WO2011037412A2 - Cooling device for electronic parts - Google Patents

Cooling device for electronic parts Download PDF

Info

Publication number
WO2011037412A2
WO2011037412A2 PCT/KR2010/006507 KR2010006507W WO2011037412A2 WO 2011037412 A2 WO2011037412 A2 WO 2011037412A2 KR 2010006507 W KR2010006507 W KR 2010006507W WO 2011037412 A2 WO2011037412 A2 WO 2011037412A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
heat
contact
contact surface
pipe
Prior art date
Application number
PCT/KR2010/006507
Other languages
French (fr)
Korean (ko)
Other versions
WO2011037412A3 (en
Inventor
윤선규
정상준
정경채
부성덕
Original Assignee
잘만테크㈜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 잘만테크㈜ filed Critical 잘만테크㈜
Publication of WO2011037412A2 publication Critical patent/WO2011037412A2/en
Publication of WO2011037412A3 publication Critical patent/WO2011037412A3/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a cooling device for an electronic component, and more particularly, to a cooling device for an electronic component having an improved structure so as to effectively cool a heating component embedded in an electronic product such as a computer.
  • heat generating parts that generate heat during operation are embedded.
  • heating components such as a central processing unit (CPU) mounted on a motherboard or a chipset mounted on a board of a graphic adapter.
  • CPU central processing unit
  • Various types of cooling devices are currently used to cool the heat of the heat generating parts.
  • the cooling device of the recent years has been used a lot of configurations employing a heat pipe that is significantly superior in thermal conductivity compared to other materials, and heat dissipation fins are coupled to the heat pipe to dissipate heat to the outside.
  • FIG. 1 and 2 show an example of such a conventional cooling apparatus.
  • Figure 1 is a schematic perspective view of a conventional cooling apparatus
  • Figure 2 is a cross-sectional view of the main portion of FIG.
  • FIG. 2 shows a schematic cross section of a state in which a conventional cooling device 6 is installed on a heating element 2 mounted on a board 1.
  • the conventional cooling apparatus 6 includes a heat transfer block 3 in contact with the heat generating part 2, and a plurality of heat pipes 4 coupled to the heat transfer block 3, respectively. And a plurality of heat dissipation fins 5 coupled to the heat pipe 4.
  • Receiving grooves 3a into which the heat pipes 4 are inserted are formed in the heat transfer block 3 on the upper surface of the heat transfer block 3, and the heat pipes 4 are formed in a “U” shape as a whole.
  • the through hole 5a to which the heat pipe 4 is coupled is formed at the edge of the heat dissipation fin 5.
  • such a conventional cooling device 6 has a problem in that the heat generation of the heat generating parts is not effectively cooled, as the heat generation amount per unit area of the parts increases due to the high integration and high capacity of the heat generating parts.
  • the first conventional cooling device (6) is the heat of the heating element (2) mounted on the board (1) is first absorbed by the heat transfer block (3), and then transferred to the heat pipe (4), the heat transfer block (3) ) Forms a heat transfer interface so that heat of the heat generating part 2 is not effectively transmitted to the heat pipe 4.
  • the through-hole 5a into which the heat pipe 4 is inserted and coupled is concentrated at the edge of the heat dissipation fin 5, the through-hole 5a is not effectively utilized, and the density of the through-hole 5a is prevented.
  • the relatively low center portion of the heat radiation fins 5 has a problem that the heat radiation efficiency is lower than the edge.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a cooling device for an electronic component, which improves cooling efficiency by effectively transferring heat of a heat generating part without providing a separate heat transfer block.
  • the present invention provides a cooling device for an electronic component, comprising: a first heat pipe having a contact surface in contact with a heat generating part and at least one receiving groove formed in the contact surface, and having a wick formed on an inner circumferential surface thereof; A second heat pipe inserted into the receiving groove and having a contact portion in contact with the heat generating part, wherein the wick is formed on an inner circumferential surface thereof; Spaced apart from each other on the upper side of the heat generating component, characterized in that it comprises a plurality of heat dissipation fins coupled to the first heat pipe and the second heat pipe.
  • the contact portion is preferably in surface contact with the heat generating part.
  • the cross section of the first heat pipe and the cross section of the extension portion of the second heat pipe extending from the contact portion and the heat dissipation fins are formed in a circular shape, the inner diameter of the first heat pipe is larger than the inner diameter of the extension portion It is preferable.
  • first heat pipe extends vertically from the contact surface, extends from the contact portion, and an extension of the second heat pipe to which the heat dissipation fins are coupled is preferably disposed in parallel with the first heat pipe.
  • first heat pipe is coupled to the central portion of the heat dissipation fin, it is preferable that the second heat pipe is coupled to the edge of the heat dissipation fin.
  • the first heat pipe may include a base portion disposed directly above the contact surface and a pipe portion extending from the base portion, and a cross sectional area of the base portion is larger than a cross sectional area of the pipe portion.
  • cross-sectional area of the pipe portion is preferably larger than the cross-sectional area of the second heat pipe.
  • the cross section of the first heat pipe is preferably any one of a circle, a square, a triangle, or a hexagon.
  • the contact surface is preferably any one of a circle, a square, or a hexagon.
  • the receiving groove is preferably formed in a straight line on the contact surface.
  • At least one of the receiving groove is preferably formed in a curved line.
  • the receiving groove is preferably formed to protrude from the inner peripheral surface of the first heat pipe.
  • three receiving grooves are formed so as to pass from the left side to the right side of the contact surface, the receiving groove passing through the center portion of the contact surface is made of a straight line, the receiving groove formed facing the center portion is gradually toward the center portion. It is preferable that the curve is made close to.
  • heat is not directly provided by a first heat pipe having a contact surface in contact with the heat generating parts without a heat transfer block, thereby increasing heat dissipation efficiency.
  • the second heat pipe is accommodated in the receiving groove formed in the contact surface, but the second heat pipe is also in contact with the heat generating component to increase the heat dissipation efficiency.
  • the inner diameter of the first heat pipe is made larger than that of the second heat pipe, and the heat radiation efficiency is dramatically increased.
  • first heat pipe is coupled to the center portion of the heat dissipation fins
  • second heat pipe is coupled to the edge of the heat dissipation fins, thereby providing an effect that the heat of the heat generating parts is evenly transmitted to the entire heat dissipation fins.
  • the first heat pipe is coupled to the center portion of the heat dissipation fin, air passing through the center portion of the heat dissipation fin impinges on the first heat pipe and flows to improve the heat dissipation effect.
  • FIG. 1 is a schematic perspective view of a conventional cooling device for electronic components
  • FIG. 2 is a schematic cross-sectional view of the cooling apparatus of FIG. 1 installed on a board;
  • FIG. 3 is a schematic perspective view of a cooling apparatus for an electronic component according to an embodiment of the present invention.
  • FIG. 4 is a side view of FIG. 3;
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG. 3;
  • FIG. 6 is a bottom view of FIG. 3;
  • FIG. 7 is a side view according to another embodiment of the present invention.
  • FIG. 8 is a bottom view of FIG. 7;
  • FIG. 9 is a perspective view according to another embodiment of the present invention.
  • FIG. 10 is a bottom view of FIG. 9;
  • 11 to 13 are views illustrating a bottom surface of a cooling device for an electronic component according to still another embodiment of the present invention.
  • FIG. 14 to 21 are schematic cross-sectional views of a cooling apparatus for an electronic component according to still another embodiment of the present invention.
  • the cooling device for electronic components is used to cool a heat generating component that generates heat during operation among electronic components embedded in an electronic device such as a computer.
  • a heat generating component such as a central processing unit (CPU) mounted on a main board of a computer or a chipset mounted on a graphics card.
  • CPU central processing unit
  • a cooling apparatus for an electronic component according to an embodiment of the present invention will be described in detail with reference to FIGS. 3 to 6.
  • FIG. 3 is a schematic perspective view of a cooling apparatus for an electronic component according to an embodiment of the present invention
  • FIG. 4 is a side view of FIG.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG. 3
  • FIG. 6 is a bottom view of FIG. 3.
  • the electronic device cooling apparatus 100 includes a contact surface 12 in contact with a heating component, and at least one receiving groove 14 formed in the contact surface 12.
  • a first heat pipe 10 having a wick 16 formed on an inner circumferential surface thereof;
  • a second heat pipe (20) inserted into the receiving groove (14) and having a contact portion (22) contacting the heat generating part, wherein the wick (16) is formed on an inner circumferential surface thereof;
  • Spaced apart from each other on the upper side of the heat generating component, and comprises a plurality of heat dissipation fins 30 are coupled to the first heat pipe 10 and the second heat pipe 20.
  • the contact surface 12 of the first heat pipe 10 is in direct contact with the heat generating parts to receive heat generated from the heat generating parts, and the contact surface 12 is made flat to contact the heat generating parts.
  • the contact surface 12 is a portion corresponding to the bottom surface of the first heat pipe 10, and in this embodiment, the first heat pipe 10 is integrally formed in the shape of a beverage can. As shown in Fig. 6, in this embodiment, the contact surface 12 is circular. Of course, the contact surface 12 may be formed in various shapes such as square, triangle, hexagon, etc. in addition to the circular shape.
  • the first heat pipe 10 extends vertically from the contact surface 12 and is coupled to a central portion of the heat dissipation fin 30.
  • the upper end of the first heat pipe 10 is closed, and a separate finishing member may be used to close the upper end of the first heat pipe 10.
  • the cross section of the first heat pipe 10 is circular.
  • the cross section of the first bottom pipe may be variously changed, such as a square or a hexagon, in addition to a circular shape.
  • the first heat pipe 10 absorbs heat from the heat generating parts and transfers the heat to the heat dissipation fins 30, and at the same time, flows air moving through the center of the heat dissipation fins 30. Play a role. That is, by using a fan or air generated from various fanless air flow inducing devices hit the first heat pipe 10, the air flow is changed, so that air is delivered to all areas of the heat dissipation fin 30. Thus, the cooling efficiency is improved.
  • the receiving groove 14 is formed recessed inward from the contact surface 12. That is, the receiving groove 14 is formed to protrude from the inner peripheral surface of the first heat pipe (10). The receiving groove 14 protrudes from the inner circumferential surface of the first heat pipe 10 to widen the vaporization surface area of the wick (surface area when the working fluid phase changes from a liquid phase to a gaseous state by heat transferred from a heat generating component). .
  • the receiving groove 14 may be formed in a straight line on the contact surface 12 or at least one may be formed in a curved line when a plurality of receiving grooves 14 are formed.
  • the present embodiment in the present embodiment, three receiving grooves 14 are provided, and are made in a straight line to pass through the contact surface 12 through left and right.
  • the number and shape of the receiving grooves 14 may be changed in consideration of the size, shape, heat dissipation efficiency and the like of the heat generating parts. That is, in the present embodiment, the extending direction of the receiving groove 14 is made in a straight line on the basis of the direction via the contact surface 12, but may be made in a curved form, or a straight or curved form combined. .
  • the receiving groove 14 is recessed inward from the contact surface 12 so that the inner peripheral surface is made of a curved surface, but may have a polygonal shape. The shape of the receiving groove 14 will be described later in detail.
  • a wick 16 is formed on the inner circumferential surface of the first heat pipe 10.
  • the first heat pipe 10 is made of a metal such as copper, aluminum, etc. having good thermal conductivity, and the wick 16 serves as a passage for moving the working fluid by capillary pressure.
  • the wick 16 is a sintered wick formed by sintering metal powder on the inner circumferential surface of the first heat pipe 10.
  • the wick 16 may be used in addition to the sintered wick sintered metal powder, wick 16 of various forms.
  • a mesh type mesh member woven tightly with a very small diameter wire rod may be used.
  • the wick 16 is not limited to only sintered wicks.
  • a mandrel is used to form the wick 16, that is, the sintered wick used in the present embodiment.
  • the mandrel is a cylindrical member having an inner diameter smaller than that of the first heat pipe 10, and the first heat pipe is spaced apart from the inner circumferential surface of the first heat pipe 10 by a predetermined distance. (10) After inserting the inside, the metal powder is filled in the space and sintered to form a sintered wick.
  • the first heat pipe 10 is filled with a working fluid.
  • the working fluid circulates the first heat pipe 10 while repeating the phase change from the liquid phase to the gaseous phase to transfer heat of the high temperature part to the low temperature part, and the sintering wick moves the working fluid by capillary force. It acts as a pathway.
  • the working fluid uses the same material as that used in the conventional heat pipe.
  • the second heat pipe 20 is inserted into the receiving groove 14 of the first heat pipe 10 and includes a contact portion 22 contacting the heat generating component. Like the first heat pipe 10, the second heat pipe 20 is configured to receive heat of a heat generating component directly.
  • the second heat pipe 20 is generally “U” shaped and has an inner diameter smaller than that of the first heat pipe 10. Both ends of the second heat pipe 20 are closed.
  • the second heat pipe 20 includes a contact portion 22, a bending portion 24, and an extension portion 26.
  • the contact portion 22 refers to a portion of the portion inserted into the receiving groove 14 in contact with the heat generating part in the same plane as the contact surface 12 of the first heat pipe 10.
  • the bending portion 24 is a portion bent upward from the portion exiting the receiving groove 14.
  • the extension part 26 is a part extending upward from the bending part 24 and is a part to which the heat dissipation fin 30 is coupled.
  • the contact portion 22 is formed by pressing the tubular second heat pipe 20 into the receiving groove 14 and being pressed to be flush with the contact surface 12 by a later process, or the second heat pipe ( After pressing the contact portion 22 to form 20, it may be inserted into the receiving groove (14). Therefore, since the contact portion 22 is in surface contact with the heat generating parts, the heat of the heat generating parts is effectively transmitted.
  • the extension part 26 extends upward and is disposed parallel to the first heat pipe 10.
  • the extension part 26 is coupled to an edge of the heat dissipation fin 30.
  • the cross section of the extension part 26 is circular, and the inner diameter of the extension part 26 is smaller than the inner diameter of the first heat pipe 10.
  • a wick 16 is formed on the inner circumferential surface of the second heat pipe 20, as in the inner circumferential surface of the first heat pipe 10, and a working fluid is filled. As described above with respect to the formation and function of the wick 16 and the working fluid, detailed description thereof will be omitted.
  • the plurality of heat dissipation fins 30 are spaced apart from each other on the upper side of the heat generating part, and are coupled to the first heat pipe 10 and the second heat pipe 20.
  • the heat dissipation fin 30 has a first heat pipe coupling hole 31 to which the first heat pipe 10 is coupled, and a second heat pipe coupling hole to which the second heat pipe 20 is coupled. 32) is formed on the edge.
  • the heat dissipation fins 30 are spaced apart from each other in the vertical direction at regular intervals, the number of the second heat pipe coupling hole 32 is coupled to the receiving groove 14 of the first heat pipe 10.
  • the number of second heat pipes 20 may be increased or decreased.
  • the heat dissipation fin 30 may have a shape other than that shown in FIG.
  • the contact surface 12 of the first heat pipe 10 and the contact portion 22 of the second heat pipe 20 inserted into the receiving groove 14 formed in the contact surface 12 are in direct contact with the heat generating part to heat. Will be delivered.
  • the contact portions 22 of all the second heat pipes 20 are in direct contact with the heat generating parts.
  • some of the second heat pipes 20 The contact surface 12 may be indirectly transferred heat of the heat generating part in a state of being inserted into the receiving groove 14.
  • the heat transferred to the contact surface 12 of the first heat pipe 10 vaporizes the working fluid contained in the first heat pipe 10, and the vaporized working fluid is above the first heat pipe 10. Transferring heat to the heat dissipation fin 30 while moving to.
  • the working fluid which transfers heat to the heat dissipation fin 30 is phase-changed into the liquid phase and is moved back to the heat generating part by the capillary force of the wick 16. In this way, the heat generating part is cooled by the first heat pipe 10 while the working fluid circulates.
  • the second heat pipe 20 receives heat of the heat generating component directly from the contact portion 22 to vaporize the working fluid contained in the second heat pipe 20.
  • the vaporized working fluid transfers heat to the heat dissipation fin 30 while moving toward the extension part 26 extending upward, and then changes into a liquid phase to move the heating part side by the wick 16. In this way, while the working fluid is circulated, the heat generating part is cooled by the second heat pipe 20.
  • the electronic device cooling apparatus 100 includes a first heat pipe 10 having a contact surface 12 which is in direct contact with a heat generating component, and extending upward from the contact surface 12. Since the second heat pipe 20 is inserted into the receiving groove 14 formed in the contact surface 12 and is in direct contact with the heat generating parts, the heat of the heat generating parts is effectively transmitted, thereby significantly improving the cooling efficiency.
  • the inner diameter of the first heat pipe 10 is larger than the inner diameter of the second heat pipe 20 to maximize the cooling efficiency.
  • the heat transfer block forms a heat transfer interface so that heat of the heat generating parts cannot be efficiently transferred to the heat pipe.
  • the block is limited in that it does not perform the cooling action, such as the first heat pipe 10 of the present invention. Therefore, since the first heat pipe 10 employed in the electronic component cooling apparatus 100 according to the embodiment of the present invention directly receives heat of the heating component and simultaneously serves as a cooling function, the cooling efficiency is maximized. do.
  • the second heat pipe 20 is coupled to the edge of the heat dissipation fin 30, and thus distributes heat evenly over the entire area of the heat dissipation fin 30. By transferring, the entire area of the heat dissipation fins 30 can be effectively utilized.
  • the heat pipe is coupled to the edge of the heat dissipation fin 30, the heat dissipation fin 30 receives heat intensively at the edge portion, so that the area of the heat dissipation fin 30 is not effectively utilized, but the present invention has such a problem. Solves the problem effectively.
  • the air entering the heat dissipation fins 30 flows while hitting the first heat pipe 10 disposed at the center of the heat dissipation fins 30, thereby maximizing cooling efficiency.
  • the air passing through the center portion of the heat dissipation fin 30 passes through the center portion and exits the heat dissipation fin 30.
  • the air passing through the edge of the heat dissipation fin 30 impinges on the second heat pipe 20, but some of the second heat pipes 20 arranged in the same direction as the air flow direction are not sufficiently in contact with the air.
  • the second heat pipe 20 positioned in front of the air directly collides with the blowing air, but the air is not sufficiently flowed into the second heat pipe 20 disposed behind the second heat pipe 20 located in the front of the air. do.
  • the air flowing in the central portion of the heat dissipation fin 30 hits the outer circumferential surface of the first heat pipe 10 and flows, so that the air is also transmitted to the second heat pipe 20 disposed at the rear side. Even if the second heat pipe 20 is disposed in the same direction as the air flow direction, the air flowed by the first heat pipe 10 is uniformly delivered to all the second heat pipes 20 to improve the cooling efficiency. .
  • the cooling device for an electronic component may be implemented in various other modified embodiments in addition to the above-described embodiment.
  • the same reference numerals are assigned to components that perform the same functions as the embodiment of FIG. 3, and a detailed description thereof will be omitted.
  • FIG. 7 is a side view of the cooling apparatus 200 for an electronic component according to another embodiment of the present invention
  • FIG. 8 is a bottom view of FIG.
  • the first heat pipe 10 includes a base 17 and a pipe 18.
  • the base portion 17 is a portion disposed directly above the contact surface 12, and the pipe portion 18 is a portion extending upward from the base portion 17.
  • the base portion 17 and the pipe portion 18 are integrally formed.
  • the contact surface 12 of the first heat pipe 10 is formed in a circular shape, the receiving groove 14 is formed to pass in a straight line in the left and right direction of the contact surface (12).
  • the cross-sectional area of the base portion 17 is wider than that of the pipe portion 18, and a wick 16 is formed on the inner circumferential surfaces of the base portion 17 and the pipe portion 18.
  • the bottom surface of the base portion 17 constitutes the contact surface 12, and since the cross-sectional area of the base portion 17 is wider than the cross-sectional area of the pipe portion 18, the base surface 17 has a relatively wide contact surface 12. According to the present embodiment, there is an advantage that a wider contact surface 12 can be configured than the above-described cooling device 200 for electronic components.
  • the cross-sectional area of the pipe portion 18 is made larger than the cross-sectional area of the second heat pipe 20, the shape of the cross section is all circular.
  • the configuration, operation and effects according to the present embodiment are similar to those of the embodiment of FIG.
  • the shape of the contact surface 12 of the first heat pipe 10 and the cross section of the first heat pipe 10 have a quadrangle.
  • the contact surface 12 may be formed in a rectangle, so that heat of the heat generating part may be effectively transmitted.
  • the electronic device cooling apparatus 400 has an advantage of improving the cooling efficiency by concentrating the contact portion 22 of the second heat pipe 20 in contact with the heat generating component to the heat generating component.
  • the receiving groove 14 passing through the central portion of the contact surface 12 is formed in a straight line. do.
  • the receiving groove 14 located in the upper portion is formed in a concave downward " ⁇ " shape
  • the lower receiving groove 14 is formed in a convex " ⁇ " shape.
  • the receiving groove 14 does not penetrate the contact surface 12 from side to side, and is formed in an annular shape from each of the left and right sides of the contact surface 12. That is, the second heat pipe 20 is coupled to the left and right, respectively, the receiving groove 14 is formed in an annular shape so that one end thereof is inserted into the contact surface 12 in an annular shape. It can be understood that the shape of the accommodating groove 14 can be appropriately modified according to the shape of the heat generating part by the above-described cooling device for the electronic component 400, 500, 600.
  • the thickness of the contact surface 12 of the first heat pipe 10 is made thicker than the thickness of the contact surface according to the embodiment of FIG. 3.
  • the inner circumferential surface of the bottom surface of the bottom face) is formed so as not to protrude upward.
  • the cooling device 800 for an electronic component shows that the contact surface 12 of the first heat pipe 10 is formed in a separate lower finishing member, and thus may be formed in a separate form.
  • the bottom surface of the first heat pipe 10 is formed integrally by forming a contact surface 12 immediately, in this embodiment the outer peripheral surface of the bottom portion of the lower closing member forms a contact surface 12 And the receiving groove 14 is formed in the contact surface 12, the wick 16 is formed in the inner peripheral surface.
  • the lower closing member and the upper tubular member are combined to form a first heat pipe 10.
  • 16 to 21 disclose yet another embodiment, and in particular, may be a modification of the cooling apparatus 200 for an electronic component according to FIG. 7.
  • the cooling device for the electronic component (900, 1000, 1100, 1200, 1300, 1400), unlike the embodiment of Figure 7, the base portion 17 is separated and provided separately, the upper side The tubular members are combined to form the first heat pipe 10.
  • a receiving groove 14 is formed at the edge of the base portion 17, and a groove in which the tubular member is coupled is formed at the center portion. After the base portion 17 and the tubular member are coupled, a wick 16 is formed on the inner circumferential surface.
  • cooling is mainly performed by the first heat pipe 10 at the center portion of the contact surface 12, and mainly by the second heat pipe 20 at the edge of the contact surface 12.
  • the base unit 17 and the tubular member provided separately, as in the embodiment of FIG. 16, are combined to form the first heat pipe 10.
  • the receiving groove 14 is formed closer to the center portion of the contact surface 12 than the receiving groove disclosed in Figure 16, the groove of Figure 16 is formed to be inclined so that the tubular member is inserted.
  • a wick 16 is formed on the inner circumferential surface of the tubular member.
  • cooling device 1100 for an electronic component of FIG. 18 unlike the embodiment of FIG. 17, four receiving grooves 14 are formed in the base portion 17, and the grooves inclined to insert the tubular member on the upper side thereof are provided. Formed.
  • the lower end of the tubular member is different from that of the embodiment of FIG. 16 to 18, it will be understood that the positions of the second heat pipes 20 to be in contact with the heat generating parts can be variously changed by the cooling devices 900, 1000, and 1100 for the electronic parts.
  • an accommodation groove 14 is formed at an edge of the base portion 17 and a central portion thereof.
  • the receiving groove 14 formed at the center of the base portion 17 protrudes upward.
  • the center portion is formed with a groove to which the tubular member is coupled from above. After the base portion 17 and the tubular member are coupled, a wick 16 is formed on the inner circumferential surface.
  • the base unit 17 and the tubular member which are separately provided, are combined with each other to form the first heat pipe 10 as in the embodiment of FIG. 19.
  • the receiving groove 14 formed at the edge of the base portion 17 is formed closer to the center portion of the contact surface 12 than the receiving groove shown in Figure 19, the groove of Figure 19 is formed to be inclined so that the tubular member is inserted do.
  • a wick 16 is formed on the inner circumferential surface of the tubular member.
  • cooling device 1400 for an electronic component of FIG. 21 unlike the embodiment of FIG. 20, five receiving grooves 14 are formed in the base portion 17, and the grooves inclined to insert the tubular member on the upper side thereof are provided. Formed. The lower end of the tubular member is different from that of the embodiment of FIG.
  • the position and number of the second heat pipes 20 to be in contact with the heat generating parts can be variously changed by the cooling devices 900, 1000, 1100, 1200, 1300, and 1400 for the electronic parts of FIGS. Will be.

Abstract

The present invention relates to a cooling device for electronic parts. The cooling device for electronic parts comprises: a first heat pipe which is formed with a wick on its inner circumferential surface, and which has a contact surface making contact with a heat-emitting part and has at least one receiving recess formed on the contact surface; a second heat pipe which is formed with the wick on its inner circumferential surface, and which has a contact portion which is inserted in the receiving recess and makes contact with the heat-emitting part; and a plurality of heat-dissipating fins which are disposed spaced apart from each other on the upper side of the heat-emitting part and are joined to the first heat pipe and the second heat pipe.

Description

전자부품용 냉각장치 Cooling device for electronic parts
본 발명은 전자부품용 냉각장치에 관한 것으로, 특히 컴퓨터와 같은 전자제품에 내장된 발열부품을 효과적으로 냉각시킬 수 있도록 구조가 개선된 전자부품용 냉각장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for an electronic component, and more particularly, to a cooling device for an electronic component having an improved structure so as to effectively cool a heating component embedded in an electronic product such as a computer.
전자제품의 내부에는 동작시 열을 발생시키는 발열부품들이 내장되어 있다. 특히 컴퓨터의 내부에는 마더 보드에 실장된 CPU(central processing unit)나 그래픽 어탭터(graphic adapter)의 기판에 실장된 칩셋(chipset)과 같은 대표적인 발열부품이 있다. 이러한 발열부품의 열을 냉각시키기 위해 현재 다양한 형태의 냉각장치가 사용되고 있다. 특히 최근의 냉각장치는 열전도율이 타소재에 비해 현저하게 뛰어난 히트파이프와, 이러한 히트파이프에 결합되어 열을 외부로 발산하는 방열핀들을 채용한 구성이 많이 사용되고 있다. Inside the electronics, heat generating parts that generate heat during operation are embedded. Especially inside the computer, there are representative heating components such as a central processing unit (CPU) mounted on a motherboard or a chipset mounted on a board of a graphic adapter. Various types of cooling devices are currently used to cool the heat of the heat generating parts. In particular, the cooling device of the recent years has been used a lot of configurations employing a heat pipe that is significantly superior in thermal conductivity compared to other materials, and heat dissipation fins are coupled to the heat pipe to dissipate heat to the outside.
도1 및 도2는 이러한 종래 냉각장치의 일례를 도시한다. 도1은 종래 냉각장치의 개략적인 사시도이며, 도2는 도1의 요부를 발췌한 단면도이다. 도2는 보드(1)에 탑재된 발열부품(2)에 종래 냉각장치(6)가 설치된 상태의 개략적인 단면을 도시한다.1 and 2 show an example of such a conventional cooling apparatus. Figure 1 is a schematic perspective view of a conventional cooling apparatus, Figure 2 is a cross-sectional view of the main portion of FIG. FIG. 2 shows a schematic cross section of a state in which a conventional cooling device 6 is installed on a heating element 2 mounted on a board 1.
도1 및 도2에 도시된 바와 같이, 종래 냉각장치(6)는, 발열부품(2)과 접촉하는 전열블럭(3)과, 상기 전열블럭(3)에 결합하는 다수의 히트파이프(4)와, 상기 히트파이프(4)에 결합되는 복수의 방열핀(5)을 구비한다. As shown in Figs. 1 and 2, the conventional cooling apparatus 6 includes a heat transfer block 3 in contact with the heat generating part 2, and a plurality of heat pipes 4 coupled to the heat transfer block 3, respectively. And a plurality of heat dissipation fins 5 coupled to the heat pipe 4.
상기 전열블럭(3)에는 상기 히트파이프(4)가 삽입되는 수용홈(3a)이 전열블럭(3)의 상면에 형성되며, 히트파이프(4)는 전체적으로 "U"형으로 형성된다. 상기 방열핀(5)의 가장자리에는 상기 히트파이프(4)가 결합되는 관통공(5a)이 형성된다. Receiving grooves 3a into which the heat pipes 4 are inserted are formed in the heat transfer block 3 on the upper surface of the heat transfer block 3, and the heat pipes 4 are formed in a “U” shape as a whole. The through hole 5a to which the heat pipe 4 is coupled is formed at the edge of the heat dissipation fin 5.
그러나, 이와 같은 종래 냉각장치(6)는, 발열부품의 고집적화, 고용량화로 부품의 단위면적당 발열량이 증가하는데 비하여 발열부품의 열을 효과적으로 냉각시키지 못하는 문제가 있다.However, such a conventional cooling device 6 has a problem in that the heat generation of the heat generating parts is not effectively cooled, as the heat generation amount per unit area of the parts increases due to the high integration and high capacity of the heat generating parts.
구체적으로, 첫째 종래 냉각장치(6)는 보드(1)에 탑재된 발열부품(2)의 열이 전열블럭(3)에 일차적으로 흡수된 후 히트파이프(4)에 전달되므로, 전열블럭(3)이 열전달 경계면을 형성하여 발열부품(2)의 열이 효과적으로 히트파이프(4)에 전달되지 않게 된다. Specifically, the first conventional cooling device (6) is the heat of the heating element (2) mounted on the board (1) is first absorbed by the heat transfer block (3), and then transferred to the heat pipe (4), the heat transfer block (3) ) Forms a heat transfer interface so that heat of the heat generating part 2 is not effectively transmitted to the heat pipe 4.
둘째, 히트파이프(4)가 삽입결합되는 관통공(5a)은 방열핀(5)의 가장자리에 집중적으로 배치되므로, 팬에서 불어온 공기유동을 효과적으로 이용하지 못하게 되고, 관통공(5a)의 밀집도가 상대적으로 낮은 방열핀(5)의 중앙부는 가장자리보다 상대적으로 방열효율이 떨어지는 문제가 있다. Second, since the through-hole 5a into which the heat pipe 4 is inserted and coupled is concentrated at the edge of the heat dissipation fin 5, the through-hole 5a is not effectively utilized, and the density of the through-hole 5a is prevented. The relatively low center portion of the heat radiation fins 5 has a problem that the heat radiation efficiency is lower than the edge.
한편, 최근 히트파이프를 직접 발열부품에 닿도록 구성하는 시도가 있으나, 이러한 냉각장치 역시 전열블럭에 "U"형의 히트파이프를 결합한 것으로, 상기 두번째의 문제점을 해결하지 못하는 문제가 있다.On the other hand, there is an attempt to configure the heat pipe to directly contact the heat generating parts, but such a cooling device also combines the heat pipe of the "U" type to the heat transfer block, there is a problem that does not solve the second problem.
본 발명은 상술한 문제점들을 해결하기 위한 것으로서, 별도의 전열블럭을 구비하지 않고 발열부품의 열을 효과적으로 전달하여 냉각효율을 개선한 전자부품용 냉각장치를 제공함을 그 목적으로 한다. The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a cooling device for an electronic component, which improves cooling efficiency by effectively transferring heat of a heat generating part without providing a separate heat transfer block.
상기와 같은 목적을 달성하기 위해 본 발명의 전자부품용 냉각장치는, 발열부품과 접촉하는 접촉면과, 상기 접촉면에 형성된 적어도 하나의 수용홈을 구비하며, 내주면에 윅이 형성된 제1 히트파이프와; 상기 수용홈에 삽입되며 상기 발열부품과 접촉하는 접촉부를 구비하며, 상기 윅이 내주면에 형성된 제2 히트파이프와; 상기 발열부품의 상측에 서로 이격배치되며, 상기 제1 히트파이프와 상기 제2 히트파이프에 결합되는 복수의 방열핀을 포함하는 것을 특징으로 한다. In order to achieve the above object, the present invention provides a cooling device for an electronic component, comprising: a first heat pipe having a contact surface in contact with a heat generating part and at least one receiving groove formed in the contact surface, and having a wick formed on an inner circumferential surface thereof; A second heat pipe inserted into the receiving groove and having a contact portion in contact with the heat generating part, wherein the wick is formed on an inner circumferential surface thereof; Spaced apart from each other on the upper side of the heat generating component, characterized in that it comprises a plurality of heat dissipation fins coupled to the first heat pipe and the second heat pipe.
또한, 상기 접촉부는 상기 발열부품과 면접촉하는 것이 바람직하다. In addition, the contact portion is preferably in surface contact with the heat generating part.
또한, 상기 제1 히트파이프의 횡단면, 및 상기 접촉부로부터 연장되며 상기 방열핀이 결합되는 상기 제2 히트파이프의 연장부의 횡단면은 원형으로 이루어지며, 상기 제1 히트파이프의 내경은 상기 연장부의 내경보다 큰 것이 바람직하다. In addition, the cross section of the first heat pipe and the cross section of the extension portion of the second heat pipe extending from the contact portion and the heat dissipation fins are formed in a circular shape, the inner diameter of the first heat pipe is larger than the inner diameter of the extension portion It is preferable.
또한, 상기 제1 히트파이프는 상기 접촉면으로부터 수직으로 연장되며, 상기 접촉부로부터 연장되며, 상기 방열핀이 결합되는 상기 제2 히트파이프의 연장부는 상기 제1 히트파이프와 평행하게 배치되는 것이 바람직하다. In addition, the first heat pipe extends vertically from the contact surface, extends from the contact portion, and an extension of the second heat pipe to which the heat dissipation fins are coupled is preferably disposed in parallel with the first heat pipe.
또한, 상기 제1 히트파이프는 상기 방열핀의 중앙부에 결합되고, 상기 제2 히트파이프는 상기 방열핀의 가장자리에 결합되는 것이 바람직하다. In addition, the first heat pipe is coupled to the central portion of the heat dissipation fin, it is preferable that the second heat pipe is coupled to the edge of the heat dissipation fin.
또한, 상기 제1 히트파이프는 상기 접촉면의 직상측에 배치되는 베이스부와, 상기 베이스부로부터 연장되는 파이프부를 구비하며, 상기 베이스부의 횡단면적은 상기 파이프부의 횡단면적보다 큰 것이 바람직하다. In addition, the first heat pipe may include a base portion disposed directly above the contact surface and a pipe portion extending from the base portion, and a cross sectional area of the base portion is larger than a cross sectional area of the pipe portion.
또한, 상기 파이프부의 횡단면적은 상기 제2 히트파이프의 횡단면적보다 큰 것이 바람직하다. In addition, the cross-sectional area of the pipe portion is preferably larger than the cross-sectional area of the second heat pipe.
또한, 상기 제1 히트파이프의 횡단면은 원형, 사각형, 삼각형, 또는 육각형 중 어느 하나인 것이 바람직하다. In addition, the cross section of the first heat pipe is preferably any one of a circle, a square, a triangle, or a hexagon.
또한, 상기 접촉면은 원형, 사각형, 또는 육각형 중 어느 하나인 것이 바람직하다. In addition, the contact surface is preferably any one of a circle, a square, or a hexagon.
또한, 상기 수용홈은 상기 접촉면에 직선으로 형성된 것이 바람직하다. In addition, the receiving groove is preferably formed in a straight line on the contact surface.
또한, 상기 수용홈 중 적어도 하나는 곡선으로 형성된 것이 바람직하다. In addition, at least one of the receiving groove is preferably formed in a curved line.
또한, 상기 수용홈이 상기 제1 히트파이프의 내주면으로부터 돌출되어 형성된 것이 바람직하다. In addition, the receiving groove is preferably formed to protrude from the inner peripheral surface of the first heat pipe.
또한, 상기 수용홈은 상기 접촉면의 좌측에서 우측을 지나도록 3개가 형성되며, 상기 접촉면의 중앙부를 지나는 상기 수용홈은 직선으로 이루어지고, 상기 중앙부를 마주하고 형성된 상기 수용홈은 상기 중앙부를 향하여 점진적으로 가까워지는 곡선으로 이루어진 것이 바람직하다. In addition, three receiving grooves are formed so as to pass from the left side to the right side of the contact surface, the receiving groove passing through the center portion of the contact surface is made of a straight line, the receiving groove formed facing the center portion is gradually toward the center portion. It is preferable that the curve is made close to.
본 발명에 따른 전자부품용 냉각장치는, 종래처럼 전열블럭을 구비하지 않고, 발열부품과 접촉하는 접촉면을 구비하는 제1 히트파이프에 의해 발열부품의 열이 직접 전달되어 방열효율을 증대시키고, 상기 접촉면에 형성된 수용홈에 제2 히트파이프가 수용되되 상기 제2 히트파이프도 발열부품과 접촉하도록 하여 방열효율을 증대시킨다. 제1 히트파이프의 내경을 제2 히트파이프의 내경보다 크게 하여, 방열효율이 비약적으로 증대된다.  In the cooling device for an electronic component according to the present invention, heat is not directly provided by a first heat pipe having a contact surface in contact with the heat generating parts without a heat transfer block, thereby increasing heat dissipation efficiency. The second heat pipe is accommodated in the receiving groove formed in the contact surface, but the second heat pipe is also in contact with the heat generating component to increase the heat dissipation efficiency. The inner diameter of the first heat pipe is made larger than that of the second heat pipe, and the heat radiation efficiency is dramatically increased.
또한, 상기 제1 히트파이프는 방열핀의 중앙부에 결합되고, 제2 히트파이프는 방열핀의 가장자리에 결합되므로, 발열부품의 열이 방열핀 전체에 고루 전달되는 효과를 제공한다. In addition, the first heat pipe is coupled to the center portion of the heat dissipation fins, and the second heat pipe is coupled to the edge of the heat dissipation fins, thereby providing an effect that the heat of the heat generating parts is evenly transmitted to the entire heat dissipation fins.
또한, 제1 히트파이프는 방열핀의 중앙부에 결합되므로, 방열핀의 중앙부를 경유하는 공기는 제1 히트파이프에 부딪혀 유동되어 방열효과를 개선한다. In addition, since the first heat pipe is coupled to the center portion of the heat dissipation fin, air passing through the center portion of the heat dissipation fin impinges on the first heat pipe and flows to improve the heat dissipation effect.
도1은 종래 전자부품용 냉각장치의 개략적인 사시도,1 is a schematic perspective view of a conventional cooling device for electronic components;
도2는 도1의 냉각장치가 보드에 설치된 상태의 개략적인 단면도,FIG. 2 is a schematic cross-sectional view of the cooling apparatus of FIG. 1 installed on a board; FIG.
도3은 본 발명 일 실시예에 따른 전자부품용 냉각장치의 개략적인 사시도,3 is a schematic perspective view of a cooling apparatus for an electronic component according to an embodiment of the present invention;
도4는 도3의 측면도, 4 is a side view of FIG. 3;
도5는 도3의 Ⅴ-Ⅴ선을 따라 절개한 단면도,5 is a cross-sectional view taken along the line VV of FIG. 3;
도6은 도3의 저면도,6 is a bottom view of FIG. 3;
도7은 본 발명 다른 실시예에 따른 측면도,7 is a side view according to another embodiment of the present invention;
도8은 도7의 저면도, 8 is a bottom view of FIG. 7;
도9는 본 발명 또 다른 실시예에 따른 사시도,9 is a perspective view according to another embodiment of the present invention;
도10은 도9의 저면도,10 is a bottom view of FIG. 9;
도11 내지 도13은 본 발명 또 다른 실시예에 따른 전자부품용 냉각장치의 저면을 도시한 도면, 11 to 13 are views illustrating a bottom surface of a cooling device for an electronic component according to still another embodiment of the present invention;
도14 내지 도21은 본 발명 또 다른 실시예에 따른 전자부품용 냉각장치의 단면을 개략적으로 도시한 도면이다. 14 to 21 are schematic cross-sectional views of a cooling apparatus for an electronic component according to still another embodiment of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
10... 제1 히트파이프 12... 접촉면10 ... 1st heat pipe 12 ... contact surface
14... 수용홈 16... 윅14 ... accommodation home 16 ... Wick
17... 베이스부 18... 파이프부17 ... Base 18 ... Pipe
20... 제2 히트파이프 22... 접촉부 20 ... second heat pipe 22 ... contacts
24... 밴딩부 26... 연장부24 ... banding section 26 ... extension section
30... 방열핀 30 ... heat sink fins
본 발명에 따른 전자부품용 냉각장치는, 컴퓨터와 같은 전자기기에 내장된 전자부품 중에서 동작시 열을 발생시키는 발열부품을 냉각시키는데 사용된다. 예컨대, 컴퓨터의 메인보드에 실장된 중앙처리장치(central processing unit;CPU)나, 그래픽카드에 실장된 칩셋 등과 같은 발열부품의 냉각을 위해 사용된다. The cooling device for electronic components according to the present invention is used to cool a heat generating component that generates heat during operation among electronic components embedded in an electronic device such as a computer. For example, it is used for cooling a heat generating component such as a central processing unit (CPU) mounted on a main board of a computer or a chipset mounted on a graphics card.
본 발명의 일 실시예에 따른 전자부품용 냉각장치를 도3 내지 도6을 참조하여 상세히 설명한다. A cooling apparatus for an electronic component according to an embodiment of the present invention will be described in detail with reference to FIGS. 3 to 6.
도3은 본 발명 일 실시예에 따른 전자부품용 냉각장치의 개략적인 사시도이고, 도4는 도3의 측면도이다. 도5는 도3의 Ⅴ-Ⅴ선을 따라 절개한 단면도이며, 도6은 도3의 저면도이다. 3 is a schematic perspective view of a cooling apparatus for an electronic component according to an embodiment of the present invention, and FIG. 4 is a side view of FIG. FIG. 5 is a cross-sectional view taken along the line VV of FIG. 3, and FIG. 6 is a bottom view of FIG. 3.
먼저 도3을 참조하면, 본 발명에 따른 전자부품용 냉각장치(100)는, 발열부품과 접촉하는 접촉면(12)과, 상기 접촉면(12)에 형성된 적어도 하나의 수용홈(14)을 구비하며, 내주면에 윅(16)이 형성된 제1 히트파이프(10)와; 상기 수용홈(14)에 삽입되며 상기 발열부품과 접촉하는 접촉부(22)를 구비하며, 상기 윅(16)이 내주면에 형성된 제2 히트파이프(20)와; 상기 발열부품의 상측에 서로 이격배치되며, 상기 제1 히트파이프(10)와 상기 제2 히트파이프(20)에 결합되는 복수의 방열핀(30)을 포함하여 구성된다.First, referring to FIG. 3, the electronic device cooling apparatus 100 according to the present invention includes a contact surface 12 in contact with a heating component, and at least one receiving groove 14 formed in the contact surface 12. A first heat pipe 10 having a wick 16 formed on an inner circumferential surface thereof; A second heat pipe (20) inserted into the receiving groove (14) and having a contact portion (22) contacting the heat generating part, wherein the wick (16) is formed on an inner circumferential surface thereof; Spaced apart from each other on the upper side of the heat generating component, and comprises a plurality of heat dissipation fins 30 are coupled to the first heat pipe 10 and the second heat pipe 20.
상기 제1 히트파이프(10)의 접촉면(12)은 발열부품과 직접 접촉하여 발열부품으로부터 발생되는 열을 전달받으며, 상기 접촉면(12)은 발열부품과 접하도록 평탄하게 이루어진다. 상기 접촉면(12)은 제1 히트파이프(10)의 바닥면에 해당하는 부분으로, 본 실시예에서 제1 히트파이프(10)는 음료수 캔 형태로 일체로 형성되어 있다. 도6에 도시된 바와 같이, 본 실시예에서, 상기 접촉면(12)은 원형으로 이루어진다. 물론, 상기 접촉면(12)의 형상은 원형 이외에 사각형, 삼각형, 육각형 등의 다양한 형태로 이루어질 수 있다. The contact surface 12 of the first heat pipe 10 is in direct contact with the heat generating parts to receive heat generated from the heat generating parts, and the contact surface 12 is made flat to contact the heat generating parts. The contact surface 12 is a portion corresponding to the bottom surface of the first heat pipe 10, and in this embodiment, the first heat pipe 10 is integrally formed in the shape of a beverage can. As shown in Fig. 6, in this embodiment, the contact surface 12 is circular. Of course, the contact surface 12 may be formed in various shapes such as square, triangle, hexagon, etc. in addition to the circular shape.
상기 제1 히트파이프(10)는 상기 접촉면(12)으로부터 수직으로 연장되며, 상기 방열핀(30)의 중앙부에 결합된다. 상기 제1 히트파이프(10)의 상단부는 폐쇄되어 있으며, 별도의 마감부재를 사용하여 제1 히트파이프(10)의 상단부를 폐쇄시킬 수도 있다. The first heat pipe 10 extends vertically from the contact surface 12 and is coupled to a central portion of the heat dissipation fin 30. The upper end of the first heat pipe 10 is closed, and a separate finishing member may be used to close the upper end of the first heat pipe 10.
본 실시예에서, 상기 제1 히트파이프(10)의 횡단면은 원형으로 이루어진다. 물론, 제1 히프파이프의 횡단면은 원형 이외에, 사각형, 또는 육각형 등 다양하게 변화가능하다. 상기 제1 히트파이프(10)는 발열부품의 열을 흡수하여 방열핀(30)으로 전달함과 동시에, 상기 방열핀(30)의 중앙부에 위치하여 방열핀(30)의 중앙부를 통하여 이동하는 공기를 유동시키는 역할을 한다. 즉, 팬을 사용하거나, 또는 무팬(fanless)형의 다양한 공기유동유발장치로부터 발생된 공기가 제1 히트파이프(10)에 부딪혀 공기 흐름이 변경됨으로써, 방열핀(30)의 전영역에 공기가 전달되어 냉각효율이 개선된다. In this embodiment, the cross section of the first heat pipe 10 is circular. Of course, the cross section of the first bottom pipe may be variously changed, such as a square or a hexagon, in addition to a circular shape. The first heat pipe 10 absorbs heat from the heat generating parts and transfers the heat to the heat dissipation fins 30, and at the same time, flows air moving through the center of the heat dissipation fins 30. Play a role. That is, by using a fan or air generated from various fanless air flow inducing devices hit the first heat pipe 10, the air flow is changed, so that air is delivered to all areas of the heat dissipation fin 30. Thus, the cooling efficiency is improved.
도4 및 도5에 도시된 바와 같이, 상기 수용홈(14)은 상기 접촉면(12)에 적어도 하나가 구비된다. 본 실시예에서, 상기 수용홈(14)은 상기 접촉면(12)으로부터 내측으로 함몰되어 형성된다. 즉, 상기 수용홈(14)은 상기 제1 히트파이프(10)의 내주면으로부터 돌출되어 형성된다. 상기 수용홈(14)이 제1 히트파이프(10)의 내주면으로부터 돌출되어 상기 윅의 기화표면적(발열부품으로부터 전달된 열에 의해 작동유체가 액상에서 기체상태로 상변화될 때의 표면적)을 넓히게 된다. 상기 수용홈(14)은 상기 접촉면(12)에 직선으로 형성되거나, 복수의 수용홈(14)이 형성되는 경우에 적어도 하나는 곡선으로 형성될 수 있다. As shown in FIGS. 4 and 5, at least one receiving groove 14 is provided on the contact surface 12. In this embodiment, the receiving groove 14 is formed recessed inward from the contact surface 12. That is, the receiving groove 14 is formed to protrude from the inner peripheral surface of the first heat pipe (10). The receiving groove 14 protrudes from the inner circumferential surface of the first heat pipe 10 to widen the vaporization surface area of the wick (surface area when the working fluid phase changes from a liquid phase to a gaseous state by heat transferred from a heat generating component). . The receiving groove 14 may be formed in a straight line on the contact surface 12 or at least one may be formed in a curved line when a plurality of receiving grooves 14 are formed.
도6에 도시된 바와 같이, 본 실시예에서, 수용홈(14)은 3개가 구비되며, 상기 접촉면(12)을 좌우를 관통하여 경유하도록 직선형으로 이루어진다. 물론, 수용홈(14)의 개수와, 형태는 발열부품의 크기, 형상, 방열효율 등을 고려하여 변경될 수 있다. 즉, 본 실시예에서는, 수용홈(14)의 연장방향이 접촉면(12)을 경유하는 방향을 기준으로 직선형으로 이루어지나, 곡선형으로 이루어지거나, 직선형 또는 곡선형이 결합된 형태로 이루어질 수 있다. 또한, 본 실시예에서, 수용홈(14)은 접촉면(12)으로부터 내측으로 함몰되어 그 내주면이 곡면으로 이루어지나, 다각형의 형태를 가질 수도 있다. 수용홈(14)의 형태에 대하여는 자세히 후술하도록 한다. As shown in Fig. 6, in the present embodiment, three receiving grooves 14 are provided, and are made in a straight line to pass through the contact surface 12 through left and right. Of course, the number and shape of the receiving grooves 14 may be changed in consideration of the size, shape, heat dissipation efficiency and the like of the heat generating parts. That is, in the present embodiment, the extending direction of the receiving groove 14 is made in a straight line on the basis of the direction via the contact surface 12, but may be made in a curved form, or a straight or curved form combined. . In addition, in the present embodiment, the receiving groove 14 is recessed inward from the contact surface 12 so that the inner peripheral surface is made of a curved surface, but may have a polygonal shape. The shape of the receiving groove 14 will be described later in detail.
상기 제1 히트파이프(10)의 내주면에는 윅(16)이 형성된다. 상기 제1 히트파이프(10)는 열전도율이 좋은 구리, 알루미늄 등과 같은 금속으로 이루어지며, 상기 윅(16)은 작동유체를 모세압에 의해 이동시키는 통로 역할을 한다. 본 실시예에 있어서, 상기 윅(16)은 상기 제1 히트파이프(10)의 내주면에 금속분말이 소결되어 형성된 소결윅이다. 물론, 상기 윅(16)은 금속분말이 소결된 소결윅 뿐만 아니라, 다양한 형태의 윅(16)이 사용될 수 있다. 예컨대, 극소직경의 선재로 촘촘히 짜여진 망사형태의 메쉬부재가 사용될 수 있다. 따라서, 윅(16)은 소결윅으로만 한정되지 않는다.A wick 16 is formed on the inner circumferential surface of the first heat pipe 10. The first heat pipe 10 is made of a metal such as copper, aluminum, etc. having good thermal conductivity, and the wick 16 serves as a passage for moving the working fluid by capillary pressure. In the present embodiment, the wick 16 is a sintered wick formed by sintering metal powder on the inner circumferential surface of the first heat pipe 10. Of course, the wick 16 may be used in addition to the sintered wick sintered metal powder, wick 16 of various forms. For example, a mesh type mesh member woven tightly with a very small diameter wire rod may be used. Thus, the wick 16 is not limited to only sintered wicks.
참고적으로, 본 실시예에 사용된 윅(16), 즉 소결윅을 형성하기 위해서, 맨드럴(mandrel)를 사용한다. 상기 맨드럴은 제1 히트파이프(10)의 내경보다 작은 내경을 갖는 원기둥 형태의 부재로, 상기 맨트럴의 외주면이 제1 히트파이프(10)의 내주면과 일정간격 이격되도록, 상기 제1 히트파이프(10) 내부에 삽입한 후, 이격공간에 금속분말을 채워넣고 소결시켜 소결윅을 형성한다. 또한, 상기 제1 히트파이프(10)에는 작동유체가 채워지게 된다. 상기 작동유체는 액상에서 기상으로 상변화를 반복하면서 제1 히트파이프(10)를 순환하여 고온부의 열을 저온부로 전달하는 역할을 하며, 이때 상기 소결윅은 상기 작동유체를 모세관력에 의해 이동시키는 통로 역할을 한다. 상기 작동유체는 종래 히트파이프에서 사용되는 물질과 동일한 물질을 사용한다. For reference, a mandrel is used to form the wick 16, that is, the sintered wick used in the present embodiment. The mandrel is a cylindrical member having an inner diameter smaller than that of the first heat pipe 10, and the first heat pipe is spaced apart from the inner circumferential surface of the first heat pipe 10 by a predetermined distance. (10) After inserting the inside, the metal powder is filled in the space and sintered to form a sintered wick. In addition, the first heat pipe 10 is filled with a working fluid. The working fluid circulates the first heat pipe 10 while repeating the phase change from the liquid phase to the gaseous phase to transfer heat of the high temperature part to the low temperature part, and the sintering wick moves the working fluid by capillary force. It acts as a pathway. The working fluid uses the same material as that used in the conventional heat pipe.
상기 제2 히트파이프(20)는 상기 제1 히트파이프(10)의 수용홈(14)에 삽입되고, 발열부품에 접촉하는 접촉부(22)를 구비한다. 상기 제2 히트파이프(20)는 상기 제1 히트파이프(10)와 마찬가지로 직접적으로 발열부품의 열을 전달받도록 구성된다. The second heat pipe 20 is inserted into the receiving groove 14 of the first heat pipe 10 and includes a contact portion 22 contacting the heat generating component. Like the first heat pipe 10, the second heat pipe 20 is configured to receive heat of a heat generating component directly.
도3 및 도4를 참조하면, 상기 제2 히트파이프(20)는 전체적으로 "U"형으로 이루어지며, 제1 히트파이프(10)의 내경보다 작은 내경을 갖는다. 상기 제2 히트파이프(20)의 양단부는 폐쇄되어 있다. 3 and 4, the second heat pipe 20 is generally “U” shaped and has an inner diameter smaller than that of the first heat pipe 10. Both ends of the second heat pipe 20 are closed.
상기 제2 히트파이프(20)는 접촉부(22)와 밴딩부(24)와 연장부(26)를 포함하여 구성된다. The second heat pipe 20 includes a contact portion 22, a bending portion 24, and an extension portion 26.
도5를 참조하면, 상기 접촉부(22)는 상기 수용홈(14)에 삽입되는 부분 중에서 제1 히트파이프(10)의 접촉면(12)과 동일한 평면에 위치하여 발열부품과 접촉하는 부분을 말한다. 상기 밴딩부(24)는 상기 수용홈(14)을 빠져나온 부분 중에서 상방향으로 절곡된 부분이다. 상기 연장부(26)는 상기 밴딩부(24)로부터 상측으로 연장되는 부분이며, 상기 방열핀(30)이 결합되는 부분이다. Referring to FIG. 5, the contact portion 22 refers to a portion of the portion inserted into the receiving groove 14 in contact with the heat generating part in the same plane as the contact surface 12 of the first heat pipe 10. The bending portion 24 is a portion bent upward from the portion exiting the receiving groove 14. The extension part 26 is a part extending upward from the bending part 24 and is a part to which the heat dissipation fin 30 is coupled.
상기 접촉부(22)는 관형의 제2 히트파이프(20)가 수용홈(14)에 삽입된 후, 후공정에 의해 접촉면(12)과 동일한 평면이 되도록 가압되어 형성되거나, 또는 제2 히트파이프(20)에 접촉부(22)를 가압하여 형성한 후에, 상기 수용홈(14)에 삽입될 수 있다. 따라서, 상기 접촉부(22)는 발열부품과 면접촉하므로, 발열부품의 열을 효과적으로 전달받는다. The contact portion 22 is formed by pressing the tubular second heat pipe 20 into the receiving groove 14 and being pressed to be flush with the contact surface 12 by a later process, or the second heat pipe ( After pressing the contact portion 22 to form 20, it may be inserted into the receiving groove (14). Therefore, since the contact portion 22 is in surface contact with the heat generating parts, the heat of the heat generating parts is effectively transmitted.
상기 연장부(26)는 제1 히트파이프(10)와 마찬가지로, 상방향으로 연장되며 제1 히트파이프(10)와 평행하게 배치된다. 상기 연장부(26)는 상기 방열핀(30)의 가장자리에 결합된다. 상기 연장부(26)의 횡단면은 원형으로 이루어지며, 상기 연장부(26)의 내경은 제1 히트파이프(10)의 내경보다 작게 이루어진다. Like the first heat pipe 10, the extension part 26 extends upward and is disposed parallel to the first heat pipe 10. The extension part 26 is coupled to an edge of the heat dissipation fin 30. The cross section of the extension part 26 is circular, and the inner diameter of the extension part 26 is smaller than the inner diameter of the first heat pipe 10.
상기 제2 히트파이프(20)의 내주면에는, 상기 제1 히트파이프(10)의 내주면에서와 마찬가지로 윅(16)이 형성되며, 작동유체가 채워진다. 상기 윅(16)과 작동유체의 형성 및 기능에 대하여 상술한 바, 구체적인 설명은 생략한다.A wick 16 is formed on the inner circumferential surface of the second heat pipe 20, as in the inner circumferential surface of the first heat pipe 10, and a working fluid is filled. As described above with respect to the formation and function of the wick 16 and the working fluid, detailed description thereof will be omitted.
상기 방열핀(30)은 발열부품의 상측에 서로 이격되어 복수개가 배치되며, 상기 제1 히트파이프(10) 및 제2 히트파이프(20)와 결합된다. 상기 방열핀(30)에는 상기 제1 히트파이프(10)가 결합되는 제1 히트파이프 결합공(31)이 중앙부에 형성되고, 상기 제2 히트파이프(20)가 결합되는 제2 히트파이프 결합공(32)이 가장자리에 형성된다. 본 실시예에서, 상기 방열핀(30)은 서로 일정간격으로 상하방향으로 이격되어 있으며, 제2 히트파이프 결합공(32)의 수는 제1 히트파이프(10)의 수용홈(14)에 결합되는 제2 히트파이프(20)의 개수에 따라 증감가능하다. 물론, 방열핀(30)의 형상은 도3에 도시된 이외의 형상도 가능하다. The plurality of heat dissipation fins 30 are spaced apart from each other on the upper side of the heat generating part, and are coupled to the first heat pipe 10 and the second heat pipe 20. The heat dissipation fin 30 has a first heat pipe coupling hole 31 to which the first heat pipe 10 is coupled, and a second heat pipe coupling hole to which the second heat pipe 20 is coupled. 32) is formed on the edge. In this embodiment, the heat dissipation fins 30 are spaced apart from each other in the vertical direction at regular intervals, the number of the second heat pipe coupling hole 32 is coupled to the receiving groove 14 of the first heat pipe 10. The number of second heat pipes 20 may be increased or decreased. Of course, the heat dissipation fin 30 may have a shape other than that shown in FIG.
이하, 상기 구성에 의한 전자부품용 냉각장치(100)의 작용 및 효과를 구체적으로 설명한다. Hereinafter, the operation and effect of the cooling device 100 for electronic components by the above configuration will be described in detail.
제1 히트파이프(10)의 접촉면(12)과, 상기 접촉면(12)에 형성된 수용홈(14)에 삽입된 제2 히트파이프(20)의 접촉부(22)는 발열부품과 직접적으로 접촉하여 열을 전달받게 된다. 물론, 본 실시예에서 모든 제2 히트파이프(20)의 접촉부(22)는 발열부품과 직접적으로 접촉되나, 예컨대, 발열부품의 크기가 매우 작은 경우에, 일부의 제2 히트파이프(20)의 접촉면(12)은 수용홈(14)에 삽입된 상태에서 간접적으로 발열부품의 열을 전달받을 수도 있다.The contact surface 12 of the first heat pipe 10 and the contact portion 22 of the second heat pipe 20 inserted into the receiving groove 14 formed in the contact surface 12 are in direct contact with the heat generating part to heat. Will be delivered. Of course, in this embodiment, the contact portions 22 of all the second heat pipes 20 are in direct contact with the heat generating parts. For example, in the case where the size of the heat generating parts is very small, some of the second heat pipes 20 The contact surface 12 may be indirectly transferred heat of the heat generating part in a state of being inserted into the receiving groove 14.
먼저, 상기 제1 히트파이프(10)의 접촉면(12)에 전달된 열은 제1 히트파이프(10) 내부에 수용된 작동유체를 기화시키게 되고, 기화된 작동유체가 제1 히트파이프(10) 상측으로 이동하면서 방열핀(30)으로 열을 전달한다. 방열핀(30)으로 열을 전달한 작동유체는 액상으로 상변화하고, 윅(16)의 모세관력에 의해 다시 발열부품 측으로 이동된다. 이와 같이, 작동유체가 순환하면서 제1 히트파이프(10)에 의해 발열부품이 냉각되게 된다. First, the heat transferred to the contact surface 12 of the first heat pipe 10 vaporizes the working fluid contained in the first heat pipe 10, and the vaporized working fluid is above the first heat pipe 10. Transferring heat to the heat dissipation fin 30 while moving to. The working fluid which transfers heat to the heat dissipation fin 30 is phase-changed into the liquid phase and is moved back to the heat generating part by the capillary force of the wick 16. In this way, the heat generating part is cooled by the first heat pipe 10 while the working fluid circulates.
제2 히트파이프(20)도 제1 히트파이프(10)와 마찬가지로, 접촉부(22)로부터 발열부품의 열을 직접 전달받아 제2 히트파이프(20) 내부에 수용된 작동유체를 기화시킨다. 기화된 작동유체는 상측으로 연장된 연장부(26) 측으로 이동하면서 열을 방열핀(30)으로 전달한 후, 액상으로 상변화하여 윅(16)에 의해 발열부품 측을 이동한다. 이와 같이, 작동유체가 순환하면서 제2 히트파이프(20)에 의한 발열부품의 냉각이 이루어진다. Like the first heat pipe 10, the second heat pipe 20 receives heat of the heat generating component directly from the contact portion 22 to vaporize the working fluid contained in the second heat pipe 20. The vaporized working fluid transfers heat to the heat dissipation fin 30 while moving toward the extension part 26 extending upward, and then changes into a liquid phase to move the heating part side by the wick 16. In this way, while the working fluid is circulated, the heat generating part is cooled by the second heat pipe 20.
이처럼, 본 실시예에 따른 전자부품용 냉각장치(100)는, 발열부품과 직접적으로 접촉하는 접촉면(12)을 구비하고, 접촉면(12)으로부터 상측으로 연장되는 제1 히트파이프(10)와, 상기 접촉면(12)에 형성된 수용홈(14)에 삽입되며 발열부품과 직접 접촉하는 제2 히트파이프(20)를 구비하므로, 발열부품의 열을 효과적으로 전달받아 냉각효율을 현저히 향상시킨다. 또한, 제1 히트파이프(10)의 내경을 제2 히트파이프(20)이 내경보다 크게 하여 냉각효율을 극대화시킨다.As described above, the electronic device cooling apparatus 100 according to the present embodiment includes a first heat pipe 10 having a contact surface 12 which is in direct contact with a heat generating component, and extending upward from the contact surface 12. Since the second heat pipe 20 is inserted into the receiving groove 14 formed in the contact surface 12 and is in direct contact with the heat generating parts, the heat of the heat generating parts is effectively transmitted, thereby significantly improving the cooling efficiency. In addition, the inner diameter of the first heat pipe 10 is larger than the inner diameter of the second heat pipe 20 to maximize the cooling efficiency.
즉, 종래에는 전열블럭에 히트파이프가 결합되고, 상기 히트파이프에 방열핀(30)이 결합된 구조이므로, 전열블럭이 열전달 경계면을 형성하여 발열부품의 열을 히트파이프에 효과적으로 전달하지 못하게 되고, 전열블럭은 본 발명의 제1 히트파이프(10)와 같은 냉각작용을 하지 못하는 한계가 있다. 따라서, 본 발명 실시예에 따른 전자부품 냉각장치(100)에 채용된 제1 히트파이프(10)는 발열부품의 열을 직접 전달받음과 동시에 냉각작용을 겸하게 되므로, 냉각효율이 극대화되는 효과를 제공한다.That is, in the related art, since the heat pipe is coupled to the heat transfer block, and the heat dissipation fins 30 are coupled to the heat pipe, the heat transfer block forms a heat transfer interface so that heat of the heat generating parts cannot be efficiently transferred to the heat pipe. The block is limited in that it does not perform the cooling action, such as the first heat pipe 10 of the present invention. Therefore, since the first heat pipe 10 employed in the electronic component cooling apparatus 100 according to the embodiment of the present invention directly receives heat of the heating component and simultaneously serves as a cooling function, the cooling efficiency is maximized. do.
또한, 제1 히트파이프(10)는 방열핀(30)의 중앙부에 결합되고, 제2 히트파이프(20)는 방열핀(30)의 가장자리에 결합되므로, 방열핀(30)의 전영역에 걸쳐 고루 열을 전달하여 방열핀(30)의 전면적을 효과적으로 활용할 수 있다. 종래 방열핀(30)의 가장자리에 히트파이프가 결합된 형태에서는, 방열핀(30)은 가장자리 부분에 집중적으로 열을 받게 되어 방열핀(30)의 면적을 효과적으로 활용하지 못하는 문제가 있었으나, 본 발명은 이러한 문제를 효과적으로 해결한다.In addition, since the first heat pipe 10 is coupled to the center portion of the heat dissipation fin 30, the second heat pipe 20 is coupled to the edge of the heat dissipation fin 30, and thus distributes heat evenly over the entire area of the heat dissipation fin 30. By transferring, the entire area of the heat dissipation fins 30 can be effectively utilized. In the form in which the heat pipe is coupled to the edge of the heat dissipation fin 30, the heat dissipation fin 30 receives heat intensively at the edge portion, so that the area of the heat dissipation fin 30 is not effectively utilized, but the present invention has such a problem. Solves the problem effectively.
또한, 방열핀(30)으로 들어오는 공기는 방열핀(30)의 중앙부에 배치되는 제1 히트파이프(10)에 부딪히면서 유동하게 되어, 냉각효율을 극대화시키게 된다. 구체적으로, 방열핀(30)의 중앙부에 제1 히트파이프(10)가 존재하지 않는 경우에, 방열핀(30)의 중앙부를 지나는 공기는 상기 중앙부를 그대로 관통하여 방열핀(30)을 빠져나가게 된다. 그리고, 방열핀(30)의 가장자리를 지나는 공기는 제2 히트파이프(20)에 충돌하지만, 공기흐름방향과 동일한 방향으로 배치된 제2 히트파이프(20) 중 일부는 공기와 충분히 접촉되지 못한다. 즉, 앞쪽에 위치한 제2 히트파이프(20)는 불어오는 공기와 직접 부딪히나, 상기 앞쪽에 위치한 제2 히트파이프(20)의 뒤쪽에 배치된 제2 히트파이프(20)에는 공기가 충분히 흐르지 않게 된다. 반면에, 본 발명은, 방열핀(30)의 중앙부를 흐르는 공기가 제1 히트파이프(10)의 외주면과 부딪혀 유동되어, 상기 뒤쪽에 배치된 제2 히트파이프(20)에도 공기가 전달되도록 한다. 제2 히트파이프(20)가 공기 흐름 방향과 동일한 방향으로 배치되더라고, 제1 히트파이프(10)에 의해 유동된 공기가 모든 제2 히트파이프(20)에 고루 전달되어 냉각효율을 개선하게 된다. In addition, the air entering the heat dissipation fins 30 flows while hitting the first heat pipe 10 disposed at the center of the heat dissipation fins 30, thereby maximizing cooling efficiency. Specifically, in the case where the first heat pipe 10 does not exist in the center portion of the heat dissipation fin 30, the air passing through the center portion of the heat dissipation fin 30 passes through the center portion and exits the heat dissipation fin 30. The air passing through the edge of the heat dissipation fin 30 impinges on the second heat pipe 20, but some of the second heat pipes 20 arranged in the same direction as the air flow direction are not sufficiently in contact with the air. That is, the second heat pipe 20 positioned in front of the air directly collides with the blowing air, but the air is not sufficiently flowed into the second heat pipe 20 disposed behind the second heat pipe 20 located in the front of the air. do. On the other hand, in the present invention, the air flowing in the central portion of the heat dissipation fin 30 hits the outer circumferential surface of the first heat pipe 10 and flows, so that the air is also transmitted to the second heat pipe 20 disposed at the rear side. Even if the second heat pipe 20 is disposed in the same direction as the air flow direction, the air flowed by the first heat pipe 10 is uniformly delivered to all the second heat pipes 20 to improve the cooling efficiency. .
한편, 본 발명에 따른 전자부품용 냉각장치는, 상술한 실시예 이외에 여러 가지 다른 변형된 실시예로 구현될 수 있다. 아래 변형된 실시예를 설명함에 있어서, 도3의 실시예와 동일한 기능을 수행하는 구성요소에 대하여는 동일한 참조번호를 부여하고, 그 구체적인 설명은 생략한다. Meanwhile, the cooling device for an electronic component according to the present invention may be implemented in various other modified embodiments in addition to the above-described embodiment. In the following modified embodiment, the same reference numerals are assigned to components that perform the same functions as the embodiment of FIG. 3, and a detailed description thereof will be omitted.
도7은 본 발명의 다른 실시예에 따른 전자부품용 냉각장치(200)의 측면도이고, 도8은 도7의 저면도이다. FIG. 7 is a side view of the cooling apparatus 200 for an electronic component according to another embodiment of the present invention, and FIG. 8 is a bottom view of FIG.
본 실시예에 따른 전자부품용 냉각장치(200)는, 도3의 실시예와 달리, 제1 히트파이프(10)가 베이스부(17)와 파이프부(18)로 이루어진다. 상기 베이스부(17)는 접촉면(12)의 직상측에 배치되는 부분이고, 상기 파이프부(18)는 상기 베이스부(17)로부터 상측으로 연장되는 부분이다. 상기 베이스부(17)와 상기 파이프부(18)는 일체로 형성된다. 상기 제1 히트파이프(10)의 접촉면(12)의 형상은 원형으로 이루어지며, 수용홈(14)은 접촉면(12)의 좌우방향으로 직선으로 지나도록 형성된다.Unlike the embodiment of FIG. 3, in the electronic device cooling apparatus 200 according to the present embodiment, the first heat pipe 10 includes a base 17 and a pipe 18. The base portion 17 is a portion disposed directly above the contact surface 12, and the pipe portion 18 is a portion extending upward from the base portion 17. The base portion 17 and the pipe portion 18 are integrally formed. The contact surface 12 of the first heat pipe 10 is formed in a circular shape, the receiving groove 14 is formed to pass in a straight line in the left and right direction of the contact surface (12).
상기 베이스부(17)의 횡단면적은 상기 파이프부(18)의 횡단면적보다 넓게 이루어지며, 상기 베이스부(17) 및 파이프부(18)의 내주면에는 윅(16)이 형성되어 있다. 상기 베이스부(17)의 바닥면이 접촉면(12)을 구성하게 되며, 베이스부(17)의 횡단면적은 상기 파이프부(18)의 횡단면적보다 넓으므로 비교적 넓은 접촉면(12)을 갖게 된다. 본 실시예에 따르면, 상술한 전자부품용 냉각장치(200)에 비하여 더 넓은 접촉면(12)을 구성할 수 있는 장점이 있다. The cross-sectional area of the base portion 17 is wider than that of the pipe portion 18, and a wick 16 is formed on the inner circumferential surfaces of the base portion 17 and the pipe portion 18. The bottom surface of the base portion 17 constitutes the contact surface 12, and since the cross-sectional area of the base portion 17 is wider than the cross-sectional area of the pipe portion 18, the base surface 17 has a relatively wide contact surface 12. According to the present embodiment, there is an advantage that a wider contact surface 12 can be configured than the above-described cooling device 200 for electronic components.
본 실시예에 있어서, 상기 파이프부(18)의 횡단면적은 상기 제2 히트파이프(20)의 횡단면적보다 크게 이루어지며, 상기 횡단면의 형상은 모두 원형으로 이루어진다. 그 외 본 실시예에 따른 구성, 작용 및 효과는, 도3의 실시예와 유사하므로 구체적인 설명은 생략한다. In this embodiment, the cross-sectional area of the pipe portion 18 is made larger than the cross-sectional area of the second heat pipe 20, the shape of the cross section is all circular. In addition, since the configuration, operation and effects according to the present embodiment are similar to those of the embodiment of FIG.
도9 및 도10은 본 발명에 따른 또 실시예를 도시한다. 본 실시예에 따른 전자부품용 냉각장치(300)는 도3의 실시예와 달리, 제1 히트파이프(10)의 접촉면(12)의 형상 및 제1 히트파이프(10)의 횡단면이 사각형으로 이루어진다. 제1 히트파이프(10)가 접촉할 발열부품의 면이 사각형인 경우에 접촉면(12)을 사각형으로 형성하여, 발열부품의 열을 효과적으로 전달받을 수 있게 된다.9 and 10 show another embodiment according to the present invention. Unlike the embodiment of FIG. 3, in the electronic device cooling apparatus 300 according to the present embodiment, the shape of the contact surface 12 of the first heat pipe 10 and the cross section of the first heat pipe 10 have a quadrangle. . When the surface of the heat generating part to be contacted by the first heat pipe 10 is a quadrangle, the contact surface 12 may be formed in a rectangle, so that heat of the heat generating part may be effectively transmitted.
도11 내지 도13에 개시된 실시예에 따른면, 수용홈(14)의 형상이 다양한 형태로 변형가능함을 이해할 수 있다. 11 to 13, it can be understood that the shape of the receiving groove 14 can be modified in various forms.
도11에 따른 전자부품용 냉각장치(400)는 접촉면(12)을 좌우로 지나는 3개의 수용홈(14)이 구비되며, 접촉면(12)의 중앙부를 지나는 수용홈(14)은 직선형으로 형성되고, 상기 중앙부를 마주하고 형성된 수용홈(14)은 상기 중앙부를 향하여 점진적으로 가까워지는 곡선형으로 이루어진다. 본 실시예에 따른 전자부품용 냉각장치(400)는, 발열부품과 접촉하는 제2 히트파이프(20)의 접촉부(22)를 발열부품에 집중시켜 냉각효율을 향상시킬 수 있는 장점이 있다.11 is provided with three receiving grooves 14 passing through the contact surface 12 to the left and right, and the receiving groove 14 passing through the central portion of the contact surface 12 is formed in a straight shape. The receiving groove 14 formed facing the central portion is formed in a curved shape that gradually approaches toward the central portion. The electronic device cooling apparatus 400 according to the present embodiment has an advantage of improving the cooling efficiency by concentrating the contact portion 22 of the second heat pipe 20 in contact with the heat generating component to the heat generating component.
도12에 따른 전자부품용 냉각장치(500)는, 접촉면(12)을 좌우로 지나는 3개의 수용홈(14)이 구비되며, 접촉면(12)의 중앙부를 지나는 수용홈(14)은 직선형으로 형성된다. 상기 중앙부를 마주하고 형성된 수용홈(14) 중에서, 상부에 위치한 수용홈(14)은 아래로 오목한 "∪" 형상으로 이루어지고, 하부에 위치한 수용홈(14)은 위로 볼록한 "∩" 형상으로 이루어진다. 12 is provided with three receiving grooves 14 passing through the contact surface 12 to the left and right, and the receiving groove 14 passing through the central portion of the contact surface 12 is formed in a straight line. do. Of the receiving grooves 14 formed facing the central portion, the receiving groove 14 located in the upper portion is formed in a concave downward "∪" shape, the lower receiving groove 14 is formed in a convex "∩" shape. .
도13에 따른 전자부품용 냉각장치(600)는, 수용홈(14)이 접촉면(12)을 좌우로 관통하지 아니하며, 접촉면(12)의 좌측 및 우측 각각으로부터 고리형으로 형성된다. 즉, 제2 히트파이프(20)가 좌측 및 우측에 각각 결합되며, 그 일단부가 고리형으로 접촉면(12)에 삽입되도록 수용홈(14)이 고리형으로 형성된다. 상술한 전자부품용 냉각장치(400,500,600)에 의해, 발열부품의 형상에 따라서 수용홈(14)의 형태가 적절히 변형가능하다는 것을 이해할 수 있다. In the cooling device 600 for electronic components shown in FIG. 13, the receiving groove 14 does not penetrate the contact surface 12 from side to side, and is formed in an annular shape from each of the left and right sides of the contact surface 12. That is, the second heat pipe 20 is coupled to the left and right, respectively, the receiving groove 14 is formed in an annular shape so that one end thereof is inserted into the contact surface 12 in an annular shape. It can be understood that the shape of the accommodating groove 14 can be appropriately modified according to the shape of the heat generating part by the above-described cooling device for the electronic component 400, 500, 600.
도14에 따른 전자부품용 냉각장치(700)는, 제1 히트파이프(10)의 접촉면(12)의 두께를, 도3의 실시예에 따른 접촉면의 두께보다 두껍게 하여, 제1 히트파이프(10)의 바닥면의 내주면이 상측으로 돌출되지 않도록 형성되어 있다. In the electronic device cooling apparatus 700 according to FIG. 14, the thickness of the contact surface 12 of the first heat pipe 10 is made thicker than the thickness of the contact surface according to the embodiment of FIG. 3. The inner circumferential surface of the bottom surface of the bottom face) is formed so as not to protrude upward.
도15에 따른 전자부품용 냉각장치(800)는, 제1 히트파이프(10)의 접촉면(12)이 별도의 하부마감부재에 형성되어, 분리된 형태로 이루어질 수 있음을 보여준다. 도3의 실시예에 따르면, 제1 히트파이프(10)의 바닥면이 곧 접촉면(12)을 형성하여 일체로 형성되나, 본 실시예는 하부마감부재의 바닥부 외주면이 접촉면(12)을 형성하고, 그 접촉면(12)에 수용홈(14)이 형성되며, 내주면에 윅(16)이 형성되어 있다. 상기 하부마감부재와 상측의 관형부재가 결합되어 제1 히트파이프(10)를 구성하게 된다. The cooling device 800 for an electronic component according to FIG. 15 shows that the contact surface 12 of the first heat pipe 10 is formed in a separate lower finishing member, and thus may be formed in a separate form. According to the embodiment of Figure 3, the bottom surface of the first heat pipe 10 is formed integrally by forming a contact surface 12 immediately, in this embodiment the outer peripheral surface of the bottom portion of the lower closing member forms a contact surface 12 And the receiving groove 14 is formed in the contact surface 12, the wick 16 is formed in the inner peripheral surface. The lower closing member and the upper tubular member are combined to form a first heat pipe 10.
도16 내지 도21은 또 다른 실시예를 개시하며, 특히 도7에 따른 전자부품용 냉각장치(200)의 변형례가 될 수 있다. 16 to 21 disclose yet another embodiment, and in particular, may be a modification of the cooling apparatus 200 for an electronic component according to FIG. 7.
도16 내지 도21에 따른 전자부품용 냉각장치(900,1000,1100,1200,1300,1400)는, 도7의 실시예와 달리 베이스부(17)가 분리되어 별도로 구비된 형태이며, 상측에 관형부재가 결합하여 제1 히트파이프(10)를 구성한다. 16 to 21, the cooling device for the electronic component (900, 1000, 1100, 1200, 1300, 1400), unlike the embodiment of Figure 7, the base portion 17 is separated and provided separately, the upper side The tubular members are combined to form the first heat pipe 10.
도16의 전자부품용 냉각장치(900)는, 베이스부(17)의 가장자리에 수용홈(14)이 형성되고, 중앙부에 상기 관형부재가 결합하는 홈이 형성되어 있다. 상기 베이스부(17)와 관형부재가 결합된 후, 내주면에 윅(16)을 형성한다. 본 실시예는, 접촉면(12)의 중앙부에서는 제1 히트파이프(10)에 의해 냉각이 주로 이루어지고, 접촉면(12)의 가장자리에서는 제2 히트파이프(20)에 의해 냉각이 주로 이루어지게 된다.In the electronic device cooling apparatus 900 of FIG. 16, a receiving groove 14 is formed at the edge of the base portion 17, and a groove in which the tubular member is coupled is formed at the center portion. After the base portion 17 and the tubular member are coupled, a wick 16 is formed on the inner circumferential surface. In the present embodiment, cooling is mainly performed by the first heat pipe 10 at the center portion of the contact surface 12, and mainly by the second heat pipe 20 at the edge of the contact surface 12.
도17의 전자부품용 냉각장치(1000)는, 도16의 실시예와 마찬가지로, 별도로 구비된 베이스부(17)와 관형부재가 결합하여 제1 히트파이프(10)를 구성한다. 다만, 수용홈(14)이 도16에 개시된 수용홈보다 접촉면(12)의 중앙부 측으로 접근하여 형성되며, 도16의 홈이 경사지게 형성되어 관형부재가 삽입되도록 구성된다. 상기 관형부재의 내주면에는 윅(16)이 형성된다.In the electronic device cooling apparatus 1000 of FIG. 17, the base unit 17 and the tubular member provided separately, as in the embodiment of FIG. 16, are combined to form the first heat pipe 10. However, the receiving groove 14 is formed closer to the center portion of the contact surface 12 than the receiving groove disclosed in Figure 16, the groove of Figure 16 is formed to be inclined so that the tubular member is inserted. A wick 16 is formed on the inner circumferential surface of the tubular member.
도18의 전자부품용 냉각장치(1100)는, 도17의 실시예와 달리, 베이스부(17)에 4개의 수용홈(14)이 형성되어 있으며, 상측에 관형부재가 삽입되도록 경사진 홈이 형성되어 있다. 상기 관형부재의 하단부는 도17의 실시예보다 횡단면적이 좁게 형성된 것이 다르다. 도16 내지 도18의 전자부품용 냉각장치(900,1000,1100)에 의해, 발열부품과 접촉될 제2 히트파이프(20)의 위치는 다양하게 변화가능함이 이해될 것이다. In the cooling device 1100 for an electronic component of FIG. 18, unlike the embodiment of FIG. 17, four receiving grooves 14 are formed in the base portion 17, and the grooves inclined to insert the tubular member on the upper side thereof are provided. Formed. The lower end of the tubular member is different from that of the embodiment of FIG. 16 to 18, it will be understood that the positions of the second heat pipes 20 to be in contact with the heat generating parts can be variously changed by the cooling devices 900, 1000, and 1100 for the electronic parts.
도19의 전자부품용 냉각장치(1200)는, 도16의 실시예와 달리, 베이스부(17)의 가장자리와, 중앙부에 수용홈(14)이 형성된다. 상기 베이스부(17)의 중앙부에 형성된 수용홈(14)은 상방향으로 돌출되어 있다. 또한, 중앙부에는 상측에서 상기 관형부재가 결합하는 홈이 형성되어 있다. 상기 베이스부(17)와 관형부재가 결합된 후, 내주면에 윅(16)을 형성한다. In the cooling apparatus 1200 for an electronic component of FIG. 19, unlike the embodiment of FIG. 16, an accommodation groove 14 is formed at an edge of the base portion 17 and a central portion thereof. The receiving groove 14 formed at the center of the base portion 17 protrudes upward. In addition, the center portion is formed with a groove to which the tubular member is coupled from above. After the base portion 17 and the tubular member are coupled, a wick 16 is formed on the inner circumferential surface.
도20의 전자부품용 냉각장치(1300)는, 도19의 실시예와 마찬가지로, 별도로 구비된 베이스부(17)와 관형부재가 결합하여 제1 히트파이프(10)를 구성한다. 다만, 베이스부(17)의 가장자리에 형성된 수용홈(14)이 도19에 개시된 수용홈보다 접촉면(12)의 중앙부 측으로 접근하여 형성되며, 도19의 홈이 경사지게 형성되어 관형부재가 삽입되도록 구성된다. 상기 관형부재의 내주면에는 윅(16)이 형성된다.In the cooling apparatus 1300 for an electronic component of FIG. 20, the base unit 17 and the tubular member, which are separately provided, are combined with each other to form the first heat pipe 10 as in the embodiment of FIG. 19. However, the receiving groove 14 formed at the edge of the base portion 17 is formed closer to the center portion of the contact surface 12 than the receiving groove shown in Figure 19, the groove of Figure 19 is formed to be inclined so that the tubular member is inserted do. A wick 16 is formed on the inner circumferential surface of the tubular member.
도21의 전자부품용 냉각장치(1400)는, 도20의 실시예와 달리, 베이스부(17)에 5개의 수용홈(14)이 형성되어 있으며, 상측에 관형부재가 삽입되도록 경사진 홈이 형성되어 있다. 상기 관형부재의 하단부는 도20의 실시예보다 횡단면적이 좁게 형성된 것이 다르다. In the cooling device 1400 for an electronic component of FIG. 21, unlike the embodiment of FIG. 20, five receiving grooves 14 are formed in the base portion 17, and the grooves inclined to insert the tubular member on the upper side thereof are provided. Formed. The lower end of the tubular member is different from that of the embodiment of FIG.
도16 내지 도21의 전자부품용 냉각장치(900,1000,1100,1200,1300,1400)에 의해, 발열부품과 접촉될 제2 히트파이프(20)의 위치 및 개수는 다양하게 변화가능함이 이해될 것이다. It is understood that the position and number of the second heat pipes 20 to be in contact with the heat generating parts can be variously changed by the cooling devices 900, 1000, 1100, 1200, 1300, and 1400 for the electronic parts of FIGS. Will be.
이상, 본 발명을 바람직한 실시예들에 대하여 상세하게 설명하였으나, 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 범주를 벗어나지 않는 범위 내에서 여러 가지 많은 변형이 제공될 수 있다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.As mentioned above, although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to the above embodiments, and many various modifications may be provided without departing from the scope of the present invention. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (13)

  1. 발열부품과 접촉하는 접촉면과, 상기 접촉면에 형성된 적어도 하나의 수용홈을 구비하며, 내주면에 윅(wick)이 형성된 제1 히트파이프;A first heat pipe having a contact surface in contact with the heat generating part and at least one receiving groove formed in the contact surface and having a wick formed on an inner circumferential surface thereof;
    상기 수용홈에 삽입되며 상기 발열부품과 접촉하는 접촉부를 구비하며, 상기 윅이 내주면에 형성된 제2 히트파이프;A second heat pipe inserted into the receiving groove and having a contact portion in contact with the heat generating part, wherein the wick is formed on an inner circumferential surface thereof;
    상기 발열부품의 상측에 서로 이격배치되며, 상기 제1 히트파이프와 상기 제2 히트파이프에 결합되는 복수의 방열핀을 포함하는 것을 특징으로 하는 전자부품용 냉각장치.And a plurality of heat dissipation fins spaced apart from each other on the upper side of the heat generating part and coupled to the first heat pipe and the second heat pipe.
  2. 제1항에 있어서, The method of claim 1,
    상기 접촉부는 상기 발열부품과 면접촉하는 것을 특징으로 하는 전자부품용 냉각장치.And said contact portion is in surface contact with the heat generating part.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1 히트파이프의 횡단면, 및 상기 접촉부로부터 연장되며 상기 방열핀이 결합되는 상기 제2 히트파이프의 연장부의 횡단면은 원형으로 이루어지며, The cross section of the first heat pipe and the cross section of the extension portion of the second heat pipe extending from the contact portion and to which the heat dissipation fin is coupled are made circular.
    상기 제1 히트파이프의 내경은 상기 연장부의 내경보다 큰 것을 특징으로 하는 전자부품용 냉각장치.The inner diameter of the first heat pipe is greater than the inner diameter of the extension portion cooling device for electronic components.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1 히트파이프는 상기 접촉면으로부터 수직으로 연장되며,The first heat pipe extends vertically from the contact surface,
    상기 접촉부로부터 연장되며, 상기 방열핀이 결합되는 상기 제2 히트파이프의 연장부는 상기 제1 히트파이프와 평행하게 배치되는 것을 특징으로 하는 전자부품용 냉각장치.An extension part of the second heat pipe extending from the contact part and to which the heat dissipation fin is coupled is disposed in parallel with the first heat pipe.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1 히트파이프는 상기 방열핀의 중앙부에 결합되고,The first heat pipe is coupled to the central portion of the heat dissipation fins,
    상기 제2 히트파이프는 상기 방열핀의 가장자리에 결합되는 것을 특징으로 하는 전자부품용 냉각장치.And the second heat pipe is coupled to an edge of the heat dissipation fin.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 히트파이프는 상기 접촉면의 직상측에 배치되는 베이스부와, 상기 베이스부로부터 연장되는 파이프부를 구비하며,The first heat pipe has a base portion disposed directly above the contact surface, a pipe portion extending from the base portion,
    상기 베이스부의 횡단면적은 상기 파이프부의 횡단면적보다 큰 것을 특징으로 하는 전자부품용 냉각장치. Cooling device for an electronic component, characterized in that the cross-sectional area of the base portion is larger than the cross-sectional area of the pipe portion.
  7. 제6항에 있어서,The method of claim 6,
    상기 파이프부의 횡단면적은 상기 제2 히트파이프의 횡단면적보다 큰 것을 특징으로 하는 전자부품용 냉각장치.Cooling device for an electronic component, characterized in that the cross-sectional area of the pipe portion is larger than the cross-sectional area of the second heat pipe.
  8. 제1항에 있어서,The method of claim 1,
    상기 제1 히트파이프의 횡단면은 원형, 사각형, 삼각형, 또는 육각형 중 어느 하나인 것을 특징으로 하는 전자부품용 냉각장치.Cooling device for an electronic component, characterized in that the cross section of the first heat pipe is any one of a circle, a square, a triangle, or a hexagon.
  9. 제1항에 있어서,The method of claim 1,
    상기 접촉면은 원형, 사각형, 또는 육각형 중 어느 하나인 것을 특징으로 하는 전자부품용 냉각장치. Cooling device for an electronic component, characterized in that the contact surface is any one of a circle, a square, or a hexagon.
  10. 제1항에 있어서,The method of claim 1,
    상기 수용홈은 상기 접촉면에 직선으로 형성된 것을 특징으로 하는 전자부품용 냉각장치Cooling device for an electronic component, characterized in that the receiving groove is formed in a straight line on the contact surface.
  11. 제1항에 있어서,The method of claim 1,
    상기 수용홈 중 적어도 하나는 곡선으로 형성된 것을 특징으로 하는 전자부품용 냉각장치.Cooling device for an electronic component, characterized in that at least one of the receiving groove is formed in a curved line.
  12. 제1항에 있어서,The method of claim 1,
    상기 수용홈이 상기 제1 히트파이프의 내주면으로부터 돌출되어 형성된 것은 특징으로 하는 전자부품용 냉각장치. And the receiving groove is formed to protrude from the inner circumferential surface of the first heat pipe.
  13. 제11항에 있어서,The method of claim 11,
    상기 수용홈은 상기 접촉면의 좌측에서 우측을 지나도록 3개가 형성되며,Three receiving grooves are formed so as to pass from the left side to the right side of the contact surface,
    상기 접촉면의 중앙부를 지나는 상기 수용홈은 직선으로 이루어지고,The receiving groove passing through the central portion of the contact surface is made of a straight line,
    상기 중앙부를 마주하고 형성된 상기 수용홈은 상기 중앙부를 향하여 점진적으로 가까워지는 곡선으로 이루어진 것을 특징으로 하는 전자부품용 냉각장치.Cooling device for an electronic component, characterized in that the receiving groove formed facing the center portion is made of a curve gradually closer toward the center portion.
PCT/KR2010/006507 2009-09-25 2010-09-20 Cooling device for electronic parts WO2011037412A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090091154A KR20110033596A (en) 2009-09-25 2009-09-25 Cooler for electronic parts
KR10-2009-0091154 2009-09-25

Publications (2)

Publication Number Publication Date
WO2011037412A2 true WO2011037412A2 (en) 2011-03-31
WO2011037412A3 WO2011037412A3 (en) 2011-07-21

Family

ID=43796389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006507 WO2011037412A2 (en) 2009-09-25 2010-09-20 Cooling device for electronic parts

Country Status (2)

Country Link
KR (1) KR20110033596A (en)
WO (1) WO2011037412A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101339593B1 (en) * 2012-07-09 2014-01-02 윤국영 Cooler for electronic parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080582A1 (en) * 2000-12-27 2002-06-27 Kai-Cheng Chang Heat pipe heat dissipating device
JP2005203665A (en) * 2004-01-19 2005-07-28 Kiko Kagi Kofun Yugenkoshi Heat dissipating module structure and manufacturing method therefor
JP2006196786A (en) * 2005-01-14 2006-07-27 Furukawa Electric Co Ltd:The Heat sink with heat pipe
KR20090007194U (en) * 2008-01-11 2009-07-15 충-시엔 후앙 Cooler module without base panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080582A1 (en) * 2000-12-27 2002-06-27 Kai-Cheng Chang Heat pipe heat dissipating device
JP2005203665A (en) * 2004-01-19 2005-07-28 Kiko Kagi Kofun Yugenkoshi Heat dissipating module structure and manufacturing method therefor
JP2006196786A (en) * 2005-01-14 2006-07-27 Furukawa Electric Co Ltd:The Heat sink with heat pipe
KR20090007194U (en) * 2008-01-11 2009-07-15 충-시엔 후앙 Cooler module without base panel

Also Published As

Publication number Publication date
KR20110033596A (en) 2011-03-31
WO2011037412A3 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US6795315B1 (en) Cooling system
US6779595B1 (en) Integrated heat dissipation apparatus
US6487076B1 (en) Compact heat sink module
US6459576B1 (en) Fan based heat exchanger
US7565925B2 (en) Heat dissipation device
US6377459B1 (en) Chip cooling management
US20080314555A1 (en) Heat dissipation device
KR100622793B1 (en) Apparatus for cooling a box with heat generating elements received therein and a method for cooling same
US6816373B2 (en) Heat dissipation device
US7705449B2 (en) Cooling apparatus for memory module
US20060245162A1 (en) Heat dissipation device for heat-generating electronic component
CN107211556A (en) Cooling system and the aircraft with cooling system
CN100456205C (en) Heat radiator
CN100499977C (en) Heat sink
WO2011037412A2 (en) Cooling device for electronic parts
WO2013125817A1 (en) Hybrid cooler
US20080041565A1 (en) Integrated cooling system with multiple condensing passages for cooling electronic components
JP2735306B2 (en) Substrate cooling device
WO2022193669A1 (en) Head-mounted display device and heat dissipation mechanism thereof
US7610950B2 (en) Heat dissipation device with heat pipes
WO2010104332A2 (en) Cooling apparatus for electronic components, and method for manufacturing same
WO2019112401A1 (en) Heat radiating device for electronic element
WO2010090432A2 (en) Heat pipe with a base block, and method for manufacturing same
WO2020171645A1 (en) Heat conduction system for cooling electrical or electronic device
CN207993849U (en) The augmentation of heat transfer microelectronics heat exchanger of imitative earthworm micro-structure surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10819053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10819053

Country of ref document: EP

Kind code of ref document: A2