WO2011016398A1 - Magnetic resonance measurement device - Google Patents

Magnetic resonance measurement device Download PDF

Info

Publication number
WO2011016398A1
WO2011016398A1 PCT/JP2010/062903 JP2010062903W WO2011016398A1 WO 2011016398 A1 WO2011016398 A1 WO 2011016398A1 JP 2010062903 W JP2010062903 W JP 2010062903W WO 2011016398 A1 WO2011016398 A1 WO 2011016398A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic field
magnetic resonance
measuring apparatus
partial cylindrical
Prior art date
Application number
PCT/JP2010/062903
Other languages
French (fr)
Japanese (ja)
Inventor
久晃 越智
悦久 五月女
博幸 竹内
秀太 羽原
良孝 尾藤
幸生 金子
哲彦 高橋
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2011525870A priority Critical patent/JP5258968B2/en
Publication of WO2011016398A1 publication Critical patent/WO2011016398A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils

Definitions

  • the present invention relates to a high-frequency magnetic field coil for transmitting and / or receiving electromagnetic waves, and a magnetic resonance measuring apparatus (hereinafter referred to as “MRI apparatus”) using the same.
  • MRI apparatus magnetic resonance measuring apparatus
  • An MRI apparatus arranges a subject in a uniform static magnetic field generated by a magnet, irradiates the subject with an electromagnetic field to excite nuclear spins within the subject, and nuclear magnetic resonance, which is an electromagnetic wave that generates nuclear spins. A signal is received and the subject is imaged.
  • Superconducting magnets and permanent magnets are widely used as magnets, and typical shapes include a cylindrical type and a counter type.
  • a tunnel type (horizontal magnetic field type) MRI apparatus that uses a magnet that generates a static magnetic field in the horizontal direction with a cylindrical shape, and an MRI apparatus that uses a magnet that generates a static magnetic field in the vertical direction with an opposing type. It is often called an open type (vertical magnetic field type) MRI apparatus.
  • irradiation of electromagnetic waves and reception of nuclear magnetic resonance signals are performed by an RF coil that transmits (irradiates) and receives radio frequency (RF) electromagnetic waves. If there is a difference in the excited state of the nuclear spin depending on the region of the subject, unevenness of the image contrast and artifacts occur. In order to avoid these, the RF coil is required to improve the irradiation efficiency and the irradiation uniformity, and various shapes of transmission RF transmission coil, reception RF reception coil, or RF transmission / reception coil that combines both are provided. Has been developed.
  • the birdcage type RF coil disclosed in Patent Document 1 includes a linear conductor (lang) and an arcuate conductor (ring) disposed on a cylindrical RF base.
  • the rung extends in the central axis direction (z-axis direction) of the RF base, and the rings are disposed at both ends of the rung.
  • a nonmagnetic resin such as acrylic or FRP is used for the RF base.
  • FIG. 22A is an explanatory diagram for explaining the appearance
  • FIG. 22B is an explanatory diagram viewed from the z-axis direction.
  • the high-pass birdcage type RF coil 100 is composed of two loop conductors, rings 110 and 120, and a plurality of (12 in FIG. 22) linear conductors parallel to the z-axis. And a rung 130.
  • the rings 110 and 120 are arranged so as to face each other so that the central axis of the loop is common and the central axis is parallel to the z-axis, and are connected by a rung 130.
  • the RF base is omitted.
  • the plurality of rungs 130 are arranged at equal intervals.
  • z-axis direction of the coordinate axes the orientation 140 of the static magnetic field B 0 which the magnet of the MRI device generates.
  • a plurality of first capacitors Cr are arranged between the connection points of the plurality of rungs 130 and the rings 110 and 120, and the feeding point 150 is arranged in one of the first capacitors. Since the RF coil 100 is easy to tune, it is widely used in horizontal magnetic field type MRI apparatuses.
  • a QD (Quadrature Detection) method is known as a method for improving the irradiation efficiency and reception sensitivity of the RF coil.
  • the QD method is a method for detecting a magnetic resonance signal using two RF coils arranged with their axes orthogonal to each other. When a magnetic resonance signal is detected by this method, a signal whose phase is shifted by 90 degrees is detected from each RF coil. By combining these detection signals, the SN ratio is theoretically improved by a factor of ⁇ 2 compared to the case where the signals are received by one RF coil.
  • FIG. 23 shows an RF coil 100A which is an example in which the QD method is applied to the RF coil 100 shown in FIG.
  • FIG. 23A is an explanatory diagram for explaining the appearance
  • FIG. 23B is an explanatory diagram viewed from the z-axis direction.
  • the two power supply ports 151 and 152 are arranged at positions orthogonal to each other.
  • the birdcage RF coil can also be used as a multi-channel array coil by connecting a capacitor to the rung (for example, Non-Patent Document 1).
  • FIG. 24 shows an example in which the RF coil 100 shown in FIG. 22 is used as a multi-channel array coil 100C.
  • the RF coil 100 having eight rungs 130 is used as the 8-channel array coil 100C is illustrated.
  • the electromagnetic interference with the adjacent channel can be reduced by adjusting the capacitance of the capacitor Cr connected to the rings 110 and 120 and the capacitance of the capacitor CL connected to the rung 130. For this reason, each channel can receive or transmit independently.
  • it is possible to generate circularly polarized waves inside the coil by shifting the phase of each channel by 360 degrees ⁇ run number (8) 45 degrees.
  • the birdcage type RF coil has a semi-cylindrical shape or a partial cylindrical shape (for example, Non-Patent Document 2) and a planar shape (for example, Patent Document 2).
  • a magnet that generates a static magnetic field, a gradient coil that generates a gradient magnetic field, and an RF coil are arranged in this order from the outside to the inside of the tunnel.
  • the inside of the cylinder formed by the RF coil is an examination space in which the subject enters.
  • the inspection space can be expanded by increasing the inner diameter of the magnet.
  • the magnetic field generation efficiency is improved when the magnet is closer to the subject, it cannot be easily increased.
  • an RF shield is disposed between the RF coil and the gradient coil at a certain distance from the conductor of the RF coil.
  • the RF shield is for reducing noise emitted from the gradient coil and blocking electromagnetic coupling between the gradient coil and the RF coil. Therefore, a predetermined distance is required between the RF shield and the RF coil in order to maintain the magnetic field and avoid abrupt changes in its distribution. Therefore, the examination space is compressed accordingly.
  • FIG. 25 is an explanatory diagram when the RF coil is viewed from the z-axis direction when the subject is inserted when the subject is a human.
  • the body portion When the human lies on the table on which the subject is placed, the body portion has an approximate elliptic cylinder shape that is long in the x direction and short in the y direction.
  • the size of the magnet is determined so that the subject is accommodated with priority given to the manufacturing cost and the efficiency of magnetic field generation, in the examination space, generally both shoulders of the subject are approaching the tunnel inner wall formed by the RF coil, I feel cramped.
  • the present invention has been made in view of the above circumstances, and in a tunnel-type MRI apparatus, a technique for ensuring a comfortable inspection space without increasing the manufacturing cost of the MRI apparatus and without sacrificing performance.
  • the purpose is to provide.
  • two partial cylindrical loop type RF coils having a prospective angle of less than 180 degrees are arranged in opposing positions in a gradient magnetic field coil having a cylindrical inner wall. At this time, the arrangement positions of the two loop type RF coils are determined according to the purpose of use.
  • annular magnet unit that generates a static magnetic field
  • annular gradient coil disposed coaxially with the magnet unit in an inspection region surrounded by the magnet unit, and an inner side of the gradient coil.
  • a high-frequency magnetic field coil wherein the high-frequency magnetic field coil is an annular ring disposed coaxially with the gradient magnetic field coil along an inner wall of the gradient magnetic field coil inside the gradient magnetic field coil.
  • a plurality of linear conductors arranged in parallel with each other in the axial direction and two partial arc-shaped conductors connecting the plurality of linear conductors at both ends of the partial cylindrical shape in the axial direction.
  • a comfortable inspection space can be secured without increasing the manufacturing cost of the MRI apparatus and without sacrificing performance.
  • FIG. 1 It is an external view of the MRI apparatus of 1st embodiment. It is a block diagram which shows the whole structure of the MRI apparatus of 1st embodiment.
  • (A) is explanatory drawing which shows yz cross section for demonstrating the transmission coil arrange
  • (b) is xy sectional drawing.
  • (A), (b) is xy sectional drawing for demonstrating the structure of the transmission coil of 1st embodiment, and the fixing method of RF base.
  • (A) is a graph which shows the irradiation intensity distribution of the x-axis direction of the transmission coil of 1st embodiment
  • (b) is a graph which shows the irradiation intensity distribution of the same y-axis direction.
  • (A) is a graph which shows the irradiation intensity distribution of the x-axis direction of the transmission coil of 2nd embodiment
  • (b) is a graph which shows the irradiation intensity distribution of the same y-axis direction.
  • (A), (b) is xy sectional drawing for demonstrating the fixing method of RF base of 2nd embodiment.
  • (A) is explanatory drawing for demonstrating the mode inside the test
  • (A) is explanatory drawing which shows xz cross section for demonstrating the other example of the transmission coil arrange
  • (b) is the xy cross section.
  • (C) is explanatory drawing for demonstrating the mode inside the test
  • (A) is a graph which shows the irradiation intensity distribution of the x-axis direction of the other example of the transmission coil of 2nd embodiment
  • (b) is a graph which shows the irradiation intensity distribution of the same y-axis direction.
  • (A) is explanatory drawing which shows xz cross section for demonstrating the transmission coil arrange
  • (b) is xy sectional drawing.
  • (A) is a graph which shows the irradiation intensity distribution of the x-axis direction of the transmission coil of 3rd embodiment
  • (b) is a graph which shows the irradiation intensity distribution of the same y-axis direction.
  • (A) is explanatory drawing which shows xz cross section for demonstrating the transmission coil of the comparative example of 3rd embodiment, (b) is xy sectional drawing, (c), (d) is the same. It is explanatory drawing for demonstrating the electric current which flows into the transmission coil.
  • the magnetic resonance imaging apparatus images information on the spatial distribution of proton density and the spatial distribution of relaxation time in the excited state, thereby imaging the form or function of the human head, abdomen, limbs, etc. two-dimensionally or three-dimensionally.
  • the nuclide to be imaged by the MRI apparatus which is widely used clinically, is a hydrogen nucleus (proton) which is a main constituent material of the subject.
  • FIG. 1 is an external view of the MRI apparatus 10 of the present embodiment.
  • the MRI apparatus 10 of the present embodiment includes a cylindrical magnet 21 constituting a horizontal magnetic field type static magnetic field generation system and a table 11 on which the subject 1 is placed. The subject 1 laid on the table 11 is inserted into the examination space 22 in the bore formed by the cylindrical magnet 21 and photographed.
  • a coordinate system in which the center of the bore is the origin and the center axis (cylindrical axis) of the cylindrical magnet 21 that is the static magnetic field direction is the z axis. System).
  • the table 11 is arranged so that the body axis direction of the subject 1 to be placed coincides with the z-axis direction.
  • the direction parallel to the surface of the table 11 is defined as the x-axis direction
  • the direction orthogonal to the surface of the table 11 is defined as the y-axis direction.
  • FIG. 2 is a block diagram showing the overall configuration of the MRI apparatus 10 of the present embodiment.
  • the MRI apparatus 10 of the present embodiment obtains a tomographic image of the subject 1 using a nuclear magnetic resonance (NMR) phenomenon, and includes a static magnetic field generation system 2, a gradient magnetic field generation system 3, a transmission system 5, A reception system 6, a sequencer 4, an information processing device 7, and a table 11 on which the subject 1 is placed are provided.
  • NMR nuclear magnetic resonance
  • a magnet 21 which is a permanent magnet type, normal conduction type or superconducting type static magnetic field generation source is provided around the subject 1 in order to generate a uniform static magnetic field in the body axis direction. Be placed.
  • the gradient magnetic field generation system 3 includes a gradient magnetic field coil 31 wound in the three axes of x, y, and z in the coordinate system of the MRI apparatus 10 and a gradient magnetic field power source 32 that drives each gradient magnetic field coil.
  • gradient magnetic field pulses Gx, Gy, Gz are applied in the three axial directions of x, y, z.
  • a slice direction gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 1, and the remaining two orthogonal to the slice plane and orthogonal to each other.
  • a phase encoding direction gradient magnetic field pulse (Gp) and a frequency encoding direction gradient magnetic field pulse (Gf) are applied in one direction, and position information in each direction is encoded in the echo signal.
  • the transmission system 5 irradiates the subject 1 with a high-frequency magnetic field pulse (RF pulse) in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1.
  • a transmission-side high-frequency coil (transmission coil) 51 a transmission-side high-frequency coil (transmission coil) 51.
  • the RF pulse output from the high-frequency oscillator 52 is amplitude-modulated by the modulator 53 at a timing according to a command from the sequencer 4, and the amplitude-modulated RF pulse is amplified by the high-frequency amplifier 54 and then placed close to the subject 1.
  • the transmitting coil 51 the subject 1 is irradiated with the RF pulse.
  • the receiving system 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and includes a receiving-side high-frequency coil (receiving coil) 61 and a signal amplifier 62. And a quadrature phase detector 63 and an A / D converter 64.
  • An NMR signal from a nuclear spin in the subject 1 induced by the electromagnetic wave irradiated from the transmitting coil 51 is detected by a receiving coil 61 arranged close to the subject 1.
  • the detected NMR signal is amplified by the signal amplifier 62 and then divided into two orthogonal signals by the quadrature phase detector 63 at a timing according to a command from the sequencer 4 described later, and each of them is an A / D converter. 64 is converted into a digital quantity and sent to the information processing apparatus 7.
  • Sequencer 4 repeatedly applies an RF pulse and a gradient magnetic field pulse according to a predetermined pulse sequence.
  • the sequencer 4 operates under the control of the information processing apparatus 7, and sends various commands necessary for collecting tomographic image data of the subject 1 to the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6. Note that the pulse sequence is held in advance in a storage device or the like provided in the information processing apparatus 7 to be described later.
  • the information processing apparatus 7 controls the overall operation of the MRI apparatus 10 and performs various data processing and display and storage of processing results.
  • the CPU 71 a storage device 72 such as a ROM and a RAM, an optical disk, and a magnetic disk
  • An external storage device 73 such as a display, a display device 74 such as a display, and an input device 75 such as a trackball, a mouse, and a keyboard.
  • the CPU 71 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 1 as a result on the display device 74, and the storage device 72 or the external device. Record in the storage device 73. Also, input of various control information of the MRI apparatus 10 is accepted via the input device 75.
  • a command is given to the sequencer 4 according to the received control information and a pulse sequence stored in the storage device 72 in advance.
  • the input device 75 is disposed in the vicinity of the display device 74, and the operator interactively controls various processes of the MRI apparatus 10 through the input device 75 while looking at the display device 74.
  • the information processing device 7 may be a general-purpose information processing device.
  • the transmission coil 51 and the gradient magnetic field coil 31 are arranged so as to surround the subject 1 in the static magnetic field space formed by the static magnetic field generation system 2 into which the subject 1 is inserted. Further, the transmission coil 51 and the gradient magnetic field coil 31 are arranged and arranged coaxially with the magnet 21 in this order from the inside.
  • the receiving coil 61 is installed so as to face or surround the subject 1.
  • FIG. 3A is an explanatory view showing a yz section of the transmission coil 51 arranged in the gradient magnetic field coil 31, and FIG. 3B is an xy section view thereof.
  • the transmitting coil 51 of the present embodiment includes a cylindrical RF shield 510, two partially cylindrical RF bases 520 (not shown in FIG. 3), and two RF bases 520.
  • the RF shield 510 has a cylindrical shape coaxial with the gradient magnetic field coil 31, and is disposed inside the gradient magnetic field coil 31 at a certain distance from the gradient magnetic field coil 31.
  • the RF shield 510 is configured by appropriately laminating a nonmagnetic metal foil or a net, and is disposed on the surface of the resin support member or the gradient coil 31.
  • a resin shield bobbin not shown in FIG. 3
  • Each of the two RF bases 520 has a partial cylindrical shape in which a part of a side surface of the cylinder is cut off in the cylindrical axis direction, and has a partial cylindrical shape with a prospective angle 740 of a cross section of less than 180 degrees.
  • the two RF bases 520 are arranged in the examination space 22 so as to face each other around the z axis at a certain distance from the RF shield 510.
  • straight lines 580 connecting the centers M in the circumferential direction of the partial cylindrical RF coils 540 respectively formed on the two RF bases 520 are parallel to the x-axis. Are arranged in the examination space 22.
  • the partial cylindrical RF coil 540 is arranged in the examination space 22 so as to be plane-symmetric with respect to the xz plane determined by the x axis and the z axis.
  • the RF base is formed of a nonmagnetic resin such as acrylic or FRP.
  • the partial cylindrical RF coil 540 includes a plurality of linear conductors (rungs) 541 extending in the z-axis direction, and two partial arc-shaped conductors (partial rings) 542 and 543 connecting the ends of the plurality of rungs. And formed on the RF base 520 along the shape of the RF base 520.
  • the rungs 541 are arranged at equal intervals, and each end of the partial ring 542 is connected to each end of the corresponding partial ring 543 to constitute a loop type coil.
  • Each partial ring 542 and 543 includes a capacitor 544 between the connection points with the rung 541.
  • Each rung 541 includes a capacitor 545.
  • the partial cylindrical RF coil 540 configured as described above has a shape obtained by cutting a part of a cylindrical birdcage RF coil in the rung direction, and the prospective angles at both ends in the cross section orthogonal to the z-axis are: It is substantially the same as the prospective angle 740 of the RF base 520 and is less than 180 degrees.
  • the RF shield 510 has two functions: a) reducing noise emitted from the gradient coil 31 and b) shielding electromagnetic coupling between the conductor of the gradient coil 31 and the partial cylindrical RF coil 540. And a predetermined distance (typically 10 mm to 40 mm) is required between it and the partially cylindrical RF coil 540. This is because when both are brought close to each other, the high-frequency eddy current increases, the magnetic field is canceled, and the magnetic field distribution in the vicinity of the partial cylindrical RF coil 540 changes abruptly.
  • a method of fixing the RF base 520 forming the partial cylindrical RF coil 540 at a predetermined distance inside the RF shield 510 in the examination space 22 will be described with reference to FIG.
  • a plurality of protrusions 512 are formed on a shield bobbin 511 to which the RF shield 510 is attached, and the RF base 520 is fixed to the protrusions 512 with nonmagnetic bolts 513.
  • the optimal shape and number of protrusions 512 formed on the shield bobbin 511 are determined by the number of rungs 541, the diameter of the transmission coil 51, and the like.
  • the protrusion 512 is not necessarily provided at the end of the RF base 520, but at least one protrusion 512 is provided at a distance capable of maintaining mechanical strength from both ends of the RF base 520.
  • the partial cylindrical RF coil 540 may be arranged on the inspection space 22 side (inside) of the RF base 520 as shown in FIG. 4A, or as shown in FIG.
  • the base 520 may be disposed on the RF shield 510 side (outside).
  • the RF base 520 and the partial cylindrical RF coil 540 are arranged as described above. Therefore, as shown in FIGS. 3B, 4A, and 4B, the partial cylindrical RF is provided at both ends in the y-axis direction in the inspection space 22 over the entire z-axis direction of the inspection space 22. It is possible to obtain the space 560 in which the coil 540 and the RF base 520 that supports the coil 540 and the protrusions 512 do not exist. Therefore, as compared with the case where the transmission coil 51 using the conventional birdcage type RF coil is used, a wider inspection space 22 can be secured.
  • the irradiation intensity of the transmission coil 51 in the imaging region is within a predetermined range in order to accurately capture the imaging region when exciting the nuclear spin in the subject 1. This is because if the irradiation intensity is very uneven, the nuclear spin excitation state varies depending on the site in the subject 1, resulting in unevenness in the contrast of the obtained image and artifacts.
  • a region where the irradiation intensity is within a predetermined range is referred to as a uniform irradiation intensity region.
  • the conductor constituting the partial cylindrical RF coil 540 does not exist in the vicinity of the RF shield 510 at both ends in the y-axis direction in the examination space 22 on the cross section perpendicular to the z-axis. Therefore, the region with uniform irradiation intensity in the y-axis direction is narrower in the examination space 22 than in the x-axis direction because there is no magnetic field generated in this region.
  • the irradiation intensity uniform region becomes narrower as the prospective angle 740 becomes smaller. Therefore, in this embodiment, in order to ensure the required performance, the prospective angle 740 is determined so that the irradiation intensity uniform region includes the examination region of the subject 1.
  • FIG. 5 shows an irradiation intensity (sensitivity) distribution of the transmission coil 51 of the present embodiment manufactured with a size close to the size actually used.
  • FIG. 5A is a graph showing the sensitivity distribution in the x-axis direction
  • FIG. 5B is a graph showing the sensitivity distribution in the y-axis direction.
  • the diameter of the cross section perpendicular to the z-axis of the RF shield 510 is 710 mm
  • the conductors (the rung 541 and the partial rings 542 and 543) constituting the partial cylindrical RF coil 540 are arranged at a distance of 40 mm from the RF shield 510.
  • the transmission coil 51 is used.
  • the prospective angle 740 was set to 124 degrees.
  • the uniform irradiation intensity region is defined as a region where the irradiation intensity is within ⁇ 30% with reference to the central irradiation intensity of the transmission coil 51.
  • the uniform irradiation intensity region in the x-axis direction is about 50 cm from FIG. 5A, and the uniform irradiation intensity region in the y-axis direction is about 36 cm from FIG.
  • the above definition is used for the irradiation intensity uniform region.
  • FIG. 6 shows these relationships at the time of inspection.
  • the RF base 520, the shield bobbin 511, the projection 512, and the nonmagnetic bolt 513 are omitted.
  • the cross-sectional shape in the xy plane of the subject 1 when placed on the table 11 during the examination is an approximate ellipse that is long in the x-axis direction and short in the y-axis direction.
  • Shape A typical example of an adult male who is the main subject 1 has a shoulder width that is the length in the x-axis direction is 50 cm and a trunk thickness that is the length in the y-axis direction is about 35 cm.
  • 5A and 5B show the lengths of the subject 1 in the respective axial directions as Subject. From this figure, it can be seen that in the case of the transmission coil 51 under the above conditions, the range indicated as Subject, that is, the region where the subject 1 exists is within the irradiation intensity uniform region in both the x-axis direction and the y-axis direction.
  • a uniform irradiation intensity distribution can be actually obtained in a necessary region in the examination space 22 as described above. That is, it can be seen that necessary performance can be obtained while ensuring a wide inspection space 22.
  • the RF shield 510A is an oval cylinder whose cross section perpendicular to the z-axis is an ellipse having a major axis of 790 mm and a minor axis of 630 mm, and the RF base 520A is separated from the RF shield 510A.
  • a transmitting coil 51A is disposed with a distance of 40 mm. In this case, compared to the transmission coil 51, the RF shield 510A is 8 cm wider in the y-axis direction.
  • the inner wall of the gradient magnetic field coil 31 ⁇ / b> A is configured in an elliptical cylinder shape, and the outer wall is formed in a cylindrical shape along the inner wall of the magnet 21. Therefore, since the shape of the magnet 21 does not change, the manufacturing cost of the magnet 21 does not increase. Since the cross-sectional area of the inner wall of the gradient magnetic field coil 31A is substantially the same as that of the cylindrical gradient magnetic field coil 31 of the above embodiment, the magnetic field generation efficiency of the gradient magnetic field coil 31A is substantially the same as that of the gradient magnetic field coil 31.
  • the transmission coil 51A of the present modification example in the examination space 22, there is a further spatial margin in the y-axis direction over the entire z-axis direction. For example, as shown in FIG. It can be rotated and tilted around a predetermined axis. By configuring in this manner, the subject 1 can be examined in an oblique sitting position. For example, when the inclination angle (angle) of the table 11 is 18 degrees or more, the subject 1 can naturally look outside the magnet 21 while being placed on the table 11. According to the present modification, this configuration can be realized without increasing the inner wall of the magnet 21, which cannot be realized without increasing the inner wall of the magnet 21 in the conventional MRI apparatus. Therefore, it is possible to provide the MRI apparatus 10 that is excellent in visual openness without increasing the manufacturing cost.
  • a highly sensitive solenoid coil 610 can be used as the receiving coil 61.
  • an RF coil used in MRI needs to be arranged so as to have sensitivity in a direction orthogonal to the static magnetic field direction (z-axis direction). Accordingly, the solenoid coil 610 cannot be used when the examination is performed with the subject 1 lying on the table 11 as in the prior art.
  • the sensitivity of the solenoid coil 610 provided in the monkey head is orthogonal to the static magnetic field direction. 61 can be used. Thereby, the detection sensitivity of the MRI signal can be increased, and as a result, a highly accurate brain function measurement experiment can be performed.
  • the inspection space 22 can be widened while ensuring the uniformity of irradiation intensity in a necessary region without increasing the inner diameter of the magnet 21. Therefore, the tunnel-type MRI apparatus 10 can provide a test space 22 that is comfortable for the subject 1 without increasing the manufacturing cost of the entire MRI apparatus 10 and without sacrificing performance. Furthermore, an installation space for various devices can be secured in the inspection space 22.
  • Second Embodiment a second embodiment to which the present invention is applied will be described. Also in the present embodiment, a wide inspection space 22 is secured by the transmission coil without changing the sizes of the magnet 21 and the gradient magnetic field coil 31. However, in the transmission coil of this embodiment, two partial cylindrical RF coils are arranged at positions facing each other in the y-axis direction. Other configurations of the present embodiment are basically the same as those of the first embodiment. Hereinafter, the present embodiment will be described focusing on a transmission coil having a configuration different from that of the first embodiment. In this embodiment, the x, y, and z axes are the same as those in the first embodiment.
  • FIG. 10 is a view for explaining the appearance of the transmission coil 51B of the present embodiment.
  • FIG. 10A is an explanatory view showing a yz section
  • FIG. 10B is an xy section view.
  • the transmission coil 51B of the present embodiment includes a cylindrical RF shield 510, a first cylindrical RF base 520 (not shown in FIG. 10), and an RF base 520.
  • the configuration, shape, and material of each part are the same as those in the first embodiment. That is, the prospective angle 740 at both ends of the RF base 520 is set to less than 180 degrees.
  • the partial cylindrical RF coil 540 is formed on the RF base 520 along the shape of the RF base 520. Similar to the first embodiment, the two RF bases 520 are arranged in the examination space 22 so as to face each other around the z axis at a certain distance from the RF shield 510. However, in this embodiment, the partial cylindrical RF coil 540 has a circumferential center M of the partial cylindrical RF coils 540 respectively formed on the two RF bases 520 as shown in FIG.
  • a connecting straight line 590 is arranged in the examination space 22 so as to be parallel to the y-axis. That is, in the present embodiment, the partial cylindrical RF coil 540 is disposed in the examination space 22 so as to be plane-symmetric with respect to the yz plane determined by the y axis and the z axis.
  • the partial cylindrical RF coil 540 is arranged as described above, in the transmission coil 51B of the present embodiment, the partial cylindrical type is provided in the vicinity of the RF shields 510 at both ends in the x-axis direction on the cross section orthogonal to the z-axis. There is no conductor constituting the RF coil 540. Therefore, the irradiation uniform region in the x-axis direction becomes narrower in the examination space 22 than in the y-axis direction because there is no magnetic field generated in this region. Similar to the first embodiment, the smaller the prospective angle 740, the narrower it becomes. Therefore, also in the present embodiment, the prospective angle 740 is determined so that the uniform irradiation intensity region includes the examination region of the subject 1.
  • FIG. 11 shows an irradiation intensity (sensitivity) distribution of the transmission coil 51B of the present embodiment having a specific size.
  • FIG. 11A is a graph showing the sensitivity distribution in the x-axis direction
  • FIG. 11B is a graph showing the sensitivity distribution in the y-axis direction.
  • the irradiation intensity uniform region in the x-axis direction is about 36 cm, and the irradiation intensity uniform region in the y-axis direction is about 50 cm.
  • the typical size of an adult male is 35 cm torso width and 35 cm torso thickness. Therefore, when photographing the trunk, the region where the subject 1 exists is within the uniform irradiation intensity region of the transmission coil 51B of the above size. I understand that. That is, according to the transmission coil 51 ⁇ / b> B of the present embodiment, a uniform irradiation intensity distribution can be obtained in a necessary region in the inspection space 22 while ensuring a wide inspection space 22.
  • the technique for fixing these RF bases 520 inside the RF shield 510 is basically the same as that of the first embodiment as shown in FIG.
  • the partial cylindrical RF coil 540 may be formed inside the RF base 520 as shown in FIG. 12A, or the RF base 520 as shown in FIG. You may form in the outer side.
  • the RF base 520 and the partial cylindrical RF coil 540 are arranged as described above.
  • the partial cylindrical RF coil 540 and the RF base 520 that supports the partial cylindrical RF coil 540 are provided at both ends in the x-axis direction in the examination space 22 over the entire z-axis direction of the examination space 22.
  • a space portion 560 in which no protrusion 512 or the like exists can be obtained. Therefore, as compared with the transmission coil using the conventional birdcage type RF coil, a wider inspection space 22 can be secured.
  • FIG. 13 (a) shows the relationship among the subject 1, the table 11, and the transmission coil 51B at the time of examination.
  • the RF base 520, the shield bobbin 511, the projection 512, and the nonmagnetic bolt 513 are omitted.
  • the cross-sectional shape in the xy plane of the subject 1 (here, a human) when placed on the table 11 during the examination is an approximate elliptical shape that is long in the x-axis direction and short in the y-axis direction. is there.
  • the transmission coil 51B of the present embodiment the partial cylindrical RF coil 540 or the like does not exist in the examination space 22 in the vicinity of the RF shield 510 in the x-axis direction.
  • the inner wall of the gradient magnetic field coil arranged outside the transmission coil 51B may be an elliptic cylinder.
  • the gradient magnetic field coil 31C and the transmission coil 51C in this case are illustrated in FIG.
  • FIG. 14A is an explanatory view showing an xz section of a transmission coil 51C arranged in the gradient coil 31C
  • FIG. 14B is an xy section view thereof.
  • FIG. 14C is an explanatory diagram showing an xy cross-section for explaining a state when the subject 1 is inserted into the examination space 22.
  • FIG. 15 shows an irradiation intensity (sensitivity) distribution of the transmission coil 51C having a specific size.
  • FIG. 15A is a graph showing the sensitivity distribution in the x-axis direction
  • FIG. 15B is a graph showing the sensitivity distribution in the y-axis direction.
  • the RF shield 510C is an elliptical cylinder whose cross section perpendicular to the z-axis is an ellipse having a major axis of 790 mm and a minor axis of 630 mm, and the RF base 520C is disposed with a distance of 40 mm from the RF shield 511 being disposed. 51C was used. The prospective angle 740 was set to 126 degrees. In the transmission coil 51C, the RF shield 510C is 8 cm wider in the x-axis direction than the transmission coil 51B.
  • the irradiation intensity uniform region in the y-axis direction is approximately 42 cm, and the irradiation intensity uniform region in the x-axis direction is approximately 44 cm.
  • a region wider in the shoulder width direction than the transmission coil 51B can be within the irradiation intensity uniform region.
  • the distance between the RF base 520C forming the partial cylindrical RF coil 540 and the RF shield 510C may be changed.
  • the central portion in the x-axis direction is set to 40 mm, and gradually narrows toward both ends in the x-axis direction, and the end portion is set to 20 mm.
  • You may comprise.
  • a spatial margin is created not only in the left-right (x-axis) direction but also in the vertical (y-axis) direction at the end in the x-axis direction in the examination space 22, thereby providing a more comfortable examination space 22. can do.
  • the transmission coil 51C also has a small increase in manufacturing cost for the same reason as the transmission coil 51A of the first embodiment.
  • the inspection space 22 can be expanded without increasing the inner diameter of the magnet 21. Therefore, the tunnel-type MRI apparatus 10 can provide a test space 22 that is comfortable for the subject 1 without increasing the manufacturing cost of the entire MRI apparatus 10 and without sacrificing performance.
  • the two partial cylindrical RF coils 540 and the RF base 520 that supports the two partial cylindrical RF coils 540 have the same shape, the same size, and are opposed to each other as an example. Not limited to. For example, if the centers in the circumferential direction of the two partial cylindrical RF coils 540 are on the y-axis, the sizes of the two may be different as shown in FIG. In particular, when the partial cylindrical RF coil 540 and the RF base 520 that supports the part cylindrical RF coil 540 disposed on the upper side (opposite to the table 11) of the subject 1 in the examination space 22 are made smaller, the upper part of the subject 1 is wider. Space can be secured and a more comfortable inspection space 22 can be provided.
  • This embodiment basically has the same configuration as that of the second embodiment, and secures a wider inspection space for the transmission coil without changing the sizes of the magnet 21 and the gradient magnetic field coil 31.
  • the transmission coil of this embodiment expands the irradiation intensity uniform region in the x-axis direction.
  • the present embodiment will be described focusing on a transmission coil having a configuration different from that of the second embodiment.
  • the x, y, and z axes are the same as those in the first embodiment.
  • FIG. 16 is a diagram for explaining the external appearance of the transmission coil 51D of the present embodiment.
  • FIG. 16A is an explanatory view showing an xz section of a transmission coil 51D arranged in the gradient coil 31, and
  • FIG. 16B is an xy section view thereof.
  • the transmission coil 51D of the present embodiment is formed on a cylindrical RF shield 510, two partial cylindrical RF bases 520D (not shown in FIG. 16), and the RF base 520, respectively.
  • a partial cylindrical RF coil 540D is formed on a cylindrical RF shield 510, two partial cylindrical RF bases 520D (not shown in FIG. 16), and the RF base 520, respectively.
  • the configuration, arrangement, shape, and material of each part are the same as those in the second embodiment.
  • the partial cylindrical RF coil 540D is not necessarily plane-symmetric with respect to the yz plane.
  • Each partial cylindrical RF coil 540D of the present embodiment includes a plurality of (2 or 3) rectangular loop coils 710 having substantially the same length in the z-axis direction.
  • Each loop type coil 710 includes a capacitor on each side.
  • Each loop type coil 710 is arranged in the circumferential direction so that two sides are parallel to the z-axis direction at substantially the same position in the z-axis direction.
  • each loop type coil 710 is arranged so as not to be in contact with the adjacent loop type coil 710, and the adjacent loop type coil 710 overlaps with a predetermined area in the circumferential direction. This overlapping area is adjusted so that the electromagnetic interference with each other is most reduced.
  • the optimum overlap area is an area that measures the input impedance of each coil and is closest to the input impedance when the coil is alone.
  • the loop type coil 710 disposed at both ends in the circumferential direction forms a current loop with the conductor constituting the RF shield 510 as a part of the loop.
  • the RF shield 510 is connected via a capacitor 730.
  • the loop-type coil 710 includes one or more conductors (rungs) connected in the loop between the two sides in the circumferential direction and substantially parallel to the z-axis direction, each including a capacitor. You may comprise so that a capacitor may be provided between the connection points with each rung of a side.
  • the RF base 520 is provided so as to be associated with and support each loop type coil 710.
  • the prospective angle 740D of the RF base 520D and the partial cylindrical RF coil 540D formed thereon is less than 180 degrees. That is, in this embodiment, the prospective angle 740D in the cross section orthogonal to the z axis at the connection position of the loop type coil 710 at both ends with the RF shield 510 is less than 180 degrees. Within this range, the prospective angle 740D is determined so that the uniform irradiation intensity region includes the examination region of the subject 1 as in the above embodiments.
  • a current is induced on the RF shield 510 at the end in the x-axis direction in the inspection space 22 by connecting the loop type coil 710 at both ends and the RF shield 510.
  • a magnetic field is generated in the vicinity of the RF shield 510 at the end in the x-axis direction (side surface of the RF shield 510).
  • the uniform irradiation intensity region in the x-axis direction is widened. Accordingly, if the size of the prospective angle 740D is the same as the prospective angle 740 of the second embodiment, the uniform irradiation intensity region in the x-axis direction is widened accordingly.
  • FIG. 17 shows an irradiation intensity (sensitivity) distribution of the transmission coil 51D of the present embodiment having the above-described configuration and having a specific size.
  • FIG. 17A is a graph showing the sensitivity distribution in the x-axis direction
  • FIG. 17B is a graph showing the sensitivity distribution in the y-axis direction.
  • the diameter of the cross section orthogonal to the z-axis of the RF shield 510 is 710 mm
  • the conductor constituting the partial cylindrical RF coil 540D is on the y-axis.
  • a transmission coil 51D disposed at a position 40 mm from the RF shield 510 was used.
  • the prospective angle 740D was 150 degrees.
  • the irradiation intensity uniform region in the x-axis direction is about 50 cm
  • the irradiation intensity uniform region in the y-axis direction is about 50 cm.
  • the irradiation intensity uniformity in the x-axis direction is greatly improved.
  • the shoulder width is about 50 cm in a typical size of an adult male, even if the region over the entire shoulder width is a photographing region, it can be sufficiently handled.
  • FIG. 18 shows an example of the transmission coil 51E in the case where the partial cylindrical RF coil 540 shown in each of the above embodiments is connected to the RF shield 510 as it is.
  • FIG. 18A shows a transmission arranged in the gradient magnetic field coil 31. It is explanatory drawing which shows xz cross section of the coil 51E, FIG.18 (b) is the xy cross section. Further, FIGS. 18C and 18D are explanatory diagrams for explaining the current flowing through the transmission coil 51E.
  • the conductor of the partial cylindrical RF coil 540 and the conductor of the RF shield 510 are continuous.
  • currents 810 and 820 shown in (d) flow.
  • the birdcage type RF coil adjusts the capacitance of the capacitor connected to the ring and the capacitance of the capacitor connected to the rung so as to electromagnetically connect the adjacent channel. Interference can be reduced and it can be easily used as a multi-channel array coil.
  • electrical coupling with adjacent channels increases, and even if the above method is used, a sufficient electromagnetic interference reduction effect cannot be obtained. Therefore, when used as a multi-channel array coil, each channel cannot be driven independently.
  • the partial cylindrical RF coil 540D is composed of a plurality of loop coils 710 arranged in a non-contact manner, and therefore, shown in FIGS. 18 (c) and 18 (d). A current passing through the conductor of the RF shield 510 does not flow through the partial cylindrical RF coil 540D. Therefore, it can be easily used as a multi-channel array coil.
  • the loop coil 710 constituting one partial cylindrical RF coil 540D has a prospective angle 740D of less than 180 degrees at the connection position of the loop coil 710 disposed at both ends. If so, it does not matter.
  • the prospective angle increases, the openness decreases, but the magnetic field generated at the end in the x-axis direction in the examination space 22 increases, so the irradiation intensity uniformity in the x-axis direction improves.
  • the prospective angle 740 is set smaller than this.
  • the openness is reduced, but the irradiation intensity uniformity in the x-axis direction is further improved.
  • the partial cylindrical RF coil is disposed in the vicinity of the RF shields 510 at both ends in the x-axis direction of the examination space 22 over the entire z-axis direction of the examination space 22. It is possible to obtain a space 560 in which the 540D and the RF base 520D that supports the 540D do not exist. Therefore, a wider examination space 22 can be ensured compared to the case where the transmission coil 51 using a conventional birdcage RF coil is used, and the subject 1 can be given a sense of openness.
  • each loop type coil 710 constituting the partial cylindrical RF coil 540D are not limited to those shown in FIGS.
  • the two overlap positions may be closer to the yz plane than that shown in FIG.
  • the overlap position of the loop type coil 710 is closer to the yz plane. Therefore, when the subject 1 is a person compared to the transmission coil 51D shown in FIG. A wider space can be secured. As described above, the closer the overlap position is to the yz plane, the more comfortable examination space 22 can be provided.
  • the transmission coil 51D shown in FIG. 16 is close to the xz plane where the overlap position is determined by the x-axis and the z-axis, so that the circumferential length of the loop coil 710 disposed at both ends can be shortened. And the configuration can be simplified. Therefore, manufacture and adjustment are easy.
  • each partial cylindrical RF coil 540D may be configured by two loop coils 710. In this case, with respect to one partial cylindrical RF coil 540D, since there is one overlap portion in the circumferential direction, device mounting is simplified.
  • each partial cylindrical RF coil 540D may be provided at an arbitrary position on the z axis.
  • the position may not be a target position on the z axis.
  • each of the two partial cylindrical RF coils 540D may include a different number of loop coils 710. The number of loop coils 710 and the overlap position may be set at optimum locations according to the type of the subject 1 and the examination site.
  • the rungs 541 are removed from both ends in the circumferential direction of the partial cylindrical RF coil 540D, and instead connected to the RF shield 510 via a capacitor.
  • the conductor of the RF shield 510 as a part of the loop, a magnetic field is generated in the vicinity of both ends of the RF shield 510 in the x-axis direction, and the region of uniform irradiation intensity in the x-axis direction is expanded.
  • the loop coil 710 is constituted by a plurality of loop coils 710 arranged in a non-contact manner.
  • an overlap portion is provided to electromagnetically couple the loop type coils 710 constituting the partial cylindrical RF coil 540D to function as one partial cylindrical RF coil 540D as a whole.
  • the transmission coil 51D of the present embodiment having the above configuration, it is possible to obtain the transmission coil 51D having a wide irradiation intensity uniform region in the examination space 22 and a wide use range. Further, since the size of the magnet 21 is not changed, there is no increase in manufacturing cost. Therefore, the comfort of the examination space 22 can be enhanced while having substantially the same performance as the conventional birdcage RF coil. Therefore, according to the transmission coil 51D of the present embodiment, a comfortable examination space 22 can be secured in the tunnel type MRI apparatus without increasing the manufacturing cost of the MRI apparatus 10 and without sacrificing performance.
  • the shape of the inner wall of the gradient magnetic field coil 31 disposed outside the transmission coil 51D is not limited to a cylindrical shape, and may be an elliptical cylindrical shape as in the above embodiments. Further, as in the first embodiment, the examination space 22 may be configured to have a margin in both end portions in the y-axis direction.
  • the case where the transmitter coil 51 is used has been described as an example.
  • the RF coil having the configuration described in the above embodiment may be used as a receiver coil.
  • the transmission coil of each of the above embodiments can be used in any device that uses an electromagnetic wave having a frequency of several MHz to several GHz in addition to being used as a part of the MRI apparatus.

Abstract

Disclosed is a feature that, in a tunnel MRI device, ensures a comfortable examination space without increasing the production cost of the MRI device and without sacrificing performance. In a tunnel MRI device, within a gradient coil that has a cylindrical inner wall, RF coils that are two partial-cylinder loop RF coils with an angle of view of less than 180 degrees and that are provided with a plurality of rungs within the loop are disposed facing each other. At this point, in response to the target application, the disposed locations of the two loop RF coils are determined.

Description

磁気共鳴計測装置Magnetic resonance measuring device
 本発明は、電磁波の送信および/または受信を行うための高周波磁場コイル、およびそれを用いた磁気共鳴計測装置(以下、「MRI装置」という)に関する。 The present invention relates to a high-frequency magnetic field coil for transmitting and / or receiving electromagnetic waves, and a magnetic resonance measuring apparatus (hereinafter referred to as “MRI apparatus”) using the same.
 MRI装置は、マグネットが発生する均一な静磁場中に被検体を配置し、被検体に電磁場を照射して被検体内の核スピンを励起すると共に、核スピンが発生する電磁波である核磁気共鳴信号を受信し、被検体を画像化する。マグネットには、超電導磁石、永久磁石が広く用いられ、その代表的な形状には、円筒型と対向型とがある。形状が円筒型で水平方向に静磁場を発生するタイプのマグネットを用いるMRI装置をトンネル型(水平磁場型)MRI装置、対向型で鉛直方向に静磁場を発生するタイプのマグネットを用いるMRI装置をオープン型(垂直磁場型)MRI装置と呼ぶことが多い。 An MRI apparatus arranges a subject in a uniform static magnetic field generated by a magnet, irradiates the subject with an electromagnetic field to excite nuclear spins within the subject, and nuclear magnetic resonance, which is an electromagnetic wave that generates nuclear spins. A signal is received and the subject is imaged. Superconducting magnets and permanent magnets are widely used as magnets, and typical shapes include a cylindrical type and a counter type. A tunnel type (horizontal magnetic field type) MRI apparatus that uses a magnet that generates a static magnetic field in the horizontal direction with a cylindrical shape, and an MRI apparatus that uses a magnet that generates a static magnetic field in the vertical direction with an opposing type. It is often called an open type (vertical magnetic field type) MRI apparatus.
 また、電磁波の照射と核磁気共鳴信号の受信とは、ラジオ周波数(RF)の電磁波を送信(照射)および受信するRFコイルによって行なわれる。被検体の部位によって核スピンの励起状態に違いが生じると、画像のコントラストむらやアーチファクトが発生する。これらを避けるため、RFコイルには、特に照射効率や照射均一性の向上が求められ、種々の形状の送信用のRF送信コイル、受信用のRF受信コイル或いは両者を兼用するRF送受信用コイルが開発されている。 Also, irradiation of electromagnetic waves and reception of nuclear magnetic resonance signals are performed by an RF coil that transmits (irradiates) and receives radio frequency (RF) electromagnetic waves. If there is a difference in the excited state of the nuclear spin depending on the region of the subject, unevenness of the image contrast and artifacts occur. In order to avoid these, the RF coil is required to improve the irradiation efficiency and the irradiation uniformity, and various shapes of transmission RF transmission coil, reception RF reception coil, or RF transmission / reception coil that combines both are provided. Has been developed.
 照射強度の均一度が高い形状として、例えば、いわゆる、バードケージ型のRFコイルが知られている(例えば、特許文献1参照)。特許文献1に開示されるバードケージ型のRFコイルは、円筒形状のRFベース上に配置される直線状の導体(ラング)と円弧状の導体(リング)とを備える。ラングは、RFベースの中心軸方向(z軸方向)に延伸し、リングはラングの両端部に配置される。RFベースには、アクリル、FRPなどの非磁性樹脂が用いられる。 As a shape with high uniformity of irradiation intensity, for example, a so-called birdcage type RF coil is known (see, for example, Patent Document 1). The birdcage type RF coil disclosed in Patent Document 1 includes a linear conductor (lang) and an arcuate conductor (ring) disposed on a cylindrical RF base. The rung extends in the central axis direction (z-axis direction) of the RF base, and the rings are disposed at both ends of the rung. A nonmagnetic resin such as acrylic or FRP is used for the RF base.
 バードケージ型のRFコイルの中でハイパス型のものは、リング上にキャパシタが配置され、これらをチューニングすることにより、所望の周波数で共振するRFコイルを形成する。このハイパス型のバードケージ型のRFコイル100の一例を図22に示す。図22(a)は、外観を説明するための説明図、図22(b)は、z軸方向から見た説明図である。本図に示すように、ハイパス型のバードケージ型のRFコイル100は、2つのループ導体であるリング110、120とz軸に平行な複数(図22では12本)の直線状の導体であるラング130とを備える。リング110、120は、ループの中心軸を共通とし、かつ、当該中心軸がz軸に平行になるよう対向して配置され、ラング130で接続される。図22ではRFベースは省略してある。複数のラング130は等間隔で配置されている。なお、本図において、座標軸のz軸方向は、MRI装置のマグネットが発生する静磁場Bの向き140とする。複数のラング130とリング110、120との接続点の間には、複数の第一キャパシタCrが配置され、給電点150は第一キャパシタの1つに配置される。このRFコイル100はチューニングが容易であるため、水平磁場型MRI装置で広く用いられている。 In the high-pass type of birdcage type RF coils, capacitors are arranged on the ring, and these are tuned to form an RF coil that resonates at a desired frequency. An example of this high-pass birdcage RF coil 100 is shown in FIG. FIG. 22A is an explanatory diagram for explaining the appearance, and FIG. 22B is an explanatory diagram viewed from the z-axis direction. As shown in this figure, the high-pass birdcage type RF coil 100 is composed of two loop conductors, rings 110 and 120, and a plurality of (12 in FIG. 22) linear conductors parallel to the z-axis. And a rung 130. The rings 110 and 120 are arranged so as to face each other so that the central axis of the loop is common and the central axis is parallel to the z-axis, and are connected by a rung 130. In FIG. 22, the RF base is omitted. The plurality of rungs 130 are arranged at equal intervals. Incidentally, in the figure, z-axis direction of the coordinate axes, the orientation 140 of the static magnetic field B 0 which the magnet of the MRI device generates. A plurality of first capacitors Cr are arranged between the connection points of the plurality of rungs 130 and the rings 110 and 120, and the feeding point 150 is arranged in one of the first capacitors. Since the RF coil 100 is easy to tune, it is widely used in horizontal magnetic field type MRI apparatuses.
 RFコイルの照射効率や受信感度を向上させる方法として、QD(Quadrature Detection)方式が知られている。QD方式は、互いの軸を直交させて配置した2つのRFコイルを用いて磁気共鳴信号を検出する方法である。この方式で磁気共鳴信号を検出すると、90度だけ位相がずれた信号がそれぞれのRFコイルから検出される。これらの検出信号を合成することにより、1つのRFコイルで受信した場合に比べて、SN比が理論的に√2倍向上する。また、高周波磁場の照射時には、円偏波を照射するため、電力が1/2で済み、被検体の高周波発熱を小さくすることができる。さらに、xy面の感度均一性を向上することができる。バードケージ型のRFコイルは、その構造の対称性からQD方式を容易に適用できる。すなわち、信号を送受信するための2つの給電ポートを互いに直交した位置に配置することで、一つのバードケージ型のRFコイルでQD方式による送受信が可能となる。図22に示すRFコイル100にQD方式を適用した一例であるRFコイル100Aを図23に示す。図23(a)は外観を説明するための説明図、図23(b)はz軸方向から見た説明図である。RFコイル100Aでは、2つの給電ポート151と152とが互いに直交した位置に配置される。 A QD (Quadrature Detection) method is known as a method for improving the irradiation efficiency and reception sensitivity of the RF coil. The QD method is a method for detecting a magnetic resonance signal using two RF coils arranged with their axes orthogonal to each other. When a magnetic resonance signal is detected by this method, a signal whose phase is shifted by 90 degrees is detected from each RF coil. By combining these detection signals, the SN ratio is theoretically improved by a factor of √2 compared to the case where the signals are received by one RF coil. Further, since the circularly polarized light is irradiated when the high frequency magnetic field is irradiated, the electric power is halved, and the high frequency heat generation of the subject can be reduced. Furthermore, the sensitivity uniformity of the xy plane can be improved. The birdcage type RF coil can be easily applied with the QD method because of the symmetry of its structure. That is, by arranging two power feeding ports for transmitting and receiving signals at positions orthogonal to each other, transmission and reception by the QD method can be performed with one birdcage type RF coil. FIG. 23 shows an RF coil 100A which is an example in which the QD method is applied to the RF coil 100 shown in FIG. FIG. 23A is an explanatory diagram for explaining the appearance, and FIG. 23B is an explanatory diagram viewed from the z-axis direction. In the RF coil 100A, the two power supply ports 151 and 152 are arranged at positions orthogonal to each other.
 さらに、バードケージ型のRFコイルは、ラング部にキャパシタを接続することにより、多チャンネルのアレイコイルとしても用いることができる(例えば、非特許文献1)。図24に、図22に示すRFコイル100を多チャンネルのアレイコイル100Cとして用いる例を示す。ここでは、ラング130の数が8のRFコイル100を8チャンネルのアレイコイル100Cとして用いる場合を例示する。アレイコイル100Cでは、リング110、120に接続するキャパシタCrの容量と、ラング130に接続するキャパシタCLの容量とを調整することにより、隣のチャンネルとの電磁気的干渉を低減することができる。このため、各チャンネルでそれぞれ独立に受信、あるいは送信することができる。また、高周波磁場の照射時には、各チャンネルの位相を、360度÷ラング数(8)=45度ずつ、ずらすことによりコイル内部で円偏波を発生することができる。 Furthermore, the birdcage RF coil can also be used as a multi-channel array coil by connecting a capacitor to the rung (for example, Non-Patent Document 1). FIG. 24 shows an example in which the RF coil 100 shown in FIG. 22 is used as a multi-channel array coil 100C. Here, a case where the RF coil 100 having eight rungs 130 is used as the 8-channel array coil 100C is illustrated. In the array coil 100 </ b> C, the electromagnetic interference with the adjacent channel can be reduced by adjusting the capacitance of the capacitor Cr connected to the rings 110 and 120 and the capacitance of the capacitor CL connected to the rung 130. For this reason, each channel can receive or transmit independently. Further, during irradiation with a high-frequency magnetic field, it is possible to generate circularly polarized waves inside the coil by shifting the phase of each channel by 360 degrees ÷ run number (8) = 45 degrees.
 なお、バードケージ型のRFコイルは、円筒状以外にも半円筒状あるいは部分円筒状のもの(例えば、非特許文献2)や、平面状のものもある(例えば、特許文献2)。 In addition, the birdcage type RF coil has a semi-cylindrical shape or a partial cylindrical shape (for example, Non-Patent Document 2) and a planar shape (for example, Patent Document 2).
米国特許4916418号明細書U.S. Pat. No. 4,916,418 特開平8-280652号公報Japanese Patent Laid-Open No. 8-280652
 近年のMRIにおける検査環境改善の動向として、太った人や、閉所恐怖症の人が安心してMRI検査を受けることができる、広く開放感のある検査空間が求められている。特に上記のように検査空間がトンネル型のトンネル型MRI装置において、その要望が強い。また、MRI装置内部に造影剤インジェクタ機器や非磁性の治療機器を設置し、それらを用いて精密診断や治療を行うようになってきており、被験者の近傍に各種機器を設置するスペースを確保するためにも検査空間の広いMRI装置が求められている。 As a recent trend of improving the examination environment in MRI, there is a demand for a spacious and open examination space where fat people and claustrophobic people can take MRI examinations with peace of mind. In particular, there is a strong demand for a tunnel-type MRI apparatus having a tunnel-type inspection space as described above. In addition, contrast medium injector devices and non-magnetic treatment devices are installed inside the MRI apparatus, and they have been used for precise diagnosis and treatment, ensuring a space for installing various devices in the vicinity of the subject. Therefore, an MRI apparatus having a wide examination space is required.
 トンネル型MRI装置では、外部からトンネル内部にかけて、静磁場を発生するマグネット、傾斜磁場を発生する傾斜磁場コイル、そして、RFコイルの順に配置される。RFコイルに上述のRFコイル100を用いる場合、RFコイルが形成する円筒の内部が被検体が入る検査空間となる。 In a tunnel type MRI apparatus, a magnet that generates a static magnetic field, a gradient coil that generates a gradient magnetic field, and an RF coil are arranged in this order from the outside to the inside of the tunnel. When the above-described RF coil 100 is used as the RF coil, the inside of the cylinder formed by the RF coil is an examination space in which the subject enters.
 例えば、マグネットの内径を大きくすることにより、検査空間を拡大できる。しかしこれは、製造コストが大幅に増大する。また、マグネットは被検体に近づけた方が磁場発生効率が向上するため、安易に大きくすることもできない。さらに、RFコイルと傾斜磁場コイルとの間には、RFコイルの導体から一定の距離を置いてRFシールドが配置される。RFシールドは、傾斜磁場コイルから放出されるノイズを低減し、傾斜磁場コイルとRFコイルとの電磁結合を遮断するためのものである。従って、磁場を維持しその分布の急激な変化を避けるため、RFシールドとRFコイルとの間に所定の距離が必要とされる。従って、この分、検査空間は圧迫される。 For example, the inspection space can be expanded by increasing the inner diameter of the magnet. However, this significantly increases manufacturing costs. Further, since the magnetic field generation efficiency is improved when the magnet is closer to the subject, it cannot be easily increased. Further, an RF shield is disposed between the RF coil and the gradient coil at a certain distance from the conductor of the RF coil. The RF shield is for reducing noise emitted from the gradient coil and blocking electromagnetic coupling between the gradient coil and the RF coil. Therefore, a predetermined distance is required between the RF shield and the RF coil in order to maintain the magnetic field and avoid abrupt changes in its distribution. Therefore, the examination space is compressed accordingly.
 図25は、被検体がヒトである場合、被検体が挿入されたときのRFコイルをz軸方向から見たときの説明図である。ヒトが、被検体を載置するテーブルに寝たときの胴体部は、x方向に長くy方向に短い近似的な楕円筒形状である。製造コストや磁場発生効率を優先して被検体が収まるようマグネットのサイズを決定すると、検査空間では、一般的には、被検体であるヒトの両肩がRFコイルが形成するトンネル内壁に近づき、窮屈に感じる。 FIG. 25 is an explanatory diagram when the RF coil is viewed from the z-axis direction when the subject is inserted when the subject is a human. When the human lies on the table on which the subject is placed, the body portion has an approximate elliptic cylinder shape that is long in the x direction and short in the y direction. When the size of the magnet is determined so that the subject is accommodated with priority given to the manufacturing cost and the efficiency of magnetic field generation, in the examination space, generally both shoulders of the subject are approaching the tunnel inner wall formed by the RF coil, I feel cramped.
 本発明は、上記事情に鑑みてなされたもので、トンネル型MRI装置において、MRI装置の製造コストを増大させることなく、また、性能を犠牲にすることなく、快適な検査空間を確保する技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in a tunnel-type MRI apparatus, a technique for ensuring a comfortable inspection space without increasing the manufacturing cost of the MRI apparatus and without sacrificing performance. The purpose is to provide.
 本発明は、トンネル型MRI装置において、筒状の内壁を有する傾斜磁場コイル内に、見込み角が180度未満の2つの部分円筒形状のループ型RFコイルを対向する位置に配置する。このとき、使用目的に応じて、2つのループ型RFコイルの配置位置を決定する。 In the present invention, in a tunnel type MRI apparatus, two partial cylindrical loop type RF coils having a prospective angle of less than 180 degrees are arranged in opposing positions in a gradient magnetic field coil having a cylindrical inner wall. At this time, the arrangement positions of the two loop type RF coils are determined according to the purpose of use.
 具体的には、静磁場を発生させる環状の磁石部と、前記磁石部で囲まれる検査領域内に当該磁石部と同軸に配置される環状の傾斜磁場コイルと、前記傾斜磁場コイル内側に配置される高周波磁場コイルと、を備える磁気共鳴計測装置であって、前記高周波磁場コイルは、前記傾斜磁場コイルの内側に当該傾斜磁場コイルの内壁に沿って当該傾斜磁場コイルと同軸に配置される環状の高周波磁場シールドと、前記高周波磁場シールドの内側に、対向して配置される2つの部分筒形状を有する部分筒型ループコイルと、を備え、前記各部分筒型ループコイルは、相互に所定の間隔を空けてそれぞれ前記軸方向に平行に配置される複数の直線状導体と、前記部分筒形状の軸方向の両端において前記複数の直線状導体を接続する2つの部分円弧状導体と、を備え、前記各部分筒形状の周方向の両端の見込み角は180度未満であることを特徴とする磁気共鳴計測装置を提供する。 Specifically, an annular magnet unit that generates a static magnetic field, an annular gradient coil disposed coaxially with the magnet unit in an inspection region surrounded by the magnet unit, and an inner side of the gradient coil. A high-frequency magnetic field coil, wherein the high-frequency magnetic field coil is an annular ring disposed coaxially with the gradient magnetic field coil along an inner wall of the gradient magnetic field coil inside the gradient magnetic field coil. A high frequency magnetic field shield, and a partial cylindrical loop coil having two partial cylindrical shapes disposed opposite to each other inside the high frequency magnetic field shield, wherein the partial cylindrical loop coils are spaced apart from each other by a predetermined distance. A plurality of linear conductors arranged in parallel with each other in the axial direction and two partial arc-shaped conductors connecting the plurality of linear conductors at both ends of the partial cylindrical shape in the axial direction. When the equipped, visual angle in the circumferential direction of both ends of the respective partial cylindrical shape to provide a magnetic resonance measurement apparatus and less than 180 degrees.
 本発明によれば、トンネル型MRI装置において、MRI装置の製造コストを増大させることなく、また、性能を犠牲にすることなく、快適な検査空間を確保できる。 According to the present invention, in a tunnel type MRI apparatus, a comfortable inspection space can be secured without increasing the manufacturing cost of the MRI apparatus and without sacrificing performance.
第一の実施形態のMRI装置の外観図である。It is an external view of the MRI apparatus of 1st embodiment. 第一の実施形態のMRI装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the MRI apparatus of 1st embodiment. (a)は、第一の実施形態の傾斜磁場コイル内に配置される送信コイルを説明するためのyz断面を示す説明図であり、(b)は、同xy断面図である。(A) is explanatory drawing which shows yz cross section for demonstrating the transmission coil arrange | positioned in the gradient magnetic field coil of 1st embodiment, (b) is xy sectional drawing. (a)、(b)は、第一の実施形態の送信コイルの構成およびRFベースの固定法を説明するためのxy断面図である。(A), (b) is xy sectional drawing for demonstrating the structure of the transmission coil of 1st embodiment, and the fixing method of RF base. (a)は、第一の実施形態の送信コイルのx軸方向の照射強度分布を示すグラフであり、(b)は同y軸方向の照射強度分布を示すグラフである。(A) is a graph which shows the irradiation intensity distribution of the x-axis direction of the transmission coil of 1st embodiment, (b) is a graph which shows the irradiation intensity distribution of the same y-axis direction. 第一の実施形態の検査時のz方向から見た検査空間内部の様子を説明するための説明図である。It is explanatory drawing for demonstrating the mode inside the test | inspection space seen from the z direction at the time of the test | inspection of 1st embodiment. (a)は、第一の実施形態の傾斜磁場コイル内に配置される送信コイルの他の例を説明するためのyz断面を示す説明図であり、(b)は、同xy断面図である。(A) is explanatory drawing which shows yz cross section for demonstrating the other example of the transmission coil arrange | positioned in the gradient magnetic field coil of 1st embodiment, (b) is the xy cross section. . 第一の実施形態の送信コイルの使用例を説明するための説明図である。It is explanatory drawing for demonstrating the usage example of the transmission coil of 1st embodiment. 第一の実施形態の送信コイルの使用例を説明するための説明図である。It is explanatory drawing for demonstrating the usage example of the transmission coil of 1st embodiment. (a)は、第二の実施形態の傾斜磁場コイル内に配置される送信コイルを説明するためのyz断面を示す説明図であり、(b)は、同xy断面図である。(A) is explanatory drawing which shows yz cross section for demonstrating the transmission coil arrange | positioned in the gradient magnetic field coil of 2nd embodiment, (b) is xy sectional drawing. (a)は、第二の実施形態の送信コイルのx軸方向の照射強度分布を示すグラフであり、(b)は同y軸方向の照射強度分布を示すグラフである。(A) is a graph which shows the irradiation intensity distribution of the x-axis direction of the transmission coil of 2nd embodiment, (b) is a graph which shows the irradiation intensity distribution of the same y-axis direction. (a)、(b)は、第二の実施形態のRFベースの固定法を説明するためのxy断面図である。(A), (b) is xy sectional drawing for demonstrating the fixing method of RF base of 2nd embodiment. (a)は、第二の実施形態の検査時のz方向から見た検査空間内部の様子を説明するための説明図であり、(b)は、第二の実施形態の送信コイルの他の例のxy断面図である。(A) is explanatory drawing for demonstrating the mode inside the test | inspection space seen from the z direction at the time of the test | inspection of 2nd embodiment, (b) is other of the transmission coil of 2nd embodiment. It is xy sectional drawing of an example. (a)は、第二の実施形態の傾斜磁場コイル内に配置される送信コイルの他の例を説明するためのxz断面を示す説明図であり、(b)は、同xy断面図であり、(c)は、検査時のz方向から見た検査空間内部の様子を説明するための説明図である。(A) is explanatory drawing which shows xz cross section for demonstrating the other example of the transmission coil arrange | positioned in the gradient magnetic field coil of 2nd embodiment, (b) is the xy cross section. (C) is explanatory drawing for demonstrating the mode inside the test | inspection space seen from the z direction at the time of a test | inspection. (a)は、第二の実施形態の送信コイルの他の例のx軸方向の照射強度分布を示すグラフであり、(b)は、同y軸方向の照射強度分布を示すグラフである。(A) is a graph which shows the irradiation intensity distribution of the x-axis direction of the other example of the transmission coil of 2nd embodiment, (b) is a graph which shows the irradiation intensity distribution of the same y-axis direction. (a)は、第三の実施形態の傾斜磁場コイル内に配置される送信コイルを説明するためのxz断面を示す説明図であり、(b)は、同xy断面図である。(A) is explanatory drawing which shows xz cross section for demonstrating the transmission coil arrange | positioned in the gradient magnetic field coil of 3rd embodiment, (b) is xy sectional drawing. (a)は、第三の実施形態の送信コイルのx軸方向の照射強度分布を示すグラフであり、(b)は、同y軸方向の照射強度分布を示すグラフである。(A) is a graph which shows the irradiation intensity distribution of the x-axis direction of the transmission coil of 3rd embodiment, (b) is a graph which shows the irradiation intensity distribution of the same y-axis direction. (a)は、第三の実施形態の比較例の送信コイルを説明するためのxz断面を示す説明図であり、(b)は、同xy断面図であり、(c)、(d)は同送信コイルに流れる電流を説明するための説明図である。(A) is explanatory drawing which shows xz cross section for demonstrating the transmission coil of the comparative example of 3rd embodiment, (b) is xy sectional drawing, (c), (d) is the same. It is explanatory drawing for demonstrating the electric current which flows into the transmission coil. 第三の実施形態の傾斜磁場コイル内に配置される送信コイルの他の例のxy断面図である。It is xy sectional drawing of the other example of the transmission coil arrange | positioned in the gradient magnetic field coil of 3rd embodiment. (a)は、第三の実施形態の傾斜磁場コイル内に配置される送信コイルの他の例を説明するためのxz断面を示す説明図であり、(b)は、同xy断面図である。(A) is explanatory drawing which shows xz cross section for demonstrating the other example of the transmission coil arrange | positioned in the gradient magnetic field coil of 3rd embodiment, (b) is the xy cross section. . (a)~(d)は、それぞれ、第三の第実施形態の傾斜磁場コイル内に配置される送信コイルの変形例のxy断面図である。(A)-(d) is xy sectional drawing of the modification of the transmission coil respectively arrange | positioned in the gradient magnetic field coil of 3rd Embodiment. (a)、(b)は、従来のバードケージ型RFコイルの説明図である。(A), (b) is explanatory drawing of the conventional birdcage type | mold RF coil. (a)、(b)は、従来のバードケージ型RFコイルにQD方式を適用した場合の説明図である。(A), (b) is explanatory drawing at the time of applying a QD system to the conventional birdcage type | mold RF coil. 従来のバードケージ型RFコイルをアレイコイルとして使用する場合の説明図である。It is explanatory drawing at the time of using the conventional birdcage type | mold RF coil as an array coil. 従来のバードケージ型RFコイルの検査時の様子を説明するための説明図である。It is explanatory drawing for demonstrating the mode at the time of the test | inspection of the conventional birdcage type | mold RF coil.
 <<第一の実施形態>>
 以下、本発明を適用する第一の実施形態について説明する。本発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。
<< First Embodiment >>
Hereinafter, a first embodiment to which the present invention is applied will be described. In all the drawings for explaining the embodiments of the present invention, those having the same function are denoted by the same reference numerals, and repeated explanation thereof is omitted.
 まず、本実施形態の磁気共鳴イメージング装置(MRI装置)について説明する。MRI装置は、プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。現在、MRI装置の撮像対象核種であって、臨床で普及しているものは、被検体の主たる構成物質である水素原子核(プロトン)である。 First, the magnetic resonance imaging apparatus (MRI apparatus) of this embodiment will be described. The MRI apparatus images information on the spatial distribution of proton density and the spatial distribution of relaxation time in the excited state, thereby imaging the form or function of the human head, abdomen, limbs, etc. two-dimensionally or three-dimensionally. To do. At present, the nuclide to be imaged by the MRI apparatus, which is widely used clinically, is a hydrogen nucleus (proton) which is a main constituent material of the subject.
 これを実現する、本実施形態のMRI装置10について説明する。図1は、本実施形態のMRI装置10の外観図である。本実施形態のMRI装置10は、水平磁場方式の静磁場発生系を構成する円筒形のマグネット21と被検体1を載置するテーブル11とを備える。テーブル11に寝かせられた被検体1は、円筒形のマグネット21が形成するボア内の検査空間22に挿入され撮影される。以下、本明細書では、本実施形態のMRI装置10において、ボアの中心を原点とし、静磁場方向である、円筒形マグネット21の中心軸(円筒軸)をz軸とする座標系(静止座標系)を定義する。なお、テーブル11は、載置する被検体1の体軸方向がz軸方向と一致するよう配置される。また、z軸と直交する2軸のうち、テーブル11の面に平行な方向をx軸方向、テーブル11の面に直交する方向をy軸方向とする。 The MRI apparatus 10 of the present embodiment that realizes this will be described. FIG. 1 is an external view of the MRI apparatus 10 of the present embodiment. The MRI apparatus 10 of the present embodiment includes a cylindrical magnet 21 constituting a horizontal magnetic field type static magnetic field generation system and a table 11 on which the subject 1 is placed. The subject 1 laid on the table 11 is inserted into the examination space 22 in the bore formed by the cylindrical magnet 21 and photographed. Hereinafter, in the present specification, in the MRI apparatus 10 of the present embodiment, a coordinate system (stationary coordinates) in which the center of the bore is the origin and the center axis (cylindrical axis) of the cylindrical magnet 21 that is the static magnetic field direction is the z axis. System). The table 11 is arranged so that the body axis direction of the subject 1 to be placed coincides with the z-axis direction. Of the two axes orthogonal to the z-axis, the direction parallel to the surface of the table 11 is defined as the x-axis direction, and the direction orthogonal to the surface of the table 11 is defined as the y-axis direction.
 次に、本実施形態のMRI装置10の全体構成を図2に従って説明する。図2は、本実施形態のMRI装置10の全体構成を示すブロック図である。本実施形態のMRI装置10は、核磁気共鳴(NMR)現象を利用して被検体1の断層画像を得るもので、静磁場発生系2と、傾斜磁場発生系3と、送信系5と、受信系6と、シーケンサ4と、情報処理装置7と、被検体1を載置するテーブル11と、を備える。 Next, the overall configuration of the MRI apparatus 10 of the present embodiment will be described with reference to FIG. FIG. 2 is a block diagram showing the overall configuration of the MRI apparatus 10 of the present embodiment. The MRI apparatus 10 of the present embodiment obtains a tomographic image of the subject 1 using a nuclear magnetic resonance (NMR) phenomenon, and includes a static magnetic field generation system 2, a gradient magnetic field generation system 3, a transmission system 5, A reception system 6, a sequencer 4, an information processing device 7, and a table 11 on which the subject 1 is placed are provided.
 本実施形態の静磁場発生系2では、体軸方向に均一な静磁場を発生させるために被検体1の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源であるマグネット21が配置される。 In the static magnetic field generation system 2 of the present embodiment, a magnet 21 which is a permanent magnet type, normal conduction type or superconducting type static magnetic field generation source is provided around the subject 1 in order to generate a uniform static magnetic field in the body axis direction. Be placed.
 傾斜磁場発生系3は、MRI装置10の座標系のx,y,zの3軸方向に巻かれた傾斜磁場コイル31と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源32とから成り、後述のシ-ケンサ4からの命令に従ってそれぞれのコイルの傾斜磁場電源32を駆動することにより、x,y,zの3軸方向に傾斜磁場パルスGx,Gy,Gzを印加する。撮影時には、スライス面(撮影断面)に直交する方向にスライス方向傾斜磁場パルス(Gs)を印加して被検体1に対するスライス面を設定し、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード方向傾斜磁場パルス(Gp)と周波数エンコード方向傾斜磁場パルス(Gf)とを印加して、エコー信号にそれぞれの方向の位置情報をエンコードする。 The gradient magnetic field generation system 3 includes a gradient magnetic field coil 31 wound in the three axes of x, y, and z in the coordinate system of the MRI apparatus 10 and a gradient magnetic field power source 32 that drives each gradient magnetic field coil. By driving the gradient magnetic field power supply 32 of each coil in accordance with the command from the sequencer 4, gradient magnetic field pulses Gx, Gy, Gz are applied in the three axial directions of x, y, z. At the time of imaging, a slice direction gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 1, and the remaining two orthogonal to the slice plane and orthogonal to each other. A phase encoding direction gradient magnetic field pulse (Gp) and a frequency encoding direction gradient magnetic field pulse (Gf) are applied in one direction, and position information in each direction is encoded in the echo signal.
 送信系5は、被検体1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために、被検体1に高周波磁場パルス(RFパルス)を照射するもので、高周波発振器52と変調器53と高周波増幅器54と送信側の高周波コイル(送信コイル)51とを備える。高周波発振器52から出力されたRFパルスをシーケンサ4からの指令によるタイミングで変調器53により振幅変調し、この振幅変調されたRFパルスを高周波増幅器54で増幅した後に被検体1に近接して配置された送信コイル51に供給することにより、RFパルスが被検体1に照射される。 The transmission system 5 irradiates the subject 1 with a high-frequency magnetic field pulse (RF pulse) in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1. And a transmission-side high-frequency coil (transmission coil) 51. The RF pulse output from the high-frequency oscillator 52 is amplitude-modulated by the modulator 53 at a timing according to a command from the sequencer 4, and the amplitude-modulated RF pulse is amplified by the high-frequency amplifier 54 and then placed close to the subject 1. By supplying to the transmitting coil 51, the subject 1 is irradiated with the RF pulse.
 受信系6は、被検体1の生体組織を構成する原子核スピンの核磁気共鳴により放出されるエコー信号(NMR信号)を検出するもので、受信側の高周波コイル(受信コイル)61と信号増幅器62と直交位相検波器63とA/D変換器64とを備える。送信コイル51から照射された電磁波によって誘起された被検体1内の原子核スピンからのNMR信号が被検体1に近接して配置された受信コイル61で検出される。検出されたNMR信号は、信号増幅器62で増幅された後、後述するシーケンサ4からの指令によるタイミングで直交位相検波器63により、直交する二系統の信号に分割され、それぞれがA/D変換器64でディジタル量に変換されて、情報処理装置7に送られる。 The receiving system 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and includes a receiving-side high-frequency coil (receiving coil) 61 and a signal amplifier 62. And a quadrature phase detector 63 and an A / D converter 64. An NMR signal from a nuclear spin in the subject 1 induced by the electromagnetic wave irradiated from the transmitting coil 51 is detected by a receiving coil 61 arranged close to the subject 1. The detected NMR signal is amplified by the signal amplifier 62 and then divided into two orthogonal signals by the quadrature phase detector 63 at a timing according to a command from the sequencer 4 described later, and each of them is an A / D converter. 64 is converted into a digital quantity and sent to the information processing apparatus 7.
 シーケンサ4は、RFパルスと傾斜磁場パルスとを所定のパルスシーケンスに従って繰り返し印加する。シーケンサ4は、情報処理装置7の制御で動作し、被検体1の断層画像のデータ収集に必要な種々の命令を、送信系5、傾斜磁場発生系3、および受信系6に送る。なお、パルスシーケンスは、情報処理装置7が備える後述する記憶装置等に予め保持される。 Sequencer 4 repeatedly applies an RF pulse and a gradient magnetic field pulse according to a predetermined pulse sequence. The sequencer 4 operates under the control of the information processing apparatus 7, and sends various commands necessary for collecting tomographic image data of the subject 1 to the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6. Note that the pulse sequence is held in advance in a storage device or the like provided in the information processing apparatus 7 to be described later.
 情報処理装置7は、MRI装置10全体の動作を制御するとともに、各種データ処理と処理結果の表示及び保存等を行うもので、CPU71と、ROM、RAMなどの記憶装置72と、光ディスク、磁気ディスク等の外部記憶装置73と、ディスプレイ等の表示装置74と、トラックボール、マウス、キーボード等の入力装置75とを備える。受信系6からデータが入力されると、CPU71が信号処理、画像再構成等の処理を実行し、その結果である被検体1の断層画像を表示装置74に表示すると共に、記憶装置72または外部記憶装置73に記録する。また、入力装置75を介してMRI装置10の各種制御情報の入力を受け付ける。受け付けた制御情報と、予め記憶装置72に保持するパルスシーケンスとに従って、シーケンサ4に指令を与える。なお、入力装置75は、表示装置74に近接して配置され、操作者が表示装置74を見ながら入力装置75を通してインタラクティブにMRI装置10の各種処理を制御する。なお、情報処理装置7は、汎用の情報処理装置で構成されていてもよい。 The information processing apparatus 7 controls the overall operation of the MRI apparatus 10 and performs various data processing and display and storage of processing results. The CPU 71, a storage device 72 such as a ROM and a RAM, an optical disk, and a magnetic disk An external storage device 73 such as a display, a display device 74 such as a display, and an input device 75 such as a trackball, a mouse, and a keyboard. When data is input from the reception system 6, the CPU 71 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 1 as a result on the display device 74, and the storage device 72 or the external device. Record in the storage device 73. Also, input of various control information of the MRI apparatus 10 is accepted via the input device 75. A command is given to the sequencer 4 according to the received control information and a pulse sequence stored in the storage device 72 in advance. The input device 75 is disposed in the vicinity of the display device 74, and the operator interactively controls various processes of the MRI apparatus 10 through the input device 75 while looking at the display device 74. The information processing device 7 may be a general-purpose information processing device.
 なお、本実施形態では、送信コイル51と傾斜磁場コイル31とは、被検体1が挿入される静磁場発生系2が形成する静磁場空間内に、被検体1を取り囲むように配置される。また、内側から送信コイル51、傾斜磁場コイル31の順に、マグネット21と同軸に構成され、配置される。また、受信コイル61は、被検体1に対向して、或いは取り囲むように設置される。 In this embodiment, the transmission coil 51 and the gradient magnetic field coil 31 are arranged so as to surround the subject 1 in the static magnetic field space formed by the static magnetic field generation system 2 into which the subject 1 is inserted. Further, the transmission coil 51 and the gradient magnetic field coil 31 are arranged and arranged coaxially with the magnet 21 in this order from the inside. The receiving coil 61 is installed so as to face or surround the subject 1.
 本実施形態では、マグネット21および傾斜磁場コイル31のサイズを変更せずに、送信コイル51の形状を工夫することにより、広い検査空間22を確保する。以下、これを実現する本実施形態の送信コイル51について、図3および図4を用いて説明する。図3および図4は、本実施形態の送信コイル51の構成を説明するための図である。図3(a)は、傾斜磁場コイル31内に配置される送信コイル51のyz断面を示す説明図であり、図3(b)は、同xy断面図である。 In the present embodiment, a wide inspection space 22 is secured by devising the shape of the transmission coil 51 without changing the sizes of the magnet 21 and the gradient coil 31. Hereinafter, the transmission coil 51 of this embodiment which implement | achieves this is demonstrated using FIG. 3 and FIG. 3 and 4 are diagrams for explaining the configuration of the transmission coil 51 of the present embodiment. FIG. 3A is an explanatory view showing a yz section of the transmission coil 51 arranged in the gradient magnetic field coil 31, and FIG. 3B is an xy section view thereof.
 これらの図に示すように、本実施形態の送信コイル51は、円筒形状のRFシールド510と、部分円筒形状の2つのRFベース520(図3では不図示)と、2つのRFベース520上にそれぞれ形成される部分円筒型RFコイル540と、を備える。 As shown in these drawings, the transmitting coil 51 of the present embodiment includes a cylindrical RF shield 510, two partially cylindrical RF bases 520 (not shown in FIG. 3), and two RF bases 520. A partially cylindrical RF coil 540 formed respectively.
 RFシールド510は、傾斜磁場コイル31と同軸の円筒形状を有し、傾斜磁場コイル31の内側に、傾斜磁場コイル31から一定の距離をおいて配置される。RFシールド510は、非磁性金属箔や網を適宜積層して構成され、樹脂製支持部材または傾斜磁場コイル31の表面に貼り付けられて配置される。以下、本実施形態では、樹脂製のシールドボビン(図3では不図示)上に貼り付けられる場合を例にあげて説明する。 The RF shield 510 has a cylindrical shape coaxial with the gradient magnetic field coil 31, and is disposed inside the gradient magnetic field coil 31 at a certain distance from the gradient magnetic field coil 31. The RF shield 510 is configured by appropriately laminating a nonmagnetic metal foil or a net, and is disposed on the surface of the resin support member or the gradient coil 31. Hereinafter, in this embodiment, the case where it affixes on a resin shield bobbin (not shown in FIG. 3) will be described as an example.
 2つのRFベース520は、それぞれ、円筒の側面の一部を円筒軸方向に切り取った部分円筒形状であって、断面の見込み角740が180度未満の部分円筒形状を有する。図4に示すように、2つのRFベース520は、RFシールド510からそれぞれ一定の距離をおいて、z軸を中心に対向するよう検査空間22内に配置される。このとき、図3(b)に示すように、2つのRFベース520上にそれぞれ形成される部分円筒型RFコイル540の、周方向の中心Mを結ぶ直線580が、x軸に平行になるよう、検査空間22内に配置される。すなわち、本実施形態では、部分円筒型RFコイル540が、x軸とz軸とで決定するxz面に対して面対称となるよう、検査空間22に配置される。なお、RFベースは、アクリル、FRPなどの非磁性樹脂で形成される。 Each of the two RF bases 520 has a partial cylindrical shape in which a part of a side surface of the cylinder is cut off in the cylindrical axis direction, and has a partial cylindrical shape with a prospective angle 740 of a cross section of less than 180 degrees. As shown in FIG. 4, the two RF bases 520 are arranged in the examination space 22 so as to face each other around the z axis at a certain distance from the RF shield 510. At this time, as shown in FIG. 3B, straight lines 580 connecting the centers M in the circumferential direction of the partial cylindrical RF coils 540 respectively formed on the two RF bases 520 are parallel to the x-axis. Are arranged in the examination space 22. That is, in the present embodiment, the partial cylindrical RF coil 540 is arranged in the examination space 22 so as to be plane-symmetric with respect to the xz plane determined by the x axis and the z axis. Note that the RF base is formed of a nonmagnetic resin such as acrylic or FRP.
 部分円筒型RFコイル540は、z軸方向に伸びる複数の直線状の導体(ラング)541と、複数のラングの各端部を接続する2つの部分円弧状導体(部分リング)542、543とを備え、RFベース520上に、RFベース520の形状に沿って形成される。ラング541は、等間隔に配置されるとともに、部分リング542の各端部と対応する部分リング543の各端部とをそれぞれ接続し、ループ型コイルを構成する。また、各部分リング542および543は、ラング541との接続点間にキャパシタ544を備える。そして、各ラング541は、それぞれキャパシタ545を備える。以上のように構成された部分円筒型RFコイル540は、円筒形のバードケージ型RFコイルの一部をラング方向に切り取った形状を有し、z軸に直交する断面における両端の見込み角は、RFベース520の見込み角740と略同じで180度未満である。 The partial cylindrical RF coil 540 includes a plurality of linear conductors (rungs) 541 extending in the z-axis direction, and two partial arc-shaped conductors (partial rings) 542 and 543 connecting the ends of the plurality of rungs. And formed on the RF base 520 along the shape of the RF base 520. The rungs 541 are arranged at equal intervals, and each end of the partial ring 542 is connected to each end of the corresponding partial ring 543 to constitute a loop type coil. Each partial ring 542 and 543 includes a capacitor 544 between the connection points with the rung 541. Each rung 541 includes a capacitor 545. The partial cylindrical RF coil 540 configured as described above has a shape obtained by cutting a part of a cylindrical birdcage RF coil in the rung direction, and the prospective angles at both ends in the cross section orthogonal to the z-axis are: It is substantially the same as the prospective angle 740 of the RF base 520 and is less than 180 degrees.
 ここで、RFシールド510は、a)傾斜磁場コイル31から放出されるノイズを低減する、b)傾斜磁場コイル31の導体と部分円筒型RFコイル540との電磁結合を遮蔽する、という2つの働きを持ち、部分円筒型RFコイル540との間に所定の距離(典型的には10mm~40mm)が必要とされる。両者を近接させると、高周波渦電流が増えて磁場が打ち消され、部分円筒型RFコイル540近傍での磁場分布が急激に変化するためである。以下、部分円筒型RFコイル540を形成するRFベース520を、検査空間22内のRFシールド510の内側に、所定の距離を保ち、固定する手法を図4を用いて説明する。 Here, the RF shield 510 has two functions: a) reducing noise emitted from the gradient coil 31 and b) shielding electromagnetic coupling between the conductor of the gradient coil 31 and the partial cylindrical RF coil 540. And a predetermined distance (typically 10 mm to 40 mm) is required between it and the partially cylindrical RF coil 540. This is because when both are brought close to each other, the high-frequency eddy current increases, the magnetic field is canceled, and the magnetic field distribution in the vicinity of the partial cylindrical RF coil 540 changes abruptly. Hereinafter, a method of fixing the RF base 520 forming the partial cylindrical RF coil 540 at a predetermined distance inside the RF shield 510 in the examination space 22 will be described with reference to FIG.
 本図に示すように、RFシールド510が貼り付けられるシールドボビン511に複数の突起部512を形成し、この突起部512に、RFベース520を非磁性ボルト513で固定する。なお、シールドボビン511に形成する突起部512の最適な形状や個数は、ラング541の数、送信コイル51の直径などにより定まる。ただし、突起部512は、必ずしもRFベース520の端部に設ける必要はないが、RFベース520の両端から機械的強度を維持可能な距離に突起部512を少なくとも1つは設ける。なお、部分円筒型RFコイル540は、図4(a)に示すように、RFベース520の検査空間22側(内側)に配置してもよいし、図4(b)に示すように、RFベース520のRFシールド510側(外側)に配置してもよい。 As shown in the figure, a plurality of protrusions 512 are formed on a shield bobbin 511 to which the RF shield 510 is attached, and the RF base 520 is fixed to the protrusions 512 with nonmagnetic bolts 513. Note that the optimal shape and number of protrusions 512 formed on the shield bobbin 511 are determined by the number of rungs 541, the diameter of the transmission coil 51, and the like. However, the protrusion 512 is not necessarily provided at the end of the RF base 520, but at least one protrusion 512 is provided at a distance capable of maintaining mechanical strength from both ends of the RF base 520. The partial cylindrical RF coil 540 may be arranged on the inspection space 22 side (inside) of the RF base 520 as shown in FIG. 4A, or as shown in FIG. The base 520 may be disposed on the RF shield 510 side (outside).
 本実施形態の送信コイル51によれば、RFベース520と部分円筒型RFコイル540とが、上記のように配置される。このため、図3(b)および図4(a)、(b)に示すように、検査空間22のz軸方向全域にわたり、検査空間22内のy軸方向の両端部に、部分円筒型RFコイル540およびそれを支えるRFベース520、突起部512などが存在しない空間部560を得ることができる。従って、その分、従来のバードケージ型RFコイルによる送信コイル51を用いる場合に比べ、広い検査空間22を確保することができる。 According to the transmission coil 51 of the present embodiment, the RF base 520 and the partial cylindrical RF coil 540 are arranged as described above. Therefore, as shown in FIGS. 3B, 4A, and 4B, the partial cylindrical RF is provided at both ends in the y-axis direction in the inspection space 22 over the entire z-axis direction of the inspection space 22. It is possible to obtain the space 560 in which the coil 540 and the RF base 520 that supports the coil 540 and the protrusions 512 do not exist. Therefore, as compared with the case where the transmission coil 51 using the conventional birdcage type RF coil is used, a wider inspection space 22 can be secured.
 一般に、被検体1内の核スピンを励起する際、撮影領域を正確に撮影するため、撮影領域内での送信コイル51の照射強度は所定の範囲内であることが望まれる。これは、照射強度の不均一が大きいと、被検体1内の部位によって核スピンの励起状態に違いが生じ、得られた画像のコントラストにむらが生じたり、アーチファクトが生じたりするためである。この照射強度が所定の範囲内にある領域を、照射強度均一領域と呼ぶ。 Generally, it is desirable that the irradiation intensity of the transmission coil 51 in the imaging region is within a predetermined range in order to accurately capture the imaging region when exciting the nuclear spin in the subject 1. This is because if the irradiation intensity is very uneven, the nuclear spin excitation state varies depending on the site in the subject 1, resulting in unevenness in the contrast of the obtained image and artifacts. A region where the irradiation intensity is within a predetermined range is referred to as a uniform irradiation intensity region.
 本実施形態の送信コイル51では、z軸に垂直な断面上で、検査空間22内のy軸方向の両端部のRFシールド510近傍には部分円筒型RFコイル540を構成する導体が存在しない。従って、この領域で生成される磁場がない分、検査空間22において、x軸方向に比べてy軸方向の照射強度均一領域は狭くなる。照射強度均一領域は、見込み角740が小さくなればなるほど狭くなる。従って、本実施形態では、必要な性能を確保するため、照射強度均一領域が、被検体1の検査領域を含むよう、見込み角740を決定する。 In the transmission coil 51 of the present embodiment, the conductor constituting the partial cylindrical RF coil 540 does not exist in the vicinity of the RF shield 510 at both ends in the y-axis direction in the examination space 22 on the cross section perpendicular to the z-axis. Therefore, the region with uniform irradiation intensity in the y-axis direction is narrower in the examination space 22 than in the x-axis direction because there is no magnetic field generated in this region. The irradiation intensity uniform region becomes narrower as the prospective angle 740 becomes smaller. Therefore, in this embodiment, in order to ensure the required performance, the prospective angle 740 is determined so that the irradiation intensity uniform region includes the examination region of the subject 1.
 ここで、以上の構成を有する本実施形態の送信コイル51では、実際に、撮影領域が照射強度均一領域内となることを示す。まず、実際に用いられるサイズに近いサイズで作製した本実施形態の送信コイル51の照射強度(感度)分布を図5に示す。図5(a)はx軸方向の、図5(b)はy軸方向の感度分布を示すグラフである。ここでは、RFシールド510のz軸に垂直な断面の直径が710mm、部分円筒型RFコイル540を構成する導体(ラング541および部分リング542、543)がRFシールド510から距離40mmの位置に配置される送信コイル51を用いた。なお、見込み角740は、124度とした。 Here, in the transmission coil 51 of the present embodiment having the above configuration, it is shown that the imaging region is actually within the irradiation intensity uniform region. First, FIG. 5 shows an irradiation intensity (sensitivity) distribution of the transmission coil 51 of the present embodiment manufactured with a size close to the size actually used. FIG. 5A is a graph showing the sensitivity distribution in the x-axis direction, and FIG. 5B is a graph showing the sensitivity distribution in the y-axis direction. Here, the diameter of the cross section perpendicular to the z-axis of the RF shield 510 is 710 mm, and the conductors (the rung 541 and the partial rings 542 and 543) constituting the partial cylindrical RF coil 540 are arranged at a distance of 40 mm from the RF shield 510. The transmission coil 51 is used. The prospective angle 740 was set to 124 degrees.
 ここで、照射強度均一領域を、送信コイル51の中心照射強度を基準として照射強度が±30%以内の領域と定義する。上記サイズの送信コイル51によれば、図5(a)より、x軸方向の照射強度均一領域は約50cm、図5(b)より、y軸方向の照射強度均一領域は約36cmとなる。以下、本明細書においては、照射強度均一領域は上記定義を用いる。 Here, the uniform irradiation intensity region is defined as a region where the irradiation intensity is within ± 30% with reference to the central irradiation intensity of the transmission coil 51. According to the transmission coil 51 of the above size, the uniform irradiation intensity region in the x-axis direction is about 50 cm from FIG. 5A, and the uniform irradiation intensity region in the y-axis direction is about 36 cm from FIG. Hereinafter, in the present specification, the above definition is used for the irradiation intensity uniform region.
 検査時の被検体1とテーブル11と送信コイル51との関係を説明する。図6に検査時のこれらの関係を示す。ここでは、RFベース520およびシールドボビン511、突起部512、非磁性ボルト513は省略する。本図に示すように、検査時にテーブル11に載置される際の被検体1(ここでは、ヒト)の、xy平面における断面形状は、x軸方向に長くy軸方向に短い近似的な楕円形状である。そして、主な被検体1である成人男子の典型例は、x軸方向の長さである肩幅が50cm、y軸方向の長さである胴厚が35cm程度である。 The relationship among the subject 1, the table 11, and the transmission coil 51 at the time of examination will be described. FIG. 6 shows these relationships at the time of inspection. Here, the RF base 520, the shield bobbin 511, the projection 512, and the nonmagnetic bolt 513 are omitted. As shown in this figure, the cross-sectional shape in the xy plane of the subject 1 (here, a human) when placed on the table 11 during the examination is an approximate ellipse that is long in the x-axis direction and short in the y-axis direction. Shape. A typical example of an adult male who is the main subject 1 has a shoulder width that is the length in the x-axis direction is 50 cm and a trunk thickness that is the length in the y-axis direction is about 35 cm.
 図5(a)、(b)に、この被検体1の各軸方向の長さをSubjectとして示す。本図より、上記条件の送信コイル51の場合、Subjectと示される範囲、すなわち、被写体1の存在領域は、x軸方向、y軸方向ともに照射強度均一領域内であることが分かる。 5A and 5B show the lengths of the subject 1 in the respective axial directions as Subject. From this figure, it can be seen that in the case of the transmission coil 51 under the above conditions, the range indicated as Subject, that is, the region where the subject 1 exists is within the irradiation intensity uniform region in both the x-axis direction and the y-axis direction.
 以上説明したように、本実施形態の送信コイル51によれば、実際に、上述のように、検査空間22内の必要な領域で均一な照射強度分布を得ることができる。すなわち、広い検査空間22を確保しつつ、必要な性能を得られることがわかる。 As described above, according to the transmission coil 51 of the present embodiment, a uniform irradiation intensity distribution can be actually obtained in a necessary region in the examination space 22 as described above. That is, it can be seen that necessary performance can be obtained while ensuring a wide inspection space 22.
 さらに、本実施形態の送信コイル51によれば、y軸方向両端部のRFシールド510近傍には部分円筒型RFコイル540が存在しないため、被検体1の上部に空間的余裕が生まれる。このため、図6に示すように、検査空間22内に、造影剤インジェクタ機器や非磁性の治療機器などの各種機器13の設置スペースを確保できる。 Furthermore, according to the transmission coil 51 of the present embodiment, since the partial cylindrical RF coil 540 does not exist in the vicinity of the RF shield 510 at both ends in the y-axis direction, a spatial margin is created above the subject 1. For this reason, as shown in FIG. 6, it is possible to secure an installation space for various devices 13 such as a contrast medium injector device and a non-magnetic treatment device in the examination space 22.
 なお、上記実施形態では、傾斜磁場コイル31がマグネット21と同軸に構成され、その内壁が円筒形状の場合を例にあげて説明しているが、傾斜磁場コイル31の内壁の形状はこれに限られない。例えば、図7に示すように、z軸に垂直な断面が、y軸方向を長軸方向とする楕円形状またはそれに類似する形状の、楕円筒形状であってもよい。このように構成することで、y軸方向の空間的余裕がさらに大きくなる。なお、図7(a)は、楕円筒形状の傾斜磁場コイル内に配置される送信コイル51Aのyz断面を示す説明図であり、図7(b)は、同xy断面図である。 In the above embodiment, the case where the gradient coil 31 is configured coaxially with the magnet 21 and the inner wall thereof is cylindrical is described as an example. However, the shape of the inner wall of the gradient coil 31 is not limited to this. I can't. For example, as shown in FIG. 7, the cross section perpendicular to the z-axis may be an elliptical shape having a long-axis direction in the y-axis direction or a shape similar to the elliptical shape. With this configuration, the spatial margin in the y-axis direction is further increased. FIG. 7A is an explanatory view showing a yz section of a transmission coil 51A arranged in an elliptical cylindrical gradient magnetic field coil, and FIG. 7B is an xy section view thereof.
 例えば、この傾斜磁場コイル31Aの内側に、RFシールド510Aが、z軸に垂直な断面が、長軸790mm、短軸630mmの楕円である楕円筒であり、RFベース520Aが、このRFシールド510Aから距離40mmを保って配される送信コイル51Aを配置する。この場合、上記送信コイル51に比べ、RFシールド510Aがy軸方向に8cm広くなる。 For example, inside the gradient coil 31A, the RF shield 510A is an oval cylinder whose cross section perpendicular to the z-axis is an ellipse having a major axis of 790 mm and a minor axis of 630 mm, and the RF base 520A is separated from the RF shield 510A. A transmitting coil 51A is disposed with a distance of 40 mm. In this case, compared to the transmission coil 51, the RF shield 510A is 8 cm wider in the y-axis direction.
 なお、本変形例では、傾斜磁場コイル31Aの内壁のみ楕円筒形状に構成し、外壁はマグネット21の内壁に沿った円筒形状とする。従って、マグネット21の形状は変わらないため、マグネット21の製造コストは上がらない。傾斜磁場コイル31Aの内壁の断面積も、上記実施形態の円筒状の傾斜磁場コイル31とほぼ同じであるため、傾斜磁場コイル31Aの磁場発生効率も傾斜磁場コイル31とほぼ同等である。 In this modification, only the inner wall of the gradient magnetic field coil 31 </ b> A is configured in an elliptical cylinder shape, and the outer wall is formed in a cylindrical shape along the inner wall of the magnet 21. Therefore, since the shape of the magnet 21 does not change, the manufacturing cost of the magnet 21 does not increase. Since the cross-sectional area of the inner wall of the gradient magnetic field coil 31A is substantially the same as that of the cylindrical gradient magnetic field coil 31 of the above embodiment, the magnetic field generation efficiency of the gradient magnetic field coil 31A is substantially the same as that of the gradient magnetic field coil 31.
 また、本変形例の送信コイル51Aによれば、検査空間22において、z軸方向全域にわたり、y軸方向にさらなる空間的余裕が生じるため、例えば、図8に示すように、テーブル11をx軸に平行な所定の軸周りに回転させて傾けて配置することができる。このように構成することで、被検体1は斜めの座位で検査を受けることができる。例えば、テーブル11の傾き角度(angle)が18度以上であれば、被検体1はテーブル11に載置された状態で、自然にマグネット21の外を見ることができる。従来のMRI装置では、マグネット21の内壁を大きくしなくては実現できなかったこの構成を、本変形例によれば、マグネット21の内壁を大きくすることなく実現できる。従って、製造コストが増大することなく、視覚的開放感に優れたMRI装置10を提供できる。 Further, according to the transmission coil 51A of the present modification example, in the examination space 22, there is a further spatial margin in the y-axis direction over the entire z-axis direction. For example, as shown in FIG. It can be rotated and tilted around a predetermined axis. By configuring in this manner, the subject 1 can be examined in an oblique sitting position. For example, when the inclination angle (angle) of the table 11 is 18 degrees or more, the subject 1 can naturally look outside the magnet 21 while being placed on the table 11. According to the present modification, this configuration can be realized without increasing the inner wall of the magnet 21, which cannot be realized without increasing the inner wall of the magnet 21 in the conventional MRI apparatus. Therefore, it is possible to provide the MRI apparatus 10 that is excellent in visual openness without increasing the manufacturing cost.
 また、近年、MRIによる分子イメージング研究が進み、サルを用いた脳機能計測実験が盛んに行われている。この場合も本変形例の送信コイル51Aは有効である。サルはベッドに横たわらせると眠ってしまう習性があるため、従来のMRI装置では覚醒した状態でのデータを取得することが難しかった。しかし、本変形例のように、z軸方向全域にわたってy軸方向に空間的余裕のある検査空間22を持つMRI装置10を用いると、図9に示すように、いす型テーブル12を用い、サルをこのいす型テーブル12に座らせてサル頭部をマグネット21の中心(静磁場中心)にポジショニングすることが可能である。これにより覚醒のサルで脳機能計測実験を行うことができる。 In recent years, molecular imaging research by MRI has progressed, and brain function measurement experiments using monkeys have been actively conducted. Also in this case, the transmission coil 51A of this modification is effective. Since monkeys have the habit of sleeping when lying on a bed, it has been difficult to obtain data in the awake state with a conventional MRI apparatus. However, when the MRI apparatus 10 having the examination space 22 having a spatial margin in the y-axis direction over the entire z-axis direction as in this modification is used, a chair-type table 12 is used as shown in FIG. It is possible to position the monkey head at the center of the magnet 21 (center of the static magnetic field) by sitting on the chair table 12. As a result, brain function measurement experiments can be performed on awake monkeys.
 また、図9に示す姿勢で撮影する場合、受信コイル61として高感度なソレノイドコイル610を用いることができる。一般に、MRIで用いるRFコイルは、静磁場方向(z軸方向)と直交する方向に感度を持つように配置する必要がある。従って、従来のように被検体1がテーブル11に寝た状態で検査を行う場合は、ソレノイドコイル610を用いることができない。しかし、図9に示す姿勢の場合、静磁場方向がサル頭部の体軸方向に対して垂直になるため、サル頭部に備えられるソレノイドコイル610の感度は静磁場方向と直交し、受信コイル61として用いることができる。これにより、MRI信号の検出感度を高くすることができ、結果として高精度な脳機能計測実験を行うことができる。 Further, when photographing in the posture shown in FIG. 9, a highly sensitive solenoid coil 610 can be used as the receiving coil 61. In general, an RF coil used in MRI needs to be arranged so as to have sensitivity in a direction orthogonal to the static magnetic field direction (z-axis direction). Accordingly, the solenoid coil 610 cannot be used when the examination is performed with the subject 1 lying on the table 11 as in the prior art. However, in the case of the posture shown in FIG. 9, since the static magnetic field direction is perpendicular to the body axis direction of the monkey head, the sensitivity of the solenoid coil 610 provided in the monkey head is orthogonal to the static magnetic field direction. 61 can be used. Thereby, the detection sensitivity of the MRI signal can be increased, and as a result, a highly accurate brain function measurement experiment can be performed.
 以上説明したように、本実施形態によれば、マグネット21の内径を大きくすることなく、必要な領域の照射強度の均一性を確保しつつ、検査空間22を広げることができる。従って、トンネル型MRI装置10において、MRI装置10全体の製造コストを増大させることなく、性能を犠牲にすることなく、被検体1にとって快適な検査空間22を提供することができる。さらに、検査空間22内に各種機器の設置スペースを確保することもできる。 As described above, according to the present embodiment, the inspection space 22 can be widened while ensuring the uniformity of irradiation intensity in a necessary region without increasing the inner diameter of the magnet 21. Therefore, the tunnel-type MRI apparatus 10 can provide a test space 22 that is comfortable for the subject 1 without increasing the manufacturing cost of the entire MRI apparatus 10 and without sacrificing performance. Furthermore, an installation space for various devices can be secured in the inspection space 22.
 <<第二の実施形態>>
 次に、本発明を適用する第二の実施形態について説明する。本実施形態においても、マグネット21および傾斜磁場コイル31のサイズを変更せずに、送信コイルにより、広い検査空間22を確保する。ただし、本実施形態の送信コイルは、2つの部分円筒型RFコイルをy軸方向に対向する位置に配置する。本実施形態の他の構成は基本的に第一の実施形態と同様である。以下、本実施形態について、第一の実施形態とその構成が異なる送信コイルに主眼をおいて説明する。なお、本実施形態においても、x、y、zの各軸は第一の実施形態と同様である。
<< Second Embodiment >>
Next, a second embodiment to which the present invention is applied will be described. Also in the present embodiment, a wide inspection space 22 is secured by the transmission coil without changing the sizes of the magnet 21 and the gradient magnetic field coil 31. However, in the transmission coil of this embodiment, two partial cylindrical RF coils are arranged at positions facing each other in the y-axis direction. Other configurations of the present embodiment are basically the same as those of the first embodiment. Hereinafter, the present embodiment will be described focusing on a transmission coil having a configuration different from that of the first embodiment. In this embodiment, the x, y, and z axes are the same as those in the first embodiment.
 図10は、本実施形態の送信コイル51Bの外観を説明するための図である。図10(a)は、yz断面を示す説明図であり、図10(b)は、xy断面図である。本実施形態の送信コイル51Bは、第一の実施形態と同様に、円筒形状のRFシールド510と、部分円筒形状の第一のRFベース520(図10では不図示)と、RFベース520上に形成される部分円筒型RFコイル540と、を備える。 FIG. 10 is a view for explaining the appearance of the transmission coil 51B of the present embodiment. FIG. 10A is an explanatory view showing a yz section, and FIG. 10B is an xy section view. As in the first embodiment, the transmission coil 51B of the present embodiment includes a cylindrical RF shield 510, a first cylindrical RF base 520 (not shown in FIG. 10), and an RF base 520. A partially cylindrical RF coil 540 to be formed.
 これらの各部の構成、形状、材質は、第一の実施形態と同様である。すなわち、RFベース520の両端の見込み角740を、180度未満とする。また、部分円筒型RFコイル540は、RFベース520上にRFベース520の形状に沿って形成される。2つのRFベース520は、第一の実施形態と同様に、RFシールド510からそれぞれ一定の距離をおいて、z軸を中心に対向するよう検査空間22内に配置される。しかし、部分円筒型RFコイル540は、本実施形態では、図10(b)に示すように、2つのRFベース520上にそれぞれ形成される部分円筒型RFコイル540の、周方向の中心Mを結ぶ直線590が、y軸に平行になるよう、検査空間22内に配置される。すなわち、本実施形態では、部分円筒型RFコイル540が、y軸とz軸とで決定するyz面に対して面対称となるよう、検査空間22に配置される。 The configuration, shape, and material of each part are the same as those in the first embodiment. That is, the prospective angle 740 at both ends of the RF base 520 is set to less than 180 degrees. The partial cylindrical RF coil 540 is formed on the RF base 520 along the shape of the RF base 520. Similar to the first embodiment, the two RF bases 520 are arranged in the examination space 22 so as to face each other around the z axis at a certain distance from the RF shield 510. However, in this embodiment, the partial cylindrical RF coil 540 has a circumferential center M of the partial cylindrical RF coils 540 respectively formed on the two RF bases 520 as shown in FIG. A connecting straight line 590 is arranged in the examination space 22 so as to be parallel to the y-axis. That is, in the present embodiment, the partial cylindrical RF coil 540 is disposed in the examination space 22 so as to be plane-symmetric with respect to the yz plane determined by the y axis and the z axis.
 上述のように部分円筒型RFコイル540が配置されるため、本実施形態の送信コイル51Bでは、z軸に直交する断面上で、x軸方向の両端のRFシールド510の近傍には部分円筒型RFコイル540を構成する導体が存在しない。従って、この領域で生成される磁場がない分、検査空間22において、y軸方向に比べてx軸方向の照射均一領域は狭くなる。第一の実施形態と同様に、見込み角740が小さくなればなるほど狭くなる。従って、本実施形態においても、照射強度均一領域が、被検体1の検査領域を含むよう、見込み角740を決定する。 Since the partial cylindrical RF coil 540 is arranged as described above, in the transmission coil 51B of the present embodiment, the partial cylindrical type is provided in the vicinity of the RF shields 510 at both ends in the x-axis direction on the cross section orthogonal to the z-axis. There is no conductor constituting the RF coil 540. Therefore, the irradiation uniform region in the x-axis direction becomes narrower in the examination space 22 than in the y-axis direction because there is no magnetic field generated in this region. Similar to the first embodiment, the smaller the prospective angle 740, the narrower it becomes. Therefore, also in the present embodiment, the prospective angle 740 is determined so that the uniform irradiation intensity region includes the examination region of the subject 1.
 ここで、上記構成を有する本実施形態の送信コイル51Bでは、実際に、撮影領域が照射強度均一領域内となることを示す。まず、特定のサイズの本実施形態の送信コイル51Bの照射強度(感度)分布を図11に示す。図11(a)はx軸方向の、図11(b)はy軸方向の感度分布を示すグラフである。ここでは、第一の実施形態の送信コイル51と同様のサイズ、すなわち、RFシールド510のz軸に垂直な断面の直径が710mm、部分円筒型RFコイル540を構成する導体(ラング541および部分リング542、543)がRFシールド510からの距離40mmに配置される送信コイル51Bを用いた。なお、見込み角740は、124度とした。 Here, in the transmission coil 51B of the present embodiment having the above-described configuration, it is shown that the imaging region is actually within the irradiation intensity uniform region. First, FIG. 11 shows an irradiation intensity (sensitivity) distribution of the transmission coil 51B of the present embodiment having a specific size. FIG. 11A is a graph showing the sensitivity distribution in the x-axis direction, and FIG. 11B is a graph showing the sensitivity distribution in the y-axis direction. Here, the same size as that of the transmission coil 51 of the first embodiment, that is, the diameter of the cross section perpendicular to the z-axis of the RF shield 510 is 710 mm, and the conductor (the rung 541 and the partial ring) constituting the partial cylindrical RF coil 540. 542, 543) used the transmission coil 51B disposed at a distance of 40 mm from the RF shield 510. The prospective angle 740 was set to 124 degrees.
 本図に示すように、上記サイズの送信コイル51Bによれば、x軸方向の照射強度均一領域は約36cm、y軸方向の照射強度均一領域は約50cmとなる。成人男子の典型的なサイズとしては、胴幅35cm、胴厚35cmであるため、体幹部を撮影する場合、被写体1が存在する領域は、上記サイズの送信コイル51Bの照射強度均一領域内であることがわかる。すなわち、本実施形態の送信コイル51Bによれば、広い検査空間22を確保しつつ、実際に検査空間22内の必要な領域で均一な照射強度分布を得ることができる。 As shown in the figure, according to the transmission coil 51B of the above size, the irradiation intensity uniform region in the x-axis direction is about 36 cm, and the irradiation intensity uniform region in the y-axis direction is about 50 cm. The typical size of an adult male is 35 cm torso width and 35 cm torso thickness. Therefore, when photographing the trunk, the region where the subject 1 exists is within the uniform irradiation intensity region of the transmission coil 51B of the above size. I understand that. That is, according to the transmission coil 51 </ b> B of the present embodiment, a uniform irradiation intensity distribution can be obtained in a necessary region in the inspection space 22 while ensuring a wide inspection space 22.
 なお、本実施形態の送信コイル51Bにおいて、これらのRFベース520をRFシールド510の内側に固定する手法は、図12に示すように基本的に第一の実施形態と同様である。また、本実施形態においても、部分円筒型RFコイル540は、図12(a)に示すようにRFベース520の内側に形成してもよいし、図12(b)に示すようにRFベース520の外側に形成してもよい。 In the transmission coil 51B of the present embodiment, the technique for fixing these RF bases 520 inside the RF shield 510 is basically the same as that of the first embodiment as shown in FIG. Also in this embodiment, the partial cylindrical RF coil 540 may be formed inside the RF base 520 as shown in FIG. 12A, or the RF base 520 as shown in FIG. You may form in the outer side.
 以上のように、本実施形態の送信コイル51Bによれば、RFベース520および部分円筒型RFコイル540が上記のように配置される。このため、図10(b)に示すように、検査空間22のz軸方向全域にわたり、検査空間22内のx軸方向の両端部に、部分円筒型RFコイル540およびそれを支えるRFベース520、突起部512などが存在しない空間部560を得ることができる。従って、その分、従来のバードケージ型RFコイルを用いる送信コイルに比べ、広い検査空間22を確保することができる。 As described above, according to the transmission coil 51B of the present embodiment, the RF base 520 and the partial cylindrical RF coil 540 are arranged as described above. For this reason, as shown in FIG. 10B, the partial cylindrical RF coil 540 and the RF base 520 that supports the partial cylindrical RF coil 540 are provided at both ends in the x-axis direction in the examination space 22 over the entire z-axis direction of the examination space 22. A space portion 560 in which no protrusion 512 or the like exists can be obtained. Therefore, as compared with the transmission coil using the conventional birdcage type RF coil, a wider inspection space 22 can be secured.
 図13(a)に、検査時の被検体1とテーブル11と送信コイル51Bとの関係を示す。ここでは、RFベース520およびシールドボビン511、突起部512、非磁性ボルト513は省略する。前述のように、検査時にテーブル11に載置される際の被検体1(ここでは、ヒト)の、xy平面における断面形状は、x軸方向に長くy軸方向に短い近似的な楕円形状である。本実施形態の送信コイル51Bによれば、検査空間22内の、x軸方向のRFシールド510近傍には部分円筒型RFコイル540等が存在しないため、検査空間22のz軸方向全域にわたり、x軸方向に空間的余裕が生まれる。従って、本実施形態の送信コイル51Bによれば、特に、被検体1がヒトである場合、図13(a)に示すように、肩幅方向に余裕が生まれ、快適な検査空間22を提供することができる。 FIG. 13 (a) shows the relationship among the subject 1, the table 11, and the transmission coil 51B at the time of examination. Here, the RF base 520, the shield bobbin 511, the projection 512, and the nonmagnetic bolt 513 are omitted. As described above, the cross-sectional shape in the xy plane of the subject 1 (here, a human) when placed on the table 11 during the examination is an approximate elliptical shape that is long in the x-axis direction and short in the y-axis direction. is there. According to the transmission coil 51B of the present embodiment, the partial cylindrical RF coil 540 or the like does not exist in the examination space 22 in the vicinity of the RF shield 510 in the x-axis direction. Spatial room is created in the axial direction. Therefore, according to the transmission coil 51B of the present embodiment, particularly when the subject 1 is a human, as shown in FIG. 13A, a margin is created in the shoulder width direction, and a comfortable examination space 22 is provided. Can do.
 なお、本実施形態においても、送信コイル51Bの外側に配置される傾斜磁場コイルの内壁が楕円筒形状であってもよい。この場合の傾斜磁場コイル31Cおよび送信コイル51Cを図14に例示する。図14(a)は、傾斜磁場コイル31C内に配置された送信コイル51Cのxz断面を示す説明図であり、図14(b)は、同xy断面図である。また、図14(c)は、検査空間22に被検体1が挿入された場合の様子を説明するためのxy断面を示す説明図である。このように、傾斜磁場コイル31Cを、その内壁のz軸方向に垂直な断面がx軸方向を長軸とする楕円とすると、RFシールド510Cは傾斜磁場コイル31Cの内壁に沿って配置される。そして、上述のように、RFベース520C(図14では不図示)が、RFシールド510Cから一定の距離を保って配置され、その上に部分円筒型RFコイル540が形成される。従って、送信コイル51Cでは、送信コイル51Bに比べ、傾斜磁場コイル31Cの内壁が広くなった分、x軸方向に広い検査空間22を得ることができる。 In this embodiment as well, the inner wall of the gradient magnetic field coil arranged outside the transmission coil 51B may be an elliptic cylinder. The gradient magnetic field coil 31C and the transmission coil 51C in this case are illustrated in FIG. FIG. 14A is an explanatory view showing an xz section of a transmission coil 51C arranged in the gradient coil 31C, and FIG. 14B is an xy section view thereof. FIG. 14C is an explanatory diagram showing an xy cross-section for explaining a state when the subject 1 is inserted into the examination space 22. Thus, when the gradient magnetic field coil 31C is an ellipse whose cross section perpendicular to the z-axis direction of the inner wall is the long axis in the x-axis direction, the RF shield 510C is arranged along the inner wall of the gradient magnetic field coil 31C. As described above, the RF base 520C (not shown in FIG. 14) is disposed at a certain distance from the RF shield 510C, and the partial cylindrical RF coil 540 is formed thereon. Therefore, in the transmission coil 51C, as compared with the transmission coil 51B, it is possible to obtain a wider examination space 22 in the x-axis direction because the inner wall of the gradient magnetic field coil 31C is wider.
 ここで、以上の構成を有する本実施形態の送信コイル51Cでは、実際に、撮影領域が照射強度均一領域内となることを示す。特定のサイズの送信コイル51Cの照射強度(感度)分布を図15に示す。図15(a)はx軸方向の、図15(b)はy軸方向の感度分布を示すグラフである。ここでは、RFシールド510Cが、そのz軸に垂直な断面が長軸790mm、短軸630mmの楕円である楕円筒であり、RFベース520CがRFシールド511から距離40mmを保って配される送信コイル51Cを用いた。なお、見込み角740は、126度とした。この送信コイル51Cでは、上記送信コイル51Bに比べ、RFシールド510Cがx軸方向に8cm広くなる。 Here, in the transmission coil 51C of the present embodiment having the above-described configuration, it is shown that the imaging region is actually within the irradiation intensity uniform region. FIG. 15 shows an irradiation intensity (sensitivity) distribution of the transmission coil 51C having a specific size. FIG. 15A is a graph showing the sensitivity distribution in the x-axis direction, and FIG. 15B is a graph showing the sensitivity distribution in the y-axis direction. Here, the RF shield 510C is an elliptical cylinder whose cross section perpendicular to the z-axis is an ellipse having a major axis of 790 mm and a minor axis of 630 mm, and the RF base 520C is disposed with a distance of 40 mm from the RF shield 511 being disposed. 51C was used. The prospective angle 740 was set to 126 degrees. In the transmission coil 51C, the RF shield 510C is 8 cm wider in the x-axis direction than the transmission coil 51B.
 図15(a)、(b)に示すように、上記サイズの送信コイル51Cによれば、y軸方向の照射強度均一領域は約42cm、x軸方向の照射強度均一領域は約44cmとなる。本変形例の送信コイル51Cによれば、送信コイル51Bよりさらに肩幅方向に広い領域を、照射強度均一領域内とすることができる。 15A and 15B, according to the transmission coil 51C of the above size, the irradiation intensity uniform region in the y-axis direction is approximately 42 cm, and the irradiation intensity uniform region in the x-axis direction is approximately 44 cm. According to the transmission coil 51C of the present modification, a region wider in the shoulder width direction than the transmission coil 51B can be within the irradiation intensity uniform region.
 なお、変形例の送信コイル51Cにおいて、部分円筒型RFコイル540を形成するRFベース520CとRFシールド510Cとの距離を変化させて配置してもよい。例えば、図14(c)に示すように、xy平面上でx軸方向の中央部では、40mmとし、x軸方向の両端部に近づくほど徐々に狭くしていき、端部では、20mmとするよう構成してもよい。このように構成することで、検査空間22内のx軸方向端部で左右(x軸)方向のみならず上下(y軸)方向にも空間的余裕が生まれ、より快適な検査空間22を提供することができる。 In addition, in the transmission coil 51C of the modified example, the distance between the RF base 520C forming the partial cylindrical RF coil 540 and the RF shield 510C may be changed. For example, as shown in FIG. 14C, on the xy plane, the central portion in the x-axis direction is set to 40 mm, and gradually narrows toward both ends in the x-axis direction, and the end portion is set to 20 mm. You may comprise. By configuring in this way, a spatial margin is created not only in the left-right (x-axis) direction but also in the vertical (y-axis) direction at the end in the x-axis direction in the examination space 22, thereby providing a more comfortable examination space 22. can do.
 なお、送信コイル51Cも、第一の実施形態の送信コイル51Aと同様の理由で製造コストの上昇は少ない。 The transmission coil 51C also has a small increase in manufacturing cost for the same reason as the transmission coil 51A of the first embodiment.
 以上説明したように、本実施形態によれば、マグネット21の内径を大きくすることなく検査空間22を広げることができる。従って、トンネル型MRI装置10において、MRI装置10全体の製造コストを増大させることなく、また、性能を犠牲にすることなく、被検体1にとって快適な検査空間22を提供することができる。 As described above, according to the present embodiment, the inspection space 22 can be expanded without increasing the inner diameter of the magnet 21. Therefore, the tunnel-type MRI apparatus 10 can provide a test space 22 that is comfortable for the subject 1 without increasing the manufacturing cost of the entire MRI apparatus 10 and without sacrificing performance.
 なお、本実施形態では、2つの部分円筒型RFコイル540およびそれを支えるRFベース520は、それぞれ同形、同サイズで、対向して配置される場合を例にあげて説明しているが、これに限られない。例えば、2つの部分円筒型RFコイル540の周方向の中心がそれぞれy軸上にあれば、図13(b)に示すように、両者のサイズが異なっていてもよい。特に、検査空間22において、被検体1の上方(テーブル11と反対側)に配置される側の部分円筒型RFコイル540およびそれを支えるRFベース520をより小さくすると、被検体1の上方により広い空間を確保することができ、より快適な検査空間22を提供できる。 In this embodiment, the two partial cylindrical RF coils 540 and the RF base 520 that supports the two partial cylindrical RF coils 540 have the same shape, the same size, and are opposed to each other as an example. Not limited to. For example, if the centers in the circumferential direction of the two partial cylindrical RF coils 540 are on the y-axis, the sizes of the two may be different as shown in FIG. In particular, when the partial cylindrical RF coil 540 and the RF base 520 that supports the part cylindrical RF coil 540 disposed on the upper side (opposite to the table 11) of the subject 1 in the examination space 22 are made smaller, the upper part of the subject 1 is wider. Space can be secured and a more comfortable inspection space 22 can be provided.
 <<第三の実施形態>>
 次に、本発明を適用する第三の実施形態について説明する。本実施形態は、基本的に第二の実施形態と同様の構成を有し、マグネット21および傾斜磁場コイル31のサイズを変更せずに、送信コイルにより広い検査空間を確保する。ただし、本実施形態の送信コイルは、x軸方向の照射強度均一領域を拡張する。以下、第二の実施形態とその構成が異なる送信コイルに主眼をおいて、本実施形態を説明する。なお、本実施形態においても、x、y、zの各軸は第一の実施形態と同様である。
<< Third Embodiment >>
Next, a third embodiment to which the present invention is applied will be described. This embodiment basically has the same configuration as that of the second embodiment, and secures a wider inspection space for the transmission coil without changing the sizes of the magnet 21 and the gradient magnetic field coil 31. However, the transmission coil of this embodiment expands the irradiation intensity uniform region in the x-axis direction. Hereinafter, the present embodiment will be described focusing on a transmission coil having a configuration different from that of the second embodiment. In this embodiment, the x, y, and z axes are the same as those in the first embodiment.
 図16は、本実施形態の送信コイル51Dの外観を説明するための図である。図16(a)は、傾斜磁場コイル31内に配置される送信コイル51Dのxz断面を示す説明図であり、図16(b)は、同xy断面図である。 FIG. 16 is a diagram for explaining the external appearance of the transmission coil 51D of the present embodiment. FIG. 16A is an explanatory view showing an xz section of a transmission coil 51D arranged in the gradient coil 31, and FIG. 16B is an xy section view thereof.
 本実施形態の送信コイル51Dは、本図に示すように、円筒形状のRFシールド510と、2つの部分円筒形状のRFベース520D(図16では不図示)と、RFベース520上にそれぞれ形成される部分円筒型RFコイル540Dと、を備える。これらの各部の構成、配置、形状、素材は、第二の実施形態と同じである。ただし、本実施形態では、部分円筒型RFコイル540Dは、yz面に対して面対称とは限らない。 As shown in the figure, the transmission coil 51D of the present embodiment is formed on a cylindrical RF shield 510, two partial cylindrical RF bases 520D (not shown in FIG. 16), and the RF base 520, respectively. A partial cylindrical RF coil 540D. The configuration, arrangement, shape, and material of each part are the same as those in the second embodiment. However, in the present embodiment, the partial cylindrical RF coil 540D is not necessarily plane-symmetric with respect to the yz plane.
 本実施形態のそれぞれの部分円筒型RFコイル540Dは、z軸方向の長さが略同一の複数の(2または3個の)矩形のループ型コイル710を備える。各ループ型コイル710は、各辺にキャパシタを備える。各ループ型コイル710は、z軸方向に関して略同位置に、2辺がz軸方向に平行になるよう、周方向に配列される。このとき、各ループ型コイル710は、隣接するループ型コイル710と非接触、かつ、隣接するループ型コイル710と周方向の端部が所定の面積分オーバラップするよう配列される。このオーバラップする面積は、互いの電磁気的干渉が最も低減されるよう調整される。最適なオーバラップ面積は、各々のコイルの入力インピーダンスを計測し、単独のときの入力インピーダンスと最も近くなる面積である。 Each partial cylindrical RF coil 540D of the present embodiment includes a plurality of (2 or 3) rectangular loop coils 710 having substantially the same length in the z-axis direction. Each loop type coil 710 includes a capacitor on each side. Each loop type coil 710 is arranged in the circumferential direction so that two sides are parallel to the z-axis direction at substantially the same position in the z-axis direction. At this time, each loop type coil 710 is arranged so as not to be in contact with the adjacent loop type coil 710, and the adjacent loop type coil 710 overlaps with a predetermined area in the circumferential direction. This overlapping area is adjusted so that the electromagnetic interference with each other is most reduced. The optimum overlap area is an area that measures the input impedance of each coil and is closest to the input impedance when the coil is alone.
 また、周方向の両端部に配されるループ型コイル710は、RFシールド510を構成する導体をループの一部とし、電流ループを構成する。RFシールド510とは、キャパシタ730を介して接続する。なお、ループ型コイル710は、ループ内に、周方向の2辺間を接続するz軸方向に略平行な導体(ラング)であって、それぞれキャパシタを備える導体を1以上備え、周方向の2辺の各ラングとの接続点間にキャパシタを備えるよう構成してもよい。また、RFベース520は、各ループ型コイル710に対応付け、それぞれを支えるよう設けられる。 Further, the loop type coil 710 disposed at both ends in the circumferential direction forms a current loop with the conductor constituting the RF shield 510 as a part of the loop. The RF shield 510 is connected via a capacitor 730. The loop-type coil 710 includes one or more conductors (rungs) connected in the loop between the two sides in the circumferential direction and substantially parallel to the z-axis direction, each including a capacitor. You may comprise so that a capacitor may be provided between the connection points with each rung of a side. Further, the RF base 520 is provided so as to be associated with and support each loop type coil 710.
 なお、本実施形態においても、RFベース520Dおよびそこに形成される部分円筒型RFコイル540Dの見込み角740Dは180度未満である。すなわち、本実施形態では、両端部のループ型コイル710の、RFシールド510との接続位置の、z軸に直交する断面での見込み角740Dは180度未満となる。この範囲で、上記各実施形態と同様に、照射強度均一領域が、被検体1の検査領域を含むよう、見込み角740Dを決定する。 In this embodiment, the prospective angle 740D of the RF base 520D and the partial cylindrical RF coil 540D formed thereon is less than 180 degrees. That is, in this embodiment, the prospective angle 740D in the cross section orthogonal to the z axis at the connection position of the loop type coil 710 at both ends with the RF shield 510 is less than 180 degrees. Within this range, the prospective angle 740D is determined so that the uniform irradiation intensity region includes the examination region of the subject 1 as in the above embodiments.
 本実施形態の送信コイル51Dによれば、両端部のループ型コイル710と、RFシールド510とを接続したことにより、検査空間22内のx軸方向端部のRFシールド510上に電流が誘起され、同x軸方向端部のRFシールド510近傍(RFシールド510の側面)に磁場が生成される。これにより、x軸方向の照射強度均一領域が広くなる。従って、見込み角740Dの大きさを第二の実施形態の見込み角740と同じとすると、その分、x軸方向の照射強度均一領域は広くなる。 According to the transmission coil 51 </ b> D of the present embodiment, a current is induced on the RF shield 510 at the end in the x-axis direction in the inspection space 22 by connecting the loop type coil 710 at both ends and the RF shield 510. A magnetic field is generated in the vicinity of the RF shield 510 at the end in the x-axis direction (side surface of the RF shield 510). Thereby, the uniform irradiation intensity region in the x-axis direction is widened. Accordingly, if the size of the prospective angle 740D is the same as the prospective angle 740 of the second embodiment, the uniform irradiation intensity region in the x-axis direction is widened accordingly.
 ここで、上記構成を有する本実施形態の送信コイル51Dであって、特定のサイズの送信コイル51Dの照射強度(感度)分布を図17に示す。図17(a)はx軸方向の、図17(b)はy軸方向の感度分布を示すグラフである。ここでは、第二の実施形態の送信コイル51Bと同様に、RFシールド510のz軸に直交する断面の直径を710mmとし、また、部分円筒型RFコイル540Dを構成する導体は、y軸上でRFシールド510から40mmの位置に配置される送信コイル51Dを用いた。なお、見込み角740Dは、150度とした。 Here, FIG. 17 shows an irradiation intensity (sensitivity) distribution of the transmission coil 51D of the present embodiment having the above-described configuration and having a specific size. FIG. 17A is a graph showing the sensitivity distribution in the x-axis direction, and FIG. 17B is a graph showing the sensitivity distribution in the y-axis direction. Here, similarly to the transmission coil 51B of the second embodiment, the diameter of the cross section orthogonal to the z-axis of the RF shield 510 is 710 mm, and the conductor constituting the partial cylindrical RF coil 540D is on the y-axis. A transmission coil 51D disposed at a position 40 mm from the RF shield 510 was used. The prospective angle 740D was 150 degrees.
 上記サイズの送信コイル51Dによれば、x軸方向の照射強度均一領域は約50cm、y軸方向の照射強度均一領域は約50cmとなる。図11に示す、第二の実施形態の送信コイル51Bによる照射強度(感度)分布と比較して、x軸方向の照射強度均一性が大幅に向上することがわかる。また、上述のように、成人男子の典型的なサイズにおいて肩幅は50cm程度であるため、肩幅全体にわたる領域が撮影領域であっても、十分対応可能である。 According to the transmission coil 51D of the above size, the irradiation intensity uniform region in the x-axis direction is about 50 cm, and the irradiation intensity uniform region in the y-axis direction is about 50 cm. Compared with the irradiation intensity (sensitivity) distribution by the transmission coil 51B of the second embodiment shown in FIG. 11, it can be seen that the irradiation intensity uniformity in the x-axis direction is greatly improved. In addition, as described above, since the shoulder width is about 50 cm in a typical size of an adult male, even if the region over the entire shoulder width is a photographing region, it can be sufficiently handled.
 ここで、本実施形態の送信コイル51Dにおいて、部分円筒型RFコイル540Dを複数のループ型コイル710を非接触かつオーバラップ部を設けて配列した理由を説明する。図18は、上記各実施形態に示す部分円筒型RFコイル540を、そのままRFシールド510に接続した場合の送信コイル51Eの例で、図18(a)は、傾斜磁場コイル31内に配置した送信コイル51Eのxz断面を示す説明図であり、図18(b)は、同xy断面図である。さらに、図18(c)および(d)は、送信コイル51Eに流れる電流を説明するための説明図である。 Here, in the transmission coil 51D of this embodiment, the reason why the partial cylindrical RF coil 540D is arranged with a plurality of loop coils 710 arranged in a non-contact manner and provided with an overlap portion will be described. FIG. 18 shows an example of the transmission coil 51E in the case where the partial cylindrical RF coil 540 shown in each of the above embodiments is connected to the RF shield 510 as it is. FIG. 18A shows a transmission arranged in the gradient magnetic field coil 31. It is explanatory drawing which shows xz cross section of the coil 51E, FIG.18 (b) is the xy cross section. Further, FIGS. 18C and 18D are explanatory diagrams for explaining the current flowing through the transmission coil 51E.
 本図に示すように、複数の非接触のループ型コイル710から構成されていない場合、部分円筒型RFコイル540の導体とRFシールド510の導体とは連続しているため、図18(c)または(d)に示す電流810、820が流れる。例えば、バードケージ型RFコイルは、非特許文献1に記載されているように、リングに接続するキャパシタの容量とラングに接続するキャパシタの容量とを調整することにより、隣のチャンネルとの電磁気的干渉を低減し、容易に多チャンネルのアレイコイルとして用いることができる。しかし、このような電流が流れると、隣接するチャンネルとの電気的結合が大きくなり、上記手法を用いても、十分な電磁気的干渉低減効果を得ることができない。従って、多チャンネルのアレイコイルとして用いる場合、各チャンネルを独立して駆動できない。 As shown in FIG. 18, when the non-contact loop type coil 710 is not configured, the conductor of the partial cylindrical RF coil 540 and the conductor of the RF shield 510 are continuous. Alternatively, currents 810 and 820 shown in (d) flow. For example, as described in Non-Patent Document 1, the birdcage type RF coil adjusts the capacitance of the capacitor connected to the ring and the capacitance of the capacitor connected to the rung so as to electromagnetically connect the adjacent channel. Interference can be reduced and it can be easily used as a multi-channel array coil. However, when such a current flows, electrical coupling with adjacent channels increases, and even if the above method is used, a sufficient electromagnetic interference reduction effect cannot be obtained. Therefore, when used as a multi-channel array coil, each channel cannot be driven independently.
 一方、本実施形態の送信コイル51Dによれば、部分円筒型RFコイル540Dは、非接触に配列された複数のループコイル710から構成されるため、図18(c)および(d)に示す、RFシールド510の導体をパスとする電流は、部分円筒型RFコイル540Dには流れない。従って、容易に多チャンネルのアレイコイルとして利用することができる。 On the other hand, according to the transmission coil 51D of the present embodiment, the partial cylindrical RF coil 540D is composed of a plurality of loop coils 710 arranged in a non-contact manner, and therefore, shown in FIGS. 18 (c) and 18 (d). A current passing through the conductor of the RF shield 510 does not flow through the partial cylindrical RF coil 540D. Therefore, it can be easily used as a multi-channel array coil.
 なお、上記送信コイル51Dにおいて、1の部分円筒型RFコイル540Dを構成するループ型コイル710であって、両端に配置されるループ型コイル710の接続位置は、それらの見込み角740Dが180度未満であれば、特に問わない。見込み角を大きくすればするほど、開放性は低下するものの、検査空間22内のx軸方向端部に生成される磁場が増加するため、x軸方向の照射強度均一性は向上する。例えば、図19に示すように、見込み角740Dを180度に近くなるよう、両端部のループ型コイル710の接続位置を設定すると、見込み角740がこれより小さく設定されている図16(b)に比べ、開放性は低下するものの、x軸方向の照射強度均一性は、より向上する。 Note that, in the transmission coil 51D, the loop coil 710 constituting one partial cylindrical RF coil 540D has a prospective angle 740D of less than 180 degrees at the connection position of the loop coil 710 disposed at both ends. If so, it does not matter. As the prospective angle increases, the openness decreases, but the magnetic field generated at the end in the x-axis direction in the examination space 22 increases, so the irradiation intensity uniformity in the x-axis direction improves. For example, as shown in FIG. 19, when the connection positions of the loop type coils 710 at both ends are set so that the prospective angle 740D is close to 180 degrees, the prospective angle 740 is set smaller than this. Compared to the above, the openness is reduced, but the irradiation intensity uniformity in the x-axis direction is further improved.
 以上説明したように、本実施形態の送信コイル51Dによれば、検査空間22のz軸方向全域にわたり、検査空間22のx軸方向の両端部のRFシールド510近傍には、部分円筒型RFコイル540Dおよびそれを支えるRFベース520Dが存在しない空間部560を得ることができる。従って、従来のバードケージ型RFコイルによる送信コイル51を用いる場合に比べ広い検査空間22を確保することができ、被検体1に開放感を与えることができる。 As described above, according to the transmission coil 51D of the present embodiment, the partial cylindrical RF coil is disposed in the vicinity of the RF shields 510 at both ends in the x-axis direction of the examination space 22 over the entire z-axis direction of the examination space 22. It is possible to obtain a space 560 in which the 540D and the RF base 520D that supports the 540D do not exist. Therefore, a wider examination space 22 can be ensured compared to the case where the transmission coil 51 using a conventional birdcage RF coil is used, and the subject 1 can be given a sense of openness.
 なお、部分円筒型RFコイル540Dを構成する各ループ型コイル710のサイズ、オーバラップ位置、数は図16、図19に示すものに限られない。例えば、図20(a)、(b)に示すように、2つのオーバラップ位置が図16に示すものに比べ、yz平面に近い位置であってもよい。 It should be noted that the size, overlap position, and number of each loop type coil 710 constituting the partial cylindrical RF coil 540D are not limited to those shown in FIGS. For example, as shown in FIGS. 20A and 20B, the two overlap positions may be closer to the yz plane than that shown in FIG.
 図20に示す送信コイル51Eの場合、ループ型コイル710のオーバラップ位置がよりyz平面に近い位置となるため、図16に示す送信コイル51Dに比べ、さらに被写体1がヒトである場合、肩幅方向により広い空間を確保することができる。このように、オーバラップ位置をyz平面に近い位置にすればするほど、より快適な検査空間22を提供することができる。一方、図16に示す送信コイル51Dは、オーバラップ位置がx軸とz軸とで定まるxz平面に近いため、両端部に配置されるループ型コイル710の周方向の長さを短くすることができ、構成を簡易なものとすることができる。従って、製造や調整が容易である。 In the case of the transmission coil 51E shown in FIG. 20, the overlap position of the loop type coil 710 is closer to the yz plane. Therefore, when the subject 1 is a person compared to the transmission coil 51D shown in FIG. A wider space can be secured. As described above, the closer the overlap position is to the yz plane, the more comfortable examination space 22 can be provided. On the other hand, the transmission coil 51D shown in FIG. 16 is close to the xz plane where the overlap position is determined by the x-axis and the z-axis, so that the circumferential length of the loop coil 710 disposed at both ends can be shortened. And the configuration can be simplified. Therefore, manufacture and adjustment are easy.
 また、図21(a)、(b)、(c)に示すように、送信コイル51Dは、各部分円筒型RFコイル540Dを2つのループ型コイル710により構成してもよい。この場合、1の部分円筒型RFコイル540Dについて、オーバラップ箇所が周方向に1箇所となるため、装置実装が簡単になる。 Further, as shown in FIGS. 21A, 21B, and 21C, in the transmission coil 51D, each partial cylindrical RF coil 540D may be configured by two loop coils 710. In this case, with respect to one partial cylindrical RF coil 540D, since there is one overlap portion in the circumferential direction, device mounting is simplified.
 なお、この場合オーバラップ箇所は問わない。例えば、図21(a)に示すように、部分円筒型RFコイル540Dとyz平面との交点近傍に設けてもよい。また、図21(b)に示すように、各部分円筒型RFコイル540Dにおいて、z軸に対象な任意の位置に設けてもよい。さらに、図21(c)に示すように、z軸に対象な位置でなくてもよい。さらに図21(d)に示すように、2つの部分円筒型RFコイル540Dそれぞれが、異なる数のループ型コイル710を備えるよう構成してもよい。ループ型コイル710の数、オーバラップ位置は、被検体1の種類、検査部位に応じて、最適な場所に設定すればよい。 In this case, the overlap location is not specified. For example, as shown to Fig.21 (a), you may provide in the intersection vicinity of partial cylindrical RF coil 540D and yz plane. Further, as shown in FIG. 21B, each partial cylindrical RF coil 540D may be provided at an arbitrary position on the z axis. Furthermore, as shown in FIG. 21C, the position may not be a target position on the z axis. Further, as shown in FIG. 21 (d), each of the two partial cylindrical RF coils 540D may include a different number of loop coils 710. The number of loop coils 710 and the overlap position may be set at optimum locations according to the type of the subject 1 and the examination site.
 以上説明したように、本実施形態では、部分円筒型RFコイル540Dの周方向の両端からラング541を取り去り、代わりにキャパシタを介してRFシールド510と接続する。このように、RFシールド510の導体をループの一部として構成することにより、RFシールド510のx軸方向両端部近傍に磁場を発生させ、x軸方向の照射強度均一領域を拡大している。さらに、部分円筒型RFコイル540D上の、RFシールド510をパスする電流を遮断するため、それぞれ非接触に配列される複数のループ型コイル710により構成する。一方で、部分円筒型RFコイル540Dを構成する各ループ型コイル710間を電磁気的に結合し、全体で1の部分円筒型RFコイル540Dとして機能させるため、オーバラップ部を設ける。 As described above, in this embodiment, the rungs 541 are removed from both ends in the circumferential direction of the partial cylindrical RF coil 540D, and instead connected to the RF shield 510 via a capacitor. Thus, by configuring the conductor of the RF shield 510 as a part of the loop, a magnetic field is generated in the vicinity of both ends of the RF shield 510 in the x-axis direction, and the region of uniform irradiation intensity in the x-axis direction is expanded. Furthermore, in order to cut off the current passing through the RF shield 510 on the partial cylindrical RF coil 540D, the loop coil 710 is constituted by a plurality of loop coils 710 arranged in a non-contact manner. On the other hand, an overlap portion is provided to electromagnetically couple the loop type coils 710 constituting the partial cylindrical RF coil 540D to function as one partial cylindrical RF coil 540D as a whole.
 以上の構成を有する本実施形態の送信コイル51Dによれば、検査空間22内の照射強度均一領域が広く、利用範囲の広い送信コイル51Dを得ることができる。また、マグネット21の大きさを変更していないため、製造コストの増加もない。従って、従来のバードケージ型RFコイルと略同等の性能を有しながら、検査空間22の快適性を高めることができる。従って、本実施形態の送信コイル51Dによれば、トンネル型MRI装置において、MRI装置10の製造コストを増大させることなく、また、性能を犠牲にすることなく、快適な検査空間22を確保できる。 According to the transmission coil 51D of the present embodiment having the above configuration, it is possible to obtain the transmission coil 51D having a wide irradiation intensity uniform region in the examination space 22 and a wide use range. Further, since the size of the magnet 21 is not changed, there is no increase in manufacturing cost. Therefore, the comfort of the examination space 22 can be enhanced while having substantially the same performance as the conventional birdcage RF coil. Therefore, according to the transmission coil 51D of the present embodiment, a comfortable examination space 22 can be secured in the tunnel type MRI apparatus without increasing the manufacturing cost of the MRI apparatus 10 and without sacrificing performance.
 本実施形態においても、送信コイル51Dの外側に配置される傾斜磁場コイル31の内壁の形状は、円筒形に限られず、上記各実施形態同様、楕円筒形状であってもよい。また、第一の実施形態のように、検査空間22において、y軸方向の両端部方向に余裕を持たせるよう構成してもよい。 Also in this embodiment, the shape of the inner wall of the gradient magnetic field coil 31 disposed outside the transmission coil 51D is not limited to a cylindrical shape, and may be an elliptical cylindrical shape as in the above embodiments. Further, as in the first embodiment, the examination space 22 may be configured to have a margin in both end portions in the y-axis direction.
 なお、上記各実施形態では、送信コイル51として用いる場合を例にあげて説明しているが、上記実施形態で説明した構成のRFコイルは、受信コイルとして用いてもよい。また、送受信兼用コイルとして用いてもよい。 In each of the above embodiments, the case where the transmitter coil 51 is used has been described as an example. However, the RF coil having the configuration described in the above embodiment may be used as a receiver coil. Moreover, you may use as a coil for transmission / reception.
 さらに、上記各実施形態の送信コイルは、MRI装置の一部品として使用するほか、数MHzから数GHzの周波数を持つ電磁波を使用するあらゆる機器で使用可能である。 Furthermore, the transmission coil of each of the above embodiments can be used in any device that uses an electromagnetic wave having a frequency of several MHz to several GHz in addition to being used as a part of the MRI apparatus.
1:被検体、2:静磁場発生系、3:傾斜磁場発生系、4:シーケンサ、5:送信系、6:受信系、7:情報処理系、10:MRI装置、11:テーブル、12:いす型テーブル、13:各種機器、21:マグネット、22:検査空間、31:傾斜磁場コイル、31A:傾斜磁場コイル、31C:傾斜磁場コイル、32:傾斜磁場電源、51:送信コイル、51A:送信コイル、51B:送信コイル、51C:送信コイル、51D:送信コイル、51E:送信コイル、52:高周波発振器、53:変調器、54:高周波増幅器、61:受信コイル、62:信号増幅器、63:直交位相検波器、64:A/D変換器、71:CPU、72:記憶装置、73:外部記憶装置、74:表示装置、75:入力装置、100:RFコイル、100A:RFコイル、100C:アレイコイル、110:リング、120:リング、130:ラング、140:静磁場の向き、150:給電点、151:給電ポート、152:給電ポート、160:トンネル内壁、510:RFシールド、510A:RFシールド、510C:RFシールド、511:シールドボビン、512:突起部、513:非磁性ボルト、520:RFベース、520A:RFベース、520C:RFベース、520D:RFベース、540:部分円筒型RFコイル、540C:部分円筒型RFコイル、540D:部分円筒型RFコイル、541:ラング、542:部分リング、543:部分リング、544:キャパシタ、545:キャパシタ、560:空間部、580:直線、590:直線、610:ソレノイドコイル、710:ループ型コイル、730:キャパシタ、740:見込み角、740D:見込み角、810:電流、820:電流 1: subject, 2: static magnetic field generation system, 3: gradient magnetic field generation system, 4: sequencer, 5: transmission system, 6: reception system, 7: information processing system, 10: MRI apparatus, 11: table, 12: Chair table, 13: various devices, 21: magnet, 22: inspection space, 31: gradient magnetic field coil, 31A: gradient magnetic field coil, 31C: gradient magnetic field coil, 32: gradient magnetic field power supply, 51: transmission coil, 51A: transmission Coil, 51B: Transmitting coil, 51C: Transmitting coil, 51D: Transmitting coil, 51E: Transmitting coil, 52: High frequency oscillator, 53: Modulator, 54: High frequency amplifier, 61: Reception coil, 62: Signal amplifier, 63: Quadrature Phase detector, 64: A / D converter, 71: CPU, 72: storage device, 73: external storage device, 74: display device, 75: input device, 100: RF coil, 100A: R Coil, 100C: Array coil, 110: Ring, 120: Ring, 130: Lang, 140: Direction of static magnetic field, 150: Feed point, 151: Feed port, 152: Feed port, 160: Tunnel inner wall, 510: RF shield , 510A: RF shield, 510C: RF shield, 511: shield bobbin, 512: protrusion, 513: non-magnetic bolt, 520: RF base, 520A: RF base, 520C: RF base, 520D: RF base, 540: part Cylindrical RF coil, 540C: Partial cylindrical RF coil, 540D: Partial cylindrical RF coil, 541: Lang, 542: Partial ring, 543: Partial ring, 544: Capacitor, 545: Capacitor, 560: Space part, 580: Straight line, 590: Straight line, 610: Solenoid coil, 710 Loop coil, 730: capacitor, 740: apparent angle, 740D: apparent angle, 810: current, 820: Current

Claims (11)

  1.  静磁場を発生させる環状の磁石部と、前記磁石部で囲まれる検査領域内に当該磁石部と同軸に配置される環状の傾斜磁場コイルと、前記傾斜磁場コイル内側に配置される高周波磁場コイルと、を備える磁気共鳴計測装置であって、
     前記高周波磁場コイルは、
     前記傾斜磁場コイルの内側に当該傾斜磁場コイルの内壁に沿って当該傾斜磁場コイルと同軸に配置される環状の高周波磁場シールドと、
     前記高周波磁場シールドの内側に対向して配置される2つの部分筒形状を有する部分筒型ループコイルと、を備え、
     前記各部分筒型ループコイルは、
     相互に所定の間隔を空けてそれぞれ前記軸方向に平行に配置される複数の直線状導体と、
     前記部分筒形状の軸方向の両端において前記複数の直線状導体を接続する2つの部分円弧状導体と、を備え、
     前記各部分筒形状の周方向の両端の見込み角は180度未満であること
     を特徴とする磁気共鳴計測装置。
    An annular magnet unit for generating a static magnetic field, an annular gradient coil disposed coaxially with the magnet unit in an inspection region surrounded by the magnet unit, and a high-frequency magnetic coil disposed inside the gradient coil A magnetic resonance measuring apparatus comprising:
    The high frequency magnetic field coil is:
    An annular high-frequency magnetic field shield disposed coaxially with the gradient magnetic field coil along the inner wall of the gradient magnetic field coil inside the gradient magnetic field coil,
    A partial cylindrical loop coil having two partial cylindrical shapes arranged facing the inside of the high-frequency magnetic field shield,
    Each of the partial cylindrical loop coils is
    A plurality of linear conductors arranged in parallel with each other at a predetermined distance from each other in the axial direction;
    Two partial arcuate conductors connecting the plurality of linear conductors at both axial ends of the partial cylindrical shape,
    The magnetic resonance measuring apparatus according to claim 1, wherein a prospective angle at each circumferential end of each partial cylindrical shape is less than 180 degrees.
  2.  請求項1記載の磁気共鳴計測装置あって、
     前記傾斜磁場コイルの内壁は、円筒状であること
     を特徴とする磁気共鳴計測装置。
    A magnetic resonance measuring apparatus according to claim 1,
    The magnetic resonance measuring apparatus, wherein an inner wall of the gradient magnetic field coil is cylindrical.
  3.  請求項1記載の磁気共鳴計測装置であって、
     前記傾斜磁場コイルの内壁は、楕円筒状であること
     を特徴とする磁気共鳴計測装置。
    The magnetic resonance measuring apparatus according to claim 1,
    An inner wall of the gradient magnetic field coil has an elliptical cylindrical shape.
  4.  請求項1記載の磁気共鳴計測装置であって、
     前記検査領域内で被検体の体軸を前記磁石部の中心軸と平行に当該被検体を保持するテーブルをさらに備え、
     前記2つの部分筒型ループコイルは、前記中心軸に直交する1の仮想断面上で、各々の部分筒型ループコイルの周方向の中心位置同士を結ぶ直線が、前記テーブルの前記被検体を載置する面に平行になるよう配置されること
     を特徴とする磁気共鳴計測装置。
    The magnetic resonance measuring apparatus according to claim 1,
    Further comprising a table for holding the subject in parallel with the central axis of the magnet section in the examination region, the body axis of the subject,
    In the two partial cylindrical loop coils, a straight line connecting the circumferential center positions of the partial cylindrical loop coils on one virtual cross section orthogonal to the central axis mounts the subject of the table. The magnetic resonance measuring apparatus is arranged so as to be parallel to a surface to be placed.
  5.  請求項1記載の磁気共鳴計測装置であって、
     前記検査領域内で被検体の体軸を前記磁石部の中心軸と平行に当該被検体を保持するテーブルをさらに備え、
     前記2つの部分筒型ループコイルは、前記中心軸に直交する1の仮想断面上で、各々の部分筒型ループコイルの周方向の中心位置同士を結ぶ直線が、前記テーブルの前記被検体を載置する面に直交するよう配置されること
     を特徴とする磁気共鳴計測装置。
    The magnetic resonance measuring apparatus according to claim 1,
    Further comprising a table for holding the subject in parallel with the central axis of the magnet section in the examination region, the body axis of the subject,
    In the two partial cylindrical loop coils, a straight line connecting the circumferential center positions of the partial cylindrical loop coils on one virtual cross section orthogonal to the central axis mounts the subject of the table. A magnetic resonance measuring apparatus, wherein the magnetic resonance measuring apparatus is arranged so as to be orthogonal to a surface to be placed.
  6.  請求項1記載の磁気共鳴計測装置であって、
     前記2つの部分筒型ループコイルは、同一形状であること
     を特徴とする磁気共鳴計測装置。
    The magnetic resonance measuring apparatus according to claim 1,
    The two partial cylindrical loop coils have the same shape.
  7.  請求項1記載の磁気共鳴計測装置であって、
     前記2つの部分筒型ループコイルは、前記高周波磁場シールドから一定の距離を保って配置されること
     を特徴とする磁気共鳴計測装置。
    The magnetic resonance measuring apparatus according to claim 1,
    The magnetic resonance measuring apparatus, wherein the two partial cylindrical loop coils are arranged at a certain distance from the high-frequency magnetic field shield.
  8.  請求項1記載の磁気共鳴計測装置であって、
     前記2つの部分筒型ループコイル各々は、前記中心軸方向の長さが略同一のループコイルであって、互いに非接触で当該部分筒型ループコイルの周方向に所定の面積分オーバラップして配置される3以下のループコイルで構成され、周方向の両端部において前記高周波磁場シールドに接続すること
     を特徴とする磁気共鳴計測装置。
    The magnetic resonance measuring apparatus according to claim 1,
    Each of the two partial cylindrical loop coils is a loop coil having substantially the same length in the central axis direction, and is overlapped by a predetermined area in the circumferential direction of the partial cylindrical loop coil without contact with each other. A magnetic resonance measuring apparatus comprising three or less loop coils arranged and connected to the high-frequency magnetic field shield at both ends in a circumferential direction.
  9.  請求項8記載の磁気共鳴計測装置であって、
     前記ループコイルの数は3であり、周方向の両端に配置される2つのループコイルは、前記直線状導体を備えないこと
     を特徴とする磁気共鳴計測装置。
    The magnetic resonance measuring apparatus according to claim 8,
    The number of the loop coils is 3, and the two loop coils arranged at both ends in the circumferential direction do not include the linear conductor.
  10.  請求項8記載の磁気共鳴計測装置であって、
     前記ループコイルは、それぞれ、前記直線状導体を備えること
     を特徴とする磁気共鳴計測装置。
    The magnetic resonance measuring apparatus according to claim 8,
    Each of the loop coils includes the linear conductor. A magnetic resonance measuring apparatus.
  11.  請求項1記載の磁気共鳴計測装置であって、
     前記各部分筒形状の周方向の両端の見込み角は、前記検査領域内の所定の範囲が、予め定められた照射強度の範囲内となるよう決定されること
     を特徴とする磁気共鳴計測装置。
    The magnetic resonance measuring apparatus according to claim 1,
    The magnetic resonance measurement apparatus characterized in that the prospective angles at both ends in the circumferential direction of each partial cylinder shape are determined such that a predetermined range in the inspection region falls within a predetermined irradiation intensity range.
PCT/JP2010/062903 2009-08-05 2010-07-30 Magnetic resonance measurement device WO2011016398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011525870A JP5258968B2 (en) 2009-08-05 2010-07-30 Magnetic resonance measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-182652 2009-08-05
JP2009182652 2009-08-05

Publications (1)

Publication Number Publication Date
WO2011016398A1 true WO2011016398A1 (en) 2011-02-10

Family

ID=43544293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062903 WO2011016398A1 (en) 2009-08-05 2010-07-30 Magnetic resonance measurement device

Country Status (2)

Country Link
JP (1) JP5258968B2 (en)
WO (1) WO2011016398A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217675A (en) * 2011-04-11 2012-11-12 Hitachi Ltd High frequency coil unit, and magnetic resonance imaging apparatus
WO2015115141A1 (en) * 2014-01-28 2015-08-06 株式会社 日立メディコ Magnetic resonance imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150738A (en) * 1983-11-14 1985-08-08 ゼネラル・エレクトリツク・カンパニイ Nmr apparatus
JPH07372A (en) * 1992-09-30 1995-01-06 Siemens Ag Antenna device for nuclear spin resonance device
US5543711A (en) * 1994-11-22 1996-08-06 Picker International, Inc. Multiple quadrature volume coils for magnetic resonance imaging
JP2001327478A (en) * 2000-05-23 2001-11-27 Toshiba Corp Gradient coil for mri
JP2002085366A (en) * 2000-09-04 2002-03-26 Ge Medical Systems Global Technology Co Llc Rf coil for mri and mri device
US6930480B1 (en) * 2001-06-08 2005-08-16 General Electric Company Head coil arrays for parallel imaging in magnetic resonance imaging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2728690B2 (en) * 1988-07-28 1998-03-18 株式会社東芝 High frequency coil for magnetic resonance equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150738A (en) * 1983-11-14 1985-08-08 ゼネラル・エレクトリツク・カンパニイ Nmr apparatus
JPH07372A (en) * 1992-09-30 1995-01-06 Siemens Ag Antenna device for nuclear spin resonance device
US5543711A (en) * 1994-11-22 1996-08-06 Picker International, Inc. Multiple quadrature volume coils for magnetic resonance imaging
JP2001327478A (en) * 2000-05-23 2001-11-27 Toshiba Corp Gradient coil for mri
JP2002085366A (en) * 2000-09-04 2002-03-26 Ge Medical Systems Global Technology Co Llc Rf coil for mri and mri device
US6930480B1 (en) * 2001-06-08 2005-08-16 General Electric Company Head coil arrays for parallel imaging in magnetic resonance imaging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217675A (en) * 2011-04-11 2012-11-12 Hitachi Ltd High frequency coil unit, and magnetic resonance imaging apparatus
WO2015115141A1 (en) * 2014-01-28 2015-08-06 株式会社 日立メディコ Magnetic resonance imaging device
JPWO2015115141A1 (en) * 2014-01-28 2017-03-23 株式会社日立製作所 Magnetic resonance imaging system

Also Published As

Publication number Publication date
JPWO2011016398A1 (en) 2013-01-10
JP5258968B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5675921B2 (en) High frequency coil and magnetic resonance imaging apparatus using the same
JP5225472B2 (en) High frequency coil unit and magnetic resonance imaging apparatus
EP2652516B1 (en) Passive b1 field shimming
US9513352B2 (en) System and method for inductively communicating data
US8203342B2 (en) Nuclear magnetic resonance imaging system and coil unit
JP5968318B2 (en) Birdcage type high frequency coil and magnetic resonance imaging apparatus
US20090128155A1 (en) RF coil and MRI apparatus
JP2004000592A (en) Method and device for minimizing coupling of inclined coil and rf coil
JPS63272335A (en) Magnetic resonance imaging apparatus
KR20160026567A (en) Radio frequency coil comprising dielectric structure and Magnetic resonance imaging system comprising the radio frequency coil
JP5258968B2 (en) Magnetic resonance measuring device
JP5771354B2 (en) Receiving coil device for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus using the same
KR102290276B1 (en) Radio frequency surface coil and Magnetic resonance imaging system comprising the same
JP3492040B2 (en) RF probe for magnetic resonance equipment
US10481224B2 (en) RF surface coil unit and magnetic resonance imaging system comprising same
US11125841B2 (en) Radio frequency coil and magnetic resonance imaging system comprising the same
JP3112474B2 (en) Magnetic resonance imaging equipment
RU2795364C1 (en) Method for increasing the homogeneity of the radio frequency field of a mid-field magnetic resonance tomographic scanner and a coil for its implementation
CN108802640A (en) Coil device for emitting high frequency radiation
KR20110104807A (en) Rf-resonator
Merrill A twenty-eight channel coil array for improved optic nerve imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525870

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806397

Country of ref document: EP

Kind code of ref document: A1