WO2011138315A1 - Storage magazine of a cvd plant - Google Patents

Storage magazine of a cvd plant Download PDF

Info

Publication number
WO2011138315A1
WO2011138315A1 PCT/EP2011/057037 EP2011057037W WO2011138315A1 WO 2011138315 A1 WO2011138315 A1 WO 2011138315A1 EP 2011057037 W EP2011057037 W EP 2011057037W WO 2011138315 A1 WO2011138315 A1 WO 2011138315A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate holder
storage chamber
magazine
magazine plate
chamber
Prior art date
Application number
PCT/EP2011/057037
Other languages
German (de)
French (fr)
Inventor
Markus Jakob
Walter Franken
Wilhelmus Janssen
Original Assignee
Aixtron Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron Se filed Critical Aixtron Se
Publication of WO2011138315A1 publication Critical patent/WO2011138315A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/005Transport systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67754Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate

Definitions

  • the invention relates to a device for coating substrates, in particular semiconductor substrates, with a CVD reactor having a Substrathal- ter basically carrying a plurality of substrate holders, wherein on each substrate holder one or more substrates to be coated rest, with a transfer chamber, the is connected to the reactor such that by means of a Beladeorganes the substrate holder carrier can be loaded or unloaded with substrate holders and with a storage device, which is connected to the transfer chamber such that stored in a storage chamber of the storage device substrate holder by means of loading into the reactor can bringable or brought out of the reactor substrate holder are stored there.
  • the invention further relates to a device for storing a substrate holder which can be brought into or removed from a CVD reactor by means of a loading element and which carries one or more substrates in a storage chamber.
  • a coating device is known, which has a storage device for storing substrates which are to be coated in a process chamber of a CVD reactor. Loading / unloading of the process chamber is done with a robotic arm.
  • US 6,446,646 Bl describes a so-called cluster tool with a plurality of process chambers, which are each connected to a transfer chamber. The transfer chamber has a robot arm. Its gripper is able to load the process chambers with substrates to be processed.
  • a storage chamber is provided in which the substrates are arranged vertically one above the other.
  • DE 101 59 702 A1 also describes a so-called cluster tool in which the CVD Raktor, the transfer chamber and the storage chamber can be evacuated with a vacuum device.
  • DE 43 40 522 A1 describes a device and a method for loading a coating system with substrates.
  • a loading device having several arms is provided, the arms of which can receive substrates from a turntable in order to supply them to the coating installation.
  • an MBE device is known. This has a coating chamber in which seven substrates can rest on a substrate holder at the same time.
  • the loading of the MBE device takes place via a loading chamber, in which seven substrates can be placed on a transfer tray.
  • the substrates are placed on storage elements having a plurality of vertically oriented compartments. Each compartment comprises a pair of flat plates spaced transversely of the path of travel of the transfer tray. The distance between the pair of flat plates is such that engagement with a holder from below is possible.
  • DE 10 2008 037387 AI relates to a substrate holder with a grid-like shadow mask.
  • EP 1 195 795 A2 relates to a vacuum chamber with a substrate holder, which has a plurality of compartments, in each of which a substrate can be brought.
  • US Pat. No. 6,105,534 A describes a plasma treatment device for substrates, in which a process chamber can be loaded by means of arms of a loading device.
  • US 2002/0170673 AI describes a coating device with a storage chamber, wherein the storage chamber is formed as a cassette having a cavity having vertically superimposed comb-like arranged support strips. On these support strips, the substrates can be placed with their edges, so that a plurality of substrates are arranged vertically one above the other.
  • a similar cassette, but also for receiving substrate holders is described in US Pat. No. 6,387,185 B2.
  • substrate holders with substrates resting thereon are stored in a storage chamber, which is also referred to as magazine or magazine chamber.
  • the magazine chamber has a plurality of stacked floors, each floor receives a substrate holder.
  • the substrate holders are thus arranged vertically one above the other.
  • a gripper By means of a gripper, one substrate holder after the other is removed from the storage device and placed in a CVD reactor.
  • the bottom of the process chamber of the CVD reactor is formed by a substrate holder carrier.
  • the substantially circular disc-shaped substrate holder carrier has a plurality of loading positions, on each of which a substrate holder can be positioned.
  • the DE 10 232 731 AI describes such a CVD reactor.
  • the coating process within the CVD reactor takes place at temperatures above 500 ° C. or above 700 ° C.
  • the loading or unloading of the process chamber should take place at relatively high temperatures.
  • the substrate holders are thus removed at temperatures of, for example, 600 ° C from the process chamber of the reactor. They are brought into a magazine chamber by means of a robotic arm, where they should cool down to about 60 ° C. In the prior art, the substrate holders lie vertically above one another within the magazine chamber in a cassette.
  • Such a MOCVD system is typically operated at a low pressure.
  • a typical process pressure is between 50mbar and 500mbar.
  • the substrate holders and the substrates resting on them are to be cooled essentially by convection.
  • the gas within the magazine chamber heats up through the hot substrate holders. It rises and cools on the walls or on the ceiling of the magazine chamber. It creates a cycle because the cooled gas drops again and is heated again by the substrate holder.
  • a negative side effect of this gas flow is the swirling of particles. Although the presence of such particles in the magazine chamber can be minimized but not completely avoided.
  • the fluidized particles can deposit on the substrates of the substrate holders. This leads to local disturbances. These particles then limit the yield of useful semiconductor devices.
  • the substrate holders in the storage chamber are placed vertically one above the other in a cassette.
  • the magazine chamber has a height unit of typically 25 to 30 cm. Since the vertical stroke of the gripping arm of the loading device is limited and also the loading by an up and down limited loading gate, the storage device according to the prior art has a lifting mechanism, which makes it possible to position the respective floor of the magazine chamber in front of the loading opening.
  • the invention has for its object to provide measures to increase the quality of the semiconductor layers produced.
  • the substrate holders are arranged horizontally next to one another in the storage chamber on a magazine plate. It is preferably a substantially round magazine plate having an axis of rotation in its center, so that the magazine plate can be brought by rotation of the axis of rotation in different loading / unloading positions, in each of which a substrate holder before a loading
  • the magazine plate may have the same diameter as a substrate holder carrier of the associated MOCVD reactor. This ensures that the same number of substrate holders can be stored on the magazine plate as on the substrate holder carrier of the CVD reactor.
  • the free space above the magazine plate is selected such that, depending on the total pressure within the storage device and the gas type, no convection takes place. There is virtually no gas flow of particles whirls up.
  • the magazine plate is liquid-cooled, preferably water-cooled. It has cooling channels through which cooling water flows.
  • the substrate holder carriers can be in surface contact on the upwardly facing surface of the magazine plate. However, the substrate holders are preferably on heat-insulating spacers.
  • the spacers may have an annular shape.
  • the substrate holders are placed in a defined n striv distance to the cooled magazine plate held. Over the defined distance there is a thermal coupling of the substrate holder to the magazine plate.
  • the heat transport and thus the cooling rate is defined by the spacer elements.
  • the heat transfer is defined by the properties of a gas cushion between the top of the magazine plate and the underside of the substrate holder carrier. The properties are formed by the type of gas, ie its specific conductivity, its total pressure and the height of the gas gap, which is defined by the height of the spacer elements.
  • the gap under the substrate holder is preferably smaller by more than a factor of 5 to 10 than the gap above the substrate holder.
  • the heat conduction transport takes place at least 90% over the lower gap.
  • a maximum of 10% of the heat is released from the substrate holder to the ceiling above it via the upper gap.
  • two or more magazine plates are arranged one above the other within the storage chamber. Again, the free space above the magazine plates is chosen so that no convection takes place.
  • the cooling of the substrate holder also takes place in this case by heat conduction. Due to the almost convection-free cooling no particles are whirled up which can deposit on the substrate surfaces. The yield of useful devices is thus no longer affected by the cooling of the substrate holder.
  • the magazine plate is essentially round.
  • the outer wall preferably but not on a circular arc line, but has bulges or indentations, which can be scanned in particular with an optical positioning to position the magazine plate in the various loading / unloading.
  • all magazine locations can be accessed by means of a vacuum robot.
  • the substrate holder With the gripper arm of the vacuum robot, the substrate holder can be successively removed from the magazine plate and at loading positions of the substrate holder carrier of the CVD Be brought reactor.
  • the substrate holder carrier of the CVD reactor is this also rotated stepwise about an axis of rotation in different loading / unloading positions. After the substrate holder carrier of the CVD reactor is completely loaded with substrate holders, a Beladetor between see the transfer chamber and the CVD reactor is closed.
  • a process gas consisting of a plurality of reactive gases is then introduced into the process chamber of the CVD reactor after a preceding heating step.
  • the process gases decompose pyrolytically on the surfaces of the substrate or the substrate holder and form a III-V layer on the substrate surfaces. Several layers can be deposited on top of each other without the substrate holders being temporarily removed from the process chamber.
  • the process chamber is purged with an inert gas, for example hydrogen or nitrogen.
  • the process chamber is cooled slightly. When still hot, the loading gate between the transfer chamber and the process chamber of the CVD reactor is opened.
  • the hot substrate holders are successively removed from the process chamber and deposited by an open Beladetor on the magazine plate. This is previously rotated such that a free space with a free spacer element in front of the Beladetor, on which the hot substrate holder can be placed.
  • the cooling of the substrate holder then takes place via heat conduction between the underside of the substantially circular disk-shaped substrate holder and the upper side of the water-cooled magazine plate.
  • the thermal coupling between the cooled magazine plate and the substrate holders via the gap defined by the spacer element and the inert gas which is located within the storage chamber.
  • the cooling rate is determined on the one hand by the gap and on the other hand by the thermal conductivity of the inert gas used.
  • the pressure inside the storage chamber is adjusted so that only the unavoidable minimum convection is established above the substrate holder.
  • the distance of the gas gap above the substrate holder is selected to be correspondingly small.
  • the characteristic variables, the heat conductivity of the gas and the heat transfer coefficient as well as the width of the gas gap, are coordinated in such a way that the characteristic NUSSELT number is about 1.
  • the inert gas (s) introduced into the process chamber of the CVD reactor are provided by a gas mixing system. This gas mixing system also provides the inert gas with which the storage chamber is purged.
  • the gas mixing system has a large number of mass flow controllers and valves, through which gas flows can be adjusted.
  • an electronic control device which is programmable such that a predetermined total pressure can be set in the storage chamber.
  • a vacuum pump is provided, which pumps gas from the storage chamber via a control valve.
  • the gas mixing system is connected to a gas supply device having a plurality of gas containers, which stores the used process gases or inert gases. Selected gases can be introduced into the process chamber or the storage chamber with the electronic control device.
  • the electronic control device is programmed such that a predetermined inert gas flows into the storage chamber at a predetermined total pressure.
  • FIG. 1 shows schematically in a plan view, approximately along the section line I-I in FIG. 2, a coating device consisting of a CVD reactor 1, a transfer chamber 2 connected thereto and a storage device 3 and associated therewith
  • FIG. 2 shows a section along the section line II-II in FIG. 1 through the retaining device 3.
  • a CVD reactor 1 has a gas-tight housing, which can be closed and opened to the transfer chamber 2 by means of a loading gate 16.
  • a gas inlet member Within a process chamber of the CVD reactor 1 is a not shown gas inlet member and also not shown gas outlet member.
  • an inert gas or process gases can be introduced into the process chamber, which are provided by a gas mixing system, not shown.
  • the process gases contain organometallic III compounds and V compounds in the form of hydrides. These, together with a carrier gas, for example, hydrogen introduced into the process chamber process gases decompose there pyrolytically on the hot surfaces of semiconductor substrates, in particular III-V substrates to form there a semiconductor layer.
  • the substrates 5 rest on circular disk-shaped substrate holders 4. In the exemplary embodiment, three substrates 5 each lie on one substrate holder 4.
  • a total of five substrate holder 4 on a circular substrate holder carrier 18 place.
  • the substrate holder carrier 18 may also have a different shape. This also applies to the shape of the substrate holder 4.
  • each substrate holder 4 carries three substrates 5. In the differently configured embodiment, however, each substrate holder 4 can also carry only one substrate or more than three substrates.
  • the substrate holder carrier 18, which is rotatable about an axis of rotation 19, is heated from below with an infrared heater or RF heater, not shown.
  • a process pressure can be set within the process chamber, which can vary between submilibles range and atmospheric pressure.
  • the process chamber of the CVD reactor 1 is connected to the transfer chamber 2 via a gas-tight lock in the form of the loading gate 16.
  • a loading 17 in the form of a robot arm with a gripping head is controlled so that by means of the gripping head, a substrate holder 4 after the other from the substrate holder carrier 18 can be removed.
  • Storage chamber 3 on.
  • the storage chamber 3 is connected to the transfer chamber 2 via a loading gate 14.
  • the CVD reactor 1, the transfer chamber 2 and the storage device 3 are gas-tight with respect to the environment completed. They have a gas-tight housing.
  • the housing has a closable opening in the form of a loading gate 20.
  • a defined gas pressure can be adjusted by means of a vacuum device, not shown.
  • a vacuum device In the storage Chamber 3 opens a gas supply, not shown, through which an inert gas in the storage chamber 3 can be introduced.
  • a defined pressure By means of the vacuum device, a defined pressure can be set within the storage chamber 3. The gas flow through the storage chamber 3 is kept as low as possible.
  • the two magazine plates 6, 6 ' are arranged vertically one above the other.
  • the two magazine plates 6, 6 ' have a center in which a support column 9, 9 ' is located.
  • the support column 9, 9 ' is rotatably drivable by means of a rotary drive 11.
  • the rotary drive 11 is arranged outside the housing of the storage chamber 3. It is therefore provided in the bottom of the housing a rotary feedthrough 10 for the support column 9.
  • the circumferential contour lines of the two magazine plates 6, 6 ' are substantially wave-shaped. But they can also be circular. It thus has indentations or bulges.
  • the indentations are scanned by the light beam 23 of an optical position sensor 21, 22.
  • the optical sensor consists of a light emitting diode 21 and a photodiode 22.
  • Each of the two magazine plates 6, 6 ' has the shape of a flat plate and is made of metal.
  • a cooling device consisting of a plurality of interconnected cooling water channels 8.
  • the cooling water channels 8 are supplied through the support column 9 through with cooling water.
  • the protruding from the housing end of the support column 9 has a cooling water supply line 12 and a cooling water discharge 13th
  • the spacer elements 7 may also be formed annular. They consist of a material which has a low thermal conductivity.
  • a temperature of about 600 ° C or more having substrate holder 4 are stored by means of the gripping head of the loading 17. This is done by the magazine plate 6 are brought by means of the rotary drive 11 in a loading position in which a loading point is located immediately in front of the loading gate 14. After a substrate holder 4 has been stored there, the magazine plate 6 is further rotated to the next loading position.
  • the distance above the substrate holder 4, which lies on the lower magazine plate 6, to the upper magazine plate 6 ' or the upper side of the substrate holder 4, which lies on the upper magazine plate 6 ' , to the housing cover of the storage chamber 3 is minimized.
  • the gas pressure within the storage chamber 3 is set so that under these geometric conditions hardly convection between the hot surfaces of the substrate holder 4 and the cooled bottom of the upper magazine plate 6 ' and the underside of the housing cover form.
  • the gas gap between the upper side of the substrate holder 4 and the overlying wall, ie the underside of the magazine plate 6 ' or the housing cover, is about 22 mm.
  • the width of the gap below the substrate holder 4, which is defined by the material thickness of the spacer elements 7, is approximately 0.5 mm.
  • the heat output is defined, which is discharged from the substrate holder 4 from the top or from the bottom. Over the top of the substrate holder 4 is only 10% heat in the form of heat conduction. More than 90% of the heat output is delivered via the lower gap. This is done at a total pressure of less than 1000 mbar, wherein the storage chamber is purged with nitrogen.
  • the gap width above the substrate holder 4 is selected so that the NUSSELT number is about 1 or less than 1 , As a result of this parameter selection, there is no free convection.
  • a gas gap between the underside of the substrate holder 4 and the top of the cooled magazine plate 6, 6 ' is defined. Via heat conduction through this gas gap, the substrate holder 4 is cooled. The heat is dissipated via the cooling water.
  • temperature measuring devices may be provided with which the surface temperature of the substrates 5 can be measured. This may, for example, be a pyrometer.
  • the substrate holders 4 with the substrates 5 resting on them are removed from the storage chamber 3 with the gripper of the loading element 17 or otherwise, for example by a rear loading gate 15, when they reach a corresponding temperature, for example below 100 ° C, have cooled.
  • the storage device is then reloaded with other substrate holders 4 on which to be coated. de substrates 5 rest. These substrate holders 4 are then brought into the CVD reactor 1 by means of the loading member 17 in order to be treated there.

Abstract

The invention relates to an apparatus for storing one or more substrate holders (4), which can be introduced into or removed from a CVD reactor (1) by means of a loading member (17) and bear one or more substrates (5), in the form of a storage chamber (3). The storage chamber (3) has at least one cooled magazine plate (6), on which a plurality of heated substrate holders (4) can be deposited lying horizontally alongside one another in such a manner that heat flows from the substrate holders (4) to the magazine plate (6) substantially without convection, wherein a spatial gap remains between the underside of the substrate holder (4) and the top side of the magazine plate (6), the height of which gap is smaller by a factor of 5 to 10 than the clearance above the substrate holder (4) to an underside of a cover of the storage chamber (3) or to the underside of a further magazine plate (6') arranged above the magazine plate (6).

Description

Bevorratungsmagazin einer CVD-Anlage  Storage magazine of a CVD system
Die Erfindung betrifft eine Vorrichtung zum Beschichten von Substraten, insbesondere Halbleitersubstraten, mit einem CVD-Reaktor, der einen Substrathal- terträger aufweist, der eine Vielzahl von Substrathaltern trägt, wobei auf jedem Substrathalter ein oder mehrere zu beschichtende Substrate aufliegen, mit einer Transferkammer, die mit dem Reaktor derart verbunden ist, dass mittels eines Beladeorganes der Substrathalterträger mit Substrathaltern beladen bzw. entladen werden kann und mit einer Bevorratungseinrichtung, die mit der Transfer- kammer derart verbunden ist, dass in einer Bevorratungskammer der Bevorratungseinrichtung bevorratete Substrathalter mittels des Beladeorganes in den Reaktor bringbar bzw. aus dem Reaktor gebrachte Substrathalter dort ablegbar sind. Die Erfindung betrifft darüber hinaus eine Vorrichtung zum Bevorraten von mittels eines Beladeorganes in einen CVD-Reaktor bringbaren bzw. aus diesem entnehmbaren, ein oder mehrere Substrate tragenden Substrathalter in einer Bevorratungskammer. Aus der US 6,387,185 B2 ist eine Beschichtungseinrichtung bekannt, die eine Bevorratungseinrichtung aufweist zum Bevorraten von Substraten, die in einer Prozesskammer eines CVD-Reaktors zu beschichten sind. Das Be-/Entladen der Prozesskammer erfolgt mit einem Roboterarm. Die US 6,446,646 Bl beschreibt ein sogenanntes Cluster-Tool mit einer Vielzahl von Prozesskammern, die jeweils mit einer Transferkammer verbunden sind. Die Transferkammer weist einen Roboterarm auf. Dessen Greifer ist in der Lage, die Prozesskammern mit zu prozessierenden Substraten zu beladen. Zur Bevorratung von Rohlingen bzw. prozessierten Substraten ist eine Bevorratungskammer vorgesehen, in der die Substrate vertikal übereinander angeordnet sind. Die DE 101 59 702 AI beschreibt ebenfalls ein sogenanntes Cluster-Tool, bei dem der CVD-Raktor, die Transferkammer und die Bevorratungskammer mit einer Vakuumeinrichtung evakuierbar sind. The invention relates to a device for coating substrates, in particular semiconductor substrates, with a CVD reactor having a Substrathal- terträger carrying a plurality of substrate holders, wherein on each substrate holder one or more substrates to be coated rest, with a transfer chamber, the is connected to the reactor such that by means of a Beladeorganes the substrate holder carrier can be loaded or unloaded with substrate holders and with a storage device, which is connected to the transfer chamber such that stored in a storage chamber of the storage device substrate holder by means of loading into the reactor can bringable or brought out of the reactor substrate holder are stored there. The invention further relates to a device for storing a substrate holder which can be brought into or removed from a CVD reactor by means of a loading element and which carries one or more substrates in a storage chamber. From US Pat. No. 6,387,185 B2, a coating device is known, which has a storage device for storing substrates which are to be coated in a process chamber of a CVD reactor. Loading / unloading of the process chamber is done with a robotic arm. US 6,446,646 Bl describes a so-called cluster tool with a plurality of process chambers, which are each connected to a transfer chamber. The transfer chamber has a robot arm. Its gripper is able to load the process chambers with substrates to be processed. to Storage of blanks or processed substrates, a storage chamber is provided in which the substrates are arranged vertically one above the other. DE 101 59 702 A1 also describes a so-called cluster tool in which the CVD Raktor, the transfer chamber and the storage chamber can be evacuated with a vacuum device.
Die DE 43 40 522 AI beschreibt eine Vorrichtung und ein Verfahren, um eine Beschichtungsanlage mit Substraten zu beladen. Hierzu ist ein mehrere Arme aufweisendes Beladeorgan vorgesehen, dessen Arme von einem Drehteller Substrate aufnehmen können, um sie der Beschichtungsanlage zuzuführen. DE 43 40 522 A1 describes a device and a method for loading a coating system with substrates. For this purpose, a loading device having several arms is provided, the arms of which can receive substrates from a turntable in order to supply them to the coating installation.
Aus der EP 0 529 687 Bl ist eine MBE- Vorrichtung bekannt. Diese besitzt eine Beschichtungskammer, in der auf einem Substrathalter sieben Substrate gleichzeitig aufliegen können. Die Beladung der MBE-Einrichtung erfolgt über eine Ladekammer, in der auf ein Überführungstablett sieben Substrate aufgelegt werden können. In einer Vorbereitungskammer werden die Substrate auf Bevorratungselemente aufgelegt, die eine Mehrzahl vertikal ausgerichteter Fächer aufweist. Jedes Fach umfasst ein Paar von Flachplatten, die quer zum Bewegungspfad des Überführungstabletts beabstandet sind. Der Abstand zwischen dem Paar von Flachplatten ist derart, dass ein Eingriff mit einem Halter von unten möglich ist. Die DE 10 2008 037387 AI betrifft einen Substrathalter mit einer gitterartig ausgebildeten Schattenmaske. Die EP 1 195 795 A2 betrifft eine Vakuumkammer mit einem Substrathalter, der eine Vielzahl von Fächern aufweist, in die jeweils ein Substrat gebracht werden kann. Die US 6 105 534 A beschreibt eine Plasma-Behandlungseinrichtung für Substrate, bei der eine Prozesskammer mittels Armen einer Beladeeinrichtung beladen werden kann. From EP 0 529 687 Bl an MBE device is known. This has a coating chamber in which seven substrates can rest on a substrate holder at the same time. The loading of the MBE device takes place via a loading chamber, in which seven substrates can be placed on a transfer tray. In a preparation chamber, the substrates are placed on storage elements having a plurality of vertically oriented compartments. Each compartment comprises a pair of flat plates spaced transversely of the path of travel of the transfer tray. The distance between the pair of flat plates is such that engagement with a holder from below is possible. DE 10 2008 037387 AI relates to a substrate holder with a grid-like shadow mask. EP 1 195 795 A2 relates to a vacuum chamber with a substrate holder, which has a plurality of compartments, in each of which a substrate can be brought. US Pat. No. 6,105,534 A describes a plasma treatment device for substrates, in which a process chamber can be loaded by means of arms of a loading device.
Die US 2002/ 0170673 AI beschreibt eine Beschichtungseinrichtung mit einer Bevorratungskammer, wobei die Bevorratungskammer als Kassette ausgebildet ist, die einen Hohlraum aufweist, der vertikal übereinanderliegende kammartig angeordnete Tragleisten aufweist. Auf diese Tragleisten können die Substrate mit ihren Rändern aufgelegt werden, so dass mehrere Substrate vertikal übereinander angeordnet sind. Eine ähnliche Kassette, jedoch auch zur Aufnahme von Substrathaltern beschreibt die US 6 387 185 B2. US 2002/0170673 AI describes a coating device with a storage chamber, wherein the storage chamber is formed as a cassette having a cavity having vertically superimposed comb-like arranged support strips. On these support strips, the substrates can be placed with their edges, so that a plurality of substrates are arranged vertically one above the other. A similar cassette, but also for receiving substrate holders is described in US Pat. No. 6,387,185 B2.
In einer MOCVD- Anlage, wie sie Gegenstand der Erfindung ist, werden zur Beschichtung von insbesondere III-V-Halbleitersubstraten mit Halbleiterschichten Substrathalter mit darauf aufliegenden Substraten in einer Bevorratungs- kammer, welche auch als Magazin oder Magazinkammer bezeichnet wird, bevorratet. Die Magazinkammer besitzt eine Vielzahl von übereinander angeordneten Etagen, wobei jede Etage einen Substrathalter aufnimmt. Die Substrathalter sind somit vertikal übereinander angeordnet. Mittels eines Greifers wird ein Substrathalter nach dem anderen aus der Bevorratungseinrichtung entnommen und in einen CVD-Reaktor gebracht. Der Boden der Prozesskammer des CVD- Reaktors wird von einem Substrathalterträger ausgebildet. Der im Wesentlichen kreisscheibenförmige Substrathalterträger besitzt eine Vielzahl von Ladepositionen, auf denen jeweils ein Substrathalter positionierbar ist. Die DE 10 232 731 AI beschreibt einen derartigen CVD-Reaktor. Der Beschichtungsprozess innerhalb des CVD-Reaktors erfolgt bei Temperaturen oberhalb 500°C bzw. oberhalb 700°C. Um kurze Zykluszeiten zu erreichen soll die Beladung bzw. Entladung der Prozesskammer bei relativ hohen Temperaturen erfolgen. Die Substrathalter werden somit bei Temperaturen von bspw. 600°C aus der Prozesskammer des Reaktors entnommen. Sie werden mittels eines Roboterarmes in eine Magazinkammer gebracht, wo sie bis ca. 60°C abkühlen sollen. Beim Stand der Technik liegen die Substrathalter innerhalb der Magazinkammer in einer Kassette vertikal übereinander. Eine derartige MOCVD- Anlage wird typi- scherweise bei einem Niedrigdruck betrieben. Ein typischer Prozessdruck liegt zwischen 50mbar und 500mbar. Innerhalb der bislang verwendeten Magazinkammer sollen die Substrathalter und die auf ihnen aufliegenden Substrate im Wesentlichen durch Konvektion abkühlen. Hierbei erwärmt sich das Gas innerhalb der Magazinkammer durch die heißen Substrathalter. Es steigt auf und kühlt an den Wänden bzw. an der Decke der Magazinkammer ab. Es entsteht ein Kreislauf, da das abgekühlte Gas wieder absinkt und erneut durch die Substrathalter erwärmt wird. Ein negativer Nebeneffekt dieser Gasströmung ist das Aufwirbeln von Partikel. Die Anwesenheit derartiger Partikel in der Magazinkammer lässt sich zwar minimieren aber nicht vollständig vermeiden. Die auf- gewirbelten Partikel können sich auf den Substraten der Substrathalter ablagern. Dies führt zu lokalen Störungen. Durch diese Partikel wird dann die Ausbeute an brauchbaren Halbleiterbauelementen eingeschränkt. In an MOCVD system, as it is the subject of the invention, for the coating of in particular III-V semiconductor substrates with semiconductor layers, substrate holders with substrates resting thereon are stored in a storage chamber, which is also referred to as magazine or magazine chamber. The magazine chamber has a plurality of stacked floors, each floor receives a substrate holder. The substrate holders are thus arranged vertically one above the other. By means of a gripper, one substrate holder after the other is removed from the storage device and placed in a CVD reactor. The bottom of the process chamber of the CVD reactor is formed by a substrate holder carrier. The substantially circular disc-shaped substrate holder carrier has a plurality of loading positions, on each of which a substrate holder can be positioned. The DE 10 232 731 AI describes such a CVD reactor. The coating process within the CVD reactor takes place at temperatures above 500 ° C. or above 700 ° C. In order to achieve short cycle times, the loading or unloading of the process chamber should take place at relatively high temperatures. The substrate holders are thus removed at temperatures of, for example, 600 ° C from the process chamber of the reactor. They are brought into a magazine chamber by means of a robotic arm, where they should cool down to about 60 ° C. In the prior art, the substrate holders lie vertically above one another within the magazine chamber in a cassette. Such a MOCVD system is typically operated at a low pressure. A typical process pressure is between 50mbar and 500mbar. Within the magazine chamber used hitherto, the substrate holders and the substrates resting on them are to be cooled essentially by convection. In doing so, the gas within the magazine chamber heats up through the hot substrate holders. It rises and cools on the walls or on the ceiling of the magazine chamber. It creates a cycle because the cooled gas drops again and is heated again by the substrate holder. A negative side effect of this gas flow is the swirling of particles. Although the presence of such particles in the magazine chamber can be minimized but not completely avoided. The fluidized particles can deposit on the substrates of the substrate holders. This leads to local disturbances. These particles then limit the yield of useful semiconductor devices.
Beim Stand der Technik werden die Substrathalter in der Bevorratungskammer in einer Kassette vertikal übereinanderliegend abgelegt. Zur Aufnahme je eines Substrathalters besitzt die Magazinkammer eine Höheneinheit von typischerweise 25 bis 30 cm. Da der vertikale Hub des Greif arms der Beladeeinrichtung begrenzt ist und außerdem die Beladung durch ein nach oben und nach unten beschränktes Beladetor erfolgt, besitzt die Bevorratungseinrichtung gemäß Stand der Technik einen Hubmechanismus, der es ermöglicht, die jeweilige Etage der Magazinkammer vor die Beladeöffnung zu positionieren. Der Erfindung liegt die Aufgabe zugrunde, Maßnahmen anzugeben, um die Qualität der hergestellten Halbleiterschichten zu erhöhen. In the prior art, the substrate holders in the storage chamber are placed vertically one above the other in a cassette. To accommodate one substrate holder each, the magazine chamber has a height unit of typically 25 to 30 cm. Since the vertical stroke of the gripping arm of the loading device is limited and also the loading by an up and down limited loading gate, the storage device according to the prior art has a lifting mechanism, which makes it possible to position the respective floor of the magazine chamber in front of the loading opening. The invention has for its object to provide measures to increase the quality of the semiconductor layers produced.
Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Erfindung. Zunächst und im Wesentlichen ist vorgesehen, dass die Substrathalter horizontal nebeneinanderliegend in der Bevorratungskammer auf einer Magazinplatte angeordnet sind. Es handelt sich bevorzugt um eine im Wesentlichen runde Magazinplatte, die in ihrer Mitte eine Drehachse aufweist, so dass die Magazinplatte durch Drehen der Drehachse in verschiedene Be-/ Entladepositionen gebracht werden kann, in denen jeweils ein Substrathalter vor einem Be-The object is achieved by the invention specified in the claims. First and foremost, it is provided that the substrate holders are arranged horizontally next to one another in the storage chamber on a magazine plate. It is preferably a substantially round magazine plate having an axis of rotation in its center, so that the magazine plate can be brought by rotation of the axis of rotation in different loading / unloading positions, in each of which a substrate holder before a loading
/ Entladetor liegt. Die Magazinplatte kann den gleichen Durchmesser aufweisen, wie ein Substrathalterträger des zugehörigen MOCVD-Reaktors. Damit wird erreicht, dass auf der Magazinplatte dieselbe Anzahl von Substrathaltern abgelegt werden kann, wie auf den Substrathalterträger des CVD-Reaktors. Der freie Abstand oberhalb der Magazinplatte ist so gewählt, dass abhängig vom Totaldruck innerhalb der Bevorratungseinrichtung und der Gasart keine Kon- vektion stattfindet. Es entsteht praktisch kein Gasstrom der Partikel aufwirbelt. Die Magazinplatte ist flüssigkeitsgekühlt, bevorzugt wassergekühlt. Sie besitzt hierzu Kühlkanäle, durch die Kühlwasser strömt. Die Substrathalterträger kön- nen in Flächenkontakt auf der nach oben weisenden Oberfläche der Magazinplatte aufliegen. Bevorzugt liegen die Substrathalter jedoch auf wärmeisolierenden Abstandshaltern. Die Abstandshalter können eine ringförmige Gestalt aufweisen. Mit den Abstandshaltern werden die Substrathalter in einen defi- nierten Abstand zur gekühlten Magazinplatte gehalten. Über den definierten Abstand erfolgt eine thermische Ankopplung der Substrathalter an die Magazinplatte. Der Wärmtransport und damit die Abkühlrate wird über die Distanzelemente definiert. Der Wärmetransport wird über die Eigenschaften eines Gaspolsters zwischen Oberseite der Magazinplatte und Unterseite des Substrathalterträgers definiert. Die Eigenschaften werden von der Art des Gases, also dessen spezifische Leitfähigkeit, dessen Totaldruck und der Höhe des Gasspaltes, der durch die Höhe der Distanzelemente definiert ist, gebildet. Der Spalt unter dem Substrathalter ist bevorzugt um mehr als einen Faktor 5 bis 10 kleiner als der Spalt oberhalb des Substrathalters. Der Wärmeleitungstransport erfolgt zumindest 90% über den unteren Spalt. Über den oberen Spalt werden maximal 10% der Wärme vom Substrathalter an die darüberliegende Decke abgegeben. In einer Weiterbildung der Erfindung ist vorgesehen, dass zwei o- der mehrere Magazinplatten übereinander innerhalb der Bevorratungskammer angeordnet sind. Auch hier ist der freie Abstand über den Magazinplatten so gewählt, dass keine Konvektion stattfindet. Die Kühlung der Substrathalter erfolgt auch in diesem Fall durch Wärmeleitung. Durch die nahezu konvektions- freie Kühlung werden keine Partikel mehr aufgewirbelt, die sich auf den Substratoberflächen ablagern können. Die Ausbeute an brauchbaren Bauelementen wird damit nicht mehr durch das Abkühlen der Substrathalter beeinträchtigt. Die Magazinplatte ist im Wesentlichen rund. Die Außenwand verläuft vorzugsweise aber nicht auf einer Kreisbogenlinie, sondern besitzt Auswölbungen bzw. Einbuchtungen, die insbesondere mit einer optischen Positioniereinrichtung abtastbar sind, um die Magazinplatte in den verschiedenen Be- /Entladestellungen zu positionieren. Hierdurch kann mittels eines Vakuumroboters auf alle Magazinplätze zugegriffen werden. Mit dem Greif arm des Vakuumroboters können die Substrathalter nacheinander der Magazinplatte entnommen werden und an Ladepositionen des Substrathalterträgers des CVD- Reaktors gebracht werden. Der Substrathalterträger des CVD-Reaktors wird hierzu ebenfalls schrittweise um eine Drehachse in verschiedene Be- / Entladepositionen gedreht. Nachdem der Substrathalterträger des CVD- Reaktors vollständig mit Substrathaltern beladen wird, wird ein Beladetor zwi- sehen der Transferkammer und dem CVD-Reaktor geschlossen. Mittels eines Gaseinlassorganes wird dann nach einem vorangehenden Aufheizschritt ein aus mehreren reaktiven Gasen bestehendes Prozessgas in die Prozesskammer des CVD-Reaktors eingeleitet. Die Prozessgase zerlegen sich pyrolytisch an den Oberflächen des Substrats bzw. der Substrathalter und bilden eine III-V-Schicht auf den Substratoberflächen. Es können mehrere Schichten übereinander abgeschieden werden, ohne dass die Substrathalter zwischenzeitig der Prozesskammer entnommen werden. Nach Beendigung der Beschichtungsbehandlung innerhalb der Prozesskammer wird die Prozesskammer mit einem Inertgas, bspw. Wasserstoff oder Stickstoff, gespült. Die Prozesskammer wird geringfü- gig abgekühlt. Im noch heißen Zustand wird das Beladetor zwischen der Transferkammer und der Prozesskammer des CVD-Reaktors geöffnet. Mit dem Beladeorgan werden nacheinander die heißen Substrathalter aus der Prozesskammer entnommen und durch ein geöffnetes Beladetor auf die Magazinplatte abgesetzt. Diese wird zuvor derartig gedreht, dass ein freier Platz mit einem frei- en Distanzelement vor dem Beladetor liegt, auf welches der heiße Substrathalter aufgesetzt werden kann. Die Kühlung der Substrathalter erfolgt dann über Wärmeleitung zwischen der Unterseite des im Wesentlichen kreisscheibenförmigen Substrathalters und der Oberseite der wassergekühlten Magazinplatte. Die thermische Ankopplung zwischen der gekühlten Magazinplatte und den Substrathaltern erfolgt über den durch das Distanzelement definierten Spalt und das Inertgas welches sich innerhalb der Bevorratungskammer befindet. Die Abkühlrate wird einerseits durch das Spaltmaß und andererseits durch die Wärmeleitfähigkeit des verwendeten Inertgases bestimmt. Der Druck innerhalb der Bevorratungskammer wird so eingestellt, dass sich oberhalb der Substrathalter nur die nicht vermeidbare minimale Konvektion einstellt. Der Abstand des Gasspalts oberhalb des Substrathalters ist entsprechend klein gewählt. Die charakteristischen Größen, Wärmeleitfähigkeit des Gases und Wärmeüber- gangskoeffizient sowie Weite des Gasspaltes, sind derart aufeinander abgestimmt, dass die charakteristische NUSSELT-Zahl etwa 1 beträgt. Das Inertgas bzw. die Prozessgase, die in die Prozesskammer des CVD-Reaktors eingeleitet werden, werden von einem Gasmischsystem bereitgestellt. Von diesem Gasmischsystem wird auch das Inertgas bereitgestellt, mit dem die Bevorratungs- kammer gespült wird. Das Gasmischsystem besitzt eine Vielzahl von Masseflussreglern und Ventilen, über die Gasströme eingestellt werden können. Hierzu ist eine elektronische Steuereinrichtung vorgesehen, die derart programmierbar ist, dass in der Bevorratungskammer ein vorbestimmter Totaldruck eingestellt werden kann. Zur Regulierung des Totaldrucks ist eine Va- kuumpumpe vorgesehen, die über ein Regel ventil Gas aus der Bevorratungskammer abpumpt. Das Gasmischsystem ist mit einer Gas Versorgungseinrichtung verbunden, die eine Vielzahl von Gasbehältern aufweist, die die verwendeten Prozessgase bzw. Inertgase bevorratet. Mit der elektronischen Steuereinrichtung können ausgewählte Gase in die Prozesskammer bzw. die Bevorra- tungskammer eingeleitet werden. Die elektronische Steuereinrichtung ist derart programmiert, dass ein vorbestimmtes Inertgas bei einem vorbestimmten Totaldruck in die Bevorratungskammer einströmt. Das Abstandsmaß zwischen der Oberseite der Substrathalter und der Unterseite der darüber liegenden Magazinplatte oder der darüber liegenden Decke der Bevorratungskammer ist so gewählt, dass sich trotz erheblicher Temperaturunterschiede innerhalb der Bevorratungskammer kein derartiger Gasstrom ausbildet, der Partikel aufwirbelt. Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand beigefügter Zeichnungen erläutert. Es zeigen: / Entladetor is located. The magazine plate may have the same diameter as a substrate holder carrier of the associated MOCVD reactor. This ensures that the same number of substrate holders can be stored on the magazine plate as on the substrate holder carrier of the CVD reactor. The free space above the magazine plate is selected such that, depending on the total pressure within the storage device and the gas type, no convection takes place. There is virtually no gas flow of particles whirls up. The magazine plate is liquid-cooled, preferably water-cooled. It has cooling channels through which cooling water flows. The substrate holder carriers can be in surface contact on the upwardly facing surface of the magazine plate. However, the substrate holders are preferably on heat-insulating spacers. The spacers may have an annular shape. With the spacers, the substrate holders are placed in a defined nierten distance to the cooled magazine plate held. Over the defined distance there is a thermal coupling of the substrate holder to the magazine plate. The heat transport and thus the cooling rate is defined by the spacer elements. The heat transfer is defined by the properties of a gas cushion between the top of the magazine plate and the underside of the substrate holder carrier. The properties are formed by the type of gas, ie its specific conductivity, its total pressure and the height of the gas gap, which is defined by the height of the spacer elements. The gap under the substrate holder is preferably smaller by more than a factor of 5 to 10 than the gap above the substrate holder. The heat conduction transport takes place at least 90% over the lower gap. A maximum of 10% of the heat is released from the substrate holder to the ceiling above it via the upper gap. In a development of the invention, it is provided that two or more magazine plates are arranged one above the other within the storage chamber. Again, the free space above the magazine plates is chosen so that no convection takes place. The cooling of the substrate holder also takes place in this case by heat conduction. Due to the almost convection-free cooling no particles are whirled up which can deposit on the substrate surfaces. The yield of useful devices is thus no longer affected by the cooling of the substrate holder. The magazine plate is essentially round. The outer wall preferably but not on a circular arc line, but has bulges or indentations, which can be scanned in particular with an optical positioning to position the magazine plate in the various loading / unloading. As a result, all magazine locations can be accessed by means of a vacuum robot. With the gripper arm of the vacuum robot, the substrate holder can be successively removed from the magazine plate and at loading positions of the substrate holder carrier of the CVD Be brought reactor. The substrate holder carrier of the CVD reactor is this also rotated stepwise about an axis of rotation in different loading / unloading positions. After the substrate holder carrier of the CVD reactor is completely loaded with substrate holders, a Beladetor between see the transfer chamber and the CVD reactor is closed. By means of a gas inlet member, a process gas consisting of a plurality of reactive gases is then introduced into the process chamber of the CVD reactor after a preceding heating step. The process gases decompose pyrolytically on the surfaces of the substrate or the substrate holder and form a III-V layer on the substrate surfaces. Several layers can be deposited on top of each other without the substrate holders being temporarily removed from the process chamber. After completion of the coating treatment within the process chamber, the process chamber is purged with an inert gas, for example hydrogen or nitrogen. The process chamber is cooled slightly. When still hot, the loading gate between the transfer chamber and the process chamber of the CVD reactor is opened. With the loading member, the hot substrate holders are successively removed from the process chamber and deposited by an open Beladetor on the magazine plate. This is previously rotated such that a free space with a free spacer element in front of the Beladetor, on which the hot substrate holder can be placed. The cooling of the substrate holder then takes place via heat conduction between the underside of the substantially circular disk-shaped substrate holder and the upper side of the water-cooled magazine plate. The thermal coupling between the cooled magazine plate and the substrate holders via the gap defined by the spacer element and the inert gas which is located within the storage chamber. The cooling rate is determined on the one hand by the gap and on the other hand by the thermal conductivity of the inert gas used. The pressure inside the storage chamber is adjusted so that only the unavoidable minimum convection is established above the substrate holder. The distance of the gas gap above the substrate holder is selected to be correspondingly small. The characteristic variables, the heat conductivity of the gas and the heat transfer coefficient as well as the width of the gas gap, are coordinated in such a way that the characteristic NUSSELT number is about 1. The inert gas (s) introduced into the process chamber of the CVD reactor are provided by a gas mixing system. This gas mixing system also provides the inert gas with which the storage chamber is purged. The gas mixing system has a large number of mass flow controllers and valves, through which gas flows can be adjusted. For this purpose, an electronic control device is provided, which is programmable such that a predetermined total pressure can be set in the storage chamber. To regulate the total pressure, a vacuum pump is provided, which pumps gas from the storage chamber via a control valve. The gas mixing system is connected to a gas supply device having a plurality of gas containers, which stores the used process gases or inert gases. Selected gases can be introduced into the process chamber or the storage chamber with the electronic control device. The electronic control device is programmed such that a predetermined inert gas flows into the storage chamber at a predetermined total pressure. The distance between the top of the substrate holder and the underside of the overlying magazine plate or overlying ceiling of the storage chamber is chosen so that despite considerable temperature differences within the storage chamber no such gas stream is formed, which stirs up particles. An embodiment of the invention will be explained below with reference to accompanying drawings. Show it:
Fig. 1 schematisch in einer Draufsicht etwa entlang der Schnittlinie I-I in Fig. 2 eine Beschichtungsvorrichtung bestehend aus einem CVD-Reaktor 1, ei- ner damit verbundenen Transferkammer 2 und einer damit verbundenen Bevorratungseinrichtung 3 und 1 shows schematically in a plan view, approximately along the section line I-I in FIG. 2, a coating device consisting of a CVD reactor 1, a transfer chamber 2 connected thereto and a storage device 3 and associated therewith
. 2 einen Schnitt entlang der Schnittlinie II-II in Fig. 1 durch die Bevorra- tungseinrichtung 3. , FIG. 2 shows a section along the section line II-II in FIG. 1 through the retaining device 3.
Ein CVD-Reaktor 1 besitzt ein gasdichtes Gehäuse, welches mittels eines Beladetores 16 zur Transferkammer 2 verschlossen und geöffnet werden kann. Innerhalb einer Prozesskammer des CVD-Reaktors 1 befindet sich ein nicht dar- gestelltes Gaseinlassorgan und ein ebenfalls nicht dargestelltes Gasauslassorgan. Durch das Gaseinlassorgan kann ein Inertgas bzw. können Prozessgase in die Prozesskammer eingeleitet werden, die von einem nicht dargestellten Gasmischsystem bereitgestellt werden. Die Prozessgase enthalten metallorganische III- Verbindungen und V- Verbindungen in Form von Hydriden. Diese, zusam- men mit einem Trägergas, bspw. Wasserstoff in die Prozesskammer eingeleiteten Prozessgase zerlegen sich dort pyrolytisch auf den heißen Oberflächen von Halbleitersubstraten, insbesondere III-V-Substraten, um dort eine Halbleiterschicht zu bilden. Die Substrate 5 liegen auf kreisscheibenförmigen Substrathaltern 4. Im Ausführungsbeispiel liegen drei Substrate 5 auf jeweils einem Sub- strathalter 4. A CVD reactor 1 has a gas-tight housing, which can be closed and opened to the transfer chamber 2 by means of a loading gate 16. Within a process chamber of the CVD reactor 1 is a not shown gas inlet member and also not shown gas outlet member. By the gas inlet member, an inert gas or process gases can be introduced into the process chamber, which are provided by a gas mixing system, not shown. The process gases contain organometallic III compounds and V compounds in the form of hydrides. These, together with a carrier gas, for example, hydrogen introduced into the process chamber process gases decompose there pyrolytically on the hot surfaces of semiconductor substrates, in particular III-V substrates to form there a semiconductor layer. The substrates 5 rest on circular disk-shaped substrate holders 4. In the exemplary embodiment, three substrates 5 each lie on one substrate holder 4.
Beim Ausführungsbeispiel finden insgesamt fünf Substrathalter 4 auf einem kreisförmigen Substrathalterträger 18 Platz. Je nach Größe der Substrathalter 4 bzw. des Substrathalterträgers 18 können aber auch mehr oder weniger Substrathalter 4 auf einem Substrathalterträger 18 Platz finden. Im nicht dargestellten Ausführungsbeispiel kann der Substrathalterträger 18 auch eine andere Gestalt aufweisen. Dies gilt auch für die Gestalt der Substrathalter 4. Im Aus- führungsbeispiel trägt jeder Substrathalter 4 drei Substrate 5. Im anders gestalteten Ausführungsbeispiel kann jeder Substrathalter 4 aber auch nur ein Substrat oder mehr als drei Substrate tragen. Der um eine Drehachse 19 drehbare Substrathalterträger 18 wird von unten her mit einer nicht dargestellten Infrarotheizung oder RF-Heizung beheizt. Mit der nicht dargestellten Vakuumein- richtung kann innerhalb der Prozesskammer ein Prozessdruck eingestellt werden, der zwischen Submillibarbereich und Atmosphärendruck variieren kann. In the embodiment, a total of five substrate holder 4 on a circular substrate holder carrier 18 place. Depending on the size of the substrate holder. 4 or of the substrate holder carrier 18, however, more or less substrate holders 4 can also be accommodated on a substrate holder carrier 18. In the embodiment not shown, the substrate holder carrier 18 may also have a different shape. This also applies to the shape of the substrate holder 4. In the exemplary embodiment, each substrate holder 4 carries three substrates 5. In the differently configured embodiment, however, each substrate holder 4 can also carry only one substrate or more than three substrates. The substrate holder carrier 18, which is rotatable about an axis of rotation 19, is heated from below with an infrared heater or RF heater, not shown. With the vacuum device, not shown, a process pressure can be set within the process chamber, which can vary between submilibles range and atmospheric pressure.
Die Prozesskammer des CVD-Reaktors 1 ist über eine gasdicht verschließbare Schleuse in Form des Beladetores 16 mit der Transferkammer 2 verbunden. In dieser befindet sich ein Beladeorgan 17 in Form eines Roboterarms mit einem Greifkopf. Der Roboterarm kann so gesteuert werden, dass mittels des Greifkopfes ein Substrathalter 4 nach dem anderen von dem Substrathalterträger 18 entnommen werden kann. An die Transferkammer schließt sich eine Bevorratungseinrichtung mit einerThe process chamber of the CVD reactor 1 is connected to the transfer chamber 2 via a gas-tight lock in the form of the loading gate 16. In this is a loading 17 in the form of a robot arm with a gripping head. The robot arm can be controlled so that by means of the gripping head, a substrate holder 4 after the other from the substrate holder carrier 18 can be removed. At the transfer chamber, a storage device with a closes
Bevorratungskammer 3 an. Die Bevorratungskammer 3 ist über ein Beladetor 14 mit der Transferkammer 2 verbunden. Der CVD-Reaktor 1, die Transferkammer 2 und die Bevorratungseinrichtung 3 sind gasdicht gegenüber der Umgebung abgeschlossen. Sie besitzen ein gasdichtes Gehäuse. Das Gehäuse besitzt eine verschließbare Öffnung in Form eines Beladetores 20. Storage chamber 3 on. The storage chamber 3 is connected to the transfer chamber 2 via a loading gate 14. The CVD reactor 1, the transfer chamber 2 and the storage device 3 are gas-tight with respect to the environment completed. They have a gas-tight housing. The housing has a closable opening in the form of a loading gate 20.
In der Bevorratungskammer 3 kann mittels einer nicht dargestellten Vakuumeinrichtung ein definierter Gasdruck eingestellt werden. In die Bevorratungs- kammer 3 mündet eine nicht dargestellte Gaszuleitung, durch die ein Inertgas in die Bevorratungskammer 3 einbringbar ist. Mittels der Vakuumeinrichtung kann innerhalb der Bevorratungskammer 3 ein definierter Druck eingestellt werden. Die Gasströmung durch die Bevorratungskammer 3 wird so gering wie möglich gehalten. In the storage chamber 3, a defined gas pressure can be adjusted by means of a vacuum device, not shown. In the storage Chamber 3 opens a gas supply, not shown, through which an inert gas in the storage chamber 3 can be introduced. By means of the vacuum device, a defined pressure can be set within the storage chamber 3. The gas flow through the storage chamber 3 is kept as low as possible.
Innerhalb der Bevorratungskammer 3 befinden sich im Ausführungsbeispiel zwei Magazinplatten 6, 6', die vertikal übereinander angeordnet sind. Die beiden Magazinplatten 6, 6' besitzen ein Zentrum, in welchem sich eine Tragsäule 9, 9' befindet. Die Tragsäule 9, 9' ist mittels eines Drehantriebes 11 drehantreib- bar. Der Drehantrieb 11 ist außerhalb des Gehäuses der Bevorratungskammer 3 angeordnet. Es ist deshalb im Boden des Gehäuses eine Drehdurchführung 10 für die Tragsäule 9 vorgesehen. Die Umfangskonturlinien der beiden Magazinplatten 6, 6' verlaufen im Wesentlichen wellenförmig. Sie können aber auch kreisrund sein. Sie besitzt somit Einbuchtungen bzw. Auswölbungen. Die Einbuchtungen werden von dem Lichtstrahl 23 eines optischen Positionssensors 21, 22 abgetastet. Der optische Sensor besteht aus einer Leuchtdiode 21 und einer Fotodiode 22. Within the storage chamber 3 are in the embodiment, two magazine plates 6, 6 ' , which are arranged vertically one above the other. The two magazine plates 6, 6 'have a center in which a support column 9, 9 ' is located. The support column 9, 9 ' is rotatably drivable by means of a rotary drive 11. The rotary drive 11 is arranged outside the housing of the storage chamber 3. It is therefore provided in the bottom of the housing a rotary feedthrough 10 for the support column 9. The circumferential contour lines of the two magazine plates 6, 6 'are substantially wave-shaped. But they can also be circular. It thus has indentations or bulges. The indentations are scanned by the light beam 23 of an optical position sensor 21, 22. The optical sensor consists of a light emitting diode 21 and a photodiode 22.
Jede der beiden Magazinplatten 6, 6' hat die Form einer flachen Platte und besteht aus Metall. Innerhalb des Volumens jeder der beiden Magazinplatten 6, 6' befindet sich eine Kühleinrichtung bestehend aus einer Vielzahl miteinander verbundener Kühlwasserkanäle 8. Die Kühlwasserkanäle 8 werden durch die Tragsäule 9 hindurch mit Kühlwasser versorgt. Hierzu besitzt das aus dem Gehäuse herausragende Ende der Tragsäule 9 eine Kühlwasserzuleitung 12 und eine Kühlwasserableitung 13. Auf den nach oben weisenden Oberseiten der Magazinplatten 6 befinden sich Distanzelemente 7. Es kann sich hierbei um punktförmige bzw. scheibenförmige Distanzelemente 7 handeln, die auf den Ecken eines gedachten Polygons angeordnet sind und einen Lagerplatz für einen Substrathalter 4 definieren. Die Distanzelemente 7 können jedoch auch kreisringförmig ausgebildet sein. Sie bestehen aus einem Werkstoff, welcher eine geringe Wärmeleitfähigkeit besitzt. Each of the two magazine plates 6, 6 'has the shape of a flat plate and is made of metal. Within the volume of each of the two magazine plates 6, 6 ' is a cooling device consisting of a plurality of interconnected cooling water channels 8. The cooling water channels 8 are supplied through the support column 9 through with cooling water. For this purpose, the protruding from the housing end of the support column 9 has a cooling water supply line 12 and a cooling water discharge 13th There may be punctiform or disc-shaped spacers 7, which are arranged on the corners of an imaginary polygon and define a storage space for a substrate holder 4 on the upwardly facing tops of the magazine plates 6. However, the spacer elements 7 may also be formed annular. They consist of a material which has a low thermal conductivity.
Auf die Distanzelemente 7 werden mittels des Greifkopfes des Beladeorganes 17 die aus dem CVD-Reaktor entnommenen, eine Temperatur von etwa 600°C oder mehr aufweisenden Substrathalter 4 abgelegt. Dies erfolgt dadurch, dass die Magazinplatte 6 mittels des Drehantriebes 11 in eine Beladeposition gebracht werden, in der eine Beladestelle unmittelbar vor dem Beladtor 14 liegt. Nachdem ein Substrathalter 4 dort abgelegt worden ist, wird die Magazinplatte 6 zur nächsten Beladeposition weitergedreht. On the spacer elements 7, the removed from the CVD reactor, a temperature of about 600 ° C or more having substrate holder 4 are stored by means of the gripping head of the loading 17. This is done by the magazine plate 6 are brought by means of the rotary drive 11 in a loading position in which a loading point is located immediately in front of the loading gate 14. After a substrate holder 4 has been stored there, the magazine plate 6 is further rotated to the next loading position.
Der Abstand oberhalb des Substrathalters 4, der auf der unteren Magazinplatte 6 liegt, zur oberen Magazinplatte 6' bzw. der Oberseite des Substrathalters 4, der auf der oberen Magazinplatte 6' liegt, zur Gehäusedecke der Bevorratungskammer 3 ist minimiert. Der Gasdruck innerhalb der Bevorratungskammer 3 ist so eingestellt, dass sich bei diesen geometrischen Bedingungen kaum Konvek- tion zwischen den heißen Oberflächen der Substrathalter 4 und der gekühlten Unterseite der oberen Magazinplatte 6' bzw. der Unterseite der Gehäusedecke ausbilden. Der Gasspalt zwischen der Oberseite des Substrathalters 4 und der darüberlie- genden Wand, also der Unterseite der Magazinplatte 6' bzw. der Gehäusedecke, beträgt etwa 22 mm. Die Weite des Spaltes unterhalb der Substrathalter 4, die durch die Materialstärke der Distanzelemente 7 definiert ist, beträgt etwa 0,5 mm. Durch die Spaltweiten von etwa 22 mm bzw. 0,5 mm wird die Wärmeleistung definiert, die vom Substrathalter 4 von der Oberseite bzw. von der Unterseite abgegeben wird. Über die Oberseite gibt der Substrathalter 4 lediglich 10% Wärme und zwar in Form von Wärmeleitung ab. Mehr als 90% der Wär- meleistung wird über den unteren Spalt abgegeben. Dies erfolgt bei einem Totaldruck von weniger als 1000 mbar, wobei die Bevorratungskammer mit Stickstoff gespült wird. The distance above the substrate holder 4, which lies on the lower magazine plate 6, to the upper magazine plate 6 ' or the upper side of the substrate holder 4, which lies on the upper magazine plate 6 ' , to the housing cover of the storage chamber 3 is minimized. The gas pressure within the storage chamber 3 is set so that under these geometric conditions hardly convection between the hot surfaces of the substrate holder 4 and the cooled bottom of the upper magazine plate 6 ' and the underside of the housing cover form. The gas gap between the upper side of the substrate holder 4 and the overlying wall, ie the underside of the magazine plate 6 ' or the housing cover, is about 22 mm. The width of the gap below the substrate holder 4, which is defined by the material thickness of the spacer elements 7, is approximately 0.5 mm. By the gap widths of about 22 mm or 0.5 mm, the heat output is defined, which is discharged from the substrate holder 4 from the top or from the bottom. Over the top of the substrate holder 4 is only 10% heat in the form of heat conduction. More than 90% of the heat output is delivered via the lower gap. This is done at a total pressure of less than 1000 mbar, wherein the storage chamber is purged with nitrogen.
Bei einem Wärmeübergangskoeffizienten α von etwa 20 W/ m2/k und einer Wärmeleitfähigkeit λ von etwa 0,04 kg/ m/ s ist die Spaltweite oberhalb des Substrathalters 4 so gewählt, dass die NUSSELT-Zahl etwa 1 beträgt oder geringer als 1 ist. Zufolge dieser Parameterwahl entsteht keine freie Konvektion. With a heat transfer coefficient α of about 20 W / m 2 / k and a thermal conductivity λ of about 0.04 kg / m / s, the gap width above the substrate holder 4 is selected so that the NUSSELT number is about 1 or less than 1 , As a result of this parameter selection, there is no free convection.
Mittels der Distanzelemente 7 wird ein Gasspalt zwischen der Unterseite des Substrathalters 4 und der Oberseite der gekühlten Magazinplatte 6, 6' definiert. Über Wärmeleitung durch diesen Gasspalt wird der Substrathalter 4 abgekühlt. Die Wärme wird über das Kühlwasser abgeführt. By means of the spacer elements 7, a gas gap between the underside of the substrate holder 4 and the top of the cooled magazine plate 6, 6 'is defined. Via heat conduction through this gas gap, the substrate holder 4 is cooled. The heat is dissipated via the cooling water.
Innerhalb der Bevorratungseinrichtung 3 können darüber hinaus nicht darge- stellte Temperaturmesseinrichtungen vorgesehen sein, mit denen die Oberflächentemperatur der Substrate 5 gemessen werden kann. Es kann sich hierbei bspw. um ein Pyrometer handeln. Die Substrathalter 4 mit den auf ihnen aufliegenden Substraten 5 werden mit dem Greifer des Beladeorgans 17 oder anderweitig, bspw. durch ein rückwärtiges Beladetor 15, aus der Bevorratungs- kammer 3 entnommen, wenn sie sich auf eine entsprechende Temperatur, bspw. auf unter 100°C, abgekühlt haben. Die Bevorratungseinrichtung wird dann mit anderen Substrathaltern 4 wieder beladen, auf denen zu beschichten- de Substrate 5 aufliegen. Diese Substrathalter 4 werden dann mit Hilfe des Be- ladeorganes 17 in den CVD-Reaktor 1 gebracht, um dort behandelt zu werden. Within the storage device 3, furthermore, temperature measuring devices (not shown) may be provided with which the surface temperature of the substrates 5 can be measured. This may, for example, be a pyrometer. The substrate holders 4 with the substrates 5 resting on them are removed from the storage chamber 3 with the gripper of the loading element 17 or otherwise, for example by a rear loading gate 15, when they reach a corresponding temperature, for example below 100 ° C, have cooled. The storage device is then reloaded with other substrate holders 4 on which to be coated. de substrates 5 rest. These substrate holders 4 are then brought into the CVD reactor 1 by means of the loading member 17 in order to be treated there.
Alle offenbarten Merkmale sind (für sich) erfindungswesentlich. In die Offen- barung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/beigefügten Prioritätsunterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender Anmeldung mit aufzunehmen. Die Unteransprüche charakterisieren in ihrer fakultativ nebengeordneten Fassung eigenständige erfinderische Weiterbildung des Standes der Technik, insbesondere um auf Basis dieser Ansprüche Teilanmeldungen vorzunehmen. All disclosed features are essential to the invention. The disclosure content of the associated / attached priority documents (copy of the prior application) is hereby also incorporated in full in the disclosure of the application, also for the purpose of including features of these documents in claims of the present application. The subclaims characterize in their optional sibling version independent inventive development of the prior art, in particular to make on the basis of these claims divisional applications.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1. CVD-Reaktor 1. CVD reactor
2. Transferkammer  2nd transfer chamber
3. Bevorratungskammer (Magazin) 3. Storage chamber (magazine)
4. Substrathalter 4. Substrate holder
5. Substrat  5. Substrate
6. Magainplatte, 6' Magazinplatte6. Magain plate, 6 ' magazine plate
7. (Spacer), Distanzelement7. (spacer), spacer
8. Kühlwasserkanal 8th cooling water channel
9. Tragsäule, 9' Tragsäule 9th support column, 9 'support column
10. Drehdurchführung  10. Rotary feedthrough
11. Drehantrieb  11. Rotary drive
12. H20-Zuleitung  12. H20 supply line
13. H20- Ableitung  13. H20 derivative
14. Beladetor  14. Loading gate
15. Beladetor  15. Loading gate
16. Beladetor  16. Loading gate
17. Beladeorgan, Greifer  17. Loading device, gripper
18. Substrathalterträger  18. Substrate carrier
19. Drehachse  19. axis of rotation
20. Beladetor  20. Loading gate
21. opt. Sensor  21. opt. sensor
22. opt. Sensor  22. opt. sensor
23. Lichtstrahl  23rd light beam

Claims

Vorrichtung zum Bevorraten ein oder mehrerer mittels eines Belade- organes (17) in einen CVD-Reaktor (1) bringbare bzw. aus diesem entnehmbare, ein oder mehrere Substrate (5) tragende Substrathalter (4) in Form einer Bevorratungskammer (3), dadurch gekennzeichnet, dass die Bevorratungskammer (3) zumindest eine gekühlte Magazinplatte (6) aufweist, auf der mehrere aufgeheizte Substrathalter (4) horizontal nebeneinanderliegend derart ablegbar sind, dass im Wesentlichen konvektionsfrei Wärme von den Substrathaltern (4) zur Magazinplatte (6) fließt.  Device for storing one or more by means of a Belade- organes (17) in a CVD reactor (1) can be removed or removable from this, one or more substrates supporting substrate holder (4) in the form of a storage chamber (3), characterized in that the storage chamber (3) has at least one cooled magazine plate (6) on which a plurality of heated substrate holders (4) can be deposited horizontally next to each other in such a way that substantially convection-free heat flows from the substrate holders (4) to the magazine plate (6).
Vorrichtung nach Anspruch 1 oder insbesondere danach, dadurch gekennzeichnet, dass die Anzahl der auf der Magazinplatte (6) ablegbaren Substrathaltern (4) der Anzahl der Substrathaltern (4) entspricht, mit denen der Substrathalterträger (18) bestückbar ist. Apparatus according to Claim 1 or in particular according thereto, characterized in that the number of substrate holders (4) which can be deposited on the magazine plate (6) corresponds to the number of substrate holders (4) with which the substrate holder carrier (18) can be fitted.
Vorrichtung nach einem oder beiden der Ansprüchen 1 und 2 oder insbesondere danach, dadurch gekennzeichnet, dass die Transferkammer (2), der CVD-Reaktor (1) und die Bevorratungskammer (3) mittels einer Vakuumeinrichtung evakuierbar sind und dass der CVD-Reaktor (1) gegenüber der Transferkammer (2) und die Transferkammer (2) gegenüber der Bevorratungskammer (3) mittels Beladetore (14, 16) gasdicht verschließbar sind. Device according to one or both of claims 1 and 2 or in particular according thereto, characterized in that the transfer chamber (2), the CVD reactor (1) and the storage chamber (3) can be evacuated by means of a vacuum device and that the CVD reactor (1 ) relative to the transfer chamber (2) and the transfer chamber (2) relative to the storage chamber (3) by means of loading gates (14, 16) are gas-tightly closed.
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, gekennzeichnet durch zwei oder mehr übereinander in der Bevorratungskammer (3) angeordnete Magazin- platten, wobei der Raum oberhalb jeder Magazinplatten (6) eine Höhe aufweist, dass bei auf den Magazinplatten (6) aufliegenden Substrathaltern (4) eine Gaskonvektion oberhalb der Substrathalter (4) wirksam vermindert ist. Device according to one or more of the preceding claims or in particular according thereto, characterized by two or more magazine elements arranged one above the other in the storage chamber (3). plates, wherein the space above each magazine plates (6) has a height that with the magazine plates (6) resting substrate holders (4) a gas convection above the substrate holder (4) is effectively reduced.
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Magazinplatte (6) flüssigkeitsgekühlt ist und insbesondere hierzu Kühlflüssigkeitskanäle (8) aufweist. Device according to one or more of the preceding claims or in particular according thereto, characterized in that the magazine plate (6) is liquid-cooled and in particular for this purpose has cooling liquid channels (8).
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, gekennzeichnet durch einen Drehantrieb (11) zur insbesondere schrittweisen Drehung einer die Magazinplatte (6) tragenden Tragsäule (9). Device according to one or more of the preceding claims or in particular according thereto, characterized by a rotary drive (11) for in particular stepwise rotation of a support column (9) carrying the magazine plate (6).
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, gekennzeichnet durch auf der Oberseite der Magazinplatte (6) angeordnete Distanzelemente (7), auf welche die Substrathalter (4) aufsetzbar sind. Device according to one or more of the preceding claims or in particular according thereto, characterized by spacer elements (7) arranged on the upper side of the magazine plate (6), on which the substrate holders (4) can be placed.
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Distanzelemente (7) derart ausgebildet sind, dass zwischen der Unterseite des Substrathalters (4) und der Oberseite der Magazinplatte (6) ein Spaltabstandsraum verbleibt, dessen Höhe um einen Faktor 5 bis 10 kleiner ist als der Abstandsfreiraum oberhalb des Substrathalters (4) zu einer Unterseite einer Decke der Bevorratungskammer (3) oder zur Unterseite einer weiteren, oberhalb der Magazinplatte (6) angeordneten Magazinplatte (6'). Device according to one or more of the preceding claims or in particular according thereto, characterized in that the spacer elements (7) are formed such that between the underside of the substrate holder (4) and the top of the magazine plate (6) remains a gap gap space whose height is about one Factor 5 to 10 is smaller than the clearance space above the substrate holder (4) to an underside of a ceiling of the storage chamber (3) or to Bottom of another, above the magazine plate (6) arranged magazine plate (6 ').
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, gekennzeichnet durch eine Steuereinrichtung, mit der der totale Druck innerhalb der Bevorratungskammer (3) und die Gasart innerhalb der Bevorratungskammer (3) einstellbar ist, wobei der freie Abstand oberhalb der Magazinplatte (6) so gewählt ist, dass sich zufolge Temperaturunterschiede innerhalb der Bevorratungskammer (3) keine Gasströmung ausbildet, die in der Lage ist, Partikel aufzuwirbeln. Device according to one or more of the preceding claims or in particular according thereto, characterized by a control device with which the total pressure within the storage chamber (3) and the gas type within the storage chamber (3) is adjustable, wherein the free distance above the magazine plate (6) is chosen so that due to temperature differences within the storage chamber (3) no gas flow is formed, which is able to whirl up particles.
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Distanzelemente (7) eine ringförmige Gestalt aufweisen. Device according to one or more of the preceding claims or in particular according thereto, characterized in that the spacer elements (7) have an annular shape.
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass der Wärmetransport vom aufgeheizten Substrathalter (4) zur gekühlten Magazinplatte (6) im Wesentlichen über einen Wärmefluss über den Spalt zwischen der Unterseite des Substrathalters (4) und der Oberseite der Magazinplatte (6) erfolgt, wobei der Wärmetransport durch die Wahl des Gases und die Höhe des Gasspaltes einstellbar ist. Device according to one or more of the preceding claims or in particular according thereto, characterized in that the heat transfer from the heated substrate holder (4) to the cooled magazine plate (6) substantially via a heat flow through the gap between the underside of the substrate holder (4) and the top of the Magazine plate (6), wherein the heat transfer is adjustable by the choice of the gas and the height of the gas gap.
Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, gekennzeichnet durch eine optische Positioniereinrichtung (21, 22, 23) zur Positionierung der Magazinplatte (6) in einer Be-/ Entladestellung. Vorrichtung zum Beschichten von Substraten, insbesondere Halbleitersubstraten, mit einem CVD-Reaktor (1), der einen Substrathalterträger (18) aufweist, der eine Vielzahl von Substrathaltern (4) trägt, die in einer Prozesskammer des CVD-Reaktors (1) einhergehend mit einem Aufheizen der Substrathalter (4) auf eine Prozesstemperatur behandelbar sind, wobei auf jedem Substrathalter (4) ein oder mehrere zu beschichtende Substrate (5) aufliegen, mit einer Transferkammer (2), die mit dem Reaktor (1) derart verbunden ist, dass mittels eines Beladeorganes (17) der Substrathalterträger (18) mit Substrathaltern (4) beladen bzw. entladen werden kann, und mit einer Bevorratungskammer (3), die mit der Transferkammer (2) derart verbunden ist, dass die in einer Bevorratungskammer (3) bevorrateten Substrathalter (4) mittels des Beladeorganes (17) in die Prozesskammer des Reaktors (1) bringbar bzw. dass die vom Substrathalterträger (18) getragenen Substrathalter (4) aus der Prozesskammer des Reaktors (1) gebracht und in der Bevorratungskammer (3) ablegbar sind, dadurch gekennzeichnet, dass die Bevorratungskammer (3) gemäß einem oder mehreren der vorhergehenden Ansprüche ausgestaltet ist. Device according to one or more of the preceding claims or in particular according thereto, characterized by an optical positioning device (21, 22, 23) for positioning the magazine plate (6) in a loading / unloading position. Apparatus for coating substrates, in particular semiconductor substrates, comprising a CVD reactor (1) having a substrate holder carrier (18) carrying a plurality of substrate holders (4) in a process chamber of the CVD reactor (1) along with a Heating the substrate holder (4) are treatable to a process temperature, wherein on each substrate holder (4) one or more substrates to be coated (5) rest, with a transfer chamber (2) which is connected to the reactor (1) such that by means of a loading member (17) of the substrate holder carrier (18) can be loaded or unloaded with substrate holders (4) and with a storage chamber (3) connected to the transfer chamber (2) such that they are stored in a storage chamber (3) Substrate holder (4) by means of the loading member (17) in the process chamber of the reactor (1) can be brought or that of the substrate holder carrier (18) carried substrate holder (4) from the process chamber of the reactor s (1) and can be deposited in the storage chamber (3), characterized in that the storage chamber (3) is designed according to one or more of the preceding claims.
PCT/EP2011/057037 2010-05-05 2011-05-03 Storage magazine of a cvd plant WO2011138315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010016792A DE102010016792A1 (en) 2010-05-05 2010-05-05 Storage magazine of a CVD system
DE102010016792.4 2010-05-05

Publications (1)

Publication Number Publication Date
WO2011138315A1 true WO2011138315A1 (en) 2011-11-10

Family

ID=44359640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/057037 WO2011138315A1 (en) 2010-05-05 2011-05-03 Storage magazine of a cvd plant

Country Status (3)

Country Link
DE (1) DE102010016792A1 (en)
TW (1) TW201216400A (en)
WO (1) WO2011138315A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851831A (en) * 2015-04-08 2015-08-19 沈阳拓荆科技有限公司 Automatic wafer transfer device applied to semiconductor device and control method
CN111316417A (en) * 2017-11-27 2020-06-19 阿斯莫Ip控股公司 Storage device for storing wafer cassettes for use with a batch furnace
WO2021043754A1 (en) 2019-09-03 2021-03-11 Aixtron Se Loading module for a cvd reactor system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012216394A1 (en) * 2012-09-14 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Provision device for material supply and material allocation of component at engine or cylinder head assembly, has receiving platforms that are rotated about vertical axis and are arranged on common base frame
DE102013101777A1 (en) 2013-02-22 2014-08-28 Aixtron Se Device, used to load and unload chemical vapor deposition system, comprises load carrier including device for loading and unloading substrate carrier with substrates, and gripper to move substrates to be treated into transfer chamber
WO2022175083A1 (en) * 2021-02-22 2022-08-25 Evatec Ag Vacuum treatment apparatus and methods for manufacturing vacuum treated substrates

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340522A1 (en) 1993-11-29 1995-06-01 Leybold Ag Device and method for the gradual and automatic loading and unloading of a coating system
EP0529687B1 (en) 1988-03-30 1996-05-29 Rohm Co., Ltd. Molecular beam epitaxy apparatus
US5674786A (en) * 1993-01-28 1997-10-07 Applied Materials, Inc. Method of heating and cooling large area glass substrates
US6105534A (en) 1996-05-31 2000-08-22 Ipec Precision, Inc. Apparatus for plasma jet treatment of substrates
EP1195795A2 (en) 2000-10-04 2002-04-10 The Boc Group, Inc. Vacuum apparatus and method
US6387185B2 (en) 1997-03-03 2002-05-14 Genus, Inc. Processing chamber for atomic layer deposition processes
DE10159702A1 (en) 2000-12-23 2002-07-18 Aixtron Ag Method and device for processing semiconductor substrates
JP2002208624A (en) * 2001-01-09 2002-07-26 Hitachi Kokusai Electric Inc Substrate treating equipment
US6446646B1 (en) 1997-06-03 2002-09-10 Dainippon Screen Mfg. Co., Ltd. Substrate processing apparatus
US20020170673A1 (en) 2000-04-29 2002-11-21 Tanguay Michael J. System and method of processing composite substrates within a high throughput reactor
DE10232731A1 (en) 2002-07-19 2004-02-05 Aixtron Ag Loading and unloading device for a coating device
US20090194026A1 (en) * 2008-01-31 2009-08-06 Burrows Brian H Processing system for fabricating compound nitride semiconductor devices
DE102008037387A1 (en) 2008-09-24 2010-03-25 Aixtron Ag Method and device for depositing laterally structured layers by means of a shadow mask held magnetically on a substrate holder
US20100273314A1 (en) * 2009-04-23 2010-10-28 Tetsuya Ishikawa Non-circular substrate holders

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832956B2 (en) * 1988-03-23 1996-03-29 松下電器産業株式会社 Thin film processing equipment
JP2981682B2 (en) * 1990-11-30 1999-11-22 新明和工業株式会社 Vacuum evaporation system of continuous film formation method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529687B1 (en) 1988-03-30 1996-05-29 Rohm Co., Ltd. Molecular beam epitaxy apparatus
US5674786A (en) * 1993-01-28 1997-10-07 Applied Materials, Inc. Method of heating and cooling large area glass substrates
DE4340522A1 (en) 1993-11-29 1995-06-01 Leybold Ag Device and method for the gradual and automatic loading and unloading of a coating system
US6105534A (en) 1996-05-31 2000-08-22 Ipec Precision, Inc. Apparatus for plasma jet treatment of substrates
US6387185B2 (en) 1997-03-03 2002-05-14 Genus, Inc. Processing chamber for atomic layer deposition processes
US6446646B1 (en) 1997-06-03 2002-09-10 Dainippon Screen Mfg. Co., Ltd. Substrate processing apparatus
US20020170673A1 (en) 2000-04-29 2002-11-21 Tanguay Michael J. System and method of processing composite substrates within a high throughput reactor
EP1195795A2 (en) 2000-10-04 2002-04-10 The Boc Group, Inc. Vacuum apparatus and method
DE10159702A1 (en) 2000-12-23 2002-07-18 Aixtron Ag Method and device for processing semiconductor substrates
JP2002208624A (en) * 2001-01-09 2002-07-26 Hitachi Kokusai Electric Inc Substrate treating equipment
DE10232731A1 (en) 2002-07-19 2004-02-05 Aixtron Ag Loading and unloading device for a coating device
US20080014057A1 (en) * 2002-07-19 2008-01-17 Aixtron Ag Loading and Unloading Apparatus For A Coating Device
US20090194026A1 (en) * 2008-01-31 2009-08-06 Burrows Brian H Processing system for fabricating compound nitride semiconductor devices
DE102008037387A1 (en) 2008-09-24 2010-03-25 Aixtron Ag Method and device for depositing laterally structured layers by means of a shadow mask held magnetically on a substrate holder
US20100273314A1 (en) * 2009-04-23 2010-10-28 Tetsuya Ishikawa Non-circular substrate holders

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851831A (en) * 2015-04-08 2015-08-19 沈阳拓荆科技有限公司 Automatic wafer transfer device applied to semiconductor device and control method
CN111316417A (en) * 2017-11-27 2020-06-19 阿斯莫Ip控股公司 Storage device for storing wafer cassettes for use with a batch furnace
CN111316417B (en) * 2017-11-27 2023-12-22 阿斯莫Ip控股公司 Storage device for storing wafer cassettes for use with batch ovens
WO2021043754A1 (en) 2019-09-03 2021-03-11 Aixtron Se Loading module for a cvd reactor system

Also Published As

Publication number Publication date
TW201216400A (en) 2012-04-16
DE102010016792A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
DE60024424T2 (en) Semiconductor wafer processor with vertically stacked development chambers and single-axis dual-wafer transfer system
WO2011138315A1 (en) Storage magazine of a cvd plant
EP1774057B1 (en) Device and method for high-throughput chemical vapor deposition
EP2536865B1 (en) Coating device, and method for operating a coating device with a shielding plate
DE69629412T2 (en) Plant for vapor deposition of thin layers
CH673351A5 (en)
DE69927003T2 (en) VACUUM TREATMENT DEVICE
EP2470684B1 (en) Cvd method and cvd reactor
DE102005024118B4 (en) Apparatus and method for reducing particles in the thermal treatment of rotating substrates
WO2007122137A1 (en) Cvd reactor having a process chamber lid which can be lowered
DE112014001586B4 (en) Device for processing two or more substrates in a batch process
EP0343530A2 (en) Vacuum installation
DE3943482A1 (en) Workpiece table for handling semiconductor wafers
EP1954852A1 (en) Cvd reactor with replaceable process chamber cover
DE102016110788A1 (en) Apparatus and method for the production of optoelectronic components, in particular of multi-junction solar cells in a continuous process
DE3923538A1 (en) DEVICE FOR GAS PHASE PROCESSING OF DISK-SHAPED WORKPIECES
CH707855B1 (en) Device for storing objects from the manufacture of electronic components.
EP3422396B1 (en) Device for transport of a substrate, treatment device with a holder plate adapted to a substrate holder of such a device and a method for processing a substrate using such a device for transporting a substrate and treatment plant
DE60132950T2 (en) Vacuum treatment device
DE102008012333A1 (en) Device for the thermal treatment of disc-shaped substrates
EP2812915A1 (en) Substrate treatment system
WO2018001720A1 (en) Method and device for producing coated semiconductor wafers
EP1393355A2 (en) Device for receiving plate-shaped objects and device for handling said objects
CH692741A5 (en) Vacuum processing system for work piece
WO2017216014A1 (en) Coating device and coating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11723292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11723292

Country of ref document: EP

Kind code of ref document: A1