substrate. An NMR probe comprising: a gap filling material having:
 この構成によると、RFコイルと試料空間とが分離される。これにより、試料を取り替える際は、RFコイルが形成されていない試料基板を取り替えればよくなり、試料チップ(基板)毎にRFコイルを作製する手間が省略可能となる。 According to this configuration, the RF coil and the sample space are separated. As a result, when the sample is replaced, it is only necessary to replace the sample substrate on which the RF coil is not formed, and it is possible to omit the trouble of manufacturing the RF coil for each sample chip (substrate).
 また、試料空間を挟むようにその両側にRFコイルが配置されるので、試料に対してX軸上の両方向から電磁波を照射することができ、高周波磁場の均一性を従来よりも向上させることができる。さらに、基板の磁化率と同程度の磁化率を有する隙間埋材を配置することにより、高周波磁場の連続性が高まり、その結果、高周波磁場の均一性がより向上できる。 In addition, since RF coils are arranged on both sides of the sample space, the sample can be irradiated with electromagnetic waves from both directions on the X-axis, and the uniformity of the high-frequency magnetic field can be improved as compared with the conventional case. it can. Furthermore, by arranging a gap filling material having a magnetic susceptibility comparable to that of the substrate, the continuity of the high-frequency magnetic field is increased, and as a result, the uniformity of the high-frequency magnetic field can be further improved.
 また本発明において、前記第1RFコイルは、前記第1基板の内側面および外側面に形成され、前記第2RFコイルは、前記第2基板の内側面および外側面に形成されることが好ましい。 In the present invention, it is preferable that the first RF coil is formed on an inner surface and an outer surface of the first substrate, and the second RF coil is formed on an inner surface and an outer surface of the second substrate.
 この構成によると、第1RFコイルおよび第2RFコイルは、それぞれ、所定の間隔をあけて少なくとも2巻きされたコイルとなり、試料空間の高周波磁場の強度が大きくなるとともに均一性が向上する。 According to this configuration, each of the first RF coil and the second RF coil is a coil wound at least twice with a predetermined interval, and the strength of the high-frequency magnetic field in the sample space is increased and the uniformity is improved.
 さらに本発明において、前記第1基板の内側面に形成された前記第1RFコイルのコイル内径は、前記第1基板の外側面に形成された前記第1RFコイルのコイル内径よりも大きく、前記第2基板の内側面に形成された前記第2RFコイルのコイル内径は、前記第2基板の外側面に形成された前記第2RFコイルのコイル内径よりも大きいことが好ましい。 Furthermore, in the present invention, the coil inner diameter of the first RF coil formed on the inner surface of the first substrate is larger than the coil inner diameter of the first RF coil formed on the outer surface of the first substrate, and the second The coil inner diameter of the second RF coil formed on the inner surface of the substrate is preferably larger than the coil inner diameter of the second RF coil formed on the outer surface of the second substrate.
 この構成によると、RFコイルの配置が、試料空間を中心とする、より立体的な配置となり、試料空間の高周波磁場の均一性がより向上できる。 According to this configuration, the arrangement of the RF coil becomes a three-dimensional arrangement centering on the sample space, and the uniformity of the high-frequency magnetic field in the sample space can be further improved.
 さらに本発明において、前記隙間埋材は、前記試料空間に入れられるサンプル溶媒と同じ溶媒であることが好ましい。 Furthermore, in the present invention, the gap filling material is preferably the same solvent as the sample solvent put in the sample space.
 この構成によると、サンプル溶媒の磁化率と隙間埋材の磁化率とが同じとなるので、その結果、高周波磁場の均一性が向上できる。 According to this configuration, the magnetic susceptibility of the sample solvent and the magnetic susceptibility of the gap filling material are the same, and as a result, the uniformity of the high-frequency magnetic field can be improved.
 さらに本発明において、前記隙間埋材は、重水化溶媒液であることが好ましい。 Furthermore, in the present invention, the gap filling material is preferably a deuterated solvent solution.
 この構成によると、隙間埋材の磁化率が基板の磁化率と同程度となる。これにより、高周波磁場の均一性が向上できる。 According to this configuration, the magnetic susceptibility of the gap filling material is approximately the same as that of the substrate. Thereby, the uniformity of a high frequency magnetic field can be improved.
 さらに本発明において、前記第1基板と前記第2基板との間に固定配置されるとともに、前記試料基板の差し込み用スペースを形成するスペーサ基板を備え、前記試料基板は、抜き差し方向に連続する角部が滑らかに面取りされ、前記スペーサ基板の内側面は、前記試料基板の前記角部に合わせた滑らかな曲面に形成されていることが好ましい。この構成によると、試料基板の取り替え(抜き差し)がより容易となる。 Furthermore, in the present invention, a spacer substrate that is fixedly disposed between the first substrate and the second substrate and forms a space for inserting the sample substrate is provided, and the sample substrate has a corner that is continuous in the insertion / removal direction. Preferably, the portion is smoothly chamfered, and the inner surface of the spacer substrate is formed into a smooth curved surface that matches the corner of the sample substrate. According to this configuration, the sample substrate can be replaced (inserted / removed) more easily.
 さらに本発明において、前記第1RFコイルおよび前記第2RFコイルの磁化率は、前記第1基板、前記第2基板、前記スペーサ基板、および前記試料基板の磁化率と同程度であることが好ましい。この構成によると、高周波磁場の連続性が高まり、高周波磁場の均一性がより向上できる。 Furthermore, in the present invention, it is preferable that the magnetic susceptibility of the first RF coil and the second RF coil is approximately the same as the magnetic susceptibility of the first substrate, the second substrate, the spacer substrate, and the sample substrate. According to this configuration, the continuity of the high frequency magnetic field is increased, and the uniformity of the high frequency magnetic field can be further improved.
 さらに本発明において、前記第1基板、前記第2基板、前記スペーサ基板、および前記試料基板の磁化率は、当該試料基板の試料空間に入れられる溶媒(サンプル溶媒)の磁化率と同程度であることが好ましい。この構成によると、高周波磁場の連続性が高まり、高周波磁場の均一性がより向上できる。 Furthermore, in the present invention, the magnetic susceptibility of the first substrate, the second substrate, the spacer substrate, and the sample substrate is approximately the same as the magnetic susceptibility of a solvent (sample solvent) put in the sample space of the sample substrate. It is preferable. According to this configuration, the continuity of the high frequency magnetic field is increased, and the uniformity of the high frequency magnetic field can be further improved.
本発明の一実施形態に係るNMR用プローブを示す斜視図である。It is a perspective view which shows the probe for NMR which concerns on one Embodiment of this invention. 図1に示すコイル基板の図であり、(a)は上面図、(b)は(a)のB部拡大図、(c)は正面図、(d)は側面図である。It is a figure of the coil board | substrate shown in FIG. 1, (a) is a top view, (b) is the B section enlarged view of (a), (c) is a front view, (d) is a side view. 図1に示す試料基板の図であり、(a)は上面図、(b)は正面図、(c)は側面図である。It is a figure of the sample board | substrate shown in FIG. 1, (a) is a top view, (b) is a front view, (c) is a side view. (a)は核磁気共鳴法(NMR)による少量の試料の分析手法を説明するためのNMR装置の模式図であり、(b)は(a)のA部拡大図である。(A) is a schematic diagram of the NMR apparatus for demonstrating the analysis method of a small sample by a nuclear magnetic resonance method (NMR), (b) is the A section enlarged view of (a).
 以下、本発明を実施するための形態について、図面を参照しつつ説明する。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
(NMR用プローブの構成)
 図1は、本発明の一実施形態に係るNMR用プローブ1を示す斜視図である。図1に示すように、NMR用プローブ1は、コイル基板9と、このコイル基板9に対して差し込まれて配置された試料基板4と、を備えている。NMR用プローブ1の形状は直方体である。ここで、図4に試料102がセットされたNMR装置100を示したように、NMR用プローブ1は、例えば図4に示したNMR装置100のボア部に設置されるものである。NMR用プローブ1は、NMR装置100の超電導電磁石101によって作られるZ軸方向の強い静磁場の中に設置され、RFコイルにより高周波磁場がX軸方向に印加される。なお、RFコイルには高周波発振器(不図示)が接続される。また、NMR用プローブ1の形状は直方体に限られず、例えば立方体などであってもよい。
(Configuration of NMR probe)
FIG. 1 is a perspective view showing an NMR probe 1 according to an embodiment of the present invention. As shown in FIG. 1, the NMR probe 1 includes a coil substrate 9 and a sample substrate 4 disposed so as to be inserted into the coil substrate 9. The shape of the NMR probe 1 is a rectangular parallelepiped. Here, as shown in the NMR apparatus 100 in which the sample 102 is set in FIG. 4, the NMR probe 1 is, for example, installed in the bore portion of the NMR apparatus 100 shown in FIG. 4. The NMR probe 1 is installed in a strong static magnetic field in the Z-axis direction created by the superconducting electromagnet 101 of the NMR apparatus 100, and a high-frequency magnetic field is applied in the X-axis direction by an RF coil. A high frequency oscillator (not shown) is connected to the RF coil. The shape of the NMR probe 1 is not limited to a rectangular parallelepiped, and may be, for example, a cube.
(コイル基板)
 図2は、図1に示したNMR用プローブ1を構成するコイル基板9の図である。図2において、(a)は上面図、(b)は(a)のB部拡大図、(c)は正面図、(d)は側面図である。
(Coil substrate)
FIG. 2 is a diagram of the coil substrate 9 constituting the NMR probe 1 shown in FIG. 2A is a top view, FIG. 2B is an enlarged view of a portion B of FIG. 2A, FIG. 2C is a front view, and FIG. 2D is a side view.
 図2に示すように、コイル基板9は、第1基板2と、第2基板3と、これら両基板2,3の間に配置されるとともに試料基板4の差し込み用スペース9aを形成するスペーサ基板5,6と、を備える。コイル基板9は、直方体の形状に形成されるとともに、差し込み用スペース9aを有する。差し込み用スペース9aは、上面視において略楕円形である。コイル基板9を構成する第1基板2、第2基板3、およびスペーサ基板5,6の材料は、ガラスである。ガラス以外の材料としては、石英、シリカなどが挙げられる。なお、コイル基板9の形状は直方体に限られず、例えば立方体などであってもよい。 As shown in FIG. 2, the coil substrate 9 is a spacer substrate that is disposed between the first substrate 2, the second substrate 3, and both the substrates 2 and 3 and forms a space 9 a for inserting the sample substrate 4. 5 and 6. The coil substrate 9 is formed in a rectangular parallelepiped shape and has an insertion space 9a. The insertion space 9a is substantially oval when viewed from above. The material of the first substrate 2, the second substrate 3, and the spacer substrates 5 and 6 constituting the coil substrate 9 is glass. Examples of materials other than glass include quartz and silica. The shape of the coil substrate 9 is not limited to a rectangular parallelepiped, and may be a cube, for example.
(第1基板および第2基板)
 第1基板2は、第1RFコイル7を有する、長方形の板である(幅および長さに比して厚みが大きい場合、長方形の板ではなく、直方体と呼ぶほうが適切である)。第1RFコイル7は、第1基板2の内側面に形成されたコイル部7bと、第1基板2の外側面に形成されたコイル部7aと、を有している。すなわち、第1RFコイル7は2巻きされた形態のコイルである。ここで、コイル部7bの内径D1は、コイル部7aの内径D2よりも大きい。また、コイル基板9の中心線CLからコイル部7aまでの距離H2は、中心線CLからコイル部7bまでの距離H1よりも長い。また、コイル部7aとコイル部7bとは同心になるように形成されている。なお、第1基板2の形状は、長方形(または直方体)に限られず、例えば正方形(または立方体)などであってもよい。後述する第2基板3においても同様である。
(First substrate and second substrate)
The first substrate 2 is a rectangular plate having the first RF coil 7 (when the thickness is larger than the width and length, it is more appropriate to call the rectangular parallelepiped rather than the rectangular plate). The first RF coil 7 includes a coil portion 7 b formed on the inner surface of the first substrate 2 and a coil portion 7 a formed on the outer surface of the first substrate 2. That is, the 1st RF coil 7 is a coil of the form wound twice. Here, the inner diameter D1 of the coil portion 7b is larger than the inner diameter D2 of the coil portion 7a. The distance H2 from the center line CL of the coil substrate 9 to the coil part 7a is longer than the distance H1 from the center line CL to the coil part 7b. Moreover, the coil part 7a and the coil part 7b are formed so that it may become concentric. In addition, the shape of the 1st board | substrate 2 is not restricted to a rectangle (or rectangular parallelepiped), For example, a square (or cube) etc. may be sufficient. The same applies to the second substrate 3 described later.
 コイル部7aおよびコイル部7bは、スパッタリングまたはメッキによって、第1基板2の表面にエッチングにより形成された溝の中に形成される。第1RFコイル7の材料としては、銅、金、銀、アルミ、チタン、およびクロムなどが挙げられる。これら材料の種類および厚さを調整することによって、基板および溶媒(サンプル溶媒)の磁化率に調整することが可能である。なお、本実施形態では、差し込み用スペース9aにコイル部7bは接していないが、この差し込み用スペース9aにコイル部7bが接する場合がある。この場合、試料基板4をコイル基板9内に差し込む際に、試料基板4やコイル部7bの表面を傷つけないために、上記のような微細加工技術(エッチング、スパッタリング、メッキなど)によりコイル部7bを形成することが好ましい。 The coil part 7a and the coil part 7b are formed in a groove formed by etching on the surface of the first substrate 2 by sputtering or plating. Examples of the material of the first RF coil 7 include copper, gold, silver, aluminum, titanium, and chromium. It is possible to adjust the magnetic susceptibility of the substrate and the solvent (sample solvent) by adjusting the type and thickness of these materials. In this embodiment, the coil portion 7b is not in contact with the insertion space 9a, but the coil portion 7b may be in contact with the insertion space 9a. In this case, when the sample substrate 4 is inserted into the coil substrate 9, the coil portion 7b is not damaged by the microfabrication technique (etching, sputtering, plating, etc.) as described above so as not to damage the surface of the sample substrate 4 or the coil portion 7b. Is preferably formed.
 コイル部7aの内径D2およびコイル部7bの内径D1は、10μm~10mm程度の大きさであることが好ましい(ただし、D1>D2)。また、距離H2および距離H1は、20μm~5mm程度であることが好ましい(ただし、H2>H1)。さらに、コイル部7aおよびコイル部7bの線幅W2は、50μm~150μm程度であることが好ましい。コイル部7aおよびコイル部7bの厚みW1は、5μm~50μm程度であることが好ましい。 The inner diameter D2 of the coil portion 7a and the inner diameter D1 of the coil portion 7b are preferably about 10 μm to 10 mm (where D1> D2). The distance H2 and the distance H1 are preferably about 20 μm to 5 mm (where H2> H1). Further, the line width W2 of the coil part 7a and the coil part 7b is preferably about 50 μm to 150 μm. The thickness W1 of the coil portion 7a and the coil portion 7b is preferably about 5 μm to 50 μm.
 なお、コイル部7aおよびコイル部7bの断面形状は、図2の(a)などに示された例では四角形であるが、半円状の形状などであってもよい。 In addition, although the cross-sectional shape of the coil part 7a and the coil part 7b is a quadrangle in the example shown by (a) of FIG. 2, etc., a semicircular shape etc. may be sufficient.
 第1基板2の厚み方向に形成されたスルーホール(不図示)には、コイル部7aおよびコイル部7bと同じ種類の金属が、スパッタリングまたはメッキにより埋め込まれる。これにより、コイル部7aおよびコイル部7bは、互いに接続される。 In the through hole (not shown) formed in the thickness direction of the first substrate 2, the same type of metal as that of the coil portion 7a and the coil portion 7b is embedded by sputtering or plating. Thereby, the coil part 7a and the coil part 7b are mutually connected.
 第2基板3は、第2RFコイル8を有する、長方形の板であり、第1基板2と同じように構成される。また、同様に、第2RFコイル8は、第1RFコイル7と同じ材料、形状のコイルである。ここで、第2RFコイル8のコイル部8aおよびコイル部8bは、それぞれ、第1RFコイル7のコイル部7aおよびコイル部7bに相当するものであり、コイル部8aの径とコイル部7aの径とは等しく、コイル部8bの径とコイル部7bの径とは等しい。また、第2RFコイル8と第1RFコイル7とは同心になるように形成されている。すなわち、第1RFコイル7と第2RFコイル8とは、コイル基板9の中心に対して対称に配置される。 The second substrate 3 is a rectangular plate having the second RF coil 8 and is configured in the same manner as the first substrate 2. Similarly, the second RF coil 8 is a coil having the same material and shape as the first RF coil 7. Here, the coil part 8a and the coil part 8b of the second RF coil 8 correspond to the coil part 7a and the coil part 7b of the first RF coil 7, respectively, and the diameter of the coil part 8a and the diameter of the coil part 7a are Are equal, and the diameter of the coil portion 8b is equal to the diameter of the coil portion 7b. The second RF coil 8 and the first RF coil 7 are formed so as to be concentric. That is, the first RF coil 7 and the second RF coil 8 are disposed symmetrically with respect to the center of the coil substrate 9.
 なお、第1RFコイル7および第2RFコイル8は、2巻きされた形態のコイルに限られず、他の形態であってもよい。例えば、第1RFコイル7および第2RFコイル8は、1巻きされた形態のコイルであってもよく、第1基板2および第2基板3のそれぞれの内側面にのみコイル部(コイル部7b、8b)が形成される形態であってもよい。また、第1基板2および第2基板3のそれぞれの内部(コイル部7aとコイル部7bとの間、コイル部8aとコイル部8bとの間)にコイル部が形成されるように、3巻き以上された形態のコイルであってもよい。 In addition, the 1st RF coil 7 and the 2nd RF coil 8 are not restricted to the coil of the form wound twice, Other forms may be sufficient. For example, the 1st RF coil 7 and the 2nd RF coil 8 may be a coil of the form wound 1 time, and it is only a coil part ( coil part 7b, 8b) on each inner surface of the 1st board | substrate 2 and the 2nd board | substrate 3. ) May be formed. Further, three windings are performed so that the coil portion is formed inside each of the first substrate 2 and the second substrate 3 (between the coil portion 7a and the coil portion 7b and between the coil portion 8a and the coil portion 8b). The coil of the form described above may be used.
(スペーサ基板)
 スペーサ基板5,6は、試料基板4の差し込み用スペース9aを形成するための基板である。スペーサ基板5,6のそれぞれの内側面5a、6aは、試料基板4の滑らかに面取りされた(R形成された)角部4b、4c(図3参照)に面接触するように、滑らかな曲面に形成されている(R形成されている)。なお、スペーサ基板5,6は所定の厚みを有する長尺部材である。
(Spacer substrate)
The spacer substrates 5 and 6 are substrates for forming the insertion space 9 a for the sample substrate 4. The inner side surfaces 5a, 6a of the spacer substrates 5, 6 are smooth curved surfaces so as to be in surface contact with the smoothly chamfered (R-formed) corner portions 4b, 4c (see FIG. 3) of the sample substrate 4. (R is formed). The spacer substrates 5 and 6 are long members having a predetermined thickness.
 スペーサ基板5およびスペーサ基板6は、並行配置した第1基板2と第2基板3との間に所定の間隔をあけて挟み込まれる。コイル基板9は、これら基板を薬液や熱を利用して相互に接合することによって形成される。 The spacer substrate 5 and the spacer substrate 6 are sandwiched between the first substrate 2 and the second substrate 3 arranged in parallel with a predetermined interval. The coil substrate 9 is formed by bonding these substrates to each other using a chemical solution or heat.
(試料基板)
 図3は、図1に示したNMR用プローブ1を構成する試料基板4の図である。図3(a)、(b)、および(c)は、それぞれ、試料基板4の上面図、正面図、および側面図である。
(Sample substrate)
FIG. 3 is a diagram of the sample substrate 4 constituting the NMR probe 1 shown in FIG. 3A, 3B, and 3C are a top view, a front view, and a side view of the sample substrate 4, respectively.
 図3に示すように、試料基板4は、全体として直方体状の形状であるとともに、分析対象の生体組織試料などが入れられる試料空間4aを有する。試料基板4の上面視における形状は、略楕円形である。試料空間4aは上面視で円形の穴空間であり、微細加工技術により形成される。この微細加工技術としては、電子線描画・短波長露光による描画・高分子加工などのナノリソグラフィーの技術、ウェットエッチング・ドライエッチング・リフトオフなどのエッチング技術、さらには熱NIL・光NIL・ソフトNIL・ダイレクトNILなどのナノインプリントリソグラフィー(NIL:Nanoimprint Lithography)技術などが挙げられ、これらの技術によって流路加工が行われる。 As shown in FIG. 3, the sample substrate 4 has a rectangular parallelepiped shape as a whole, and has a sample space 4a in which a biological tissue sample to be analyzed is placed. The shape of the sample substrate 4 in a top view is substantially elliptical. The sample space 4a is a circular hole space in a top view and is formed by a fine processing technique. This fine processing technology includes electron lithography, nano-lithography technology such as short wavelength exposure and polymer processing, etching technology such as wet etching, dry etching, lift-off, thermal NIL, optical NIL, soft NIL, Examples thereof include nanoimprint lithography (NIL) techniques such as direct NIL, and flow path processing is performed by these techniques.
 また、試料基板4の抜き差し方向に連続する角部4b、4cは、滑らかに面取りされている(R形成されている)。また、試料基板4の厚みは、スペーサ基板5,6の厚みとほぼ等しい。試料基板4は、コイル基板9の中央部分に形成された差し込み用スペース9aにきっちりと収まるように作製される。また、有底円筒形状の試料空間4aの直径は10μm~1mm程度、その長さは1mm~20mm程度であることが好ましい。なお、試料基板4の形状は直方体状に限られず、例えば立方体状などであってもよい。 Further, the corners 4b and 4c continuous in the direction of inserting and removing the sample substrate 4 are smoothly chamfered (R-formed). Further, the thickness of the sample substrate 4 is substantially equal to the thickness of the spacer substrates 5 and 6. The sample substrate 4 is manufactured so as to fit in the insertion space 9 a formed in the central portion of the coil substrate 9. The diameter of the bottomed cylindrical sample space 4a is preferably about 10 μm to 1 mm, and the length is preferably about 1 mm to 20 mm. The shape of the sample substrate 4 is not limited to a rectangular parallelepiped shape, and may be a cubic shape, for example.
(隙間埋材)
 前記したように、試料基板4の抜き差し方向に連続する角部4b、4cおよびスペーサ基板5,6のそれぞれの内側面5a、6aが面取りされていることにより、試料基板4の取り替え(抜き差し)が容易となる。本実施形態では、試料基板4の表面またはコイル基板9の内側面(差し込み用スペース9aを区画形成する面)に、重水化溶媒液が塗布されている。この重水化溶媒液は、試料基板4とコイル基板9との間のわずかな隙間(空間)に入り込んでその隙間を埋める。また、この重水化溶媒液は、コイル基板9(第1基板2、第2基板3、およびスペーサ基板5,6)および試料基板4の磁化率と適合する(同程度の磁化率を有する)。この重水化溶媒液を用いることにより、試料基板の取り替え(抜き差し)が容易となるとともに、コイル基板9と試料基板4との間部分の高周波磁場の連続性が高まって、高周波磁場の均一性が向上する。
(Gap filling)
As described above, the corners 4b and 4c continuous in the direction of inserting and removing the sample substrate 4 and the inner side surfaces 5a and 6a of the spacer substrates 5 and 6 are chamfered, so that the replacement (insertion and removal) of the sample substrate 4 can be performed. It becomes easy. In the present embodiment, the dehydrated solvent liquid is applied to the surface of the sample substrate 4 or the inner side surface of the coil substrate 9 (the surface that defines the insertion space 9a). This dehydrated solvent liquid enters a slight gap (space) between the sample substrate 4 and the coil substrate 9 to fill the gap. The dehydrated solvent solution is compatible with the magnetic susceptibility of the coil substrate 9 (the first substrate 2, the second substrate 3, and the spacer substrates 5 and 6) and the sample substrate 4 (having the same magnetic susceptibility). By using this dehydrated solvent solution, the sample substrate can be easily replaced (inserted / removed), the continuity of the high-frequency magnetic field between the coil substrate 9 and the sample substrate 4 is increased, and the uniformity of the high-frequency magnetic field is improved. improves.
 上記重水化溶媒液は、第1基板2と試料基板4とのわずかな隙間および第2基板3と試料基板4とのわずかな隙間のうち、少なくともいずれか一方の隙間に配置される隙間埋材である。 The deuterated solvent liquid is a gap filling material arranged in at least one of the slight gap between the first substrate 2 and the sample substrate 4 and the slight gap between the second substrate 3 and the sample substrate 4. It is.
 なお、隙間埋材は、第1基板2および第2基板3のうちの少なくともいずれか一方と試料基板4とのわずかな隙間に配置される薄いシート材、薄膜などであってもよい。 Note that the gap filling material may be a thin sheet material, a thin film, or the like disposed in a slight gap between at least one of the first substrate 2 and the second substrate 3 and the sample substrate 4.
 前述したように、隙間埋材は、コイル基板9(第1基板2、第2基板3、およびスペーサ基板5,6)および試料基板4の磁化率と同程度の磁化率を有する。これは、平坦境界面における2つの磁化率間の差が試料の磁化率の30%未満であること、さらに好ましくは、試料の磁化率の10%未満であることを意味する。これにより、これらの基板とサンプル溶媒との間の磁化率の範囲、および、これらの基板とRFコイル(7、8)との間の磁化率の範囲に関して生じる磁場の不均一性が、シムコイル(磁場補正コイル)によって補償できるようになる。 As described above, the gap filling material has a magnetic susceptibility similar to that of the coil substrate 9 (the first substrate 2, the second substrate 3, and the spacer substrates 5 and 6) and the sample substrate 4. This means that the difference between the two magnetic susceptibilities at the flat interface is less than 30% of the sample susceptibility, more preferably less than 10% of the sample susceptibility. This allows the inhomogeneity of the magnetic field that occurs with respect to the range of magnetic susceptibility between these substrates and the sample solvent and the range of magnetic susceptibility between these substrates and the RF coils (7, 8) to It can be compensated by a magnetic field correction coil.
 隙間埋材は、基板間(コイル基板9と試料基板4との間)の磁化率の飛びを減少させるためにも用いられる。そのため、基板(9、4)、RFコイル(7、8)、サンプル溶媒、および隙間埋材の各磁化率の差は、極力小さいことが望ましい。すなわち、前記したように、平坦境界面における2つの磁化率間の差は、好ましくは、試料の磁化率の30%未満であり、さらに好ましくは、試料の磁化率の10%未満である。 The gap filling material is also used to reduce the jump of magnetic susceptibility between the substrates (between the coil substrate 9 and the sample substrate 4). Therefore, it is desirable that the difference in magnetic susceptibility between the substrates (9, 4), the RF coils (7, 8), the sample solvent, and the gap filling material is as small as possible. That is, as described above, the difference between the two magnetic susceptibilities at the flat boundary surface is preferably less than 30% of the sample susceptibility, and more preferably less than 10% of the sample susceptibility.
 重水化溶媒液は、溶液NMRなどで通常使用される溶媒であり、プロトン(H1)の部分が重水(D)に置換された溶媒である。重水化溶媒液としては、重クロロホルム(CDCl)、重DMSO((DC)S=O)、重メタノール(CDOD)、重水(D2O)、テトラヒドロフラン・アセトニトリル・ジクロロメタン・ベンゼン・トルエン・N,N-ジメチルホルムアミドなどが挙げられる。なお、重水化溶媒液は、コイル基板9(第1基板2、第2基板3、およびスペーサ基板5,6)および試料基板4の磁化率と適合する(同程度の磁化率を有する)とともに、試料基板4の試料空間4aに入れられる溶媒(サンプル溶媒)と同じ重水化溶媒であることが望ましい。このような場合には、高周波磁場の均一性がより向上する。 The deuterated solvent solution is a solvent usually used in solution NMR or the like, and is a solvent in which the proton (H1) portion is substituted with heavy water (D). Deuterated solvent solutions include deuterated chloroform (CDCl 3 ), deuterated DMSO ((D 3 C) 2 S═O), deuterated methanol (CD 3 OD), deuterated water (D 2 O), tetrahydrofuran, acetonitrile, dichloromethane, benzene, and toluene. -N, N-dimethylformamide and the like can be mentioned. The dehydrated solvent solution is compatible with the magnetic susceptibility of the coil substrate 9 (the first substrate 2, the second substrate 3, and the spacer substrates 5 and 6) and the sample substrate 4 (having a similar magnetic susceptibility), It is desirable that the deuterated solvent be the same as the solvent (sample solvent) put in the sample space 4a of the sample substrate 4. In such a case, the uniformity of the high frequency magnetic field is further improved.
 試料空間4aに入れられるサンプル溶媒としては、上記した重水化溶媒液以外に、シクロロヘキサン、CCl、CS、ジオキサン、テトラヒドロフラン、HMPA、1,2,4-トリクロロベンゼン、塩化ビニル、ニトロベンゼン、CFBrCl、CFClなどが使用できる。 As a sample solvent to be placed in the sample space 4a, in addition to the above deuterated solvent liquid, cyclohexane, CCl 4 , CS 2 , dioxane, tetrahydrofuran, HMPA, 1,2,4-trichlorobenzene, vinyl chloride, nitrobenzene, CF 2 BrCl, CFCl 3 or the like can be used.
 また、第1RFコイル7および第2RFコイル8は、コイル基板9(第1基板2、第2基板3、およびスペーサ基板5,6)および試料基板4の磁化率と適合するように、これらの磁化率と同程度の磁化率を有することが好ましい。さらに、コイル基板9および試料基板4の磁化率は、当該試料基板4の試料空間4aに入れられる溶媒の磁化率と適合する(同程度である)ことが好ましい。このような形態によると、高周波磁場の連続性がさらに高まり、高周波磁場の均一性がより向上可能である。 Also, the first RF coil 7 and the second RF coil 8 are magnetized so as to match the magnetic susceptibility of the coil substrate 9 (first substrate 2, second substrate 3, and spacer substrates 5 and 6) and the sample substrate 4. It is preferable to have a magnetic susceptibility comparable to that of the magnetic field. Furthermore, it is preferable that the magnetic susceptibility of the coil substrate 9 and the sample substrate 4 is compatible (similar to that of the solvent) contained in the sample space 4 a of the sample substrate 4. According to such a form, the continuity of the high frequency magnetic field is further increased, and the uniformity of the high frequency magnetic field can be further improved.
 なお、具体的に、隙間埋材として用いる溶媒、試料空間4aに入れられるサンプル溶媒、および基板材(コイル基板9および試料基板4の材料)の磁化率は、次のものが使用される。
 水:磁化率 -9.05×10-6(隙間埋材、サンプル溶媒として用いられる)
 アセトン:磁化率 -5.8×10-6(隙間埋材、サンプル溶媒として用いられる)
 ホウケイ酸ガラス:磁化率 -11.0×10-6(基板材)
 石英ガラス:磁化率 -15.0×10-6(基板材)
Specifically, the magnetic susceptibility of the solvent used as the gap filling material, the sample solvent put in the sample space 4a, and the substrate material (the material of the coil substrate 9 and the sample substrate 4) is as follows.
Water: Magnetic susceptibility -9.05 × 10-6 (used as gap filler and sample solvent)
Acetone: magnetic susceptibility -5.8 × 10-6 (used as gap filler, sample solvent)
Borosilicate glass: Magnetic susceptibility -11.0 × 10-6 (substrate material)
Quartz glass: Magnetic susceptibility -15.0 × 10-6 (substrate material)
(NMR用プローブの使用)
 試料基板4の試料空間4aに分析対象となる試料を封入し、当該試料基板4をコイル基板9の差し込み用スペース9aに差し込んで装着することにより、試料が封入されたNMR用プローブ1が完成する。このNMR用プローブ1は、例えば図4に示されたNMR装置100のボア部に設置される。NMR用プローブ1には、NMR装置100の超電導電磁石101によって作られる強い静磁場がZ軸方向に印加されるとともに、第1RFコイル7および第2RFコイル8により高周波磁場がX軸方向に印加される。
(Use of NMR probe)
The sample to be analyzed is enclosed in the sample space 4a of the sample substrate 4, and the sample substrate 4 is inserted into the insertion space 9a of the coil substrate 9 and attached, whereby the NMR probe 1 in which the sample is enclosed is completed. . The NMR probe 1 is installed, for example, in a bore portion of the NMR apparatus 100 shown in FIG. A strong static magnetic field generated by the superconducting electromagnet 101 of the NMR apparatus 100 is applied to the NMR probe 1 in the Z-axis direction, and a high-frequency magnetic field is applied in the X-axis direction by the first RF coil 7 and the second RF coil 8. .
 ここで、NMR用プローブ1においては、試料空間4aを有する試料基板4とは別のコイル基板9にRFコイルが形成されているので、試料を取り替える際は、RFコイルが形成されていない試料基板4のみを取り替えればよい。すなわち、試料チップ(基板)毎にRFコイルを作製する手間が省かれる。また、第1RFコイル7および第2RFコイル8が試料空間4aを挟むように配置されているので、試料に対してX軸上の両方向から電磁波を照射することが可能である。その結果、高周波磁場の均一性を従来よりも向上させることができ、NMRスペクトルの分解能が向上する。 Here, in the NMR probe 1, since the RF coil is formed on the coil substrate 9 different from the sample substrate 4 having the sample space 4a, when replacing the sample, the sample substrate on which the RF coil is not formed. Only 4 needs to be replaced. That is, the labor for producing the RF coil for each sample chip (substrate) is saved. Moreover, since the first RF coil 7 and the second RF coil 8 are arranged so as to sandwich the sample space 4a, it is possible to irradiate the sample with electromagnetic waves from both directions on the X axis. As a result, the uniformity of the high-frequency magnetic field can be improved as compared with the conventional case, and the resolution of the NMR spectrum is improved.
 また、第1RFコイル7および第2RFコイル8は、それぞれ第1基板2および第2基板3の内外側面に形成されたコイル部を有するコイル(2巻きされたコイル)であるので、試料空間4aの高周波磁場の強度が大きくできるとともに、均一性がより向上できる。 In addition, the first RF coil 7 and the second RF coil 8 are coils (coiled by two turns) having coil portions formed on the inner and outer surfaces of the first substrate 2 and the second substrate 3, respectively. The strength of the high frequency magnetic field can be increased and the uniformity can be further improved.
 さらに、第1RFコイル7および第2RFコイル8の形状・配置を、D1>D2、H2>H1として最適化することにより、試料空間4aの高周波磁場の均一性がより向上される。 Furthermore, by optimizing the shape and arrangement of the first RF coil 7 and the second RF coil 8 as D1> D2 and H2> H1, the uniformity of the high-frequency magnetic field in the sample space 4a is further improved.
 以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られず、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能である。本出願は2009年4月20日出願の日本特許出願(特願2009-101611)に基づくものであり、その内容はここに参照として取り込まれる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. This application is based on a Japanese patent application filed on April 20, 2009 (Japanese Patent Application No. 2009-101611), the contents of which are incorporated herein by reference.
1:NMR用プローブ
2:第1基板
3:第2基板
4:試料基板
4a:試料空間
5、6:スペーサ基板
7:第1RFコイル
8:第2RFコイル
1: NMR probe 2: first substrate 3: second substrate 4: sample substrate 4a: sample space 5, 6: spacer substrate 7: first RF coil 8: second RF coil

Claims (10)

  1.  微細加工技術により形成された第1RFコイルを備える第1基板と、
     微細加工技術により形成された第2RFコイルを備えるとともに、前記第1基板に対して並行に固定配置された第2基板と、
     前記第1基板と前記第2基板との間に配置されるとともに、微細加工技術により形成された試料空間を備える試料基板と、
     前記第1基板と前記試料基板との隙間および前記第2基板と前記試料基板との隙間の少なくともいずれか一方に配置されるとともに、前記第1基板、前記第2基板、および前記試料基板の磁化率と同程度の磁化率を有する隙間埋材と、を備えるNMR用プローブ。
    A first substrate comprising a first RF coil formed by microfabrication technology;
    A second substrate having a second RF coil formed by a microfabrication technique and fixedly disposed in parallel to the first substrate;
    A sample substrate disposed between the first substrate and the second substrate and having a sample space formed by a microfabrication technique;
    Magnetization of the first substrate, the second substrate, and the sample substrate is disposed in at least one of the gap between the first substrate and the sample substrate and the gap between the second substrate and the sample substrate. An NMR probe comprising: a gap filling material having a magnetic susceptibility equivalent to a magnetic rate.
  2.  請求項1に記載のNMR用プローブにおいて、
     前記第1RFコイルは、前記第1基板の内側面および外側面に形成され、
     前記第2RFコイルは、前記第2基板の内側面および外側面に形成されることを特徴とする、NMR用プローブ。
    The NMR probe according to claim 1, wherein
    The first RF coil is formed on an inner surface and an outer surface of the first substrate,
    The NMR probe according to claim 1, wherein the second RF coil is formed on an inner surface and an outer surface of the second substrate.
  3.  請求項2に記載のNMR用プローブにおいて、
     前記第1基板の内側面に形成された前記第1RFコイルのコイル内径は、前記第1基板の外側面に形成された前記第1RFコイルのコイル内径よりも大きく、
     前記第2基板の内側面に形成された前記第2RFコイルのコイル内径は、前記第2基板の外側面に形成された前記第2RFコイルのコイル内径よりも大きいことを特徴とする、NMR用プローブ。
    The NMR probe according to claim 2, wherein
    The coil inner diameter of the first RF coil formed on the inner surface of the first substrate is larger than the coil inner diameter of the first RF coil formed on the outer surface of the first substrate,
    The NMR probe characterized in that the inner diameter of the second RF coil formed on the inner surface of the second substrate is larger than the inner diameter of the second RF coil formed on the outer surface of the second substrate. .
  4.  請求項1に記載のNMR用プローブにおいて、
     前記隙間埋材は、前記試料空間に入れられるサンプル溶媒と同じ溶媒であることを特徴とする、NMR用プローブ。
    The NMR probe according to claim 1, wherein
    The NMR probe according to claim 1, wherein the gap filling material is the same solvent as the sample solvent put in the sample space.
  5.  請求項2に記載のNMR用プローブにおいて、
     前記隙間埋材は、前記試料空間に入れられるサンプル溶媒と同じ溶媒であることを特徴とする、NMR用プローブ。
    The NMR probe according to claim 2, wherein
    The NMR probe according to claim 1, wherein the gap filling material is the same solvent as the sample solvent put in the sample space.
  6.  請求項3に記載のNMR用プローブにおいて、
     前記隙間埋材は、前記試料空間に入れられるサンプル溶媒と同じ溶媒であることを特徴とする、NMR用プローブ。
    The NMR probe according to claim 3, wherein
    The NMR probe according to claim 1, wherein the gap filling material is the same solvent as the sample solvent put in the sample space.
  7.  請求項1に記載のNMR用プローブにおいて、
     前記隙間埋材は、重水化溶媒液であることを特徴とする、NMR用プローブ。
    The NMR probe according to claim 1, wherein
    The NMR probe, wherein the gap filling material is a deuterated solvent liquid.
  8.  請求項2に記載のNMR用プローブにおいて、
     前記隙間埋材は、重水化溶媒液であることを特徴とする、NMR用プローブ。
    The NMR probe according to claim 2, wherein
    The NMR probe, wherein the gap filling material is a deuterated solvent liquid.
  9.  請求項3に記載のNMR用プローブにおいて、
     前記隙間埋材は、重水化溶媒液であることを特徴とする、NMR用プローブ。
    The NMR probe according to claim 3, wherein
    The NMR probe, wherein the gap filling material is a deuterated solvent liquid.
  10.  請求項4または5に記載のNMR用プローブにおいて、
     前記第1基板と前記第2基板との間に固定配置されるとともに、前記試料基板の差し込み用スペースを形成するスペーサ基板を備え、
     前記試料基板は、抜き差し方向に連続する角部が滑らかに面取りされ、
     前記スペーサ基板の内側面は、前記試料基板の前記角部に合わせた滑らかな曲面に形成されていることを特徴とする、NMR用プローブ。
    The NMR probe according to claim 4 or 5, wherein
    A spacer substrate that is fixedly disposed between the first substrate and the second substrate and that forms a space for inserting the sample substrate;
    The sample substrate is smoothly chamfered at the corners continuous in the insertion / extraction direction,
    The NMR probe according to claim 1, wherein an inner side surface of the spacer substrate is formed into a smooth curved surface matching the corner of the sample substrate.
PCT/JP2010/051710 2009-04-20 2010-02-05 Nmr probe WO2010122829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009101611A JP2010249761A (en) 2009-04-20 2009-04-20 Probe for nmr
JP2009-101611 2009-04-20

Publications (1)

Publication Number Publication Date
WO2010122829A1 true WO2010122829A1 (en) 2010-10-28

Family

ID=43010953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051710 WO2010122829A1 (en) 2009-04-20 2010-02-05 Nmr probe

Country Status (2)

Country Link
JP (1) JP2010249761A (en)
WO (1) WO2010122829A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884608B2 (en) * 2011-10-10 2014-11-11 Purdue Research Foundation AFM-coupled microscale radiofrequency probe for magnetic resonance imaging and spectroscopy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584873B2 (en) * 1986-11-18 1993-12-03 Nippon Electron Optics Lab
JPH06103343B2 (en) * 1983-09-22 1994-12-14 バリアン・アソシエイツ・インコーポレイテッド Apparatus for geometrically compensating for susceptibility disturbance in an RF spectrometer
US6194900B1 (en) * 1998-06-19 2001-02-27 Agilent Technologies, Inc. Integrated miniaturized device for processing and NMR detection of liquid phase samples
JP2005331271A (en) * 2004-05-18 2005-12-02 Jeol Ltd Nmr cell and nmr probe
JP2006509213A (en) * 2002-12-09 2006-03-16 バリアン・インコーポレイテッド Crushed liquid NMR sample tube and RF coil
WO2007049426A1 (en) * 2005-10-25 2007-05-03 Hitachi, Ltd. Nuclear magnetic resonance probe and nuclear magnetic resonance apparatus
JP2008058315A (en) * 2006-08-31 2008-03-13 Bruker Biospin Ag Nmr probe component having gradient magnetic field chip provided with slot for inserting sample chip, and nmr spectrometer
JP2008107352A (en) * 2006-10-26 2008-05-08 Bruker Biospin Ag Flow-through microfluidic nuclear magnetic resonance (nmr) chip and nmr device
JP2008286745A (en) * 2007-05-21 2008-11-27 Hitachi Ltd Flow nuclear magnetic resonance unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103343B2 (en) * 1983-09-22 1994-12-14 バリアン・アソシエイツ・インコーポレイテッド Apparatus for geometrically compensating for susceptibility disturbance in an RF spectrometer
JPH0584873B2 (en) * 1986-11-18 1993-12-03 Nippon Electron Optics Lab
US6194900B1 (en) * 1998-06-19 2001-02-27 Agilent Technologies, Inc. Integrated miniaturized device for processing and NMR detection of liquid phase samples
JP2006509213A (en) * 2002-12-09 2006-03-16 バリアン・インコーポレイテッド Crushed liquid NMR sample tube and RF coil
JP2005331271A (en) * 2004-05-18 2005-12-02 Jeol Ltd Nmr cell and nmr probe
WO2007049426A1 (en) * 2005-10-25 2007-05-03 Hitachi, Ltd. Nuclear magnetic resonance probe and nuclear magnetic resonance apparatus
JP2008058315A (en) * 2006-08-31 2008-03-13 Bruker Biospin Ag Nmr probe component having gradient magnetic field chip provided with slot for inserting sample chip, and nmr spectrometer
JP2008107352A (en) * 2006-10-26 2008-05-08 Bruker Biospin Ag Flow-through microfluidic nuclear magnetic resonance (nmr) chip and nmr device
JP2008286745A (en) * 2007-05-21 2008-11-27 Hitachi Ltd Flow nuclear magnetic resonance unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. MASSIN ET AL.: "Planar microcoil-based microfluidic NMR probes", JOURNAL OF MAGNETIC RESONANCE, vol. 164, no. 2, 2003, pages 242 - 255 *

Also Published As

Publication number Publication date
JP2010249761A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US10060996B2 (en) Gradient magnetic field coil device and magnetic resonance imaging device
Eslami et al. Chiral nanomagnets
US6445271B1 (en) Three-dimensional micro-coils in planar substrates
Narkowicz et al. Scaling of sensitivity and efficiency in planar microresonators for electron spin resonance
CA2293308C (en) Magnetic field generator for mri
US6751847B1 (en) Laser-assisted fabrication of NMR resonators
US20060001423A1 (en) Anisotropic nanoparticle amplification of magnetic resonance signals
JPH0379670B2 (en)
US9287606B2 (en) Dual-mode microwave resonator device and method of electron spin resonance measurement
JPH0350543B2 (en)
Meier et al. Microfluidic integration of wirebonded microcoils for on-chip applications in nuclear magnetic resonance
US10353027B2 (en) EPR microwave cavity for small magnet airgaps
EP1769259A1 (en) Low local sar birdcage radio frequency coil
Kiss et al. Microfluidic Overhauser DNP chip for signal-enhanced compact NMR
Kunert et al. A planar ion trap chip with integrated structures for an adjustable magnetic field gradient
JP2008058315A (en) Nmr probe component having gradient magnetic field chip provided with slot for inserting sample chip, and nmr spectrometer
WO2010122829A1 (en) Nmr probe
Matyushov et al. Curvature and Stress Effects on the Performance of Contour‐Mode Resonant ΔE Effect Magnetometers
US7508208B2 (en) Magnetic resonance imaging scanner with booster iron
US11002810B2 (en) RF resonator with a Lenz lens
JP2014010090A (en) Rf coil for measuring nuclear magnetic resonance phenomenon
Demishev et al. Magnetic resonance in cerium hexaboride caused by quadrupolar ordering
Lei et al. Low power integrated fluxgate sensor with a spiral magnetic core
JP2002238874A (en) Magnet device and magnetic resonance imaging apparatus using the same, and adjuster of magnetic field uniformity coefficient, and method of adjusting the magnetic field uniformity coefficient
JP5139913B2 (en) NMR equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766889

Country of ref document: EP

Kind code of ref document: A1