WO2011118646A1 - Robot hand and robot device - Google Patents

Robot hand and robot device Download PDF

Info

Publication number
WO2011118646A1
WO2011118646A1 PCT/JP2011/057016 JP2011057016W WO2011118646A1 WO 2011118646 A1 WO2011118646 A1 WO 2011118646A1 JP 2011057016 W JP2011057016 W JP 2011057016W WO 2011118646 A1 WO2011118646 A1 WO 2011118646A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
joint
robot hand
palm
drive
Prior art date
Application number
PCT/JP2011/057016
Other languages
French (fr)
Japanese (ja)
Inventor
村田 健一
崇 萬羽
山口 剛
中村 裕司
健一 貞包
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to CN2011800152032A priority Critical patent/CN102821918A/en
Priority to JP2012507038A priority patent/JP5590355B2/en
Priority to EP11759451.5A priority patent/EP2551071A4/en
Publication of WO2011118646A1 publication Critical patent/WO2011118646A1/en
Priority to US13/623,946 priority patent/US8827337B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0009Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand

Definitions

  • the embodiment of the disclosure relates to a robot hand and a robot apparatus including articulated fingers for gripping an object.
  • Patent Document 1 in a multi-finger multi-joint robot hand, a configuration in which a shape memory metal is inserted between adjacent movable fingers and a finger-to-finger contact portion of the shape memory metal is pulled and driven by a moving pulley is disclosed. Has been.
  • Patent Document 3 discloses a configuration in which a plurality of links provided on the index finger and the ring finger are rotated inward and outward using a worm gear, a worm wheel, and a motor.
  • Japanese Patent Laying-Open No. 2009-83020 page 13, FIG. 1
  • Japanese Patent Laying-Open No. 2005-46980 page 4, FIG. 1
  • Japanese Patent Laid-Open No. 2008-149448 page 17, FIG. 1
  • An object of the present invention is to provide a robot hand and a robot apparatus that can easily realize flexible gripping according to the shape of the target object.
  • a robot hand of an underactuated mechanism having a number of joints greater than the number of actuators, wherein the palm is connected to the base and bent.
  • At least two fingers having a plurality of links connected to each other and at least one of the fingers, which is necessary for imparting torsional displacement to the links and driving the joints
  • a robot hand having a conforming mechanism that enables gripping so as to wrap a gripping object with the finger by performing at least one of the adjustments of the driving torque is applied.
  • FIG. 1 is a conceptual explanatory diagram of a robot apparatus including a robot hand according to a first embodiment. It is a perspective view showing the appearance structure of the robot hand concerning a 1st embodiment. It is a longitudinal cross-sectional view which shows the internal structure of the whole finger
  • FIG. 10 is a front view of a twist mechanism and a side cross-sectional view taken along a section IX-IX in FIG. 9A in a modified example in which a restoring force is obtained by a rubber member.
  • It is a perspective view showing the external appearance structure of the robot hand which concerns on 2nd Embodiment.
  • It is a longitudinal cross-sectional view which shows the whole internal structure of a finger part provided with an inferior drive mechanism. It is the schematic showing an example of the structure of the stopper in the state which the link extended.
  • It is a sectional side view which shows the structure which has arrange
  • the robot apparatus 1 has a robot body 2 and a personal computer 3 (hereinafter abbreviated as PC3) that controls the operation of the robot body 2.
  • the PC 3 corresponds to an example of a controller described in the claims.
  • the controller may be provided on the robot body 2 side, for example, near each joint of the robot body 2 or in the palm 11 of the robot hand 8.
  • the robot body 2 in the illustrated example is a two-joint arm type robot, and includes a first joint actuator 4 fixed to the floor, a first arm 5 whose position and orientation is controlled by the first joint actuator 4,
  • the second joint actuator 6 fixed to the tip of one arm 5, the second arm 7 whose position and orientation is controlled by the second joint actuator 6, and the second arm 7 fixed to the tip of the second arm 7
  • the robot hand 8 is provided.
  • the robot body 2 can bring the robot hand 8 closer to the grasped object 9 by controlling the position and orientation of the corresponding arms 5 and 7 by the joint actuators 4 and 6, respectively.
  • the robot hand 8 grips the gripping object 9, and further controls the position and orientation of the arms 5 and 7, whereby the gripping object 9 can be moved.
  • the robot hand 8 is moved only by the rotational movements of the two joint actuators 4 and 6.
  • the arms 5 and 7 are caused to perform the rotational movement with the longitudinal direction as the rotational axis.
  • An actuator (not shown) or the like may be provided, and the robot is not limited to two joints and may be a multi-joint (for example, seven joints) robot.
  • the PC 3 generates and transmits control commands corresponding to the actuators 4 and 6 included in the robot body 2, thereby controlling the actuators 4 and 6 in a coordinated manner and gripping and controlling the robot hand 8. Is controlled to operate smoothly.
  • the robot hand 8 of the illustrated example has a palm part 11 and three finger parts 12 that are connected to the palm part 11 and have roots extending from the palm part 11. .
  • Each finger portion 12 has three links 16, 17, and 18 connected in series via two second joints 14 and third joints 15 each formed of a hinge, and further has one link 16 on the root side. It is connected to the palm 11 through the first joint 13.
  • the rotation axes of the joints 13, 14, 15 in one finger portion 12 are in a parallel arrangement relationship, and each finger portion 12 can bend and extend so as to swing on one plane. ing.
  • the robot hand 8 can grip the object 9 to be gripped with three-point support.
  • At least one of the three finger portions 12 is at least one link (this In the example, a twist joint 19 is provided on the link 16) that is directly connected to the palm 11.
  • the first link 16 is connected to the edge of the palm 11 via a first joint shaft 21 so as to be bent.
  • a second link 17 is bendably connected to the free end of the first link 16 via a second joint shaft 22, and a second joint 17 is connected to the free end of the second link 17 via a third joint shaft 23.
  • Three links 18 are connected so as to be bendable. In a normal state, the rotation axes of the three joint shafts 16, 17, 18 are arranged in parallel with each other.
  • the palm 11 is provided with a first joint drive motor 24, and a first joint drive gear 26 fixed to the output shaft of the first joint drive motor 24 is fixed to the first joint shaft 21. It meshes with the first joint driven gear 27.
  • the first joint shaft 21 is rotatably supported with respect to the palm portion 11, and is fixedly coupled to the first link 16. Thereby, the first link 16 can be actively bent with respect to the palm portion 11 by the rotational drive of the first joint drive motor 24.
  • the first joint drive motor 24 corresponds to an example of the actuator and the first actuator described in each claim.
  • the second joint drive motor 25 is installed on the first link 16, and the second joint drive gear 30 is fixed to the output shaft of the second joint drive motor 25.
  • the second joint shaft 22 is rotatably supported with respect to the first link 16, and is also rotatably supported with respect to the second link 17 by a bearing 28A.
  • the second joint drive gear 30 meshes with a second joint driven gear 31 fixed with respect to the second joint shaft 22. Thereby, the second link 17 can be actively bent with respect to the first link 16 by the rotational drive of the second joint drive motor 25.
  • the second joint drive motor 25 corresponds to an example of the actuator and the second actuator described in each claim.
  • a third joint drive pulley 32 is integrally coupled to the second joint driven gear 31.
  • a third joint driven pulley 33 is fixed to the third joint shaft 23, and a belt 34 is stretched between the third joint driven pulley 33 and the third joint driving pulley 32.
  • a wire member may be used.
  • the third joint shaft 23 is rotatably supported by the bearing 28 ⁇ / b> B with respect to the second link 17, and is fixedly coupled to the third link 18.
  • the rotation drive of the second joint drive motor 25 is transmitted via the belt 34, whereby the third link 18 can be actively bent with respect to the second link 17.
  • the second joint drive motor 25 is driven to rotate both the second link 17 and the third link 18. It bends toward the same side during In other words, the third link 18 bends in an under-driven manner of the second link 17.
  • the bending angle of the third link 18 is also affected by the pulley diameter ratio between the third joint driving pulley 32 and the third joint driven pulley 33.
  • the said 1st link 16 is divided
  • the tip portion of the first small link 35 located on the palm 11 side is fitted and inserted into the second small link 36 located on the fingertip side (second link 17 side).
  • the fitting portion of the first small link 35 is formed in a cylindrical shape
  • the fitting portion of the second small link 36 is formed with an inner diameter that is substantially the same as the outer periphery of the cylindrical portion. Yes.
  • the first small link 35 and the second small link 36 are connected to each other around a rotation axis along the longitudinal direction of the entire first link 16 so as to be capable of relative torsional displacement.
  • a joint portion 19 is configured (see portion A in FIG. 2).
  • a small link bearing 37 is provided between the outer periphery of the first small link 35 and the inner periphery of the second small link 36, and the small link bearing 37 is connected to the first small link 35 and the second small link in the radial direction.
  • the sliding between the links 36 is made smooth and the slipping between the first small links 35 and the second small links 36 is prevented in the thrust direction.
  • the second joint drive motor 25 is installed inside the second small link 36.
  • the first small link 35 and the second small link 36 correspond to an example of two small link members described in each claim.
  • twist mechanism 38 for assisting relative torsional displacement between the first small link 35 and the second small link 36 is provided inside the twist joint portion 19 of the first link 16. The detailed structure of the twist mechanism 38 will be described with reference to FIG.
  • the twist mechanism 38 includes a shaft support plate 41, a shaft 42, a guide plate 43, a shaft bearing 44, two guide rods 45, and a torsion spring 46.
  • the shaft support plate 41 and the guide plate 43 are each formed in a disk shape having substantially the same diameter, and are arranged in parallel so that their center axes coincide with each other.
  • the shaft 42 is formed in a hollow cylindrical shape, one end (the lower end in FIG. 3) is fixed to the center of the shaft support plate 41, and the other end (the upper end in FIG. 3) penetrates the center of the guide plate 43.
  • a shaft bearing 44 is rotatably supported.
  • the guide plate 43 is formed with two arc-shaped guide grooves 47 having the same inner peripheral angle with respect to the center thereof.
  • Each of the two guide rods 45 has one end (lower end in FIG. 3) vertically coupled to the shaft support plate 41, and the other end (upper end in FIG. 3) penetrates the corresponding guide groove 47. Yes.
  • the guide rod 45 and the guide groove 47 have the same arrangement relationship in each combination. For example, when the guide rod 45 is located at the end of one guide groove 47 as shown in the drawing, the other guide groove 47 also corresponds.
  • the guide rod 45 comes to be located at the end.
  • the shaft support plate 41, the shaft 42, and the two guide rods 45 are connected to the guide plate 43 so as to be relatively rotatable by the inner peripheral angle of each guide groove 47.
  • the torsion spring 46 is a helically wound spring, and is coaxially disposed on the outer periphery of the shaft 42, one end (lower end in FIG. 3) is fixed to the shaft support plate 41, and the other end (in FIG. 3). Is fixed to the guide plate 43. Thereby, the guide plate 43 is always urged from the shaft support plate 41 in the same rotation direction (counterclockwise direction in the example shown in FIG. 4).
  • the shaft 42 corresponds to an example of a shaft member described in each claim
  • the shaft bearing 44 corresponds to an example of a bearing member.
  • the side walls of the guide rods 45 and 45 and the guide grooves 47 and 47 correspond to an example of a guide member, and the groove ends of the guide grooves 47 and 47 correspond to an example of a regulating member.
  • the torsion spring 46 corresponds to an example of a first spring member and an example of a restoring force applying member.
  • the twist mechanism 38 having such a configuration is disposed so as to penetrate the fitting portion of the first small link 35 and the second small link 36 (that is, the twist joint portion 19) and the rotation axis.
  • the shaft support plate 41 is fixed inside the first small link 35
  • the guide plate 43 is fixed inside the second small link 36.
  • the shaft 42 is formed with a through hole 48 extending therethrough in the axial direction, and the cable member 49 of the second joint drive motor 25 is passed through the through hole 48.
  • the shaft 42 is provided on the first small link 35, while the shaft bearing 44 is provided on the second small link 36 to support the shaft 42 rotatably.
  • the two guide rods 45 and the two guide grooves 47 guide the relative rotation of the first small link 35 and the second small link 36 accompanying the rotation of the shaft 42 and the first small link 35 accompanying the rotation of the shaft 42.
  • the amount of rotation of the link 35 and the second small link 36 in the relative rotation direction is limited within a predetermined range.
  • the torsion spring 46 rotates in the forward rotation direction (the guide plate 43 of the second small link 36 in the counterclockwise direction in FIG. 4 and the shaft support plate 41 of the first small link 35 in the clockwise direction as the shaft 42 rotates).
  • a restoring force is applied to displace the first small link 35 and the second small link 36 that are displaced in the direction away from each other in the direction opposite to the above.
  • the finger portion 12A is provided with the conforming mechanism US having the first small link 35 and the second small link 36, the twist joint portion 19, and the twist mechanism 38, and the second link 17 and the third link.
  • the gripping object 9 can be gripped by the three finger portions 12.
  • the torsion spring 46 of the twist mechanism 38 acts so as to resist the torque T, and the second small link 36 and the first small link 35 are in a stationary state at a predetermined angle.
  • the twist mechanism 38 is attached to the extent that the relative angle between the third link 18, the second link 17, the second small link 36, and the first small link 35 is maintained at zero. Power is needed. That is, the torsion spring 46 needs to have a spring rigidity that can hold the weights of the third link 18, the second link 17, and the second small link 36 in a state where no object is gripped.
  • the twist joint portion 19 is constrained by a torsion spring 46 around the Z axis, and is disposed between the first small link 35 and the second small link 36.
  • the twist joint 19, the first small link 35, and the second small link 36 correspond to the first link 16.
  • a second joint 14, a second link 17, a third joint 15, and a third link 18 are disposed at the free end of the first link 16, and the first link 16 is driven by the first joint 13.
  • the axial center point of the first joint 13 is the origin, the length from the first joint 13 to the twist joint portion 19 is l0, the length from the first joint 13 to the second joint 14 is l1, and the second joint 14 to the second
  • the length to 3 joints 15 is set to l2. At this time, for example, RM.
  • s i represents sin ( ⁇ i )
  • c i represents cos ( ⁇ i )
  • s ij represents sin ( ⁇ i + ⁇ j )
  • c ij represents cos ( ⁇ i + ⁇ j )
  • I ii represents Represents moment of inertia.
  • J 411 , J 412 , J 421 , and J 431 are omitted because the expressions are complicated. Since M i * calculates the inertia tensor for the coordinate system with the center of gravity of each link as the origin, the off-diagonal term is zero. Further, by using the Lagrangian method or the like, the following formula (4) is finally obtained.
  • c ij represents a centrifugal force or Coriolis force
  • N represents a gravity term
  • K 2 represents a torsion spring constant of the twist joint 19
  • K 3 represents a torsion spring constant of the second joint 14
  • K 4 represents a first value.
  • the torsion spring constant of the three joints 15 is represented. Further, since the torque of each actuator is two variables ⁇ 1 and ⁇ 2 as shown in the equation (4), it is simpler than the case where each joint 13, 14, 15 is driven.
  • the actuator that drives the first joint 13 is the first joint drive motor 24.
  • the first joint drive motor 24 includes a controller (not shown) that outputs a motor current. This controller inputs a deviation signal between the first joint command calculated by the PC 3 based on the above equation of motion and angle information by an encoder (not shown) of the motor 24 and outputs a corresponding motor current. Then, the first joint drive motor 24 is driven.
  • the driving force of the first joint drive motor 24 corresponds to the actuator torque ⁇ 1 of the equation (4), and the bending operation at the first joint 13 is controlled.
  • the actuator torque ⁇ 1 corresponds to an example of the first driving force described in each claim.
  • the actuator that drives the second joint 14 is the second joint drive motor 25 and the gears 30 and 31, and the actuator that drives the third joint 15 is the second joint drive motor 25.
  • the controller (not shown) provided in the second joint drive motor 25 sends the second joint command calculated by the PC 3 and angle information by the encoder (not shown) of the second joint drive motor 25.
  • the deviation signal is input, and the corresponding motor current is input to drive the second joint drive motor 25.
  • the driving force of the second joint drive motor 25 corresponds to the actuator torque ⁇ 2 of the equation (4), and the bending operation at the second joint 14 and the third joint 15 is controlled.
  • the actuator torque ⁇ 2 corresponds to an example of the second driving force described in each claim.
  • the second joint drive gear 30 fixed to the output shaft of the second joint drive motor 25 drives the second joint driven gear 31 fixed to the second joint shaft 22. That is, the second joint drive motor 25 transmits the actuator torque ⁇ 2 to the second link 17 via the second joint drive gear 30 and the second joint driven gear 31, and the second link around the second joint shaft 22. 17 is bent.
  • the second joint drive gear 30 and the second joint driven gear 31 correspond to an example of a gear mechanism described in each claim and also an example of a second link drive transmission mechanism.
  • the second joint drive gear 30 fixed to the output shaft of the second joint drive motor 25 drives the second joint driven gear 31 fixed to the second joint shaft 22, and further, the third joint drive pulley 32 and the belt. 34 is driven, and the force is transmitted to the third joint driven pulley 33 fixed to the third joint shaft 23. That is, the second joint drive motor 25 also supplies the actuator torque ⁇ 2 via the second joint drive gear 30, the second joint driven gear 31, the third joint drive pulley 32, the belt 34, and the third joint driven pulley 33.
  • the third link 18 is transmitted to the third link 18, and the third link 18 is bent around the third joint shaft 23.
  • the third joint driving pulley 32, the third joint driven pulley 33, and the belt 34 correspond to an example of the pulley mechanism described in each claim, and the second joint driving gear 30 and the second joint driven gear. 31 corresponds to an example of a third link drive transmission mechanism described in each claim.
  • At least one link 16 of any one finger portion 12A among the plurality of finger portions 12 and 12A included in the robot hand 8 is replaced with two small links 35 and 36.
  • the structure is formed by dividing and connecting these two small links 35 and 36.
  • These two small links 35 and 36 are capable of relative torsional displacement with respect to each other around the axis CL of the finger portion 12A.
  • the finger portion 12A having the divided link 16 has one more degree of freedom due to the torsional displacement, so that the gripping direction approaching the gripping object 9 and the release away from the target object 9 as described above.
  • the robot hand 8 of the present embodiment can form a shape of the object 9 with respect to the object 9 rather than the conventional structure. It is possible to perform flexible gripping following the above.
  • a separate actuator for example, approaching / separating at an angle according to the curved surface shape of the surface of the object 9, moving along the surface of the object 9, or obliquely with respect to the object 9 It is also possible to move closer and away with the posture being twisted.
  • the relative rotation of the two small links 35 and 36 accompanying the rotation of the shaft 42 of the twist mechanism 38 is guided by the guide rod 45 and the guide groove 47 of the guide plate 43.
  • the small link 35 on one side and the small link 36 on the other side can be relatively displaced relatively, and a smoother movement of the finger portion 12A provided with the two small links 35 and 36 can be realized. it can.
  • the amount of rotation in the relative rotation direction of the two small links 35 and 36 accompanying the rotation of the shaft 42 is limited within a predetermined range by the guide groove 47 of the twist mechanism 38.
  • the relative displacement between the small link 35 on one side and the small link 36 on the other side can be kept within a certain range so that an unreasonable posture or an unnatural operation is not performed.
  • smoother movement can be realized, and durability and reliability can be improved.
  • the torsion spring 46 of the twist mechanism 38 provides a restoring force that displaces the two small links 35 and 36 that are displaced in the forward rotation direction in accordance with the rotation of the shaft 42 in the reverse rotation direction.
  • the passive operation increases the contact area with the object 9 between the third link 18 at the fingertip and the first link 16 at the root, and stable gripping can also be performed.
  • the grasped object 9 is released, it can be naturally returned to the original state before the relative displacement without applying a forcible driving force in the return direction. As a result, it is possible to reliably realize a motion that is close to a human finger and has a little uncomfortable feeling.
  • the first link 16 on the palm portion 11 side is composed of two small links 35 and 36 that can be displaced relative to each other, and can perform a great posture change from the base side of the finger portion 12A. it can.
  • the first link 16 is swung (bent and extended) by the actuator torque ⁇ 1 from the first joint drive motor 24 disposed in the palm portion 11, while the second link 17 and the third link 18 are changed to the first link.
  • Oscillating (bending and extending) is performed by the actuator torque ⁇ 2 of the two-joint drive motor 25 arranged.
  • the 1st link 16, and the 2nd link 17 and the 3rd link 18 can be made to rock
  • the second joint drive motor 25 is arranged on the second small link 36 on the second link 17 side, and the actuator torque ⁇ 2 from the second joint drive motor 25 is obtained by the second joint drive gear 30 and the second joint driven gear. While being transmitted to the second link 17 by 31, it is also transmitted to the third link 18 by the third joint driving pulley 32, the belt 34 and the third joint driven pulley 33.
  • the actuator for oscillating the second link 17 and the actuator for oscillating the third link 18 it is possible to reduce the load of the actuator drive control compared to the case where each actuator is driven by an independent actuator, and at a higher speed. Can swing (bend and extend).
  • the third joint drive gear 30, the third joint driven gear 31, the third joint drive pulley 32, the belt 34, and the third joint driven pulley 33 receive the actuator torque ⁇ 2 from the second joint drive motor 25. It can be transmitted to the third link 18. As a result, the third link 18 can be smoothly driven in the inferior driving mode of the second link 17, and a natural bending action similar to that of a human in conjunction with the bending action of the second link 17 can be realized. it can.
  • the actuator for driving the second link 17 and the third link 18 is shared by one second joint drive motor 25, and the first joint drive for driving the first link 16 is used.
  • the motor 24 By disposing the motor 24 on the palm portion 11, only one actuator of the second joint drive motor 25 is disposed on the finger portion 12 ⁇ / b> A. As a result, the weight of the entire finger portion 12A can be reduced.
  • the shaft 42 is provided with the through-hole 48 for allowing the cable member 49 to the second joint drive motor 25 to pass therethrough, so that the shaft 42 is disposed in the second small link 36 on the second link 17 side.
  • the cable member 49 of the second joint drive motor 25 can be smoothly arranged on the palm portion 11 without being exposed to the outside of the robot hand 8. In addition, this makes it possible to arrange the power amplifier of the actuator on the palm portion 11, which can also reduce the weight of the finger portion 12 ⁇ / b> A.
  • a configuration in which relative torsional displacement can be performed only on the first link 16 in one finger portion 12A of the three finger portions 12 and 12A included in the robot hand 8 is provided.
  • a plurality (or all) of the finger portions 12 may be provided, or the links 17 and 18 other than the first link 16 may be provided.
  • the return force for displacing the twist mechanism 38 in the direction opposite to the relative torsional displacement between the second small link 36 and the first small link 35 is twisted.
  • the return force may be obtained by a tension spring that spans between the guide plate 43 and the guide rod 45.
  • the twist mechanism 38A of the present modification does not include the torsion spring 46 in the above embodiment, but includes two helical springs 51 instead. These two helical springs 51 are respectively stretched between the end of the corresponding guide bar 45 on the fingertip side (front side in the figure) and the end of the guide groove 47 which is the initial position. A biasing force is applied to pull the guide rod 45 toward each end.
  • the helical spring 51 corresponds to an example of a spring member described in each claim and also corresponds to an example of a restoring force applying member.
  • a return force in the twist mechanism may be obtained using a permanent magnet.
  • the twist mechanism 38B of the present modification does not include the torsion spring 46 in the above embodiment, but instead, the permanent magnet 52 is provided on each surface of the shaft support plate 41 and the guide plate 43 facing each other. Is provided. At that time, in a state where the shaft support plate 41 and the guide plate 43 are in the initial relative rotational position, the magnetic poles (N poles) of the permanent magnets 52 so that the pair of permanent magnets 52 facing each other exert an attractive force. And S pole) are arranged.
  • the shaft support plate 41 and the guide plate 43 are always returned to the initial positions. Giving the power to do.
  • the shaft 42B and the guide rod 45B are formed relatively short so that the permanent magnets 52 facing each other can sufficiently influence each other, and the shaft support plate 41 and the guide plate 43 are sufficiently close to each other. Is arranged.
  • the permanent magnet 52 corresponds to an example of the restoring force applying member described in each claim.
  • a passive stable gripping operation or return to the original state after the grip release can be performed by using the attractive force that the pair of permanent magnets 52 and 52 attract each other.
  • the same effect can be obtained.
  • by using a non-contact method using magnetic force it is possible to reliably prevent deterioration or deterioration of durability due to fatigue or aging, and replacement of parts becomes unnecessary.
  • the twist mechanism 38C of this modification includes a shaft support plate 41, a shaft 42, a rubber member storage body 53, a connecting member 54, and two pressing members 55. Two rubber members 56 are provided.
  • the shaft support plate 41 and the shaft 42 are formed and fixed in the same manner as in the above embodiment.
  • the entire rubber member housing 53 is formed in a cylindrical shape having substantially the same diameter as the shaft support plate 41, and the shaft 42 is rotatably supported through the center of the rubber member housing 53.
  • the rubber member housing 53 is formed with two arc-shaped deep grooves 57 having the same inner peripheral angle with respect to the axial center, and the deep grooves 57 have substantially the same arc shape in the axial direction.
  • a long rubber member 56 is accommodated.
  • the rubber member 56 and the deep groove 57 are provided with a gap between corresponding end portions in each combination, and a flat plate-shaped pressing member 55 is inserted into each of the gaps.
  • the end portions of each pressing member 55 on the fingertip side protrude from the end portion of the rubber member housing 53, respectively. It is being fixed to the free end of shaft 42 via.
  • the shaft support plate 41 (together with the shaft 42 and the pressing member 55) is fixed to the first small link 35, and the rubber member storage body 53 is fixed to the second small link 36.
  • the rubber member 56 corresponds to an example of the restoring force applying member described in each claim.
  • each rubber member 56 that has been pressed and compressed is elastically deformed so as to extend along the direction of the rotation axis as indicated by the broken line in FIG. 9B.
  • the amount of elastic deformation is the Poisson's ratio of the material of the rubber member 56. Determined by
  • the restoring force after elastic deformation of the rubber member 56 can be used to perform passive stable gripping operation or return to the original state after gripping release.
  • the same effects as in the above embodiment can be obtained.
  • the rubber member 56 has not only elasticity but also viscosity, the rubber member 56 can perform a certain degree of guide function and rotation amount regulation function with respect to relative rotation of the two small links 35 and 36.
  • the guide rod 45 and the guide groove 47 in the above embodiment can be omitted.
  • the rubber member 56 may be replaced with a resin member that can be similarly elastically deformed.
  • an auxiliary torque is applied by a spring member so that the object can be gripped so as to be wrapped in any posture.
  • the robot hand 108 has a palm part 111 and three finger parts 112 having roots connected to the palm part 111.
  • Each finger part 112 has three links 116, 117, 118 connected in series via two second joints 114 and third joints 115 each formed of a hinge, and further, the link 116 on the root side is the first link 116. It is connected with the joint 113, and each finger part 112 can bend and extend so as to swing on one plane.
  • the robot hand 108 includes an under-drive mechanism that interlocks and drives two adjacent joints of the three finger portions 112 with a single electric motor.
  • FIG. 11 a part of palm part 111 which is a hollow structure, and the outer shell of each link 116, 117, 118 are shown.
  • a wall part etc. illustration is abbreviate
  • the base of the first link 116 is fixed to a first joint shaft 1131 provided at the edge of the palm 111, and the first joint shaft 1131 and the output shaft of the first motor 119 (actuator) are connected. They are connected by a coupling 121A.
  • the first joint shaft 1131 is rotatably supported by a bearing 126A provided on the palm 111. With such a configuration, the entire finger portion 112 is swung (bent and extended) at the first joint 113 with respect to the palm portion 111 by the torque generated by the first motor 119.
  • a second motor 120 (actuator) is installed on the fingertip side of the first link 116.
  • the output shaft of the second motor 120 and the second joint shaft 1141 are connected by a coupling 121B.
  • the second joint shaft 1141 is rotatably supported by a bearing 126E provided at the base of the second link 117 and a bearing 126B provided on the first link 116.
  • the drive pulley 122 is fixed to the second joint shaft 1141, and the drive pulley 122 and the second joint shaft 1141 coincide with each other in the rotation angle.
  • the third link 118 is connected to the fingertip side of the second link 117.
  • the root of the third link 118 is fixed to the third joint shaft 1151.
  • the third joint shaft 1151 is rotatably supported by a bearing 126D provided on the fingertip side of the second link 117.
  • the third joint shaft 1151 is provided with a driven pulley 123.
  • a belt 124 is stretched between the driving pulley 122 and the driven pulley 123, and torque of the driving pulley 122 is transmitted to the driven pulley 123 via the belt 124.
  • the idle pulley 125 provided at the intermediate portion of the second link 117 is also in contact with the belt 124.
  • the idle pulley 125 serves to adjust the tension of the belt 124.
  • the driving pulley 122, the driven pulley 123, and the belt 124 correspond to an example of a torque transmission mechanism described in the claims.
  • a stopper 128 that restricts the posture of the second link 117 with respect to the first link 116 is provided at a location where the first link 116 and the second link 117 overlap in the second joint 114.
  • the stopper 128 includes a pin 128 ⁇ / b> A provided on the first link 116 and a guide groove 128 ⁇ / b> B provided on the second link 117.
  • a stopper 129 that restricts the posture of the third link 118 with respect to the second link 117 is provided at a location where the second link 117 and the third link 118 overlap in the third joint 115.
  • the stopper 129 includes a pin 129 ⁇ / b> A provided on the second link 117 and a guide groove 129 ⁇ / b> B provided on the third link 118.
  • the pin 129 ⁇ / b> A is erected on the inner side of the second link 117 where the second link 117 and the third link 118 overlap.
  • the guide groove 129B is provided in the third link 118 so as to be parallel to the outer periphery around the third joint shaft 1151 where the third link 118 and the second link 117 overlap, and the guide groove 129B of the inserted pin 129A It is configured to be able to regulate the operating range. That is, as shown in FIG.
  • the stopper 129 prevents the axis of the second link 117 and the axis of the third link 118 from extending more than 180 degrees around the third joint axis 1151 and As shown, the second link 117 and the third link 118 are not bent at an acute angle (for example, 90 degrees or less) about the third joint axis 1151 so that the third link 118 has an axis of the third link 118 with respect to the second link 117. Limit posture.
  • the stopper 128 has the same configuration as the stopper 129.
  • a coiled torsion spring 127 is provided around the second joint shaft 1141.
  • one end of the torsion spring 127 is fixed to the first link 116, and the other end is fixed to the second link 117.
  • the torsion spring 127 is gripped so that the driving torque required to drive the second joint 114 is smaller than the driving torque required to drive the third joint 115 during the gripping operation.
  • the auxiliary torque is applied to the second joint 114 so that the driving torque necessary to drive the second joint 114 is larger than the driving torque necessary to drive the third joint 115.
  • FIG. 14 An example of the configuration of the torsion spring 127 will be described (FIG. 14).
  • the stopper 128 is not shown.
  • the torsion spring 127 is inserted around the second joint shaft 1141.
  • One free end of the torsion spring 127 is fixed to a pin 135A provided in the first link 116, and the other free end of the torsion spring 127 is fixed to a pin 135B provided in the second link 117.
  • the pins 135 ⁇ / b> A and 135 ⁇ / b> B are arranged so that the second link 117 is bent, for example, 90 degrees with respect to the first link 116 in a natural state where the power is not supplied to the second motor 120.
  • the torsion spring 127 corresponds to an example of a drive torque adjusting member described in the claims, and also corresponds to an example of a second spring member.
  • the motor 119 drives the first joint shaft 1131 to control the posture of the first link 116, and the motor 120 drives the second joint shaft 1141 and the third joint shaft 1151. Since the motor 120, the second joint shaft 1141, and the third joint shaft 1151 are underactuated mechanisms, the motor 120 cannot arbitrarily control the angle of the third joint shaft 1151.
  • An under-actuated mechanism is a mechanism that has a lower degree of actuator freedom than a degree of freedom to be controlled. The point that the input degree of freedom is smaller than the output degree of freedom is advantageous for familiar gripping (gripping so as to follow the object shape).
  • the motor 119 controls the posture of the first link 116 so that the first link 116 approaches the gripping target 9.
  • the motor 120 drives the second link 117 and the third link so that the second link 117 and the third link 118 are in contact with the grasped object 9.
  • the underdrive mechanism (the motor 120 drives the second link 117 and the third link 118) of this embodiment will be described in detail.
  • the third link 118 rotates around the third joint shaft 1151. This is called a rotation operation.
  • the second link 117, the third link 118, the belt 124, the driving pulley 122, and the driven pulley 123 rotate integrally around the second joint shaft 1141. This is called a revolution operation.
  • Two joints can be driven by one motor by rotation and revolution.
  • the speed of the second motor 120 is controlled and the output shaft of the second motor 120 rotates clockwise as viewed from the right side in FIG. 11 (the fingertip side paper surface depth direction in FIG. 11)
  • the second joint is connected via the coupling 121B.
  • the shaft 1141 and the drive pulley 122 rotate clockwise.
  • the revolving operation is continued until the second link 117 comes into contact with the gripping object 9, and when the second link 117 comes into contact with the gripping object 9, the motor speed deviation increases, so that the torque exceeding the friction reduces the speed deviation. Occurs and switches to autorotation. That is, after the second link 117 comes into contact with the grasped object 9, the third link 118 bends toward the object.
  • the finger unit 112 of the present invention holds the holding object 9 so as to follow the object shape.
  • the order in which the links (the second link 117 and the third link 118) start to move is important for grasping the grasped object 9 stably with the hand, and the order during the bending operation is the third after the second link 117.
  • the order of the link 118 and the extension operation is the second link 117 after the third link 118.
  • a torsion spring 127 and a stopper 129 are provided to ensure this operation.
  • the second link 117 may start extending during the extension of the third link 118.
  • the torsion spring 127 works so that the third link 118 starts to move after the second link 117 with a small torque during the bending operation, and the second link 117 follows the third link 118 unless a large torque is applied during the extension operation. Work to move. With the addition of the torsion spring 127, a desired bending / extending operation can be realized in any posture.
  • the stopper 129 is a component necessary for the extension operation. If a torsion spring is added and the stopper 129 is not provided, only the third link 118 works and the second link cannot move. That is, without the stopper 129, a desired extension operation cannot be realized. Further, when the second link 117 continues to extend, the stopper 128 has an angle between the second link 117 and the first link 116 with a certain angle (for example, 180 degrees) or more around the second joint axis 1141. Regulate not to become.
  • the extension operation of the second link 117 is executed.
  • the extension operation of the third link 118 is stopped by the stopper 129, and the extension operation of the second link 117 is stopped by the stopper 128.
  • the state in which the first link 116, the second link 117, and the third link 118 are extended in series is set as an initial posture, and the initial angle of the second motor 120 is stored in the memory of the PC 3 as 0 degree. Further, the angle difference (rotation angle) when restrained by the stopper 128 and the angle before the power is turned on is also stored in the PC 3.
  • the angle difference 0 is used to return to the initial posture after the power is turned on, and the initial posture can be easily maintained by giving the angle difference as a target angle command.
  • the finger 112 is provided with the conforming mechanism US having the driving pulley 122, the driven pulley 123 and the belt 124 as the torque transmission mechanism, and the torsion spring 127.
  • the second joint 114 is driven to bend before the third joint 115, and during the grip releasing operation, the third joint 115 is driven to extend before the second joint 114.
  • the finger 112 can flexibly grasp the shape of the grasped object 9 in any posture. . In any posture, bending and extension can be switched only by the rotation direction of the second motor 120. Furthermore, since there is only one motor and there are few force transmission parts, the entire finger portion can be reduced in weight, and the finger can be operated at high speed.
  • the finger portion 112 is provided with a stopper 129 that restricts the posture of the third link 118 with respect to the second link 117.
  • the second motor 120 is disposed outside the second link 116 so that the output shaft of the second motor 120 and the second joint shaft 1141 coincide with each other.
  • the second motor 120 may be disposed inside the first link 116. This modification will be described with reference to FIG. However, only those related to the arrangement of the second motor 120 will be described.
  • the second motor 120 of this modification is fixed inside the first link 116.
  • the output shaft 131 of the second motor 120 is supported by a bearing 132A disposed on the outer shell of the first link 116, and a gear 130A is coupled to the output shaft 131.
  • a gear 130 ⁇ / b> C is connected to the second joint shaft 1141 in parallel with the drive pulley 122.
  • a gear 130B (idle gear) is disposed inside the first link 116 so as to mesh with the gears 130A and 130C.
  • the idle gear shaft 133 connected to the gear 130B is supported by a bearing 132B disposed on the outer shell of the first link 116.
  • Other configurations are the same as those in the second embodiment.
  • the second joint shaft 1141 rotates counterclockwise together with the gear 130C in the same manner as described above. To do. As a result, the third link 118 and the second link 117 are extended in the forward direction in the drawing.
  • the torsion spring 127 can be installed at both ends of the second joint shaft 1141 because the coupling 121B need not be provided, so that the auxiliary torque can be increased.
  • the gear 130B is provided in order to make the rotation direction of the second motor 120 the same as the rotation direction of the second joint 114 and the third joint 115, but it is not necessary to match the rotation direction.
  • the gear 130B may be omitted. In this case, further weight reduction can be achieved.
  • the second motor 120 is disposed inside the first link 116 so that the axial direction is along the longitudinal direction of the link.
  • the output shaft 131 of the second motor 120 is connected to a worm 134, and the worm 134 is supported by bearings 136 ⁇ / b> A and 136 ⁇ / b> B installed inside the first link 116.
  • a gear 130A is disposed so as to mesh with the worm 134
  • a gear 130B is disposed inside the first link 116 so as to mesh with the gear 130A and the gear 130C.
  • the gear 130 ⁇ / b> C is coupled to the second joint shaft 1141 in parallel with the drive pulley 122 in the same manner as described in the modification (2-1).
  • This modification also achieves the same effect as that of the second embodiment. Further, the use of the worm 134 has an effect of reducing the power consumption of the second motor 120 for maintaining the posture of the second link 117 and the third link 118.
  • one end of the first wire 138A is fixed to a pin 135A provided in the first link 116, and the other end of the first wire 138A is connected to the end of the coiled tension spring 137. It is connected.
  • the other end of the tension spring 137 is connected to the second wire 138B, and the second wire 138B is fixed to a pin 135B provided inside the second link 117.
  • a part of the first wire 138A is in contact with a pulley 139 that is rotatably supported by the second joint shaft 1141.
  • the pulley 139 is installed in parallel with the drive pulley 122.
  • the pins 135A and 135B are arranged so that the second link 120 is in a state in which the power is not turned on and the second link 117 is bent, for example, 90 degrees with respect to the first link 116. Also by this modification, the same effect as the second embodiment is obtained.
  • the tension spring 137 corresponds to an example of a drive torque adjusting member described in the claims, and also corresponds to an example of a second spring member.
  • each finger part 112 is composed of three links 116, 117, and 118 has been described as an example.
  • a conforming mechanism US may be provided for a finger portion composed of two links. This modification will be described with reference to FIGS.
  • the finger part 212 corresponding to the thumb connects two links 216 and 217 in series via the second joint 214, and the palm side link 216 passes through the first joint 213.
  • the structure is connected to the palm 111.
  • the configuration of the other two fingers 112 is the same as that of the second embodiment.
  • the finger part 212 can be bent on a plane that is inclined with respect to the swinging surface of the other finger part 112.
  • the robot hand 108 can grip the object 9 by bending the three finger portions 112 and 212 so as to be close to each other.
  • the output shaft of the first motor 219 (actuator) and the first joint shaft 2131 are connected by a coupling 221 at the edge of the palm 111.
  • the first joint shaft 2131 is rotatably supported by a bearing 226A provided on the palm 111 and a bearing 226C provided on the first link 216. With such a configuration, the entire finger portion 212 is bent at the first joint 213 with respect to the palm portion 111 by the torque generated by the first motor 219.
  • the principle of driving the first joint shaft 2131 and the second joint shaft 2141 by the first motor 219 is the same as the principle of driving the second joint shaft 1141 and the third joint shaft 1151 by the second motor 120 of FIG. is there.
  • the second link 217 is connected to the fingertip side of the first link 216.
  • the root of the second link 217 is fixed to the second joint shaft 2141.
  • the second joint shaft 2141 is rotatably supported by a bearing 226B provided on the fingertip side of the first link 216.
  • a driven pulley 223 is provided on the second joint shaft 2141.
  • a belt 224 is stretched between the driving pulley 222 and the driven pulley 223, and torque of the driving pulley 222 is transmitted to the driven pulley 223 via the belt 224.
  • the driving pulley 222, the driven pulley 223, and the belt 224 correspond to an example of a torque transmission mechanism described in the claims.
  • coiled torsion springs 227 are provided at both ends thereof.
  • Each torsion spring 227 has one end fixed to the palm 111 and the other end fixed to the first link 216.
  • the torsion spring 227 drives the second joint shaft 2141 after the first joint shaft 2131 during the bending operation, and drives the first joint shaft 2131 after the second joint shaft 2141 during the extension operation, regardless of the posture of the hand 108. Acts to be.
  • the torsion spring 227 applies an auxiliary torque to the first joint 213.
  • the first joint 213 is provided with a stopper 228 that restricts the posture of the first link 216 with respect to the palm 111.
  • the stopper 228 restricts the posture so that the palm 111 and the first link 216 do not extend, for example, 180 degrees or more around the first joint axis 2131.
  • the first link 216 contacts the end surface 1111 of the palm 111 so that the palm 111 and the first link 216 are not bent at an acute angle (for example, 90 degrees or less).
  • Posture is limited.
  • a stopper 229 that restricts the posture of the second link 217 with respect to the first link 216 is provided at a location where the first link 216 and the second link 217 overlap in the second joint 214.
  • This stopper 229 has a posture so that the first link 216 and the second link 217 do not extend more than 180 degrees around the second joint axis 2141 and do not bend at an acute angle (for example, 90 degrees or less). Restrict. Further, the stopper 229 acts to reliably drive the first joint shaft 2131 after the second joint shaft 2141 during the extension operation.
  • the configuration of these stoppers 228 and 229 is the same as that of the stoppers 128 and 129 described above.
  • the finger 212 is provided with the conforming mechanism US having the driving pulley 222, the driven pulley 223, the belt 224, and the torsion spring 227 as the torque transmission mechanism, and drives the first joint 213.
  • the conforming mechanism US having the driving pulley 222, the driven pulley 223, the belt 224, and the torsion spring 227 as the torque transmission mechanism, and drives the first joint 213.
  • the finger part 212 corresponding to the thumb of the robot hand 108 is configured by connecting two links 216 and 217.
  • the palm-side first link 216 is The second link 217 is bent through a first joint 213 on a plane that is substantially perpendicular to the swing plane of the other two fingers 112, and the second link 217 is moved through the second joint 214. Can be bent on a plane parallel to the surface.
  • the first joint shaft 2131 connected to the output shaft of the first motor 219 with the coupling 221 is provided with a bevel gear 230.
  • the bevel gear 230 meshes with a drive pulley 222 having a bevel gear shape.
  • a belt 224 is stretched between the driving pulley 222 and a driven pulley 223 provided on the second joint shaft 2141, and torque of the driving pulley 222 is transmitted to the driven pulley 223 via the belt 224.
  • the point that the coiled torsion spring 227 is provided around the first joint shaft 2131 and the point that the stoppers 228 and 229 are provided on the first joint shaft 213 and the second joint shaft 214 are shown in FIG. The configuration is the same as that shown in FIG.
  • FIG. 21A and 21B are views of the robot hand 108 viewed from the wrist direction (lower side in FIG. 20), and FIG. 21C is a side view viewed from the side direction (right side in FIG. 20). It is a figure.
  • the output shaft of the first motor 219 rotates clockwise as viewed from the lower side in FIG. 20 (clockwise in FIG. 21)
  • the first joint shaft 2131 and the bevel gear 230 rotate clockwise through the coupling 221.
  • the first link 216 rotates together with the first joint shaft 2131, and the first link 216 bends from the state shown in FIG. 21A to the grasped object 9 side (the front side in FIG. 20).
  • the robot hand 300 includes a palm portion 311 and three finger portions 312, 313, and 314 having roots connected to the palm portion 311.
  • the finger 312 will be described as an example.
  • the finger 312 includes four links 301, 302, 303, and 304, and adjacent links are connected.
  • the root link 301 is connected to a gear 305, and the gear 305 meshes with the gear 306. Accordingly, the root link 301 is swung on a plane parallel to the palm portion 311 by the drive motor 307 of the gear 306.
  • the gear 309 connected to the root link 315 of the finger portion 313 meshes with the gear 306 via the gear 308.
  • the root link 315 is swung on a plane parallel to the palm portion 311 by the drive motor 307.
  • the gear 308 is provided so that the rotation directions of the gear 305 and the gear 309 are opposite (for example, when the gear 305 rotates clockwise, the gear 309 rotates counterclockwise).
  • the finger portion 314 is swung on a plane parallel to the palm portion 311 by a drive motor 310 connected to the root link 316.
  • the root link 301 is disposed between the palm 311 and the upper 317, and the drive motors 307 and 310 are installed on the upper 317.
  • the palm portion 311 and the upper portion 317 are fixed by a plurality of bolts 318 with the spacer 350 interposed therebetween.
  • the output shaft of the drive motor 307 is connected to a shaft 320, and the shaft 320 is supported by a bearing 319 provided inside the palm portion 311 and a bearing 321 provided inside the upper portion 317.
  • the shaft 322 connected to the root link 301 is also supported by the bearing 319 and the bearing 321.
  • the gear 306 connected to the shaft 320 and the gear 305 connected to the shaft 322 are meshed with each other.
  • the motor replacement can be easily performed by arranging the drive motors 307 and 310 on the upper part 317 side.
  • a motor 330 (actuator) is arranged inside the root link 301, and an output shaft of the motor 330 is connected to a bevel gear 323.
  • the bevel gear 323 meshes with the first joint pulley 325 and the coaxial bevel gear 324.
  • the belt 326 is stretched over the pulleys 325 and 327.
  • the driving force of the second joint pulley 327 is transmitted to the third joint pulley 329. Is transmitted to pulleys 327 and 329.
  • the rotational torque of the motor 330 works as a force for bending / extending each link.
  • torsion springs are provided at the first joint 331 and the second joint 332 of the finger 312. Accordingly, in the torsion spring, the driving torque necessary for driving the first joint 331 is smaller than the driving torque necessary for driving the second joint 332 and the third joint 333 during the gripping operation. As described above, the first driving torque required to drive the second joint 332 is smaller than the driving torque required to drive the third joint 333. Necessary for driving the second joint 332 such that the driving torque necessary for driving the joint 331 is larger than the driving torque necessary for driving the second joint 332 and the third joint 333. Auxiliary torque is applied to the first joint 331 and the second joint 332 so that the driving torque is greater than the driving torque required to drive the third joint 333.
  • stoppers similar to those in the second embodiment described above are provided between the links 301 and 302, between the links 302 and 303, and between the links 303 and 304.
  • the conforming mechanism US including the pulleys 325, 327, and 329 as the torque transmission mechanism, the belts 326 and 328, and the torsion spring is provided, and the torsion spring includes the joints 331, 332, and 333.
  • the drive torque required to drive the is adjusted. Accordingly, during the gripping operation, the first joint 331, the second joint 332, and the third joint 333 are bent and driven in this order, and during the grip releasing operation, the third joint 333, the second joint 332, and the first joint are driven.
  • the extension is driven in the order of the joint 331.
  • any torsion spring it is possible to grip the object to be gripped with the finger portion 312 in any posture.
  • FIGS. 25 and 26 show a state in which a relatively large gripping object 9 is gripped by the hand robot 300.
  • the image of the grasped object 9 is, for example, an empty can.
  • each finger portion does not perform adduction / extraction, and first the first link contacts a part of the palm.
  • the second link comes into contact with the can, and the third link comes into contact with another part of the can to complete the gripping operation. As a result, it is gripped so as to adapt to the shape of the can.
  • the grasped object 9 is a rectangular parallelepiped object and is grasped by the two finger portions 312 and 314.
  • the first link of the finger portions 312 and 314 contacts a part of the palm, and after the operation is completed, the second link does not contact the gripping object 9 and the third link contacts the gripping object 9. Complete the gripping motion.
  • the grasped object 9 is grasped by the finger portions 312 and 314 as an example.
  • the finger portions 312 and 313 may be grasped, and the finger portions 312 and 313 may have an angle of 180 with respect to each other. It may be abbreviated so as to be gripped by these finger portions 312 and 313.
  • the robot hand 300 can perform a flexible grip on the grip target 9 according to the shape of the target 9. Further, since the three joints are driven by one motor, the weight of the fingers can be further reduced and the cost can be reduced as compared with the second embodiment.
  • the motor 330 that swings (bends and extends) the finger part is built in the root link 301.
  • the motor 330 installed on the upper 317 is connected to a shaft 332, and a worm 331 is connected to the root link 301 on the shaft 332.
  • a worm wheel 333 is arranged inside the root link 301 so as to mesh with the worm 331.
  • a gear 334 is disposed in the middle to transmit the rotation of the worm wheel 331 to the first joint pulley 325.
  • the gear 334 meshes with a gear 335 disposed so as to be coaxial with the first joint pulley 325.
  • the first link 302, the second link 303, and the third link 304 can be swung (bended and extended) by the motor 330 of the upper part.
  • a bearing (not shown) is provided inside the gear 305 so that the torque of the motor 330 and the gear 305 do not interfere with each other, and the gear 305 and the root link 301 are connected.
  • the other configurations for driving the first link, the second link, and the third link are the same as those in FIG.
  • the first motor and the second motor described above may have a configuration in which not only a motor but also a speed reducer is coupled. In that case, the output torque increases.
  • the belt may be a wire in which a thin wire (made of metal or nylon) is wound around the core of the wire, and the wire ends are connected with metal via a drive pulley, a driven pulley and an idle pulley. In this case, if the drive pulley, the driven pulley, and the idle pulley are made of resin material, the drive transmission system becomes light.
  • This embodiment can adjust the driving torque necessary to drive the joint by restraining the driving of the joint shaft on the fingertip side by the joint restraining mechanism of the conforming mechanism, and can grip the object so as to wrap the object with the finger It is what.
  • the planetary gear mechanism 401 included in the finger 400 will be described with reference to FIG.
  • the planetary gear mechanism 401 includes a shaft 4101 that inputs output torque from the coupling 409 to the sun gear 4102, a planetary gear 4103 that inputs the output of the sun gear 4102 to the carrier 4104, and a carrier cup provided on the carrier 4104.
  • 4105 when the carrier cup 4105 stops rotating, the planetary gear 4103 that inputs the output of the sun gear 4102 to the ring gear 4106, the ring gear cup 4107 having the ring gear 4106 inside, and the ring gear cup 4107 are freely rotatable.
  • teeth are provided on the upper surfaces of the carrier cup 4105 and the carrier cup 4107.
  • the planetary gear mechanism 401 corresponds to an example of a torque transmission mechanism described in the claims.
  • the carrier cup 4105 of the planetary gear mechanism 401 swings the second link 417 via the gear 403 in the depth direction and the front side of the page in FIG.
  • the stopper 423 prevents the second link 417 from warping in the forward direction of the drawing.
  • the base sides of the gear 403 and the second link 417 are connected to the second joint shaft 407 of the second joint 425. That is, the rotation of the gear 403 causes the second link 417 to rotate around the second joint shaft 425, and the finger 400 is bent at the second joint 425.
  • the ring gear cup 4107 of the planetary gear mechanism 401 rotates the third joint shaft 420 of the third joint 424 via the gear 405, the bevel gears 406 and 415, the shaft 416, and the bevel gears 418 and 419, thereby
  • the link 421 is swung in the depth direction and the front side of the page.
  • the stopper 423 prevents the third link 421 from warping in the forward direction of the drawing.
  • the relative angular displacement between the gear 405 and the bevel gear 406 is constrained to be zero, and the gears 405 and 406 are freely rotatable with respect to the second joint shaft 425. That is, although not shown in the drawing, bearings are built in the gears 405 and 406.
  • the spring 422 restrains the relative angle between the third link 421 and the second link 417 to be zero.
  • the drive of the third joint shaft 420 by the spring 422 is restrained until the second link 417 contacts the object 9 to be gripped and the second joint shaft 407 stops rotating, during which the ring gear cup 4107 remains stationary. To do.
  • the driving torque of the planetary gear mechanism 401 is a differential torque of two pairs of motors 413 (actuators), and is input to the sun gear 4102 of the planetary gear mechanism 401 via the bevel gears 411 and 412, the shaft 410, and the coupling 409. Is done.
  • the combined torque of the two pairs of motors 413 is a torque for swinging the first link 414 around the first joint axis 426 in the depth direction and the front side of the page.
  • the planetary gear mechanism is a mechanism that fixes one of the sun gear, the carrier, and the ring gear, and decelerates or increases the output with respect to the input.
  • the input is a sun gear 4102
  • the output is a carrier 4104 and a ring gear 4106.
  • the ring gear 4106 is indirectly restrained by the spring 422 so that the second joint 425 starts to move before the third joint 424 during the gripping operation. In this way, familiar gripping can be realized even with an underactuated finger by the planetary gear mechanism 401.
  • the finger part 400 includes the sun gear 4102, the carrier 4104, and the ring gear 4106, and the carrier 4104 is indirectly connected to the second joint shaft 407 and the ring gear 4106 is indirectly connected to the third joint shaft 420.
  • the planetary gear mechanism 401 and the gripping operation are performed so that the driving torque required to drive the second joint shaft 407 is smaller than the driving torque required to drive the third joint shaft 420.
  • a conforming mechanism US having a spring 422 that restricts the rotation of the three joint shaft 420 (in other words, adjusts the driving torque of the third joint shaft to be increased) is provided, and is necessary for driving the third joint 424. By adjusting the driving torque, it is possible to grip the object 9 with the finger 400 so as to wrap it.
  • the spring 422 corresponds to an example of a drive torque adjusting member and a joint restraining mechanism described in the claims.
  • the angle of the first link 414 is controlled by the combined torque
  • the angle of the second link 417 and the third link 421 is controlled by the differential torque.
  • a donut-shaped object such as a packing tape
  • the posture of the first link is controlled so that two fingers are arranged on the inner periphery and outer periphery of the donut-shaped object.
  • the posture of the second and third links it becomes possible to grip one point on the inner periphery and one point on the outer periphery of the donut-shaped object. In this way, posture control can be realized even in inferior drive.
  • the planetary gear mechanism 401 includes a sun gear 4102, a planetary gear 4103, a carrier 4104, and a ring gear 4106.
  • the ring gear 4106 is indirectly restrained by the spring 422 as described above.
  • the spring 422 is disposed between the second link 417 and the third link 421.
  • FIG. 32A shows a state where the input torque to the sun gear 4102 is zero.
  • FIG. 32 (b) when a clockwise torque is input to the sun gear 4102, the planetary gear 4103 rotates, and at the same time, the carrier 4104 rotates in the same clockwise direction.
  • both the carrier 4104 and the ring gear 4106 are restrained, and the planetary gear 4103 and the sun gear 4102 are stopped.
  • the finger unit 400 is provided with the conforming mechanism US having the planetary gear mechanism 401 as the torque transmission mechanism and the spring 422, and the second joint 425 and the second joint 425 are provided in the gripping operation.
  • the robot hand can perform a flexible grip on the grip target 9 according to the shape of the target 9.
  • the planetary gear mechanism 401 is provided with pulleys 4109 and 4110 on the outer circumferences of the carrier cup 4105 and the ring gear cup 4107, respectively, and a hole (or gap) 4111 that allows belt transmission in the case 4108.
  • Other configurations are the same as those of the third embodiment. Also according to this modification, the same effect as the third embodiment is obtained.
  • the third joint 424 is restrained by restraining the relative angle between the third link 421 and the second link 417 using a spring.
  • the present invention is not limited to this, and the shaft 416 may be restrained. This modification will be described with reference to FIG.
  • a joint restraining mechanism JC that restrains driving of the third joint shaft 420 is provided inside the second link 417.
  • the joint restraining mechanism JC includes a stopper 505, a spring 504 provided on one side of the stopper 505, and a support member 506 provided on the other side of the stopper 505 and connecting the stopper 505 and the pad 503. ing.
  • FIG. 34A shows a state before the second link 417 comes into contact with the grasped object 9
  • FIG. 34B shows a state after the second link 417 comes into contact with the grasped object 9. Represents. As shown in FIG.
  • the stopper 505 is in contact with the shaft 416 by the weight of the spring 504 and the stopper 505 before the second link 417 contacts the grasped object 9.
  • the ring gear cup 4107 is restrained, and the relative angle between the second link 417 and the third link 421 becomes zero.
  • the pad 503 comes into contact with the grasped object 9 and the support member 506 is pushed into the second link 417, the spring 504 contracts, the stopper 505 is detached from the shaft 416, and the shaft 416 is not restrained.
  • the output torque of the sun gear 4102 is transmitted to the ring gear 4106 and the ring gear cup 4107 rotates. With this rotation, the third link 421 swings.
  • 34C is a side sectional view of the second link 417. As shown in FIG. 34C, the stopper 505 is configured to partially cover the shaft 416.
  • the joint restraining mechanism JC is configured so that the driving torque necessary to drive the second joint 425 is smaller than the driving torque necessary to drive the third joint 424 during the gripping operation.
  • the drive of the joint shaft 420 of the third joint 424 is constrained. Thereby, it is possible to hold the object to be held by the finger unit 400 so as to be wrapped.
  • the robot hand has a three-joint finger unit 400 including a first link 414, a second link 417, and a third link 421, and a palm unit 606. .
  • the planetary gear mechanism 401 described above is built in the first link 414.
  • a contact sensor 605 is provided outside the second link 417.
  • a sensor that receives stress and outputs an electrical signal (for example, a strain gauge, a pressure sensor, or the like) is used.
  • the electrical signal from the contact sensor 605 is input to the amplifier 608 inside the second link 417 via the cable 607, and the amplified signal is applied to the shape memory alloy 610 inside the first link 414 via the cable 609.
  • the joint restraining mechanism JC inside the first link 414 includes a stopper 611 that restrains the ring gear cup 4107, and a coil-shaped shape memory alloy that connects the inside of the first link 414 and the stopper 611. 610, a shape memory alloy 610, and a cable 609 for applying a current to the spring 613.
  • the contact sensor 605 is not in contact with the object 9 to be grasped, the current applied to the shape memory alloy 610 is small. Therefore, as shown in FIG. The gear cup 4107 is restrained.
  • the wave gear mechanism 700 includes a wave generator 701, a flex spline 702, and a circular spline 703.
  • a flex spline cup gear 704 is provided in the flex spline 702
  • a circular spline cup gear 705 is provided in the circular spline 703.
  • a bearing 706 is disposed between the circular spline 703 and the case 707, and the circular spline 703 is rotatably supported.
  • the wave gear mechanism 700 is a 1-input 2-output torque transmission mechanism similar to the planetary gear mechanism 401 of the third embodiment.
  • the wave gear mechanism 700 is used for driving the second joint 425 and the third joint 424 of the robot hand, so that the planetary gear mechanism 401 of the finger 400 shown in FIG.
  • the input is a wave generator 701
  • the output is a flex spline cup gear 704 and a circular spline cup gear 705.
  • This modification also achieves the same effect as the third embodiment. Moreover, since there are few gear parts compared with the case where a planetary gear mechanism is used, there also exists an effect which can make a finger part lightweight.
  • a flex spline 702 (not shown in FIG. 37) is provided with a flex spline cup 708 and a pulley 709, and a circular spline 703 is provided with a pulley 710.
  • a belt (not shown) is stretched between these pulleys 709 and 710 and a pulley provided on the finger of the robot hand, and torque is transmitted.
  • Other configurations are the same as described above.
  • the wave gear mechanism 700 described in the present modification can be accommodated in the palm of the hand by lengthening the belt between the pulleys 709 and 710 and the pulley provided on the finger of the robot hand.
  • the finger can be lightened.
  • Robotic device 3 Personal computer (controller) 8 Robot Hand 9 Grasping Object 11 Palm 12, 12 A Finger 13 First Joint 14 Second Joint 15 Third Joint 16 First Link 17 Second Link 18 Third Link 19 Twist Joint Part 24 First Joint Drive Motor ( Actuator, 1st actuator) 25 Second joint drive motor (actuator, second actuator) 26 first joint drive gear 27 first joint driven gear 30 second joint drive gear (second link drive transmission mechanism, third link drive transmission mechanism) 31 Second joint driven gear (second link drive transmission mechanism, third link drive transmission mechanism) 32 third joint drive pulley (pulley mechanism, third link drive transmission mechanism) 33 third joint driven pulley (pulley mechanism, third link drive transmission mechanism) 34 Belt (belt member, pulley mechanism, third link drive transmission mechanism) 35 First small link (small link member) 36 Second small link (small link member) 38 Twist mechanism 38A to C Twist mechanism 41 Shaft support plate 42, 42B Shaft (shaft member) 43 Guide plate 44 Shaft bearing (bearing member) 45, 45B Guide rod (guide member, regulating member) 46 Torsion

Abstract

Disclosed is a robot hand and a robot device that can readily achieve flexible gripping of a target gripping object, wherein the flexible gripping follows the shape of said target object. The robot hand is an underactuated robot hand (8) with a greater number of joints than actuators and comprises a palm section (11); three finger sections (12) whereby the bases thereof are connected to the palm section (11) and which comprise a plurality of links (16, 17, and 18) connected in a manner that enables bending; and a shape-fitting mechanism (US) positioned on one finger section (12A) which enables grasping such that a target gripping object (9) is enclosed by the finger sections (12) through the application of torsional displacement to the links (16, 17, and 18) .

Description

ロボットハンド及びロボット装置Robot hand and robot device
 開示の実施形態は、対象物を把持するための多関節式の指を備えたロボットハンド及びロボット装置に関する。 The embodiment of the disclosure relates to a robot hand and a robot apparatus including articulated fingers for gripping an object.
 近年、人間の代わりに作業ができるロボットの開発が期待されている。このロボットのハンドは、特に人が使用する工具などを扱えることが必要である。このようなロボットハンドに関する従来技術としては、例えば特許文献1~3に記載のものが既に知られている。 In recent years, development of robots that can work on behalf of humans is expected. This robot hand needs to be able to handle tools used by humans. As prior art relating to such a robot hand, for example, those described in Patent Documents 1 to 3 are already known.
 特許文献1記載の従来技術では、多指多関節のロボットハンドにおいて、隣接する可動指どうしに形状記憶メタルを挿通し、その形状記憶メタルの指間連絡部を動滑車により牽引駆動する構成が開示されている。 In the prior art described in Patent Document 1, in a multi-finger multi-joint robot hand, a configuration in which a shape memory metal is inserted between adjacent movable fingers and a finger-to-finger contact portion of the shape memory metal is pulled and driven by a moving pulley is disclosed. Has been.
 特許文献2に記載の従来技術では、第1リンク、第2リンク、第3リンクを連結したロボットハンドにおいて、第1リンクと第2リンクとの間に連結された状態において電圧を加えることで伸縮し第1リンクを駆動させる、高分子アクチュエータを設けた構成が開示されている。 In the prior art described in Patent Document 2, in a robot hand in which the first link, the second link, and the third link are connected, it is expanded and contracted by applying a voltage in a state of being connected between the first link and the second link. A configuration in which a polymer actuator for driving the first link is provided is disclosed.
 特許文献3に記載の従来技術では、人差し指及び環指に備えられる複数のリンクをウォームギアとウォームホイールとモータとを用いて内転・外転させる構成が開示されている。 The prior art described in Patent Document 3 discloses a configuration in which a plurality of links provided on the index finger and the ring finger are rotated inward and outward using a worm gear, a worm wheel, and a motor.
特開2009-83020号公報(第13頁、図1)Japanese Patent Laying-Open No. 2009-83020 (page 13, FIG. 1) 特開2005-46980号公報(第4頁、図1)Japanese Patent Laying-Open No. 2005-46980 (page 4, FIG. 1) 特開2008-149448号公報(第17頁、図1)Japanese Patent Laid-Open No. 2008-149448 (page 17, FIG. 1)
 しかしながら、特許文献1及び特許文献2記載の従来技術では、各関節における各指の曲げ方向が限定されているため、把持動作における自由度が低い。この結果、例えば把持対象物の形状に倣うような、より柔軟な把持を実行するのは困難である。特許文献3記載の従来技術の内転・外転機能はリンクを平面的に回転させることによって複数の指を開く方向・閉じる方向に動作させるものに過ぎず、把持対象物の形状に倣うような柔軟な把持を行うのには限界があった。いずれにしても、上記従来技術においては、対象物の形状に倣った柔軟な把持を容易に実現することはできなかった。 However, in the conventional techniques described in Patent Document 1 and Patent Document 2, the bending direction of each finger at each joint is limited, and thus the degree of freedom in the gripping operation is low. As a result, it is difficult to perform more flexible gripping, for example, following the shape of the gripping object. The internal rotation / exversion function of the prior art described in Patent Document 3 is merely to move a plurality of fingers in the opening / closing directions by rotating the link in a plane, and it follows the shape of the object to be grasped. There was a limit to the flexible gripping. In any case, in the above-described prior art, flexible gripping following the shape of the object cannot be easily realized.
 本発明の目的は、把持対象物に対し、当該対象物の形状に倣った柔軟な把持を容易に実現できるロボットハンド及びロボット装置を提供することにある。 An object of the present invention is to provide a robot hand and a robot apparatus that can easily realize flexible gripping according to the shape of the target object.
 上記課題を解決するため、本発明の一の観点によれば、アクチュエータの数より関節の数が多い劣駆動機構のロボットハンドであって、掌部と、前記掌部に根元が連結され、屈曲可能に連結された複数のリンクを備えた少なくとも2本の指部と、少なくとも1本の前記指部に設けられ、前記リンクへのねじり変位の付与、及び、前記関節を駆動するのに必要な駆動トルクの調整のうち、少なくとも一方を行うことにより、前記指部で把持対象物を包み込むように把持可能とするなじみ機構と、を有するロボットハンドが適用される。 In order to solve the above-described problems, according to one aspect of the present invention, there is provided a robot hand of an underactuated mechanism having a number of joints greater than the number of actuators, wherein the palm is connected to the base and bent. At least two fingers having a plurality of links connected to each other and at least one of the fingers, which is necessary for imparting torsional displacement to the links and driving the joints A robot hand having a conforming mechanism that enables gripping so as to wrap a gripping object with the finger by performing at least one of the adjustments of the driving torque is applied.
 本発明によれば、把持対象物に対し、当該対象物の形状に倣った柔軟な把持を容易に実現できる。 According to the present invention, it is possible to easily realize flexible gripping according to the shape of the target object.
第1実施形態に係るロボットハンドを備えるロボット装置の概念的説明図である。1 is a conceptual explanatory diagram of a robot apparatus including a robot hand according to a first embodiment. 第1実施形態に係るロボットハンドの外観構造を表す斜視図である。It is a perspective view showing the appearance structure of the robot hand concerning a 1st embodiment. ツイスト関節部を備える指部の全体の内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of the whole finger | toe part provided with a twist joint part. ツイスト関節部に備えられるツイスト機構の外観の斜視図である。It is a perspective view of the external appearance of the twist mechanism with which a twist joint part is equipped. 3つの屈曲関節と1つのツイスト関節部を備えた指部の斜視図である。It is a perspective view of a finger part provided with three bending joints and one twist joint part. ツイスト関節部を備える指部の4関節指のモデル図である。It is a model figure of 4 joint fingers of a finger part provided with a twist joint part. 引っ張りバネにより復帰力を得る変形例におけるツイスト機構の案内板の正面図である。It is a front view of the guide plate of the twist mechanism in the modification which obtains a restoring force with a tension spring. 永久磁石により復帰力を得る変形例における第1リンクの要部拡大縦断面図である。It is a principal part expansion longitudinal cross-sectional view of the 1st link in the modification which obtains a restoring force with a permanent magnet. ゴム部材により復帰力を得る変形例における、ツイスト機構の正面図、及び、図9(a)中IX-IX断面による側断面図である。FIG. 10 is a front view of a twist mechanism and a side cross-sectional view taken along a section IX-IX in FIG. 9A in a modified example in which a restoring force is obtained by a rubber member. 第2実施形態に係るロボットハンドの外観構造を表す斜視図である。It is a perspective view showing the external appearance structure of the robot hand which concerns on 2nd Embodiment. 劣駆動機構を備える指部の全体の内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole internal structure of a finger part provided with an inferior drive mechanism. リンクが伸展した状態におけるストッパの構成の一例を表す概略図である。It is the schematic showing an example of the structure of the stopper in the state which the link extended. リンクが屈曲した状態におけるストッパの構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of a stopper in the state where a link bent. ねじりばねの構成の一例を表す概略図である。It is the schematic showing an example of a structure of a torsion spring. 第2モータをリンク内に配置する変形例における、指部の全体の内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of the whole finger | toe part in the modification which arrange | positions a 2nd motor in a link. 第2モータをウォームギアを用いてリンク内に配置する変形例における、指部の全体の内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of the whole finger | toe part in the modification which arrange | positions a 2nd motor in a link using a worm gear. 引っ張りばねを用いた変形例の一例を表す概略図である。It is the schematic showing an example of the modification using a tension spring. 2つのリンクからなる指部を有する変形例における、ロボットハンドの外観構造を表す斜視図である。It is a perspective view showing the external appearance structure of the robot hand in the modification which has the finger part which consists of two links. 2つのリンクからなる指部の全体の内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole internal structure of the finger part which consists of two links. 2つのリンクからなる指部の他の構成例における、内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure in the other structural example of the finger part which consists of two links. 2つのリンクからなる指部の他の構成例における、指部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the finger part in the other structural example of the finger part which consists of two links. 指部の内転・外転動作を可能な構成とする変形例における、ロボットハンドの外観構造を表す平面図である。It is a top view showing the external appearance structure of the robot hand in the modification which makes the structure which can perform the internal rotation / external rotation operation | movement of a finger | toe part. 指部の内転・外転動作を可能な構成とする変形例における、ロボットハンドの掌部の詳細を示す側断面図である。It is a sectional side view which shows the detail of the palm part of the robot hand in the modification which enables the internal rotation / external rotation operation of a finger part. 指部の内転・外転動作を可能な構成とする変形例における、ロボットハンドの指部の内部の概略構造を示す側断面図である。It is a sectional side view which shows the schematic structure inside the finger | toe part of a robot hand in the modification which enables the internal rotation / external rotation operation of a finger | toe part. 指部の内転・外転動作を可能な構成とする変形例における、大きな把持対象物をロボットハンドで把持した状態を示す上面図である。It is a top view which shows the state which hold | gripped the big holding | grip target object with the robot hand in the modification made into the structure which can perform the internal rotation / external rotation operation | movement of a finger | toe part. 指部の内転・外転動作を可能な構成とする変形例における、大きな把持対象物をロボットハンドで把持した状態を示す側面図である。It is a side view which shows the state which hold | gripped the big holding | grip target object with the robot hand in the modification which enables the internal rotation / external rotation operation | movement of a finger | toe part. 指部の内転・外転動作を可能な構成とする変形例における、小さな把持対象物をロボットハンドで把持した状態を示す上面図である。It is a top view which shows the state which hold | gripped the small holding | grip target object with the robot hand in the modification which enables the internal rotation / external rotation operation | movement of a finger | toe part. 指部の内転・外転動作を可能な構成とする変形例における、小さな把持対象物をロボットハンドで把持した状態を示す側面図である。It is a side view which shows the state which hold | gripped the small holding | grip target object with the robot hand in the modification made into the structure which can perform the internal rotation / external rotation operation | movement of a finger part. 指部の内転・外転動作を可能な構成とする変形例における、モータを甲部に配置した構成を示す側断面図である。It is a sectional side view which shows the structure which has arrange | positioned the motor in the back part in the modification which enables the internal rotation / external rotation operation | movement of a finger | toe part. 第3実施形態に係るロボットハンドの指部が備えた遊星歯車機構の側断面図である。It is a sectional side view of the planetary gear mechanism with which the finger part of the robot hand concerning a 3rd embodiment was provided. 第3実施形態に係るロボットハンドの指部全体の側断面図である。It is a sectional side view of the whole finger part of the robot hand concerning a 3rd embodiment. 第3実施形態に係る指部の動作原理を説明するための説明図である。It is explanatory drawing for demonstrating the operation principle of the finger | toe part which concerns on 3rd Embodiment. プーリを用いてトルク伝達を行う変形例の遊星歯車機構の側断面図である。It is a sectional side view of the planetary gear mechanism of the modification which performs torque transmission using a pulley. シャフトを拘束することで関節を拘束する関節拘束機構の構成を表す図である。It is a figure showing the structure of the joint restraint mechanism which restrains a joint by restraining a shaft. 形状記憶合金を用いてシャフトを拘束することで関節を拘束する関節拘束機構の構成を表す図である。It is a figure showing the structure of the joint restraint mechanism which restrains a joint by restraining a shaft using a shape memory alloy. トルク伝達機構に波動歯車機構を用いた変形例における、波動歯車機構の水平断面図及び側断面図である。It is the horizontal sectional view and side sectional view of a wave gear mechanism in a modification using a wave gear mechanism as a torque transmission mechanism. プーリを用いてトルク伝達を行う変形例の波動歯車機構の側断面図である。It is a sectional side view of the wave gear mechanism of the modification which performs torque transmission using a pulley.
 <第1実施形態>
 まず、第1実施形態について説明する。本実施形態は、リンクにねじり変位を付与したなじみ機構により、指で把持対象物を包み込むように把持可能とするものである。
<First Embodiment>
First, the first embodiment will be described. In the present embodiment, it is possible to grip the object to be gripped with a finger by a conforming mechanism that imparts torsional displacement to the link.
 図1において、ロボット装置1は、ロボット本体2と、ロボット本体2の動作を制御するパーソナルコンピュータ3(以下、PC3と略記)とを有している。なお、PC3が、特許請求の範囲に記載のコントローラの一例に相当する。また、コントローラは、例えばロボット本体2の各関節付近やロボットハンド8の掌部11に設置する等、ロボット本体2側に設けるようにしてもよい。 1, the robot apparatus 1 has a robot body 2 and a personal computer 3 (hereinafter abbreviated as PC3) that controls the operation of the robot body 2. The PC 3 corresponds to an example of a controller described in the claims. The controller may be provided on the robot body 2 side, for example, near each joint of the robot body 2 or in the palm 11 of the robot hand 8.
 図示する例のロボット本体2は、2関節アーム型ロボットであり、床部に固定された第1関節アクチュエータ4と、この第1関節アクチュエータ4により位置姿勢制御される第1アーム5と、この第1アーム5の先端に固定された第2関節アクチュエータ6と、この第2関節アクチュエータ6により位置姿勢制御される第2アーム7と、この第2アーム7の先端に固定された、本実施形態によるロボットハンド8とを備えている。 The robot body 2 in the illustrated example is a two-joint arm type robot, and includes a first joint actuator 4 fixed to the floor, a first arm 5 whose position and orientation is controlled by the first joint actuator 4, According to the present embodiment, the second joint actuator 6 fixed to the tip of one arm 5, the second arm 7 whose position and orientation is controlled by the second joint actuator 6, and the second arm 7 fixed to the tip of the second arm 7 The robot hand 8 is provided.
 上記構成において、ロボット本体2は、各関節アクチュエータ4,6でそれぞれ対応するアーム5,7を位置姿勢制御させることで、ロボットハンド8を把持対象物9に近づけることができる。そして、ロボットハンド8が把持対象物9を把持し、さらに各アーム5,7を位置姿勢制御させることで、把持対象物9を移動させることができる。なお、図示する例では2つの関節アクチュエータ4,6の回転動作だけでロボットハンド8を移動させているが、この他にも各アーム5,7に長手方向を回転軸とした回転動作を行わせるアクチュエータ(特に図示せず)などを設けてもよく、また2関節に限らずさらに多関節(例えば7関節)のロボットでもよい。 In the above configuration, the robot body 2 can bring the robot hand 8 closer to the grasped object 9 by controlling the position and orientation of the corresponding arms 5 and 7 by the joint actuators 4 and 6, respectively. The robot hand 8 grips the gripping object 9, and further controls the position and orientation of the arms 5 and 7, whereby the gripping object 9 can be moved. In the example shown in the figure, the robot hand 8 is moved only by the rotational movements of the two joint actuators 4 and 6. In addition to this, the arms 5 and 7 are caused to perform the rotational movement with the longitudinal direction as the rotational axis. An actuator (not shown) or the like may be provided, and the robot is not limited to two joints and may be a multi-joint (for example, seven joints) robot.
 PC3は、このロボット本体2が備える各アクチュエータ4,6にそれぞれ対応した制御指令を生成・送信することで、各アクチュエータ4,6を協調制御させ、ロボットハンド8を把持制御させ、ロボット本体2全体を円滑に動作させるよう制御する。 The PC 3 generates and transmits control commands corresponding to the actuators 4 and 6 included in the robot body 2, thereby controlling the actuators 4 and 6 in a coordinated manner and gripping and controlling the robot hand 8. Is controlled to operate smoothly.
 図2において、図示する例のロボットハンド8は、掌部11と、この掌部11に根元が連結され、掌部11から延びるように配置された3本の指部12とを有している。各指部12は、それぞれヒンジで構成する2つの第2関節14、第3関節15を介して3つのリンク16,17,18を直列に連結しており、さらに根本側のリンク16が1つの第1関節13を介して掌部11に連結されている。この例では、一つの指部12における各関節13,14,15の回転軸が互いに平行な配置関係にあり、各指部12は一平面上で揺動するような屈曲伸展動作が可能となっている。3本の指部12が互いに近接するよう屈曲することで、ロボットハンド8は把持対象物9を3点支持で把持することができる。そして、本実施形態のロボットハンド8の特徴として、上記3本の指部12うちの少なくとも1本(この例では、図2中の右上に位置する指部12A)が、少なくとも1つのリンク(この例では、掌部11に直接連結する側のリンク16)に、ツイスト関節部19が備えられている。 In FIG. 2, the robot hand 8 of the illustrated example has a palm part 11 and three finger parts 12 that are connected to the palm part 11 and have roots extending from the palm part 11. . Each finger portion 12 has three links 16, 17, and 18 connected in series via two second joints 14 and third joints 15 each formed of a hinge, and further has one link 16 on the root side. It is connected to the palm 11 through the first joint 13. In this example, the rotation axes of the joints 13, 14, 15 in one finger portion 12 are in a parallel arrangement relationship, and each finger portion 12 can bend and extend so as to swing on one plane. ing. By bending the three fingers 12 so as to be close to each other, the robot hand 8 can grip the object 9 to be gripped with three-point support. As a feature of the robot hand 8 of the present embodiment, at least one of the three finger portions 12 (in this example, the finger portion 12A located at the upper right in FIG. 2) is at least one link (this In the example, a twist joint 19 is provided on the link 16) that is directly connected to the palm 11.
 次に図3を用いて、上述したツイスト関節部19を備える指部12Aの全体の内部構造について説明する。なお、図3では、中空構造である掌部11及び各リンク16,17,18の外殻を構成する、壁部等については、図示を適宜省略して示している。 Next, the entire internal structure of the finger portion 12A including the twist joint portion 19 described above will be described with reference to FIG. In addition, in FIG. 3, about the wall part etc. which comprise the outer shell of the palm part 11 and each link 16, 17, 18 which are hollow structures, illustration is abbreviate | omitted suitably.
 図3において、掌部11の縁部には第1関節軸21を介して第1リンク16が屈曲可能に連結されている。この第1リンク16の自由端には第2関節軸22を介して第2リンク17が屈曲可能に連結されており、この第2リンク17の自由端には第3関節軸23を介して第3リンク18が屈曲可能に連結されている。通常の状態では、3つの関節軸16,17,18の回転軸が互いに平行な配置関係となっている。 3, the first link 16 is connected to the edge of the palm 11 via a first joint shaft 21 so as to be bent. A second link 17 is bendably connected to the free end of the first link 16 via a second joint shaft 22, and a second joint 17 is connected to the free end of the second link 17 via a third joint shaft 23. Three links 18 are connected so as to be bendable. In a normal state, the rotation axes of the three joint shafts 16, 17, 18 are arranged in parallel with each other.
 掌部11には、第1関節駆動モータ24が設置されており、この第1関節駆動モータ24の出力軸に固定された第1関節駆動ギア26が、上記第1関節軸21に固定された第1関節従動ギア27に噛み合っている。第1関節軸21は、掌部11に対して回転自在に支持されている一方、上記第1リンク16に対しては固定的に結合している。これにより、第1関節駆動モータ24の回転駆動により、第1リンク16は掌部11に対して能動的に屈曲させることが可能となっている。なお、第1関節駆動モータ24が各請求項記載のアクチュエータ及び第1アクチュエータの一例に相当する。 The palm 11 is provided with a first joint drive motor 24, and a first joint drive gear 26 fixed to the output shaft of the first joint drive motor 24 is fixed to the first joint shaft 21. It meshes with the first joint driven gear 27. The first joint shaft 21 is rotatably supported with respect to the palm portion 11, and is fixedly coupled to the first link 16. Thereby, the first link 16 can be actively bent with respect to the palm portion 11 by the rotational drive of the first joint drive motor 24. The first joint drive motor 24 corresponds to an example of the actuator and the first actuator described in each claim.
 第1リンク16には、第2関節駆動モータ25が設置されており、この第2関節駆動モータ25の出力軸には、第2関節駆動ギア30が固定されている。第2関節軸22は、第1リンク16に対して回転自在に支持されており、上記第2リンク17に対しても軸受28Aにより回転自在に支持されている。また、第2関節駆動ギア30は、第2関節軸22に対して固定された第2関節従動ギア31に噛み合っている。これにより、第2関節駆動モータ25の回転駆動により、第2リンク17は第1リンク16に対して能動的に屈曲させることが可能となっている。なお、第2関節駆動モータ25が、各請求項に記載のアクチュエータ及び第2アクチュエータの一例に相当する。 The second joint drive motor 25 is installed on the first link 16, and the second joint drive gear 30 is fixed to the output shaft of the second joint drive motor 25. The second joint shaft 22 is rotatably supported with respect to the first link 16, and is also rotatably supported with respect to the second link 17 by a bearing 28A. The second joint drive gear 30 meshes with a second joint driven gear 31 fixed with respect to the second joint shaft 22. Thereby, the second link 17 can be actively bent with respect to the first link 16 by the rotational drive of the second joint drive motor 25. The second joint drive motor 25 corresponds to an example of the actuator and the second actuator described in each claim.
 上記第2関節従動ギア31には、第3関節駆動プーリ32が一体的に結合されている。一方、第3関節軸23には、第3関節従動プーリ33が固定されており、当該第3関節従動プーリ33と上記第3関節駆動プーリ32との間にベルト34が掛け渡されている。なおワイヤ部材を用いてもよい。第3関節軸23は、第2リンク17に対して軸受28Bにより回転自在に支持されている一方、上記第3リンク18に対しては固定的に結合している。これにより、第2関節駆動モータ25の回転駆動がベルト34を介して伝達されることで、第3リンク18は第2リンク17に対して能動的に屈曲させることが可能となっている。また、2つのプーリ32,33間においてベルト34が単純に掛け渡されている(ねじれていない)ことから、第2リンク17と第3リンク18はいずれも第2関節駆動モータ25が回転駆動している間に同じ側へ向かって屈曲するよう動作する。言い換えると、第3リンク18は第2リンク17の劣駆動の態様で屈曲する。なお、第3リンク18の屈曲角度は、上記第3関節駆動プーリ32と上記第3関節従動プーリ33のプーリ径比にも影響を受ける。 A third joint drive pulley 32 is integrally coupled to the second joint driven gear 31. On the other hand, a third joint driven pulley 33 is fixed to the third joint shaft 23, and a belt 34 is stretched between the third joint driven pulley 33 and the third joint driving pulley 32. A wire member may be used. The third joint shaft 23 is rotatably supported by the bearing 28 </ b> B with respect to the second link 17, and is fixedly coupled to the third link 18. As a result, the rotation drive of the second joint drive motor 25 is transmitted via the belt 34, whereby the third link 18 can be actively bent with respect to the second link 17. Further, since the belt 34 is simply stretched between the two pulleys 32 and 33 (not twisted), the second joint drive motor 25 is driven to rotate both the second link 17 and the third link 18. It bends toward the same side during In other words, the third link 18 bends in an under-driven manner of the second link 17. The bending angle of the third link 18 is also affected by the pulley diameter ratio between the third joint driving pulley 32 and the third joint driven pulley 33.
 そして、上記第1リンク16は、その軸線方向に沿って第1小リンク35と第2小リンク36との2つに分割されている。掌部11側に位置する第1小リンク35の先端部分は、指先側(第2リンク17側)に位置する第2小リンク36の内部に嵌合挿入している。特に図示しないが、例えば、第1小リンク35の嵌合部分は円筒形状に形成されており、第2小リンク36の嵌合部分は当該円筒部分の外周とほぼ同径の内径が形成されている。このため、第1小リンク35と第2小リンク36は、第1リンク16全体の長手方向に沿った回転軸まわりに互いに相対ねじり変位可能に連結されており、このような嵌合部分によりツイスト関節部19が構成されている(上記図2中のA部参照)。また、第1小リンク35の外周と第2小リンク36の内周の間には小リンクベアリング37が設けられており、この小リンクベアリング37がラジアル方向で第1小リンク35と第2小リンク36の間の摺動を円滑にするとともに、スラスト方向で第1小リンク35と第2小リンク36の間の抜けを防いでいる。上記第2関節駆動モータ25は、第2小リンク36の内部に設置されている。なお、第1小リンク35及び第2小リンク36は、各請求項に記載の2つの小リンク部材の一例に相当する。 And the said 1st link 16 is divided | segmented into two of the 1st small link 35 and the 2nd small link 36 along the axial direction. The tip portion of the first small link 35 located on the palm 11 side is fitted and inserted into the second small link 36 located on the fingertip side (second link 17 side). Although not particularly illustrated, for example, the fitting portion of the first small link 35 is formed in a cylindrical shape, and the fitting portion of the second small link 36 is formed with an inner diameter that is substantially the same as the outer periphery of the cylindrical portion. Yes. For this reason, the first small link 35 and the second small link 36 are connected to each other around a rotation axis along the longitudinal direction of the entire first link 16 so as to be capable of relative torsional displacement. A joint portion 19 is configured (see portion A in FIG. 2). In addition, a small link bearing 37 is provided between the outer periphery of the first small link 35 and the inner periphery of the second small link 36, and the small link bearing 37 is connected to the first small link 35 and the second small link in the radial direction. The sliding between the links 36 is made smooth and the slipping between the first small links 35 and the second small links 36 is prevented in the thrust direction. The second joint drive motor 25 is installed inside the second small link 36. The first small link 35 and the second small link 36 correspond to an example of two small link members described in each claim.
 さらに、第1リンク16のツイスト関節部19の内部には、上記第1小リンク35と上記第2小リンク36の間の相対ねじり変位を補助するツイスト機構38が設けられている。図4を用いて、このツイスト機構38の詳細構造について説明する。 Furthermore, a twist mechanism 38 for assisting relative torsional displacement between the first small link 35 and the second small link 36 is provided inside the twist joint portion 19 of the first link 16. The detailed structure of the twist mechanism 38 will be described with reference to FIG.
 図4及び上記図3において、ツイスト機構38は、シャフト支持板41と、シャフト42と、案内板43と、シャフトベアリング44と、2本の案内棒45と、ねじりバネ46とを有している。シャフト支持板41と案内板43はそれぞれほぼ同径の円板形状に形成されており、互いの中心軸を一致させて平行に配置されている。シャフト42は中空の円筒形状に形成されており、一端(図3中の下端)がシャフト支持板41の中心に固定され、他端(図3中の上端)が案内板43の中心を貫通しシャフトベアリング44を介して回転自在に支持されている。 4 and FIG. 3, the twist mechanism 38 includes a shaft support plate 41, a shaft 42, a guide plate 43, a shaft bearing 44, two guide rods 45, and a torsion spring 46. . The shaft support plate 41 and the guide plate 43 are each formed in a disk shape having substantially the same diameter, and are arranged in parallel so that their center axes coincide with each other. The shaft 42 is formed in a hollow cylindrical shape, one end (the lower end in FIG. 3) is fixed to the center of the shaft support plate 41, and the other end (the upper end in FIG. 3) penetrates the center of the guide plate 43. A shaft bearing 44 is rotatably supported.
 また、案内板43には、その中心に対してそれぞれ同じ内周角となる2つの円弧状の案内溝47が形成されている。2つの案内棒45はそれぞれの一端(図3中の下端)をシャフト支持板41に垂直に結合し、それぞれの他端(図3中の上端)をそれぞれに対応する案内溝47に貫通させている。案内棒45と案内溝47はそれぞれの組み合わせで同じ配置関係にあり、例えば図示するように一方の案内溝47の端部に案内棒45が位置している場合、他方の案内溝47でも対応する端部に案内棒45が位置するようになる。これにより、シャフト支持板41とシャフト42と2つの案内棒45は、案内板43に対して各案内溝47の内周角の分だけ相対的に回転可能に連結されている。 The guide plate 43 is formed with two arc-shaped guide grooves 47 having the same inner peripheral angle with respect to the center thereof. Each of the two guide rods 45 has one end (lower end in FIG. 3) vertically coupled to the shaft support plate 41, and the other end (upper end in FIG. 3) penetrates the corresponding guide groove 47. Yes. The guide rod 45 and the guide groove 47 have the same arrangement relationship in each combination. For example, when the guide rod 45 is located at the end of one guide groove 47 as shown in the drawing, the other guide groove 47 also corresponds. The guide rod 45 comes to be located at the end. As a result, the shaft support plate 41, the shaft 42, and the two guide rods 45 are connected to the guide plate 43 so as to be relatively rotatable by the inner peripheral angle of each guide groove 47.
 ねじりバネ46は、らせん状に巻かれたバネであり、シャフト42の外周で同軸的に配置され、その一端(図3中の下端)がシャフト支持板41に固定され、他端(図3中の上端)が案内板43に固定されている。これにより、案内板43はシャフト支持板41から常に同じ回転方向(図4中に示す例では反時計回り方向)へと付勢されている。 The torsion spring 46 is a helically wound spring, and is coaxially disposed on the outer periphery of the shaft 42, one end (lower end in FIG. 3) is fixed to the shaft support plate 41, and the other end (in FIG. 3). Is fixed to the guide plate 43. Thereby, the guide plate 43 is always urged from the shaft support plate 41 in the same rotation direction (counterclockwise direction in the example shown in FIG. 4).
 なお、シャフト42が各請求項記載のシャフト部材の一例に相当し、シャフトベアリング44が軸受部材の一例に相当する。案内棒45,45と案内溝47,47の側壁部分が案内部材の一例に相当するとともに、案内溝47,47の溝端部が規制部材の一例に相当する。また、ねじりバネ46は、第1ばね部材の一例に相当するとともに復帰力付与部材の一例に相当する。 The shaft 42 corresponds to an example of a shaft member described in each claim, and the shaft bearing 44 corresponds to an example of a bearing member. The side walls of the guide rods 45 and 45 and the guide grooves 47 and 47 correspond to an example of a guide member, and the groove ends of the guide grooves 47 and 47 correspond to an example of a regulating member. The torsion spring 46 corresponds to an example of a first spring member and an example of a restoring force applying member.
 このような構成のツイスト機構38が、上記第1小リンク35と上記第2小リンク36の嵌合部分(つまりツイスト関節部19)と回転軸を一致させて貫通配置されている。詳細には、シャフト支持板41が第1小リンク35の内部に固定され、案内板43が第2小リンク36の内部に固定されている。また、シャフト42は内部に貫通孔48が軸方向に貫通して形成されており、この貫通孔48に上記第2関節駆動モータ25のケーブル部材49を通過させている。また、シャフト42は第1小リンク35に設けられる一方、シャフトベアリング44が第2小リンク36に設けられてシャフト42を回転可能に支持する。また、2本の案内棒45と2つの案内溝47は、シャフト42の回転に伴う第1小リンク35と第2小リンク36の相対回転をガイドするとともに、シャフト42の回転に伴う第1小リンク35と第2小リンク36の相対回転方向の回転量を所定範囲内に制限する。また、ねじりバネ46は、シャフト42の回転に伴い、正回転方向(図4において第2小リンク36の案内板43を反時計回り方向へ、第1小リンク35のシャフト支持板41を時計回り方向へ、互いに離間する方向)に変位する第1小リンク35と第2小リンク36を、上記とは逆の逆回転方向へ変位させる復帰力を与える。 The twist mechanism 38 having such a configuration is disposed so as to penetrate the fitting portion of the first small link 35 and the second small link 36 (that is, the twist joint portion 19) and the rotation axis. Specifically, the shaft support plate 41 is fixed inside the first small link 35, and the guide plate 43 is fixed inside the second small link 36. Further, the shaft 42 is formed with a through hole 48 extending therethrough in the axial direction, and the cable member 49 of the second joint drive motor 25 is passed through the through hole 48. The shaft 42 is provided on the first small link 35, while the shaft bearing 44 is provided on the second small link 36 to support the shaft 42 rotatably. Further, the two guide rods 45 and the two guide grooves 47 guide the relative rotation of the first small link 35 and the second small link 36 accompanying the rotation of the shaft 42 and the first small link 35 accompanying the rotation of the shaft 42. The amount of rotation of the link 35 and the second small link 36 in the relative rotation direction is limited within a predetermined range. Further, the torsion spring 46 rotates in the forward rotation direction (the guide plate 43 of the second small link 36 in the counterclockwise direction in FIG. 4 and the shaft support plate 41 of the first small link 35 in the clockwise direction as the shaft 42 rotates). A restoring force is applied to displace the first small link 35 and the second small link 36 that are displaced in the direction away from each other in the direction opposite to the above.
 このように、本実施形態では、指部12Aに、第1小リンク35及び第2小リンク36、ツイスト関節部19、ツイスト機構38を有するなじみ機構USを設け、第2リンク17及び第3リンク18へねじり変位を付与することによって、3本の指部12で把持対象物9を包み込むように把持することを可能としている。 Thus, in the present embodiment, the finger portion 12A is provided with the conforming mechanism US having the first small link 35 and the second small link 36, the twist joint portion 19, and the twist mechanism 38, and the second link 17 and the third link. By applying torsional displacement 18, the gripping object 9 can be gripped by the three finger portions 12.
 図5において、第3リンク18と第2リンク17との間の第3関節軸23の軸心線と、第2リンク17と第1リンク16との間の第2関節軸22の軸心線とは平行で、これらは第2小リンク36の内部に配置された第2関節駆動モータ25によりそれぞれ互いに屈曲するよう駆動される。つまり、それぞれ1自由度しか有していない第1関節軸21、第2関節軸22、及び第3関節軸23の各屈曲関節は、それらを組み合わせても各リンク16,17,18を同一平面内で揺動(屈曲・伸展)させるだけの自由度しか有していない。これに対し、本実施形態が備える指部12Aにおいては、第1リンク16にツイスト関節部19を備え、図示のような第1小リンク35と第2小リンク36との回転軸CLまわりの相対回転(相対ねじり変位)が可能であることから、指先の移動自由度をさらに増加させることができる。 In FIG. 5, the axial center line of the third joint shaft 23 between the third link 18 and the second link 17, and the axial center line of the second joint shaft 22 between the second link 17 and the first link 16. These are driven by the second joint drive motor 25 disposed inside the second small link 36 so as to bend each other. In other words, the bending joints of the first joint shaft 21, the second joint shaft 22, and the third joint shaft 23 each having only one degree of freedom have the links 16, 17, 18 on the same plane even if they are combined. It has only a degree of freedom to swing (bend / extend). On the other hand, in the finger portion 12A provided in the present embodiment, the first link 16 is provided with the twist joint portion 19, and the first small link 35 and the second small link 36 as shown in FIG. Since rotation (relative torsional displacement) is possible, the degree of freedom of movement of the fingertip can be further increased.
 例えば図5の姿勢において、第3リンク18の指の腹に位置する点Bに外力Fが与えられると、外力Fから第2小リンク36の回転軸CLまでの距離を回転半径Rとしつつ、第2小リンク36の回転軸まわりにトルクTが発生する。このトルクTに抵抗するようにツイスト機構38のねじりバネ46の付勢力が働き、第2小リンク36と第1小リンク35とが所定の角度で静止した状態になる。なお、ツイスト機構38は、外力Fがかからない限りにおいて、第3リンク18、第2リンク17、及び第2小リンク36と、第1小リンク35との相対角度が0に保たれる程度の付勢力が必要である。つまり、ねじりバネ46は、物体を把持していない状態で、第3リンク18、第2リンク17、及び第2小リンク36の自重を保持できる程度のバネ剛性が必要である。 For example, in the posture of FIG. 5, when an external force F is applied to a point B located on the belly of the finger of the third link 18, the distance from the external force F to the rotation axis CL of the second small link 36 is the rotation radius R, A torque T is generated around the rotation axis of the second small link 36. The biasing force of the torsion spring 46 of the twist mechanism 38 acts so as to resist the torque T, and the second small link 36 and the first small link 35 are in a stationary state at a predetermined angle. As long as the external force F is not applied, the twist mechanism 38 is attached to the extent that the relative angle between the third link 18, the second link 17, the second small link 36, and the first small link 35 is maintained at zero. Power is needed. That is, the torsion spring 46 needs to have a spring rigidity that can hold the weights of the third link 18, the second link 17, and the second small link 36 in a state where no object is gripped.
 次に、図6に示す4関節指のモデル図を使って、ロボットハンド8の指部12Aの運動方程式を求め、挙動を解析する。 Next, using the model diagram of the four joint fingers shown in FIG. 6, the motion equation of the finger part 12A of the robot hand 8 is obtained and the behavior is analyzed.
 図6において、ツイスト関節部19は、Z軸周りに、ねじりバネ46で拘束され、第1小リンク35と第2小リンク36の間に配置されている。ツイスト関節部19と第1小リンク35と第2小リンク36は、第1リンク16に相当する。第1リンク16の自由端には、第2関節14、第2リンク17、第3関節15、第3リンク18が配置され、第1リンク16は、第1関節13により駆動される。第1関節13の軸中心点を原点とし、第1関節13からツイスト関節部19までの長さをl0、第1関節13から第2関節14までの長さをl1、第2関節14から第3関節15までの長さをl2とする。このとき、例えば、RM.Murray,ZLi,S.S Sastry著の「A mathematical introduction to Robotic Manipulation」(CRC press、1994年、p172~p175)に基づいて、以下のように運動方程式が求められる。まず、各関節13,14,15上の点のツイストベクトル(ξ1,ξ2,ξ3,ξ4)を求めると下記の式(1)となる。ツイストベクトルは、速度ベクトルと角速度ベクトルから得られる。 6, the twist joint portion 19 is constrained by a torsion spring 46 around the Z axis, and is disposed between the first small link 35 and the second small link 36. The twist joint 19, the first small link 35, and the second small link 36 correspond to the first link 16. A second joint 14, a second link 17, a third joint 15, and a third link 18 are disposed at the free end of the first link 16, and the first link 16 is driven by the first joint 13. The axial center point of the first joint 13 is the origin, the length from the first joint 13 to the twist joint portion 19 is l0, the length from the first joint 13 to the second joint 14 is l1, and the second joint 14 to the second The length to 3 joints 15 is set to l2. At this time, for example, RM. Murray, ZLi, S.M. Based on “A mathematical introduction to Robotic Manipulation” by S Sasty (CRC press, 1994, p172 to p175), the equation of motion is obtained as follows. First, when the twist vectors (ξ1, ξ2, ξ3, ξ4) of the points on the joints 13, 14, 15 are obtained, the following equation (1) is obtained. The twist vector is obtained from the velocity vector and the angular velocity vector.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1関節13の軸中心点を原点として各リンク16,17,18の質量中心の相対位置を求めると、第1関節13とツイスト関節部19の間の第1小リンク35の質量中心位置(0,0,r)、ツイスト関節部19と第2関節14の間の第2小リンク36の質量中心位置(0,0,l+r)、第2関節14と第3関節15の間の第2リンク17の質量中心位置(0,r,l)、第3リンク18の質量中心位置(0,l+r,l)とし、角速度を0とすると、下記の式(2)となる。 When the relative positions of the mass centers of the links 16, 17, 18 are obtained with the axis center point of the first joint 13 as the origin, the mass center position of the first small link 35 between the first joint 13 and the twist joint 19 ( 0, 0, r 0 ), the mass center position (0, 0, l 0 + r 1 ) of the second small link 36 between the twist joint 19 and the second joint 14, and the second joint 14 and the third joint 15. When the mass center position (0, r 2 , l 1 ) of the second link 17 between them and the mass center position (0, l 2 + r 3 , l 1 ) of the third link 18 are assumed, and the angular velocity is 0, the following formula (2)
Figure JPOXMLDOC01-appb-M000002
次に、位置と姿勢のヤコビ行列は下記の式(3)となる。
Figure JPOXMLDOC01-appb-M000002
Next, the Jacobian matrix of position and orientation is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
ここで、sはsin(θ)、cはcos(θ)、sijはsin(θ)、cijはcos(θ)を表し、Iiiは慣性モーメントを表す。J411,J412,J421,J431は式が複雑になるので表記を省略した。M は各リンクの重心を原点とする座標系に対する慣性テンソルを計算しているので、非対角項は0となっている。さらに、ラグランジュ法などを利用することで最終的に、下記の式(4)の形式になる。
Figure JPOXMLDOC01-appb-M000003
Here, s i represents sin (θ i ), c i represents cos (θ i ), s ij represents sin (θ i + θ j ), c ij represents cos (θ i + θ j ), and I ii represents Represents moment of inertia. J 411 , J 412 , J 421 , and J 431 are omitted because the expressions are complicated. Since M i * calculates the inertia tensor for the coordinate system with the center of gravity of each link as the origin, the off-diagonal term is zero. Further, by using the Lagrangian method or the like, the following formula (4) is finally obtained.
Figure JPOXMLDOC01-appb-M000004
 この方程式において、cijは遠心力やコリオリ力を表し、Nは重力項を表し、Kはツイスト関節部19のねじりバネ定数、Kは第2関節14のねじりばね定数、Kは第3関節15のねじりばね定数を表す。また、各アクチュエータのトルクは式(4)に表すように、τとτの2変数なので、各関節13,14,15を駆動する場合に比べて、簡素になっている。
Figure JPOXMLDOC01-appb-M000004
In this equation, c ij represents a centrifugal force or Coriolis force, N represents a gravity term, K 2 represents a torsion spring constant of the twist joint 19, K 3 represents a torsion spring constant of the second joint 14, and K 4 represents a first value. The torsion spring constant of the three joints 15 is represented. Further, since the torque of each actuator is two variables τ 1 and τ 2 as shown in the equation (4), it is simpler than the case where each joint 13, 14, 15 is driven.
 次に、上記運動方程式で表される原理に沿った、実際のロボットハンド8の指部12Aの制御内容について具体的に説明する。上述したように、第1関節13を駆動するアクチュエータは第1関節駆動モータ24であり、この第1関節駆動モータ24はモータ電流を出力する制御器(特に図示せず)を備える。この制御器は、上記運動方程式に基づいてPC3により算出された第1関節指令とモータ24のエンコーダ(特に図示せず)による角度情報との偏差信号を入力し、対応するモータ電流を出力することで第1関節駆動モータ24を駆動する。当該第1関節駆動モータ24の駆動力が式(4)のアクチュエータトルクτ1に対応し、第1関節13での屈曲動作を制御する。なお、このアクチュエータトルクτ1は、各請求項に記載の第1駆動力の一例に相当する。 Next, the actual control content of the finger part 12A of the robot hand 8 in accordance with the principle represented by the equation of motion will be specifically described. As described above, the actuator that drives the first joint 13 is the first joint drive motor 24. The first joint drive motor 24 includes a controller (not shown) that outputs a motor current. This controller inputs a deviation signal between the first joint command calculated by the PC 3 based on the above equation of motion and angle information by an encoder (not shown) of the motor 24 and outputs a corresponding motor current. Then, the first joint drive motor 24 is driven. The driving force of the first joint drive motor 24 corresponds to the actuator torque τ1 of the equation (4), and the bending operation at the first joint 13 is controlled. The actuator torque τ1 corresponds to an example of the first driving force described in each claim.
 また、第2関節14を駆動するアクチュエータは第2関節駆動モータ25とギア30,31であり、第3関節15を駆動するアクチュエータは、第2関節駆動モータ25である。上記同様、第2関節駆動モータ25に備えられた制御器(図示せず)に、PC3により算出された第2関節指令と第2関節駆動モータ25のエンコーダ(特に図示せず)による角度情報との偏差信号が入力され、対応するモータ電流が入力されて第2関節駆動モータ25が駆動する。当該第2関節駆動モータ25の駆動力が式(4)のアクチュエータトルクτ2に対応し、第2関節14及び第3関節15での屈曲動作を制御する。なお、このアクチュエータトルクτ2は、各請求項に記載の第2駆動力の一例に相当する。 Further, the actuator that drives the second joint 14 is the second joint drive motor 25 and the gears 30 and 31, and the actuator that drives the third joint 15 is the second joint drive motor 25. Similarly to the above, the controller (not shown) provided in the second joint drive motor 25 sends the second joint command calculated by the PC 3 and angle information by the encoder (not shown) of the second joint drive motor 25. The deviation signal is input, and the corresponding motor current is input to drive the second joint drive motor 25. The driving force of the second joint drive motor 25 corresponds to the actuator torque τ2 of the equation (4), and the bending operation at the second joint 14 and the third joint 15 is controlled. The actuator torque τ2 corresponds to an example of the second driving force described in each claim.
 すなわち、第2関節駆動モータ25の出力軸に固定した第2関節駆動ギア30が、第2関節軸22に固定した第2関節従動ギア31を駆動する。つまり、第2関節駆動モータ25は、第2関節駆動ギア30及び第2関節従動ギア31を介して、アクチュエータトルクτ2を第2リンク17に伝達し、第2関節軸22を中心に第2リンク17を屈曲させる。なお、第2関節駆動ギア30及び第2関節従動ギア31が、各請求項記載の歯車機構の一例に相当するとともに、第2リンク用駆動伝達機構の一例にも相当する。 That is, the second joint drive gear 30 fixed to the output shaft of the second joint drive motor 25 drives the second joint driven gear 31 fixed to the second joint shaft 22. That is, the second joint drive motor 25 transmits the actuator torque τ 2 to the second link 17 via the second joint drive gear 30 and the second joint driven gear 31, and the second link around the second joint shaft 22. 17 is bent. The second joint drive gear 30 and the second joint driven gear 31 correspond to an example of a gear mechanism described in each claim and also an example of a second link drive transmission mechanism.
 また、第2関節駆動モータ25の出力軸に固定した第2関節駆動ギア30は、第2関節軸22に固定された第2関節従動ギア31を駆動し、さらに第3関節駆動プーリ32及びベルト34を駆動し、第3関節軸23に固定された第3関節従動プーリ33に力を伝達する。つまり、第2関節駆動モータ25はまた、第2関節駆動ギア30、第2関節従動ギア31、第3関節駆動プーリ32、ベルト34、第3関節従動プーリ33を介して、アクチュエータトルクτ2を第3リンク18に伝達し、第3関節軸23を中心に第3リンク18を屈曲させる。なお、第3関節駆動プーリ32、第3関節従動プーリ33、及びベルト34が、各請求項に記載のプーリ機構の一例に相当し、これらと、第2関節駆動ギア30及び第2関節従動ギア31とが、各請求項に記載の第3リンク用駆動伝達機構の一例に相当する。 The second joint drive gear 30 fixed to the output shaft of the second joint drive motor 25 drives the second joint driven gear 31 fixed to the second joint shaft 22, and further, the third joint drive pulley 32 and the belt. 34 is driven, and the force is transmitted to the third joint driven pulley 33 fixed to the third joint shaft 23. That is, the second joint drive motor 25 also supplies the actuator torque τ 2 via the second joint drive gear 30, the second joint driven gear 31, the third joint drive pulley 32, the belt 34, and the third joint driven pulley 33. The third link 18 is transmitted to the third link 18, and the third link 18 is bent around the third joint shaft 23. The third joint driving pulley 32, the third joint driven pulley 33, and the belt 34 correspond to an example of the pulley mechanism described in each claim, and the second joint driving gear 30 and the second joint driven gear. 31 corresponds to an example of a third link drive transmission mechanism described in each claim.
 以上説明したように、本実施形態においては、ロボットハンド8が備える複数の指部12,12Aのうち、いずれか1本の指部12Aの少なくとも1つのリンク16を2つの小リンク35,36に分割し、それら2つの小リンク35,36を連結した構造としている。これら2つの小リンク35,36は、指部12Aの軸心線CLまわりに互いに相対ねじり変位可能となっている。この結果、当該分割されたリンク16を備えた指部12Aは、上記ねじり変位による自由度が1つ増えるので、前述したように把持対象物9に接近する把持方向と対象物9から離間する解放方向とに動作できるのみならず、対象物9に向かう角度を変えて対象物9への対向姿勢が変わるような動きが可能となる。このような動きを可能とするなじみ機構USを備えた指部12Aを少なくとも1本含むことにより、本実施形態のロボットハンド8は、対象物9に対し、従来構造よりも当該対象物9の形状に倣った柔軟な把持を行うことができる。なお、別途のアクチュエータを設けることで、例えば、対象物9の表面の曲面形状に合わせた角度で接近・離間したり、対象物9の表面に沿うように動かしたり、対象物9に対し斜めに体勢をひねった状態で接近・離間させる、等も可能となる。 As described above, in the present embodiment, at least one link 16 of any one finger portion 12A among the plurality of finger portions 12 and 12A included in the robot hand 8 is replaced with two small links 35 and 36. The structure is formed by dividing and connecting these two small links 35 and 36. These two small links 35 and 36 are capable of relative torsional displacement with respect to each other around the axis CL of the finger portion 12A. As a result, the finger portion 12A having the divided link 16 has one more degree of freedom due to the torsional displacement, so that the gripping direction approaching the gripping object 9 and the release away from the target object 9 as described above. In addition to being able to move in a direction, it is possible to change the angle toward the object 9 and change the facing posture of the object 9. By including at least one finger portion 12A provided with the conforming mechanism US that enables such movement, the robot hand 8 of the present embodiment can form a shape of the object 9 with respect to the object 9 rather than the conventional structure. It is possible to perform flexible gripping following the above. In addition, by providing a separate actuator, for example, approaching / separating at an angle according to the curved surface shape of the surface of the object 9, moving along the surface of the object 9, or obliquely with respect to the object 9 It is also possible to move closer and away with the posture being twisted.
 また、この実施形態では特に、ツイスト機構38のシャフト42の回転に伴う2つの小リンク35,36の相対回転を、案内棒45と案内板43の案内溝47によりガイドする。これにより、一方側の小リンク35と他方側の小リンク36とをより円滑に相対変位させ、当該2つの小リンク35,36を設けた指部12Aの、より滑らかな動きを実現することができる。 In this embodiment, in particular, the relative rotation of the two small links 35 and 36 accompanying the rotation of the shaft 42 of the twist mechanism 38 is guided by the guide rod 45 and the guide groove 47 of the guide plate 43. Thereby, the small link 35 on one side and the small link 36 on the other side can be relatively displaced relatively, and a smoother movement of the finger portion 12A provided with the two small links 35 and 36 can be realized. it can.
 また、この実施形態では特に、ツイスト機構38の上記案内溝47により、シャフト42の回転に伴う2つの小リンク35,36の相対回転方向の回転量を所定範囲内に制限する。これにより、一方側の小リンク35と他方側の小リンク36との相対変位をある一定範囲内にとどめ、無理な姿勢や不自然な動作を行わせないようにすることができる。この結果、さらに滑らかな動きを実現するとともに、耐久性や信頼性を向上することができる。 In this embodiment, in particular, the amount of rotation in the relative rotation direction of the two small links 35 and 36 accompanying the rotation of the shaft 42 is limited within a predetermined range by the guide groove 47 of the twist mechanism 38. As a result, the relative displacement between the small link 35 on one side and the small link 36 on the other side can be kept within a certain range so that an unreasonable posture or an unnatural operation is not performed. As a result, smoother movement can be realized, and durability and reliability can be improved.
 また、この実施形態では特に、ツイスト機構38のねじりバネ46が、シャフト42の回転に伴い正回転方向に変位する2つの小リンク35,36を、逆回転方向へ変位させる復帰力を与える。これにより、2つの小リンク35,36が相対変位して対象物9の表面に接触した後、当該対象物9の形状に合わせた、受動的な安定把持動作を実現することができる。またこの受動的な動作により、指先の第3リンク18から根元の第1リンク16までの間で対象物9との接触面積が増加し、これによっても安定把持を行うことができる。また、把持した対象物9を解放したとき、復帰方向への強制的な駆動力を与えなくても、自然に相対変位前のもとの状態へ復帰させることができる。これらの結果、人間の手指に近い、違和感の少ない動きを確実に実現することができる。 In this embodiment, in particular, the torsion spring 46 of the twist mechanism 38 provides a restoring force that displaces the two small links 35 and 36 that are displaced in the forward rotation direction in accordance with the rotation of the shaft 42 in the reverse rotation direction. Thereby, after the two small links 35 and 36 are relatively displaced and come into contact with the surface of the object 9, it is possible to realize a passive and stable gripping operation in accordance with the shape of the object 9. In addition, the passive operation increases the contact area with the object 9 between the third link 18 at the fingertip and the first link 16 at the root, and stable gripping can also be performed. Further, when the grasped object 9 is released, it can be naturally returned to the original state before the relative displacement without applying a forcible driving force in the return direction. As a result, it is possible to reliably realize a motion that is close to a human finger and has a little uncomfortable feeling.
 また、本実施形態では特に、掌部11側の第1リンク16は、相対ねじり変位可能な2つの小リンク35,36で構成され、指部12Aの根元側からの大きな姿勢変化を行うことができる。また、第1リンク16を、掌部11に配置した第1関節駆動モータ24からのアクチュエータトルクτ1により揺動(屈曲伸展)させる一方、第2リンク17及び第3リンク18を、第1リンクに配置した2関節駆動モータ25のアクチュエータトルクτ2により揺動(屈曲伸展)させる。これにより、第1リンク16と、第2リンク17及び第3リンク18とを、互いに独立して揺動(屈曲伸展)させることができる。 In the present embodiment, in particular, the first link 16 on the palm portion 11 side is composed of two small links 35 and 36 that can be displaced relative to each other, and can perform a great posture change from the base side of the finger portion 12A. it can. In addition, the first link 16 is swung (bent and extended) by the actuator torque τ1 from the first joint drive motor 24 disposed in the palm portion 11, while the second link 17 and the third link 18 are changed to the first link. Oscillating (bending and extending) is performed by the actuator torque τ 2 of the two-joint drive motor 25 arranged. Thereby, the 1st link 16, and the 2nd link 17 and the 3rd link 18 can be made to rock | fluctuate (bend extension) mutually independently.
 また、第2関節駆動モータ25を第2リンク17側の第2小リンク36に配置し、当該第2関節駆動モータ25からのアクチュエータトルクτ2は、第2関節駆動ギア30及び第2関節従動ギア31により第2リンク17に伝達される一方、第3関節駆動プーリ32、ベルト34、及び第3関節従動プーリ33により第3リンク18へも伝達される。第2リンク17揺動用のアクチュエータと第3リンク18揺動用のアクチュエータとを共通化することにより、それぞれ独立したアクチュエータにより駆動する場合に比べ、アクチュエータ駆動制御の負荷を減らすことができ、より高速に揺動(屈曲伸展)できる。このとき、上記の第3関節駆動ギア30、第3関節従動ギア31、第3関節駆動プーリ32、ベルト34、及び第3関節従動プーリ33は、第2関節駆動モータ25からのアクチュエータトルクτ2を第3リンク18へ伝達することができる。これにより、第3リンク18を、第2リンク17の劣駆動の態様で円滑に駆動することができ、第2リンク17の屈曲動作と連動した人間と似た自然な屈曲動作を実現することができる。 Further, the second joint drive motor 25 is arranged on the second small link 36 on the second link 17 side, and the actuator torque τ2 from the second joint drive motor 25 is obtained by the second joint drive gear 30 and the second joint driven gear. While being transmitted to the second link 17 by 31, it is also transmitted to the third link 18 by the third joint driving pulley 32, the belt 34 and the third joint driven pulley 33. By sharing the actuator for oscillating the second link 17 and the actuator for oscillating the third link 18, it is possible to reduce the load of the actuator drive control compared to the case where each actuator is driven by an independent actuator, and at a higher speed. Can swing (bend and extend). At this time, the third joint drive gear 30, the third joint driven gear 31, the third joint drive pulley 32, the belt 34, and the third joint driven pulley 33 receive the actuator torque τ 2 from the second joint drive motor 25. It can be transmitted to the third link 18. As a result, the third link 18 can be smoothly driven in the inferior driving mode of the second link 17, and a natural bending action similar to that of a human in conjunction with the bending action of the second link 17 can be realized. it can.
 さらに、上記のように第2リンク17及び第3リンク18を駆動するためのアクチュエータを1個の第2関節駆動モータ25に共通化するとともに、第1リンク16を駆動するための第1関節駆動モータ24を掌部11に配置することにより、指部12Aに配置されるアクチュエータは、第2関節駆動モータ25の1個のみとなる。この結果、指部12A全体の軽量化を図ることもできる。 Furthermore, as described above, the actuator for driving the second link 17 and the third link 18 is shared by one second joint drive motor 25, and the first joint drive for driving the first link 16 is used. By disposing the motor 24 on the palm portion 11, only one actuator of the second joint drive motor 25 is disposed on the finger portion 12 </ b> A. As a result, the weight of the entire finger portion 12A can be reduced.
 また、この実施形態では、シャフト42に第2関節駆動モータ25へのケーブル部材49を貫通させるための貫通孔48を備えたことで、第2リンク17側の第2小リンク36に配置された第2関節駆動モータ25のケーブル部材49を、ロボットハンド8の外部に露出することなく、掌部11に円滑に配設することができる。また、これにより、アクチュエータのパワーアンプを掌部11に配置することができ、これによっても指部12Aの軽量化を図ることができる。 In this embodiment, the shaft 42 is provided with the through-hole 48 for allowing the cable member 49 to the second joint drive motor 25 to pass therethrough, so that the shaft 42 is disposed in the second small link 36 on the second link 17 side. The cable member 49 of the second joint drive motor 25 can be smoothly arranged on the palm portion 11 without being exposed to the outside of the robot hand 8. In addition, this makes it possible to arrange the power amplifier of the actuator on the palm portion 11, which can also reduce the weight of the finger portion 12 </ b> A.
 なお、上記実施形態においては、ロボットハンド8が備える3本の指部12,12Aのうちの1本の指部12Aにおける第1リンク16にだけ相対ねじり変位可能な構成を備えたが、これに限られない。例えば複数(もしくは全部)の指部12に備えてもよいし、また第1リンク16以外のリンク17,18に備えてもよい。 In the above-described embodiment, a configuration in which relative torsional displacement can be performed only on the first link 16 in one finger portion 12A of the three finger portions 12 and 12A included in the robot hand 8 is provided. Not limited. For example, a plurality (or all) of the finger portions 12 may be provided, or the links 17 and 18 other than the first link 16 may be provided.
 なお、上記実施形態に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を順に説明する。 In addition, it is not restricted to the said embodiment, A various deformation | transformation is possible within the range which does not deviate from the meaning and technical idea. Hereinafter, such modifications will be described in order.
 (1-1)引っ張りバネを用いる場合
 上記実施形態では、ツイスト機構38における第2小リンク36と第1小リンク35の間の相対ねじり変位に対して逆の回転方向へ変位させる復帰力をねじりバネ46により得ていたが、これに限られない。例えば、案内板43と案内棒45の間に掛け渡した引っ張りバネにより、上記復帰力を得る構成としてもよい。
(1-1) In the case where a tension spring is used In the above embodiment, the return force for displacing the twist mechanism 38 in the direction opposite to the relative torsional displacement between the second small link 36 and the first small link 35 is twisted. Although obtained with the spring 46, it is not restricted to this. For example, the return force may be obtained by a tension spring that spans between the guide plate 43 and the guide rod 45.
 図7において、本変形例のツイスト機構38Aは、上記実施形態におけるねじりバネ46を備えておらず、その代わりに2つのつるまきバネ51を備えている。これら2つのつるまきバネ51は、それぞれ対応する案内棒45の指先側(図中の手前側)の端部と、その初期位置である案内溝47の端部との間に掛け渡され、常に案内棒45をそれぞれの端部に引き寄せようとする付勢力を与えている。なお、つるまきバネ51が、各請求項記載のばね部材の一例に相当するとともに復帰力付与部材の一例にも相当する。 In FIG. 7, the twist mechanism 38A of the present modification does not include the torsion spring 46 in the above embodiment, but includes two helical springs 51 instead. These two helical springs 51 are respectively stretched between the end of the corresponding guide bar 45 on the fingertip side (front side in the figure) and the end of the guide groove 47 which is the initial position. A biasing force is applied to pull the guide rod 45 toward each end. The helical spring 51 corresponds to an example of a spring member described in each claim and also corresponds to an example of a restoring force applying member.
 本変形例においても、つるまきバネ51の弾性による付勢力を利用して、受動的な安定把持動作や把持解放後のもとの状態への復帰を行うことができ、上記実施形態と同様の効果を得ることができる。 Also in this modified example, it is possible to perform passive stable gripping operation and return to the original state after releasing the grip by using the urging force due to the elasticity of the helical spring 51, which is the same as in the above embodiment. An effect can be obtained.
 (1-2)永久磁石を用いる場合
 また、永久磁石を用いて上記のツイスト機構における復帰力を得るようにしてもよい。図8において、本変形例のツイスト機構38Bは、上記実施形態におけるねじりバネ46を備えておらず、その代わりに、シャフト支持板41及び案内板43の互いに対向するそれぞれの面に永久磁石52が設けられている。その際、シャフト支持板41と案内板43とが初期の相対回転位置にある状態で、それぞれ対向する一対の永久磁石52どうしが互いに吸引力を作用するよう、各永久磁石52の磁極(N極とS極)が配置されている。
(1-2) Using a permanent magnet In addition, a return force in the twist mechanism may be obtained using a permanent magnet. In FIG. 8, the twist mechanism 38B of the present modification does not include the torsion spring 46 in the above embodiment, but instead, the permanent magnet 52 is provided on each surface of the shaft support plate 41 and the guide plate 43 facing each other. Is provided. At that time, in a state where the shaft support plate 41 and the guide plate 43 are in the initial relative rotational position, the magnetic poles (N poles) of the permanent magnets 52 so that the pair of permanent magnets 52 facing each other exert an attractive force. And S pole) are arranged.
 これにより、対向する永久磁石52どうしは、N極とS極、又は、S極とN極の組み合わせとなることから、常に、シャフト支持板41と案内板43とを初期の位置に戻そうとする力を与えている。なお、対向する永久磁石52どうしで磁力が十分に影響し合えるよう、この例では、シャフト42B及び案内棒45Bが比較的短く形成され、シャフト支持板41と案内板43とが十分に近接するよう配置されている。また、ツイスト機構38Bを構成するシャフト支持板41、シャフト42B、案内板43、及び案内棒45Bの各部材には、それぞれ非磁性材料で密度の低い例えばアルミ等を使用することが好ましい。なお、永久磁石52が、各請求項に記載の復帰力付与部材の一例に相当する。 Thereby, since the opposing permanent magnets 52 are a combination of the N pole and the S pole or the S pole and the N pole, the shaft support plate 41 and the guide plate 43 are always returned to the initial positions. Giving the power to do. In this example, the shaft 42B and the guide rod 45B are formed relatively short so that the permanent magnets 52 facing each other can sufficiently influence each other, and the shaft support plate 41 and the guide plate 43 are sufficiently close to each other. Is arranged. Moreover, it is preferable to use, for example, aluminum or the like, which is a nonmagnetic material and has a low density, for each member of the shaft support plate 41, the shaft 42B, the guide plate 43, and the guide rod 45B constituting the twist mechanism 38B. The permanent magnet 52 corresponds to an example of the restoring force applying member described in each claim.
 本変形例においては、一対の永久磁石52,52が互いに引き合う吸引力を利用して、受動的な安定把持動作や把持解放後のもとの状態への復帰を行うことができ、上記実施形態と同様の効果を得ることができる。また、磁力を利用した非接触方式とすることにより、疲労や経年による耐久性の低下や劣化が生じるのを確実に防止することができ、部品交換も不要となる。 In this modification, a passive stable gripping operation or return to the original state after the grip release can be performed by using the attractive force that the pair of permanent magnets 52 and 52 attract each other. The same effect can be obtained. In addition, by using a non-contact method using magnetic force, it is possible to reliably prevent deterioration or deterioration of durability due to fatigue or aging, and replacement of parts becomes unnecessary.
 (1-3)ゴム部材を用いる場合
 また、ゴム部材を用いて上記復帰力を得るようにしてもよい。図9(a)及び図9(b)において、本変形例のツイスト機構38Cは、シャフト支持板41と、シャフト42と、ゴム部材収納体53と、連結部材54と、2つの押圧部材55と、2つのゴム部材56とを有している。シャフト支持板41とシャフト42は、それぞれ上記実施形態と同等に形成され、固定されている。ゴム部材収納体53は、全体がシャフト支持板41とほぼ同径の円柱形状に形成されており、シャフト42が当該ゴム部材収納体53の軸中心を貫通して回転自在に支持されている。
(1-3) In the case of using a rubber member The return force may be obtained using a rubber member. 9A and 9B, the twist mechanism 38C of this modification includes a shaft support plate 41, a shaft 42, a rubber member storage body 53, a connecting member 54, and two pressing members 55. Two rubber members 56 are provided. The shaft support plate 41 and the shaft 42 are formed and fixed in the same manner as in the above embodiment. The entire rubber member housing 53 is formed in a cylindrical shape having substantially the same diameter as the shaft support plate 41, and the shaft 42 is rotatably supported through the center of the rubber member housing 53.
 また、ゴム部材収納体53には、その軸中心に対してそれぞれ同じ内周角となる2つの円弧状の深溝57が形成されており、各深溝57の内部にはほぼ同じ円弧形状で軸方向に長く形成されたゴム部材56が収納されている。ゴム部材56と深溝57は、それぞれの組み合わせで対応する端部どうしの間に隙間が設けられており、それら隙間にそれぞれ平板形状の押圧部材55が挿入されている。各押圧部材55の指先側(図9(a)中の手前側、図9(b)中の右側)の端部がそれぞれゴム部材収納体53の端部から突出し、平板形状の連結部材54を介してシャフト42の自由端に固定されている。そして、本変形例のツイスト機構38Cを第1リンク16の内部に備える場合には、シャフト支持板41を(シャフト42及び押圧部材55とともに)を第1小リンク35に固定し、ゴム部材収納体53を第2小リンク36に固定する。なお、ゴム部材56が、各請求項に記載の復帰力付与部材の一例に相当する。 The rubber member housing 53 is formed with two arc-shaped deep grooves 57 having the same inner peripheral angle with respect to the axial center, and the deep grooves 57 have substantially the same arc shape in the axial direction. A long rubber member 56 is accommodated. The rubber member 56 and the deep groove 57 are provided with a gap between corresponding end portions in each combination, and a flat plate-shaped pressing member 55 is inserted into each of the gaps. The end portions of each pressing member 55 on the fingertip side (the front side in FIG. 9A and the right side in FIG. 9B) protrude from the end portion of the rubber member housing 53, respectively. It is being fixed to the free end of shaft 42 via. When the twist mechanism 38C of this modification is provided inside the first link 16, the shaft support plate 41 (together with the shaft 42 and the pressing member 55) is fixed to the first small link 35, and the rubber member storage body 53 is fixed to the second small link 36. The rubber member 56 corresponds to an example of the restoring force applying member described in each claim.
 シャフト42とともに連結部材54及び2つの押圧部材55がシャフト42の回転軸まわりに回転した際には、2つの押圧部材55がそれぞれ深溝57内で各ゴム部材56を当該回転方向に押圧圧縮する。この際、各ゴム部材53の復元力がそれぞれ逆の回転方向に変位させるようとする付勢力を各押圧部材55、連結部材54、シャフト42、及びシャフト支持板41に与える。なお、押圧圧縮された各ゴム部材56は、図9(b)中の破線で示すように回転軸方向に沿って伸びるよう弾性変形するが、この弾性変形量はゴム部材56の材料のポアソン比で決定される。 When the connecting member 54 and the two pressing members 55 together with the shaft 42 are rotated around the rotation axis of the shaft 42, the two pressing members 55 respectively press and compress the rubber members 56 in the rotation direction in the deep grooves 57. At this time, an urging force that causes the restoring force of each rubber member 53 to be displaced in the opposite rotation direction is applied to each pressing member 55, the connecting member 54, the shaft 42, and the shaft support plate 41. Each rubber member 56 that has been pressed and compressed is elastically deformed so as to extend along the direction of the rotation axis as indicated by the broken line in FIG. 9B. The amount of elastic deformation is the Poisson's ratio of the material of the rubber member 56. Determined by
 以上説明したように、本変形例においては、ゴム部材56の弾性変形後の復元力を利用して、受動的な安定把持動作や把持解放後のもとの状態への復帰を行うことができ、上記実施形態と同様の効果を得ることができる。またゴム部材56は弾性のみならず粘性も備えるため、2つの小リンク35,36の相対回転に対する、ある程度のガイド機能や回転量規制機能を果たすこともできる。この場合、上記実施形態における案内棒45や案内溝47を省略することも可能である。なお、上記ゴム部材56は、同様に弾性変形が可能な樹脂部材で代用することもできる。 As described above, in this modified example, the restoring force after elastic deformation of the rubber member 56 can be used to perform passive stable gripping operation or return to the original state after gripping release. The same effects as in the above embodiment can be obtained. Further, since the rubber member 56 has not only elasticity but also viscosity, the rubber member 56 can perform a certain degree of guide function and rotation amount regulation function with respect to relative rotation of the two small links 35 and 36. In this case, the guide rod 45 and the guide groove 47 in the above embodiment can be omitted. The rubber member 56 may be replaced with a resin member that can be similarly elastically deformed.
 <第2実施形態>
 次に、第2実施形態について説明する。本実施形態は、ばね部材により補助トルクを付与することにより、どのような姿勢でも対象物を包み込むように把持可能とするものである。
Second Embodiment
Next, a second embodiment will be described. In the present embodiment, an auxiliary torque is applied by a spring member so that the object can be gripped so as to be wrapped in any posture.
 本実施形態に係るロボットハンド108を備えたロボット装置1及びロボット本体2の構成については、前述の第1実施形態(図1)と同様であるので、説明を省略する。 Since the configurations of the robot apparatus 1 and the robot body 2 including the robot hand 108 according to the present embodiment are the same as those in the first embodiment (FIG. 1), the description thereof is omitted.
 図10において、ロボットハンド108は、掌部111と、この掌部111に根元が連結された3本の指部112とを有している。各指部112は、それぞれヒンジで構成する2つの第2関節114、第3関節115を介して3つのリンク116、117、118を直列に連結しており、さらに根元側のリンク116が第1関節113と連結し、各指部112は一平面上で揺動するような屈曲伸展動作が可能となっている。3本の指部112がお互いに近接するように屈曲することで、ロボットハンド108は対象物9を3つのリンク116,117,118及び3本の指部112の腹で把持することができる。そして、本実施形態のロボットハンド108は、上記3本の指部112のうちの隣接する2関節を1つの電動機で連動駆動させる劣駆動機構を備えている。 In FIG. 10, the robot hand 108 has a palm part 111 and three finger parts 112 having roots connected to the palm part 111. Each finger part 112 has three links 116, 117, 118 connected in series via two second joints 114 and third joints 115 each formed of a hinge, and further, the link 116 on the root side is the first link 116. It is connected with the joint 113, and each finger part 112 can bend and extend so as to swing on one plane. By bending the three fingers 112 so as to be close to each other, the robot hand 108 can hold the object 9 with the three links 116, 117, 118 and the belly of the three fingers 112. The robot hand 108 according to the present embodiment includes an under-drive mechanism that interlocks and drives two adjacent joints of the three finger portions 112 with a single electric motor.
 次に図11を用いて、上述した劣駆動機構を備える指部112の全体の内部構造を説明する。なお、図11では、中空構造である掌部111の一部、及び各リンク116、117、118の外殻を示す。壁部等については、図示を適宜省略して示している。 Next, the entire internal structure of the finger part 112 having the above-described inferior drive mechanism will be described with reference to FIG. In addition, in FIG. 11, a part of palm part 111 which is a hollow structure, and the outer shell of each link 116, 117, 118 are shown. About a wall part etc., illustration is abbreviate | omitted suitably and shown.
 図11において、第1リンク116の根元は掌部111の縁部に設けられた第1関節軸1131に固定されており、第1関節軸1131と第1モータ119(アクチュエータ)の出力軸とがカップリング121Aで連結されている。第1関節軸1131は、掌部111に設けられた軸受126Aにより回転自在に支持されている。このような構成により、第1モータ119の発生するトルクによって、指部112全体が掌部111に対し第1関節113で揺動(屈曲伸展)される。 In FIG. 11, the base of the first link 116 is fixed to a first joint shaft 1131 provided at the edge of the palm 111, and the first joint shaft 1131 and the output shaft of the first motor 119 (actuator) are connected. They are connected by a coupling 121A. The first joint shaft 1131 is rotatably supported by a bearing 126A provided on the palm 111. With such a configuration, the entire finger portion 112 is swung (bent and extended) at the first joint 113 with respect to the palm portion 111 by the torque generated by the first motor 119.
 第1リンク116の指先側には、第2モータ120(アクチュエータ)が設置されている。この第2モータ120の出力軸と第2関節軸1141とがカップリング121Bで連結されている。第2関節軸1141は、第2リンク117の根元に設けられた軸受126Eと第1リンク116に設けられた軸受126Bで回転自在に支持されている。また、駆動プーリ122は第2関節軸1141に固定され、駆動プーリ122と第2関節軸1141は回転角度で一致する。 A second motor 120 (actuator) is installed on the fingertip side of the first link 116. The output shaft of the second motor 120 and the second joint shaft 1141 are connected by a coupling 121B. The second joint shaft 1141 is rotatably supported by a bearing 126E provided at the base of the second link 117 and a bearing 126B provided on the first link 116. The drive pulley 122 is fixed to the second joint shaft 1141, and the drive pulley 122 and the second joint shaft 1141 coincide with each other in the rotation angle.
 第2リンク117の指先側には、第3リンク118が連結されている。第3リンク118の根元は、第3関節軸1151に固定されている。第3関節軸1151は、第2リンク117の指先側に設けられた軸受126Dにより回転自在に支持されている。第3関節軸1151には従動プーリ123が設けられている。駆動プーリ122と従動プーリ123との間にはベルト124が掛け渡されており、駆動プーリ122のトルクがベルト124を介して従動プーリ123に伝達される。ベルト124には、第2リンク117の中間部に設けられたアイドルプーリ125も接触している。このアイドルプーリ125は、ベルト124の張力を調整する役割を果たす。なお、駆動プーリ122、従動プーリ123、及びベルト124が、特許請求の範囲に記載のトルク伝達機構の一例に相当する。 The third link 118 is connected to the fingertip side of the second link 117. The root of the third link 118 is fixed to the third joint shaft 1151. The third joint shaft 1151 is rotatably supported by a bearing 126D provided on the fingertip side of the second link 117. The third joint shaft 1151 is provided with a driven pulley 123. A belt 124 is stretched between the driving pulley 122 and the driven pulley 123, and torque of the driving pulley 122 is transmitted to the driven pulley 123 via the belt 124. The idle pulley 125 provided at the intermediate portion of the second link 117 is also in contact with the belt 124. The idle pulley 125 serves to adjust the tension of the belt 124. The driving pulley 122, the driven pulley 123, and the belt 124 correspond to an example of a torque transmission mechanism described in the claims.
 第2関節114における第1リンク116と第2リンク117が重なり合う箇所には、第1リンク116に対して第2リンク117の姿勢を制限するストッパ128が設けられている。このストッパ128は、第1リンク116に設けられたピン128Aと、第2リンク117に設けられた案内溝128Bとで構成されている。また、第3関節115における第2リンク117と第3リンク118が重なり合う箇所には、第2リンク117に対して第3リンク118の姿勢を制限するストッパ129が設けられている。このストッパ129は、第2リンク117に設けられたピン129Aと、第3リンク118に設けられた案内溝129Bとで構成されている。 A stopper 128 that restricts the posture of the second link 117 with respect to the first link 116 is provided at a location where the first link 116 and the second link 117 overlap in the second joint 114. The stopper 128 includes a pin 128 </ b> A provided on the first link 116 and a guide groove 128 </ b> B provided on the second link 117. Further, a stopper 129 that restricts the posture of the third link 118 with respect to the second link 117 is provided at a location where the second link 117 and the third link 118 overlap in the third joint 115. The stopper 129 includes a pin 129 </ b> A provided on the second link 117 and a guide groove 129 </ b> B provided on the third link 118.
 ストッパ129の構成の一例を図12及び図13を参照して説明する。これら図12及び図13において、ピン129Aは、第2リンク117と第3リンク118が重なり合う箇所において、第2リンク117の内側に立設されている。案内溝129Bは、第3リンク118と第2リンク117とが重なり合う箇所で、第3関節軸1151を中心として外周に平行するように第3リンク118に設けられており、挿通されたピン129Aの動作範囲を規制可能に構成されている。すなわち、図12に示すように、ストッパ129は、第2リンク117の軸線と第3リンク118の軸線とが第3関節軸1151を中心に180度以上に伸展しないように、且つ、図13に示すように、第2リンク117の軸線と第3リンク118の軸線とが第3関節軸1151を中心に鋭角(例えば90度以下)に屈曲しないように、第2リンク117に対する第3リンク118の姿勢を制限する。なお、ストッパ128も上記ストッパ129と同様の構成となっている。 An example of the configuration of the stopper 129 will be described with reference to FIGS. 12 and 13, the pin 129 </ b> A is erected on the inner side of the second link 117 where the second link 117 and the third link 118 overlap. The guide groove 129B is provided in the third link 118 so as to be parallel to the outer periphery around the third joint shaft 1151 where the third link 118 and the second link 117 overlap, and the guide groove 129B of the inserted pin 129A It is configured to be able to regulate the operating range. That is, as shown in FIG. 12, the stopper 129 prevents the axis of the second link 117 and the axis of the third link 118 from extending more than 180 degrees around the third joint axis 1151 and As shown, the second link 117 and the third link 118 are not bent at an acute angle (for example, 90 degrees or less) about the third joint axis 1151 so that the third link 118 has an axis of the third link 118 with respect to the second link 117. Limit posture. The stopper 128 has the same configuration as the stopper 129.
 図11に戻り、第2関節軸1141周りには、コイル状のねじりばね127が設けられている。図示は省略するが、このねじりばね127の一方側の端部は第1リンク116に固定され、他方側の端部は第2リンク117に固定されている。これにより、ねじりばね127は、把持動作の際には、第2関節114を駆動するのに必要な駆動トルクが第3関節115を駆動するのに必要な駆動トルクよりも小さくなるように、把持解除動作の際には、第2関節114を駆動するのに必要な駆動トルクが第3関節115を駆動するのに必要な駆動トルクよりも大きくなるように、第2関節114に補助トルクを付与する。 11, a coiled torsion spring 127 is provided around the second joint shaft 1141. Although not shown, one end of the torsion spring 127 is fixed to the first link 116, and the other end is fixed to the second link 117. Thus, the torsion spring 127 is gripped so that the driving torque required to drive the second joint 114 is smaller than the driving torque required to drive the third joint 115 during the gripping operation. During the releasing operation, the auxiliary torque is applied to the second joint 114 so that the driving torque necessary to drive the second joint 114 is larger than the driving torque necessary to drive the third joint 115. To do.
 ねじりばね127の構成の一例を説明する(図14)。なお、図14ではストッパ128の図示を省略している。図14において、ねじりばね127は第2関節軸1141周りに挿入されている。ねじりばね127の自由端の1つは、第1リンク116内部に設けられたピン135Aに固定され、ねじりばね127のもう1つの自由端は、第2リンク117内部に設けられたピン135Bに固定される。ピン135A,135Bは、第2モータ120に電源が入っていない自然状態において、第2リンク117が第1リンク116に対して例えば90度屈曲した状態になるように配置されている。なお、ねじりばね127が、特許請求の範囲に記載の駆動トルク調整部材の一例に相当すると共に、第2ばね部材の一例にも相当する。 An example of the configuration of the torsion spring 127 will be described (FIG. 14). In FIG. 14, the stopper 128 is not shown. In FIG. 14, the torsion spring 127 is inserted around the second joint shaft 1141. One free end of the torsion spring 127 is fixed to a pin 135A provided in the first link 116, and the other free end of the torsion spring 127 is fixed to a pin 135B provided in the second link 117. Is done. The pins 135 </ b> A and 135 </ b> B are arranged so that the second link 117 is bent, for example, 90 degrees with respect to the first link 116 in a natural state where the power is not supplied to the second motor 120. The torsion spring 127 corresponds to an example of a drive torque adjusting member described in the claims, and also corresponds to an example of a second spring member.
 次に、図11を参照しつつ、本実施形態に係るロボットハンド108の指部112の動作について説明する。モータ119は第1関節軸1131を駆動し、第1リンク116を姿勢制御し、モータ120は第2関節軸1141と第3関節軸1151を駆動する。モータ120と第2関節軸1141、第3関節軸1151は劣駆動機構なので、モータ120は第3関節軸1151を任意に角度制御できない。劣駆動機構とは、制御対象の自由度よりもアクチュエータ自由度が少ない機構である。この出力自由度よりも入力自由度が少ない点が、なじみ把持(物体形状に倣うように把持する)に有利である。本実施形態では、モータ1個に対して、関節軸2個である。物体把持過程において、まず第1リンク116が把持対象物9に近づくように、モータ119は第1リンク116を姿勢制御する。第1リンクが予め決められた姿勢に制御された後、第2リンク117と第3リンク118が把持対象物9に接触するように、モータ120は第2リンク117と第3リンクを駆動する。本実施形態の劣駆動機構(モータ120が第2リンク117と第3リンク118を駆動する)を詳細に説明する。駆動プーリ122と従動プーリ123とベルト124の間に摩擦があり、摩擦を越えるようなモータトルクが発生したときには、第3関節軸1151周りに第3リンク118が回転する。これを自転動作と呼ぶことにする。摩擦よりも小さいモータトルクが発生したときには、第2関節軸1141周りに第2リンク117と第3リンク118とベルト124と駆動プーリ122と従動プーリ123が一体となって回転する。これを公転動作と呼ぶことにする。自転動作と公転動作により、1つのモータで2つの関節を駆動できる。第2モータ120が速度制御され、第2モータ120の出力軸が図11中右側から見て時計回り(図11中指先側紙面奥行き方向)に回転すると、カップリング121Bを介して、第2関節軸1141及び駆動プーリ122が同時計回りに回転する。第2リンク117が把持対象物9に接触するまで公転動作を続行し、第2リンク117が把持対象物9と接触するとモータ速度偏差が大きくなるので、速度偏差を小さくなるように摩擦を越えるトルクが発生し自転動作に切り替わる。つまり第2リンク117が把持対象物9と接触した後、第3リンク118が対象物に向かって屈曲する。一連の動作(自転動作と公転動作)により、本発明の指部112は、物体形状に倣うように把持対象物9を把持する。 Next, the operation of the finger part 112 of the robot hand 108 according to the present embodiment will be described with reference to FIG. The motor 119 drives the first joint shaft 1131 to control the posture of the first link 116, and the motor 120 drives the second joint shaft 1141 and the third joint shaft 1151. Since the motor 120, the second joint shaft 1141, and the third joint shaft 1151 are underactuated mechanisms, the motor 120 cannot arbitrarily control the angle of the third joint shaft 1151. An under-actuated mechanism is a mechanism that has a lower degree of actuator freedom than a degree of freedom to be controlled. The point that the input degree of freedom is smaller than the output degree of freedom is advantageous for familiar gripping (gripping so as to follow the object shape). In this embodiment, there are two joint shafts for one motor. In the object gripping process, first, the motor 119 controls the posture of the first link 116 so that the first link 116 approaches the gripping target 9. After the first link is controlled to a predetermined posture, the motor 120 drives the second link 117 and the third link so that the second link 117 and the third link 118 are in contact with the grasped object 9. The underdrive mechanism (the motor 120 drives the second link 117 and the third link 118) of this embodiment will be described in detail. When there is friction between the driving pulley 122, the driven pulley 123, and the belt 124, and a motor torque that exceeds the friction is generated, the third link 118 rotates around the third joint shaft 1151. This is called a rotation operation. When a motor torque smaller than the friction is generated, the second link 117, the third link 118, the belt 124, the driving pulley 122, and the driven pulley 123 rotate integrally around the second joint shaft 1141. This is called a revolution operation. Two joints can be driven by one motor by rotation and revolution. When the speed of the second motor 120 is controlled and the output shaft of the second motor 120 rotates clockwise as viewed from the right side in FIG. 11 (the fingertip side paper surface depth direction in FIG. 11), the second joint is connected via the coupling 121B. The shaft 1141 and the drive pulley 122 rotate clockwise. The revolving operation is continued until the second link 117 comes into contact with the gripping object 9, and when the second link 117 comes into contact with the gripping object 9, the motor speed deviation increases, so that the torque exceeding the friction reduces the speed deviation. Occurs and switches to autorotation. That is, after the second link 117 comes into contact with the grasped object 9, the third link 118 bends toward the object. Through a series of operations (spinning operation and revolving operation), the finger unit 112 of the present invention holds the holding object 9 so as to follow the object shape.
 ハンドで安定して把持対象物9を把持するには、各リンク(第2リンク117と第3リンク118)が動き出す順番が重要であり、屈曲動作中の順番は第2リンク117の後に第3リンク118、伸展動作中の順番は第3リンク118の後に第2リンク117である。この動作を確実に行うためねじりばね127とストッパ129を設けた。なお、第3リンク118の伸展途中で第2リンク117が伸展を開始しても良い。 The order in which the links (the second link 117 and the third link 118) start to move is important for grasping the grasped object 9 stably with the hand, and the order during the bending operation is the third after the second link 117. The order of the link 118 and the extension operation is the second link 117 after the third link 118. A torsion spring 127 and a stopper 129 are provided to ensure this operation. The second link 117 may start extending during the extension of the third link 118.
 まず、ねじりばね127を第2関節軸141周りに設けた理由を説明する。ねじりばね127は、屈曲動作時に少ないトルクで第2リンク117の後、第3リンク118が動き出すように働き、伸展動作時に大きなトルクを与えない限り、第3リンク118の後に、第2リンク117が動き出すように働く。このねじりばね127の追加で、どのような姿勢でも所望の屈曲伸展動作を実現できる。ストッパ129は、伸展動作に必要な部品であり、ねじりばねを追加しストッパ129が無ければ第3リンク118のみが働き、第2リンクが動けない。つまり、ストッパ129が無ければ、所望の伸展動作を実現できない。さらに、ストッパ128は、第2リンク117が伸展動作を続けた際に、第2関節軸1141を中心に第2リンク117と第1リンク116との角度がある設定した角度(例えば180度)以上とならないように規制する。 First, the reason why the torsion spring 127 is provided around the second joint shaft 141 will be described. The torsion spring 127 works so that the third link 118 starts to move after the second link 117 with a small torque during the bending operation, and the second link 117 follows the third link 118 unless a large torque is applied during the extension operation. Work to move. With the addition of the torsion spring 127, a desired bending / extending operation can be realized in any posture. The stopper 129 is a component necessary for the extension operation. If a torsion spring is added and the stopper 129 is not provided, only the third link 118 works and the second link cannot move. That is, without the stopper 129, a desired extension operation cannot be realized. Further, when the second link 117 continues to extend, the stopper 128 has an angle between the second link 117 and the first link 116 with a certain angle (for example, 180 degrees) or more around the second joint axis 1141. Regulate not to become.
 次に、第2モータ120を駆動する際の初期姿勢制御方法について説明する。ねじりばね127の付勢力により、第2モータ120の電源が入っていない場合でブレーキがかかっていない場合には、第2リンク117は屈曲姿勢(把持方向の姿勢)になっている。すなわち、第2リンク117の初期状態は、ねじりばね127の影響で屈曲姿勢である。しかし、物体を把持する場合には、第2リンク117と第3リンク118が伸展姿勢であることが望ましい。そこで、PC3から、第2モータ120に図11中右側から見て反時計回り(図11中指先側紙面手前方向)に回転するよう電圧指令を与え、ねじりばね127の付勢力に対抗するトルクを発生させて第2リンク117の伸展動作を実行する。このとき、第3リンク118はストッパ129によって伸展動作が止まり、さらに、第2リンク117はストッパ128によって伸展動作が止まる。この第1リンク116、第2リンク117、第3リンク118を直列に伸展させた状態を初期姿勢とし、第2モータ120の初期角度0度として、PC3のメモリに記憶しておく。また、電源投入前の角度とストッパ128により拘束されたときの角度差(回転角度)もPC3に記憶しておく。角度差0は、電源投入後、初期姿勢に戻すために利用し、角度差を目標角度指令として与えることで容易に初期姿勢を保つことができる。 Next, an initial attitude control method when driving the second motor 120 will be described. Due to the biasing force of the torsion spring 127, when the power of the second motor 120 is not turned on and the brake is not applied, the second link 117 is in the bending posture (the posture in the gripping direction). That is, the initial state of the second link 117 is a bent posture due to the influence of the torsion spring 127. However, when gripping an object, it is desirable that the second link 117 and the third link 118 are in the extended posture. Therefore, a voltage command is given from the PC 3 to the second motor 120 so as to rotate counterclockwise when viewed from the right side in FIG. 11 (toward the fingertip side in FIG. 11), and a torque that counters the biasing force of the torsion spring 127 is applied. And the extension operation of the second link 117 is executed. At this time, the extension operation of the third link 118 is stopped by the stopper 129, and the extension operation of the second link 117 is stopped by the stopper 128. The state in which the first link 116, the second link 117, and the third link 118 are extended in series is set as an initial posture, and the initial angle of the second motor 120 is stored in the memory of the PC 3 as 0 degree. Further, the angle difference (rotation angle) when restrained by the stopper 128 and the angle before the power is turned on is also stored in the PC 3. The angle difference 0 is used to return to the initial posture after the power is turned on, and the initial posture can be easily maintained by giving the angle difference as a target angle command.
 以上説明した第2実施形態に係るロボットハンド108によれば、指部112に、トルク伝達機構としての駆動プーリ122、従動プーリ123、及びベルト124と、ねじりばね127とを有するなじみ機構USを設け、把持動作の際には、第3関節115よりも第2関節114が先に屈曲駆動し、把持解除動作の際には、第2関節114よりも第3関節115が先に伸展駆動する。第2リンク117および第3リンク118の自重を保持できる程度のねじりばね127を選定することにより、どのような姿勢においても、指部112で把持対象物9の形状に倣った柔軟な把持ができる。また、どのような姿勢においても第2モータ120の回転方向のみで屈曲と伸展を切換えることができる。さらに、モータが1つだけであり、且つ、力の伝達部品が少ないので、指部全体を軽量化でき、指の高速動作も可能である。 According to the robot hand 108 according to the second embodiment described above, the finger 112 is provided with the conforming mechanism US having the driving pulley 122, the driven pulley 123 and the belt 124 as the torque transmission mechanism, and the torsion spring 127. During the gripping operation, the second joint 114 is driven to bend before the third joint 115, and during the grip releasing operation, the third joint 115 is driven to extend before the second joint 114. By selecting a torsion spring 127 that can hold the weight of the second link 117 and the third link 118, the finger 112 can flexibly grasp the shape of the grasped object 9 in any posture. . In any posture, bending and extension can be switched only by the rotation direction of the second motor 120. Furthermore, since there is only one motor and there are few force transmission parts, the entire finger portion can be reduced in weight, and the finger can be operated at high speed.
 また、本実施形態では特に、指部112に、第2リンク117に対して第3リンク118の姿勢を制限するストッパ129を設ける。これにより、把持解除動作を実行する際には、まず第3リンク118が伸展を開始し、所定の角度で第3リンク118の動作を停止させて、その後に第2リンク117を伸展させることができる。すなわち、第3リンク118の伸展後に第2リンク117の伸展動作を確実に開始できる。 In this embodiment, in particular, the finger portion 112 is provided with a stopper 129 that restricts the posture of the third link 118 with respect to the second link 117. As a result, when the grip releasing operation is executed, first, the third link 118 starts to extend, the operation of the third link 118 is stopped at a predetermined angle, and then the second link 117 is extended. it can. That is, the extension operation of the second link 117 can be reliably started after the extension of the third link 118.
 なお、上記実施形態に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を順に説明する。 In addition, it is not restricted to the said embodiment, A various deformation | transformation is possible within the range which does not deviate from the meaning and technical idea. Hereinafter, such modifications will be described in order.
 (2-1)第2モータをリンク内に配置する場合
 上記第2実施形態では、第2モータ120の出力軸と第2関節軸1141が一致するように第2リンク116の外部に配置していたが、第2モータ120は、他の指部112と干渉しないように配置したほうが好ましい。したがって、第2モータ120を第1リンク116の内部に配置してもよい。本変形例について、図15を参照しつつ説明する。但し、第2モータ120の配置に関係するもののみを説明する。
(2-1) When the second motor is disposed in the link In the second embodiment, the second motor 120 is disposed outside the second link 116 so that the output shaft of the second motor 120 and the second joint shaft 1141 coincide with each other. However, it is preferable to arrange the second motor 120 so as not to interfere with the other fingers 112. Therefore, the second motor 120 may be disposed inside the first link 116. This modification will be described with reference to FIG. However, only those related to the arrangement of the second motor 120 will be described.
 図15において、本変形例の第2モータ120は、第1リンク116の内部に固定されている。第2モータ120の出力軸131は、第1リンク116の外殻に配置した軸受132Aで支持されており、この出力軸131には歯車130Aが連結されている。第2関節軸1141には、駆動プーリ122と並列に歯車130Cが連結されている。これら歯車130A及び歯車130Cと噛み合うように、歯車130B(アイドルギア)が第1リンク116内部に配置されている。歯車130Bと連結するアイドルギア軸133は、第1リンク116の外殻に配置した軸受132Bで支持されている。その他の構成については上記第2実施形態と同様である。 In FIG. 15, the second motor 120 of this modification is fixed inside the first link 116. The output shaft 131 of the second motor 120 is supported by a bearing 132A disposed on the outer shell of the first link 116, and a gear 130A is coupled to the output shaft 131. A gear 130 </ b> C is connected to the second joint shaft 1141 in parallel with the drive pulley 122. A gear 130B (idle gear) is disposed inside the first link 116 so as to mesh with the gears 130A and 130C. The idle gear shaft 133 connected to the gear 130B is supported by a bearing 132B disposed on the outer shell of the first link 116. Other configurations are the same as those in the second embodiment.
 次に、動作を説明する。第2モータ120の出力軸131が図15中右側から見て時計回り(図15中指先側紙面奥行き方向)に回転すると、歯車130Aは同様に時計回りに回転し、歯車130Aと噛み合う歯車130Bは反時計回りに回転する。歯車130Bと噛み合う歯車130Cは時計回りに回転する。これにより、歯車130Cと連結された第2関節軸1141も時計回りに回転する。その後は前述の第2実施形態と同様であり、第2リンク117及び第3リンク118の順で紙面奥行き方向に屈曲し、把持対象物9を把持する動作になる。また、第2モータ120が図15中右側から見て反時計回り(図15中指先側紙面手前方向)に回転すると、上記と同様にして第2関節軸1141は歯車130Cと共に反時計回りに回転する。これにより、第3リンク118及び第2リンク117の順で紙面手前方向に伸展する。 Next, the operation will be described. When the output shaft 131 of the second motor 120 rotates clockwise as viewed from the right side in FIG. 15 (the fingertip side paper surface depth direction in FIG. 15), the gear 130A similarly rotates clockwise, and the gear 130B meshing with the gear 130A becomes Rotates counterclockwise. The gear 130C meshing with the gear 130B rotates clockwise. As a result, the second joint shaft 1141 connected to the gear 130C also rotates clockwise. Thereafter, the operation is the same as that of the second embodiment described above, and the second link 117 and the third link 118 are bent in the depth direction in the drawing to grip the object 9 to be grasped. Further, when the second motor 120 rotates counterclockwise as viewed from the right side in FIG. 15 (the fingertip side in FIG. 15), the second joint shaft 1141 rotates counterclockwise together with the gear 130C in the same manner as described above. To do. As a result, the third link 118 and the second link 117 are extended in the forward direction in the drawing.
 本変形例によっても、上記第2実施形態と同様の効果を得る。また、カップリング121Bを設けなくてよい分、図15に示すように、ねじりばね127を第2関節軸1141の両端に設置可能となるので、補助トルクを増大できる。なお、本変形例では第2モータ120の回転方向と第2関節114及び第3関節115の回転方向を同じにするために、歯車130Bを設けたが、回転方向を一致させなくてもよければ歯車130Bを除いてもよい。この場合、さらなる軽量化を図ることができる。 This modification also achieves the same effect as that of the second embodiment. Further, as shown in FIG. 15, the torsion spring 127 can be installed at both ends of the second joint shaft 1141 because the coupling 121B need not be provided, so that the auxiliary torque can be increased. In this modification, the gear 130B is provided in order to make the rotation direction of the second motor 120 the same as the rotation direction of the second joint 114 and the third joint 115, but it is not necessary to match the rotation direction. The gear 130B may be omitted. In this case, further weight reduction can be achieved.
 (2-2)第2モータとウォームギアをリンク内に配置する場合
 本変形例は、上記変形例(2-1)の構成において、平歯車の代わりにウォームギアを用いた例である。本変形例について、図16を参照しつつ説明する。
(2-2) When the second motor and the worm gear are arranged in the link This modified example is an example in which a worm gear is used instead of a spur gear in the configuration of the modified example (2-1). This modification will be described with reference to FIG.
 図16において、第2モータ120は軸方向がリンク長手方向に沿うように第1リンク116の内部に配置されている。第2モータ120の出力軸131はウォーム134に連結され、このウォーム134は、第1リンク116内部に設置された軸受136A,136Bにより支持されている。ウォーム134に噛み合うように歯車130Aが配置され、歯車130A及び歯車130Cと噛み合うように歯車130Bが第1リンク116内部に配置されている。歯車130Cは、上記変形例(2-1)で説明したものと同様に、駆動プーリ122と並列に第2関節軸1141に連結されている。 16, the second motor 120 is disposed inside the first link 116 so that the axial direction is along the longitudinal direction of the link. The output shaft 131 of the second motor 120 is connected to a worm 134, and the worm 134 is supported by bearings 136 </ b> A and 136 </ b> B installed inside the first link 116. A gear 130A is disposed so as to mesh with the worm 134, and a gear 130B is disposed inside the first link 116 so as to mesh with the gear 130A and the gear 130C. The gear 130 </ b> C is coupled to the second joint shaft 1141 in parallel with the drive pulley 122 in the same manner as described in the modification (2-1).
 次に、動作を説明する。第2モータ120の駆動によりウォーム134が図16中上側から見て反時計周りに回転すると、歯車130Aは反時計回り、歯車130Bは時計回り、歯車130Cは反時計回りに回転する。これにより、第2関節軸1141が歯車130Cと同様に反時計回りに回転すると、第2リンク117及び第3リンク118が屈曲する。反対にウォーム134が図16中上側から見て時計回りに回転すると、第2リンク117及び第3リンク118が伸展する。 Next, the operation will be described. When the worm 134 rotates counterclockwise as viewed from the upper side in FIG. 16 by driving the second motor 120, the gear 130A rotates counterclockwise, the gear 130B rotates clockwise, and the gear 130C rotates counterclockwise. Accordingly, when the second joint shaft 1141 rotates counterclockwise similarly to the gear 130C, the second link 117 and the third link 118 are bent. On the other hand, when the worm 134 rotates clockwise as viewed from the upper side in FIG. 16, the second link 117 and the third link 118 extend.
 本変形例によっても、上記第2実施形態と同様の効果を得る。またウォーム134を用いることにより、第2リンク117、第3リンク118の姿勢を保つための第2モータ120の消費電力を節減できる効果もある。 This modification also achieves the same effect as that of the second embodiment. Further, the use of the worm 134 has an effect of reducing the power consumption of the second motor 120 for maintaining the posture of the second link 117 and the third link 118.
 (2-3)引っ張りばねで補助トルクを付与する場合
 上記第2実施形態では、第2関節114にねじりばね127で補助トルクを付与するようにしたが、ねじりばね127の代わりに引っ張りばねを使用してもよい。本変形例について、図17を参照しつつ説明する。
(2-3) In the case where the auxiliary torque is applied by the tension spring In the second embodiment, the auxiliary torque is applied to the second joint 114 by the torsion spring 127, but a tension spring is used instead of the torsion spring 127. May be. This modification will be described with reference to FIG.
 図17において、第1リンク116内部に設けられたピン135Aに、第1ワイヤ138Aの一端側が固定されており、この第1ワイヤ138Aの他端側は、コイル状の引っ張りばね137の端部に連結されている。引っ張りばね137のもう一方の端部は、第2ワイヤ138Bに連結されており、その第2ワイヤ138Bは第2リンク117内部に設けられたピン135Bに固定されている。第1ワイヤ138Aの一部は、第2関節軸1141に回転自由に支持されたプーリ139に接触した状態である。このプーリ139は、駆動プーリ122と並列に設置されている。この場合も、第2モータ120に電源が入っていない自然状態の姿勢は、第2リンク117が第1リンク116に対して例えば90度屈曲した状態になるようにピン135A,135Bを配置する。本変形例によっても、上記第2実施形態と同様の効果を得る。なお、引っ張りばね137が、特許請求の範囲に記載の駆動トルク調整部材の一例に相当すると共に、第2ばね部材の一例にも相当する。 In FIG. 17, one end of the first wire 138A is fixed to a pin 135A provided in the first link 116, and the other end of the first wire 138A is connected to the end of the coiled tension spring 137. It is connected. The other end of the tension spring 137 is connected to the second wire 138B, and the second wire 138B is fixed to a pin 135B provided inside the second link 117. A part of the first wire 138A is in contact with a pulley 139 that is rotatably supported by the second joint shaft 1141. The pulley 139 is installed in parallel with the drive pulley 122. Also in this case, the pins 135A and 135B are arranged so that the second link 120 is in a state in which the power is not turned on and the second link 117 is bent, for example, 90 degrees with respect to the first link 116. Also by this modification, the same effect as the second embodiment is obtained. The tension spring 137 corresponds to an example of a drive torque adjusting member described in the claims, and also corresponds to an example of a second spring member.
 (2-4)2つのリンクからなる指部を有する場合
 上記第2実施形態では、各指部112が、それぞれ3つのリンク116,117,118から構成される場合を一例として説明したが、2つのリンクからなる指部に対してなじみ機構USを設けてもよい。本変形例について、図18乃至図21を参照しつつ説明する。
(2-4) In the case of having a finger part composed of two links In the second embodiment, the case where each finger part 112 is composed of three links 116, 117, and 118 has been described as an example. A conforming mechanism US may be provided for a finger portion composed of two links. This modification will be described with reference to FIGS.
 図18において、ロボットハンド108は、親指に対応する指部212が、第2関節214を介して2つのリンク216,217を直列に連結し、掌側のリンク216が第1関節213を介して掌部111と連結した構成となっている。他の2本の指部112の構成は、上記第2実施形態と同様である。指部212は、他の指部112の揺動面に対し斜めとなる一平面上で屈曲動作が可能となっている。これら3本の指部112,212がお互いに近接するように屈曲することで、ロボットハンド108は対象物9を把持することができる。 In FIG. 18, in the robot hand 108, the finger part 212 corresponding to the thumb connects two links 216 and 217 in series via the second joint 214, and the palm side link 216 passes through the first joint 213. The structure is connected to the palm 111. The configuration of the other two fingers 112 is the same as that of the second embodiment. The finger part 212 can be bent on a plane that is inclined with respect to the swinging surface of the other finger part 112. The robot hand 108 can grip the object 9 by bending the three finger portions 112 and 212 so as to be close to each other.
 図19において、掌部111の縁部において、第1モータ219(アクチュエータ)の出力軸と第1関節軸2131とがカップリング221で連結されている。第1関節軸2131は、掌部111に設けられた軸受226Aと第1リンク216に設けられた軸受226Cにより回転自在に支持されている。このような構成により、第1モータ219の発生するトルクによって、指部212全体が掌部111に対し第1関節213で屈曲される。 In FIG. 19, the output shaft of the first motor 219 (actuator) and the first joint shaft 2131 are connected by a coupling 221 at the edge of the palm 111. The first joint shaft 2131 is rotatably supported by a bearing 226A provided on the palm 111 and a bearing 226C provided on the first link 216. With such a configuration, the entire finger portion 212 is bent at the first joint 213 with respect to the palm portion 111 by the torque generated by the first motor 219.
 第1モータ219で第1関節軸2131と第2関節軸2141をそれぞれ駆動する原理は、図11の第2モータ120が第2関節軸1141と第3関節軸1151をそれぞれ駆動する原理と同様である。 The principle of driving the first joint shaft 2131 and the second joint shaft 2141 by the first motor 219 is the same as the principle of driving the second joint shaft 1141 and the third joint shaft 1151 by the second motor 120 of FIG. is there.
 第1リンク216の指先側には、第2リンク217が連結されている。第2リンク217の根元は、第2関節軸2141に固定されている。この第2関節軸2141は、第1リンク216の指先側に設けられた軸受226Bにより回転自在に支持されている。第2関節軸2141には従動プーリ223が設けられている。駆動プーリ222と従動プーリ223との間にはベルト224が掛け渡されており、駆動プーリ222のトルクがベルト224を介して従動プーリ223に伝達される。なお、駆動プーリ222、従動プーリ223、及びベルト224が、特許請求の範囲に記載のトルク伝達機構の一例に相当する。 The second link 217 is connected to the fingertip side of the first link 216. The root of the second link 217 is fixed to the second joint shaft 2141. The second joint shaft 2141 is rotatably supported by a bearing 226B provided on the fingertip side of the first link 216. A driven pulley 223 is provided on the second joint shaft 2141. A belt 224 is stretched between the driving pulley 222 and the driven pulley 223, and torque of the driving pulley 222 is transmitted to the driven pulley 223 via the belt 224. The driving pulley 222, the driven pulley 223, and the belt 224 correspond to an example of a torque transmission mechanism described in the claims.
 第1関節軸2131周りには、その両端部にコイル状のねじりばね227が設けられている。各ねじりばね227は、その一方側の端部が掌部111に固定され、他方側の端部が第1リンク216に固定されている。ねじりばね227は、ハンド108がどのような姿勢でも、屈曲動作時に第1関節軸2131の後に第2関節軸2141が駆動され、伸展動作時に第2関節軸2141の後に第1関節軸2131が駆動されるように作用する。ねじりばね227は第1関節213に補助トルクを付与する。 Around the first joint shaft 2131, coiled torsion springs 227 are provided at both ends thereof. Each torsion spring 227 has one end fixed to the palm 111 and the other end fixed to the first link 216. The torsion spring 227 drives the second joint shaft 2141 after the first joint shaft 2131 during the bending operation, and drives the first joint shaft 2131 after the second joint shaft 2141 during the extension operation, regardless of the posture of the hand 108. Acts to be. The torsion spring 227 applies an auxiliary torque to the first joint 213.
 第1関節213には、掌部111に対して第1リンク216の姿勢を制限するストッパ228が設けられている。このストッパ228は、掌部111と第1リンク216とが第1関節軸2131を中心に例えば180度以上に伸展しないように、姿勢を制限する。なお、第1リンク216の屈曲動作時には、第1リンク216が掌部111の端面1111に当接することによって、掌部111と第1リンク216とが鋭角(例えば90度以下)に屈曲しないように、姿勢が制限される。第2関節214における第1リンク216と第2リンク217が重なり合う箇所には、第1リンク216に対して第2リンク217の姿勢を制限するストッパ229が設けられている。このストッパ229は、第1リンク216と第2リンク217とが第2関節軸2141を中心に180度以上に伸展しないように、且つ、鋭角(例えば90度以下)に屈曲しないように、姿勢を制限する。また、ストッパ229は、伸展動作時に第2関節軸2141の後、確実に第1関節軸2131を駆動するように作用する。これらストッパ228,229の構成は、前述のストッパ128,129と同様である。 The first joint 213 is provided with a stopper 228 that restricts the posture of the first link 216 with respect to the palm 111. The stopper 228 restricts the posture so that the palm 111 and the first link 216 do not extend, for example, 180 degrees or more around the first joint axis 2131. When the first link 216 is bent, the first link 216 contacts the end surface 1111 of the palm 111 so that the palm 111 and the first link 216 are not bent at an acute angle (for example, 90 degrees or less). , Posture is limited. A stopper 229 that restricts the posture of the second link 217 with respect to the first link 216 is provided at a location where the first link 216 and the second link 217 overlap in the second joint 214. This stopper 229 has a posture so that the first link 216 and the second link 217 do not extend more than 180 degrees around the second joint axis 2141 and do not bend at an acute angle (for example, 90 degrees or less). Restrict. Further, the stopper 229 acts to reliably drive the first joint shaft 2131 after the second joint shaft 2141 during the extension operation. The configuration of these stoppers 228 and 229 is the same as that of the stoppers 128 and 129 described above.
 このように、本変形例では、指部212に、トルク伝達機構としての駆動プーリ222、従動プーリ223、及びベルト224と、ねじりばね227とを有するなじみ機構USを設け、第1関節213を駆動するために必要な駆動トルクを調整することによって、指部212で把持対象物を包み込むように把持することを可能としている。 As described above, in this modification, the finger 212 is provided with the conforming mechanism US having the driving pulley 222, the driven pulley 223, the belt 224, and the torsion spring 227 as the torque transmission mechanism, and drives the first joint 213. By adjusting the driving torque necessary to do this, it is possible to grip the object to be gripped with the finger part 212 so as to be wrapped.
 次に、指部212の他の構成例について図20及び図21を用いて説明する。図20に示す例では、ロボットハンド108の親指に対応する指部212は、2つのリンク216、217を連結した構成であるが、図19に示す例と異なり、掌側の第1リンク216は第1関節213を介して他の2本の指部112の揺動平面に対し略直角となる平面上で屈曲し、第2リンク217は第2関節214を介して指部112の揺動平面に平行な平面上で屈曲動作が可能となっている。 Next, another configuration example of the finger unit 212 will be described with reference to FIGS. In the example shown in FIG. 20, the finger part 212 corresponding to the thumb of the robot hand 108 is configured by connecting two links 216 and 217. Unlike the example shown in FIG. 19, the palm-side first link 216 is The second link 217 is bent through a first joint 213 on a plane that is substantially perpendicular to the swing plane of the other two fingers 112, and the second link 217 is moved through the second joint 214. Can be bent on a plane parallel to the surface.
 第1モータ219の出力軸とカップリング221で連結された第1関節軸2131には、傘歯車230が設けられている。この傘歯車230は同じく傘歯車状の駆動プーリ222と噛合している。この駆動プーリ222と、第2関節軸2141に設けられた従動プーリ223との間にはベルト224が掛け渡されており、駆動プーリ222のトルクがベルト224を介して従動プーリ223に伝達される。なお、第1関節軸2131周りにコイル状のねじりばね227が設けられている点、及び、第1関節軸213及び第2関節軸214にストッパ228,229が設けられている点は、図19に示す構成と同様である。 The first joint shaft 2131 connected to the output shaft of the first motor 219 with the coupling 221 is provided with a bevel gear 230. The bevel gear 230 meshes with a drive pulley 222 having a bevel gear shape. A belt 224 is stretched between the driving pulley 222 and a driven pulley 223 provided on the second joint shaft 2141, and torque of the driving pulley 222 is transmitted to the driven pulley 223 via the belt 224. . The point that the coiled torsion spring 227 is provided around the first joint shaft 2131 and the point that the stoppers 228 and 229 are provided on the first joint shaft 213 and the second joint shaft 214 are shown in FIG. The configuration is the same as that shown in FIG.
 次に、指部212の動作について図21も参照しつつ説明する。なお、図21(a)及び(b)は、ロボットハンド108を手首方向(図20中下側)から見た図であり、図21(c)は、側面方向(図20中右側)から見た図である。第1モータ219の出力軸が図20中下側から見て時計回り(図21中時計回り)に回転すると、カップリング221を介して、第1関節軸2131及び傘歯車230が同時計回りに回転する。これにより、第1リンク216は第1関節軸2131と共に回転し、図21(a)に示す状態から、第1リンク216が把持対象物9側(図20中紙面手前側)へ屈曲する。屈曲動作により、掌部111と第1リンク216とが例えば90度となると、図21(b)に示すように、第1リンク216が掌部111の端面1111に当接することによって、第1リンク216の屈曲動作が止まる。さらに、第1モータ219の出力軸が時計回りに回転すると、第1モータ219のトルクが傘歯車230から駆動プーリ222及びベルト224を介して従動プーリ223に伝達され、第2関節軸2141が時計回りに回転し、図21(c)に示すように、第2リンク217が把持対象物9と接触するまで屈曲する。このようにして、指部212は第1リンク216の後に第2リンク217を把持対象物9に接触させるので、把持対象物9になじむ動作を実行したことになる。 Next, the operation of the finger unit 212 will be described with reference to FIG. 21A and 21B are views of the robot hand 108 viewed from the wrist direction (lower side in FIG. 20), and FIG. 21C is a side view viewed from the side direction (right side in FIG. 20). It is a figure. When the output shaft of the first motor 219 rotates clockwise as viewed from the lower side in FIG. 20 (clockwise in FIG. 21), the first joint shaft 2131 and the bevel gear 230 rotate clockwise through the coupling 221. Rotate. As a result, the first link 216 rotates together with the first joint shaft 2131, and the first link 216 bends from the state shown in FIG. 21A to the grasped object 9 side (the front side in FIG. 20). When the palm portion 111 and the first link 216 become, for example, 90 degrees by the bending operation, the first link 216 comes into contact with the end surface 1111 of the palm portion 111 as shown in FIG. The bending motion of 216 stops. Further, when the output shaft of the first motor 219 rotates clockwise, the torque of the first motor 219 is transmitted from the bevel gear 230 to the driven pulley 223 via the drive pulley 222 and the belt 224, and the second joint shaft 2141 is rotated clockwise. As shown in FIG. 21 (c), the second link 217 is bent until it comes into contact with the grasped object 9. In this way, since the finger part 212 brings the second link 217 into contact with the grasped object 9 after the first link 216, the operation of being familiar with the grasped object 9 is executed.
 以上説明した変形例によっても、上記第2実施形態と同様の効果を得る。 The same effects as those of the second embodiment can be obtained by the modification described above.
 (2-5)指部の内転・外転動作を可能な構成とする場合
 上記第2実施形態では、指部同士を近づける内転動作及び指部同士を遠ざける外転動作については考慮しなかったが、把持対象物の形状により倣った柔軟な把持を可能とするために、内転・外転動作を可能な構成としてもよい。本変形例について、図22乃至図29を参照しつつ説明する。
(2-5) In the case where the internal / external movement of the finger is possible In the second embodiment, the internal rotation that brings the fingers close to each other and the abduction that moves the fingers apart are not considered. However, in order to enable flexible gripping according to the shape of the gripping target, it is possible to adopt a configuration capable of inward and outward rotation operations. This modification will be described with reference to FIGS.
 図22において、ロボットハンド300は、掌部311と、この掌部311に根元が連結された3本の指部312,313,314とを有している。指部312を一例として説明すると、指部312は4つのリンク301,302,303,304からなり、隣り合うリンクが連結されている。根元リンク301は歯車305と連結し、この歯車305は歯車306と噛み合っている。これにより、根元リンク301は、歯車306の駆動モータ307によって掌部311と平行な平面上を揺動する。同様に、指部313の根元リンク315に連結した歯車309は、歯車308を介して歯車306と噛み合っている。これにより、根元リンク315は、駆動モータ307によって掌部311と平行な平面上を揺動する。歯車308は、歯車305と歯車309の回転方向が反対となるように(例えば歯車305が時計回りに回転した際に歯車309が反時計回りに回転するように)、設けられている。指部314は、根元リンク316と連結した駆動モータ310により、掌部311と平行な平面上を揺動する。 22, the robot hand 300 includes a palm portion 311 and three finger portions 312, 313, and 314 having roots connected to the palm portion 311. The finger 312 will be described as an example. The finger 312 includes four links 301, 302, 303, and 304, and adjacent links are connected. The root link 301 is connected to a gear 305, and the gear 305 meshes with the gear 306. Accordingly, the root link 301 is swung on a plane parallel to the palm portion 311 by the drive motor 307 of the gear 306. Similarly, the gear 309 connected to the root link 315 of the finger portion 313 meshes with the gear 306 via the gear 308. Thereby, the root link 315 is swung on a plane parallel to the palm portion 311 by the drive motor 307. The gear 308 is provided so that the rotation directions of the gear 305 and the gear 309 are opposite (for example, when the gear 305 rotates clockwise, the gear 309 rotates counterclockwise). The finger portion 314 is swung on a plane parallel to the palm portion 311 by a drive motor 310 connected to the root link 316.
 このような構成とすることで、1つの駆動モータ307で2本の指部312,313の内転・外転動作を実現できる。したがって、各指部に駆動モータをそれぞれ設ける場合に比べ、モータの個数を減らすことができ、コスト削減となる。 By adopting such a configuration, it is possible to realize the inner / outer rotation operations of the two finger portions 312 and 313 with one drive motor 307. Therefore, the number of motors can be reduced and costs can be reduced as compared with the case where a drive motor is provided for each finger.
 次に、図23を用いて掌部311の構造を説明する。図23において、根元リンク301は、掌部311と甲部317の間に配置されており、上記駆動モータ307,310は甲部317に設置されている。掌部311と甲部317とは、スペーサ350を挟んで複数のボルト318によって固定されている。駆動モータ307の出力軸はシャフト320に連結し、このシャフト320は、掌部311の内部に設けられたベアリング319と、甲部317の内部に設けられたベアリング321によって支持されている。一方、根元リンク301に連結されたシャフト322も、ベアリング319とベアリング321によって支持されている。そして、シャフト320に連結された歯車306と、シャフト322に連結された歯車305とが噛合している。 Next, the structure of the palm 311 will be described with reference to FIG. In FIG. 23, the root link 301 is disposed between the palm 311 and the upper 317, and the drive motors 307 and 310 are installed on the upper 317. The palm portion 311 and the upper portion 317 are fixed by a plurality of bolts 318 with the spacer 350 interposed therebetween. The output shaft of the drive motor 307 is connected to a shaft 320, and the shaft 320 is supported by a bearing 319 provided inside the palm portion 311 and a bearing 321 provided inside the upper portion 317. On the other hand, the shaft 322 connected to the root link 301 is also supported by the bearing 319 and the bearing 321. The gear 306 connected to the shaft 320 and the gear 305 connected to the shaft 322 are meshed with each other.
 このように、駆動モータ307,310を甲部317側に配置することで、モータ交換を容易に行うことができる。 Thus, the motor replacement can be easily performed by arranging the drive motors 307 and 310 on the upper part 317 side.
 次に、図24を用いて指部の内部の概略構造について説明する。なお、指部313,314は指部312と同様の構成であるため、ここでは指部312についてのみ説明する。根元リンク301の内部にモータ330(アクチュエータ)が配置されており、このモータ330の出力軸は傘歯車323と連結している。傘歯車323は、第1関節プーリ325と同軸上の傘歯車324と噛み合っている。第1関節プーリ325の駆動力を第2関節プーリ327に伝達するため、ベルト326がプーリ325,327に掛け渡されており、同様に、第2関節プーリ327の駆動力を第3関節プーリ329に伝達するため、ベルト328がプーリ327,329に掛け渡されている。モータ330の回転トルクが、各リンクを屈曲・伸展させる力として働く。 Next, the schematic structure inside the finger will be described with reference to FIG. Since the finger parts 313 and 314 have the same configuration as the finger part 312, only the finger part 312 will be described here. A motor 330 (actuator) is arranged inside the root link 301, and an output shaft of the motor 330 is connected to a bevel gear 323. The bevel gear 323 meshes with the first joint pulley 325 and the coaxial bevel gear 324. In order to transmit the driving force of the first joint pulley 325 to the second joint pulley 327, the belt 326 is stretched over the pulleys 325 and 327. Similarly, the driving force of the second joint pulley 327 is transmitted to the third joint pulley 329. Is transmitted to pulleys 327 and 329. The rotational torque of the motor 330 works as a force for bending / extending each link.
 詳細な説明は省略するが、ここでは指部312の第1関節331及び第2関節332にねじりばね(図示省略)が設けられている。これにより、ねじりばねは、把持動作の際には、第1関節331を駆動するのに必要な駆動トルクが第2関節332及び第3関節333を駆動するのに必要な駆動トルクよりも小さくなるように、且つ、第2関節332を駆動するのに必要な駆動トルクが第3関節333を駆動するのに必要な駆動トルクよりも小さくなるように、また把持解除動作の際には、第1関節331を駆動するのに必要な駆動トルクが第2関節332及び第3関節333を駆動するのに必要な駆動トルクよりも大きくなるように、且つ、第2関節332を駆動するのに必要な駆動トルクが第3関節333を駆動するのに必要な駆動トルクよりも大きくなるように、第1関節331及び第2関節332に補助トルクを付与する。 Although detailed description is omitted, here, torsion springs (not shown) are provided at the first joint 331 and the second joint 332 of the finger 312. Accordingly, in the torsion spring, the driving torque necessary for driving the first joint 331 is smaller than the driving torque necessary for driving the second joint 332 and the third joint 333 during the gripping operation. As described above, the first driving torque required to drive the second joint 332 is smaller than the driving torque required to drive the third joint 333. Necessary for driving the second joint 332 such that the driving torque necessary for driving the joint 331 is larger than the driving torque necessary for driving the second joint 332 and the third joint 333. Auxiliary torque is applied to the first joint 331 and the second joint 332 so that the driving torque is greater than the driving torque required to drive the third joint 333.
 また、図示は省略するが、リンク301,302の間、リンク302,303の間、リンク303,304の間には、前述の第2実施形態と同様のストッパが設けられている。 Although not shown, stoppers similar to those in the second embodiment described above are provided between the links 301 and 302, between the links 302 and 303, and between the links 303 and 304.
 このように、本変形例によれば、トルク伝達機構としてのプーリ325,327,329、及びベルト326,328と、ねじりばねとを有するなじみ機構USを設け、ねじりばねは関節331,332,333を駆動するのに必要な駆動トルクを調整する。これにより、把持動作の際には、第1関節331、第2関節332、第3関節333の順に屈曲駆動し、把持解除動作の際には、第3関節333、第2関節332、第1関節331の順に伸展駆動する。ねじりばねにより、どのような姿勢においても、指部312で把持対象物を包み込むように把持することが可能である。 As described above, according to the present modification, the conforming mechanism US including the pulleys 325, 327, and 329 as the torque transmission mechanism, the belts 326 and 328, and the torsion spring is provided, and the torsion spring includes the joints 331, 332, and 333. The drive torque required to drive the is adjusted. Accordingly, during the gripping operation, the first joint 331, the second joint 332, and the third joint 333 are bent and driven in this order, and during the grip releasing operation, the third joint 333, the second joint 332, and the first joint are driven. The extension is driven in the order of the joint 331. With any torsion spring, it is possible to grip the object to be gripped with the finger portion 312 in any posture.
 次に、図25乃至図28を用いてロボットハンド300の動作を説明する。図25及び図26には、ハンドロボット300で比較的大きな把持対象物9を把持した状態を示している。この場合の把持対象物9のイメージは、例えば空き缶である。把持対象物9の側面を3本の指部312,313,314で把持する際に、各指部は内転・外転動作をせず、まず、第1リンクが掌の一部に接触し、動作完了した後、第2リンクが缶と接触し、さらに第3リンクが缶の別の箇所で接触し、把持動作を完了する。その結果、缶の形状になじむように把持している。 Next, the operation of the robot hand 300 will be described with reference to FIGS. 25 and 26 show a state in which a relatively large gripping object 9 is gripped by the hand robot 300. FIG. In this case, the image of the grasped object 9 is, for example, an empty can. When gripping the side surface of the object 9 to be gripped with the three finger portions 312, 313, and 314, each finger portion does not perform adduction / extraction, and first the first link contacts a part of the palm. After the operation is completed, the second link comes into contact with the can, and the third link comes into contact with another part of the can to complete the gripping operation. As a result, it is gripped so as to adapt to the shape of the can.
 図27及び図28には、ハンドロボット300で比較的小さな把持対象物9を把持した状態を示している。この例では、把持対象物9は直方体形状の物体であり、これを2本の指部312,314で把持している。この際、指部312,314の第1リンクが掌の一部に接触し、動作完了後、第2リンクが把持対象物9と接触することなく、第3リンクが把持対象物9と接触し把持動作を完了する。 27 and 28 show a state where the hand robot 300 grips a relatively small gripping object 9. In this example, the grasped object 9 is a rectangular parallelepiped object and is grasped by the two finger portions 312 and 314. At this time, the first link of the finger portions 312 and 314 contacts a part of the palm, and after the operation is completed, the second link does not contact the gripping object 9 and the third link contacts the gripping object 9. Complete the gripping motion.
 なお、上記では、把持対象物9を指部312,314で把持した場合を一例として示したが、指部313,314で把持してもよいし、指部312,313を互いの角度が180度となるように外転させてこれら指部312,313で把持してもよい。 In the above description, the case where the grasped object 9 is grasped by the finger portions 312 and 314 is shown as an example. However, the finger portions 312 and 313 may be grasped, and the finger portions 312 and 313 may have an angle of 180 with respect to each other. It may be abbreviated so as to be gripped by these finger portions 312 and 313.
 以上説明した本変形例によれば、前述の第2実施形態等と同様に、どのような姿勢においても、指部312,313,314で把持対象物9を包み込むように把持することが可能である。その結果、ロボットハンド300は、把持対象物9に対し、当該対象物9の形状に倣った柔軟な把持を行うことができる。また、1つのモータで3つの関節を駆動するので、前述の第2実施形態よりもさらに指部を軽量化し、コストを低減できる。 According to this modified example described above, it is possible to hold the grasped object 9 with the finger portions 312, 313, and 314 in any posture as in the second embodiment described above. is there. As a result, the robot hand 300 can perform a flexible grip on the grip target 9 according to the shape of the target 9. Further, since the three joints are driven by one motor, the weight of the fingers can be further reduced and the cost can be reduced as compared with the second embodiment.
 次に、ロボットハンド300の他の構成例について図29を用いて説明する。上記変形例では、指部を揺動(屈曲伸展)させるモータ330を根元リンク301に内蔵させていたが、指部312の軽量化のためには、モータ330を指部の外部に配置したほうが良い。図29において、甲部317に設置したモータ330はシャフト332と連結しており、このシャフト332の軸上には根元リンク301内にウォーム331が連結されている。根元リンク301の内部には、ウォームホイール333が、ウォーム331と噛み合うように配置されている。また、ウォームホイール331の回転を第1関節プーリ325に伝達するため、中間に歯車334が配置されている。歯車334は、第1関節プーリ325と同軸となるように配置された歯車335と噛み合っている。これにより、甲部のモータ330で第1リンク302、第2リンク303、第3リンク304を揺動(屈曲伸展)できる。モータ330のトルクと歯車305のトルクが干渉しないように、歯車305内部にベアリング(図示省略)が設けられると共に、歯車305と根元リンク301とは連結されている。その他の第1リンク、第2リンク、第3リンクを駆動する構成は、前述の図24と同様である。 Next, another configuration example of the robot hand 300 will be described with reference to FIG. In the above modification, the motor 330 that swings (bends and extends) the finger part is built in the root link 301. However, in order to reduce the weight of the finger part 312, it is better to place the motor 330 outside the finger part. good. In FIG. 29, the motor 330 installed on the upper 317 is connected to a shaft 332, and a worm 331 is connected to the root link 301 on the shaft 332. A worm wheel 333 is arranged inside the root link 301 so as to mesh with the worm 331. A gear 334 is disposed in the middle to transmit the rotation of the worm wheel 331 to the first joint pulley 325. The gear 334 meshes with a gear 335 disposed so as to be coaxial with the first joint pulley 325. As a result, the first link 302, the second link 303, and the third link 304 can be swung (bended and extended) by the motor 330 of the upper part. A bearing (not shown) is provided inside the gear 305 so that the torque of the motor 330 and the gear 305 do not interfere with each other, and the gear 305 and the root link 301 are connected. The other configurations for driving the first link, the second link, and the third link are the same as those in FIG.
 (2-6)その他
 上述した第1モータと第2モータは、モータだけでなく減速機を結合した構成でもよい。その場合、出力トルクが大きくなる。また、ベルトは、ワイヤの芯線に細線(金属もしくはナイロン製)を巻いたものを使用してもよく、このワイヤを駆動プーリ、従動プーリ及びアイドルプーリを経由し、ワイヤ端同士を金属で繋ぎとめて一周させても上記に示した動作を実現でき、この場合、駆動プーリ、従動プーリ、アイドルプーリは樹脂材料を使えば、駆動伝達系が軽量になる。
(2-6) Others The first motor and the second motor described above may have a configuration in which not only a motor but also a speed reducer is coupled. In that case, the output torque increases. In addition, the belt may be a wire in which a thin wire (made of metal or nylon) is wound around the core of the wire, and the wire ends are connected with metal via a drive pulley, a driven pulley and an idle pulley. In this case, if the drive pulley, the driven pulley, and the idle pulley are made of resin material, the drive transmission system becomes light.
 <第3実施形態>
 次に、第3実施形態について説明する。本実施形態は、なじみ機構が有する関節拘束機構によって指先側の関節軸の駆動を拘束することで関節を駆動するのに必要な駆動トルクの調整を行い、指で対象物を包み込むように把持可能とするものである。
<Third Embodiment>
Next, a third embodiment will be described. This embodiment can adjust the driving torque necessary to drive the joint by restraining the driving of the joint shaft on the fingertip side by the joint restraining mechanism of the conforming mechanism, and can grip the object so as to wrap the object with the finger It is what.
 本実施形態に係るロボットハンドを備えたロボット装置1及びロボット本体2の構成については、前述の第1実施形態(図1)と同様であり、また本実施形態に係るロボットハンドの構成については、前述の第2実施形態(図10)と同様であるので、説明を省略する。 About the structure of the robot apparatus 1 and the robot main body 2 provided with the robot hand which concerns on this embodiment, it is the same as that of above-mentioned 1st Embodiment (FIG. 1), About the structure of the robot hand which concerns on this embodiment, Since it is the same as that of above-mentioned 2nd Embodiment (FIG. 10), description is abbreviate | omitted.
 次に図30及び図31を用いて、本実施形態に係るロボットハンドが有する指部400全体の内部構造を説明する。まず、指部400が内部に有する遊星歯車機構401について、図30を用いて説明する。図30において、遊星歯車機構401は、カップリング409からの出力トルクをサンギア4102に入力するシャフト4101と、サンギア4102の出力をキャリア4104に入力するプラネタリギア4103と、キャリア4104に設けられたキャリアカップ4105と、キャリアカップ4105の回転が止まった際に、サンギア4102の出力をリングギア4106に入力するプラネタリギア4103と、リングギア4106を内側に有するリングギアカップ4107と、リングギアカップ4107を回転自在に支持するベアリング4109と、遊星歯車機構401を保護するケース4108とを有している。また、キャリアカップ4105とキャリアカップ4107の上面には、歯が設けられている。なお、遊星歯車機構401が、特許請求の範囲に記載のトルク伝達機構の一例に相当する。 Next, the internal structure of the entire finger part 400 of the robot hand according to the present embodiment will be described with reference to FIGS. First, the planetary gear mechanism 401 included in the finger 400 will be described with reference to FIG. In FIG. 30, the planetary gear mechanism 401 includes a shaft 4101 that inputs output torque from the coupling 409 to the sun gear 4102, a planetary gear 4103 that inputs the output of the sun gear 4102 to the carrier 4104, and a carrier cup provided on the carrier 4104. 4105, when the carrier cup 4105 stops rotating, the planetary gear 4103 that inputs the output of the sun gear 4102 to the ring gear 4106, the ring gear cup 4107 having the ring gear 4106 inside, and the ring gear cup 4107 are freely rotatable. And a case 4108 that protects the planetary gear mechanism 401. Further, teeth are provided on the upper surfaces of the carrier cup 4105 and the carrier cup 4107. The planetary gear mechanism 401 corresponds to an example of a torque transmission mechanism described in the claims.
 次に図31を用いて、指部400の内部構造を説明する。図31において、指部400においては、遊星歯車機構401のキャリアカップ4105は、歯車403を介して第2リンク417を図31中紙面奥行き方向及び紙面手前方向に揺動する。但し、ストッパ423により、紙面手前方向には第2リンク417は反り返らないようになっている。歯車403と第2リンク417の根元側は、第2関節425の第2関節軸407に連結されている。すなわち、歯車403の回転で第2リンク417は第2関節軸425を中心に回転し、指部400は第2関節425で屈曲する。 Next, the internal structure of the finger part 400 will be described with reference to FIG. In FIG. 31, in the finger part 400, the carrier cup 4105 of the planetary gear mechanism 401 swings the second link 417 via the gear 403 in the depth direction and the front side of the page in FIG. However, the stopper 423 prevents the second link 417 from warping in the forward direction of the drawing. The base sides of the gear 403 and the second link 417 are connected to the second joint shaft 407 of the second joint 425. That is, the rotation of the gear 403 causes the second link 417 to rotate around the second joint shaft 425, and the finger 400 is bent at the second joint 425.
 一方、遊星歯車機構401のリングギアカップ4107は、歯車405、傘歯車406,415、シャフト416、傘歯車418,419を介して、第3関節424の第3関節軸420を回転させ、第3リンク421を紙面奥行き方向及び紙面手前方向に揺動する。但し、ストッパ423により、紙面手前方向には第3リンク421が反り返らないようになっている。歯車405と傘歯車406の相対角度変位は零になるように拘束されており、これら歯車405,406は第2関節軸425に対しては回転自由になっている。つまり、紙面で省略しているが、歯車405,406内部に軸受け内蔵している。ばね422は、第3リンク421と第2リンク417の相対角度が零となるように拘束する。このばね422による第3関節軸420の駆動の拘束は、第2リンク417が把持対象物9と接触し第2関節軸407の回転が止まるまで行われ、その間リングギアカップ4107は静止状態を持続する。 On the other hand, the ring gear cup 4107 of the planetary gear mechanism 401 rotates the third joint shaft 420 of the third joint 424 via the gear 405, the bevel gears 406 and 415, the shaft 416, and the bevel gears 418 and 419, thereby The link 421 is swung in the depth direction and the front side of the page. However, the stopper 423 prevents the third link 421 from warping in the forward direction of the drawing. The relative angular displacement between the gear 405 and the bevel gear 406 is constrained to be zero, and the gears 405 and 406 are freely rotatable with respect to the second joint shaft 425. That is, although not shown in the drawing, bearings are built in the gears 405 and 406. The spring 422 restrains the relative angle between the third link 421 and the second link 417 to be zero. The drive of the third joint shaft 420 by the spring 422 is restrained until the second link 417 contacts the object 9 to be gripped and the second joint shaft 407 stops rotating, during which the ring gear cup 4107 remains stationary. To do.
 遊星歯車機構401の駆動トルクは、2対のモータ413(アクチュエータ)の差動トルクであり、傘歯車411,412、シャフト410、及びカップリング409を介して、遊星歯車機構401のサンギア4102に入力される。また、2対のモータ413の合成トルクは、第1リンク414を第1関節軸426周りに紙面奥行き方向及び紙面手前方向に揺動するためのトルクである。 The driving torque of the planetary gear mechanism 401 is a differential torque of two pairs of motors 413 (actuators), and is input to the sun gear 4102 of the planetary gear mechanism 401 via the bevel gears 411 and 412, the shaft 410, and the coupling 409. Is done. The combined torque of the two pairs of motors 413 is a torque for swinging the first link 414 around the first joint axis 426 in the depth direction and the front side of the page.
 通常、遊星歯車機構は、サンギア、キャリア、リングギアのいずれか1つを固定し、入力に対して出力を減速もしくは増速する機構である。本実施形態では、入力をサンギア4102、出力をキャリア4104とリングギア4106としている。しかし、このままでは出力であるキャリア4104とリングギア4106のどちらが先に動き始めるか、また同時に動くかは定まらない。ここでは、把持動作の際に第2関節425が第3関節424よりも先に動き始めるように、リングギア4106を間接的にばね422で拘束している。このようにすることで、遊星歯車機構401による劣駆動指でもなじみ把持を実現できる。 Normally, the planetary gear mechanism is a mechanism that fixes one of the sun gear, the carrier, and the ring gear, and decelerates or increases the output with respect to the input. In this embodiment, the input is a sun gear 4102, and the output is a carrier 4104 and a ring gear 4106. However, in this state, it is not determined which of the carrier 4104 and the ring gear 4106, which are outputs, starts to move first, or moves simultaneously. Here, the ring gear 4106 is indirectly restrained by the spring 422 so that the second joint 425 starts to move before the third joint 424 during the gripping operation. In this way, familiar gripping can be realized even with an underactuated finger by the planetary gear mechanism 401.
 このように、本実施形態では、指部400に、サンギア4102、キャリア4104、リングギア4106を備え、キャリア4104が第2関節軸407、リングギア4106が第3関節軸420に間接的に連結された遊星歯車機構401と、把持動作の際に、第2関節軸407を駆動するのに必要な駆動トルクが第3関節軸420を駆動するのに必要な駆動トルクよりも小さくなるように、第3関節軸420の回転を拘束する(言い換えれば第3関節軸の駆動トルクを大きくするように調整する)ばね422と、を有するなじみ機構USを設け、第3関節424を駆動するのに必要な駆動トルクを調整することによって、指部400で把持対象物9を包み込むように把持することを可能としている。なお、ばね422が、特許請求の範囲に記載の駆動トルク調整部材及び関節拘束機構の一例に相当する。 As described above, in this embodiment, the finger part 400 includes the sun gear 4102, the carrier 4104, and the ring gear 4106, and the carrier 4104 is indirectly connected to the second joint shaft 407 and the ring gear 4106 is indirectly connected to the third joint shaft 420. The planetary gear mechanism 401 and the gripping operation are performed so that the driving torque required to drive the second joint shaft 407 is smaller than the driving torque required to drive the third joint shaft 420. A conforming mechanism US having a spring 422 that restricts the rotation of the three joint shaft 420 (in other words, adjusts the driving torque of the third joint shaft to be increased) is provided, and is necessary for driving the third joint 424. By adjusting the driving torque, it is possible to grip the object 9 with the finger 400 so as to wrap it. The spring 422 corresponds to an example of a drive torque adjusting member and a joint restraining mechanism described in the claims.
 また、干渉機構を用いることで、合成トルクで第1リンク414を角度制御し、差動トルクで第2リンク417及び第3リンク421を角度制御する。例えば、2本指のロボットハンドで、ドーナツ状の物体(梱包用のテープなど)の内周の1点と外周の1点を把持する場合を考える。まず、ドーナツ状の物体の内周と外周に2本の指が配置されるように、第1リンクを姿勢制御する。その後、第2及び第3リンクを姿勢制御することで、ドーナツ状物体の内周の1点と外周の1点を把持することが可能となる。このようにして、劣駆動においても、姿勢制御を実現できる。 Further, by using the interference mechanism, the angle of the first link 414 is controlled by the combined torque, and the angle of the second link 417 and the third link 421 is controlled by the differential torque. For example, consider a case where a two-fingered robot hand grips one point on the inner periphery and one point on the outer periphery of a donut-shaped object (such as a packing tape). First, the posture of the first link is controlled so that two fingers are arranged on the inner periphery and outer periphery of the donut-shaped object. Thereafter, by controlling the posture of the second and third links, it becomes possible to grip one point on the inner periphery and one point on the outer periphery of the donut-shaped object. In this way, posture control can be realized even in inferior drive.
 次に図32を用いて、指部400におけるなじみ機構USの動作原理を説明する。図32において、遊星歯車機構401は、サンギア4102、プラネタリギア4103、キャリア4104、及びリングギア4106を備えており、リングギア4106は上述したように間接的にばね422で拘束されている。このばね422は、第2リンク417と第3リンク421の間に配置されている。図32(a)は、サンギア4102への入力トルクがゼロの状態を示している。次に、図32(b)に示すように、サンギア4102に時計回りのトルクが入力されると、プラネタリギア4103が回転し、同時にキャリア4104が同時計回りに回転する。これにより、第2リンク417は第2関節軸407を中心に把持対象物9に向かって移動する。このとき、第3関節軸420がばね422の拘束を受けることで、リングギア4106が停止しているので、第2リンク417と第3リンク421との相対角度はゼロである。その後、第2リンク417が把持対象物9に接触すると、第2関節軸407の駆動が拘束され、キャリア4104が拘束される。これにより、図32(c)に示すように、リングギア4106に反時計周りのトルクが生じ、第3リンク421が第3関節軸420を中心に把持対象物9に向かって移動する。第1リンク414、第2リンク417、第3リンク421が把持対象物9に接触すると、キャリア4104及びリングギア4106の両方が拘束されるため、プラネタリギア4103及びサンギア4102は停止する。 Next, the operation principle of the conforming mechanism US in the finger 400 will be described with reference to FIG. 32, the planetary gear mechanism 401 includes a sun gear 4102, a planetary gear 4103, a carrier 4104, and a ring gear 4106. The ring gear 4106 is indirectly restrained by the spring 422 as described above. The spring 422 is disposed between the second link 417 and the third link 421. FIG. 32A shows a state where the input torque to the sun gear 4102 is zero. Next, as shown in FIG. 32 (b), when a clockwise torque is input to the sun gear 4102, the planetary gear 4103 rotates, and at the same time, the carrier 4104 rotates in the same clockwise direction. As a result, the second link 417 moves toward the grasped object 9 about the second joint axis 407. At this time, since the ring gear 4106 is stopped by the third joint shaft 420 being restrained by the spring 422, the relative angle between the second link 417 and the third link 421 is zero. Thereafter, when the second link 417 contacts the grasped object 9, the driving of the second joint shaft 407 is restrained, and the carrier 4104 is restrained. As a result, as shown in FIG. 32C, counterclockwise torque is generated in the ring gear 4106, and the third link 421 moves toward the grasped object 9 about the third joint shaft 420. When the first link 414, the second link 417, and the third link 421 come into contact with the object 9 to be grasped, both the carrier 4104 and the ring gear 4106 are restrained, and the planetary gear 4103 and the sun gear 4102 are stopped.
 以上説明した第3実施形態によれば、指部400に、トルク伝達機構としての遊星歯車機構401と、ばね422とを有するなじみ機構USを設け、把持動作の際には第2関節425、第3関節424の順に屈曲し、第3関節424を駆動するのに必要な駆動トルクを調整することによって、どのような姿勢においても、指部400で把持対象物を包み込むように把持することを可能としている。これにより、ロボットハンドは、把持対象物9に対し、当該対象物9の形状に倣った柔軟な把持を行うことができる。 According to the third embodiment described above, the finger unit 400 is provided with the conforming mechanism US having the planetary gear mechanism 401 as the torque transmission mechanism and the spring 422, and the second joint 425 and the second joint 425 are provided in the gripping operation. By bending the three joints 424 in this order and adjusting the driving torque necessary to drive the third joint 424, it is possible to grip the gripping object with the finger 400 in any posture. It is said. Thereby, the robot hand can perform a flexible grip on the grip target 9 according to the shape of the target 9.
 なお、上記実施形態に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を順に説明する。 In addition, it is not restricted to the said embodiment, A various deformation | transformation is possible within the range which does not deviate from the meaning and technical idea. Hereinafter, such modifications will be described in order.
 (3-1)プーリを用いてトルク伝達する遊星歯車機構の場合
 上記第3実施形態では、キャリアカップ4105とリングギアカップ4107の上面に歯を設け、これを用いてトルクを伝達するようにしたが、これに限らず、プーリを用いてトルク伝達する構成としてもよい。本変形例について、図33を参照しつつ説明する。
(3-1) In the case of a planetary gear mechanism that transmits torque using a pulley In the third embodiment, teeth are provided on the upper surfaces of the carrier cup 4105 and the ring gear cup 4107, and torque is transmitted using the teeth. However, the present invention is not limited to this, and a configuration may be adopted in which torque is transmitted using a pulley. This modification will be described with reference to FIG.
 図33において、遊星歯車機構401は、キャリアカップ4105とリングギアカップ4107の外周に、それぞれプーリ4109とプーリ4110を設けており、ケース4108にベルト伝動ができる穴(もしくは隙間)4111を設けている。その他の構成は、上記第3実施形態と同様である。本変形例によっても、上記第3実施形態と同様の効果を得る。 In FIG. 33, the planetary gear mechanism 401 is provided with pulleys 4109 and 4110 on the outer circumferences of the carrier cup 4105 and the ring gear cup 4107, respectively, and a hole (or gap) 4111 that allows belt transmission in the case 4108. . Other configurations are the same as those of the third embodiment. Also according to this modification, the same effect as the third embodiment is obtained.
 (3-2)シャフトを拘束する関節拘束機構とする場合
 上記第3実施形態では、ばねを用いて第3リンク421と第2リンク417の相対角度を拘束することで第3関節424を拘束するようにしたが、これに限らず、シャフト416を拘束してもよい。本変形例について、図34を参照しつつ説明する。
(3-2) When using a joint restraint mechanism for restraining the shaft In the third embodiment, the third joint 424 is restrained by restraining the relative angle between the third link 421 and the second link 417 using a spring. However, the present invention is not limited to this, and the shaft 416 may be restrained. This modification will be described with reference to FIG.
 図34において、第2リンク417の内部には、第3関節軸420の駆動を拘束する関節拘束機構JCが設けられている。この関節拘束機構JCは、ストッパ505と、このストッパ505の一方側に設けられたバネ504と、ストッパ505の他方側に設けられ、ストッパ505とパッド503とを接続する支持部材506とを有している。図34(a)は、第2リンク417が把持対象物9と接触する前の状態を表しており、図34(b)は、第2リンク417が把持対象物9と接触した後の状態を表している。図34(a)に示すように、第2リンク417が把持対象物9と接触する前は、バネ504とストッパ505の重みで、ストッパ505がシャフト416と接触している。シャフト416がストッパ505で拘束されることで、リングギアカップ4107が拘束され、第2リンク417と第3リンク421の相対角度は零になる。パッド503が把持対象物9と接触し、支持部材506が第2リンク417内部に押されると、バネ504が縮み、ストッパ505がシャフト416から外れて、シャフト416の拘束が無くなる。これにより、サンギア4102の出力トルクがリングギア4106に伝わり、リングギアカップ4107が回転する。この回転で、第3リンク421が揺動する。図34(c)は、第2リンク417の側断面図であり、この図34(c)に示すように、ストッパ505はシャフト416を部分的に覆うような構成となっている。 34, a joint restraining mechanism JC that restrains driving of the third joint shaft 420 is provided inside the second link 417. The joint restraining mechanism JC includes a stopper 505, a spring 504 provided on one side of the stopper 505, and a support member 506 provided on the other side of the stopper 505 and connecting the stopper 505 and the pad 503. ing. FIG. 34A shows a state before the second link 417 comes into contact with the grasped object 9, and FIG. 34B shows a state after the second link 417 comes into contact with the grasped object 9. Represents. As shown in FIG. 34A, the stopper 505 is in contact with the shaft 416 by the weight of the spring 504 and the stopper 505 before the second link 417 contacts the grasped object 9. When the shaft 416 is restrained by the stopper 505, the ring gear cup 4107 is restrained, and the relative angle between the second link 417 and the third link 421 becomes zero. When the pad 503 comes into contact with the grasped object 9 and the support member 506 is pushed into the second link 417, the spring 504 contracts, the stopper 505 is detached from the shaft 416, and the shaft 416 is not restrained. As a result, the output torque of the sun gear 4102 is transmitted to the ring gear 4106 and the ring gear cup 4107 rotates. With this rotation, the third link 421 swings. 34C is a side sectional view of the second link 417. As shown in FIG. 34C, the stopper 505 is configured to partially cover the shaft 416. FIG.
 上記構成により、関節拘束機構JCは、把持動作の際に、第2関節425を駆動するのに必要な駆動トルクが第3関節424を駆動するのに必要な駆動トルクよりも小さくなるように、第3関節424の関節軸420の駆動を拘束する。これにより、指部400で把持対象物を包み込むように把持することが可能である。 With the above configuration, the joint restraining mechanism JC is configured so that the driving torque necessary to drive the second joint 425 is smaller than the driving torque necessary to drive the third joint 424 during the gripping operation. The drive of the joint shaft 420 of the third joint 424 is constrained. Thereby, it is possible to hold the object to be held by the finger unit 400 so as to be wrapped.
 (3-3)リングギアカップを拘束する関節拘束機構とする場合
 上記第3実施形態では、シャフトを拘束することによって第3関節424の駆動を拘束するようにしたが、これに限らず、遊星歯車機構401のリングギアカップ4107を拘束してもよい。本変形例について、図35を参照しつつ説明する。
(3-3) When using a joint restraint mechanism for restraining the ring gear cup In the third embodiment, the drive of the third joint 424 is restrained by restraining the shaft. The ring gear cup 4107 of the gear mechanism 401 may be restrained. This modification will be described with reference to FIG.
 図35(a)に示すように、ロボットハンドは、第1リンク414、第2リンク417、及び第3リンク421から構成される3関節の指部400と、掌部606とを有している。第1リンク414の内部には、前述した遊星歯車機構401が内蔵されている。また、第2リンク417の外部には、接触センサ605が設けられている。この接触センサ605としては、応力を受けて電気信号を出力するもの(例えば歪ゲージや圧力センサなど)が使用される。接触センサ605の電気信号はケーブル607を介して第2リンク417内部のアンプ608に入力され、増幅された信号はケーブル609を介して第1リンク414内部の形状記憶合金610に印加される。 As shown in FIG. 35A, the robot hand has a three-joint finger unit 400 including a first link 414, a second link 417, and a third link 421, and a palm unit 606. . The planetary gear mechanism 401 described above is built in the first link 414. A contact sensor 605 is provided outside the second link 417. As the contact sensor 605, a sensor that receives stress and outputs an electrical signal (for example, a strain gauge, a pressure sensor, or the like) is used. The electrical signal from the contact sensor 605 is input to the amplifier 608 inside the second link 417 via the cable 607, and the amplified signal is applied to the shape memory alloy 610 inside the first link 414 via the cable 609.
 図35(b)に示すように、第1リンク414内部の関節拘束機構JCは、リングギアカップ4107を拘束するストッパ611と、第1リンク414内部とストッパ611とをつなぐコイル状の形状記憶合金610と、形状記憶合金610とバネ613に電流を印加するケーブル609とを有している。接触センサ605が把持対象物9と接触していない場合には、形状記憶合金610に印加される電流は小さいので、図35(b)に示すように、バネ613の引っ張り力によりストッパ611がリングギアカップ4107を拘束する。一方、接触センサ605が把持対象物9と接触すると、形状記憶合金610に電流が印加されるので、図35(c)に示すように、形状記憶合金610が縮み、ストッパ611がリングギアカップ4107から離間して拘束がなくなる。これにより、遊星歯車機構401のサンギア4102からリングギア4106に伝わったトルクにより、リングギアカップ4107が回転する。この回転で、第3リンク421が揺動する。本変形例によっても、上記第3実施形態と同様の効果を得る。 As shown in FIG. 35B, the joint restraining mechanism JC inside the first link 414 includes a stopper 611 that restrains the ring gear cup 4107, and a coil-shaped shape memory alloy that connects the inside of the first link 414 and the stopper 611. 610, a shape memory alloy 610, and a cable 609 for applying a current to the spring 613. When the contact sensor 605 is not in contact with the object 9 to be grasped, the current applied to the shape memory alloy 610 is small. Therefore, as shown in FIG. The gear cup 4107 is restrained. On the other hand, when the contact sensor 605 comes into contact with the object 9 to be grasped, a current is applied to the shape memory alloy 610, so that the shape memory alloy 610 contracts and the stopper 611 becomes the ring gear cup 4107 as shown in FIG. The restraint is removed from the distance. As a result, the ring gear cup 4107 is rotated by the torque transmitted from the sun gear 4102 of the planetary gear mechanism 401 to the ring gear 4106. With this rotation, the third link 421 swings. Also according to this modification, the same effect as the third embodiment is obtained.
 (3-4)トルク伝達機構に波動歯車機構を用いる場合
 上記第3実施形態では、トルク伝達機構として遊星歯車機構を用いたが、これに限らず、波動歯車機構を用いてもよい。本変形例について、図36及び図37を参照しつつ説明する。
(3-4) When using a wave gear mechanism as the torque transmission mechanism In the third embodiment, the planetary gear mechanism is used as the torque transmission mechanism. However, the present invention is not limited to this, and a wave gear mechanism may be used. This modification will be described with reference to FIGS. 36 and 37. FIG.
 図36(a)に示すように、波動歯車機構700は、ウェーブジェネレータ701と、フレックススプライン702と、サーキュラースプライン703とを有している。図36(b)に示すように、本実施形態ではフレックススプライン702にフレックススプラインカップギア704が設けられ、サーキュラースプライン703にサーキュラースプラインカップギア705が設けられている。また、サーキュラースプライン703とケース707との間にベアリング706が配置され、サーキュラースプライン703は回転可能に支持されている。このような構成により、波動歯車機構700は上記第3実施形態の遊星歯車機構401と同様の1入力2出力のトルク伝達機構となる。本変形例では、この波動歯車機構700を、ロボットハンドの第2関節425及び第3関節424の駆動に使用することで、図31で示した指部400の遊星歯車機構401を波動歯車機構700と置き換えた構成となり、同じ動作を実現できる。この際、入力はウェーブジェネレータ701、出力はフレックススプラインカップギア704と、サーキュラースプラインカップギア705となる。 As shown in FIG. 36A, the wave gear mechanism 700 includes a wave generator 701, a flex spline 702, and a circular spline 703. As shown in FIG. 36B, in this embodiment, a flex spline cup gear 704 is provided in the flex spline 702, and a circular spline cup gear 705 is provided in the circular spline 703. Further, a bearing 706 is disposed between the circular spline 703 and the case 707, and the circular spline 703 is rotatably supported. With such a configuration, the wave gear mechanism 700 is a 1-input 2-output torque transmission mechanism similar to the planetary gear mechanism 401 of the third embodiment. In this modification, the wave gear mechanism 700 is used for driving the second joint 425 and the third joint 424 of the robot hand, so that the planetary gear mechanism 401 of the finger 400 shown in FIG. The same operation can be realized. At this time, the input is a wave generator 701, and the output is a flex spline cup gear 704 and a circular spline cup gear 705.
 本変形例によっても、上記第3実施形態と同様の効果を得る。また、遊星歯車機構を用いる場合に比べて歯車部品が少ないため、指部を軽量にできる効果もある。 This modification also achieves the same effect as the third embodiment. Moreover, since there are few gear parts compared with the case where a planetary gear mechanism is used, there also exists an effect which can make a finger part lightweight.
 次に、波動歯車機構700の他の構成例について図37を用いて説明する。図37において、フレックススプライン702(図37では図示省略)には、フレックススプラインカップ708とプーリ709が設けられており、サーキュラースプライン703には、プーリ710が設けられている。これらプーリ709,710と、ロボットハンドの指に備えたプーリとの間に図示しないベルトが掛け渡されており、トルクが伝達される。その他の構成は、上記と同様である。本変形例によっても、上記第3実施形態と同様の効果を得る。またこの場合には、プーリ709,710とロボットハンドの指に備えたプーリとの間のベルトを長くすることで、本変形例に記載した波動歯車機構700を掌部に収めることも可能となり、指部を軽量にできる。 Next, another configuration example of the wave gear mechanism 700 will be described with reference to FIG. In FIG. 37, a flex spline 702 (not shown in FIG. 37) is provided with a flex spline cup 708 and a pulley 709, and a circular spline 703 is provided with a pulley 710. A belt (not shown) is stretched between these pulleys 709 and 710 and a pulley provided on the finger of the robot hand, and torque is transmitted. Other configurations are the same as described above. Also according to this modification, the same effect as the third embodiment is obtained. In this case, the wave gear mechanism 700 described in the present modification can be accommodated in the palm of the hand by lengthening the belt between the pulleys 709 and 710 and the pulley provided on the finger of the robot hand. The finger can be lightened.
 また、以上既に述べた以外にも、上記各実施形態や各変形例による手法を適宜組み合わせて利用しても良い。
 その他、一々例示はしないが、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
In addition to those already described above, the methods according to the above embodiments and modifications may be used in appropriate combination.
In addition, although not illustrated one by one, the present invention is implemented with various modifications within a range not departing from the gist thereof.
 1        ロボット装置
 3        パーソナルコンピュータ(コントローラ)
 8        ロボットハンド
 9        把持対象物
 11       掌部
 12,12A   指部
 13       第1関節
 14       第2関節
 15       第3関節
 16       第1リンク
 17       第2リンク
 18       第3リンク
 19       ツイスト関節部
 24       第1関節駆動モータ(アクチュエータ、第1アクチュエータ)
 25       第2関節駆動モータ(アクチュエータ、第2アクチュエータ)
 26       第1関節駆動ギア
 27       第1関節従動ギア
 30       第2関節駆動ギア(第2リンク用駆動伝達機構、第3リンク用駆動伝達機構)
 31       第2関節従動ギア(第2リンク用駆動伝達機構、第3リンク用駆動伝達機構)
 32       第3関節駆動プーリ(プーリ機構、第3リンク用駆動伝達機構)
 33       第3関節従動プーリ(プーリ機構、第3リンク用駆動伝達機構)
 34       ベルト(ベルト部材、プーリ機構、第3リンク用駆動伝達機構)
 35       第1小リンク(小リンク部材)
 36       第2小リンク(小リンク部材)
 38       ツイスト機構
 38A~C    ツイスト機構
 41       シャフト支持板
 42,42B   シャフト(シャフト部材)
 43       案内板
 44       シャフトベアリング(軸受部材)
 45,45B   案内棒(案内部材、規制部材)
 46       ねじりバネ(第1ばね部材、復帰力付与部材)
 47       案内溝(案内部材、規制部材)
 48       貫通孔
 49       ケーブル部材
 51       つるまきバネ(ばね部材、復帰力付与部材)
 52       永久磁石(復帰力付与部材)
 53       ゴム部材収納体
 54       連結部材
 55       押圧部材
 56       ゴム部材(復帰力付与部材)
 57       深溝
 108      ロボットハンド
 111      掌部
 112      指部
 113      第1関節
 114      第2関節
 115      第3関節
 116      第1リンク
 117      第2リンク
 118      第3リンク
 119      第1モータ(アクチュエータ)
 120      第2モータ(アクチュエータ)
 122      駆動プーリ(トルク伝達機構)
 123      従動プーリ(トルク伝達機構)
 124      ベルト(トルク伝達機構)
 127      ねじりばね(駆動トルク調整部材、第2ばね部材)
 128,129  ストッパ
 129A     ピン
 129B     案内溝
 137      引っ張りばね(駆動トルク調整部材、第2ばね部材)
 138A,B   ワイヤ
 212      指部
 213      第1関節
 214      第2関節
 216      第1リンク
 217      第2リンク
 219      第1モータ(アクチュエータ)
 222      駆動プーリ(トルク伝達機構)
 223      従動プーリ(トルク伝達機構)
 224      ベルト(トルク伝達機構)
 227      ねじりばね(駆動トルク調整部材、第2ばね部材)
 229      ストッパ
 300      ロボットハンド
 301      根元リンク
 302      第1リンク
 303      第2リンク
 304      第3リンク
 311      掌部
 312~314  指部
 330      モータ(アクチュエータ)
 331      第1関節
 332      第2関節
 333      第3関節
 400      指部
 401      遊星歯車機構(トルク伝達機構)
 407      第2関節軸
 413      モータ(アクチュエータ)
 414      第1リンク
 417      第2リンク
 420      第3関節軸
 421      第3リンク
 422      ばね(駆動トルク調整部材、関節拘束機構)
 424      第3関節
 425      第2関節
 426      第1関節
 700      波動歯車機構(トルク伝達機構)
 701      ウェーブジェネレータ
 702      フレックススプライン
 703      サーキュラースプライン
 1141     第2関節軸
 1151     第3関節軸
 2131     第1関節軸
 2141     第2関節軸
 4102     サンギア
 4104     キャリア
 4106     リングギア
 CL       回転軸
 JC       関節拘束機構(駆動トルク調整部材)
 US       なじみ機構
1 Robotic device 3 Personal computer (controller)
8 Robot Hand 9 Grasping Object 11 Palm 12, 12 A Finger 13 First Joint 14 Second Joint 15 Third Joint 16 First Link 17 Second Link 18 Third Link 19 Twist Joint Part 24 First Joint Drive Motor ( Actuator, 1st actuator)
25 Second joint drive motor (actuator, second actuator)
26 first joint drive gear 27 first joint driven gear 30 second joint drive gear (second link drive transmission mechanism, third link drive transmission mechanism)
31 Second joint driven gear (second link drive transmission mechanism, third link drive transmission mechanism)
32 third joint drive pulley (pulley mechanism, third link drive transmission mechanism)
33 third joint driven pulley (pulley mechanism, third link drive transmission mechanism)
34 Belt (belt member, pulley mechanism, third link drive transmission mechanism)
35 First small link (small link member)
36 Second small link (small link member)
38 Twist mechanism 38A to C Twist mechanism 41 Shaft support plate 42, 42B Shaft (shaft member)
43 Guide plate 44 Shaft bearing (bearing member)
45, 45B Guide rod (guide member, regulating member)
46 Torsion spring (first spring member, restoring force applying member)
47 Guide groove (guide member, regulating member)
48 through hole 49 cable member 51 helical spring (spring member, restoring force applying member)
52 Permanent magnet (restoring force applying member)
53 Rubber member housing 54 Connecting member 55 Pressing member 56 Rubber member (restoring force applying member)
57 deep groove 108 robot hand 111 palm part 112 finger part 113 first joint 114 second joint 115 third joint 116 first link 117 second link 118 third link 119 first motor (actuator)
120 Second motor (actuator)
122 Drive pulley (torque transmission mechanism)
123 Driven pulley (torque transmission mechanism)
124 belt (torque transmission mechanism)
127 Torsion spring (drive torque adjusting member, second spring member)
128,129 Stopper 129A Pin 129B Guide groove 137 Tension spring (drive torque adjusting member, second spring member)
138A, B Wire 212 Finger part 213 First joint 214 Second joint 216 First link 217 Second link 219 First motor (actuator)
222 Drive pulley (torque transmission mechanism)
223 Driven pulley (torque transmission mechanism)
224 belt (torque transmission mechanism)
227 Torsion spring (drive torque adjusting member, second spring member)
229 Stopper 300 Robot hand 301 Root link 302 First link 303 Second link 304 Third link 311 Palm portion 312 to 314 Finger portion 330 Motor (actuator)
331 First joint 332 Second joint 333 Third joint 400 Finger part 401 Planetary gear mechanism (torque transmission mechanism)
407 Second joint shaft 413 Motor (actuator)
414 1st link 417 2nd link 420 3rd joint axis 421 3rd link 422 Spring (drive torque adjustment member, joint restraint mechanism)
424 3rd joint 425 2nd joint 426 1st joint 700 Wave gear mechanism (torque transmission mechanism)
701 Wave generator 702 Flex spline 703 Circular spline 1141 2nd joint axis 1151 3rd joint axis 2131 1st joint axis 2141 2nd joint axis 4102 Sun gear 4104 Carrier 4106 Ring gear CL Rotation axis JC Joint restraint mechanism (drive torque adjustment member)
US familiar mechanism

Claims (26)

  1.  アクチュエータ(24,25;119,120;219;330;413)の数より関節(13,14,15;113,114,115;213,214;331,332,333;424,425,426)の数が多い劣駆動機構のロボットハンド(8;108;300)であって、
     掌部(11;111;311)と、
     前記掌部(11;111;311)に根元が連結され、屈曲可能に連結された複数のリンク(16,17,18;116,117,118;216,217;301,302,303,304;414,417,421)を備えた少なくとも2本の指部(12,12A;112;212;312,313,314;400)と、
     少なくとも1本の前記指部(12A;112;212;312;400)に設けられ、前記リンク(17,18)へのねじり変位の付与、及び、前記関節(114;213;331,332;424)を駆動するのに必要な駆動トルクの調整のうち、少なくとも一方を行うことにより、前記指部(12,12A;112;212;312,313,314;400)で把持対象物(9)を包み込むように把持可能とするなじみ機構(US)と、を有する
    ことを特徴とするロボットハンド(8;108)。
    From the number of actuators (24, 25; 119, 120; 219; 330; 413), the number of joints (13, 14, 15; 113, 114, 115; 213, 214; 331, 332, 333; 424, 425, 426) A number of underactuated mechanism robot hands (8; 108; 300),
    Palm (11; 111; 311);
    A plurality of links (16, 17, 18; 116, 117, 118; 216, 217; 301, 302, 303, 304) whose roots are coupled to the palm (11; 111; 311) and are bendably coupled. 414, 417, 421) with at least two fingers (12, 12A; 112; 212; 312, 313, 314; 400);
    Provided on at least one of the fingers (12A; 112; 212; 312; 400), imparting torsional displacement to the link (17, 18), and the joint (114; 213; 331, 332; 424) ) Is performed by adjusting at least one of the driving torque adjustments required to drive the object (9), the finger (12, 12A; 112; 212; 312, 313, 314; 400) holds the grasped object (9). A robot hand (8; 108) characterized by having a conforming mechanism (US) that can be gripped so as to be wrapped.
  2.  3本以上の前記指部(12,12A)を備え、
     前記3本以上の指部(12,12A)のそれぞれが、
     掌側から指先に向かって順番に配列される、第1リンク(16)、第2リンク(17)、及び第3リンク(18)、を含む、3つ以上の前記リンク(16,17,18)と、
     前記第1リンク(16)と当該第1リンク(16)の前記掌側とを屈曲可能に連結する第1関節(13)、前記第2リンク(17)と前記第1リンク(16)とを屈曲可能に連結する第2関節(14)、及び、前記第3リンク(18)と前記第2リンク(17)とを屈曲可能に連結する第3関節(15)、を含む、3つ以上の前記関節(13,14,15)と、を有し、
     前記3本以上の指部(12,12A)のうち少なくとも1本の指部(12A)に備えられた前記第1~第3リンク(16,17,18)のうち少なくとも1つのリンク(16)を、回転軸(CL)まわりに互いに相対ねじり変位可能に連結された、2つの小リンク部材(35,36)により構成することにより、前記なじみ機構(US)を実現した
    ことを特徴とする請求項1に記載のロボットハンド(8)。
    Comprising three or more fingers (12, 12A);
    Each of the three or more fingers (12, 12A)
    Three or more links (16, 17, 18) including a first link (16), a second link (17), and a third link (18) arranged in order from the palm side toward the fingertip. )When,
    The first joint (13), the second link (17), and the first link (16) that flexibly connect the first link (16) and the palm side of the first link (16). 3 or more including a second joint (14) for flexibly connecting and a third joint (15) for flexibly connecting the third link (18) and the second link (17). Said joints (13, 14, 15),
    At least one link (16) of the first to third links (16, 17, 18) provided on at least one of the three or more fingers (12, 12A). Is constituted by two small link members (35, 36) connected to each other around the rotation axis (CL) so as to be capable of relative torsional displacement, thereby realizing the conforming mechanism (US). Item 8. The robot hand (8) according to item 1.
  3.  前記なじみ機構(US)は、
     前記2つの小リンク部材(35,36)を、前記回転軸(CL)まわりに互いに相対ねじり変位可能に連結する、ツイスト機構(38,38A~C)を有する
    ことを特徴とする請求項2に記載のロボットハンド(8)。
    The familiar mechanism (US)
    3. A twist mechanism (38, 38A to C) for connecting the two small link members (35, 36) to each other around the rotation axis (CL) so as to be capable of relative torsional displacement. The robot hand (8) as described.
  4.  前記ツイスト機構(38,38A~C)は、
     前記2つの小リンク部材(35,36)のうち一方に設けたシャフト部材(42,42B)と、
     前記2つの小リンク部材(35,36)のうち他方に設けられ、前記シャフト部材(42,42B)を回転可能に支持する軸受部材(44)と、を備える
    ことを特徴とする請求項3に記載のロボットハンド(8)。
    The twist mechanism (38, 38A to C)
    A shaft member (42, 42B) provided on one of the two small link members (35, 36);
    A bearing member (44) provided on the other of the two small link members (35, 36) and rotatably supporting the shaft member (42, 42B). The robot hand (8) as described.
  5.  前記ツイスト機構(38,38A~C)は、
     前記シャフト部材(42,42B)の回転に伴う、前記2つの小リンク部材(35,36)の相対回転をガイドするための、案内部材(45,45B,47)を備える
    ことを特徴とする請求項4に記載のロボットハンド(8)。
    The twist mechanism (38, 38A to C)
    A guide member (45, 45B, 47) is provided for guiding relative rotation of the two small link members (35, 36) accompanying rotation of the shaft member (42, 42B). Item 5. The robot hand (8) according to item 4.
  6.  前記ツイスト機構(38,38A~C)は、
     前記シャフト部材(42,42B)の回転に伴う、前記2つの小リンク部材(35,36)の相対回転方向の回転量を所定範囲内に制限するための規制部材(45,45B,47)を備える
    ことを特徴とする請求項4又は5に記載のロボットハンド(8)。
    The twist mechanism (38, 38A to C)
    Restricting members (45, 45B, 47) for limiting the amount of rotation of the two small link members (35, 36) in the relative rotational direction within a predetermined range as the shaft members (42, 42B) rotate. The robot hand (8) according to claim 4 or 5, characterized by comprising:
  7.  前記ツイスト機構(38,38A~C)は、
     前記シャフト部材(42,42B)の回転に伴い正回転方向に変位する前記2つの小リンク部材(35,36)を、逆回転方向へ変位させる復帰力を与えるための復帰力付与部材(46,51,52,56)を備える
    ことを特徴とする請求項4乃至6のいずれか1項に記載のロボットハンド(8)。
    The twist mechanism (38, 38A to C)
    A return force applying member (46, 42) for applying a return force for displacing the two small link members (35, 36), which are displaced in the forward rotation direction with the rotation of the shaft members (42, 42B), in the reverse rotation direction. The robot hand (8) according to any one of claims 4 to 6, comprising 51, 52, 56).
  8.  前記復帰力付与部材(46,51)は、
     一端側が前記2つの小リンク部材(35,36)のうち一方に対し固定されるとともに、他端側が前記2つの小リンク部材(35,36)のうち他方に対し固定された、第1ばね部材(46,51)である
    ことを特徴とする請求項7に記載のロボットハンド(8)。
    The return force applying member (46, 51)
    A first spring member having one end fixed to one of the two small link members (35, 36) and the other end fixed to the other of the two small link members (35, 36) The robot hand (8) according to claim 7, wherein the robot hand (8) is (46, 51).
  9.  前記復帰力付与部材(52)は、
     前記復帰力としての吸引力が互いに作用するように前記2つの小リンク部材(35,36)それぞれにおいて対向して配置された、一対の永久磁石(52)である
    ことを特徴とする請求項7に記載のロボットハンド(8)。
    The return force applying member (52)
    The pair of permanent magnets (52) arranged opposite to each other in each of the two small link members (35, 36) so that the attractive force as the restoring force acts on each other. The robot hand (8) described in 1.
  10.  前記復帰力付与部材(56)は、
     前記2つの小リンク部材(35,36)のうち一方の所定の収納空間に収納配置されるとともに、前記シャフト部材(42)の回転に伴い、前記2つの小リンク部材(35,36)のうち他方に固定された押圧部材(55)により押圧圧縮される、ゴム部材(56)又は樹脂部材である
    ことを特徴とする請求項7に記載のロボットハンド(8)。
    The return force applying member (56)
    Among the two small link members (35, 36), the two small link members (35, 36) are housed and arranged in one predetermined storage space, and the two small link members (35, 36) are rotated along with the rotation of the shaft member (42). The robot hand (8) according to claim 7, wherein the robot hand (8) is a rubber member (56) or a resin member that is pressed and compressed by a pressing member (55) fixed to the other.
  11.  前記第1リンク(16)は、前記2つの小リンク部材(35,36)により構成されており、
    かつ、
     前記掌部(11)と、
     前記掌部(11)に設けられた、前記第1リンク(16)を屈曲させるための第1駆動力を発生する第1アクチュエータ(24)と、
     前記2つの小リンク部材(35,36)のうち前記第2リンク(17)側の小リンク部材(36)に設けられ、前記第2リンク(17)及び前記第3リンク(18)を屈曲させるための第2駆動力を発生する第2アクチュエータ(25)と、
     前記第2アクチュエータ(25)からの前記第2駆動力を、前記第2リンク(17)に伝達する第2リンク用駆動伝達機構(30,31)と、
     前記第2アクチュエータ(25)からの前記第2駆動力を、前記第3リンク(18)に伝達する第3リンク用駆動伝達機構(30,31,32,33,34)と、
    を設けたことを特徴とする請求項4乃至10のいずれか1項に記載のロボットハンド(8)。
    The first link (16) is composed of the two small link members (35, 36),
    And,
    The palm (11);
    A first actuator (24) provided on the palm (11) for generating a first driving force for bending the first link (16);
    Of the two small link members (35, 36), the small link member (36) on the second link (17) side is provided to bend the second link (17) and the third link (18). A second actuator (25) for generating a second driving force for
    A second link drive transmission mechanism (30, 31) for transmitting the second driving force from the second actuator (25) to the second link (17);
    A third link drive transmission mechanism (30, 31, 32, 33, 34) for transmitting the second driving force from the second actuator (25) to the third link (18);
    The robot hand (8) according to any one of claims 4 to 10, characterized by comprising:
  12.  前記第2リンク用駆動伝達機構(30,31)は、
     ギア結合により前記第2リンク(17)に前記第2駆動力を伝達する歯車機構(30,31)を備え、
     前記第3リンク用駆動伝達機構(30,31,32,33,34)は、
     前記第3リンク(18)に設けたプーリ(33)と前記第2リンク(17)に設けたプーリ(32)との間に掛け渡したベルト部材(34)又はワイヤ部材により、前記第3リンク(18)に前記第2駆動力を伝達するプーリ機構(32,33,34)を備える
    ことを特徴とする請求項11に記載のロボットハンド(8)。
    The second link drive transmission mechanism (30, 31)
    A gear mechanism (30, 31) for transmitting the second driving force to the second link (17) by gear coupling;
    The third link drive transmission mechanism (30, 31, 32, 33, 34)
    The third link is formed by a belt member (34) or a wire member that is stretched between a pulley (33) provided on the third link (18) and a pulley (32) provided on the second link (17). The robot hand (8) according to claim 11, further comprising a pulley mechanism (32, 33, 34) for transmitting the second driving force to (18).
  13.  前記シャフト部材(42,42B)は、
     第2アクチュエータ(25)へのケーブル部材(49)を貫通させるための、軸方向貫通孔(48)を備える
    ことを特徴とする請求項11又は12に記載のロボットハンド(8)。
    The shaft member (42, 42B)
    The robot hand (8) according to claim 11 or 12, characterized in that it comprises an axial through hole (48) for allowing the cable member (49) to penetrate the second actuator (25).
  14.  前記なじみ機構(US)は、
     前記アクチュエータ(120;219;413)のトルクを2つ以上の前記関節(114,115;213,214;424,425)に伝達するトルク伝達機構(122,123,124;222,223,224;401,700)と、
     把持動作の際に、指先側の前記関節(115;214;424)よりも掌側の前記関節(114;213;425)が先に屈曲駆動するように、前記関節(114;213;424)を駆動するのに必要な駆動トルクを調整する駆動トルク調整部材(127,137;227;422,JC)と、を有する
    ことを特徴とする請求項1に記載のロボットハンド(108)。
    The familiar mechanism (US)
    Torque transmission mechanisms (122, 123, 124; 222, 223, 224) that transmit the torque of the actuator (120; 219; 413) to two or more of the joints (114, 115; 213, 214; 424, 425). 401,700)
    In the gripping operation, the joint (114; 213; 424) is so driven that the joint (114; 213; 425) on the palm side is bent before the joint (115; 214; 424) on the fingertip side. The robot hand (108) according to claim 1, further comprising a drive torque adjusting member (127, 137; 227; 422, JC) for adjusting a drive torque required to drive the robot.
  15.  前記トルク伝達機構(122,123,124;222,223,224)は、
     掌側の関節軸(1141;2131)に連結された駆動プーリ(122;222)と、
     指先側の関節軸(1151;2141)に連結された従動プーリ(123;223)と、
     前記駆動プーリ(122;222)及び前記従動プーリ(123;223)に掛け渡されたベルト(124;224)と、を有し、
     前記駆動トルク調整部材(127,137;227)は、
     把持動作の際には、前記掌側の関節(114;213)を駆動するのに必要な駆動トルクが前記指先側の関節(115;214)を駆動するのに必要な駆動トルクよりも小さくなるように、把持解除動作の際には、前記掌側の関節(114;213)を駆動するのに必要な駆動トルクが前記指先側の関節(115;214)を駆動するのに必要な駆動トルクよりも大きくなるように、前記掌側の関節(114;213)に補助トルクを付与する第2ばね部材(127,137;227)である
    ことを特徴とする請求項14に記載のロボットハンド(108)。
    The torque transmission mechanism (122, 123, 124; 222, 223, 224)
    A drive pulley (122; 222) coupled to the palmar joint shaft (1141; 2131);
    A driven pulley (123; 223) connected to the joint shaft (1151; 2141) on the fingertip side;
    A belt (124; 224) stretched over the drive pulley (122; 222) and the driven pulley (123; 223),
    The drive torque adjusting member (127, 137; 227)
    In the gripping operation, the driving torque required to drive the palm joint (114; 213) is smaller than the driving torque required to drive the fingertip joint (115; 214). Thus, during the grip release operation, the driving torque necessary to drive the palm-side joint (114; 213) is the driving torque required to drive the fingertip-side joint (115; 214). 15. The robot hand according to claim 14, wherein the robot hand is a second spring member (127, 137; 227) that applies an auxiliary torque to the palm-side joint (114; 213) so as to be larger. 108).
  16.  前記第2ばね部材(127;227)は、
     前記掌側の関節軸(1141;2131)周りに設けられたねじりばね(127;227)である
    ことを特徴とする請求項15に記載のロボットハンド(108)。
    The second spring member (127; 227)
    The robot hand (108) according to claim 15, wherein the robot hand (108) is a torsion spring (127; 227) provided around the joint axis (1141; 2131) on the palm side.
  17.  前記第2ばね部材(137)は、
     前記掌側の関節軸(1141)周りに設けられたワイヤ(138A,138B)に連結された引っ張りばね(137)である
    ことを特徴とする請求項15に記載のロボットハンド(108)。
    The second spring member (137) is
    The robot hand (108) according to claim 15, wherein the robot hand (108) is a tension spring (137) connected to wires (138A, 138B) provided around the joint axis (1141) on the palm side.
  18.  前記指部(112;212)は、
     掌側の前記リンク(116,117;216)に対して指先側の前記リンク(117,118;217)の姿勢を制限するストッパ(128,129;229)を有する
    ことを特徴とする請求項15乃至17のいずれか1項に記載のロボットハンド(108)。
    The finger (112; 212)
    16. A stopper (128, 129; 229) for restricting the posture of the link (117, 118; 217) on the fingertip side with respect to the link (116, 117; 216) on the palm side. The robot hand (108) according to any one of claims 17 to 17.
  19.  前記ストッパ(129)は、
     前記掌側のリンク(117)に設けられたピン(129A)と、
     前記指先側のリンク(118)に設けられ、挿通された前記ピン(129A)の動作範囲を規制可能な案内溝(129B)と、を有している
    ことを特徴とする請求項18に記載のロボットハンド(108)。
    The stopper (129)
    A pin (129A) provided on the palm side link (117);
    The guide groove (129B) provided on the fingertip side link (118) and capable of restricting an operating range of the inserted pin (129A), according to claim 18, Robot hand (108).
  20.  前記トルク伝達機構(401)は、
     サンギア(4102)、キャリア(4104)、リングギア(4106)を備え、前記キャリア(4104)及び前記リングギア(4106)のいずれか一方が掌側の関節軸(407)、他方が指先側の関節軸(420)に連結された遊星歯車機構(401)であり、
     前記駆動トルク調整部材(422;JC)は、
     把持動作の際に、前記掌側の関節(425)を駆動するのに必要な駆動トルクが前記指先側の関節(424)を駆動するのに必要な駆動トルクよりも小さくなるように、前記指先側の関節軸(420)の駆動を拘束する関節拘束機構(422;JC)である
    ことを特徴とする請求項14に記載のロボットハンド。
    The torque transmission mechanism (401)
    A sun gear (4102), a carrier (4104), and a ring gear (4106), one of the carrier (4104) and the ring gear (4106) being a palm-side joint shaft (407) and the other being a fingertip-side joint A planetary gear mechanism (401) coupled to a shaft (420);
    The drive torque adjusting member (422; JC)
    In the gripping operation, the fingertip is configured such that a driving torque required to drive the palm-side joint (425) is smaller than a driving torque required to drive the fingertip-side joint (424). The robot hand according to claim 14, wherein the robot hand is a joint restraining mechanism (422; JC) for restraining driving of the joint shaft (420) on the side.
  21.  前記トルク伝達機構(700)は、
     ウェーブジェネレータ(701)、フレックススプライン(702)、サーキュラースプライン(703)を備え、前記フレックススプライン(702)及び前記サーキュラースプライン(703)のいずれか一方が掌側の関節軸(407)、他方が指先側の関節軸(420)に連結された波動歯車機構(700)であり、
     前記駆動トルク調整部材(422;JC)は、
     把持動作の際に、前記掌側の関節(425)を駆動するのに必要な駆動トルクが前記指先側の関節(424)を駆動するのに必要な駆動トルクよりも小さくなるように、前記指先側の関節軸(420)の駆動を拘束する関節拘束機構(422;JC)である
    ことを特徴とする請求項14に記載のロボットハンド。
    The torque transmission mechanism (700)
    A wave generator (701), a flex spline (702), and a circular spline (703) are provided, one of the flex spline (702) and the circular spline (703) being a palm-side joint axis (407) and the other being a fingertip A wave gear mechanism (700) connected to the side joint shaft (420),
    The drive torque adjusting member (422; JC)
    In the gripping operation, the fingertip is configured such that a driving torque required to drive the palm-side joint (425) is smaller than a driving torque required to drive the fingertip-side joint (424). The robot hand according to claim 14, wherein the robot hand is a joint restraining mechanism (422; JC) for restraining driving of the joint shaft (420) on the side.
  22.  アクチュエータ(24,25;119,120;219;330;413)の数より関節(13,14,15;113,114,115;213,214;331,332,333;424,425,426)の数が多い劣駆動機構のロボットハンド(8;108;300)と、前記ロボットハンド(8;108;300)を制御するコントローラ(3)とを備えたロボット装置(1)であって、
     前記ロボットハンド(8;108;300)は、
     掌部(11;111;311)と、
     前記掌部(11;111;311)に根元が連結され、屈曲可能に連結された複数のリンク(16,17,18;116,117,118;216,217;301,302,303,304;414,417,421)を備えた少なくとも2本の指部(12,12A;112;212;312,313,314;400)と、
     少なくとも1本の前記指部(12A;112;212;312;400)に設けられ、前記リンク(17,18)へのねじり変位の付与、及び、前記関節(114;213;331,332;424)を駆動するのに必要な駆動トルクの調整のうち、少なくとも一方を行うことにより、前記指部(12,12A;112;212;312,313,314;400)で把持対象物(9)を包み込むように把持可能とするなじみ機構(US)と、を有する
    ことを特徴とするロボット装置(1)。
    From the number of actuators (24, 25; 119, 120; 219; 330; 413), the number of joints (13, 14, 15; 113, 114, 115; 213, 214; 331, 332, 333; 424, 425, 426) A robot device (1) comprising a robot hand (8; 108; 300) having a large number of underdrive mechanisms and a controller (3) for controlling the robot hand (8; 108; 300),
    The robot hand (8; 108; 300)
    Palm (11; 111; 311);
    A plurality of links (16, 17, 18; 116, 117, 118; 216, 217; 301, 302, 303, 304) whose roots are coupled to the palm (11; 111; 311) and are bendably coupled. 414, 417, 421) with at least two fingers (12, 12A; 112; 212; 312, 313, 314; 400);
    Provided on at least one of the fingers (12A; 112; 212; 312; 400), imparting torsional displacement to the link (17, 18), and the joint (114; 213; 331, 332; 424) ) Is performed by adjusting at least one of the driving torque adjustments required to drive the object (9), the finger (12, 12A; 112; 212; 312, 313, 314; 400) holds the grasped object (9). A robot apparatus (1) having a conforming mechanism (US) that can be gripped so as to be wrapped.
  23.  前記ロボットハンド(8)は、
     3本以上の前記指部(12,12A)を有し、
     前記3本以上の指部(12,12A)のそれぞれが、
     掌側から指先に向かって順番に配列される、第1リンク(16)、第2リンク(17)、及び第3リンク(18)、を含む、3つ以上の前記リンク(16,17,18)と、
     前記第1リンク(16)と当該第1リンク(16)の前記掌側とを屈曲可能に連結する第1関節(13)、前記第2リンク(17)と前記第1リンク(16)とを屈曲可能に連結する第2関節(14)、及び、前記第3リンク(18)と前記第2リンク(17)とを屈曲可能に連結する第3関節(15)、を含む、3つ以上の前記関節(13,14,15)と、を有し、
     前記3本以上の指部(12,12A)のうち少なくとも1本の指部(12A)に備えられた前記第1~第3リンク(16,17,18)のうち少なくとも1つのリンク(16)を、回転軸(CL)まわりに互いに相対ねじり変位可能に連結された、2つの小リンク部材(35,36)により構成することにより、前記なじみ機構(US)を実現した
    ことを特徴とする請求項22に記載のロボット装置(1)。
    The robot hand (8)
    Having three or more fingers (12, 12A);
    Each of the three or more fingers (12, 12A)
    Three or more links (16, 17, 18) including a first link (16), a second link (17), and a third link (18) arranged in order from the palm side toward the fingertip. )When,
    The first joint (13), the second link (17), and the first link (16) that flexibly connect the first link (16) and the palm side of the first link (16). 3 or more including a second joint (14) for flexibly connecting and a third joint (15) for flexibly connecting the third link (18) and the second link (17). Said joints (13, 14, 15),
    At least one link (16) of the first to third links (16, 17, 18) provided on at least one of the three or more fingers (12, 12A). Is constituted by two small link members (35, 36) connected to each other around the rotation axis (CL) so as to be capable of relative torsional displacement, thereby realizing the conforming mechanism (US). Item 23. The robot apparatus (1) according to Item 22.
  24.  前記なじみ機構(US)は、
     前記2つの小リンク部材(35,36)を、前記回転軸(CL)まわりに互いに相対ねじり変位可能に連結する、ツイスト機構(38,38A~C)を有する
    ことを特徴とする請求項23に記載のロボット装置(1)。
    The familiar mechanism (US)
    The twist mechanism (38, 38A to C) for connecting the two small link members (35, 36) to each other around the rotation axis (CL) so as to be capable of relative torsional displacement. The robot apparatus (1) described.
  25.  前記ロボットハンド(8)は、
     前記第1リンク(16)が、前記2つの小リンク部材(35,36)により構成されており、
    かつ、
     前記掌部(11)と、
     前記掌部(11)に設けられた、前記第1リンク(16)を屈曲させるための第1駆動力を発生する第1アクチュエータ(24)と、
     前記2つの小リンク部材(35,36)のうち前記第2リンク(17)側の小リンク部材(36)に設けられ、前記第2リンク(17)及び前記第3リンク(18)を屈曲させるための第2駆動力を発生する第2アクチュエータ(25)と、
     前記第2アクチュエータ(25)からの前記第2駆動力を、前記第2リンク(17)に伝達する第2リンク用駆動伝達機構(30,31)と、
     前記第2アクチュエータ(25)からの前記第2駆動力を、前記第3リンク(18)に伝達する第3リンク用駆動伝達機構(30,31,32,33,34)と、を設け、
     前記コントローラ(3)は、
     前記第1アクチュエータ(24)及び前記第2アクチュエータ(25)の駆動を制御する
    ことを特徴とする請求項23又は24に記載のロボット装置(1)。
    The robot hand (8)
    The first link (16) is constituted by the two small link members (35, 36),
    And,
    The palm (11);
    A first actuator (24) provided on the palm (11) for generating a first driving force for bending the first link (16);
    Of the two small link members (35, 36), the small link member (36) on the second link (17) side is provided to bend the second link (17) and the third link (18). A second actuator (25) for generating a second driving force for
    A second link drive transmission mechanism (30, 31) for transmitting the second driving force from the second actuator (25) to the second link (17);
    A third link drive transmission mechanism (30, 31, 32, 33, 34) for transmitting the second driving force from the second actuator (25) to the third link (18);
    The controller (3)
    25. The robot apparatus (1) according to claim 23 or 24, wherein driving of the first actuator (24) and the second actuator (25) is controlled.
  26.  前記なじみ機構(US)は、
     前記アクチュエータ(120;219;413)のトルクを2つ以上の前記関節(114,115;213,214;424,425)に伝達するトルク伝達機構(122,123,124;222,223,224;401,700)と、
     把持動作の際に、指先側の前記関節(115;214;424)よりも掌側の前記関節(114;213;425)が先に屈曲駆動するように、前記関節(114;213;424)を駆動するのに必要な駆動トルクを調整する駆動トルク調整部材(127,137;227;422,JC)と、を有する
    ことを特徴とする請求項22に記載のロボット装置(1)。
    The familiar mechanism (US)
    Torque transmission mechanisms (122, 123, 124; 222, 223, 224) that transmit the torque of the actuator (120; 219; 413) to two or more of the joints (114, 115; 213, 214; 424, 425). 401,700)
    In the gripping operation, the joint (114; 213; 424) is so driven that the joint (114; 213; 425) on the palm side is bent before the joint (115; 214; 424) on the fingertip side. The robot apparatus (1) according to claim 22, further comprising a driving torque adjusting member (127, 137; 227; 422, JC) for adjusting a driving torque necessary for driving the motor.
PCT/JP2011/057016 2010-03-24 2011-03-23 Robot hand and robot device WO2011118646A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800152032A CN102821918A (en) 2010-03-24 2011-03-23 Robot hand and robot device
JP2012507038A JP5590355B2 (en) 2010-03-24 2011-03-23 Robot hand and robot device
EP11759451.5A EP2551071A4 (en) 2010-03-24 2011-03-23 Robot hand and robot device
US13/623,946 US8827337B2 (en) 2010-03-24 2012-09-21 Robot hand and robot device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-068980 2010-03-24
JP2010068980 2010-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/623,946 Continuation US8827337B2 (en) 2010-03-24 2012-09-21 Robot hand and robot device

Publications (1)

Publication Number Publication Date
WO2011118646A1 true WO2011118646A1 (en) 2011-09-29

Family

ID=44673196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057016 WO2011118646A1 (en) 2010-03-24 2011-03-23 Robot hand and robot device

Country Status (5)

Country Link
US (1) US8827337B2 (en)
EP (1) EP2551071A4 (en)
JP (1) JP5590355B2 (en)
CN (1) CN102821918A (en)
WO (1) WO2011118646A1 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130345717A1 (en) * 2012-06-22 2013-12-26 Board Of Regents Of The University Of Nebraska Local Control Robotic Surgical Devices and Related Methods
JP2014161997A (en) * 2013-02-28 2014-09-08 Seiko Epson Corp Robot hand, robot, and actuator
US8968267B2 (en) 2010-08-06 2015-03-03 Board Of Regents Of The University Of Nebraska Methods and systems for handling or delivering materials for natural orifice surgery
US8968332B2 (en) 2006-06-22 2015-03-03 Board Of Regents Of The University Of Nebraska Magnetically coupleable robotic surgical devices and related methods
US8974440B2 (en) 2007-08-15 2015-03-10 Board Of Regents Of The University Of Nebraska Modular and cooperative medical devices and related systems and methods
US9060781B2 (en) 2011-06-10 2015-06-23 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
US9089353B2 (en) 2011-07-11 2015-07-28 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US9179981B2 (en) 2007-06-21 2015-11-10 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
JP2015533669A (en) * 2012-11-09 2015-11-26 アイロボット コーポレイション Flexible underdrive gripper
CN105364935A (en) * 2015-12-08 2016-03-02 哈尔滨工业大学 Three-finger three-degree-of-freedom configuration robot gripper
JP2016030316A (en) * 2014-07-29 2016-03-07 学校法人立命館 Gripping device
CN105500400A (en) * 2016-01-18 2016-04-20 电子科技大学 Three-finger mechanical paw
CN105799661A (en) * 2016-04-25 2016-07-27 奇瑞汽车股份有限公司 Battery taking and placing device
US9403281B2 (en) 2003-07-08 2016-08-02 Board Of Regents Of The University Of Nebraska Robotic devices with arms and related methods
US9498292B2 (en) 2012-05-01 2016-11-22 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
US9579088B2 (en) 2007-02-20 2017-02-28 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
US9743987B2 (en) 2013-03-14 2017-08-29 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
US9770305B2 (en) 2012-08-08 2017-09-26 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
CN107214719A (en) * 2017-06-08 2017-09-29 清华大学天津高端装备研究院洛阳先进制造产业研发基地 Flat folder coupling translation switching handyman finger apparatus
US9888966B2 (en) 2013-03-14 2018-02-13 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to force control surgical systems
CN107792427A (en) * 2017-11-01 2018-03-13 南京冠鼎光电科技有限公司 A kind of photodetector automation packing production line
US9956043B2 (en) 2007-07-12 2018-05-01 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical access and procedures
WO2018164178A1 (en) * 2017-03-09 2018-09-13 日本電産コパル株式会社 Drive assisting device
CN108527416A (en) * 2018-05-22 2018-09-14 昆明理工大学 A kind of winding machine hand
WO2018212205A1 (en) * 2017-05-15 2018-11-22 Thk株式会社 Hand mechanism, gripping system, and gripping program
JP2018192612A (en) * 2017-05-15 2018-12-06 Thk株式会社 Hand mechanism, gripping system, and gripping program
JP2019051591A (en) * 2016-10-20 2019-04-04 三菱電機株式会社 Robot hand and robot
US10335024B2 (en) 2007-08-15 2019-07-02 Board Of Regents Of The University Of Nebraska Medical inflation, attachment and delivery devices and related methods
US10342561B2 (en) 2014-09-12 2019-07-09 Board Of Regents Of The University Of Nebraska Quick-release end effectors and related systems and methods
US10376322B2 (en) 2014-11-11 2019-08-13 Board Of Regents Of The University Of Nebraska Robotic device with compact joint design and related systems and methods
JP2019155563A (en) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 Robot hand
WO2019208652A1 (en) * 2018-04-25 2019-10-31 三菱電機株式会社 Rotary connecting mechanism, robot, robot arm, and robot hand
US10582973B2 (en) 2012-08-08 2020-03-10 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
WO2020075415A1 (en) * 2018-10-09 2020-04-16 アダマンド並木精密宝石株式会社 Robot hand
WO2020075414A1 (en) * 2018-10-09 2020-04-16 アダマンド並木精密宝石株式会社 Robot hand
US10667883B2 (en) 2013-03-15 2020-06-02 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US10702347B2 (en) 2016-08-30 2020-07-07 The Regents Of The University Of California Robotic device with compact joint design and an additional degree of freedom and related systems and methods
US10722319B2 (en) 2016-12-14 2020-07-28 Virtual Incision Corporation Releasable attachment device for coupling to medical devices and related systems and methods
US10751136B2 (en) 2016-05-18 2020-08-25 Virtual Incision Corporation Robotic surgical devices, systems and related methods
CN111590622A (en) * 2020-07-01 2020-08-28 潘天泽 Master-slave cooperative flexible palm surface self-adaptive robot hand device
US10806538B2 (en) 2015-08-03 2020-10-20 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US10966700B2 (en) 2013-07-17 2021-04-06 Virtual Incision Corporation Robotic surgical devices, systems and related methods
CN112621806A (en) * 2020-12-23 2021-04-09 北京工业大学 Connecting rod sliding seat compensation type linear parallel clamp self-adaptive under-actuated hand
US11013564B2 (en) 2018-01-05 2021-05-25 Board Of Regents Of The University Of Nebraska Single-arm robotic device with compact joint design and related systems and methods
US11051894B2 (en) 2017-09-27 2021-07-06 Virtual Incision Corporation Robotic surgical devices with tracking camera technology and related systems and methods
US11173617B2 (en) 2016-08-25 2021-11-16 Board Of Regents Of The University Of Nebraska Quick-release end effector tool interface
US11284958B2 (en) 2016-11-29 2022-03-29 Virtual Incision Corporation User controller with user presence detection and related systems and methods
US11357595B2 (en) 2016-11-22 2022-06-14 Board Of Regents Of The University Of Nebraska Gross positioning device and related systems and methods
CN114714385A (en) * 2022-04-21 2022-07-08 西安交通大学 Mechanical gripper based on five-rod mechanism and under-actuated form
CN114872059A (en) * 2022-04-13 2022-08-09 北京控制工程研究所 Coupling self-adaptive humanoid underactuated hand
WO2022188407A1 (en) * 2021-03-10 2022-09-15 深圳市优必选科技股份有限公司 Linkage structure, robot finger and robot
US11883065B2 (en) 2012-01-10 2024-01-30 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical access and insertion
US11903658B2 (en) 2019-01-07 2024-02-20 Virtual Incision Corporation Robotically assisted surgical system and related devices and methods

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101075026B1 (en) * 2009-12-02 2011-10-20 한국생산기술연구원 System for supporting robot hardware design and method of the same
US8936289B1 (en) * 2010-03-15 2015-01-20 Telefactor Robotics LLC Robotic finger assemblies
EP3954512A3 (en) 2011-03-21 2022-03-02 SRI International Inc. Mobile robotic manipulator system
US8776632B2 (en) * 2011-08-19 2014-07-15 GM Global Technology Operations LLC Low-stroke actuation for a serial robot
US9227323B1 (en) 2013-03-15 2016-01-05 Google Inc. Methods and systems for recognizing machine-readable information on three-dimensional objects
CN103213139B (en) * 2013-04-09 2016-05-11 江南大学 The flexible many finger paws of Pneumatic reinforcement type series connection leaf hinge
CN103213140B (en) * 2013-04-09 2016-02-03 江南大学 The double-flexibility multifinger hand pawl that a kind of pneumatic rigidity is adjustable
CN104511906B (en) * 2013-09-28 2015-11-18 沈阳新松机器人自动化股份有限公司 Multi-joint manipulator
CN104626184B (en) * 2013-11-12 2016-03-23 沈阳新松机器人自动化股份有限公司 A kind of robot palm and robot delicate
CN103786162B (en) * 2014-02-19 2015-12-09 哈尔滨工业大学 Easily extensible drive lacking rope bar truss-like mechanical paw
WO2016023636A1 (en) * 2014-08-14 2016-02-18 Kuka Roboter Gmbh Carrier system for a manipulator
WO2016032979A1 (en) * 2014-08-25 2016-03-03 Paul Ekas Robotic grippers including finger webbing
CN107107344A (en) 2014-09-17 2017-08-29 软机器人公司 It is attached wheel hub and software robot's actuator, reinforcement actuator and the electricity attachment actuator of grasping device assembly
US10189168B2 (en) 2014-11-18 2019-01-29 Soft Robotics, Inc. Soft robotic actuator enhancements
KR101637255B1 (en) * 2014-12-30 2016-07-08 한국기술교육대학교 산학협력단 Robot Arm Having Robot Joint Assembly
CN104999470A (en) * 2015-03-13 2015-10-28 山东科技大学 All-driving three-finger ingenious mechanical arm
JP6699843B2 (en) * 2015-07-04 2020-05-27 学校法人早稲田大学 Robot arm control system
CN105150235B (en) * 2015-09-18 2017-03-01 山东科技大学 A kind of rope drives ternary sequential circuit
US9545727B1 (en) * 2015-11-05 2017-01-17 Irobot Corporation Robotic fingers and end effectors including same
CN105580561B (en) * 2015-12-10 2017-08-25 华南农业大学 A kind of adaptive drive lacking picking end performs device and method
US9694494B1 (en) 2015-12-11 2017-07-04 Amazon Technologies, Inc. Feature identification and extrapolation for robotic item grasping
CN107053242B (en) * 2016-03-07 2019-08-13 温州市科泓机器人科技有限公司 Robot bionic gripper
US10271966B2 (en) * 2016-03-16 2019-04-30 Ryan William Glasgow Mechanical prosthetic hand
US10016901B2 (en) 2016-05-04 2018-07-10 X Development Llc Sprung worm gripper for a robotic device
US10011019B1 (en) 2016-05-04 2018-07-03 X Development Llc Wind-up gripper for a robotic device
US9827670B1 (en) * 2016-05-24 2017-11-28 X Development Llc Coaxial finger face and base encoding
CN106041984A (en) * 2016-07-28 2016-10-26 苏州高通机械科技有限公司 Novel manipulator
JP6514156B2 (en) * 2016-08-17 2019-05-15 ファナック株式会社 Robot controller
CN106239558B (en) * 2016-09-27 2019-05-17 成都普诺思博科技有限公司 A kind of mechanical arm
CN106393088A (en) * 2016-09-27 2017-02-15 成都普诺思博科技有限公司 Mechanical hand
IT201600120646A1 (en) * 2016-11-29 2018-05-29 Giovanni Antonio Zappatore UNUSED ROBOTIC HAND
IT201700019577A1 (en) * 2017-02-21 2018-08-21 Atom Spa FOOTWEAR PRODUCTION SYSTEM
CN110381767A (en) * 2017-02-21 2019-10-25 原子股份公司 Shoemaking system
IT201700019521A1 (en) * 2017-02-21 2018-08-21 Atom Spa PRENSILE MANIPULATOR FOR SHOE MAKING
CN107199558B (en) * 2017-05-11 2020-11-03 西北工业大学 Under-actuated space capturing mechanism and capturing method
JP7086531B2 (en) 2017-05-18 2022-06-20 キヤノン株式会社 Robot hand, robot device, robot hand control method, article manufacturing method, control program and recording medium
CN107243915B (en) * 2017-06-08 2023-05-16 清研(洛阳)先进制造产业研究院 Parallel-clamping coupling switching self-adaptive robot finger device with duplex racks
CN107234631B (en) * 2017-07-14 2023-05-23 清研(洛阳)先进制造产业研究院 Self-adaptive robot hand device for parallel clamping, coupling and switching of crankshaft connecting rod
CN110997252A (en) * 2017-08-10 2020-04-10 Thk株式会社 Manipulator mechanism and gripping system
KR102009311B1 (en) * 2017-10-13 2019-10-21 네이버랩스 주식회사 Hand of robot
JP7126817B2 (en) * 2017-11-15 2022-08-29 Thk株式会社 Grasping system and method
JP6995602B2 (en) * 2017-12-14 2022-01-14 キヤノン株式会社 Robot hand, robot hand control method, robot device, article manufacturing method, control program and recording medium
CN108214537B (en) * 2018-02-02 2023-07-18 昆明理工大学 Multifunctional flexible grabbing mechanism
CN108098825A (en) * 2018-02-08 2018-06-01 西北农林科技大学 A kind of nine-degree of freedom picking mechanical arm
CN108081304A (en) * 2018-02-08 2018-05-29 西北农林科技大学 One kind three refers to picking mechanical arm
CN108272537A (en) * 2018-03-25 2018-07-13 唐山云时代网络科技有限公司 A kind of modular multiple degrees of freedom under-actuated bionic prosthetic hand
JP7091777B2 (en) * 2018-03-30 2022-06-28 株式会社安川電機 Robot system and control method
CN108406826A (en) * 2018-05-17 2018-08-17 沈阳建筑大学 A kind of mechanical arm and its grabbing device
CN108772845A (en) * 2018-06-30 2018-11-09 广西晨天金属制品有限公司 A kind of combination type manipulator
CN109278061B (en) * 2018-10-31 2020-09-29 深圳市优必选科技有限公司 Robot and finger transmission structure thereof
CN109278059B (en) * 2018-10-31 2020-09-29 深圳市优必选科技有限公司 Robot and finger limiting structure thereof
KR102167373B1 (en) * 2019-02-13 2020-10-19 한국기술교육대학교 산학협력단 Robot Finger Assembly Having Coupling Wire
US11738893B2 (en) 2019-04-30 2023-08-29 Soft Robotics, Inc. Picking, placing, and scanning bagged clothing and other articles
US11584022B2 (en) * 2019-05-17 2023-02-21 Kinova Inc. Monoblock finger for gripper mechanism
CN110216704B (en) * 2019-06-03 2021-04-23 北京交通大学 Parallel robot dexterous hand
KR20210053000A (en) * 2019-11-01 2021-05-11 엘지전자 주식회사 Gripper
US11534927B2 (en) 2019-12-30 2022-12-27 Intelligrated Headquarters, Llc Object gripping mechanism
CN111618901B (en) * 2020-05-26 2021-12-17 深圳市优必选科技股份有限公司 Finger structure and robot
CN111606046B (en) * 2020-05-30 2021-03-12 刘子涵 Flexible holding electromagnetic manipulator
US11565406B2 (en) 2020-11-23 2023-01-31 Mitsubishi Electric Research Laboratories, Inc. Multi-tentacular soft robotic grippers
CN112621790B (en) * 2020-12-31 2022-03-25 东南大学 Two-degree-of-freedom rope transmission type finger force feedback device
US11203113B1 (en) 2021-02-26 2021-12-21 Universal City Studios Llc Segmented bending system for an amusement park attraction
US11826910B2 (en) * 2021-05-20 2023-11-28 Carnegie Mellon University Direct drive end-effectors with parallel kinematics
CN113211477B (en) * 2021-06-10 2022-05-06 哈尔滨工业大学 Under-actuated finger with coupled adaptive motion characteristics
JP7154463B1 (en) * 2021-09-08 2022-10-17 三菱電機株式会社 robot hand
CN114029984B (en) * 2021-09-28 2023-02-14 浙江大学 Robot frogman, gripper assembly and driver based on differential driving of preload
CN114102656A (en) * 2021-12-03 2022-03-01 南京理工大学 Self-adaptive mechanical arm clamp based on pressure strain gauge
CN114290367B (en) * 2021-12-28 2023-05-26 中国地质大学(武汉) Multi-underactuated joint vertical mechanical arm system
CN114474124A (en) * 2022-03-10 2022-05-13 苏州天准科技股份有限公司 Pick-up device for bulky components in a heat exchanger of a motor vehicle
CN115256447A (en) * 2022-07-12 2022-11-01 深圳金博仕机器人有限公司 Mechanical finger with force limiting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130392U (en) * 1990-04-12 1991-12-27
JPH0482683A (en) * 1990-07-26 1992-03-16 Toyota Motor Corp Grip control method for robot hand
JPH04501682A (en) * 1988-08-31 1992-03-26 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルベニア clutch mechanism
JP2002507493A (en) * 1998-03-20 2002-03-12 スーネ シネリウス、 Gripper with segmented arm
JP2008119770A (en) * 2006-11-09 2008-05-29 Honda Motor Co Ltd Robot hand and robot
JP2008264895A (en) * 2007-04-17 2008-11-06 Toyota Motor Corp Multi-joint finger member, robot hand, and its control method
JP2009066683A (en) * 2007-09-11 2009-04-02 Sony Corp Robot hand, control method, and program

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921293A (en) * 1982-04-02 1990-05-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-fingered robotic hand
CN87208489U (en) * 1987-05-24 1988-09-28 浙江大学 Self adapting manipulator
US4865376A (en) * 1987-09-25 1989-09-12 Leaver Scott O Mechanical fingers for dexterity and grasping
US5501498A (en) * 1988-08-31 1996-03-26 The Trustees Of The University Of Pennsylvania Methods and apparatus for mechanically intelligent grasping
US5447403A (en) * 1990-01-05 1995-09-05 Engler, Jr.; Charles D. Dexterous programmable robot and control system
US5200679A (en) * 1990-02-22 1993-04-06 Graham Douglas F Artificial hand and digit therefor
US5570920A (en) * 1994-02-16 1996-11-05 Northeastern University Robot arm end effector
JP3086452B1 (en) * 1999-05-19 2000-09-11 原田電子工業株式会社 Movable finger for artificial limb, artificial hand using the movable finger, and control device for the movable finger
KR100802429B1 (en) * 2000-12-06 2008-02-13 혼다 기켄 고교 가부시키가이샤 Multi-finger hand device
CN1169656C (en) * 2002-03-15 2004-10-06 清华大学 Multi-finger hand simulating human hand for robot
JP2005046980A (en) 2003-07-31 2005-02-24 Sharp Corp Articulated manipulator
CN100336639C (en) * 2006-01-20 2007-09-12 哈尔滨工业大学 Thumb mechanism of underactuated self-adaptive hand prosthesis
JP4918004B2 (en) 2006-11-24 2012-04-18 パナソニック株式会社 Multi-fingered robot hand
JP4702299B2 (en) * 2007-02-02 2011-06-15 株式会社豊田自動織機 Robot hand
JP2009083020A (en) 2007-09-28 2009-04-23 Hiroshima Pref Gov Multi-finger movable robot hand and finger joint driving and controlling method in the same robot hand
CN101474794B (en) * 2009-01-23 2010-11-10 清华大学 Bionic robot under-actuated delicacy hand device
US8052185B2 (en) * 2009-04-09 2011-11-08 Disney Enterprises, Inc. Robot hand with humanoid fingers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501682A (en) * 1988-08-31 1992-03-26 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルベニア clutch mechanism
JPH03130392U (en) * 1990-04-12 1991-12-27
JPH0482683A (en) * 1990-07-26 1992-03-16 Toyota Motor Corp Grip control method for robot hand
JP2002507493A (en) * 1998-03-20 2002-03-12 スーネ シネリウス、 Gripper with segmented arm
JP2008119770A (en) * 2006-11-09 2008-05-29 Honda Motor Co Ltd Robot hand and robot
JP2008264895A (en) * 2007-04-17 2008-11-06 Toyota Motor Corp Multi-joint finger member, robot hand, and its control method
JP2009066683A (en) * 2007-09-11 2009-04-02 Sony Corp Robot hand, control method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2551071A4 *

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403281B2 (en) 2003-07-08 2016-08-02 Board Of Regents Of The University Of Nebraska Robotic devices with arms and related methods
US9883911B2 (en) 2006-06-22 2018-02-06 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
US8968332B2 (en) 2006-06-22 2015-03-03 Board Of Regents Of The University Of Nebraska Magnetically coupleable robotic surgical devices and related methods
US10959790B2 (en) 2006-06-22 2021-03-30 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
US10376323B2 (en) 2006-06-22 2019-08-13 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
US10307199B2 (en) 2006-06-22 2019-06-04 Board Of Regents Of The University Of Nebraska Robotic surgical devices and related methods
US9579088B2 (en) 2007-02-20 2017-02-28 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
US9179981B2 (en) 2007-06-21 2015-11-10 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
US10695137B2 (en) 2007-07-12 2020-06-30 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical access and procedures
US9956043B2 (en) 2007-07-12 2018-05-01 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical access and procedures
US10335024B2 (en) 2007-08-15 2019-07-02 Board Of Regents Of The University Of Nebraska Medical inflation, attachment and delivery devices and related methods
US8974440B2 (en) 2007-08-15 2015-03-10 Board Of Regents Of The University Of Nebraska Modular and cooperative medical devices and related systems and methods
US8968267B2 (en) 2010-08-06 2015-03-03 Board Of Regents Of The University Of Nebraska Methods and systems for handling or delivering materials for natural orifice surgery
US9060781B2 (en) 2011-06-10 2015-06-23 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
US9757187B2 (en) 2011-06-10 2017-09-12 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
US11065050B2 (en) 2011-06-10 2021-07-20 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
US11832871B2 (en) 2011-06-10 2023-12-05 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
US11032125B2 (en) 2011-07-11 2021-06-08 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems and related methods
US10111711B2 (en) 2011-07-11 2018-10-30 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US11909576B2 (en) 2011-07-11 2024-02-20 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US11595242B2 (en) 2011-07-11 2023-02-28 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems and related methods
US9089353B2 (en) 2011-07-11 2015-07-28 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US11883065B2 (en) 2012-01-10 2024-01-30 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical access and insertion
US9498292B2 (en) 2012-05-01 2016-11-22 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
US11819299B2 (en) 2012-05-01 2023-11-21 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
US10219870B2 (en) 2012-05-01 2019-03-05 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
US11529201B2 (en) 2012-05-01 2022-12-20 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
EP3424651A1 (en) * 2012-06-22 2019-01-09 Board of Regents of the University of Nebraska Local control robotic surgical devices
EP2864086A4 (en) * 2012-06-22 2015-12-30 Univ Nebraska Local control robotic surgical devices and related methods
US10470828B2 (en) 2012-06-22 2019-11-12 Board Of Regents Of The University Of Nebraska Local control robotic surgical devices and related methods
WO2013191773A1 (en) 2012-06-22 2013-12-27 Board Of Regents Of The University Of Nebraska Local Control Robotic Surgical Devices and Related Methods
US11484374B2 (en) 2012-06-22 2022-11-01 Board Of Regents Of The University Of Nebraska Local control robotic surgical devices and related methods
EP3943255A1 (en) * 2012-06-22 2022-01-26 Board of Regents of the University of Nebraska Local control robotic surgical devices
EP4234185A3 (en) * 2012-06-22 2023-09-20 Board of Regents of the University of Nebraska Local control robotic surgical devices
EP3189948A1 (en) * 2012-06-22 2017-07-12 Board of Regents of the University of Nebraska Local control robotic surgical devices
EP3680071A1 (en) * 2012-06-22 2020-07-15 Board of Regents of the University of Nebraska Local control robotic surgical devices
US9010214B2 (en) * 2012-06-22 2015-04-21 Board Of Regents Of The University Of Nebraska Local control robotic surgical devices and related methods
JP2015526126A (en) * 2012-06-22 2015-09-10 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Locally controlled robotic surgical device and associated method
US20130345717A1 (en) * 2012-06-22 2013-12-26 Board Of Regents Of The University Of Nebraska Local Control Robotic Surgical Devices and Related Methods
JP2019051356A (en) * 2012-06-22 2019-04-04 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Local control robotic surgical devices
US11832902B2 (en) 2012-08-08 2023-12-05 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US10582973B2 (en) 2012-08-08 2020-03-10 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US11051895B2 (en) 2012-08-08 2021-07-06 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US9770305B2 (en) 2012-08-08 2017-09-26 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US10624704B2 (en) 2012-08-08 2020-04-21 Board Of Regents Of The University Of Nebraska Robotic devices with on board control and related systems and devices
US11617626B2 (en) 2012-08-08 2023-04-04 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems and related methods
JP2015533669A (en) * 2012-11-09 2015-11-26 アイロボット コーポレイション Flexible underdrive gripper
JP2014161997A (en) * 2013-02-28 2014-09-08 Seiko Epson Corp Robot hand, robot, and actuator
US9888966B2 (en) 2013-03-14 2018-02-13 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to force control surgical systems
US9743987B2 (en) 2013-03-14 2017-08-29 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
US11806097B2 (en) 2013-03-14 2023-11-07 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
US10743949B2 (en) 2013-03-14 2020-08-18 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to force control surgical systems
US11633253B2 (en) 2013-03-15 2023-04-25 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US10667883B2 (en) 2013-03-15 2020-06-02 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US11826032B2 (en) 2013-07-17 2023-11-28 Virtual Incision Corporation Robotic surgical devices, systems and related methods
US10966700B2 (en) 2013-07-17 2021-04-06 Virtual Incision Corporation Robotic surgical devices, systems and related methods
JP2016030316A (en) * 2014-07-29 2016-03-07 学校法人立命館 Gripping device
US11576695B2 (en) 2014-09-12 2023-02-14 Virtual Incision Corporation Quick-release end effectors and related systems and methods
US10342561B2 (en) 2014-09-12 2019-07-09 Board Of Regents Of The University Of Nebraska Quick-release end effectors and related systems and methods
US10376322B2 (en) 2014-11-11 2019-08-13 Board Of Regents Of The University Of Nebraska Robotic device with compact joint design and related systems and methods
US11406458B2 (en) 2014-11-11 2022-08-09 Board Of Regents Of The University Of Nebraska Robotic device with compact joint design and related systems and methods
US11872090B2 (en) 2015-08-03 2024-01-16 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
US10806538B2 (en) 2015-08-03 2020-10-20 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
CN105364935B (en) * 2015-12-08 2017-01-25 哈尔滨工业大学 Three-finger three-degree-of-freedom configuration robot gripper
CN105364935A (en) * 2015-12-08 2016-03-02 哈尔滨工业大学 Three-finger three-degree-of-freedom configuration robot gripper
CN105500400A (en) * 2016-01-18 2016-04-20 电子科技大学 Three-finger mechanical paw
CN105799661A (en) * 2016-04-25 2016-07-27 奇瑞汽车股份有限公司 Battery taking and placing device
US10751136B2 (en) 2016-05-18 2020-08-25 Virtual Incision Corporation Robotic surgical devices, systems and related methods
US11826014B2 (en) 2016-05-18 2023-11-28 Virtual Incision Corporation Robotic surgical devices, systems and related methods
US11173617B2 (en) 2016-08-25 2021-11-16 Board Of Regents Of The University Of Nebraska Quick-release end effector tool interface
US10702347B2 (en) 2016-08-30 2020-07-07 The Regents Of The University Of California Robotic device with compact joint design and an additional degree of freedom and related systems and methods
JP2019051591A (en) * 2016-10-20 2019-04-04 三菱電機株式会社 Robot hand and robot
US11571806B2 (en) 2016-10-20 2023-02-07 Mitsubishi Electric Corporation Three-rotational-degree-of-freedom connection mechanism, robot, robot arm, and robot hand
US11813124B2 (en) 2016-11-22 2023-11-14 Board Of Regents Of The University Of Nebraska Gross positioning device and related systems and methods
US11357595B2 (en) 2016-11-22 2022-06-14 Board Of Regents Of The University Of Nebraska Gross positioning device and related systems and methods
US11284958B2 (en) 2016-11-29 2022-03-29 Virtual Incision Corporation User controller with user presence detection and related systems and methods
US11786334B2 (en) 2016-12-14 2023-10-17 Virtual Incision Corporation Releasable attachment device for coupling to medical devices and related systems and methods
US10722319B2 (en) 2016-12-14 2020-07-28 Virtual Incision Corporation Releasable attachment device for coupling to medical devices and related systems and methods
JP2018144217A (en) * 2017-03-09 2018-09-20 日本電産コパル株式会社 Drive assist device
WO2018164178A1 (en) * 2017-03-09 2018-09-13 日本電産コパル株式会社 Drive assisting device
JP7155479B2 (en) 2017-05-15 2022-10-19 Thk株式会社 Hand Mechanism, Grasping System, and Grasping Program
WO2018212205A1 (en) * 2017-05-15 2018-11-22 Thk株式会社 Hand mechanism, gripping system, and gripping program
US11389951B2 (en) 2017-05-15 2022-07-19 Thk Co., Ltd. Hand mechanism, gripping system, and non-transitory storage medium
JP2018192612A (en) * 2017-05-15 2018-12-06 Thk株式会社 Hand mechanism, gripping system, and gripping program
CN107214719B (en) * 2017-06-08 2023-04-14 清研(洛阳)先进制造产业研究院 Flat-clamping coupling translation switching dexterous robot finger device
CN107214719A (en) * 2017-06-08 2017-09-29 清华大学天津高端装备研究院洛阳先进制造产业研发基地 Flat folder coupling translation switching handyman finger apparatus
US11051894B2 (en) 2017-09-27 2021-07-06 Virtual Incision Corporation Robotic surgical devices with tracking camera technology and related systems and methods
CN107792427A (en) * 2017-11-01 2018-03-13 南京冠鼎光电科技有限公司 A kind of photodetector automation packing production line
US11504196B2 (en) 2018-01-05 2022-11-22 Board Of Regents Of The University Of Nebraska Single-arm robotic device with compact joint design and related systems and methods
US11950867B2 (en) 2018-01-05 2024-04-09 Board Of Regents Of The University Of Nebraska Single-arm robotic device with compact joint design and related systems and methods
US11013564B2 (en) 2018-01-05 2021-05-25 Board Of Regents Of The University Of Nebraska Single-arm robotic device with compact joint design and related systems and methods
JP2019155563A (en) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 Robot hand
JPWO2019208652A1 (en) * 2018-04-25 2021-04-22 三菱電機株式会社 Rotational connection mechanism, robot and robot arm
WO2019208652A1 (en) * 2018-04-25 2019-10-31 三菱電機株式会社 Rotary connecting mechanism, robot, robot arm, and robot hand
CN108527416A (en) * 2018-05-22 2018-09-14 昆明理工大学 A kind of winding machine hand
CN108527416B (en) * 2018-05-22 2024-03-26 昆明理工大学 Winding machine hand
JP7289541B2 (en) 2018-10-09 2023-06-12 Orbray株式会社 robot hand
JP7341505B2 (en) 2018-10-09 2023-09-11 Orbray株式会社 robot hand
WO2020075414A1 (en) * 2018-10-09 2020-04-16 アダマンド並木精密宝石株式会社 Robot hand
WO2020075415A1 (en) * 2018-10-09 2020-04-16 アダマンド並木精密宝石株式会社 Robot hand
US11903658B2 (en) 2019-01-07 2024-02-20 Virtual Incision Corporation Robotically assisted surgical system and related devices and methods
CN111590622A (en) * 2020-07-01 2020-08-28 潘天泽 Master-slave cooperative flexible palm surface self-adaptive robot hand device
CN112621806B (en) * 2020-12-23 2022-06-07 北京工业大学 Connecting rod sliding seat compensation type linear parallel clamp self-adaptive under-actuated hand
CN112621806A (en) * 2020-12-23 2021-04-09 北京工业大学 Connecting rod sliding seat compensation type linear parallel clamp self-adaptive under-actuated hand
WO2022188407A1 (en) * 2021-03-10 2022-09-15 深圳市优必选科技股份有限公司 Linkage structure, robot finger and robot
CN114872059A (en) * 2022-04-13 2022-08-09 北京控制工程研究所 Coupling self-adaptive humanoid underactuated hand
CN114714385B (en) * 2022-04-21 2023-12-05 西安交通大学 Mechanical gripper based on five-rod mechanism and under-actuated mode
CN114714385A (en) * 2022-04-21 2022-07-08 西安交通大学 Mechanical gripper based on five-rod mechanism and under-actuated form

Also Published As

Publication number Publication date
EP2551071A1 (en) 2013-01-30
CN102821918A (en) 2012-12-12
US20130057004A1 (en) 2013-03-07
JPWO2011118646A1 (en) 2013-07-04
JP5590355B2 (en) 2014-09-17
US8827337B2 (en) 2014-09-09
EP2551071A4 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP5590355B2 (en) Robot hand and robot device
JP5629484B2 (en) Robot hand with human-like finger
WO2013008310A1 (en) Robotic hand and robot
CN111390892B (en) Full-drive bionic dexterous hand based on pneumatic muscles
JP4758119B2 (en) Nonlinear elastic mechanism and joint mechanism for robot
JP2008178968A (en) Robot hand
JP5503702B2 (en) Low stroke operation for serial robots
Suh et al. Harmonious cable actuation mechanism for soft robot joints using a pair of noncircular pulleys
JP2008079371A (en) Twisted string type actuator
Mishima et al. Design of a robotic finger using series gear chain mechanisms
WO2015063524A1 (en) Twisted cord actuating system for robotic arm
CN114131644A (en) Mechanical arm
WO2023240294A2 (en) Prosthetic limb apparatus and methods
EP2337656B1 (en) Method for remote mechanism actuation and exoskeleton aptic interface based thereon
US11628577B2 (en) Robot hand
KR102175274B1 (en) Hand provided in humanoid robot
JP2007216332A (en) Actuator, finger unit using it, and gripping hand
KR101867763B1 (en) Bending stiffness control device for joint device
CN114340537A (en) Surgical instrument, surgical assistance system, and surgical operation unit
JP2014000650A (en) Joint driving mechanism and robot arm
Bamdad et al. Mechatronics modeling of a branching tendon-driven robot
CN211729166U (en) Full-drive bionic dexterous hand based on pneumatic muscles
WO2021141024A1 (en) Robot hand
CN109202943B (en) Limiting and collaborative dual-mode smart robot finger device
JPWO2013008310A1 (en) Robot hand and robot

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015203.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507038

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011759451

Country of ref document: EP