WO2012006306A2 - Surgical instrument comprising an articulatable end effector - Google Patents

Surgical instrument comprising an articulatable end effector Download PDF

Info

Publication number
WO2012006306A2
WO2012006306A2 PCT/US2011/043008 US2011043008W WO2012006306A2 WO 2012006306 A2 WO2012006306 A2 WO 2012006306A2 US 2011043008 W US2011043008 W US 2011043008W WO 2012006306 A2 WO2012006306 A2 WO 2012006306A2
Authority
WO
WIPO (PCT)
Prior art keywords
articulation
end effector
shaft
surgical instrument
distal
Prior art date
Application number
PCT/US2011/043008
Other languages
French (fr)
Other versions
WO2012006306A3 (en
Inventor
Zhifan F. Huang
David A. Witt
Raymond M. Banks
Timothy G. Dietz
Mary E. Mootoo
Gregory W. Johnson
Jeffrey S. Swayze
Jason L. Harris
Foster B. Stulen
Prasanna Malaviya
Richard W. Timm
John V. Hunt
Suzanne E. Thompson
Gavin M. Monson
Robert J. Laird
Omar J. Vakharia
Christopher J. Schall
Cory G. Kimball
Al Mirel
John F. Cummings
Andrew T. Beckman
Original Assignee
Ethicon Endo-Surgery, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/832,345 external-priority patent/US9149324B2/en
Priority claimed from US12/832,361 external-priority patent/US8834466B2/en
Application filed by Ethicon Endo-Surgery, Inc. filed Critical Ethicon Endo-Surgery, Inc.
Publication of WO2012006306A2 publication Critical patent/WO2012006306A2/en
Publication of WO2012006306A3 publication Critical patent/WO2012006306A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00305Constructional details of the flexible means
    • A61B2017/00309Cut-outs or slits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2902Details of shaft characterized by features of the actuating rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • A61B2017/291Handles the position of the handle being adjustable with respect to the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00077Electrical conductivity high, i.e. electrically conducting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1412Blade
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1455Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms

Definitions

  • the present invention relates to medical devices and methods. More particularly, the present invention relates to electrosurgical instruments and methods for sealing and transecting tissue.
  • the surgical instrument can comprise opposing first and second jaws, wherein the face of each jaw can comprise an electrode.
  • the tissue can be captured between the jaw faces such that electrical current can flow between the electrodes in the opposing jaws and through the tissue positioned therebetween.
  • Such instruments may have to seal or "weld" many types of tissues, such as anatomic structures having walls with irregular or thick fibrous content, bundles of disparate anatomic structures, substantially thick anatomic structures, and/or tissues with thick fascia layers such as large diameter blood vessels, for example. With particular regard to sealing large diameter blood vessels, for example, such applications may require a high strength tissue weld immediately post-treatment.
  • a surgical instrument can comprise a handle, a first conductor, a second conductor, and an end effector comprising a first jaw and a second jaw, wherein one of the first jaw and the second jaw is movable relative to the other of the first jaw and the second jaw between an open position and a closed position.
  • the end effector can further comprise a first electrode electrically coupled with the first conductor, and a second electrode electrically coupled with the second conductor, the second electrode comprising a porous material, and an evaporable material stored within the porous material.
  • a surgical instrument can comprise a handle, a first conductor, a second conductor electrically engageable with a power source, and an end effector comprising a first jaw and a second jaw, wherein one of the first jaw and the second jaw is movable relative to the other of the first jaw and the second jaw between an open position and a closed position.
  • the end effector can further comprise a first electrode electrically coupled with the first conductor, and a second electrode electrically coupled with the second conductor, wherein the second electrode comprises a first material comprised of an electrically non-conductive material and a second material comprised of an electrically conductive material, and wherein the second material is interdispersed within the first material when the second electrode is below a switching temperature.
  • the second material is configured to withdraw from the first material when the temperature of the second material at least one of meets or exceeds the switching temperature.
  • an end effector for use with a surgical instrument can comprise a first conductor, a second conductor, a first jaw, and a second jaw, wherein one of the first jaw and the second jaw is movable relative to the other of the first jaw and the second jaw between an open position and a closed position.
  • the end effector can further comprise a first electrode electrically coupled with the first conductor and a second electrode electrically coupled with the second conductor, the second electrode comprising a porous material and an evaporable material stored within the porous material.
  • a surgical instrument can comprise a first jaw comprising an electrode, a second jaw, and a control circuit, wherein the control circuit can comprise a supply conductor configured to be placed in electrical communication with a positive terminal of a power source, a temperature sensor, and a field effect transistor.
  • the field effect transistor can comprise a source terminal in electrical communication with the supply conductor, a drain terminal in electrical communication with the electrode, a gate terminal in electrical
  • a channel comprising a semiconductor material in electrical communication with the source terminal and the drain terminal.
  • a surgical instrument can comprise a handle comprising a trigger, a shaft comprising a proximal shaft portion coupled to the handle and a distal shaft portion, and an articulation joint connected to the distal shaft portion.
  • the surgical instrument can further comprise an end effector including a proximal end coupled to the articulation joint, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode.
  • the surgical instrument can further comprise a drive member extending through the articulation joint, wherein the drive member is operably coupled with the trigger, wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector, wherein the drive member comprises a first flexible layer and a second flexible layer, wherein the first flexible layer is comprised of an electrically conductive material, and wherein the second flexible layer is comprised of an electrically insulative material.
  • a surgical instrument can comprise a handle comprising a trigger and, in addition, a shaft comprising a proximal shaft portion coupled to the handle, a distal shaft portion, and an articulation joint rotatably connecting the proximal shaft portion and the distal shaft portion, wherein one of the proximal shaft portion and the distal shaft portion comprises a detent, wherein the other of the proximal shaft portion and the distal shaft portion comprises a plurality of notches configured to selectively receive the detent, and wherein each notch is configured to removably hold the distal shaft portion at an articulated angle with respect to the proximal shaft portion.
  • the surgical instrument can further comprise an end effector including a proximal end coupled to the distal shaft portion, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode.
  • the surgical instrument can further comprise a drive member extending through the articulation joint of the shaft, wherein the drive member is operably coupled with the trigger, and wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector.
  • a surgical instrument can comprise a handle comprising a trigger, a shaft comprising a proximal shaft portion coupled to the handle and a distal shaft portion, and an articulation joint connected to the distal shaft portion.
  • the surgical instrument can further comprise an end effector coupled to the articulation joint including a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode.
  • the surgical instrument can further comprise a flexible conductor in electrical communication with the electrode, wherein the flexible conductor extends through the shaft and the articulation joint and, in addition, a spring comprising a proximal end mounted to the flexible conductor, a distal end mounted to the flexible conductor, and an intermediate portion connecting the proximal end and the distal end, wherein the intermediate portion extends along the flexible conductor, and wherein the intermediate portion is configured to flex between a first configuration defining a first length between the proximal end and the distal end and a second configuration defining a second length between the proximal end and the distal end.
  • the surgical instrument can further comprise a drive member extending through the articulation joint of the shaft, wherein the drive member is operably coupled with the trigger, and wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector.
  • a surgical instrument can comprise a handle comprising a trigger and an articulation actuator and, in addition, a shaft comprising a proximal shaft portion coupled to the handle, wherein the proximal shaft portion defines a longitudinal axis, an articulation drive member operably coupled with the articulation actuator, wherein the articulation drive member is configured to be rotated about the longitudinal axis by the articulation actuator, and a distal shaft portion rotatably coupled to the proximal shaft portion about a pivot axis, wherein the articulation drive member is operably engaged with the distal shaft portion, and wherein the rotation of the articulation drive member about the longitudinal axis is configured to rotate the distal shaft portion about the pivot axis.
  • the surgical instrument can further comprise an end effector including a proximal end coupled to the distal shaft portion, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode, and, in addition, a drive member extending through the articulation joint of the shaft, wherein the drive member is operably coupled with the trigger, and wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector.
  • an end effector including a proximal end coupled to the distal shaft portion, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode, and, in addition, a drive member extending through the articulation joint of the shaft, wherein the drive member is operably coupled with the trigger, and where
  • a surgical instrument can comprise a handle including a trigger, a shaft, an articulation joint pivotably coupling the handle and the shaft, wherein the handle comprises a socket and the shaft comprises a ball positioned within the socket, and an end effector comprising a proximal end coupled to the shaft, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode.
  • the surgical instrument can further comprise a drive member extending through the articulation joint of the shaft, wherein the drive member is operably coupled with the trigger, wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector.
  • a surgical instrument can comprise a handle comprising a trigger and an articulation actuator, wherein the articulation actuator comprises a first attachment portion and a second attachment portion, a shaft extending from the handle, and an articulation joint connected to the shaft, the articulation joint comprising an outer housing, an elongate aperture extending through the outer housing, and support structures extending inwardly from the outer housing.
  • the surgical instrument can further comprise an end effector including a proximal end coupled to the shaft, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, an electrode, a first lateral side portion, and a second lateral side portion, a first articulation driver coupled to the first lateral side portion of the end effector and the first attachment portion of the articulation actuator such that the rotation of the articulation actuator in a first direction articulates the end effector toward the first lateral side portion, a second articulation driver coupled to the second lateral side portion of the end effector and the second attachment portion of the articulation actuator such that the rotation of the articulation actuator in a second direction articulates the end effector toward the second lateral side portion; and a drive member extending between the support structures of the articulation joint, wherein the drive member is operably coupled with the trigger, and wherein an actuation of the trigger
  • FIG. 1 is a perspective view of an electrosurgical instrument.
  • FIG. 2 is a side view of a handle of the surgical instrument of FIG. 1 with a half of a handle body removed to illustrate some of the components therein.
  • FIG. 3 is a perspective view of an electrosurgical instrument.
  • FIG. 4A illustrates an end effector of an electrosurgical instrument in an open configuration.
  • FIG. 4B illustrates the end effector of FIG. 4A in a closed configuration.
  • FIG. 4C is a sectional view of a translatable member shaped like an I-beam which is configured to close the end effector of the surgical instrument of FIG. 3.
  • FIG. 5 is a perspective view of an electrosurgical instrument.
  • FIG. 6 is partial cross-sectional view of a shaft and an end effector of the electrosurgical instrument of FIG. 5.
  • FIG. 7 illustrates the end effector of FIG. 6 in a rotated and articulated configuration.
  • FIG. 8 is a cross-sectional view of the shaft of FIG. 6.
  • FIG. 9 is a partial cross-sectional view of a shaft and an end effector of an
  • FIG. 10 illustrates the end effector of FIG. 9 in an articulated configuration.
  • FIG. 11 is a cross-sectional view of the shaft of FIG. 9.
  • FIG. 12 is a perspective view illustrating the end effector of FIG. 9 in an unarticulated configuration, illustrated with phantom lines, and an articulated position, illustrated with solid lines.
  • FIG. 13 is a perspective view of an articulation joint about which an end effector can be rotated.
  • FIG. 14 is a perspective view of an end effector in an open configuration, a distal end of a shaft of an electrosurgical instrument, and an articulation joint connecting the end effector and the distal end of the shaft.
  • FIG. 15 is a perspective view of the end effector of FIG. 14 in an open configuration.
  • FIG. 16 is a perspective view of an articulation joint of an electrosurgical instrument illustrated in an unarticulated configuration.
  • FIG. 17 is a perspective view of the articulation joint of FIG. 16 in an articulated configuration.
  • FIG. 18 a perspective view of an end effector of an electrical surgical instrument illustrated in an open configuration, a distal end of a shaft, and an articulation joint connecting the end effector and the distal end of the shaft, wherein the end effector is illustrated as being articulated to a first side.
  • FIG. 19 is a perspective view of the end effector of FIG. 18 in an unarticulated configuration.
  • FIG. 20 is a perspective view of the end effector of FIG. 20 articulated to a second side.
  • FIG. 21 is a perspective view of an end effector of an electrical surgical instrument, a distal end of a shaft, and an articulation joint connecting the end effector and the distal end of the shaft.
  • FIG. 22 is a perspective view of the articulation joint of FIG. 21 illustrated with some components removed.
  • FIG. 23 is a top view of the articulation joint of FIG. 21 illustrated with some components removed.
  • FIG. 24 is a top view of a support member engaged with a drive member extending through an articulation joint.
  • FIG. 25 is a perspective view of an end effector of an electrical surgical instrument illustrated in an open configuration, a distal end of a shaft, and an articulation joint connecting the end effector and the distal end of the shaft, wherein the end effector is illustrated in an unarticulated configuration.
  • FIG. 26 is a perspective view of the end effector of FIG. 25 illustrated in an articulated configuration.
  • FIG. 27 is a perspective view of an electrosurgical instrument comprising a handle, a shaft extending from the handle, and an end effector configured to be articulated relative to the shaft by an actuator dial in the handle.
  • FIG. 28 is a top view of the electrosurgical instrument of FIG. 27.
  • FIG. 29 is a partial cross-sectional view of an articulation joint connecting the shaft and the end effector of the electrosurgical instrument of FIG. 27.
  • FIG. 30 is a cross-sectional end view of the articulation joint of the electrosurgical instrument of FIG. 27 taken along line 30-30 in FIG. 29.
  • FIG. 31 is a cross-sectional perspective view of the articulation joint of the
  • electrosurgical instrument of FIG. 27 in an unarticulated configuration.
  • FIG. 32 is a cross-sectional perspective view of the articulation joint of the
  • electrosurgical instrument of FIG. 27 in an articulated configuration.
  • FIG. 33 is another cross-sectional view of the articulation joint of the electrosurgical instrument of FIG. 27 in an unarticulated configuration.
  • FIG. 34 is a cross-sectional end view of the articulation joint of the electrosurgical instrument of FIG. 27 in an unarticulated configuration.
  • FIG. 35 is another cross-sectional view of the articulation joint of the electrosurgical instrument of FIG. 27 in an articulated configuration.
  • FIG. 36 is a cross-sectional end view of the articulation joint of the electrosurgical instrument of FIG. 27 in an articulated configuration.
  • FIG. 37 is a perspective view of an articulation actuator of an electrosurgical instrument configured to articulate an end effector of the instrument.
  • FIG. 38 is a perspective view of an electrosurgical instrument comprising a handle, a shaft, and an end effector, wherein the shaft is articulatable relative to the handle.
  • FIG. 39 illustrates a ball and socket joint configured to permit the shaft of FIG. 38 to articulate relative to the handle.
  • embodiments means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
  • appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment.
  • the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
  • tissue "welding” and tissue “fusion” may be used interchangeably herein to describe thermal treatments of a targeted tissue volume that result in a substantially uniform fused-together tissue mass, for example, in welding blood vessels that exhibit substantial burst strength immediately post- treatment.
  • the strength of such welds is particularly useful for (i) permanently sealing blood vessels in vessel transection procedures; (ii) welding organ margins in resection procedures; (iii) welding other anatomic ducts wherein permanent closure is required; and also (iv) for performing vessel anastomosis, vessel closure or other procedures that join together anatomic structures or portions thereof.
  • tissue as disclosed herein is to be distinguished from “coagulation”, "hemostasis” and other similar descriptive terms that generally relate to the collapse and occlusion of blood flow within small blood vessels or vascularized tissue.
  • coagulation any surface application of thermal energy can cause coagulation or hemostasis ⁇ but does not fall into the category of "welding” as the term is used herein.
  • welding does not create a weld that provides any substantial strength in the treated tissue.
  • the phenomena of truly "welding" tissue as disclosed herein may result from the thermally-induced denaturation of collagen and other protein molecules in a targeted tissue volume to create a transient liquid or gel-like proteinaceous amalgam.
  • a selected energy density is provided in the targeted tissue to cause hydrothermal breakdown of intra- and intermolecular hydrogen crosslinks in collagen and other proteins.
  • the denatured amalgam is maintained at a selected level of hydration— without desiccation—for a selected time interval which can be very brief.
  • the targeted tissue volume is maintained under a selected very high level of mechanical compression to insure that the unwound strands of the denatured proteins are in close proximity to allow their intertwining and entanglement.
  • the intermixed amalgam results in protein entanglement as re-crosslinking or renaturation occurs to thereby cause a uniform fused-together mass.
  • Various embodiments disclosed herein provide electrosurgical jaw structures adapted for transecting captured tissue between the jaws and for contemporaneously welding the captured tissue margins with controlled application of RF energy.
  • the jaw structures can comprise a scoring element which can cut or score tissue independently of the tissue capturing and welding functions of the jaw structures.
  • the jaw structures can comprise first and second opposing jaws that carry positive temperature coefficient (PTC) bodies for modulating RF energy delivery to the engaged tissue.
  • PTC positive temperature coefficient
  • a surgical instrument can be configured to supply energy, such as electrical energy and/or heat energy, for example, to the tissue of a patient.
  • energy such as electrical energy and/or heat energy
  • various embodiments disclosed herein can comprise electrosurgical jaw structures adapted for transecting captured tissue positioned between the jaws and for contemporaneously welding margins of the captured tissue with the controlled application of RF energy, for example.
  • Electrosurgical instrument 100 can comprise a proximal handle 105, a distal working end or end effector 110, and an introducer or elongate shaft 108 disposed therebetween.
  • End effector 110 may comprise a set of openable and closeable jaws, such as an upper first jaw 120A and a lower secondjaw 120B, for example, which can comprise straight and/or curved configurations.
  • First jaw 120A and secondjaw 120B may each comprise an elongate slot or channel 142A and 142B (see FIG. 3), respectively, therein disposed within their respective middle portions along axis 152, for example.
  • first jaw 120 A and secondjaw 120B may be coupled to an electrical source or RF source 145 and a controller 150 through electrical leads in cable 152. Controller 150 may be used to activate electrical source 145.
  • Handle 105 may comprise a lever arm, or trigger, 128 which may be pulled along a path 129.
  • Lever arm 128 may be coupled to a movable cutting member disposed within elongate shaft 108 by a shuttle 146 operably engaged to an extension 127 of lever arm 128.
  • the shuttle 146 may further be connected to a biasing device, such as spring 141, for example, which may also be connected to the second handle body 106B, wherein the spring 141 can be configured to bias the shuttle 146 and thus the cutting member in a proximal direction.
  • a locking member 131 may be moved by a locking switch 130 (see FIG. 1) between a locked position in which the shuttle 146 can be prevented from moving distally and an unlocked position in which the shuttle 146 may be allowed to freely move in the distal direction toward the elongate shaft 108.
  • the handle 105 can be any type of pistol-grip or other type of handle known in the art that is configured to carry actuator levers, triggers and/or sliders for actuating the first jaw 120A.
  • Elongate shaft 108 may have a cylindrical and/or rectangular cross-section and can comprise a thin- wall tubular sleeve that extends from handle 105.
  • Elongate shaft 108 may include a bore extending therethrough for carrying actuator mechanisms configured to actuate the jaws and/or for carrying electrical leads configured to conduct electrical energy to electrosurgical components of end effector 110.
  • End effector 110 may be adapted for capturing, welding and transecting tissue.
  • at least one of first jaw 120A and second jaw 120B may be closed to capture or engage tissue therebetween.
  • First jaw 120 A and second jaw 120B may also apply compression to the tissue.
  • Elongate shaft 108, along with first jaw 120A and second jaw 120B, can be rotated a full 360° degrees, as shown by arrow 117, relative to handle 105 through one or more rotary contacts, for example.
  • First jaw 120A and second jaw 120B can remain openable and/or closeable while rotated.
  • end effector 110 may be coupled to electrical source 145 and controller 150.
  • Controller 150 can regulate the electrical energy delivered by electrical source 145 which in turn delivers electrosurgical energy to electrodes within the jaws 120 A, 120B.
  • the energy delivery may be initiated by an activation button 124 operably engaged with lever arm 128 and in electrically communication with controller 150 via cable 152.
  • the electrosurgical energy delivered by electrical source 145 may comprise radiofrequency (RF) energy.
  • the electrodes of the jaw members may carry variable resistive positive temperature coefficient (PTC) bodies that are coupled to electrical source 145 and controller 150. Additional details regarding electrosurgical end effectors, jaw closing mechanisms, and electrosurgical energy-delivery surfaces are described in the following U.S.
  • FIG. 3 illustrates an electrosurgical instrument 200 comprising a handle end 205, a shaft, or introducer, 206, and an end effector, or working end, 210.
  • Shaft 206 can comprise any suitable cross-section, such as a cylindrical and/or rectangular cross-section, for example, and can comprise a tubular sleeve that extends from handle 205.
  • End effector 210 can extend from shaft 206 and may be adapted for welding and transecting tissue.
  • end effector 210 can comprise an openable and closeable jaw assembly which can, in various embodiments, comprise straight, curved, and/or any other suitably configured jaws.
  • the end effector 210 can comprise a first jaw 222a and a second jaw 222b, wherein at least one of the jaws 222a and 222b can move relative to the other. In at least one
  • the first jaw 222a can be pivoted about an axis relative to the second jaw 222b in order close onto, capture, and/or engage tissue positioned between the jaws and apply a compression force or pressure thereto.
  • the handle 205 can comprise a lever arm, or trigger, 228 adapted to actuate a translatable member 240. More particularly, in at least one embodiment, the lever arm 228 can be actuated in order to move member 240 distally toward the distal end 211 of end effector 210 and, when member 240 is advanced distally, member 240 can contact first jaw 222a and move it downwardly toward second jaw 222b, as illustrated in FIG. 4B.
  • the translatable member 240 can comprise a proximal rack portion and the lever arm 228 can comprise a plurality of gear teeth which can be configured to drive the proximal rack portion of translatable member 240 distally. In certain embodiments, rotation of the lever arm 228 in the opposite direction can drive the translatable member 240 proximally.
  • the translatable member 240 can be configured to contact first jaw 222a and pivot jaw 222a toward second jaw 222b.
  • the distal end of reciprocating member 240 can comprise a flanged "I"-beam configured to slide within a channel 242 in the jaws 222a and 222b.
  • the I-beam portion of member 240 can comprise an upper flange 250a, a lower flange 250b, and a center, or intermediate, portion 251 connecting the flanges 250a and 250b.
  • the flanges 250a and 250b and the center portion 251 can define "c"-shaped channels on the opposite sides of member 240.
  • the flanges 250a and 250b can define inner cam surfaces 252a and 252b, respectively, for slidably engaging outward-facing surfaces 262a and 262b of jaws 222a and 222b, respectively.
  • the inner cam surface 252a can comprise a suitable profile configured to slidably engage the outer surface 262a of first jaw 222a and, similarly, the inner cam surface 252b can comprise a suitable profile configured to slidably engage the outer surface 262b of second jaw 222b such that, as translatable member 240 is advanced distally, the cam surfaces 252a and 252b can co-operate to cam first jaw member 222a toward second jaw member 222b and configure the end effector 240 in a closed configuration. As seen in FIG.
  • jaws 222a and 222b can define a gap, or dimension, D between the first and second electrodes 265a and 265b of jaws 222a and 222b, respectively, when they are positioned in a closed configuration.
  • dimension D can equal a distance between approximately 0.0005" to approximately 0.005", for example, and, in at least one embodiment, between approximately 0.001" and approximately 0.002", for example.
  • the translatable member 240 can be at least partially advanced in order to move the first jaw 222a toward the second jaw 222b. Thereafter, the movable member 240 can be advanced further distally in order to transect the tissue positioned between the first jaw 222a and the second jaw 222b.
  • the distal, or leading, end of the I- beam portion of 240 can comprise a sharp, or knife, edge which can be configured to incise the tissue.
  • electrical current can be supplied to the electrodes in the first and second jaw members in order to weld the tissue, as described in greater detail further below.
  • the operation of the trigger 228 can advance the knife edge of the cutting member 240 to the very distal end of slot or channel 242.
  • the trigger 288 can be released and moved into its original, or unactuated, position in order to retract the cutting member 240 and allow first jaw 222a to move into is open position again.
  • the surgical instrument can comprise a jaw spring configured to bias the first jaw 222a into its open position and, in addition, a trigger spring configured to bias the trigger 228 into its unactuated position.
  • the surgical instrument can comprise a first conductor, such as an insulated wire, for example, which can be operably coupled with the first electrode 265a in first jaw member 222a and, in addition, a second conductor, such as an insulated wire, for example, which can be operably coupled with the second electrode 265b in second jaw member 222b.
  • a first conductor such as an insulated wire
  • a second conductor such as an insulated wire
  • the first and second conductors can extend through shaft 206 between an electrical connector in handle 205 and the electrodes 265a and 265b in the end effector 210.
  • the first and second conductors can be operably coupled to electrical source 245 and controller 250 by electrical leads in cable 252 in order for the electrodes 265a and 265b to function as paired bi-polar electrodes with a positive polarity (+) and a negative polarity (-). More particularly, in at least one embodiment, one of the first and second electrodes 265a and 265b can be operably coupled with a positive (+) voltage terminal of electrical source 245 and the other of the first and second electrodes 265a and 265b can be electrically coupled with the negative voltage (-) terminal of electrical source 245.
  • the cutting member 240 can act as an electrode when it is electrically coupled to a positive terminal or negative terminal of the source 245, and/or any suitable ground.
  • an electrosurgical instrument can comprise a shaft and an end effector, wherein the end effector may not articulate relative to the shaft.
  • the shaft can comprise a rigid spine and/or rigid outer housing which can be mounted to the end effector and a handle of the electrosurgical instrument.
  • a jaw member of the end effector can be rigidly mounted to the spine and/or outer housing of the shaft.
  • an electrosurgical instrument such as instrument 300, for example, can comprise an end effector 310 which can be articulated relative to a shaft 308.
  • the end effector 310 can comprise a first jaw 320A which is pivotably connected to a second jaw 320B, wherein the second jaw 320B can be mounted to at least a portion of shaft 308.
  • the shaft 308 can comprise, one, a proximal portion 309A mounted to a handle 305 of the surgical instrument 300 and, two, a distal portion 309B mounted to second jaw 320B of the end effector 310.
  • the proximal portion 309A of shaft 308 can comprise a proximal outer housing 362A and the distal portion 309B of shaft 308 can comprise a distal outer housing 362B.
  • the shaft 308 can further comprise a spine 364 extending through apertures defined within the outer housings 362 A and 362B wherein, in at least one such embodiment, the spine 364 can be mounted to the distal outer housing 362B such that longitudinal movement, or displacement, of the distal portion 309B relative to the proximal portion 309 A can be prevented, or at least substantially inhibited.
  • adjacent portions of the outer housings 362 A and 362B can comprise an articulation joint 360.
  • the spine 364 can comprise an actuator configured to rotate distal outer housing 362b and end effector 310 relative to proximal outer housing 362a.
  • the spine 364 can be fixedly mounted to distal outer housing 362b such that, when the spine 364 is rotated about longitudinal axis 399, the distal outer housing 362b is also rotated about axis 399.
  • the distal outer housing 362b can be cammed or rotated laterally relative to axis 399 as illustrated in FIG. 6.
  • the proximal outer housing 362a can comprise a cam 372a against which the distal outer housing 362b can be positioned, or positioned closely adjacent to, such that, when the distal outer housing 362b is rotated, the cam 372a can cause the distal outer housing 362b to pivot to the side.
  • the cam 372a can comprise an angled surface and the distal outer housing 362b can comprise an opposing angled surface, or cam follower, 372b, wherein, in at least one embodiment, the angled surface 372b can be parallel, or at least substantially parallel, to the angled surface of cam 372a.
  • the distal shaft portion 309b and end effector 310 can be rotated about a longitudinal axis and articulated about a different axis simultaneously. More particularly, as distal shaft portion 309b and end effector 310 are rotated about longitudinal axis 399, as described above, the distal shaft portion 309b and end effector 310 can be pivoted about an axis 398 which is perpendicular, or at least substantially
  • the distal shaft portion 309b can be rotated such that a first lateral side 31 lb of distal shaft portion 309b is positioned adjacent to a first lateral side 31 la of the proximal shaft portion 309a when the distal shaft portion 309b is in an unarticulated position and, after the distal shaft portion 309b has been articulated, the first lateral side 31 lb of distal shaft portion 309b can be positioned adjacent to a second lateral side 313a of proximal shaft portion 309a and, similarly, a second lateral side 313b of distal shaft portion 309b can be positioned adjacent to the first lateral side 31 la of proximal shaft portion 309a.
  • the angled surface of cam 372a can be oriented at an approximately 22.5 degree angle, or an approximately 45 degree angle, for example, with respect to longitudinal axis 399.
  • the angled surface of cam follower 372b can also be oriented at an approximately 22.5 degree angle with respect to axis 399, for example.
  • the angled surface of cam follower 372b can be oriented at an approximately 45 degree angle with respect to axis 399, for example.
  • the spine 364 can be rotated for approximately 20 degrees about longitudinal axis 399 and, owing to the configuration of the co-operating cam and cam follower of the outer housings 362a and 362b, the distal portion 309B and end effector 310 can be rotated
  • the spine 364 can be rotated approximately 90 degrees to produce an approximately 45 degree articulation of distal portion 309B and end effector 310, for example.
  • the spine 364 can be rotated approximately 180 degrees to produce an approximately 90 degree articulation of distal portion 309B and end effector 310, for example.
  • the degree in which spine 364 is rotated about axis 399 can result in a change in the articulation angle of distal outer housing 362b which is less than that amount.
  • Such an articulation angle is depicted in FIG. 7 as angle 370 which is defined between the unarticulated longitudinal axis 399 of shaft 308 and the articulated longitudinal axis 399' of distal portion 309B.
  • the ratio between the rotation of spine 364 and the articulation of distal outer housing 362b can depend on the angle of cam surface 372a and/or the angle of cam follower surface 372b. Various ratios are contemplated such as about 1.5: 1, about 2:1, and/or about 4: 1, for example.
  • the spine 364 can be sufficiently stiff so as to transmit a rotational torque to the distal shaft portion 309b but sufficiently flexible in order to bend within articulation joint 360 and accommodate the articulation of distal shaft portion 309b.
  • the spine 364 can be configured to rotate within a cavity 363 defined within the outer housing portion 362a such that the spine 364 can rotate relative to proximal outer housing 362a.
  • the spine 364 can be closely received within the cavity 363 such that the outer perimeter of the spine 364 is positioned adjacent to the inner sidewalls of the cavity 363.
  • the surgical instrument 300 can further comprise an articulation actuator 302 operably engaged with the spine 364 such that, when the actuator 302 is rotated about axis 399, the spine 364 is also rotated about axis 399.
  • the spine 364 can be rotated in a clockwise direction, indicated by arrow CW, when actuator 302 is rotated in direction CW and, correspondingly, the spine 364 can be rotated in a counter-clockwise direction, indicated by arrow CCW, when actuator 302 is rotated in direction CCW, for example.
  • the actuator 302 can comprise one or more projections and/or one or more grooves which can be configured to allow a surgeon to easily grip and manipulate the actuator 302.
  • the handle 305 can further comprise a locking mechanism which can be configured to releasably hold actuator 302 in position.
  • the handle 305 can comprise a biasing member, such as a spring, for example, which can be configured to bias actuator 302 against a locking plate configured to hold actuator 302 in position and prevent end effector 310 from being articulated.
  • the actuator 302 can be pulled proximally against the biasing force of the biasing member, for example, and away from the locking plate in order to disengage actuator 302 from the locking plate.
  • the actuator 302 can be rotated about axis 399 in order to articulate end effector 310.
  • the actuator 302 can be released thereby allowing the biasing spring to position the actuator 302 into engagement with the locking plate once again.
  • the shaft 308 of surgical instrument 300 can further comprise a shaft actuator 304 which can be mounted to proximal outer housing portion 362a.
  • the shaft actuator 304 can be mounted to shaft 308 such that the rotation of shaft actuator 304 can rotate shaft 308 and end effector 310 about longitudinal axis 399.
  • the shaft actuator 304 can be utilized to rotate the shaft 308 and end effector 310 without rotating the spine 364 relative to proximal shaft portion 309a and, in addition, without articulating the end effector 310.
  • the articulation actuator 302 can be releasably engageable with the shaft actuator 304 wherein, when the articulation actuator 302 is engaged with the shaft actuator 304, the actuator 302 can be rotated with the actuator 304 without articulating the end effector 310 and wherein, when the actuator 302 is disengaged from the shaft actuator 304, the rotation of one of actuator 302 or actuator 304 relative to the other can articulate the end effector 310 in either the CW or CCW directions, depending on the direction of relative rotation between the actuators 302 and 304.
  • the shaft actuator 304 can comprise the locking plate against which the articulation actuator 302 can be biased in order to releasably lock the actuator 302, and the articulation angle of end effector 310, into position.
  • the handle 305 can further comprise a second locking plate, for example, against which the shaft actuator 304 can be biased in order to releasably hold shaft actuator 304 in position.
  • the handle 305 can comprise a second biasing member configured to bias the shaft actuator 304 against the second locking plate in order to hold it in position.
  • the articulation actuator 302 and the shaft actuator 304 can be operated independently of one another and/or concurrently with one another.
  • the distal shaft portion 309b of shaft 308 is depicted as being articulated relative to the proximal shaft portion 309a.
  • the angled surface 372b of distal shaft portion 309b can be configured to contact and slide across the face of the angled surface 372a of proximal shaft portion 309a.
  • the outer housings 362a and 362b of shaft portions 309a and 309b, respectively can be circular, or at least substantially circular, in cross-section and, owing to the angled surfaces 372a and 372b, the end faces formed by the angled surfaces 372a and 372b can be oval, or at least substantially oval, in shape.
  • the distal shaft portion 309b can be rotated about a longitudinal axis such that the distal shaft portion 309b is rotated in a circular manner relative to proximal shaft portion 309a. Such a circular relationship is depicted in FIG. 13.
  • the spine 364 and/or the outer housing 362b of distal shaft portion 309b can be rotated concentrically about the longitudinal axis extending therethrough.
  • the surgical instrument 300 can further comprise a biasing or tensioning device, such as a spring, for example, which can be configured to apply a biasing force to the spine 364 such that the cam follower surface 372b of distal shaft portion 309b is positioned against, and remains in contact with, the cam surface 372a of proximal shaft portion 309a.
  • a biasing or tensioning device such as a spring, for example, which can be configured to apply a biasing force to the spine 364 such that the cam follower surface 372b of distal shaft portion 309b is positioned against, and remains in contact with, the cam surface 372a of proximal shaft portion 309a.
  • the surgical instrument 300 can further comprise a drive member, such as drive member 366, for example, which can be operably coupled with a cutting member 340 positioned within the end effector 310.
  • the drive member 366 can be operably coupled with a trigger, such as trigger 128 (FIG. 1), for example, of the surgical instrument handle and can extend through a cavity 365 (FIG. 6) defined within the spine 364 of the shaft 308.
  • the outer housings 362a, 362b, the cavity 363 defined within the outer housings 362a, 362b, the spine 364, the cavity 365 extending through spine 364, and the drive member 366 can be concentrically, or at least substantially concentrically, positioned along a common axis.
  • the drive member 366 can be closely received within the cavity 365 such that the outer perimeter of drive member 366 is positioned adjacent to the inner sidewalls of cavity 365.
  • the outer housings 362a, 362b and spine 364 can each comprise a tubular or cylindrical configuration and the drive shaft 366 can comprise a cylindrical rod, for example.
  • the trigger 128 can be actuated in order to move the drive member 366 between a proximal position and a distal position in order to advance the cutting member 340, and/or an I-beam member, distally within the end effector 310.
  • a surgical instrument such as surgical instrument 400, for example, can comprise a shaft 408 comprising an
  • the shaft 408 can comprise a proximal shaft portion 409a mounted to a handle of the surgical instrument 400 and a distal shaft portion 409c mounted to an end effector 410.
  • the shaft 408 can further comprise an intermediate shaft portion 409b positioned between the proximal shaft portion 409a and the distal shaft portion 409c.
  • the intermediate shaft portion 409b can be configured to permit the articulation joint 460 to articulate about two axes of rotation, i.e., first axis 497 and second axis 498, for example.
  • the shaft 408 can include an outer housing comprised of a proximal outer housing portion 462a, an intermediate housing portion 462b, and a distal outer housing portion 462c.
  • the shaft 408 can further comprise an articulation actuator 468 positioned within a cavity 463 extending through the outer housing portions 462a and 462b, a spine 464 positioned within a cavity 465 extending through the articulation actuator 468, and a drive member 466 positioned within a cavity 467 extending through the spine 464.
  • the spine 464 can extend through proximal shaft portion 409a and intermediate shaft portion 409b and can be rigidly mounted to, one, at least one of the handle of the surgical instrument and the proximal outer housing 462a and, two, at least one of the end effector 410 and distal outer housing 462c.
  • the spine 464 can be sufficiently stiff so as to prevent, or at least substantially inhibit, the distal shaft portion 409c and end effector 410 from rotating relative to the proximal shaft portion 409a about longitudinal axis 499 and/or translating distally relative to the intermediate shaft portion 409b.
  • the articulation actuator 468 can be mounted to intermediate outer housing 462b such that, when the articulation actuator 468 is rotated about longitudinal axis 499, the intermediate shaft portion 409b can be rotated relative to both the proximal shaft portion 409a and the distal shaft portion 409c. More particularly, the intermediate outer housing 462b can be rotated relative to both the proximal outer housing 462a and the distal outer housing 462c.
  • the intermediate shaft portion 409b can articulate relative to the proximal shaft portion 409a and, in addition, the distal shaft portion 409c can articulate relative to the intermediate shaft portion 409b.
  • the proximal outer housing 462a can comprise a first cam surface 472a and the intermediate outer housing 462b can comprise a first cam follower surface 472b which can be configured to contact the first cam surface 472a when the intermediate shaft portion 409b is rotated relative to the proximal shaft portion 409a. Similar to the above, the rotation of first cam follower surface 472b relative to first cam surface 472a can cause the intermediate shaft portion 409b to pivot or rotate relative to proximal shaft portion 409a about first axis 497.
  • the first cam surface 472a can comprise an angled surface which extends transversely to longitudinal axis 499 and, similarly, the first cam follower surface 472b can comprise an angled surface which also extends transversely to longitudinal axis 499.
  • the surfaces 472a, 472b can be parallel, or at least substantially parallel, to one another and can lie within planes that extend through the longitudinal axis 499 at an approximately 22.5 degree angle, for example.
  • the intermediate shaft portion 409b can be positioned along an articulated longitudinal axis 499' which intersects and makes an angle with the unarticulated longitudinal axis 499. In various circumstances, an approximately 180 degree rotation of intermediate shaft portion 409b about its longitudinal axis can result in an
  • intermediate shaft portion 409b approximately 22.5 degree articulation of intermediate shaft portion 409b relative to proximal shaft portion 409a, for example.
  • intermediate outer housing 462b of intermediate shaft portion 409b about its longitudinal axis can also cause distal shaft portion 409c to articulate relative to intermediate shaft portion 409b.
  • distal shaft portion 409c can also cause distal shaft portion 409c to articulate relative to intermediate shaft portion 409b.
  • Such relative articulation between shaft portions 409b and 409c can be possible owing to the spine 464 which can prevent the distal shaft portion 409c from rotating relative to proximal shaft portion 409a.
  • the rotation of articulation actuator 464 may not be transmitted to distal shaft portion 409c wherein, as a result, the intermediate outer housing 462b can rotate relative to both the proximal outer housing 462a and the distal outer housing 462c.
  • the distal outer housing 462c can comprise a second cam surface 473c and the intermediate outer housing 462b can comprise a second cam follower surface 473b which can which can be configured to contact the second cam surface 473c when the intermediate outer housing 426b is rotated relative to the distal outer housing 462c. Similar to the above, the rotation of second cam follower surface 473b relative to second cam surface 473c can cause the distal shaft portion 409c to pivot or rotate relative to the intermediate shaft portion 409b about second axis 498. In at least one such embodiment, referring again to FIG.
  • the second cam surface 473c can comprise an angled surface which extends transversely to longitudinal axis 499 and, similarly, the second cam follower surface 473b can comprise an angled surface which also extends transversely to longitudinal axis 499.
  • the surfaces 473b, 473c can be parallel, or at least substantially parallel, to one another and can lie within planes that extend through the longitudinal axis 499 at an approximately 22.5 degree angle, for example.
  • the distal shaft portion 409c can be positioned along an articulated longitudinal axis 499" which intersects and makes an angle with the articulated longitudinal axis 499' of intermediate shaft portion 409b.
  • an approximately 180 degree rotation of intermediate shaft portion 409b about its longitudinal axis can result in an approximately 45 degree articulation of distal shaft portion 409c relative to the intermediate shaft portion 409b, for example.
  • an approximately 90 degree rotation of shaft portion 409b can result in an approximately 22.5 degree articulation of distal shaft portion 409c relative to intermediate shaft portion 409b, for example.
  • the articulation actuator 468 can be operably coupled with an actuator on the handle of the surgical instrument, such as actuator 302 (FIG. 5), for example, wherein, similar to the above, the actuator 302 can be configured to rotate the articulation actuator 468 in at least one of a clockwise direction (CW) and a counter-clockwise direction (CCW) about longitudinal axis 499.
  • the articulation actuator 468 can be mounted to the intermediate outer housing portion 462b such that, when actuator 468 is rotated, the outer housing portion 462b can be rotated with actuator 468.
  • the actuator 468 can be tubular, or at least substantially tubular, and can be closely received by the sidewalls of cavity 463 within proximal outer housing 462a.
  • the outer perimeter of actuator 468 can be circular, or at least substantially circular, and the inner sidewalls of cavity 463 can also be circular, or at least substantially circular, such that actuator 468 can rotate relative to the proximal outer housing 462a.
  • the spine 464 can extend through the cavity 465 in actuator 468 and can be mounted to the distal outer housing 462c. Similar to actuator 468, spine 464 can be tubular, or at least substantially tubular, and can be closely received by the sidewalls of cavity 465.
  • the outer perimeter of spine 464 can be circular, or at least substantially circular, and the inner sidewalls of cavity 465 can also be circular, or at least substantially circular, such that the actuator 468 can rotate relative to the spine 464.
  • the orientation of the angled surfaces of cams 472a and 473c and the orientation of angled surfaces of cam followers 472b and 473b can be selected such that a certain degree of rotation of the articulation actuator 468 results in a predetermined degree of articulation of end effector 410.
  • a certain degree of rotation of the articulation actuator 468 results in a predetermined degree of articulation of end effector 410.
  • an approximately 180 degree rotation of actuator 468, and intermediate outer housing 462b can result in an approximately 90 degree articulation of end effector 410.
  • an approximately 180 degree rotation of actuator 468 can result in an approximately 45 degree articulation of intermediate outer housing 462b relative to proximal shaft portion 409a and, in addition, an approximately 45 degree articulation of distal shaft portion 409c and end effector 410 relative to intermediate outer housing 462b.
  • Such circumstances can arise when cam surfaces 472a and 473c and cam follower surfaces 472b and 473b extend at approximately 22.5 degree angles with respect to longitudinal axis 499, for example.
  • Other embodiments are envisioned in which a 180 degree rotation of actuator 468 results in less than or more than a 90 degree articulation of end effector 410.
  • the articulation angle defined between the unarticulated longitudinal axis 499 of proximal shaft portion 409a and the articulated longitudinal axis 499' of intermediate shaft portion 409b, i.e., first articulation angle 471, and the articulation angle defined between axis 499' and the articulated longitudinal axis 499" of distal shaft portion 409c, i.e., second articulation angle 475, can be the same, or at least substantially the same, when the end effector 410 is articulated.
  • the first articulation angle 471 and the second articulation angle 475 can be different. Such embodiments may be possible when the angle of first cam surface 472a is different than the angle of second cam surface 473c and/or when the angle of first cam follower surface 472b is different than the angle of second cam follower surface 473b, for example.
  • the cam surfaces 472a and 473c and/or the cam follower surfaces 472b and 473b can be flat, or at least substantially flat wherein, as a result, the ratio between the rotation of articulation actuator 468 and the articulation of end effector 410 can be constant, or at least substantially constant, throughout the rotation of actuator 468 and the articulation of end effector 410. In certain embodiments, the ratio between the rotation of articulation actuator 468 and the articulation of end effector 410 can be variable, or non-constant, throughout the rotation of actuator 468 and the articulation of end effector 410.
  • one or more of the cam surfaces 472a and 473c and/or one or more of the cam follower surfaces 472b and 473b can be curved, or arcuate, such that ratio between the rotation of actuator 468 and the articulation of end effector 410 is different at various points during the articulation of end effector 410.
  • the ratio can be such that the end effector 410 articulates through a greater degree of articulation for a given degree of rotation of actuator during the initial rotation of actuator 468 and a lesser degree of articulation for the same given degree of rotation during the subsequent rotation of actuator 468, for example.
  • the shaft 408 and the end effector 410 can be configured such that the end effector 410 does not rotate, or at least substantially rotate, about its longitudinal axis when the end effector 410 is articulated.
  • the longitudinal rotation of end effector 410 can be prevented, or at least substantially inhibited, by spine 464 rigidly mounted to distal shaft portion 409c and the presence of two articulation joints within the articulation joint 460.
  • spine 464 rigidly mounted to distal shaft portion 409c and the presence of two articulation joints within the articulation joint 460.
  • having only one articulation axis within an articulation joint such as articulation joint 360 (FIG.
  • the articulation of the end effector may cause the end effector to rotate about its longitudinal axis which can invert, or at least partially invert, the end effector as it is articulated.
  • the drive member of the shaft such as drive member 366, for example, can be sufficiently flexible in order to
  • the cutting member such as cutting member 340, for example, may comprise a bearing which can permit relative rotational movement between the drive member 366 and cutting member 340 and at least partially prevent torsional stress from building within the drive member 366.
  • Drive member 466 and cutting member 440 (FIGS. 9 and 12) can comprise similar features.
  • the drive member 466 can be operably coupled with a trigger, such as trigger 128 (FIG. 1), for example, such that the actuation of trigger 128 can advance the drive member 466 and cutting member 440 between proximal and distal positions.
  • the drive member 466 can comprise a cylindrical rod extending through the cavity 467 defined within the spine 464, wherein the outer diameter of drive member 466 can be closely received by the inner sidewalls of cavity 467.
  • the drive member 466 can be configured to slide within cavity 467 and, in at least one embodiment, can be supported laterally by the sidewalls of cavity 467.
  • an electrosurgical instrument can comprise an articulation joint, such as articulation joint 560, for example, which can pivotably connect an end effector 510 to a shaft 508.
  • the end effector 510 can be articulated into a desired position and then clamped onto tissue by advancing cutting member 540 distally and moving first jaw 520A relative to second jaw 520B from an open position into a closed position.
  • the first jaw 520A can be closed onto tissue by cutting member 540 before the end effector 510 is articulated.
  • FIGS. 16 and 17 the end effector 510 can be moved between an unarticulated position (FIG.
  • the shaft 508 and end effector 510 can be configured such that the end effector 510 can be removably locked into one or more pre-set positions.
  • the shaft 508 can comprise one or more recesses or notches 562a-562c and the end effector 510 can comprise at least one detent or projection 564 which can be configured to be received within the notches 562a-562c.
  • the end effector 510 when detent 564 is positioned in first notch 562a, the end effector 510 may be held in an articulated position to a first lateral side of longitudinal axis 599.
  • the first notch 562a can comprise sidewalls which can be configured such that the detent 564 can abut the sidewalls and inhibit the detent 564 from being readily removed from the first notch 562a.
  • the end effector 510 may remain locked in position until a sufficient force or torque is applied to end effector 510 in order to push detent 564 out of first notch 562a and toward second notch 562b, for example.
  • the surgical instrument can comprise an additional lock which can be slid distally into engagement with the end effector 510 in its articulated position and/or unarticulated position in order to further secure the end effector 510.
  • the detent 564 When detent 564 is sufficiently aligned with second notch 562b, further to the above, the detent 564 may be sufficiently positioned within the second notch 562b and the end effector 510 can be removably locked in an unarticulated position. Similar to first notch 562a, the sidewalls of the second notch 562b can be configured such that the detent 564 can abut the sidewalls which inhibit the detent 564 from being readily removed from the second notch 562b. Similarly, the end effector 510 may remain locked in position until a sufficient force or torque is applied to end effector 510 in order to push detent 564 out of second notch 562b and toward third notch 562c, for example.
  • the detent 564 When detent 564 is sufficiently aligned with third notch 562c, the detent 564 may be sufficiently positioned within the third notch 562c and the end effector 510 can be removably locked in an articulated position to a second lateral side of longitudinal axis 599. Similar to second notch 562b, the sidewalls of the third notch 562c can be configured such that the detent 564 can abut the sidewalls which inhibit the detent 564 from being readily removed from the third notch 562c. Similarly, the end effector 510 may remain locked in position until a sufficient force or torque is applied to end effector 510 in order to push detent 564 out of third notch 562c.
  • any suitable number of notches and/or detents such as less than three notches or more than three notches, for example, can be utilized.
  • the notches 562a-562c can be positioned circumferentially around a perimeter surrounding pivot 561 such that each notch is positioned the same distance, or at least substantially the same distance, from pivot 561.
  • the shaft 508 can comprise a first set of notches 562a-562c around one end of pivot 561 and a second set of notches 562a-562c around the opposite end of pivot 561.
  • the end effector 510 can comprise a first detent 564 configured to engage the first set of notches 562a-562c and a second detent 564 configured to engage the second set of notches 562a-562c.
  • the shaft 508 can comprise a plurality of detents and the end effector can comprise at least one notch configured to selectively receive the detents.
  • the end effector 510 may be inserted through a trocar, or other cannula, into a surgical site when the end effector 510 is in an unarticulated position. Once the end effector 510 has passed through the trocar, the end effector can be positioned against bone and/or tissue such that a longitudinal force can be transmitted through shaft 508 and end effector 510 along axis 599, or at least substantially along axis 599. In various circumstances, such a force can cause the end effector 510 to pivot or rotate relative to the shaft 508.
  • the detent 564 can snap-lock into one of the first recess 562a and 562c, for example, such that the end effector 510 is locked into an articulated position.
  • the end effector 510 can be positioned against bone and/or tissue once again such that a torque can be generated between the shaft 508 and the end effector 510 in order to rotate the shaft 508 relative to the end effector 510.
  • the end effector 510 can be pulled back through the trocar or cannula and removed from the surgical site.
  • a surgical instrument can comprise an articulation actuator which can be configured to drive the end effector between unarticulated and articulated positions, including those described herein, for example.
  • an electrosurgical instrument can comprise a shaft 608, an end effector 610, and one or more electrodes, such as electrodes 665, for example, positioned within one or more of jaws 620A and 620B, for example, which can be configured to conduct electrical current.
  • the electrosurgical instrument can comprise one or more conductors, such as insulated wires, for example, which can electrically connect the electrodes 665 to an electrical source positioned within the handle of the surgical instrument and/or an electrical source operatively coupled with the handle, for example.
  • the insulated wires such as insulated wire 609, for example, can develop slack when the end effector 610 is articulated relative to the shaft 608 of the surgical instrument.
  • the slack generated within the wire 609 can cause the wire 609 to buckle, curl, and/or shift and, in some circumstances, interfere with the movement of end effector 610 relative to shaft 608.
  • the electrosurgical instrument can comprise a wire management system configured to manage to the slack in one or more insulated wires, for example. Referring now to FIG. 20, the end effector 610 is depicted as being articulated to a first side of longitudinal axis 699 and insulated wire 609 is depicted as having very little slack therein.
  • the surgical instrument can further comprise a wire tensioning device 670 which can be configured to draw slack within wire 609 into a location positioned proximally of articulation joint 660, for example.
  • an insulated wire such as wire 609, for example, can comprise a conductive core and an insulated jacket surrounding the conductive core.
  • the wire tensioning device 670 can comprise a first, or proximal, end 671 which is attached to the insulation jacket of wire 609 and a second, or distal, end 672 which is also attached to the insulation jacket of wire 609.
  • the first end 671 and the second end 672 can each be clamped to the wire 609 such that there is very little, if any, relative movement between the first end 671 and the wire 609 and, similarly, very little, if any, relative movement between the second end 672 and the wire 609.
  • the wire tensioning device 670 can further comprise a spring member 673 connecting the first end 671 and the second end 672 which, in various embodiments, can be configured to bias the first end 671 and the second end 672 toward one another.
  • the end effector 610 when the end effector 610 is in its maximum, or near maximum, articulated position illustrated in FIG. 20, the end effector 610 can apply a tensioning force to the wire 609 such that wire 609 is taut, or at least substantially taut, and the second, or distal, end 672 is pulled distally such that a maximum distance, or an at least near maximum distance, XI is created between the first end 671 and the second end 672.
  • XI maximum distance, or an at least near maximum distance
  • slack can be created within the wire 609 and, owing to the resiliency of the spring portion 673 of wire tensioning device 670, the spring portion 673 can pull second end 672 and first end 671 toward one another such that a distance X2, which is shorter than distance XI, is defined between the first and second ends 671, 672.
  • a distance X2 which is shorter than distance XI, is defined between the first and second ends 671, 672.
  • the end effector 610 As the end effector 610 is moved into an articulated position on the opposite side of longitudinal axis 699, illustrated in FIG. 18, additional slack can be created within the wire 609. Owing to the resiliency of the spring portion 673 of wire tensioning device 670, the spring portion 673 can pull second end 672 and first end 671 of tensioning device 670 even closer to one another such that a distance X3, which is shorter than distance X2, is defined between the first and second ends 671, 672. In various circumstances, the position of the end effector in FIG. 18 can represent a maximum articulation to the opposite side of the longitudinal axis 699 and a fully-relaxed state of spring 673.
  • an electrosurgical instrument can comprise a drive member configured to advance a cutting member, for example, within an end effector of the electrosurgical instrument.
  • an electrosurgical instrument can comprise a shaft 708, an end effector 710, and a drive member 766 operably coupled with a cutting member 740, wherein the distal displacement of drive member 766 and cutting member 740 is configured to move first jaw 720A toward second jaw 720B.
  • the electrosurgical instrument can further comprise an articulation joint 760 which pivotably or rotatably connects the end effector 710 to shaft 708. Referring to FIGS.
  • the drive member 766 can comprise a plurality of flexible layers, or bands, such as flexible layers 767a-767d, for example, which can be configured to transmit a longitudinal load to cutting member 740 when the end effector 710 is in either an unarticulated position or an articulated position.
  • the flexible layers of drive member 766 can be sufficiently flexible to bend within articulation joint 760 and accommodate the articulation of end effector 710.
  • the flexible layers 767a-767d of drive member 766 can slide or slip relative to one another. Such relative sliding or slipping between the layers 767a-767d can reduce resistance within the articulation joint 760.
  • friction forces between adjacent flexible layers can at least partially resist the relative movement of the flexible layers.
  • the flexible layers can be adhered to one another by an adhesive to form a flexible laminate material.
  • at least one of the flexible layers such as conductive layer 768, for example, can be comprised of a conductive material and can be configured to conduct electrical current through the drive member 766.
  • Conductive layer 768 can be comprised of copper, brass, and/or a flexible conductive ribbon, for example.
  • the conductive layer 768 can be positioned intermediate layer 767b and layer 767c which can be comprised of an insulative material, such as plastic, for example.
  • the conductive layer 768 can be in electrical communication with one or more electrodes positioned within the end effector 710 and, in addition, a power source positioned within, and/or operably coupled to, a handle of the surgical instrument.
  • the cutting member 740 can be comprised of an electrically conductive material wherein the conductive layer 768 can be in electrical communication with one or more of the electrodes via the cutting member 740, for example.
  • conductive layer 768, and/or any other suitable layer, such as layers 767a-767d, for example can be configured to, one, conduct current, and, two, transmit a longitudinal load or force therethrough. Similar to the above, conductive layer 768 can be configured to slide or slip relative to layers 767a-767d. In certain other embodiments, some layers can be configured to conduct current but may transmit little, if any, longitudinal load or force therethrough.
  • the conductive layer 768 can be utilized to conduct current to the electrodes in lieu of an insulated wire, for example.
  • a drive member can comprise more than one conductive layer.
  • the drive member 766 can comprise one or more supply conductive layers, such as conductive layer 768, for example, and, in addition, one or more return conductive layers. More particularly, the drive member 766 can comprise a first conductive return layer positioned intermediate flexible layers 767a and 767b and a second conductive return layer positioned intermediate flexible layers 767c and 767d, for example.
  • the first and second return conductive layers can be comprised of a conductive material, such as copper and/or brass, for example, and the flexible layers 767a-767d can be comprised of an insulative material, such as plastic, for example.
  • the supply conductive layer 768 can be in electrical communication with a power source, or positive voltage terminal of the power source, and one or more electrodes in end effector 710, as described above, wherein the return conductive layers can be in electrical communication with a ground, or negative voltage terminal of the power source, and one or more electrodes in end effector 710.
  • the return conductive layers may not be in direct electrical communication with the electrodes; rather, they may be in contact with the tissue such that the current can flow from a supply electrode, through the tissue, and into the return conductive layers.
  • the supply flexible layers, the return flexible layers, and the insulative flexible layers may have the same, or at least
  • an electrosurgical instrument can further comprise a structure configured to prevent the flexible layers from buckling within the articulation joint.
  • the electrosurgical instrument can comprise a structure 790 which can comprise a slot 791 configured to receive at least a portion of the drive member 766 therein.
  • the slot 791 can be configured such that the drive member 766 can slide between the sidewalls 792 and 793 of slot 791 as the drive member 766 is advanced distally and/or retracted proximally.
  • the drive member 766 may bend within the articulation joint 760 wherein at least one of the sidewalls 792 and 793 can be configured to support the drive bar 766 when it is bent.
  • the first sidewall 792 and the second sidewall 793 can comprise concave surfaces against which the drive member 766 can be positioned.
  • the sidewalls 792 and 793 can be defined by a radius of curvature which matches the smallest radius of curvature that is desired for the drive member 766. Stated another way, when the end effector 710 is only partially articulated, the radius of curvature which defines drive member 766 within the articulation joint 760 may be large and the possibility of drive member 766 buckling may be low. In such circumstances, referring to FIG.
  • the drive bar 766 may define a larger radius of curvature than the radius of curvature of sidewall 792 and/or sidewall 793 and, as a result, the drive bar 766 may contact the sidewall 792 and/or sidewall 793 at only a few locations, such as contact locations 795a and 795b, for example.
  • the radius of curvature which defines drive member 766 within the articulation joint 760 may be smaller and the possibility of drive member 766 buckling may be higher.
  • the radius of curvature of sidewalls 792 and 793 can be selected such that they match the smallest radius of curvature for drive member 766 that is desired.
  • sidewall 792 and/or sidewall 793 may be contacted by the drive member 766.
  • first sidewall 792 may be configured to support the drive member 766 when the end effector 710 is articulated in a first direction
  • second sidewall 793 may be configured to support the drive member 766 when the end effector 710 is articulated in a second, or opposite, direction.
  • Various devices are disclosed in United States Patent Application Serial No. 12/765,330, entitled SURGICAL STAPLING INSTRUMENT WITH AN
  • an electrosurgical instrument can comprise an end effector 810, a shaft 808, and a drive member 840 which can be advanced distally in order to move first jaw 820A toward second jaw 820B.
  • the shaft 808 can comprise an outer housing 862 which can also serve as an articulation driver 868.
  • the articulation driver 868 can comprise a proximal end operably coupled with an articulation actuator located on the surgical instrument handle, for example.
  • the articulation driver 868 can further comprise a distal end 867 which can define a circular, or at least substantially circular, ring of gear teeth extending around the perimeter of the distal end 867.
  • the gear teeth of distal end 867 can be meshingly engaged with the gear teeth of a gear member 869 mounted to end effector 810 such that the rotation of articulation driver 868 can be transmitted to end effector 810. More particularly, the gear teeth of distal end 867 and gear member 869 can be meshingly engaged such that, when the articulation driver 868 is rotated in a first direction 895 about longitudinal axis 899, the distal end 867 of driver 868 can drive the end effector 810 in a first direction 897 about pivot 861, as illustrated in FIG. 26, for example.
  • the articulation driver 868 when the articulation driver 868 is rotated in the opposite direction, i.e., in a second direction 896, about longitudinal axis 899, the distal end 867 of driver 868 can drive the end effector 810 in an opposite direction, i.e., in a second direction 898, about pivot 861.
  • the gear member 869 can be fixedly mounted to the end effector 810 such that rotational movement of gear member 869 about pivot 861 is transmitted directly to the end effector 810.
  • the end effector 810 can comprise two gear members 869 fixedly mounted thereto which can be meshingly engaged with the gear teeth of distal end 867 of articulation driver 868.
  • the end effector 810 can comprise a first gear member 869 positioned at a first end of pivot 861 and a second gear member 869 positioned at a second, or opposite, end of pivot 861, for example.
  • the articulation driver 868 can be configured to drive both gear members 869 simultaneously.
  • the shaft 808 can further comprise a spine member 864 extending through an aperture in outer housing 862. In use, the outer housing 862, or
  • articulation driver 868 can be rotated about spine 864 in order to articulate end effector 810 as described above.
  • the spine member 864 can comprise a proximal end which can be fixedly mounted to the handle of the surgical instrument and, in addition, a distal end which can comprise pivot mounts, or projections, 863 extending therefrom which can be positioned within pivot apertures in gear members 869.
  • the pivot projections 863 can be closely received within the pivot apertures in gear members 869 and can define an axis about which the end effector 810 can be rotated.
  • an electrosurgical instrument such as surgical instrument 900, for example, can comprise a handle 905, a shaft 908 extending from the handle 905, and an end effector 910 rotatably coupled to the shaft 908 via an
  • the handle 905 can comprise a trigger 928 which can be operably coupled with a drive member 966 such that an actuation of trigger 928 can move drive member 966 distally and advance a cutting member 940 within the end effector 910.
  • the articulation joint 960 can comprise an outer sheath 962, a cavity 963 defined by the outer sheath 962, and a plurality of spine members 964 extending inwardly into cavity 963.
  • the drive member 966 can comprise an I-beam configuration, for example, which can include flanges 980 and a web 982 positioned intermediate flanges 980.
  • each spine member 964 can comprise a support surface 965 which can be configured to support the web 982 of drive member 966, for example, and prevent, or at least reduce the possibility of, the drive member 966 from becoming buckled.
  • the support surfaces 965 can co-operatively define a slot 967 therein which can be configured to slidably receive and support the drive member 966.
  • each spine member 964 can comprise a T-shaped configuration including a base member 984 and a support member 986 attached to the base member 984 which includes support surface 985.
  • each spine member 964 may move independently of the others such that the spine members 964 do not inhibit, or at least substantially inhibit, the articulation of outer housing 962, for example.
  • the base members 984 can be narrower than the support members 986 such that the spine members 986 may be flexible.
  • the spine members can comprise any other suitable shape or configuration, such as a U-shaped configuration, for example, wherein the bases of the U-shaped spine members can face inwardly toward the drive member 966, for example.
  • the handle 905 of the surgical instrument 900 can comprise an articulation actuator 969 which can be operably coupled with the end effector 910 such that the rotation of actuator 969 can articulate end effector 910.
  • the surgical instrument 900 can further comprise a first articulation driver 901 and a second articulation driver 902 wherein each of the articulation drivers 901 and 902 can be operably coupled to the articulation actuator 969 and the end effector 915.
  • the first articulation driver 901 can have a proximal end attached to a first side 903 of the articulation actuator 969 and a distal end attached to a first side 911 of end effector 910, wherein the first side 903 of actuator 969 and the first side 911 of end effector 910 can be positioned on a first lateral side of longitudinal axis 999.
  • each spine member 964 can comprise an aperture 907 through which the first articulation driver 901 can extend.
  • the second articulation driver 902 can have a proximal end attached to a second side 904 of the articulation actuator 969 and a distal end attached to a second side 912 of end effector 910, wherein the second side 904 of actuator 969 and the second side 912 of end effector 910 can be positioned on a second lateral side of longitudinal axis 999.
  • each spine member 964 can comprise an aperture 908 through which the second articulation driver 902 can extend.
  • the articulation actuator 969 can be rotated in a first direction 995 in order to articulate end effector 910 to the first lateral side of longitudinal axis 999. More particularly, the first articulation driver 901 can be mounted to the articulation actuator 969 such that the rotation of actuator 969 in the first direction 995 can pull the first articulation driver 901 proximally and, as a result, pull the end effector 910 to the first lateral side. When the first articulation driver 901 is pulled proximally by the articulation actuator 969, the articulation actuator 969 can push the second articulation driver 902 distally which can, as a result, push the end effector 910 to the first lateral side.
  • the articulation joint 960 can bend along a radius of curvature instead of a single pivot axis.
  • the articulation joint 960 can be between approximately 1.0" and approximately 1.5" long, for example, and can be positioned approximately 0.2" to approximately 0.5", for example, proximally with respect to end effector 910.
  • the length between the proximal end of the articulation joint 960 and the distal end of the end effector 910 can be between approximately 2.2" and approximately 3.0", for example.
  • the articulation actuator 969 can be rotated in a second direction 996 in order to articulate end effector 910 to the second lateral side of longitudinal axis 999. More particularly, the second articulation driver 902 can be mounted to the articulation actuator 969 such that the rotation of actuator 969 in the second direction 996 can pull the second articulation driver 902 proximally and, as a result, pull the end effector 910 to the second lateral side. When the second articulation driver 902 is pulled proximally by the articulation actuator 969, the articulation actuator 969 can push the first articulation driver 901 distally which can, as a result, push the end effector 910 to the second lateral side.
  • the articulation actuator 969 can comprise a wheel which extends through a first slot in a first side 906a of the handle 905 and, in addition, a second slot in a second side 906b of the handle 905 which can permit the articulation actuator 969 to be rotated from the first side 906a and/or the second side 906b of the handle 905.
  • the perimeter of the articulation actuator wheel can comprise serrations, and/or gear teeth, for example, which can allow the user of the surgical instrument to easily turn the articulation actuator 969.
  • the surgical instrument 900 can further comprise an articulation lock which can be configured to prevent the end effector 910 from being articulated.
  • the handle 905 can comprise a lock which can be configured to directly engage the articulation actuator 969 in order to prevent, or at least substantially prevent, the articulation actuator 969 from rotating and thus preventing, or at least substantially preventing, the articulation actuator 969 from articulating end effector 910.
  • the handle 905 can comprise a lock gear 967 which can be meshingly engaged with gear teeth extending around the perimeter of articulation actuator 969.
  • the handle 905 can comprise a lock 975 which can be selectively engaged with the lock gear 967 in order to prevent the lock gear 967 and the articulation actuator 969 from rotating.
  • the handle 905 can further comprise a nozzle 970 which can be operably coupled with the lock 975 such that the lock 975 can be selectively engaged with and disengaged from the lock gear 967 by the movement of nozzle 970. More particularly, in at least one embodiment, the nozzle 970 can be retracted proximally in order to disengage the lock 975 from the lock gear 967 and moved distally in order to engage the lock 975 with the lock gear 967.
  • the handle 905 can further comprise a biasing spring operably coupled with the nozzle 970 which can be configured to bias the lock 975 into engagement with the lock gear 967.
  • the end effector 910 of the surgical instrument 900 can be inserted into a surgical site through a trocar, for example, in an unarticulated position.
  • the shaft 908 and end effector 910 can be selectively rotated about their longitudinal axis 999 in order to orient the end effector 910 in a desired orientation.
  • the user of the surgical instrument 900 can grasp nozzle 970, which can be keyed to the outer housing of shaft 908, and rotate nozzle 970 about longitudinal axis 999 in order to rotate shaft 908 and end effector 910.
  • the user can pull the nozzle 970 proximally in order to disengage the articulation lock 975 from the articulation actuator 969 such that the articulation actuator 969 can be used to articulate the end effector 910 and/or such that the end effector 910 can be positioned against bone and/or tissue and forced to articulate relative to the shaft 908 by a force applied longitudinally through the shaft 908.
  • the nozzle 970 can be released in order to allow a spring or biasing member within the handle 905 to move nozzle 970 distally and reengage the articulation lock 975 with the articulation actuator 969, for example.
  • the trigger 928 can be actuated in order to advance drive member 966 and cutting member 940 distally and to close the end effector 910.
  • the actuation of the trigger 928, and/or another trigger on handle 905 can be configured to operably connect a power source with electrodes in the end effector 910.
  • the trigger 928 can be released and the drive member 966 and cutting member 940 can be retracted.
  • the nozzle 970 can be retracted proximally once again in order to unlock the end effector 910 and allow the end effector 910 to be returned to an unarticulated position by rotating the articulation actuator 969 and/or pushing the end effector 910 against bone and/or tissue, for example. Once the end effector 910 has been sufficiently straightened, the end effector 910 can be withdrawn from the surgical site through the trocar.
  • a shaft and/or articulation joint of an electrosurgical instrument can further comprise one or more flexible rods extending through and mounted to an outer housing of the shaft which can be configured to, one, flexibly support the outer housing and, two, support a drive bar passing through the articulation joint.
  • Such flexible rods similar to the above, can comprise support surfaces configured to prevent, or at least reduce the possibility of, the drive member from becoming buckled.
  • a surgical instrument 1000 similar to surgical instrument 900, can comprise a handle 1005, a shaft 1008 extending from handle 1005, and an articulation joint 1060 connecting an end effector to the shaft 1008. Also similar to surgical instrument 900, surgical instrument 1000 can further comprise a drive bar 1066 extending through the articulation joint 1060, wherein the drive bar 1066 can be operably coupled with a cutting member 1040 and can be utilized to advance and/or retract the cutting member 1040 within the end effector.
  • the articulation joint 1060 can comprise support structures 1064 which can be configured to support the drive bar 1066 when the end effector is in an articulated position.
  • the support structures 1064 can comprise a plurality of wave-shaped members 1063 which can each comprise a support surface 1065 configured to support the side of the drive bar 1066, for example.
  • the wave-shaped members 1063 can be configured to flex and stretch in order to accommodate the bending of articulation joint 1060 without inhibiting, or at least substantially inhibiting, the articulation of the end effector.
  • the surgical instrument 1000 can further comprise an articulation lock member 1075 which can, similar to articulation lock member 975, be selectively engaged with an articulation gear 1067 in order to prevent the articulation gear 1067 from being rotated and the end effector from being articulated.
  • a surgical instrument 1100 can comprise a handle 1105, a shaft 1108 extending from the handle 1105, and an end effector 1110 extending from the shaft 1108.
  • the surgical instrument 1100 can further comprise an articulation joint 1160 positioned intermediate the shaft 1108 and the handle 1105 which can be configured to allow the handle 1105 to be articulated relative to the shaft 1108.
  • the end effector 1110 and the shaft 1108 can be inserted through a trocar, for example, and into a surgical site such that at least a portion of the shaft 1108 and the articulation joint 1160 remains positioned externally to the trocar.
  • a trocar assembly can comprise a housing, a seal assembly, and a cannula which can define an aperture extending through the trocar assembly.
  • a trocar assembly can comprise a housing, a seal assembly, and a cannula which can define an aperture extending through the trocar assembly.
  • One or more suitable trocars are disclosed in U.S. Patent No. 7,371,227, entitled TROCAR SEAL ASSEMBLY, which issued on May 13, 2008, and U.S. Patent No. 6,656,198, entitled TROCAR WITH REINFORCED OBTURATOR SHAFT, which issued on December 2, 2003, the entire disclosures of which are hereby incorporated by reference herein.
  • Other surgical site access devices are disclosed in U.S. Patent Application Publication No. 2010/0081995, entitled VARIABLE SURGICAL ACCESS DEVICE; U.S. Patent Application Publication No.
  • PERFORMING GASTRECTOMIES AND GASTROPLASTIES U.S. Patent Application Publication No. 2010/0081863, entitled METHODS AND DEVICES FOR PERFORMING GASTRECTOMIES AND GASTROPLASTIES, the entire disclosures of which are incorporated by reference herein.
  • Several of these devices can comprise single-site access devices which can permit the insertion of multiple laparoscopic instruments, for example, through several apertures in the same access device.
  • such a single-site access device can be inserted through an incision in the umbilicus, for example.
  • several surgical instruments can be inserted into a surgical site through the same access device.
  • the handles of these surgical instruments can be positioned adjacent to one another thereby increasing the difficulty of accessing and using the surgical instruments.
  • the handle 1105 can be rotated or pivoted relative to the shaft 1108.
  • the articulation joint 1160 can comprise a ball and socket joint including ball 1161 mounted to the proximal end of shaft 1108 and socket 1162 in the distal end of handle 1105 which can allow the handle 1105 to be rotated relative to the shaft 1108 about more than one axis.
  • the ball and socket joint can be configured to permit handle 1105 to be rotated about longitudinal axis 1199 as indicated by arrow 1196 and/or one or more axes, such as axes 1197 and 1198, for example, which are perpendicular to longitudinal axis 1199. Such rotation is depicted by arrows 1194 and 1195, for example.
  • the socket 1162 can be configured to surround a sufficient portion of the ball 1161 so as to prevent the ball 1161 from being removed from the socket 1162 during use. In at lest one such embodiment, the socket 1162 can surround over half the perimeter of ball 1161.
  • Various articulation joints are contemplated which can permit the handle of the surgical instrument to articulate relative to the shaft of the surgical instrument including those disclosed in U.S. Patent Application Publication No. 2007/0179476, entitled ENDOSCOPIC SURGICAL INSTRUMENT WITH A HANDLE THAT CAN ARTICULATE WITH RESPECT TO THE SHAFT, the entire disclosure of which is incorporated by reference herein, for example.
  • the handle 1105 can be rotated between a position which lies along longitudinal axis 1199 of shaft 1108 to a position which is off-axis with respect to axis 1199.
  • the trigger 1128 can be actuated to advance at least one of a closure member configured to close the end effector 1110 and/or advance a firing member distally in order to incise tissue, for example.
  • a closure member and/or firing member can be sufficiently flexible in order to accommodate the articulation of joint 1160.
  • the firing member can comprise a plurality of flexible layers which can slide relative to one another.
  • the firing member can have a circular, or an at least generally circular, cross-section, for example, and, in at least one embodiment, the firing members can comprise layers having a taller height in the middle of the cross-section and layers having a shorter height at the sides of the cross-section, for example. Firing members having a circular, or an at least generally circular, cross-section, can facilitate the selective articulation of handle 1105 about axes 1197 and 1198 and/or any other suitable axis.
  • current can flow from one electrode to another while passing through the tissue captured by the end effector of the surgical instrument.
  • the current passing through the tissue can heat the tissue.
  • the tissue may become overheated.
  • the electrodes of various surgical instruments can comprise materials which may no longer conduct current, or may conduct at least substantially less current, when the electrode materials have reached or exceeded a certain temperature.
  • the electrical resistance of the electrode material can increase with the temperature of the material and, in certain embodiments, the electrical resistance of the material can increase significantly when the material has reached or exceeded a certain transition, or switching, temperature.
  • the PTC material can be comprised of a first non-conductive material, or substrate, which has a high electrical resistance and, in addition, a second, conductive material, or particles, having a lower electrical resistance interdispersed throughout the substrate material.
  • the substrate material can comprise polyethylene and/or high-density polyethylene (HDPE), for example, and the conductive material can comprise carbon particles, for example.
  • HDPE high-density polyethylene
  • the conductive material can be present in the non-conductive material in a sufficient volumetric density such that the current can flow through the PTC material via the conductive particles.
  • the substrate, or non-conductive material may have sufficiently expanded and/or changed states such that the conductive particles are no longer sufficiently in contact with one another in order provide a sufficient path for the current to flow therethrough. Stated another way, the expansion and/or state change of the substrate material may cause the volumetric density of the conductive particles to fall below a sufficient volumetric density in order for current to be conducted therethrough, or at least substantially conducted therethrough.
  • the PTC material may act as a circuit breaker which can prevent, or at least inhibit, additional energy from reaching the tissue being treated, that is, at least until the PTC material has cooled sufficiently and reached a temperature which is below the transition, or switching, temperature. At such point, the PTC material could begin to conduct current again.
  • the embodiments of the devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances it may be advantageous to introduce the devices inside the patient using a combination of minimally invasive and open surgical techniques. Minimally invasive techniques may provide more accurate and effective access to the treatment region for diagnostic and treatment procedures. To reach internal treatment regions within the patient, the devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example.
  • NOTESTM procedures are known in the art as NOTESTM procedures. Some portions of the devices may be introduced to the tissue treatment region percutaneously or through small - keyhole - incisions.
  • Endoscopic minimally invasive surgical and diagnostic medical procedures are used to evaluate and treat internal organs by inserting a small tube into the body.
  • the endoscope may have a rigid or a flexible tube.
  • a flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina) or via a trocar through a relatively small - keyhole - incision incisions (usually 0.5 - 1.5cm).
  • the endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography.
  • the endoscope may be adapted and configured with working channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures.
  • the devices disclosed herein may be designed to be disposed of after a single use, or they may be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning may include a combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular pieces or parts of the device may be selectively replaced or removed in any combination.
  • the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure.
  • a reconditioning facility or by a surgical team immediately prior to a surgical procedure.
  • reassembly Use of such techniques, and the resulting reconditioned device, are all within the scope of this application.
  • the various embodiments of the devices described herein will be processed before surgery.
  • a new or used instrument is obtained and if necessary cleaned.
  • the instrument can then be sterilized.
  • the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag.
  • the container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons.
  • the radiation kills bacteria on the instrument and in the container.
  • the sterilized instrument can then be stored in the sterile container.
  • the sealed container keeps the instrument sterile until it is opened in the medical facility.
  • proximal and distal may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient.
  • proximal refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician.
  • distal refers to the portion located furthest from the clinician.
  • spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments.
  • surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.

Abstract

An electrosurgical instrument can comprise a handle, a shaft, and an end effector, wherein the end effector can be rotatably coupled to the shaft by an articulation joint. The instrument can further comprise a drive member and the articulation joint can comprise flexible support members which can be configured to support the drive member. The instrument can further comprise supply wires electrically coupled to electrodes in the end effector and a wire tensioning device configured to prevent the supply wires from accumulating slack within the articulation joint. The drive member can comprise a plurality of flexible layers wherein some of the layers can be comprised of an electrically insulative material and other layers can be comprised of an electrically conductive material which is in electrical communication with a cutting member in the end effector and/or electrodes positioned within the end effector. A surgical instrument can comprise a handle and an end effector, wherein the end effector can comprise first and second jaws which can be opened and closed in order to capture tissue therebetween. The surgical instrument can further comprise a shaft extending between the handle and the effector and means for articulating the end effector relative to the shaft. The articulating means can comprise a portion of the shaft which is rotatable about a first axis in order to articulate the end effector about a second axis. In at least one embodiment, the shaft can comprise a first portion including a cam and a second portion including a cam follower, wherein the rotation of the second portion and the interaction of the cam and cam follower can cause the second portion to pivot relative to the first portion.

Description

TITLE
SURGICAL INSTRUMENT COMPRISING AN ARTICULATABLE END EFFECTOR
BACKGROUND
1. Field of the Invention
[0001] The present invention relates to medical devices and methods. More particularly, the present invention relates to electrosurgical instruments and methods for sealing and transecting tissue.
2. Description of the Related Art
[0002] In various open, endoscopic, and/or laparoscopic surgeries, for example, it may be necessary to coagulate, seal, and/or fuse tissue. One means of sealing tissue relies upon the application of electrical energy to tissue captured within an end effector of a surgical instrument in order to cause thermal effects within the tissue. Various mono-polar and bi-polar radio frequency (RF) surgical instruments and surgical techniques have been developed for such purposes. In general, the delivery of RF energy to the captured tissue elevates the temperature of the tissue and, as a result, the energy can at least partially denature proteins within the tissue. Such proteins, such as collagen, for example, may be denatured into a proteinaceous amalgam that intermixes and fuses, or "welds", together as the proteins renature. As the treated region heals over time, this biological "weld" may be reabsorbed by the body's wound healing process.
[0003] In certain arrangements of a bi-polar radiofrequency (RF) surgical instrument, the surgical instrument can comprise opposing first and second jaws, wherein the face of each jaw can comprise an electrode. In use, the tissue can be captured between the jaw faces such that electrical current can flow between the electrodes in the opposing jaws and through the tissue positioned therebetween. Such instruments may have to seal or "weld" many types of tissues, such as anatomic structures having walls with irregular or thick fibrous content, bundles of disparate anatomic structures, substantially thick anatomic structures, and/or tissues with thick fascia layers such as large diameter blood vessels, for example. With particular regard to sealing large diameter blood vessels, for example, such applications may require a high strength tissue weld immediately post-treatment.
[0004] The foregoing discussion is intended only to illustrate various aspects of the related art in the field of the invention at the time, and should not be taken as a disavowal of claim scope.
SUMMARY
[0005] In at least one form, a surgical instrument can comprise a handle, a first conductor, a second conductor, and an end effector comprising a first jaw and a second jaw, wherein one of the first jaw and the second jaw is movable relative to the other of the first jaw and the second jaw between an open position and a closed position. The end effector can further comprise a first electrode electrically coupled with the first conductor, and a second electrode electrically coupled with the second conductor, the second electrode comprising a porous material, and an evaporable material stored within the porous material.
[0006] In at least one form, a surgical instrument can comprise a handle, a first conductor, a second conductor electrically engageable with a power source, and an end effector comprising a first jaw and a second jaw, wherein one of the first jaw and the second jaw is movable relative to the other of the first jaw and the second jaw between an open position and a closed position. The end effector can further comprise a first electrode electrically coupled with the first conductor, and a second electrode electrically coupled with the second conductor, wherein the second electrode comprises a first material comprised of an electrically non-conductive material and a second material comprised of an electrically conductive material, and wherein the second material is interdispersed within the first material when the second electrode is below a switching temperature. The second material is configured to withdraw from the first material when the temperature of the second material at least one of meets or exceeds the switching temperature.
[0007] In at least one form, an end effector for use with a surgical instrument can comprise a first conductor, a second conductor, a first jaw, and a second jaw, wherein one of the first jaw and the second jaw is movable relative to the other of the first jaw and the second jaw between an open position and a closed position. The end effector can further comprise a first electrode electrically coupled with the first conductor and a second electrode electrically coupled with the second conductor, the second electrode comprising a porous material and an evaporable material stored within the porous material.
[0008] In at least one form, a surgical instrument can comprise a first jaw comprising an electrode, a second jaw, and a control circuit, wherein the control circuit can comprise a supply conductor configured to be placed in electrical communication with a positive terminal of a power source, a temperature sensor, and a field effect transistor. The field effect transistor can comprise a source terminal in electrical communication with the supply conductor, a drain terminal in electrical communication with the electrode, a gate terminal in electrical
communication with the temperature sensor, and a channel comprising a semiconductor material in electrical communication with the source terminal and the drain terminal.
[0009] In at least one form, a surgical instrument can comprise a handle comprising a trigger, a shaft comprising a proximal shaft portion coupled to the handle and a distal shaft portion, and an articulation joint connected to the distal shaft portion. The surgical instrument can further comprise an end effector including a proximal end coupled to the articulation joint, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode. The surgical instrument can further comprise a drive member extending through the articulation joint, wherein the drive member is operably coupled with the trigger, wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector, wherein the drive member comprises a first flexible layer and a second flexible layer, wherein the first flexible layer is comprised of an electrically conductive material, and wherein the second flexible layer is comprised of an electrically insulative material.
[0010] In at least one form, a surgical instrument can comprise a handle comprising a trigger and, in addition, a shaft comprising a proximal shaft portion coupled to the handle, a distal shaft portion, and an articulation joint rotatably connecting the proximal shaft portion and the distal shaft portion, wherein one of the proximal shaft portion and the distal shaft portion comprises a detent, wherein the other of the proximal shaft portion and the distal shaft portion comprises a plurality of notches configured to selectively receive the detent, and wherein each notch is configured to removably hold the distal shaft portion at an articulated angle with respect to the proximal shaft portion. The surgical instrument can further comprise an end effector including a proximal end coupled to the distal shaft portion, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode. The surgical instrument can further comprise a drive member extending through the articulation joint of the shaft, wherein the drive member is operably coupled with the trigger, and wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector. [0011] In at least one form, a surgical instrument can comprise a handle comprising a trigger, a shaft comprising a proximal shaft portion coupled to the handle and a distal shaft portion, and an articulation joint connected to the distal shaft portion. The surgical instrument can further comprise an end effector coupled to the articulation joint including a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode. The surgical instrument can further comprise a flexible conductor in electrical communication with the electrode, wherein the flexible conductor extends through the shaft and the articulation joint and, in addition, a spring comprising a proximal end mounted to the flexible conductor, a distal end mounted to the flexible conductor, and an intermediate portion connecting the proximal end and the distal end, wherein the intermediate portion extends along the flexible conductor, and wherein the intermediate portion is configured to flex between a first configuration defining a first length between the proximal end and the distal end and a second configuration defining a second length between the proximal end and the distal end. The surgical instrument can further comprise a drive member extending through the articulation joint of the shaft, wherein the drive member is operably coupled with the trigger, and wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector.
[0012] In at least one form, a surgical instrument can comprise a handle comprising a trigger and an articulation actuator and, in addition, a shaft comprising a proximal shaft portion coupled to the handle, wherein the proximal shaft portion defines a longitudinal axis, an articulation drive member operably coupled with the articulation actuator, wherein the articulation drive member is configured to be rotated about the longitudinal axis by the articulation actuator, and a distal shaft portion rotatably coupled to the proximal shaft portion about a pivot axis, wherein the articulation drive member is operably engaged with the distal shaft portion, and wherein the rotation of the articulation drive member about the longitudinal axis is configured to rotate the distal shaft portion about the pivot axis. The surgical instrument can further comprise an end effector including a proximal end coupled to the distal shaft portion, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode, and, in addition, a drive member extending through the articulation joint of the shaft, wherein the drive member is operably coupled with the trigger, and wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector.
[0013] In at least one form, a surgical instrument can comprise a handle including a trigger, a shaft, an articulation joint pivotably coupling the handle and the shaft, wherein the handle comprises a socket and the shaft comprises a ball positioned within the socket, and an end effector comprising a proximal end coupled to the shaft, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, and an electrode. The surgical instrument can further comprise a drive member extending through the articulation joint of the shaft, wherein the drive member is operably coupled with the trigger, wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector.
[0014] In at least one form, a surgical instrument can comprise a handle comprising a trigger and an articulation actuator, wherein the articulation actuator comprises a first attachment portion and a second attachment portion, a shaft extending from the handle, and an articulation joint connected to the shaft, the articulation joint comprising an outer housing, an elongate aperture extending through the outer housing, and support structures extending inwardly from the outer housing. The surgical instrument can further comprise an end effector including a proximal end coupled to the shaft, a distal end, a first jaw member, a second jaw member, wherein one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member, an electrode, a first lateral side portion, and a second lateral side portion, a first articulation driver coupled to the first lateral side portion of the end effector and the first attachment portion of the articulation actuator such that the rotation of the articulation actuator in a first direction articulates the end effector toward the first lateral side portion, a second articulation driver coupled to the second lateral side portion of the end effector and the second attachment portion of the articulation actuator such that the rotation of the articulation actuator in a second direction articulates the end effector toward the second lateral side portion; and a drive member extending between the support structures of the articulation joint, wherein the drive member is operably coupled with the trigger, and wherein an actuation of the trigger is configured to move the drive member toward the distal end of the end effector
[0015] The foregoing discussion should not be taken as a disavowal of claim scope.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.
[0017] FIG. 1 is a perspective view of an electrosurgical instrument. [0018] FIG. 2 is a side view of a handle of the surgical instrument of FIG. 1 with a half of a handle body removed to illustrate some of the components therein.
[0019] FIG. 3 is a perspective view of an electrosurgical instrument.
[0020] FIG. 4A illustrates an end effector of an electrosurgical instrument in an open configuration.
[0021] FIG. 4B illustrates the end effector of FIG. 4A in a closed configuration.
[0022] FIG. 4C is a sectional view of a translatable member shaped like an I-beam which is configured to close the end effector of the surgical instrument of FIG. 3.
[0023] FIG. 5 is a perspective view of an electrosurgical instrument.
[0024] FIG. 6 is partial cross-sectional view of a shaft and an end effector of the electrosurgical instrument of FIG. 5.
[0025] FIG. 7 illustrates the end effector of FIG. 6 in a rotated and articulated configuration.
[0026] FIG. 8 is a cross-sectional view of the shaft of FIG. 6.
[0027] FIG. 9 is a partial cross-sectional view of a shaft and an end effector of an
electrosurgical instrument in accordance with an alternative embodiment.
[0028] FIG. 10 illustrates the end effector of FIG. 9 in an articulated configuration.
[0029] FIG. 11 is a cross-sectional view of the shaft of FIG. 9.
[0030] FIG. 12 is a perspective view illustrating the end effector of FIG. 9 in an unarticulated configuration, illustrated with phantom lines, and an articulated position, illustrated with solid lines.
[0031] FIG. 13 is a perspective view of an articulation joint about which an end effector can be rotated. [0032] FIG. 14 is a perspective view of an end effector in an open configuration, a distal end of a shaft of an electrosurgical instrument, and an articulation joint connecting the end effector and the distal end of the shaft.
[0033] FIG. 15 is a perspective view of the end effector of FIG. 14 in an open configuration.
[0034] FIG. 16 is a perspective view of an articulation joint of an electrosurgical instrument illustrated in an unarticulated configuration.
[0035] FIG. 17 is a perspective view of the articulation joint of FIG. 16 in an articulated configuration.
[0036] FIG. 18 a perspective view of an end effector of an electrical surgical instrument illustrated in an open configuration, a distal end of a shaft, and an articulation joint connecting the end effector and the distal end of the shaft, wherein the end effector is illustrated as being articulated to a first side.
[0037] FIG. 19 is a perspective view of the end effector of FIG. 18 in an unarticulated configuration.
[0038] FIG. 20 is a perspective view of the end effector of FIG. 20 articulated to a second side.
[0039] FIG. 21 is a perspective view of an end effector of an electrical surgical instrument, a distal end of a shaft, and an articulation joint connecting the end effector and the distal end of the shaft.
[0040] FIG. 22 is a perspective view of the articulation joint of FIG. 21 illustrated with some components removed.
[0041] FIG. 23 is a top view of the articulation joint of FIG. 21 illustrated with some components removed. [0042] FIG. 24 is a top view of a support member engaged with a drive member extending through an articulation joint.
[0043] FIG. 25 is a perspective view of an end effector of an electrical surgical instrument illustrated in an open configuration, a distal end of a shaft, and an articulation joint connecting the end effector and the distal end of the shaft, wherein the end effector is illustrated in an unarticulated configuration.
[0044] FIG. 26 is a perspective view of the end effector of FIG. 25 illustrated in an articulated configuration.
[0045] FIG. 27 is a perspective view of an electrosurgical instrument comprising a handle, a shaft extending from the handle, and an end effector configured to be articulated relative to the shaft by an actuator dial in the handle.
[0046] FIG. 28 is a top view of the electrosurgical instrument of FIG. 27.
[0047] FIG. 29 is a partial cross-sectional view of an articulation joint connecting the shaft and the end effector of the electrosurgical instrument of FIG. 27.
[0048] FIG. 30 is a cross-sectional end view of the articulation joint of the electrosurgical instrument of FIG. 27 taken along line 30-30 in FIG. 29.
[0049] FIG. 31 is a cross-sectional perspective view of the articulation joint of the
electrosurgical instrument of FIG. 27 in an unarticulated configuration.
[0050] FIG. 32 is a cross-sectional perspective view of the articulation joint of the
electrosurgical instrument of FIG. 27 in an articulated configuration.
[0051] FIG. 33 is another cross-sectional view of the articulation joint of the electrosurgical instrument of FIG. 27 in an unarticulated configuration. [0052] FIG. 34 is a cross-sectional end view of the articulation joint of the electrosurgical instrument of FIG. 27 in an unarticulated configuration.
[0053] FIG. 35 is another cross-sectional view of the articulation joint of the electrosurgical instrument of FIG. 27 in an articulated configuration.
[0054] FIG. 36 is a cross-sectional end view of the articulation joint of the electrosurgical instrument of FIG. 27 in an articulated configuration.
[0055] FIG. 37 is a perspective view of an articulation actuator of an electrosurgical instrument configured to articulate an end effector of the instrument.
[0056] FIG. 38 is a perspective view of an electrosurgical instrument comprising a handle, a shaft, and an end effector, wherein the shaft is articulatable relative to the handle.
[0057] FIG. 39 illustrates a ball and socket joint configured to permit the shaft of FIG. 38 to articulate relative to the handle.
[0058] Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
DETAILED DESCRIPTION
[0059] Various embodiments are directed to apparatuses, systems, and methods for the treatment of tissue. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non- limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
[0060] Reference throughout the specification to "various embodiments," "some
embodiments," "one embodiment," or "an embodiment", or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases "in various embodiments," "in some embodiments," "in one embodiment," or "in an embodiment", or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
[0061] The entire disclosures of the following non-provisional United States patents are hereby incorporated by reference herein:
U.S. Patent No. 7,381,209, entitled ELECTRO SURGICAL INSTRUMENT;
U.S. Patent No. 7,354,440, entitled ELECTROSURGICAL INSTRUMENT AND METHOD OF USE;
U.S. Patent No. 7,311,709, entitled ELECTROSURGICAL INSTRUMENT AND METHOD OF USE; U.S. Patent No. 7,309,849, entitled POLYMER COMPOSITIONS EXHIBITING A PTC PROPERTY AND METHODS OF FABRICATION;
U.S. Patent No. 7,220,951, entitled SURGICAL SEALING SURFACES AND
METHODS OF USE;
U.S. Patent No. 7,189,233, entitled ELECTRO SURGICAL INSTRUMENT;
U.S. Patent No. 7,186,253, entitled ELECTROSURGICAL JAW STRUCTURE FOR CONTROLLED ENERGY DELIVERY;
U.S. Patent No. 7,169,146, entitled ELECTROSURGICAL PROBE AND METHOD OF
USE;
U.S. Patent No. 7,125,409, entitled ELECTROSURGICAL WORKING END FOR CONTROLLED ENERGY DELIVERY; and
U.S. Patent No. 7,112,201, entitled ELECTROSURGICAL INSTRUMENT AND METHOD OF USE.
The entire disclosure of the commonly-owned United States Patent Application entitled SURGICAL INSTRUMENT COMPRISING AN ARTICULATABLE END EFFECTOR, Attorney Docket No. END6659USNP 1/090298, filed on even date herewith is hereby incorporated by reference herein.
[0062] Various embodiments of systems and methods of the invention relate to creating thermal "welds" or "fusion" within native tissue volumes. The alternative terms of tissue "welding" and tissue "fusion" may be used interchangeably herein to describe thermal treatments of a targeted tissue volume that result in a substantially uniform fused-together tissue mass, for example, in welding blood vessels that exhibit substantial burst strength immediately post- treatment. The strength of such welds is particularly useful for (i) permanently sealing blood vessels in vessel transection procedures; (ii) welding organ margins in resection procedures; (iii) welding other anatomic ducts wherein permanent closure is required; and also (iv) for performing vessel anastomosis, vessel closure or other procedures that join together anatomic structures or portions thereof. The welding or fusion of tissue as disclosed herein is to be distinguished from "coagulation", "hemostasis" and other similar descriptive terms that generally relate to the collapse and occlusion of blood flow within small blood vessels or vascularized tissue. For example, any surface application of thermal energy can cause coagulation or hemostasis~but does not fall into the category of "welding" as the term is used herein. Such surface coagulation does not create a weld that provides any substantial strength in the treated tissue.
[0063] At the molecular level, the phenomena of truly "welding" tissue as disclosed herein may result from the thermally-induced denaturation of collagen and other protein molecules in a targeted tissue volume to create a transient liquid or gel-like proteinaceous amalgam. A selected energy density is provided in the targeted tissue to cause hydrothermal breakdown of intra- and intermolecular hydrogen crosslinks in collagen and other proteins. The denatured amalgam is maintained at a selected level of hydration— without desiccation—for a selected time interval which can be very brief. The targeted tissue volume is maintained under a selected very high level of mechanical compression to insure that the unwound strands of the denatured proteins are in close proximity to allow their intertwining and entanglement. Upon thermal relaxation, the intermixed amalgam results in protein entanglement as re-crosslinking or renaturation occurs to thereby cause a uniform fused-together mass.
[0064] Various embodiments disclosed herein provide electrosurgical jaw structures adapted for transecting captured tissue between the jaws and for contemporaneously welding the captured tissue margins with controlled application of RF energy. The jaw structures can comprise a scoring element which can cut or score tissue independently of the tissue capturing and welding functions of the jaw structures. The jaw structures can comprise first and second opposing jaws that carry positive temperature coefficient (PTC) bodies for modulating RF energy delivery to the engaged tissue.
[0065] A surgical instrument can be configured to supply energy, such as electrical energy and/or heat energy, for example, to the tissue of a patient. For example, various embodiments disclosed herein can comprise electrosurgical jaw structures adapted for transecting captured tissue positioned between the jaws and for contemporaneously welding margins of the captured tissue with the controlled application of RF energy, for example. Referring now to FIG. 1, an electrosurgical instrument 100 is shown. Electrosurgical instrument 100 can comprise a proximal handle 105, a distal working end or end effector 110, and an introducer or elongate shaft 108 disposed therebetween. End effector 110 may comprise a set of openable and closeable jaws, such as an upper first jaw 120A and a lower secondjaw 120B, for example, which can comprise straight and/or curved configurations. First jaw 120A and secondjaw 120B may each comprise an elongate slot or channel 142A and 142B (see FIG. 3), respectively, therein disposed within their respective middle portions along axis 152, for example. As described in greater detail below, first jaw 120 A and secondjaw 120B may be coupled to an electrical source or RF source 145 and a controller 150 through electrical leads in cable 152. Controller 150 may be used to activate electrical source 145.
[0066] Moving now to FIG. 2, a side view of the handle 105 is shown with a first handle body 106A (see FIG. 1) removed to illustrate some of the components within second handle body 106B. Handle 105 may comprise a lever arm, or trigger, 128 which may be pulled along a path 129. Lever arm 128 may be coupled to a movable cutting member disposed within elongate shaft 108 by a shuttle 146 operably engaged to an extension 127 of lever arm 128. The shuttle 146 may further be connected to a biasing device, such as spring 141, for example, which may also be connected to the second handle body 106B, wherein the spring 141 can be configured to bias the shuttle 146 and thus the cutting member in a proximal direction. When the cutting member is in a proximal position, the jaws 120 A and 120B can be urged into an open configuration as seen in FIG. 1 by a jaw spring disposed between a portion of the jaws 120A and 120B, for example. Also, referring to FIGS. 1 and 2, a locking member 131 (see FIG. 2) may be moved by a locking switch 130 (see FIG. 1) between a locked position in which the shuttle 146 can be prevented from moving distally and an unlocked position in which the shuttle 146 may be allowed to freely move in the distal direction toward the elongate shaft 108. The handle 105 can be any type of pistol-grip or other type of handle known in the art that is configured to carry actuator levers, triggers and/or sliders for actuating the first jaw 120A. Elongate shaft 108 may have a cylindrical and/or rectangular cross-section and can comprise a thin- wall tubular sleeve that extends from handle 105. Elongate shaft 108 may include a bore extending therethrough for carrying actuator mechanisms configured to actuate the jaws and/or for carrying electrical leads configured to conduct electrical energy to electrosurgical components of end effector 110.
[0067] End effector 110 may be adapted for capturing, welding and transecting tissue. In various embodiments, at least one of first jaw 120A and second jaw 120B may be closed to capture or engage tissue therebetween. First jaw 120 A and second jaw 120B may also apply compression to the tissue. Elongate shaft 108, along with first jaw 120A and second jaw 120B, can be rotated a full 360° degrees, as shown by arrow 117, relative to handle 105 through one or more rotary contacts, for example. First jaw 120A and second jaw 120B can remain openable and/or closeable while rotated. Referring now to FIG. 1, end effector 110 may be coupled to electrical source 145 and controller 150. Controller 150 can regulate the electrical energy delivered by electrical source 145 which in turn delivers electrosurgical energy to electrodes within the jaws 120 A, 120B. The energy delivery may be initiated by an activation button 124 operably engaged with lever arm 128 and in electrically communication with controller 150 via cable 152. As mentioned above, the electrosurgical energy delivered by electrical source 145 may comprise radiofrequency (RF) energy. As described in greater detail below, the electrodes of the jaw members may carry variable resistive positive temperature coefficient (PTC) bodies that are coupled to electrical source 145 and controller 150. Additional details regarding electrosurgical end effectors, jaw closing mechanisms, and electrosurgical energy-delivery surfaces are described in the following U.S. patents and published patent applications, all of which are incorporated herein in their entirety by reference and made a part of this specification: U.S. Pat. Nos. 7,381,209; 7,311,709; 7,220,951; 7,189,233; 7,186,253; 7,125,409; 7,112,201; 7,087,054; 7,083,619; 7,070,597; 7,041,102; 7,011,657; 6,929,644; 6,926,716; 6,913,579;
6,905,497; 6,802,843; 6,770,072; 6,656,177; 6,533,784; and 6,500,176; and U.S. Pat. App. Pub. Nos. 2010/0036370 and 2009/0076506.
[0068] FIG. 3 illustrates an electrosurgical instrument 200 comprising a handle end 205, a shaft, or introducer, 206, and an end effector, or working end, 210. Shaft 206 can comprise any suitable cross-section, such as a cylindrical and/or rectangular cross-section, for example, and can comprise a tubular sleeve that extends from handle 205. End effector 210 can extend from shaft 206 and may be adapted for welding and transecting tissue. In various embodiments, end effector 210 can comprise an openable and closeable jaw assembly which can, in various embodiments, comprise straight, curved, and/or any other suitably configured jaws. In various embodiments, the end effector 210 can comprise a first jaw 222a and a second jaw 222b, wherein at least one of the jaws 222a and 222b can move relative to the other. In at least one
embodiment, the first jaw 222a can be pivoted about an axis relative to the second jaw 222b in order close onto, capture, and/or engage tissue positioned between the jaws and apply a compression force or pressure thereto. In various embodiments, the handle 205 can comprise a lever arm, or trigger, 228 adapted to actuate a translatable member 240. More particularly, in at least one embodiment, the lever arm 228 can be actuated in order to move member 240 distally toward the distal end 211 of end effector 210 and, when member 240 is advanced distally, member 240 can contact first jaw 222a and move it downwardly toward second jaw 222b, as illustrated in FIG. 4B. In at least one embodiment, the translatable member 240 can comprise a proximal rack portion and the lever arm 228 can comprise a plurality of gear teeth which can be configured to drive the proximal rack portion of translatable member 240 distally. In certain embodiments, rotation of the lever arm 228 in the opposite direction can drive the translatable member 240 proximally.
[0069] As described above, the translatable member 240 can be configured to contact first jaw 222a and pivot jaw 222a toward second jaw 222b. In various embodiments, referring now to Figs. 4A-4C, the distal end of reciprocating member 240 can comprise a flanged "I"-beam configured to slide within a channel 242 in the jaws 222a and 222b. Referring primarily to Fig. 4C, the I-beam portion of member 240 can comprise an upper flange 250a, a lower flange 250b, and a center, or intermediate, portion 251 connecting the flanges 250a and 250b. In at least one embodiment, the flanges 250a and 250b and the center portion 251 can define "c"-shaped channels on the opposite sides of member 240. In any event, in various embodiments, the flanges 250a and 250b can define inner cam surfaces 252a and 252b, respectively, for slidably engaging outward-facing surfaces 262a and 262b of jaws 222a and 222b, respectively. More particularly, the inner cam surface 252a can comprise a suitable profile configured to slidably engage the outer surface 262a of first jaw 222a and, similarly, the inner cam surface 252b can comprise a suitable profile configured to slidably engage the outer surface 262b of second jaw 222b such that, as translatable member 240 is advanced distally, the cam surfaces 252a and 252b can co-operate to cam first jaw member 222a toward second jaw member 222b and configure the end effector 240 in a closed configuration. As seen in FIG. 4B, jaws 222a and 222b can define a gap, or dimension, D between the first and second electrodes 265a and 265b of jaws 222a and 222b, respectively, when they are positioned in a closed configuration. In various embodiments, dimension D can equal a distance between approximately 0.0005" to approximately 0.005", for example, and, in at least one embodiment, between approximately 0.001" and approximately 0.002", for example.
[0070] As discussed above, the translatable member 240 can be at least partially advanced in order to move the first jaw 222a toward the second jaw 222b. Thereafter, the movable member 240 can be advanced further distally in order to transect the tissue positioned between the first jaw 222a and the second jaw 222b. In certain embodiments, the distal, or leading, end of the I- beam portion of 240 can comprise a sharp, or knife, edge which can be configured to incise the tissue. Before, during, and/or after the member 240 is advanced through the tissue, electrical current can be supplied to the electrodes in the first and second jaw members in order to weld the tissue, as described in greater detail further below. In various circumstances, the operation of the trigger 228 can advance the knife edge of the cutting member 240 to the very distal end of slot or channel 242. After the cutting member 240 has been sufficiently advanced, the trigger 288 can be released and moved into its original, or unactuated, position in order to retract the cutting member 240 and allow first jaw 222a to move into is open position again. In at least one such embodiment, the surgical instrument can comprise a jaw spring configured to bias the first jaw 222a into its open position and, in addition, a trigger spring configured to bias the trigger 228 into its unactuated position.
[0071] In various embodiments, further to the above, the surgical instrument can comprise a first conductor, such as an insulated wire, for example, which can be operably coupled with the first electrode 265a in first jaw member 222a and, in addition, a second conductor, such as an insulated wire, for example, which can be operably coupled with the second electrode 265b in second jaw member 222b. In at least one embodiment, referring again to FIG. 3, the first and second conductors can extend through shaft 206 between an electrical connector in handle 205 and the electrodes 265a and 265b in the end effector 210. In use, the first and second conductors can be operably coupled to electrical source 245 and controller 250 by electrical leads in cable 252 in order for the electrodes 265a and 265b to function as paired bi-polar electrodes with a positive polarity (+) and a negative polarity (-). More particularly, in at least one embodiment, one of the first and second electrodes 265a and 265b can be operably coupled with a positive (+) voltage terminal of electrical source 245 and the other of the first and second electrodes 265a and 265b can be electrically coupled with the negative voltage (-) terminal of electrical source 245. Owing to the opposite polarities of electrodes 265a and 265b, current can flow through the tissue positioned between the electrodes 265a and 265b and heat the tissue to a desired temperature. In certain embodiments, the cutting member 240 can act as an electrode when it is electrically coupled to a positive terminal or negative terminal of the source 245, and/or any suitable ground.
[0072] In the embodiments described above, an electrosurgical instrument can comprise a shaft and an end effector, wherein the end effector may not articulate relative to the shaft. In at least one embodiment, the shaft can comprise a rigid spine and/or rigid outer housing which can be mounted to the end effector and a handle of the electrosurgical instrument. In at least one such embodiment, a jaw member of the end effector can be rigidly mounted to the spine and/or outer housing of the shaft. In certain embodiments, referring now to FIGS. 5-7, an electrosurgical instrument, such as instrument 300, for example, can comprise an end effector 310 which can be articulated relative to a shaft 308. Similar to the above, the end effector 310 can comprise a first jaw 320A which is pivotably connected to a second jaw 320B, wherein the second jaw 320B can be mounted to at least a portion of shaft 308. In at least one such embodiment, referring to FIG. 5, the shaft 308 can comprise, one, a proximal portion 309A mounted to a handle 305 of the surgical instrument 300 and, two, a distal portion 309B mounted to second jaw 320B of the end effector 310. In various embodiments, the proximal portion 309A of shaft 308 can comprise a proximal outer housing 362A and the distal portion 309B of shaft 308 can comprise a distal outer housing 362B. The shaft 308 can further comprise a spine 364 extending through apertures defined within the outer housings 362 A and 362B wherein, in at least one such embodiment, the spine 364 can be mounted to the distal outer housing 362B such that longitudinal movement, or displacement, of the distal portion 309B relative to the proximal portion 309 A can be prevented, or at least substantially inhibited. As discussed in greater detail below, adjacent portions of the outer housings 362 A and 362B can comprise an articulation joint 360.
[0073] In addition to the above, the spine 364 can comprise an actuator configured to rotate distal outer housing 362b and end effector 310 relative to proximal outer housing 362a. In various embodiments, the spine 364 can be fixedly mounted to distal outer housing 362b such that, when the spine 364 is rotated about longitudinal axis 399, the distal outer housing 362b is also rotated about axis 399. When the distal outer housing 362b is rotated, referring now to FIG. 7, the distal outer housing 362b can be cammed or rotated laterally relative to axis 399 as illustrated in FIG. 6. In at least one such embodiment, the proximal outer housing 362a can comprise a cam 372a against which the distal outer housing 362b can be positioned, or positioned closely adjacent to, such that, when the distal outer housing 362b is rotated, the cam 372a can cause the distal outer housing 362b to pivot to the side. In various embodiments, the cam 372a can comprise an angled surface and the distal outer housing 362b can comprise an opposing angled surface, or cam follower, 372b, wherein, in at least one embodiment, the angled surface 372b can be parallel, or at least substantially parallel, to the angled surface of cam 372a. As a result of the above, referring again to FIGS. 6 and 7, the distal shaft portion 309b and end effector 310 can be rotated about a longitudinal axis and articulated about a different axis simultaneously. More particularly, as distal shaft portion 309b and end effector 310 are rotated about longitudinal axis 399, as described above, the distal shaft portion 309b and end effector 310 can be pivoted about an axis 398 which is perpendicular, or at least substantially
perpendicular, to longitudinal axis 399. In the embodiment depicted in FIGS. 6 and 7, the distal shaft portion 309b can be rotated such that a first lateral side 31 lb of distal shaft portion 309b is positioned adjacent to a first lateral side 31 la of the proximal shaft portion 309a when the distal shaft portion 309b is in an unarticulated position and, after the distal shaft portion 309b has been articulated, the first lateral side 31 lb of distal shaft portion 309b can be positioned adjacent to a second lateral side 313a of proximal shaft portion 309a and, similarly, a second lateral side 313b of distal shaft portion 309b can be positioned adjacent to the first lateral side 31 la of proximal shaft portion 309a.
[0074] In certain embodiments, the angled surface of cam 372a can be oriented at an approximately 22.5 degree angle, or an approximately 45 degree angle, for example, with respect to longitudinal axis 399. In embodiments where the angled surface of cam 372a is oriented at an approximately 22.5 degree angle with respect to axis 399, the angled surface of cam follower 372b can also be oriented at an approximately 22.5 degree angle with respect to axis 399, for example. In embodiments where the angled surface of cam 372a is oriented at an approximately 45 degree angle with respect to axis 399, the angled surface of cam follower 372b can be oriented at an approximately 45 degree angle with respect to axis 399, for example. In various embodiments, the spine 364 can be rotated for approximately 20 degrees about longitudinal axis 399 and, owing to the configuration of the co-operating cam and cam follower of the outer housings 362a and 362b, the distal portion 309B and end effector 310 can be rotated
approximately 10 degrees, for example. Similarly, the spine 364 can be rotated approximately 90 degrees to produce an approximately 45 degree articulation of distal portion 309B and end effector 310, for example. Likewise, the spine 364 can be rotated approximately 180 degrees to produce an approximately 90 degree articulation of distal portion 309B and end effector 310, for example. In at least one embodiment, the degree in which spine 364 is rotated about axis 399 can result in a change in the articulation angle of distal outer housing 362b which is less than that amount. Such an articulation angle is depicted in FIG. 7 as angle 370 which is defined between the unarticulated longitudinal axis 399 of shaft 308 and the articulated longitudinal axis 399' of distal portion 309B. The ratio between the rotation of spine 364 and the articulation of distal outer housing 362b can depend on the angle of cam surface 372a and/or the angle of cam follower surface 372b. Various ratios are contemplated such as about 1.5: 1, about 2:1, and/or about 4: 1, for example.
[0075] In various embodiments, further to the above, the spine 364 can be sufficiently stiff so as to transmit a rotational torque to the distal shaft portion 309b but sufficiently flexible in order to bend within articulation joint 360 and accommodate the articulation of distal shaft portion 309b. Referring now to FIG. 8, the spine 364 can be configured to rotate within a cavity 363 defined within the outer housing portion 362a such that the spine 364 can rotate relative to proximal outer housing 362a. In various embodiments, the spine 364 can be closely received within the cavity 363 such that the outer perimeter of the spine 364 is positioned adjacent to the inner sidewalls of the cavity 363. In at least one embodiment, referring now to FIG. 5, the surgical instrument 300 can further comprise an articulation actuator 302 operably engaged with the spine 364 such that, when the actuator 302 is rotated about axis 399, the spine 364 is also rotated about axis 399. In at least one such embodiment, the spine 364 can be rotated in a clockwise direction, indicated by arrow CW, when actuator 302 is rotated in direction CW and, correspondingly, the spine 364 can be rotated in a counter-clockwise direction, indicated by arrow CCW, when actuator 302 is rotated in direction CCW, for example. In at least one embodiment, the actuator 302 can comprise one or more projections and/or one or more grooves which can be configured to allow a surgeon to easily grip and manipulate the actuator 302. In certain embodiments, the handle 305 can further comprise a locking mechanism which can be configured to releasably hold actuator 302 in position. In at least one such embodiment, although not illustrated, the handle 305 can comprise a biasing member, such as a spring, for example, which can be configured to bias actuator 302 against a locking plate configured to hold actuator 302 in position and prevent end effector 310 from being articulated. In use, the actuator 302 can be pulled proximally against the biasing force of the biasing member, for example, and away from the locking plate in order to disengage actuator 302 from the locking plate.
Thereafter, the actuator 302 can be rotated about axis 399 in order to articulate end effector 310. Once end effector 310 has been suitably articulated, the actuator 302 can be released thereby allowing the biasing spring to position the actuator 302 into engagement with the locking plate once again.
[0076] In various embodiments, further to the above, the shaft 308 of surgical instrument 300 can further comprise a shaft actuator 304 which can be mounted to proximal outer housing portion 362a. The shaft actuator 304 can be mounted to shaft 308 such that the rotation of shaft actuator 304 can rotate shaft 308 and end effector 310 about longitudinal axis 399. In at least one embodiment, the shaft actuator 304 can be utilized to rotate the shaft 308 and end effector 310 without rotating the spine 364 relative to proximal shaft portion 309a and, in addition, without articulating the end effector 310. In at least one such embodiment, the articulation actuator 302 can be releasably engageable with the shaft actuator 304 wherein, when the articulation actuator 302 is engaged with the shaft actuator 304, the actuator 302 can be rotated with the actuator 304 without articulating the end effector 310 and wherein, when the actuator 302 is disengaged from the shaft actuator 304, the rotation of one of actuator 302 or actuator 304 relative to the other can articulate the end effector 310 in either the CW or CCW directions, depending on the direction of relative rotation between the actuators 302 and 304. In certain embodiments, the shaft actuator 304 can comprise the locking plate against which the articulation actuator 302 can be biased in order to releasably lock the actuator 302, and the articulation angle of end effector 310, into position. In various embodiments, although not illustrated, the handle 305 can further comprise a second locking plate, for example, against which the shaft actuator 304 can be biased in order to releasably hold shaft actuator 304 in position. In at least one such embodiment, similar to the above, the handle 305 can comprise a second biasing member configured to bias the shaft actuator 304 against the second locking plate in order to hold it in position. In various embodiments, as a result of the above, the articulation actuator 302 and the shaft actuator 304 can be operated independently of one another and/or concurrently with one another.
[0077] Referring now to FIG. 13, the distal shaft portion 309b of shaft 308 is depicted as being articulated relative to the proximal shaft portion 309a. During such articulation, the angled surface 372b of distal shaft portion 309b can be configured to contact and slide across the face of the angled surface 372a of proximal shaft portion 309a. In various embodiments, the outer housings 362a and 362b of shaft portions 309a and 309b, respectively, can be circular, or at least substantially circular, in cross-section and, owing to the angled surfaces 372a and 372b, the end faces formed by the angled surfaces 372a and 372b can be oval, or at least substantially oval, in shape. Although these opposing end faces may be oval, in various embodiments, the distal shaft portion 309b can be rotated about a longitudinal axis such that the distal shaft portion 309b is rotated in a circular manner relative to proximal shaft portion 309a. Such a circular relationship is depicted in FIG. 13. In at least one such embodiment, the spine 364 and/or the outer housing 362b of distal shaft portion 309b can be rotated concentrically about the longitudinal axis extending therethrough. In various embodiments, the surgical instrument 300 can further comprise a biasing or tensioning device, such as a spring, for example, which can be configured to apply a biasing force to the spine 364 such that the cam follower surface 372b of distal shaft portion 309b is positioned against, and remains in contact with, the cam surface 372a of proximal shaft portion 309a.
[0078] In various embodiments, the surgical instrument 300 can further comprise a drive member, such as drive member 366, for example, which can be operably coupled with a cutting member 340 positioned within the end effector 310. The drive member 366 can be operably coupled with a trigger, such as trigger 128 (FIG. 1), for example, of the surgical instrument handle and can extend through a cavity 365 (FIG. 6) defined within the spine 364 of the shaft 308. In various embodiments, the outer housings 362a, 362b, the cavity 363 defined within the outer housings 362a, 362b, the spine 364, the cavity 365 extending through spine 364, and the drive member 366 can be concentrically, or at least substantially concentrically, positioned along a common axis. In at least one such embodiment, the drive member 366 can be closely received within the cavity 365 such that the outer perimeter of drive member 366 is positioned adjacent to the inner sidewalls of cavity 365. In various embodiments, the outer housings 362a, 362b and spine 364 can each comprise a tubular or cylindrical configuration and the drive shaft 366 can comprise a cylindrical rod, for example. In any event, the trigger 128 can be actuated in order to move the drive member 366 between a proximal position and a distal position in order to advance the cutting member 340, and/or an I-beam member, distally within the end effector 310.
[0079] In various embodiments, referring now to FIGS. 9, 10, and 12, a surgical instrument, such as surgical instrument 400, for example, can comprise a shaft 408 comprising an
articulation joint 460. Similar to the above, the shaft 408 can comprise a proximal shaft portion 409a mounted to a handle of the surgical instrument 400 and a distal shaft portion 409c mounted to an end effector 410. The shaft 408 can further comprise an intermediate shaft portion 409b positioned between the proximal shaft portion 409a and the distal shaft portion 409c. As described in greater detail below, and referring to FIG. 10, the intermediate shaft portion 409b can be configured to permit the articulation joint 460 to articulate about two axes of rotation, i.e., first axis 497 and second axis 498, for example.
[0080] In various embodiments, referring primarily to FIG. 9, the shaft 408 can include an outer housing comprised of a proximal outer housing portion 462a, an intermediate housing portion 462b, and a distal outer housing portion 462c. The shaft 408 can further comprise an articulation actuator 468 positioned within a cavity 463 extending through the outer housing portions 462a and 462b, a spine 464 positioned within a cavity 465 extending through the articulation actuator 468, and a drive member 466 positioned within a cavity 467 extending through the spine 464. The spine 464 can extend through proximal shaft portion 409a and intermediate shaft portion 409b and can be rigidly mounted to, one, at least one of the handle of the surgical instrument and the proximal outer housing 462a and, two, at least one of the end effector 410 and distal outer housing 462c. In various embodiments, the spine 464 can be sufficiently stiff so as to prevent, or at least substantially inhibit, the distal shaft portion 409c and end effector 410 from rotating relative to the proximal shaft portion 409a about longitudinal axis 499 and/or translating distally relative to the intermediate shaft portion 409b. In at least one such embodiment, the articulation actuator 468 can be mounted to intermediate outer housing 462b such that, when the articulation actuator 468 is rotated about longitudinal axis 499, the intermediate shaft portion 409b can be rotated relative to both the proximal shaft portion 409a and the distal shaft portion 409c. More particularly, the intermediate outer housing 462b can be rotated relative to both the proximal outer housing 462a and the distal outer housing 462c.
Owing to such relative rotation, the intermediate shaft portion 409b can articulate relative to the proximal shaft portion 409a and, in addition, the distal shaft portion 409c can articulate relative to the intermediate shaft portion 409b.
[0081] In various embodiments, referring again to FIGS. 9 and 10, the proximal outer housing 462a can comprise a first cam surface 472a and the intermediate outer housing 462b can comprise a first cam follower surface 472b which can be configured to contact the first cam surface 472a when the intermediate shaft portion 409b is rotated relative to the proximal shaft portion 409a. Similar to the above, the rotation of first cam follower surface 472b relative to first cam surface 472a can cause the intermediate shaft portion 409b to pivot or rotate relative to proximal shaft portion 409a about first axis 497. In at least one such embodiment, the first cam surface 472a can comprise an angled surface which extends transversely to longitudinal axis 499 and, similarly, the first cam follower surface 472b can comprise an angled surface which also extends transversely to longitudinal axis 499. In the illustrated embodiment of FIG. 9, the surfaces 472a, 472b can be parallel, or at least substantially parallel, to one another and can lie within planes that extend through the longitudinal axis 499 at an approximately 22.5 degree angle, for example. As the intermediate shaft portion 409b is rotated relative to the proximal shaft portion 409a, referring now to FIG. 10, the intermediate shaft portion 409b can be positioned along an articulated longitudinal axis 499' which intersects and makes an angle with the unarticulated longitudinal axis 499. In various circumstances, an approximately 180 degree rotation of intermediate shaft portion 409b about its longitudinal axis can result in an
approximately 45 degree articulation of the intermediate shaft portion 409b relative to the proximal shaft portion 409a, for example. In various other circumstances, although not illustrated, an approximately 90 degree rotation of shaft portion 409b can result in an
approximately 22.5 degree articulation of intermediate shaft portion 409b relative to proximal shaft portion 409a, for example.
[0082] Referring again to FIG. 10, the rotation of intermediate outer housing 462b of intermediate shaft portion 409b about its longitudinal axis can also cause distal shaft portion 409c to articulate relative to intermediate shaft portion 409b. Such relative articulation between shaft portions 409b and 409c can be possible owing to the spine 464 which can prevent the distal shaft portion 409c from rotating relative to proximal shaft portion 409a. Stated another way, the rotation of articulation actuator 464 may not be transmitted to distal shaft portion 409c wherein, as a result, the intermediate outer housing 462b can rotate relative to both the proximal outer housing 462a and the distal outer housing 462c. Similar to the above, the distal outer housing 462c can comprise a second cam surface 473c and the intermediate outer housing 462b can comprise a second cam follower surface 473b which can which can be configured to contact the second cam surface 473c when the intermediate outer housing 426b is rotated relative to the distal outer housing 462c. Similar to the above, the rotation of second cam follower surface 473b relative to second cam surface 473c can cause the distal shaft portion 409c to pivot or rotate relative to the intermediate shaft portion 409b about second axis 498. In at least one such embodiment, referring again to FIG. 9, the second cam surface 473c can comprise an angled surface which extends transversely to longitudinal axis 499 and, similarly, the second cam follower surface 473b can comprise an angled surface which also extends transversely to longitudinal axis 499. In the illustrated embodiment of FIG. 9, the surfaces 473b, 473c can be parallel, or at least substantially parallel, to one another and can lie within planes that extend through the longitudinal axis 499 at an approximately 22.5 degree angle, for example. As the intermediate shaft portion 409b is rotated relative to the distal shaft portion 409c, referring now to FIG. 10, the distal shaft portion 409c can be positioned along an articulated longitudinal axis 499" which intersects and makes an angle with the articulated longitudinal axis 499' of intermediate shaft portion 409b. In various circumstances, an approximately 180 degree rotation of intermediate shaft portion 409b about its longitudinal axis can result in an approximately 45 degree articulation of distal shaft portion 409c relative to the intermediate shaft portion 409b, for example. In various other circumstances, although not illustrated, an approximately 90 degree rotation of shaft portion 409b can result in an approximately 22.5 degree articulation of distal shaft portion 409c relative to intermediate shaft portion 409b, for example. [0083] In various embodiments, the articulation actuator 468 can be operably coupled with an actuator on the handle of the surgical instrument, such as actuator 302 (FIG. 5), for example, wherein, similar to the above, the actuator 302 can be configured to rotate the articulation actuator 468 in at least one of a clockwise direction (CW) and a counter-clockwise direction (CCW) about longitudinal axis 499. As discussed above, referring again to FIG. 9, the articulation actuator 468 can be mounted to the intermediate outer housing portion 462b such that, when actuator 468 is rotated, the outer housing portion 462b can be rotated with actuator 468. In various embodiments, the actuator 468 can be tubular, or at least substantially tubular, and can be closely received by the sidewalls of cavity 463 within proximal outer housing 462a. The outer perimeter of actuator 468 can be circular, or at least substantially circular, and the inner sidewalls of cavity 463 can also be circular, or at least substantially circular, such that actuator 468 can rotate relative to the proximal outer housing 462a. As also described above, the spine 464 can extend through the cavity 465 in actuator 468 and can be mounted to the distal outer housing 462c. Similar to actuator 468, spine 464 can be tubular, or at least substantially tubular, and can be closely received by the sidewalls of cavity 465. The outer perimeter of spine 464 can be circular, or at least substantially circular, and the inner sidewalls of cavity 465 can also be circular, or at least substantially circular, such that the actuator 468 can rotate relative to the spine 464.
[0084] Similar to the above, the orientation of the angled surfaces of cams 472a and 473c and the orientation of angled surfaces of cam followers 472b and 473b can be selected such that a certain degree of rotation of the articulation actuator 468 results in a predetermined degree of articulation of end effector 410. In at least one such embodiment, referring again to FIGS. 10 and 12, an approximately 180 degree rotation of actuator 468, and intermediate outer housing 462b, can result in an approximately 90 degree articulation of end effector 410. More particularly, in such circumstances, an approximately 180 degree rotation of actuator 468 can result in an approximately 45 degree articulation of intermediate outer housing 462b relative to proximal shaft portion 409a and, in addition, an approximately 45 degree articulation of distal shaft portion 409c and end effector 410 relative to intermediate outer housing 462b. Such circumstances can arise when cam surfaces 472a and 473c and cam follower surfaces 472b and 473b extend at approximately 22.5 degree angles with respect to longitudinal axis 499, for example. Other embodiments are envisioned in which a 180 degree rotation of actuator 468 results in less than or more than a 90 degree articulation of end effector 410. In various embodiments, the articulation angle defined between the unarticulated longitudinal axis 499 of proximal shaft portion 409a and the articulated longitudinal axis 499' of intermediate shaft portion 409b, i.e., first articulation angle 471, and the articulation angle defined between axis 499' and the articulated longitudinal axis 499" of distal shaft portion 409c, i.e., second articulation angle 475, can be the same, or at least substantially the same, when the end effector 410 is articulated. In other embodiments, the first articulation angle 471 and the second articulation angle 475 can be different. Such embodiments may be possible when the angle of first cam surface 472a is different than the angle of second cam surface 473c and/or when the angle of first cam follower surface 472b is different than the angle of second cam follower surface 473b, for example.
[0085] In various embodiments, the cam surfaces 472a and 473c and/or the cam follower surfaces 472b and 473b can be flat, or at least substantially flat wherein, as a result, the ratio between the rotation of articulation actuator 468 and the articulation of end effector 410 can be constant, or at least substantially constant, throughout the rotation of actuator 468 and the articulation of end effector 410. In certain embodiments, the ratio between the rotation of articulation actuator 468 and the articulation of end effector 410 can be variable, or non-constant, throughout the rotation of actuator 468 and the articulation of end effector 410. In at least one such embodiment, one or more of the cam surfaces 472a and 473c and/or one or more of the cam follower surfaces 472b and 473b can be curved, or arcuate, such that ratio between the rotation of actuator 468 and the articulation of end effector 410 is different at various points during the articulation of end effector 410. In certain embodiments, the ratio can be such that the end effector 410 articulates through a greater degree of articulation for a given degree of rotation of actuator during the initial rotation of actuator 468 and a lesser degree of articulation for the same given degree of rotation during the subsequent rotation of actuator 468, for example.
[0086] In various embodiments, further to the above, the shaft 408 and the end effector 410 can be configured such that the end effector 410 does not rotate, or at least substantially rotate, about its longitudinal axis when the end effector 410 is articulated. In at least one such embodiment, the longitudinal rotation of end effector 410 can be prevented, or at least substantially inhibited, by spine 464 rigidly mounted to distal shaft portion 409c and the presence of two articulation joints within the articulation joint 460. In embodiments having only one articulation axis within an articulation joint, such as articulation joint 360 (FIG. 7), for example, the articulation of the end effector may cause the end effector to rotate about its longitudinal axis which can invert, or at least partially invert, the end effector as it is articulated. In any event, the drive member of the shaft, such as drive member 366, for example, can be sufficiently flexible in order to
accommodate the articulation within the articulation joint and, in certain embodiments, accommodate any twisting that may occur as a result of the inversion of the end effector. In certain embodiments, the cutting member, such as cutting member 340, for example, may comprise a bearing which can permit relative rotational movement between the drive member 366 and cutting member 340 and at least partially prevent torsional stress from building within the drive member 366. Drive member 466 and cutting member 440 (FIGS. 9 and 12) can comprise similar features. In various embodiments, the drive member 466 can be operably coupled with a trigger, such as trigger 128 (FIG. 1), for example, such that the actuation of trigger 128 can advance the drive member 466 and cutting member 440 between proximal and distal positions. In at least one such embodiment, the drive member 466 can comprise a cylindrical rod extending through the cavity 467 defined within the spine 464, wherein the outer diameter of drive member 466 can be closely received by the inner sidewalls of cavity 467. In various embodiments, the drive member 466 can be configured to slide within cavity 467 and, in at least one embodiment, can be supported laterally by the sidewalls of cavity 467.
[0087] In various embodiments, referring now to FIG. 14, an electrosurgical instrument can comprise an articulation joint, such as articulation joint 560, for example, which can pivotably connect an end effector 510 to a shaft 508. In use, referring now to FIG. 15, the end effector 510 can be articulated into a desired position and then clamped onto tissue by advancing cutting member 540 distally and moving first jaw 520A relative to second jaw 520B from an open position into a closed position. Alternatively, the first jaw 520A can be closed onto tissue by cutting member 540 before the end effector 510 is articulated. In either event, referring now to FIGS. 16 and 17, the end effector 510 can be moved between an unarticulated position (FIG. 16) and an articulated position (FIG. 17). As the end effector 510 is moved between its unarticulated and articulated positions, the end effector 510 can be moved through a range of positions therebetween. In certain embodiments, the shaft 508 and end effector 510 can be configured such that the end effector 510 can be removably locked into one or more pre-set positions. In at least one such embodiment, referring again to FIGS. 16 and 17, the shaft 508 can comprise one or more recesses or notches 562a-562c and the end effector 510 can comprise at least one detent or projection 564 which can be configured to be received within the notches 562a-562c. For example, when detent 564 is positioned in first notch 562a, the end effector 510 may be held in an articulated position to a first lateral side of longitudinal axis 599. In at least one such embodiment, the first notch 562a can comprise sidewalls which can be configured such that the detent 564 can abut the sidewalls and inhibit the detent 564 from being readily removed from the first notch 562a. In such embodiments, the end effector 510 may remain locked in position until a sufficient force or torque is applied to end effector 510 in order to push detent 564 out of first notch 562a and toward second notch 562b, for example. In certain embodiments, the surgical instrument can comprise an additional lock which can be slid distally into engagement with the end effector 510 in its articulated position and/or unarticulated position in order to further secure the end effector 510.
[0088] When detent 564 is sufficiently aligned with second notch 562b, further to the above, the detent 564 may be sufficiently positioned within the second notch 562b and the end effector 510 can be removably locked in an unarticulated position. Similar to first notch 562a, the sidewalls of the second notch 562b can be configured such that the detent 564 can abut the sidewalls which inhibit the detent 564 from being readily removed from the second notch 562b. Similarly, the end effector 510 may remain locked in position until a sufficient force or torque is applied to end effector 510 in order to push detent 564 out of second notch 562b and toward third notch 562c, for example. When detent 564 is sufficiently aligned with third notch 562c, the detent 564 may be sufficiently positioned within the third notch 562c and the end effector 510 can be removably locked in an articulated position to a second lateral side of longitudinal axis 599. Similar to second notch 562b, the sidewalls of the third notch 562c can be configured such that the detent 564 can abut the sidewalls which inhibit the detent 564 from being readily removed from the third notch 562c. Similarly, the end effector 510 may remain locked in position until a sufficient force or torque is applied to end effector 510 in order to push detent 564 out of third notch 562c. In various other embodiments, any suitable number of notches and/or detents, such as less than three notches or more than three notches, for example, can be utilized. In any event, the notches 562a-562c can be positioned circumferentially around a perimeter surrounding pivot 561 such that each notch is positioned the same distance, or at least substantially the same distance, from pivot 561. In at least one such embodiment, the shaft 508 can comprise a first set of notches 562a-562c around one end of pivot 561 and a second set of notches 562a-562c around the opposite end of pivot 561. Correspondingly, the end effector 510 can comprise a first detent 564 configured to engage the first set of notches 562a-562c and a second detent 564 configured to engage the second set of notches 562a-562c. In certain alternative embodiments, the shaft 508 can comprise a plurality of detents and the end effector can comprise at least one notch configured to selectively receive the detents.
[0089] In use, the end effector 510 may be inserted through a trocar, or other cannula, into a surgical site when the end effector 510 is in an unarticulated position. Once the end effector 510 has passed through the trocar, the end effector can be positioned against bone and/or tissue such that a longitudinal force can be transmitted through shaft 508 and end effector 510 along axis 599, or at least substantially along axis 599. In various circumstances, such a force can cause the end effector 510 to pivot or rotate relative to the shaft 508. As the end effector 510 is rotated, the detent 564 can snap-lock into one of the first recess 562a and 562c, for example, such that the end effector 510 is locked into an articulated position. In order to return the end effector 510 to an unarticulated position, the end effector 510 can be positioned against bone and/or tissue once again such that a torque can be generated between the shaft 508 and the end effector 510 in order to rotate the shaft 508 relative to the end effector 510. Once the end effector 510 has been returned to an unarticulated position, or an at least substantially unarticulated position, the end effector 510 can be pulled back through the trocar or cannula and removed from the surgical site. Various articulation joint arrangements are disclosed in United States Patent Application
Publication No. 2007/0187453, entitled SURGICAL STAPLING AND CUTTING DEVICE, which was filed on September 29, 2006; United States Patent Application Publication No.
2007/0073341, entitled METHOD FOR OPERATING A SURGICAL STAPLING AND
CUTTING DEVICE, which was filed on September 29, 2006 ; and United States Patent
Application Publication No. 2007/0027469, entitled SURGICAL STAPLING AND CUTTING DEVICE AND METHOD FOR USING THE DEVICE, which was filed on July 24, 2006, the entire disclosures of which are incorporated by reference herein. In various other embodiments, a surgical instrument can comprise an articulation actuator which can be configured to drive the end effector between unarticulated and articulated positions, including those described herein, for example.
[0090] Further to the above, referring now to FIGS. 18-20, an electrosurgical instrument can comprise a shaft 608, an end effector 610, and one or more electrodes, such as electrodes 665, for example, positioned within one or more of jaws 620A and 620B, for example, which can be configured to conduct electrical current. In various embodiments, the electrosurgical instrument can comprise one or more conductors, such as insulated wires, for example, which can electrically connect the electrodes 665 to an electrical source positioned within the handle of the surgical instrument and/or an electrical source operatively coupled with the handle, for example. In either event, the insulated wires, such as insulated wire 609, for example, can develop slack when the end effector 610 is articulated relative to the shaft 608 of the surgical instrument. In various circumstances, the slack generated within the wire 609 can cause the wire 609 to buckle, curl, and/or shift and, in some circumstances, interfere with the movement of end effector 610 relative to shaft 608. In various embodiments, the electrosurgical instrument can comprise a wire management system configured to manage to the slack in one or more insulated wires, for example. Referring now to FIG. 20, the end effector 610 is depicted as being articulated to a first side of longitudinal axis 699 and insulated wire 609 is depicted as having very little slack therein. As the end effector 610 is moved from its articulated position depicted in FIG. 20 to its unarticulated position illustrated in FIG. 19, slack can be created within the wire 609. In order to manage this slack such that it is accumulated, or at least substantially accumulated, in a desirable location, the surgical instrument can further comprise a wire tensioning device 670 which can be configured to draw slack within wire 609 into a location positioned proximally of articulation joint 660, for example.
[0091] In at least one embodiment, an insulated wire, such as wire 609, for example, can comprise a conductive core and an insulated jacket surrounding the conductive core. In various embodiments, further to the above, the wire tensioning device 670 can comprise a first, or proximal, end 671 which is attached to the insulation jacket of wire 609 and a second, or distal, end 672 which is also attached to the insulation jacket of wire 609. The first end 671 and the second end 672 can each be clamped to the wire 609 such that there is very little, if any, relative movement between the first end 671 and the wire 609 and, similarly, very little, if any, relative movement between the second end 672 and the wire 609. The wire tensioning device 670 can further comprise a spring member 673 connecting the first end 671 and the second end 672 which, in various embodiments, can be configured to bias the first end 671 and the second end 672 toward one another. In use, when the end effector 610 is in its maximum, or near maximum, articulated position illustrated in FIG. 20, the end effector 610 can apply a tensioning force to the wire 609 such that wire 609 is taut, or at least substantially taut, and the second, or distal, end 672 is pulled distally such that a maximum distance, or an at least near maximum distance, XI is created between the first end 671 and the second end 672. As the end effector 610 is moved into its unarticulated position, illustrated in FIG. 19, slack can be created within the wire 609 and, owing to the resiliency of the spring portion 673 of wire tensioning device 670, the spring portion 673 can pull second end 672 and first end 671 toward one another such that a distance X2, which is shorter than distance XI, is defined between the first and second ends 671, 672. As a result of the above, as also illustrated in FIG. 19, slack within wire 609 can be accumulated between the first end 671 and the second end 672 and tension can be created within the remainder of wire 609 in order to keep wire 609 from accumulating, or at least substantially accumulating, within the articulation joint 660.
[0092] As the end effector 610 is moved into an articulated position on the opposite side of longitudinal axis 699, illustrated in FIG. 18, additional slack can be created within the wire 609. Owing to the resiliency of the spring portion 673 of wire tensioning device 670, the spring portion 673 can pull second end 672 and first end 671 of tensioning device 670 even closer to one another such that a distance X3, which is shorter than distance X2, is defined between the first and second ends 671, 672. In various circumstances, the position of the end effector in FIG. 18 can represent a maximum articulation to the opposite side of the longitudinal axis 699 and a fully-relaxed state of spring 673. In any event, as a result of the above, additional slack within wire 609 can be accumulated between the first end 671 and the second end 672 of tensioning device 670 and tension can be maintained within the remainder of wire 609 in order to keep wire 609 from accumulating, or at least substantially accumulating, within the articulation joint 660. When the end effector 610 is moved back toward its unarticulated position (FIG. 19), the end effector 610 can pull the wire 609 and stretch the tensioning device 670 by pulling the second end 672 distally relative to the first end 671. Similarly, when the end effector 610 is moved into the articulated position depicted in FIG. 20, the end effector 610 can pull the wire 609 once again and further stretch the tensioning device.
[0093] In various embodiments, as described above, an electrosurgical instrument can comprise a drive member configured to advance a cutting member, for example, within an end effector of the electrosurgical instrument. In certain embodiments, referring now to FIGS. 21- 23, an electrosurgical instrument can comprise a shaft 708, an end effector 710, and a drive member 766 operably coupled with a cutting member 740, wherein the distal displacement of drive member 766 and cutting member 740 is configured to move first jaw 720A toward second jaw 720B. In at least one such embodiment, the electrosurgical instrument can further comprise an articulation joint 760 which pivotably or rotatably connects the end effector 710 to shaft 708. Referring to FIGS. 22 and 23, the drive member 766 can comprise a plurality of flexible layers, or bands, such as flexible layers 767a-767d, for example, which can be configured to transmit a longitudinal load to cutting member 740 when the end effector 710 is in either an unarticulated position or an articulated position. In at least one such embodiment, the flexible layers of drive member 766 can be sufficiently flexible to bend within articulation joint 760 and accommodate the articulation of end effector 710. In various embodiments, the flexible layers 767a-767d of drive member 766 can slide or slip relative to one another. Such relative sliding or slipping between the layers 767a-767d can reduce resistance within the articulation joint 760. In certain embodiments, friction forces between adjacent flexible layers can at least partially resist the relative movement of the flexible layers. In certain alternative embodiments, the flexible layers can be adhered to one another by an adhesive to form a flexible laminate material. In various embodiments, at least one of the flexible layers, such as conductive layer 768, for example, can be comprised of a conductive material and can be configured to conduct electrical current through the drive member 766. Conductive layer 768 can be comprised of copper, brass, and/or a flexible conductive ribbon, for example. In at least one such embodiment, the conductive layer 768 can be positioned intermediate layer 767b and layer 767c which can be comprised of an insulative material, such as plastic, for example. In various embodiments, the conductive layer 768 can be in electrical communication with one or more electrodes positioned within the end effector 710 and, in addition, a power source positioned within, and/or operably coupled to, a handle of the surgical instrument. In at least one such embodiment, the cutting member 740 can be comprised of an electrically conductive material wherein the conductive layer 768 can be in electrical communication with one or more of the electrodes via the cutting member 740, for example. In various embodiments, conductive layer 768, and/or any other suitable layer, such as layers 767a-767d, for example, can be configured to, one, conduct current, and, two, transmit a longitudinal load or force therethrough. Similar to the above, conductive layer 768 can be configured to slide or slip relative to layers 767a-767d. In certain other embodiments, some layers can be configured to conduct current but may transmit little, if any, longitudinal load or force therethrough.
[0094] In various embodiments, the conductive layer 768 can be utilized to conduct current to the electrodes in lieu of an insulated wire, for example. In certain embodiments, a drive member can comprise more than one conductive layer. In at least one such embodiment, the drive member 766 can comprise one or more supply conductive layers, such as conductive layer 768, for example, and, in addition, one or more return conductive layers. More particularly, the drive member 766 can comprise a first conductive return layer positioned intermediate flexible layers 767a and 767b and a second conductive return layer positioned intermediate flexible layers 767c and 767d, for example. In at least one embodiment, the first and second return conductive layers can be comprised of a conductive material, such as copper and/or brass, for example, and the flexible layers 767a-767d can be comprised of an insulative material, such as plastic, for example. In at least one such embodiment, the supply conductive layer 768 can be in electrical communication with a power source, or positive voltage terminal of the power source, and one or more electrodes in end effector 710, as described above, wherein the return conductive layers can be in electrical communication with a ground, or negative voltage terminal of the power source, and one or more electrodes in end effector 710. In certain embodiments, the return conductive layers may not be in direct electrical communication with the electrodes; rather, they may be in contact with the tissue such that the current can flow from a supply electrode, through the tissue, and into the return conductive layers. In various embodiments, the supply flexible layers, the return flexible layers, and the insulative flexible layers may have the same, or at least
substantially the same, width, height and length while, in certain other embodiments, such dimensions may be different between the layers.
[0095] In various embodiments, further to the above, an electrosurgical instrument can further comprise a structure configured to prevent the flexible layers from buckling within the articulation joint. In at least one embodiment, referring now to FIG. 24, the electrosurgical instrument can comprise a structure 790 which can comprise a slot 791 configured to receive at least a portion of the drive member 766 therein. The slot 791 can be configured such that the drive member 766 can slide between the sidewalls 792 and 793 of slot 791 as the drive member 766 is advanced distally and/or retracted proximally. In use, the drive member 766 may bend within the articulation joint 760 wherein at least one of the sidewalls 792 and 793 can be configured to support the drive bar 766 when it is bent. In at least one embodiment, the first sidewall 792 and the second sidewall 793 can comprise concave surfaces against which the drive member 766 can be positioned. In at least one such embodiment, the sidewalls 792 and 793 can be defined by a radius of curvature which matches the smallest radius of curvature that is desired for the drive member 766. Stated another way, when the end effector 710 is only partially articulated, the radius of curvature which defines drive member 766 within the articulation joint 760 may be large and the possibility of drive member 766 buckling may be low. In such circumstances, referring to FIG. 24, the drive bar 766 may define a larger radius of curvature than the radius of curvature of sidewall 792 and/or sidewall 793 and, as a result, the drive bar 766 may contact the sidewall 792 and/or sidewall 793 at only a few locations, such as contact locations 795a and 795b, for example. In circumstances where the end effector 710 has been articulated to its maximum-articulated position, the radius of curvature which defines drive member 766 within the articulation joint 760 may be smaller and the possibility of drive member 766 buckling may be higher. Thus, in various embodiments, the radius of curvature of sidewalls 792 and 793 can be selected such that they match the smallest radius of curvature for drive member 766 that is desired. In such circumstances, the entirety, or at least substantial entirety, of sidewall 792 and/or sidewall 793 may be contacted by the drive member 766. In various circumstances, the first sidewall 792 may be configured to support the drive member 766 when the end effector 710 is articulated in a first direction and the second sidewall 793 may be configured to support the drive member 766 when the end effector 710 is articulated in a second, or opposite, direction. Various devices are disclosed in United States Patent Application Serial No. 12/765,330, entitled SURGICAL STAPLING INSTRUMENT WITH AN
ARTICULATABLE END EFFECTOR, which was filed on April 22, 2010, the entire disclosure of which is incorporated by reference herein.
[0096] In various embodiments, referring now to FIGS. 25 and 26, an electrosurgical instrument can comprise an end effector 810, a shaft 808, and a drive member 840 which can be advanced distally in order to move first jaw 820A toward second jaw 820B. The shaft 808 can comprise an outer housing 862 which can also serve as an articulation driver 868. In certain embodiments, the articulation driver 868 can comprise a proximal end operably coupled with an articulation actuator located on the surgical instrument handle, for example. The articulation driver 868 can further comprise a distal end 867 which can define a circular, or at least substantially circular, ring of gear teeth extending around the perimeter of the distal end 867. In at least one embodiment, the gear teeth of distal end 867 can be meshingly engaged with the gear teeth of a gear member 869 mounted to end effector 810 such that the rotation of articulation driver 868 can be transmitted to end effector 810. More particularly, the gear teeth of distal end 867 and gear member 869 can be meshingly engaged such that, when the articulation driver 868 is rotated in a first direction 895 about longitudinal axis 899, the distal end 867 of driver 868 can drive the end effector 810 in a first direction 897 about pivot 861, as illustrated in FIG. 26, for example. Similarly, when the articulation driver 868 is rotated in the opposite direction, i.e., in a second direction 896, about longitudinal axis 899, the distal end 867 of driver 868 can drive the end effector 810 in an opposite direction, i.e., in a second direction 898, about pivot 861. In various embodiments, the gear member 869 can be fixedly mounted to the end effector 810 such that rotational movement of gear member 869 about pivot 861 is transmitted directly to the end effector 810.
[0097] In various embodiments, further to the above, the end effector 810 can comprise two gear members 869 fixedly mounted thereto which can be meshingly engaged with the gear teeth of distal end 867 of articulation driver 868. In at least one embodiment, the end effector 810 can comprise a first gear member 869 positioned at a first end of pivot 861 and a second gear member 869 positioned at a second, or opposite, end of pivot 861, for example. In at least one such embodiment, the articulation driver 868 can be configured to drive both gear members 869 simultaneously. In various embodiments, the shaft 808 can further comprise a spine member 864 extending through an aperture in outer housing 862. In use, the outer housing 862, or
articulation driver 868, can be rotated about spine 864 in order to articulate end effector 810 as described above. The spine member 864 can comprise a proximal end which can be fixedly mounted to the handle of the surgical instrument and, in addition, a distal end which can comprise pivot mounts, or projections, 863 extending therefrom which can be positioned within pivot apertures in gear members 869. The pivot projections 863 can be closely received within the pivot apertures in gear members 869 and can define an axis about which the end effector 810 can be rotated.
[0098] In various embodiments, referring now to FIGS. 27-30, an electrosurgical instrument, such as surgical instrument 900, for example, can comprise a handle 905, a shaft 908 extending from the handle 905, and an end effector 910 rotatably coupled to the shaft 908 via an
articulation joint 960. The handle 905 can comprise a trigger 928 which can be operably coupled with a drive member 966 such that an actuation of trigger 928 can move drive member 966 distally and advance a cutting member 940 within the end effector 910. In various embodiments, the articulation joint 960 can comprise an outer sheath 962, a cavity 963 defined by the outer sheath 962, and a plurality of spine members 964 extending inwardly into cavity 963. The drive member 966 can comprise an I-beam configuration, for example, which can include flanges 980 and a web 982 positioned intermediate flanges 980. In at least one embodiment, each spine member 964 can comprise a support surface 965 which can be configured to support the web 982 of drive member 966, for example, and prevent, or at least reduce the possibility of, the drive member 966 from becoming buckled. In at least one such embodiment, the support surfaces 965 can co-operatively define a slot 967 therein which can be configured to slidably receive and support the drive member 966. In certain embodiments, referring to FIG. 29, each spine member 964 can comprise a T-shaped configuration including a base member 984 and a support member 986 attached to the base member 984 which includes support surface 985. In at least one such embodiment, each spine member 964 may move independently of the others such that the spine members 964 do not inhibit, or at least substantially inhibit, the articulation of outer housing 962, for example. In certain embodiments, the base members 984 can be narrower than the support members 986 such that the spine members 986 may be flexible. In various embodiments, the spine members can comprise any other suitable shape or configuration, such as a U-shaped configuration, for example, wherein the bases of the U-shaped spine members can face inwardly toward the drive member 966, for example.
[0099] In various embodiments, referring primarily to FIGS. 27 and 28, the handle 905 of the surgical instrument 900 can comprise an articulation actuator 969 which can be operably coupled with the end effector 910 such that the rotation of actuator 969 can articulate end effector 910. In at least one embodiment, referring primarily to FIGS. 28 and 31-35, the surgical instrument 900 can further comprise a first articulation driver 901 and a second articulation driver 902 wherein each of the articulation drivers 901 and 902 can be operably coupled to the articulation actuator 969 and the end effector 915. The first articulation driver 901 can have a proximal end attached to a first side 903 of the articulation actuator 969 and a distal end attached to a first side 911 of end effector 910, wherein the first side 903 of actuator 969 and the first side 911 of end effector 910 can be positioned on a first lateral side of longitudinal axis 999. In various embodiments, referring now to FIGS. 31, 32, 34, and 36, each spine member 964 can comprise an aperture 907 through which the first articulation driver 901 can extend. Similar to the above, the second articulation driver 902 can have a proximal end attached to a second side 904 of the articulation actuator 969 and a distal end attached to a second side 912 of end effector 910, wherein the second side 904 of actuator 969 and the second side 912 of end effector 910 can be positioned on a second lateral side of longitudinal axis 999. In various embodiments, referring again to FIGS. 31, 32, 34, and 36, each spine member 964 can comprise an aperture 908 through which the second articulation driver 902 can extend.
[0100] In use, further to the above, the articulation actuator 969 can be rotated in a first direction 995 in order to articulate end effector 910 to the first lateral side of longitudinal axis 999. More particularly, the first articulation driver 901 can be mounted to the articulation actuator 969 such that the rotation of actuator 969 in the first direction 995 can pull the first articulation driver 901 proximally and, as a result, pull the end effector 910 to the first lateral side. When the first articulation driver 901 is pulled proximally by the articulation actuator 969, the articulation actuator 969 can push the second articulation driver 902 distally which can, as a result, push the end effector 910 to the first lateral side. When the end effector 910 is articulated, in at least one such embodiment, the articulation joint 960 can bend along a radius of curvature instead of a single pivot axis. In at least one embodiment, the articulation joint 960 can be between approximately 1.0" and approximately 1.5" long, for example, and can be positioned approximately 0.2" to approximately 0.5", for example, proximally with respect to end effector 910. In at least one such embodiment, the length between the proximal end of the articulation joint 960 and the distal end of the end effector 910 can be between approximately 2.2" and approximately 3.0", for example. In any event, similar to the above, the articulation actuator 969 can be rotated in a second direction 996 in order to articulate end effector 910 to the second lateral side of longitudinal axis 999. More particularly, the second articulation driver 902 can be mounted to the articulation actuator 969 such that the rotation of actuator 969 in the second direction 996 can pull the second articulation driver 902 proximally and, as a result, pull the end effector 910 to the second lateral side. When the second articulation driver 902 is pulled proximally by the articulation actuator 969, the articulation actuator 969 can push the first articulation driver 901 distally which can, as a result, push the end effector 910 to the second lateral side. In various embodiments, the articulation actuator 969 can comprise a wheel which extends through a first slot in a first side 906a of the handle 905 and, in addition, a second slot in a second side 906b of the handle 905 which can permit the articulation actuator 969 to be rotated from the first side 906a and/or the second side 906b of the handle 905. In at least one such embodiment, the perimeter of the articulation actuator wheel can comprise serrations, and/or gear teeth, for example, which can allow the user of the surgical instrument to easily turn the articulation actuator 969.
[0101] In various embodiments, referring again to FIG. 28, the surgical instrument 900 can further comprise an articulation lock which can be configured to prevent the end effector 910 from being articulated. In at least one embodiment, although not illustrated, the handle 905 can comprise a lock which can be configured to directly engage the articulation actuator 969 in order to prevent, or at least substantially prevent, the articulation actuator 969 from rotating and thus preventing, or at least substantially preventing, the articulation actuator 969 from articulating end effector 910. In certain embodiments, referring again to FIG. 28, the handle 905 can comprise a lock gear 967 which can be meshingly engaged with gear teeth extending around the perimeter of articulation actuator 969. In at least one such embodiment, the handle 905 can comprise a lock 975 which can be selectively engaged with the lock gear 967 in order to prevent the lock gear 967 and the articulation actuator 969 from rotating. The handle 905 can further comprise a nozzle 970 which can be operably coupled with the lock 975 such that the lock 975 can be selectively engaged with and disengaged from the lock gear 967 by the movement of nozzle 970. More particularly, in at least one embodiment, the nozzle 970 can be retracted proximally in order to disengage the lock 975 from the lock gear 967 and moved distally in order to engage the lock 975 with the lock gear 967. In at least one such embodiment, the handle 905 can further comprise a biasing spring operably coupled with the nozzle 970 which can be configured to bias the lock 975 into engagement with the lock gear 967.
[0102] In use, the end effector 910 of the surgical instrument 900 can be inserted into a surgical site through a trocar, for example, in an unarticulated position. In various embodiments, the shaft 908 and end effector 910 can be selectively rotated about their longitudinal axis 999 in order to orient the end effector 910 in a desired orientation. More particularly, in at least one such embodiment, the user of the surgical instrument 900 can grasp nozzle 970, which can be keyed to the outer housing of shaft 908, and rotate nozzle 970 about longitudinal axis 999 in order to rotate shaft 908 and end effector 910. As outlined above, the user can pull the nozzle 970 proximally in order to disengage the articulation lock 975 from the articulation actuator 969 such that the articulation actuator 969 can be used to articulate the end effector 910 and/or such that the end effector 910 can be positioned against bone and/or tissue and forced to articulate relative to the shaft 908 by a force applied longitudinally through the shaft 908. In either event, once the end effector 910 has been suitably articulated, the nozzle 970 can be released in order to allow a spring or biasing member within the handle 905 to move nozzle 970 distally and reengage the articulation lock 975 with the articulation actuator 969, for example. In order to treat the tissue, the trigger 928 can be actuated in order to advance drive member 966 and cutting member 940 distally and to close the end effector 910. As discussed above, the actuation of the trigger 928, and/or another trigger on handle 905, can be configured to operably connect a power source with electrodes in the end effector 910. In any event, after the cutting member 940 has been sufficiently advanced and the tissue has been sufficiently treated, the trigger 928 can be released and the drive member 966 and cutting member 940 can be retracted. Furthermore, the nozzle 970 can be retracted proximally once again in order to unlock the end effector 910 and allow the end effector 910 to be returned to an unarticulated position by rotating the articulation actuator 969 and/or pushing the end effector 910 against bone and/or tissue, for example. Once the end effector 910 has been sufficiently straightened, the end effector 910 can be withdrawn from the surgical site through the trocar.
[0103] In various embodiments, further to the above, a shaft and/or articulation joint of an electrosurgical instrument can further comprise one or more flexible rods extending through and mounted to an outer housing of the shaft which can be configured to, one, flexibly support the outer housing and, two, support a drive bar passing through the articulation joint. Such flexible rods, similar to the above, can comprise support surfaces configured to prevent, or at least reduce the possibility of, the drive member from becoming buckled. In various alternative
embodiments, referring now to FIG. 37, a surgical instrument 1000, similar to surgical instrument 900, can comprise a handle 1005, a shaft 1008 extending from handle 1005, and an articulation joint 1060 connecting an end effector to the shaft 1008. Also similar to surgical instrument 900, surgical instrument 1000 can further comprise a drive bar 1066 extending through the articulation joint 1060, wherein the drive bar 1066 can be operably coupled with a cutting member 1040 and can be utilized to advance and/or retract the cutting member 1040 within the end effector. In various embodiments, the articulation joint 1060 can comprise support structures 1064 which can be configured to support the drive bar 1066 when the end effector is in an articulated position. The support structures 1064 can comprise a plurality of wave-shaped members 1063 which can each comprise a support surface 1065 configured to support the side of the drive bar 1066, for example. In various embodiments, the wave-shaped members 1063 can be configured to flex and stretch in order to accommodate the bending of articulation joint 1060 without inhibiting, or at least substantially inhibiting, the articulation of the end effector. In various embodiments, referring again to FIG. 37, the surgical instrument 1000 can further comprise an articulation lock member 1075 which can, similar to articulation lock member 975, be selectively engaged with an articulation gear 1067 in order to prevent the articulation gear 1067 from being rotated and the end effector from being articulated.
[0104] In various embodiments, referring now to FIGS. 38 and 39, a surgical instrument 1100 can comprise a handle 1105, a shaft 1108 extending from the handle 1105, and an end effector 1110 extending from the shaft 1108. The surgical instrument 1100 can further comprise an articulation joint 1160 positioned intermediate the shaft 1108 and the handle 1105 which can be configured to allow the handle 1105 to be articulated relative to the shaft 1108. In at least one such embodiment, the end effector 1110 and the shaft 1108 can be inserted through a trocar, for example, and into a surgical site such that at least a portion of the shaft 1108 and the articulation joint 1160 remains positioned externally to the trocar. In various embodiments, a trocar assembly can comprise a housing, a seal assembly, and a cannula which can define an aperture extending through the trocar assembly. One or more suitable trocars are disclosed in U.S. Patent No. 7,371,227, entitled TROCAR SEAL ASSEMBLY, which issued on May 13, 2008, and U.S. Patent No. 6,656,198, entitled TROCAR WITH REINFORCED OBTURATOR SHAFT, which issued on December 2, 2003, the entire disclosures of which are hereby incorporated by reference herein. Other surgical site access devices are disclosed in U.S. Patent Application Publication No. 2010/0081995, entitled VARIABLE SURGICAL ACCESS DEVICE; U.S. Patent Application Publication No. 2010/0081883, entitled METHODS AND DEVICES FOR PERFORMING GASTROPLASTIES USING A MULTIPLE PORT ACCESS DEVICE; U.S. Patent Application Publication No. 2010/0081882, entitled MULTIPLE PORT SURGICAL ACCESS DEVICE; U.S. Patent Application Publication No. 2010/0081881, entitled
SURGICAL ACCESS DEVICE WITH PROTECTIVE ELEMENT; U.S. Patent Application Publication No. 2010/0081880, entitled SURGICAL ACCESS DEVICE; U.S. Patent
Application Publication No. 2010/0081864, entitled METHODS AND DEVICES FOR
PERFORMING GASTRECTOMIES AND GASTROPLASTIES; U.S. Patent Application Publication No. 2010/0081863, entitled METHODS AND DEVICES FOR PERFORMING GASTRECTOMIES AND GASTROPLASTIES, the entire disclosures of which are incorporated by reference herein. Several of these devices can comprise single-site access devices which can permit the insertion of multiple laparoscopic instruments, for example, through several apertures in the same access device. In at least one embodiment, such a single-site access device can be inserted through an incision in the umbilicus, for example. [0105] In various circumstances, as outlined above, several surgical instruments can be inserted into a surgical site through the same access device. In such circumstances, among others, the handles of these surgical instruments can be positioned adjacent to one another thereby increasing the difficulty of accessing and using the surgical instruments. In order to position the handle 1105 in a more desirable position to actuate trigger 1128, the handle 1105 can be rotated or pivoted relative to the shaft 1108. In at least one embodiment, the articulation joint 1160 can comprise a ball and socket joint including ball 1161 mounted to the proximal end of shaft 1108 and socket 1162 in the distal end of handle 1105 which can allow the handle 1105 to be rotated relative to the shaft 1108 about more than one axis. More particularly, the ball and socket joint can be configured to permit handle 1105 to be rotated about longitudinal axis 1199 as indicated by arrow 1196 and/or one or more axes, such as axes 1197 and 1198, for example, which are perpendicular to longitudinal axis 1199. Such rotation is depicted by arrows 1194 and 1195, for example. In various embodiments, the socket 1162 can be configured to surround a sufficient portion of the ball 1161 so as to prevent the ball 1161 from being removed from the socket 1162 during use. In at lest one such embodiment, the socket 1162 can surround over half the perimeter of ball 1161. Various articulation joints are contemplated which can permit the handle of the surgical instrument to articulate relative to the shaft of the surgical instrument including those disclosed in U.S. Patent Application Publication No. 2007/0179476, entitled ENDOSCOPIC SURGICAL INSTRUMENT WITH A HANDLE THAT CAN ARTICULATE WITH RESPECT TO THE SHAFT, the entire disclosure of which is incorporated by reference herein, for example. In any event, in various embodiments, the handle 1105 can be rotated between a position which lies along longitudinal axis 1199 of shaft 1108 to a position which is off-axis with respect to axis 1199. Once articulated, the trigger 1128, for example, can be actuated to advance at least one of a closure member configured to close the end effector 1110 and/or advance a firing member distally in order to incise tissue, for example. Such a closure member and/or firing member can be sufficiently flexible in order to accommodate the articulation of joint 1160. In various embodiments, the firing member can comprise a plurality of flexible layers which can slide relative to one another. In certain embodiments, the firing member can have a circular, or an at least generally circular, cross-section, for example, and, in at least one embodiment, the firing members can comprise layers having a taller height in the middle of the cross-section and layers having a shorter height at the sides of the cross-section, for example. Firing members having a circular, or an at least generally circular, cross-section, can facilitate the selective articulation of handle 1105 about axes 1197 and 1198 and/or any other suitable axis. The entire disclosure of United States Patent Application Publication No.
2007/0208312, entitled APPARATUS AND METHOD FOR MINIMALLY INVASIVE
SURGERY, is hereby incorporated by reference herein. The entire disclosure of United States Patent Application Serial No. 12/775,724, entitled COMPOUND ANGLED LAPARASCOPIC METHODS AND DEVICES, which was filed on May 7, 2010, is hereby incorporated by reference herein.
[0106] In various embodiments, as described above, current can flow from one electrode to another while passing through the tissue captured by the end effector of the surgical instrument. As also described above, the current passing through the tissue can heat the tissue. In various circumstances, however, the tissue may become overheated. In order to avoid such overheating, the electrodes of various surgical instruments can comprise materials which may no longer conduct current, or may conduct at least substantially less current, when the electrode materials have reached or exceeded a certain temperature. Stated another way, in at least one embodiment, the electrical resistance of the electrode material can increase with the temperature of the material and, in certain embodiments, the electrical resistance of the material can increase significantly when the material has reached or exceeded a certain transition, or switching, temperature. In various circumstances, such materials can be referred to as positive temperature coefficient, or PTC, materials. In at least some such PTC materials, the PTC material can be comprised of a first non-conductive material, or substrate, which has a high electrical resistance and, in addition, a second, conductive material, or particles, having a lower electrical resistance interdispersed throughout the substrate material. In at least one embodiment, the substrate material can comprise polyethylene and/or high-density polyethylene (HDPE), for example, and the conductive material can comprise carbon particles, for example. In any event, when the temperature of the PTC material is below its transition temperature, the conductive material can be present in the non-conductive material in a sufficient volumetric density such that the current can flow through the PTC material via the conductive particles. When the temperature of the PTC material has exceeded its transition temperature, the substrate, or non-conductive material may have sufficiently expanded and/or changed states such that the conductive particles are no longer sufficiently in contact with one another in order provide a sufficient path for the current to flow therethrough. Stated another way, the expansion and/or state change of the substrate material may cause the volumetric density of the conductive particles to fall below a sufficient volumetric density in order for current to be conducted therethrough, or at least substantially conducted therethrough. In various circumstances, as a result of the above, the PTC material may act as a circuit breaker which can prevent, or at least inhibit, additional energy from reaching the tissue being treated, that is, at least until the PTC material has cooled sufficiently and reached a temperature which is below the transition, or switching, temperature. At such point, the PTC material could begin to conduct current again.
[0107] The embodiments of the devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances it may be advantageous to introduce the devices inside the patient using a combination of minimally invasive and open surgical techniques. Minimally invasive techniques may provide more accurate and effective access to the treatment region for diagnostic and treatment procedures. To reach internal treatment regions within the patient, the devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example.
Minimally invasive procedures performed by the introduction of various medical devices into the patient through a natural opening of the patient are known in the art as NOTES™ procedures. Some portions of the devices may be introduced to the tissue treatment region percutaneously or through small - keyhole - incisions.
[0108] Endoscopic minimally invasive surgical and diagnostic medical procedures are used to evaluate and treat internal organs by inserting a small tube into the body. The endoscope may have a rigid or a flexible tube. A flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina) or via a trocar through a relatively small - keyhole - incision incisions (usually 0.5 - 1.5cm). The endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography. The endoscope may be adapted and configured with working channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures. [0109] The devices disclosed herein may be designed to be disposed of after a single use, or they may be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning may include a combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device may utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of this application.
[0110] Preferably, the various embodiments of the devices described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Other sterilization techniques can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam. [0111] It will be appreciated that the terms "proximal" and "distal" may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term "proximal" refers to the portion of the instrument closest to the clinician and the term "distal" refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as "vertical," "horizontal," "up," and "down" may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
[0112] Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
[0113] Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims

WHAT IS CLAIMED IS:
1. A surgical instrument, comprising:
a handle comprising a trigger;
a shaft comprising a proximal shaft portion coupled to said handle and a distal shaft portion;
an articulation joint connected to said distal shaft portion;
an end effector, comprising:
a proximal end coupled to said articulation joint;
a distal end;
a first jaw member;
a second jaw member, wherein one of said first jaw member and said second jaw member is movable relative to the other of said first jaw member and said second jaw member; and
an electrode;
a drive member extending through said articulation joint, wherein said drive member is operably coupled with said trigger, wherein an actuation of said trigger is configured to move said drive member toward said distal end of said end effector, wherein said drive member comprises a first flexible layer and a second flexible layer, wherein said first flexible layer is comprised of an electrically conductive material, and wherein said second flexible layer is comprised of an electrically insulative material.
2. The surgical instrument of Claim 1, further comprising a cutting member, wherein said drive member is operably engaged with said cutting member such that the movement of said drive member toward said distal end of said end effector moves said cutting member toward said distal end of said end effector, and wherein said cutting member is in electrical communication with said first flexible layer.
3. The surgical instrument of Claim 1, further comprising a third flexible layer, wherein said first flexible layer is positioned intermediate said second flexible layer and said third flexible layer, and wherein said third flexible layer is comprised of an electrically insulative material.
4. The surgical instrument of Claim 3, wherein said first flexible layer comprises a conductive ribbon.
5. The surgical instrument of Claim 1, wherein said first layer of said drive member is in electrical communication with said electrode.
6. The surgical instrument of Claim 5, further comprising a second electrode, wherein said first flexible layer of said drive member is in electrical communication with said second electrode.
7. The surgical instrument of Claim 1, wherein said articulation joint further comprises an anti-buckling support structure configured to at least one of receive and constrain at least a portion of said drive member.
8. A surgical instrument, comprising: a handle comprising a trigger;
a shaft, comprising:
a proximal shaft portion coupled to said handle;
a distal shaft portion; and
an articulation joint rotatably connecting said proximal shaft portion and said distal shaft portion, wherein one of said proximal shaft portion and said distal shaft portion comprises a detent, wherein the other of said proximal shaft portion and said distal shaft portion comprises a plurality of notches configured to selectively receive said detent, and wherein each said notch is configured to removably hold said distal shaft portion at an articulated angle with respect to said proximal shaft portion;
an end effector, comprising:
a proximal end coupled to said distal shaft portion;
a distal end;
a first jaw member;
a second jaw member, wherein one of said first jaw member and said second jaw member is movable relative to the other of said first jaw member and said second jaw member; and
an electrode; and
a drive member extending through said articulation joint of said shaft, wherein said drive member is operably coupled with said trigger, and wherein an actuation of said trigger is configured to move said drive member toward said distal end of said end effector.
9. The surgical instrument of Claim 8, wherein said distal shaft portion is pivotably connected to said proximal shaft portion about an axis of rotation, and wherein said plurality of notches are positioned along a circumference centered about said axis of rotation.
10. The surgical instrument of Claim 8, wherein said proximal shaft portion defines a longitudinal axis, and wherein said plurality of notches comprises:
a first notch positioned on a first side of said longitudinal axis configured to removably hold said distal shaft portion in a first articulated position;
a second notch positioned on a second side of said longitudinal axis configured to removably hold said distal shaft portion in a second articulated position; and
a third notch positioned along said longitudinal axis configured to hold said distal shaft portion in a third articulated position.
11. The surgical instrument of Claim 8, wherein said shaft further comprises a locking element configured to engage said distal shaft portion and hold said distal shaft portion in position relative to said proximal shaft portion.
12. The surgical instrument of Claim 8, wherein said proximal shaft portion comprises a proximal outer housing, wherein said notches are integrally formed in said proximal outer housing, wherein said distal shaft portion comprises a distal outer housing, wherein said detent is integrally formed with said distal outer housing, and wherein said drive member extends through said proximal outer housing and said distal outer housing.
13. A surgical instrument, comprising:
a handle comprising a trigger;
a shaft comprising a proximal shaft portion coupled to said handle and a distal shaft portion;
an articulation joint connected to said distal shaft portion;
an end effector coupled to said articulation joint, comprising:
a first jaw member;
a second jaw member, wherein one of said first jaw member and said second jaw member is movable relative to the other of said first jaw member and said second jaw member; and
an electrode;
a flexible conductor in electrical communication with said electrode, wherein said flexible conductor extends through said shaft and said articulation joint;
a spring, comprising:
a proximal end mounted to said flexible conductor;
a distal end mounted to said flexible conductor; and
an intermediate portion connecting said proximal end and said distal end, wherein said intermediate portion extends along said flexible conductor, and wherein said intermediate portion is configured to flex between a first configuration defining a first length between said proximal end and said distal end and a second configuration defining a second length between said proximal end and said distal end; and a drive member extending through said articulation joint of said shaft, wherein said drive member is operably coupled with said trigger, and wherein an actuation of said trigger is configured to move said drive member toward said distal end of said end effector.
14. The surgical instrument of Claim 13, wherein said first distance is shorter than said second distance, and wherein said spring is configured to be resiliently biased into said first configuration.
15. The surgical instrument of Claim 13, wherein said end effector is rotatable relative to said shaft between a first orientation and a second orientation, and wherein the rotation of said end effector from said first orientation to said second orientation is configured to pull said distal end of said spring distally relative to said proximal end of said spring.
16. The surgical instrument of Claim 13, wherein said spring is positioned intermediate said handle and said articulation joint.
17. The surgical instrument of Claim 13, wherein said intermediate portion is configured to flex between said first configuration and a third configuration, wherein said third configuration defines a third distance between said proximal end and said distal end of said spring, and wherein said third distance is shorter than said first distance.
18. A surgical instrument, comprising:
a handle comprising a trigger and an articulation actuator; a shaft, comprising:
a proximal shaft portion coupled to said handle, wherein said proximal shaft portion defines a longitudinal axis;
an articulation drive member operably coupled with said articulation actuator, wherein said articulation drive member is configured to be rotated about said longitudinal axis by said articulation actuator;
a distal shaft portion rotatably coupled to said proximal shaft portion about a pivot axis, wherein said articulation drive member is operably engaged with said distal shaft portion, and wherein the rotation of said articulation drive member about said longitudinal axis is configured to rotate said distal shaft portion about said pivot axis; and
an end effector, comprising:
a proximal end coupled to said distal shaft portion;
a distal end;
a first jaw member;
a second jaw member, wherein one of said first jaw member and said second jaw member is movable relative to the other of said first jaw member and said second jaw member; and
an electrode; and
a drive member extending through said articulation joint of said shaft, wherein said drive member is operably coupled with said trigger, and wherein an actuation of said trigger is configured to move said drive member toward said distal end of said end effector.
19. The surgical instrument of Claim 18, wherein said articulation drive member comprises a first end comprising a first plurality of gear teeth, wherein said distal shaft portion comprises a second end comprising a second plurality of gear teeth, and wherein said first plurality of gear teeth are intermeshed with said second plurality of gear teeth such that the rotation of said articulation drive member is transmitted to said distal shaft portion.
20. The surgical instrument of Claim 18, wherein said articulation drive member comprises a cylindrical tube defining an aperture, and wherein said proximal shaft portion comprises a spine member extending through said aperture.
21. The surgical instrument of Claim 20, wherein said cylindrical tube comprises a circumference, and wherein said first plurality of gear teeth comprise an array of gear teeth positioned around said circumference.
22. The surgical instrument of Claim 18, wherein said drive member comprises a plurality of flexible layers.
23. A surgical instrument, comprising:
a handle comprising a trigger;
a shaft;
an articulation joint pivotably coupling said handle and said shaft, wherein said handle comprises a socket and said shaft comprises a ball positioned within said socket;
an end effector, comprising: a proximal end coupled to said shaft;
a distal end;
a first jaw member;
a second jaw member, wherein one of said first jaw member and said second jaw member is movable relative to the other of said first jaw member and said second jaw member; and
an electrode; and
a drive member extending through said articulation joint of said shaft, wherein said drive member is operably coupled with said trigger, wherein an actuation of said trigger is configured to move said drive member toward said distal end of said end effector.
24. The surgical instrument of Claim 23, wherein said shaft is rotatable about a first axis and a second axis, wherein said first axis is perpendicular to said second axis.
25. A surgical instrument, comprising:
a handle comprising a trigger and an articulation actuator, wherein said articulation actuator comprises a first attachment portion and a second attachment portion;
a shaft extending from said handle;
an articulation joint connected to said shaft, said articulation joint comprising:
an outer housing;
an elongate aperture extending through said outer housing; and support structures extending inwardly from said outer housing;
an end effector, comprising: a proximal end coupled to said shaft;
a distal end;
a first jaw member;
a second jaw member, wherein one of said first jaw member and said second jaw member is movable relative to the other of said first jaw member and said second jaw member;
an electrode;
a first lateral side portion; and
a second lateral side portion;
a first articulation driver coupled to said first lateral side portion of said end effector and said first attachment portion of said articulation actuator such that the rotation of said articulation actuator in a first direction articulates said end effector toward said first lateral side portion; a second articulation driver coupled to said second lateral side portion of said end effector and said second attachment portion of said articulation actuator such that the rotation of said articulation actuator in a second direction articulates said end effector toward said second lateral side portion; and
a drive member extending adjacent to said support structures of said articulation joint, wherein said drive member is operably coupled with said trigger, and wherein an actuation of said trigger is configured to move said drive member at least one of toward and away from said distal end of said end effector.
26. The surgical instrument of Claim 25, wherein said articulation actuator comprises a control rotatably mounted to said handle about an axis, wherein the rotation of said control in said first direction is configured to pull said first articulation driver proximally, and wherein the rotation of said control in said second direction is configured to pull said second articulation driver proximally.
27. The surgical instrument of Claim 25, wherein said inwardly extending support structures define a first passage configured to receive said first articulation driver and a second passage configured to receive said second articulation driver.
28. The surgical instrument of Claim 25, wherein said handle further comprises a locking element configured to be moved between a first position in which it is engaged with said articulation actuator and a second position in which it is disengaged from said articulation actuator.
29. A surgical instrument, comprising:
a handle;
a trigger;
an articulation actuator;
an end effector, comprising:
a first jaw member;
a second jaw member, wherein one of said first jaw member and said second jaw member is movable relative to the other of said first jaw member and said second jaw member; and
an electrode; a power switch selectively actuatable to operably couple said electrode with a power source;
a shaft extending between said handle and said end effector, wherein said shaft comprises:
an outer tube, comprising:
a first portion comprising a proximal end mounted to said handle and a distal end comprising a first angled surface;
a second portion comprising a distal end mounted to said end effector and a proximal end comprising a second angled surface, wherein said second portion is rotatable relative to said first portion; and
an inner cavity extending through said first portion and said second portion;
a drive member extending through said inner cavity, wherein said drive member is operably coupled to said trigger, wherein an actuation of said trigger is configured to move said drive member from a proximal position to a distal position; and
an articulation member extending through said inner cavity, wherein said articulation member is rotatable relative to said first portion of said outer tube, wherein said articulation member is operably mounted to said articulation actuator and said second portion of said outer tube such that the rotation of said articulation actuator is configured to rotate said second portion relative to said first portion, and wherein said second angled surface is configured to contact said first angled surface when said second portion is rotated relative to said first portion in order to articulate said second portion relative to said first portion.
30. The surgical instrument of Claim 29, wherein said first angled surface is parallel to said second angled surface.
31. The surgical instrument of Claim 29, wherein said shaft defines a longitudinal axis, and wherein said first angled surface and said second angled surface extend transversely to said longitudinal axis.
32. The surgical instrument of Claim 29, wherein said drive member is configured to move said first jaw between an open position and a closed position as said drive member is moved from said proximal position to said distal position.
33. The surgical instrument of Claim 29, wherein said articulation member comprises a tube extending through said inner cavity of said outer tube, wherein said tube of said articulation member comprises a second inner cavity, and wherein said drive member extends through said second inner cavity.
34. The surgical instrument of Claim 29, wherein said outer tube defines a longitudinal axis extending through said first portion and said second portion of said outer tube when said second portion is unarticulated relative to said first portion, wherein said articulation member is positioned concentrically along said longitudinal axis, and wherein said second portion is configured to articulate relative to said first portion when said second portion is rotated about said longitudinal axis.
35. The surgical instrument of Claim 29, wherein said articulation member is configured to inhibit said second portion of said outer tube from moving distally relative to said first portion of said outer tube.
36. The surgical instrument of Claim 29, further comprising a biasing member operably engaged with at least one of said articulation actuator and said articulation member, wherein said biasing member is configured to apply a biasing force to said first portion of said outer tube and bias said first angled surface against said second angled surface.
37. The surgical instrument of Claim 29, wherein said outer tube defines a longitudinal axis extending through said first portion and said second portion of said outer tube when said second portion is unarticulated relative to said first portion, wherein said second portion of said overtube is configured to be rotated about said longitudinal axis by said articulation member, wherein said first angled surface comprises a cam, wherein said second angled surface comprises a cam follower, and wherein said cam is configured to rotate said cam follower about an axis which is perpendicular to said longitudinal axis.
38. The surgical instrument of Claim 29, wherein said outer tube defines a longitudinal axis extending through said first portion and said second portion of said outer tube when said second portion is unarticulated relative to said first portion, wherein said second portion of said overtube is configured to be rotated about said longitudinal axis by said articulation member, wherein said first angled surface comprises a cam, wherein said second angled surface comprises a cam follower, and wherein said cam is configured to rotate said cam follower about an axis which is perpendicular to said longitudinal axis.
39. A surgical instrument, comprising:
a handle;
a trigger;
an articulation actuator;
an end effector, comprising:
a first jaw member;
a second jaw member, wherein one of said first jaw member and said second jaw member is movable relative to the other of said first jaw member and said second jaw member; and
an electrode;
a power actuator selectively actuatable to operably couple said electrode with a power source;
a shaft extending between said handle and said end effector, wherein said shaft comprises:
an outer tube, comprising:
a first portion comprising a proximal end mounted to said handle and a distal end comprising a first cam surface;
a second portion comprising a distal end mounted to said end effector and a proximal end comprising a second cam surface; an intermediate portion positioned intermediate said first portion and said second portion, wherein said intermediate portion is rotatable relative to said first portion and said second portion, and wherein said intermediate portion comprises:
a first cam follower surface positioned opposite said first cam surface; and
a second cam follower surface positioned opposite said second cam surface; and
an inner cavity extending through said first portion, said intermediate portion, and said second portion;
a spine extending through said inner cavity, wherein said spine is mounted to at least one of said end effector and said second portion of said outer tube and at least one of said handle and said first portion of said outer tube;
a drive member extending through said inner cavity, wherein said drive member is operably coupled to said trigger, wherein an actuation of said trigger is configured to move said drive member from a proximal position to a distal position; and
an articulation member extending through said inner cavity, wherein said articulation member is rotatable relative to said first portion of said outer tube, wherein said articulation member is operably mounted to said articulation actuator and said intermediate portion of said outer tube such that the rotation of said articulation actuator is configured to rotate said intermediate portion relative to said first portion, and wherein said first cam follower surface is configured to contact said first cam surface when said intermediate portion is rotated relative to said first portion in order to articulate said intermediate portion relative to said first portion.
40. The surgical instrument of Claim 39, wherein the rotation of said articulation actuator is configured to rotate said intermediate portion relative to said second portion, and wherein said second cam follower surface is configured to contact said second cam surface when said intermediate portion is rotated relative to said second portion in order to articulate said second portion relative to said intermediate portion.
41. The surgical instrument of Claim 39, wherein said outer tube defines a longitudinal axis extending through said first portion, said intermediate portion, and said second portion of said outer tube when said intermediate portion and said second portion are unarticulated relative to said first portion, wherein said first cam surface comprises a first angled surface, wherein said second cam surface comprises a second angled surface, and wherein said first angled surface and said second angled surface extend transversely to said longitudinal axis.
42. The surgical instrument of Claim 39, wherein said drive member is configured to move said first jaw between an open position and a closed position as said drive member is moved from said proximal position to said distal position.
43. The surgical instrument of Claim 39, wherein said articulation member comprises a tube extending through said inner cavity of said outer tube, wherein said tube of said articulation member comprises a second inner cavity, and wherein said drive member and said spine extend through said second inner cavity.
44. The surgical instrument of Claim 39, wherein said outer tube defines a longitudinal axis extending through said first portion, said intermediate portion, and said second portion of said outer tube when said intermediate portion and second portion are unarticulated relative to said first portion, wherein said articulation member is positioned concentrically along said longitudinal axis, and wherein said intermediate portion is configured to articulate relative to said first portion when said intermediate portion is rotated about said longitudinal axis.
45. The surgical instrument of Claim 39, wherein said spine member is configured to inhibit said second portion of said outer tube from rotating relative to said first portion.
46. The surgical instrument of Claim 39, wherein said outer tube defines a longitudinal axis extending through said first portion, said intermediate portion, and said second portion of said outer tube when said intermediate portion and said second portion are unarticulated relative to said first portion, wherein said intermediate portion of said overtube is configured to be rotated about said longitudinal axis by said articulation member, and wherein said first cam is configured to rotate said first cam follower about an axis which is perpendicular to said longitudinal axis.
47. The surgical instrument of Claim 46, wherein said outer tube defines a longitudinal axis extending through said first portion and said second portion of said outer tube when said second portion is unarticulated relative to said first portion, wherein said second portion of said overtube is configured to be rotated about said longitudinal axis by said articulation member, wherein said first angled surface comprises a cam, wherein said second angled surface comprises a cam follower, and wherein said cam is configured to rotate said cam follower about an axis which is perpendicular to said longitudinal axis.
48. A surgical instrument, comprising:
a handle;
an articulation actuator;
a shaft extending between said handle and said end effector, wherein said shaft comprises:
an outer tube, comprising:
a first portion comprising a proximal end mounted to said handle and a distal end comprising a first cam surface;
a second portion comprising a distal end mounted to said end effector and a proximal end comprising a second cam surface;
an intermediate portion positioned intermediate said first portion and said second portion, wherein said intermediate portion is rotatable relative to said first portion and said second portion, and wherein said intermediate portion comprises:
a first cam follower surface positioned opposite said first cam surface; and
a second cam follower surface positioned opposite said second cam surface; and
an inner cavity extending through said first portion, said intermediate portion, and said second portion; a spine extending through said inner cavity, wherein said spine is mounted to at least one of said end effector and said second portion of said outer tube and at least one of said handle and said first portion of said outer tube; and
an articulation member extending through said inner cavity, wherein said articulation member is rotatable relative to said first portion of said outer tube, wherein said articulation member is operably mounted to said articulation actuator and said intermediate portion of said outer tube such that the rotation of said articulation actuator is configured to rotate said intermediate portion relative to said first portion, and wherein said first cam follower surface is configured to contact said first cam surface when said intermediate portion is rotated relative to said first portion in order to articulate said intermediate portion relative to said first portion.
PCT/US2011/043008 2010-07-08 2011-07-06 Surgical instrument comprising an articulatable end effector WO2012006306A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/832,345 US9149324B2 (en) 2010-07-08 2010-07-08 Surgical instrument comprising an articulatable end effector
US12/832,361 US8834466B2 (en) 2010-07-08 2010-07-08 Surgical instrument comprising an articulatable end effector
US12/832,361 2010-07-08
US12/832,345 2010-07-08

Publications (2)

Publication Number Publication Date
WO2012006306A2 true WO2012006306A2 (en) 2012-01-12
WO2012006306A3 WO2012006306A3 (en) 2012-08-23

Family

ID=44588250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/043008 WO2012006306A2 (en) 2010-07-08 2011-07-06 Surgical instrument comprising an articulatable end effector

Country Status (1)

Country Link
WO (1) WO2012006306A2 (en)

Cited By (474)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014004251A2 (en) * 2012-06-28 2014-01-03 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
WO2015034682A1 (en) * 2013-09-06 2015-03-12 Ethicon Endo-Surgery, Inc. Surgical clip applier with articulation section
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US9084601B2 (en) 2008-02-14 2015-07-21 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9179911B2 (en) 2006-09-29 2015-11-10 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US9186143B2 (en) 2007-06-04 2015-11-17 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9271799B2 (en) 2011-05-27 2016-03-01 Ethicon Endo-Surgery, Llc Robotic surgical system with removable motor housing
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9289210B2 (en) 2008-09-19 2016-03-22 Ethicon Endo-Surgery, Llc Surgical stapler with apparatus for adjusting staple height
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9289206B2 (en) 2007-03-15 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9307987B2 (en) 2009-12-24 2016-04-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument that analyzes tissue thickness
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
EP2901948A4 (en) * 2012-09-26 2016-05-11 Storz Karl Gmbh & Co Kg Brake release mechanism and medical manipulator provided with same
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
EP2901956A4 (en) * 2012-09-26 2016-05-25 Storz Karl Gmbh & Co Kg Brake mechanism and medical manipulator provided with same
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9510830B2 (en) 2004-07-28 2016-12-06 Ethicon Endo-Surgery, Llc Staple cartridge
WO2016200496A1 (en) * 2015-06-11 2016-12-15 Surgiquest, Inc. Hand instruments with shaped shafts for use in laparoscopic surgery
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9585660B2 (en) 2010-01-07 2017-03-07 Ethicon Endo-Surgery, Llc Method for testing a surgical tool
US9592054B2 (en) 2011-09-23 2017-03-14 Ethicon Endo-Surgery, Llc Surgical stapler with stationary staple drivers
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US9603991B2 (en) 2004-07-28 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling instrument having a medical substance dispenser
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US9662110B2 (en) 2007-06-22 2017-05-30 Ethicon Endo-Surgery, Llc Surgical stapling instrument with an articulatable end effector
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9687231B2 (en) 2008-02-13 2017-06-27 Ethicon Llc Surgical stapling instrument
US9687236B2 (en) 2010-10-01 2017-06-27 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9687237B2 (en) 2011-09-23 2017-06-27 Ethicon Endo-Surgery, Llc Staple cartridge including collapsible deck arrangement
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9730697B2 (en) 2012-02-13 2017-08-15 Ethicon Endo-Surgery, Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US9839429B2 (en) 2008-02-15 2017-12-12 Ethicon Endo-Surgery, Llc Stapling system comprising a lockout
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9913648B2 (en) 2011-05-27 2018-03-13 Ethicon Endo-Surgery, Llc Surgical system
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9918704B2 (en) 2011-03-14 2018-03-20 Ethicon Llc Surgical instrument
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US10058963B2 (en) 2006-01-31 2018-08-28 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10130363B2 (en) 2010-09-29 2018-11-20 Ethicon Llc Staple cartridge
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
WO2019199827A1 (en) 2018-04-10 2019-10-17 Intuitive Surgical Operations, Inc. Articulable medical devices having flexible wire routing
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10499890B2 (en) 2006-01-31 2019-12-10 Ethicon Llc Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
WO2020014401A1 (en) * 2018-07-10 2020-01-16 Boards Of Regents Of The University Of Texas System Articulable devices for in vivo tissue evaluation
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
CN110891509A (en) * 2017-06-28 2020-03-17 爱惜康有限责任公司 System for controlling control circuitry for independent energy delivery on segmented portions
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10675035B2 (en) 2010-09-09 2020-06-09 Ethicon Llc Surgical stapling head assembly with firing lockout for a surgical stapler
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
USD894389S1 (en) 2016-06-24 2020-08-25 Ethicon Llc Surgical fastener
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10758233B2 (en) 2009-02-05 2020-09-01 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11020109B2 (en) 2013-12-23 2021-06-01 Ethicon Llc Surgical stapling assembly for use with a powered surgical interface
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
WO2021126545A1 (en) * 2019-12-16 2021-06-24 Covidien Lp Surgical robotic systems including surgical instruments with articulation
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11213295B2 (en) 2015-09-02 2022-01-04 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11219456B2 (en) 2015-08-26 2022-01-11 Cilag Gmbh International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11439376B2 (en) 2018-03-07 2022-09-13 Intuitive Surgical Operations, Inc. Low-friction, small profile medical tools having easy-to-assemble components
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11452572B2 (en) 2017-12-14 2022-09-27 Intuitive Surgical Operations, Inc. Medical tools having tension bands
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11690619B2 (en) 2016-06-24 2023-07-04 Cilag Gmbh International Staple cartridge comprising staples having different geometries
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11918275B2 (en) 2021-04-30 2024-03-05 Cilag Gmbh International Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US11944306B2 (en) 2008-09-19 2024-04-02 Cilag Gmbh International Surgical stapler including a replaceable staple cartridge
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11957345B2 (en) 2022-12-19 2024-04-16 Cilag Gmbh International Articulatable surgical instruments with conductive pathways for signal communication

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6533784B2 (en) 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
US6656177B2 (en) 2000-10-23 2003-12-02 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6656198B2 (en) 2001-06-01 2003-12-02 Ethicon-Endo Surgery, Inc. Trocar with reinforced obturator shaft
US6770072B1 (en) 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US6802843B2 (en) 2001-09-13 2004-10-12 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US6905497B2 (en) 2001-10-22 2005-06-14 Surgrx, Inc. Jaw structure for electrosurgical instrument
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
US6926716B2 (en) 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
US6929644B2 (en) 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
US7041102B2 (en) 2001-10-22 2006-05-09 Surgrx, Inc. Electrosurgical working end with replaceable cartridges
US7070597B2 (en) 2001-10-18 2006-07-04 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US7083619B2 (en) 2001-10-22 2006-08-01 Surgrx, Inc. Electrosurgical instrument and method of use
US7087054B2 (en) 2002-10-01 2006-08-08 Surgrx, Inc. Electrosurgical instrument and method of use
US7112201B2 (en) 2001-10-22 2006-09-26 Surgrx Inc. Electrosurgical instrument and method of use
US7125409B2 (en) 2001-10-22 2006-10-24 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US7169146B2 (en) 2003-02-14 2007-01-30 Surgrx, Inc. Electrosurgical probe and method of use
US20070027469A1 (en) 2005-07-26 2007-02-01 Kms Medical Llc Surgical stapling and cutting device and method for using the device
US7189233B2 (en) 2001-10-22 2007-03-13 Surgrx, Inc. Electrosurgical instrument
US7220951B2 (en) 2004-04-19 2007-05-22 Surgrx, Inc. Surgical sealing surfaces and methods of use
US20070179476A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20070208312A1 (en) 2006-03-03 2007-09-06 Axcess Instruments, Inc. Apparatus and method for minimally invasive surgery
US7309849B2 (en) 2003-11-19 2007-12-18 Surgrx, Inc. Polymer compositions exhibiting a PTC property and methods of fabrication
US7311709B2 (en) 2001-10-22 2007-12-25 Surgrx, Inc. Electrosurgical instrument and method of use
US7354440B2 (en) 2001-10-22 2008-04-08 Surgrx, Inc. Electrosurgical instrument and method of use
US7371227B2 (en) 2004-12-17 2008-05-13 Ethicon Endo-Surgery, Inc. Trocar seal assembly
US20090076506A1 (en) 2007-09-18 2009-03-19 Surgrx, Inc. Electrosurgical instrument and method
US20100036370A1 (en) 2008-08-07 2010-02-11 Al Mirel Electrosurgical instrument jaw structure with cutting tip
US20100081883A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Methods and devices for performing gastroplasties using a multiple port access device
US20100081864A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Methods and devices for performing gastrectomies and gastroplasties
US20100081881A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Surgical Access Device with Protective Element
US20100081880A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Surgical Access Device
US20100081995A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Variable Surgical Access Device
US20100081882A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Multiple Port Surgical Access Device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7055731B2 (en) * 2003-07-09 2006-06-06 Ethicon Endo-Surgery Inc. Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
EP1749479A1 (en) * 2005-08-02 2007-02-07 Marco Gandini Retractor instrument
US7708758B2 (en) * 2006-08-16 2010-05-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7845535B2 (en) * 2006-10-06 2010-12-07 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US9050098B2 (en) * 2007-11-28 2015-06-09 Covidien Ag Cordless medical cauterization and cutting device
US8403926B2 (en) * 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656177B2 (en) 2000-10-23 2003-12-02 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6533784B2 (en) 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
US6656198B2 (en) 2001-06-01 2003-12-02 Ethicon-Endo Surgery, Inc. Trocar with reinforced obturator shaft
US6802843B2 (en) 2001-09-13 2004-10-12 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US7070597B2 (en) 2001-10-18 2006-07-04 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US7189233B2 (en) 2001-10-22 2007-03-13 Surgrx, Inc. Electrosurgical instrument
US7125409B2 (en) 2001-10-22 2006-10-24 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US6929644B2 (en) 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
US7041102B2 (en) 2001-10-22 2006-05-09 Surgrx, Inc. Electrosurgical working end with replaceable cartridges
US6905497B2 (en) 2001-10-22 2005-06-14 Surgrx, Inc. Jaw structure for electrosurgical instrument
US7083619B2 (en) 2001-10-22 2006-08-01 Surgrx, Inc. Electrosurgical instrument and method of use
US7311709B2 (en) 2001-10-22 2007-12-25 Surgrx, Inc. Electrosurgical instrument and method of use
US7112201B2 (en) 2001-10-22 2006-09-26 Surgrx Inc. Electrosurgical instrument and method of use
US7354440B2 (en) 2001-10-22 2008-04-08 Surgrx, Inc. Electrosurgical instrument and method of use
US6770072B1 (en) 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US7381209B2 (en) 2001-10-22 2008-06-03 Surgrx, Inc. Electrosurgical instrument
US7186253B2 (en) 2001-10-22 2007-03-06 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US6926716B2 (en) 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
US7087054B2 (en) 2002-10-01 2006-08-08 Surgrx, Inc. Electrosurgical instrument and method of use
US7169146B2 (en) 2003-02-14 2007-01-30 Surgrx, Inc. Electrosurgical probe and method of use
US7309849B2 (en) 2003-11-19 2007-12-18 Surgrx, Inc. Polymer compositions exhibiting a PTC property and methods of fabrication
US7220951B2 (en) 2004-04-19 2007-05-22 Surgrx, Inc. Surgical sealing surfaces and methods of use
US7371227B2 (en) 2004-12-17 2008-05-13 Ethicon Endo-Surgery, Inc. Trocar seal assembly
US20070187453A1 (en) 2005-07-26 2007-08-16 Kms Medical Llc Surgical stapling and cutting device
US20070073341A1 (en) 2005-07-26 2007-03-29 Kms Medical Llc Method for operating a surgical stapling and cutting device
US20070027469A1 (en) 2005-07-26 2007-02-01 Kms Medical Llc Surgical stapling and cutting device and method for using the device
US20070179476A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20070208312A1 (en) 2006-03-03 2007-09-06 Axcess Instruments, Inc. Apparatus and method for minimally invasive surgery
US20090076506A1 (en) 2007-09-18 2009-03-19 Surgrx, Inc. Electrosurgical instrument and method
US20100036370A1 (en) 2008-08-07 2010-02-11 Al Mirel Electrosurgical instrument jaw structure with cutting tip
US20100081883A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Methods and devices for performing gastroplasties using a multiple port access device
US20100081864A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Methods and devices for performing gastrectomies and gastroplasties
US20100081881A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Surgical Access Device with Protective Element
US20100081880A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Surgical Access Device
US20100081863A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Methods and devices for performing gastrectomies and gastroplasties
US20100081995A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Variable Surgical Access Device
US20100081882A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Multiple Port Surgical Access Device

Cited By (1307)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10383634B2 (en) 2004-07-28 2019-08-20 Ethicon Llc Stapling system incorporating a firing lockout
US9510830B2 (en) 2004-07-28 2016-12-06 Ethicon Endo-Surgery, Llc Staple cartridge
US11135352B2 (en) 2004-07-28 2021-10-05 Cilag Gmbh International End effector including a gradually releasable medical adjunct
US11116502B2 (en) 2004-07-28 2021-09-14 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece firing mechanism
US11083456B2 (en) 2004-07-28 2021-08-10 Cilag Gmbh International Articulating surgical instrument incorporating a two-piece firing mechanism
US9585663B2 (en) 2004-07-28 2017-03-07 Ethicon Endo-Surgery, Llc Surgical stapling instrument configured to apply a compressive pressure to tissue
US9603991B2 (en) 2004-07-28 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US10799240B2 (en) 2004-07-28 2020-10-13 Ethicon Llc Surgical instrument comprising a staple firing lockout
US9737303B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US9737302B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Surgical stapling instrument having a restraining member
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US10716563B2 (en) 2004-07-28 2020-07-21 Ethicon Llc Stapling system comprising an instrument assembly including a lockout
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11882987B2 (en) 2004-07-28 2024-01-30 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US10687817B2 (en) 2004-07-28 2020-06-23 Ethicon Llc Stapling device comprising a firing member lockout
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10292707B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Articulating surgical stapling instrument incorporating a firing mechanism
US9844379B2 (en) 2004-07-28 2017-12-19 Ethicon Llc Surgical stapling instrument having a clearanced opening
US10568629B2 (en) 2004-07-28 2020-02-25 Ethicon Llc Articulating surgical stapling instrument
US10314590B2 (en) 2004-07-28 2019-06-11 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11684365B2 (en) 2004-07-28 2023-06-27 Cilag Gmbh International Replaceable staple cartridges for surgical instruments
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US11812960B2 (en) 2004-07-28 2023-11-14 Cilag Gmbh International Method of segmenting the operation of a surgical stapling instrument
US11730474B2 (en) 2005-08-31 2023-08-22 Cilag Gmbh International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10420553B2 (en) 2005-08-31 2019-09-24 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US11793512B2 (en) 2005-08-31 2023-10-24 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10463369B2 (en) 2005-08-31 2019-11-05 Ethicon Llc Disposable end effector for use with a surgical instrument
US11839375B2 (en) 2005-08-31 2023-12-12 Cilag Gmbh International Fastener cartridge assembly comprising an anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11771425B2 (en) 2005-08-31 2023-10-03 Cilag Gmbh International Stapling assembly for forming staples to different formed heights
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US11272928B2 (en) 2005-08-31 2022-03-15 Cilag GmbH Intemational Staple cartridges for forming staples having differing formed staple heights
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9844373B2 (en) 2005-08-31 2017-12-19 Ethicon Llc Fastener cartridge assembly comprising a driver row arrangement
US9848873B2 (en) 2005-08-31 2017-12-26 Ethicon Llc Fastener cartridge assembly comprising a driver and staple cavity arrangement
US10278697B2 (en) 2005-08-31 2019-05-07 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US10729436B2 (en) 2005-08-31 2020-08-04 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10271845B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US11179153B2 (en) 2005-08-31 2021-11-23 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US10321909B2 (en) 2005-08-31 2019-06-18 Ethicon Llc Staple cartridge comprising a staple including deformable members
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10869664B2 (en) 2005-08-31 2020-12-22 Ethicon Llc End effector for use with a surgical stapling instrument
US10932774B2 (en) 2005-08-31 2021-03-02 Ethicon Llc Surgical end effector for forming staples to different heights
US11172927B2 (en) 2005-08-31 2021-11-16 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11576673B2 (en) 2005-08-31 2023-02-14 Cilag Gmbh International Stapling assembly for forming staples to different heights
US11134947B2 (en) 2005-08-31 2021-10-05 Cilag Gmbh International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US11484311B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US9561032B2 (en) 2005-08-31 2017-02-07 Ethicon Endo-Surgery, Llc Staple cartridge comprising a staple driver arrangement
US11399828B2 (en) 2005-08-31 2022-08-02 Cilag Gmbh International Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11090045B2 (en) 2005-08-31 2021-08-17 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10070863B2 (en) 2005-08-31 2018-09-11 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil
US10149679B2 (en) 2005-11-09 2018-12-11 Ethicon Llc Surgical instrument comprising drive systems
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US10993713B2 (en) 2005-11-09 2021-05-04 Ethicon Llc Surgical instruments
US10028742B2 (en) 2005-11-09 2018-07-24 Ethicon Llc Staple cartridge comprising staples with different unformed heights
US9968356B2 (en) 2005-11-09 2018-05-15 Ethicon Llc Surgical instrument drive systems
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US11793511B2 (en) 2005-11-09 2023-10-24 Cilag Gmbh International Surgical instruments
US10959722B2 (en) 2006-01-31 2021-03-30 Ethicon Llc Surgical instrument for deploying fasteners by way of rotational motion
US11612393B2 (en) 2006-01-31 2023-03-28 Cilag Gmbh International Robotically-controlled end effector
US10653417B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Surgical instrument
US11246616B2 (en) 2006-01-31 2022-02-15 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9439649B2 (en) 2006-01-31 2016-09-13 Ethicon Endo-Surgery, Llc Surgical instrument having force feedback capabilities
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US9451958B2 (en) 2006-01-31 2016-09-27 Ethicon Endo-Surgery, Llc Surgical instrument with firing actuator lockout
US11224454B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10653435B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11166717B2 (en) 2006-01-31 2021-11-09 Cilag Gmbh International Surgical instrument with firing lockout
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US10010322B2 (en) 2006-01-31 2018-07-03 Ethicon Llc Surgical instrument
US9517068B2 (en) 2006-01-31 2016-12-13 Ethicon Endo-Surgery, Llc Surgical instrument with automatically-returned firing member
US11944299B2 (en) 2006-01-31 2024-04-02 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10052099B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps
US10052100B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement
US10058963B2 (en) 2006-01-31 2018-08-28 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US10499890B2 (en) 2006-01-31 2019-12-10 Ethicon Llc Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11350916B2 (en) 2006-01-31 2022-06-07 Cilag Gmbh International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US11103269B2 (en) 2006-01-31 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11364046B2 (en) 2006-01-31 2022-06-21 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10709468B2 (en) 2006-01-31 2020-07-14 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US10098636B2 (en) 2006-01-31 2018-10-16 Ethicon Llc Surgical instrument having force feedback capabilities
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US11058420B2 (en) 2006-01-31 2021-07-13 Cilag Gmbh International Surgical stapling apparatus comprising a lockout system
US10463383B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling instrument including a sensing system
US11051811B2 (en) 2006-01-31 2021-07-06 Ethicon Llc End effector for use with a surgical instrument
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US9320520B2 (en) 2006-01-31 2016-04-26 Ethicon Endo-Surgery, Inc. Surgical instrument system
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US11020113B2 (en) 2006-01-31 2021-06-01 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US11660110B2 (en) 2006-01-31 2023-05-30 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US11890029B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument
US11000275B2 (en) 2006-01-31 2021-05-11 Ethicon Llc Surgical instrument
US11648024B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with position feedback
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11890008B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Surgical instrument with firing lockout
US11883020B2 (en) 2006-01-31 2024-01-30 Cilag Gmbh International Surgical instrument having a feedback system
US10278722B2 (en) 2006-01-31 2019-05-07 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US10952728B2 (en) 2006-01-31 2021-03-23 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9326770B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US10299817B2 (en) 2006-01-31 2019-05-28 Ethicon Llc Motor-driven fastening assembly
US10806479B2 (en) 2006-01-31 2020-10-20 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11801051B2 (en) 2006-01-31 2023-10-31 Cilag Gmbh International Accessing data stored in a memory of a surgical instrument
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
US10335144B2 (en) 2006-01-31 2019-07-02 Ethicon Llc Surgical instrument
US10342533B2 (en) 2006-01-31 2019-07-09 Ethicon Llc Surgical instrument
US10893853B2 (en) 2006-01-31 2021-01-19 Ethicon Llc Stapling assembly including motor drive systems
US11648008B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US9492167B2 (en) 2006-03-23 2016-11-15 Ethicon Endo-Surgery, Llc Articulatable surgical device with rotary driven cutting member
US10064688B2 (en) 2006-03-23 2018-09-04 Ethicon Llc Surgical system with selectively articulatable end effector
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US10070861B2 (en) 2006-03-23 2018-09-11 Ethicon Llc Articulatable surgical device
US11272938B2 (en) 2006-06-27 2022-03-15 Cilag Gmbh International Surgical instrument including dedicated firing and retraction assemblies
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
US10420560B2 (en) 2006-06-27 2019-09-24 Ethicon Llc Manually driven surgical cutting and fastening instrument
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US9408604B2 (en) 2006-09-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instrument comprising a firing system including a compliant portion
US9603595B2 (en) 2006-09-29 2017-03-28 Ethicon Endo-Surgery, Llc Surgical instrument comprising an adjustable system configured to accommodate different jaw heights
US10595862B2 (en) 2006-09-29 2020-03-24 Ethicon Llc Staple cartridge including a compressible member
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US9706991B2 (en) 2006-09-29 2017-07-18 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples including a lateral base
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US11633182B2 (en) 2006-09-29 2023-04-25 Cilag Gmbh International Surgical stapling assemblies
US11406379B2 (en) 2006-09-29 2022-08-09 Cilag Gmbh International Surgical end effectors with staple cartridges
US9179911B2 (en) 2006-09-29 2015-11-10 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US11571231B2 (en) 2006-09-29 2023-02-07 Cilag Gmbh International Staple cartridge having a driver for driving multiple staples
US11678876B2 (en) 2006-09-29 2023-06-20 Cilag Gmbh International Powered surgical instrument
US10695053B2 (en) 2006-09-29 2020-06-30 Ethicon Llc Surgical end effectors with staple cartridges
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11622785B2 (en) 2006-09-29 2023-04-11 Cilag Gmbh International Surgical staples having attached drivers and stapling instruments for deploying the same
US11382626B2 (en) 2006-10-03 2022-07-12 Cilag Gmbh International Surgical system including a knife bar supported for rotational and axial travel
US11877748B2 (en) 2006-10-03 2024-01-23 Cilag Gmbh International Robotically-driven surgical instrument with E-beam driver
US10342541B2 (en) 2006-10-03 2019-07-09 Ethicon Llc Surgical instruments with E-beam driver and rotary drive arrangements
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US11666332B2 (en) 2007-01-10 2023-06-06 Cilag Gmbh International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
US11812961B2 (en) 2007-01-10 2023-11-14 Cilag Gmbh International Surgical instrument including a motor control system
US11771426B2 (en) 2007-01-10 2023-10-03 Cilag Gmbh International Surgical instrument with wireless communication
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US10517682B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US11166720B2 (en) 2007-01-10 2021-11-09 Cilag Gmbh International Surgical instrument including a control module for assessing an end effector
US11134943B2 (en) 2007-01-10 2021-10-05 Cilag Gmbh International Powered surgical instrument including a control unit and sensor
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US11350929B2 (en) 2007-01-10 2022-06-07 Cilag Gmbh International Surgical instrument with wireless communication between control unit and sensor transponders
US11937814B2 (en) 2007-01-10 2024-03-26 Cilag Gmbh International Surgical instrument for use with a robotic system
US11064998B2 (en) 2007-01-10 2021-07-20 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11931032B2 (en) 2007-01-10 2024-03-19 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US10441369B2 (en) 2007-01-10 2019-10-15 Ethicon Llc Articulatable surgical instrument configured for detachable use with a robotic system
US11918211B2 (en) 2007-01-10 2024-03-05 Cilag Gmbh International Surgical stapling instrument for use with a robotic system
US10433918B2 (en) 2007-01-10 2019-10-08 Ethicon Llc Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
US10751138B2 (en) 2007-01-10 2020-08-25 Ethicon Llc Surgical instrument for use with a robotic system
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US11000277B2 (en) 2007-01-10 2021-05-11 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US10952727B2 (en) 2007-01-10 2021-03-23 Ethicon Llc Surgical instrument for assessing the state of a staple cartridge
US10945729B2 (en) 2007-01-10 2021-03-16 Ethicon Llc Interlock and surgical instrument including same
US11849947B2 (en) 2007-01-10 2023-12-26 Cilag Gmbh International Surgical system including a control circuit and a passively-powered transponder
US11844521B2 (en) 2007-01-10 2023-12-19 Cilag Gmbh International Surgical instrument for use with a robotic system
US10918386B2 (en) 2007-01-10 2021-02-16 Ethicon Llc Interlock and surgical instrument including same
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US9775613B2 (en) 2007-01-11 2017-10-03 Ethicon Llc Surgical stapling device with a curved end effector
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US9700321B2 (en) 2007-01-11 2017-07-11 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US9724091B2 (en) 2007-01-11 2017-08-08 Ethicon Llc Surgical stapling device
US9655624B2 (en) 2007-01-11 2017-05-23 Ethicon Llc Surgical stapling device with a curved end effector
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US9730692B2 (en) 2007-01-11 2017-08-15 Ethicon Llc Surgical stapling device with a curved staple cartridge
US9675355B2 (en) 2007-01-11 2017-06-13 Ethicon Llc Surgical stapling device with a curved end effector
US9750501B2 (en) 2007-01-11 2017-09-05 Ethicon Endo-Surgery, Llc Surgical stapling devices having laterally movable anvils
US9999431B2 (en) 2007-01-11 2018-06-19 Ethicon Endo-Surgery, Llc Surgical stapling device having supports for a flexible drive mechanism
US9757130B2 (en) 2007-02-28 2017-09-12 Ethicon Llc Stapling assembly for forming different formed staple heights
US9289206B2 (en) 2007-03-15 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US11337693B2 (en) 2007-03-15 2022-05-24 Cilag Gmbh International Surgical stapling instrument having a releasable buttress material
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US9872682B2 (en) 2007-03-15 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US10441280B2 (en) 2007-06-04 2019-10-15 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US10327765B2 (en) 2007-06-04 2019-06-25 Ethicon Llc Drive systems for surgical instruments
US11911028B2 (en) 2007-06-04 2024-02-27 Cilag Gmbh International Surgical instruments for use with a robotic surgical system
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11648006B2 (en) 2007-06-04 2023-05-16 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US9795381B2 (en) 2007-06-04 2017-10-24 Ethicon Endo-Surgery, Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US11559302B2 (en) 2007-06-04 2023-01-24 Cilag Gmbh International Surgical instrument including a firing member movable at different speeds
US9186143B2 (en) 2007-06-04 2015-11-17 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11154298B2 (en) 2007-06-04 2021-10-26 Cilag Gmbh International Stapling system for use with a robotic surgical system
US11147549B2 (en) 2007-06-04 2021-10-19 Cilag Gmbh International Stapling instrument including a firing system and a closure system
US9585658B2 (en) 2007-06-04 2017-03-07 Ethicon Endo-Surgery, Llc Stapling systems
US9750498B2 (en) 2007-06-04 2017-09-05 Ethicon Endo Surgery, Llc Drive systems for surgical instruments
US9987003B2 (en) 2007-06-04 2018-06-05 Ethicon Llc Robotic actuator assembly
US10368863B2 (en) 2007-06-04 2019-08-06 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US11134938B2 (en) 2007-06-04 2021-10-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US10363033B2 (en) 2007-06-04 2019-07-30 Ethicon Llc Robotically-controlled surgical instruments
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US9662110B2 (en) 2007-06-22 2017-05-30 Ethicon Endo-Surgery, Llc Surgical stapling instrument with an articulatable end effector
US11925346B2 (en) 2007-06-29 2024-03-12 Cilag Gmbh International Surgical staple cartridge including tissue supporting surfaces
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US10765424B2 (en) 2008-02-13 2020-09-08 Ethicon Llc Surgical stapling instrument
US9687231B2 (en) 2008-02-13 2017-06-27 Ethicon Llc Surgical stapling instrument
US10806450B2 (en) 2008-02-14 2020-10-20 Ethicon Llc Surgical cutting and fastening instrument having a control system
US11571212B2 (en) 2008-02-14 2023-02-07 Cilag Gmbh International Surgical stapling system including an impedance sensor
US9962158B2 (en) 2008-02-14 2018-05-08 Ethicon Llc Surgical stapling apparatuses with lockable end effector positioning systems
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US9877723B2 (en) 2008-02-14 2018-01-30 Ethicon Llc Surgical stapling assembly comprising a selector arrangement
US9901345B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US10639036B2 (en) 2008-02-14 2020-05-05 Ethicon Llc Robotically-controlled motorized surgical cutting and fastening instrument
US11801047B2 (en) 2008-02-14 2023-10-31 Cilag Gmbh International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
US10682141B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical device including a control system
US9980729B2 (en) 2008-02-14 2018-05-29 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US9084601B2 (en) 2008-02-14 2015-07-21 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10716568B2 (en) 2008-02-14 2020-07-21 Ethicon Llc Surgical stapling apparatus with control features operable with one hand
US10722232B2 (en) 2008-02-14 2020-07-28 Ethicon Llc Surgical instrument for use with different cartridges
US9095339B2 (en) 2008-02-14 2015-08-04 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10238385B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument system for evaluating tissue impedance
US9999426B2 (en) 2008-02-14 2018-06-19 Ethicon Llc Detachable motor powered surgical instrument
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10238387B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument comprising a control system
US11638583B2 (en) 2008-02-14 2023-05-02 Cilag Gmbh International Motorized surgical system having a plurality of power sources
US10004505B2 (en) 2008-02-14 2018-06-26 Ethicon Llc Detachable motor powered surgical instrument
US10265067B2 (en) 2008-02-14 2019-04-23 Ethicon Llc Surgical instrument including a regulator and a control system
US10765432B2 (en) 2008-02-14 2020-09-08 Ethicon Llc Surgical device including a control system
US9872684B2 (en) 2008-02-14 2018-01-23 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US10779822B2 (en) 2008-02-14 2020-09-22 Ethicon Llc System including a surgical cutting and fastening instrument
US9211121B2 (en) 2008-02-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US11612395B2 (en) 2008-02-14 2023-03-28 Cilag Gmbh International Surgical system including a control system having an RFID tag reader
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10542974B2 (en) 2008-02-14 2020-01-28 Ethicon Llc Surgical instrument including a control system
US9901346B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US10874396B2 (en) 2008-02-14 2020-12-29 Ethicon Llc Stapling instrument for use with a surgical robot
US10888330B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Surgical system
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US10888329B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Detachable motor powered surgical instrument
US10898195B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US11484307B2 (en) 2008-02-14 2022-11-01 Cilag Gmbh International Loading unit coupleable to a surgical stapling system
US10898194B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10905427B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Surgical System
US9498219B2 (en) 2008-02-14 2016-11-22 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US10470763B2 (en) 2008-02-14 2019-11-12 Ethicon Llc Surgical cutting and fastening instrument including a sensing system
US10905426B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Detachable motor powered surgical instrument
US10925605B2 (en) 2008-02-14 2021-02-23 Ethicon Llc Surgical stapling system
US11717285B2 (en) 2008-02-14 2023-08-08 Cilag Gmbh International Surgical cutting and fastening instrument having RF electrodes
US11464514B2 (en) 2008-02-14 2022-10-11 Cilag Gmbh International Motorized surgical stapling system including a sensing array
US11446034B2 (en) 2008-02-14 2022-09-20 Cilag Gmbh International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
US9901344B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US10856866B2 (en) 2008-02-15 2020-12-08 Ethicon Llc Surgical end effector having buttress retention features
US11154297B2 (en) 2008-02-15 2021-10-26 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US10058327B2 (en) 2008-02-15 2018-08-28 Ethicon Llc End effector coupling arrangements for a surgical cutting and stapling instrument
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US9913647B2 (en) 2008-02-15 2018-03-13 Ethicon Llc Disposable loading unit for use with a surgical instrument
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US10835250B2 (en) 2008-02-15 2020-11-17 Ethicon Llc End effector coupling arrangements for a surgical cutting and stapling instrument
US9839429B2 (en) 2008-02-15 2017-12-12 Ethicon Endo-Surgery, Llc Stapling system comprising a lockout
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11058418B2 (en) 2008-02-15 2021-07-13 Cilag Gmbh International Surgical end effector having buttress retention features
US10258336B2 (en) 2008-09-19 2019-04-16 Ethicon Llc Stapling system configured to produce different formed staple heights
US9289210B2 (en) 2008-09-19 2016-03-22 Ethicon Endo-Surgery, Llc Surgical stapler with apparatus for adjusting staple height
US11944306B2 (en) 2008-09-19 2024-04-02 Cilag Gmbh International Surgical stapler including a replaceable staple cartridge
US11123071B2 (en) 2008-09-19 2021-09-21 Cilag Gmbh International Staple cartridge for us with a surgical instrument
US11812954B2 (en) 2008-09-23 2023-11-14 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US11617575B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10045778B2 (en) 2008-09-23 2018-08-14 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11103241B2 (en) 2008-09-23 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting instrument
US11617576B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10456133B2 (en) 2008-09-23 2019-10-29 Ethicon Llc Motorized surgical instrument
US10105136B2 (en) 2008-09-23 2018-10-23 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11045189B2 (en) 2008-09-23 2021-06-29 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11517304B2 (en) 2008-09-23 2022-12-06 Cilag Gmbh International Motor-driven surgical cutting instrument
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US11684361B2 (en) 2008-09-23 2023-06-27 Cilag Gmbh International Motor-driven surgical cutting instrument
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10130361B2 (en) 2008-09-23 2018-11-20 Ethicon Llc Robotically-controller motorized surgical tool with an end effector
US10898184B2 (en) 2008-09-23 2021-01-26 Ethicon Llc Motor-driven surgical cutting instrument
US10238389B2 (en) 2008-09-23 2019-03-26 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10485537B2 (en) 2008-09-23 2019-11-26 Ethicon Llc Motorized surgical instrument
US11406380B2 (en) 2008-09-23 2022-08-09 Cilag Gmbh International Motorized surgical instrument
US10980535B2 (en) 2008-09-23 2021-04-20 Ethicon Llc Motorized surgical instrument with an end effector
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11871923B2 (en) 2008-09-23 2024-01-16 Cilag Gmbh International Motorized surgical instrument
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US11730477B2 (en) 2008-10-10 2023-08-22 Cilag Gmbh International Powered surgical system with manually retractable firing system
US11583279B2 (en) 2008-10-10 2023-02-21 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US11793521B2 (en) 2008-10-10 2023-10-24 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US10149683B2 (en) 2008-10-10 2018-12-11 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10758233B2 (en) 2009-02-05 2020-09-01 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US9307987B2 (en) 2009-12-24 2016-04-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument that analyzes tissue thickness
US9585660B2 (en) 2010-01-07 2017-03-07 Ethicon Endo-Surgery, Llc Method for testing a surgical tool
US10470770B2 (en) 2010-07-30 2019-11-12 Ethicon Llc Circular surgical fastening devices with tissue acquisition arrangements
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US10675035B2 (en) 2010-09-09 2020-06-09 Ethicon Llc Surgical stapling head assembly with firing lockout for a surgical stapler
US10188393B2 (en) 2010-09-17 2019-01-29 Ethicon Llc Surgical instrument battery comprising a plurality of cells
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US10492787B2 (en) 2010-09-17 2019-12-03 Ethicon Llc Orientable battery for a surgical instrument
US10595835B2 (en) 2010-09-17 2020-03-24 Ethicon Llc Surgical instrument comprising a removable battery
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US11471138B2 (en) 2010-09-17 2022-10-18 Cilag Gmbh International Power control arrangements for surgical instruments and batteries
US10898191B2 (en) 2010-09-29 2021-01-26 Ethicon Llc Fastener cartridge
US11571213B2 (en) 2010-09-29 2023-02-07 Cilag Gmbh International Staple cartridge
US11944303B2 (en) 2010-09-29 2024-04-02 Cilag Gmbh International Staple cartridge
US10130363B2 (en) 2010-09-29 2018-11-20 Ethicon Llc Staple cartridge
US11737754B2 (en) 2010-09-30 2023-08-29 Cilag Gmbh International Surgical stapler with floating anvil
US10194910B2 (en) 2010-09-30 2019-02-05 Ethicon Llc Stapling assemblies comprising a layer
US11944292B2 (en) 2010-09-30 2024-04-02 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US11602340B2 (en) 2010-09-30 2023-03-14 Cilag Gmbh International Adhesive film laminate
US9924947B2 (en) 2010-09-30 2018-03-27 Ethicon Llc Staple cartridge comprising a compressible portion
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US10258330B2 (en) 2010-09-30 2019-04-16 Ethicon Llc End effector including an implantable arrangement
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US10265072B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Surgical stapling system comprising an end effector including an implantable layer
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US11583277B2 (en) 2010-09-30 2023-02-21 Cilag Gmbh International Layer of material for a surgical end effector
US10743877B2 (en) 2010-09-30 2020-08-18 Ethicon Llc Surgical stapler with floating anvil
US9345477B2 (en) 2010-09-30 2016-05-24 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US11911027B2 (en) 2010-09-30 2024-02-27 Cilag Gmbh International Adhesive film laminate
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US9320518B2 (en) 2010-09-30 2016-04-26 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an oxygen generating agent
US10835251B2 (en) 2010-09-30 2020-11-17 Ethicon Llc Surgical instrument assembly including an end effector configurable in different positions
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US9848875B2 (en) 2010-09-30 2017-12-26 Ethicon Llc Anvil layer attached to a proximal end of an end effector
US10028743B2 (en) 2010-09-30 2018-07-24 Ethicon Llc Staple cartridge assembly comprising an implantable layer
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US11883025B2 (en) 2010-09-30 2024-01-30 Cilag Gmbh International Tissue thickness compensator comprising a plurality of layers
US11559496B2 (en) 2010-09-30 2023-01-24 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US11540824B2 (en) 2010-09-30 2023-01-03 Cilag Gmbh International Tissue thickness compensator
US10869669B2 (en) 2010-09-30 2020-12-22 Ethicon Llc Surgical instrument assembly
US10548600B2 (en) 2010-09-30 2020-02-04 Ethicon Llc Multiple thickness implantable layers for surgical stapling devices
US10888328B2 (en) 2010-09-30 2021-01-12 Ethicon Llc Surgical end effector
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US10213198B2 (en) 2010-09-30 2019-02-26 Ethicon Llc Actuator for releasing a tissue thickness compensator from a fastener cartridge
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US11857187B2 (en) 2010-09-30 2024-01-02 Cilag Gmbh International Tissue thickness compensator comprising controlled release and expansion
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US11672536B2 (en) 2010-09-30 2023-06-13 Cilag Gmbh International Layer of material for a surgical end effector
US10898193B2 (en) 2010-09-30 2021-01-26 Ethicon Llc End effector for use with a surgical instrument
US9844372B2 (en) 2010-09-30 2017-12-19 Ethicon Llc Retainer assembly including a tissue thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9883861B2 (en) 2010-09-30 2018-02-06 Ethicon Llc Retainer assembly including a tissue thickness compensator
US9795383B2 (en) 2010-09-30 2017-10-24 Ethicon Llc Tissue thickness compensator comprising resilient members
US11684360B2 (en) 2010-09-30 2023-06-27 Cilag Gmbh International Staple cartridge comprising a variable thickness compressible portion
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9801634B2 (en) 2010-09-30 2017-10-31 Ethicon Llc Tissue thickness compensator for a surgical stapler
US11154296B2 (en) 2010-09-30 2021-10-26 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US11406377B2 (en) 2010-09-30 2022-08-09 Cilag Gmbh International Adhesive film laminate
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US10064624B2 (en) 2010-09-30 2018-09-04 Ethicon Llc End effector with implantable layer
US11395651B2 (en) 2010-09-30 2022-07-26 Cilag Gmbh International Adhesive film laminate
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US9833242B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Tissue thickness compensators
US11850310B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge including an adjunct
US9307965B2 (en) 2010-09-30 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-microbial agent
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US10182819B2 (en) 2010-09-30 2019-01-22 Ethicon Llc Implantable layer assemblies
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9833238B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Retainer assembly including a tissue thickness compensator
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US9833236B2 (en) 2010-09-30 2017-12-05 Ethicon Llc Tissue thickness compensator for surgical staplers
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9808247B2 (en) 2010-09-30 2017-11-07 Ethicon Llc Stapling system comprising implantable layers
US11083452B2 (en) 2010-09-30 2021-08-10 Cilag Gmbh International Staple cartridge including a tissue thickness compensator
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US10398436B2 (en) 2010-09-30 2019-09-03 Ethicon Llc Staple cartridge comprising staples positioned within a compressible portion thereof
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US10123798B2 (en) 2010-09-30 2018-11-13 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10405854B2 (en) 2010-09-30 2019-09-10 Ethicon Llc Surgical stapling cartridge with layer retention features
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9572574B2 (en) 2010-09-30 2017-02-21 Ethicon Endo-Surgery, Llc Tissue thickness compensators comprising therapeutic agents
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US10136890B2 (en) 2010-09-30 2018-11-27 Ethicon Llc Staple cartridge comprising a variable thickness compressible portion
US9687236B2 (en) 2010-10-01 2017-06-27 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US11529142B2 (en) 2010-10-01 2022-12-20 Cilag Gmbh International Surgical instrument having a power control circuit
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US10130352B2 (en) 2011-03-14 2018-11-20 Ethicon Llc Surgical bowel retractor devices
US9974529B2 (en) 2011-03-14 2018-05-22 Ethicon Llc Surgical instrument
US11478238B2 (en) 2011-03-14 2022-10-25 Cilag Gmbh International Anvil assemblies with collapsible frames for circular staplers
US10898177B2 (en) 2011-03-14 2021-01-26 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US10987094B2 (en) 2011-03-14 2021-04-27 Ethicon Llc Surgical bowel retractor devices
US10751040B2 (en) 2011-03-14 2020-08-25 Ethicon Llc Anvil assemblies with collapsible frames for circular staplers
US11864747B2 (en) 2011-03-14 2024-01-09 Cilag Gmbh International Anvil assemblies for circular staplers
US10588612B2 (en) 2011-03-14 2020-03-17 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US10045769B2 (en) 2011-03-14 2018-08-14 Ethicon Llc Circular surgical staplers with foldable anvil assemblies
US9918704B2 (en) 2011-03-14 2018-03-20 Ethicon Llc Surgical instrument
US9980713B2 (en) 2011-03-14 2018-05-29 Ethicon Llc Anvil assemblies with collapsible frames for circular staplers
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US10117652B2 (en) 2011-04-29 2018-11-06 Ethicon Llc End effector comprising a tissue thickness compensator and progressively released attachment members
US11129616B2 (en) 2011-05-27 2021-09-28 Cilag Gmbh International Surgical stapling system
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9913648B2 (en) 2011-05-27 2018-03-13 Ethicon Endo-Surgery, Llc Surgical system
US11439470B2 (en) 2011-05-27 2022-09-13 Cilag Gmbh International Robotically-controlled surgical instrument with selectively articulatable end effector
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10004506B2 (en) 2011-05-27 2018-06-26 Ethicon Llc Surgical system
US11612394B2 (en) 2011-05-27 2023-03-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US10736634B2 (en) 2011-05-27 2020-08-11 Ethicon Llc Robotically-driven surgical instrument including a drive system
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11918208B2 (en) 2011-05-27 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US10980534B2 (en) 2011-05-27 2021-04-20 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10485546B2 (en) 2011-05-27 2019-11-26 Ethicon Llc Robotically-driven surgical assembly
US11266410B2 (en) 2011-05-27 2022-03-08 Cilag Gmbh International Surgical device for use with a robotic system
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US10420561B2 (en) 2011-05-27 2019-09-24 Ethicon Llc Robotically-driven surgical instrument
US11583278B2 (en) 2011-05-27 2023-02-21 Cilag Gmbh International Surgical stapling system having multi-direction articulation
US10130366B2 (en) 2011-05-27 2018-11-20 Ethicon Llc Automated reloading devices for replacing used end effectors on robotic surgical systems
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10813641B2 (en) 2011-05-27 2020-10-27 Ethicon Llc Robotically-driven surgical instrument
US9271799B2 (en) 2011-05-27 2016-03-01 Ethicon Endo-Surgery, Llc Robotic surgical system with removable motor housing
US10071452B2 (en) 2011-05-27 2018-09-11 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US9775614B2 (en) 2011-05-27 2017-10-03 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10617420B2 (en) 2011-05-27 2020-04-14 Ethicon Llc Surgical system comprising drive systems
US10426478B2 (en) 2011-05-27 2019-10-01 Ethicon Llc Surgical stapling systems
US9687237B2 (en) 2011-09-23 2017-06-27 Ethicon Endo-Surgery, Llc Staple cartridge including collapsible deck arrangement
US9592054B2 (en) 2011-09-23 2017-03-14 Ethicon Endo-Surgery, Llc Surgical stapler with stationary staple drivers
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9730697B2 (en) 2012-02-13 2017-08-15 Ethicon Endo-Surgery, Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US11406378B2 (en) 2012-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a compressible tissue thickness compensator
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9918716B2 (en) 2012-03-28 2018-03-20 Ethicon Llc Staple cartridge comprising implantable layers
US11918220B2 (en) 2012-03-28 2024-03-05 Cilag Gmbh International Tissue thickness compensator comprising tissue ingrowth features
US9974538B2 (en) 2012-03-28 2018-05-22 Ethicon Llc Staple cartridge comprising a compressible layer
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9314247B2 (en) 2012-03-28 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating a hydrophilic agent
US11793509B2 (en) 2012-03-28 2023-10-24 Cilag Gmbh International Staple cartridge including an implantable layer
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US10064621B2 (en) 2012-06-15 2018-09-04 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US11707273B2 (en) 2012-06-15 2023-07-25 Cilag Gmbh International Articulatable surgical instrument comprising a firing drive
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US10383630B2 (en) 2012-06-28 2019-08-20 Ethicon Llc Surgical stapling device with rotary driven firing member
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US10932775B2 (en) 2012-06-28 2021-03-02 Ethicon Llc Firing system lockout arrangements for surgical instruments
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US10420555B2 (en) 2012-06-28 2019-09-24 Ethicon Llc Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
US9907620B2 (en) 2012-06-28 2018-03-06 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
WO2014004251A3 (en) * 2012-06-28 2014-04-03 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US11857189B2 (en) 2012-06-28 2024-01-02 Cilag Gmbh International Surgical instrument including first and second articulation joints
US10485541B2 (en) 2012-06-28 2019-11-26 Ethicon Llc Robotically powered surgical device with manually-actuatable reversing system
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US11510671B2 (en) 2012-06-28 2022-11-29 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US11779420B2 (en) 2012-06-28 2023-10-10 Cilag Gmbh International Robotic surgical attachments having manually-actuated retraction assemblies
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US10874391B2 (en) 2012-06-28 2020-12-29 Ethicon Llc Surgical instrument system including replaceable end effectors
US11534162B2 (en) 2012-06-28 2022-12-27 Cilag GmbH Inlernational Robotically powered surgical device with manually-actuatable reversing system
US11540829B2 (en) 2012-06-28 2023-01-03 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11154299B2 (en) 2012-06-28 2021-10-26 Cilag Gmbh International Stapling assembly comprising a firing lockout
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US11602346B2 (en) 2012-06-28 2023-03-14 Cilag Gmbh International Robotically powered surgical device with manually-actuatable reversing system
US11141156B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Surgical stapling assembly comprising flexible output shaft
US11039837B2 (en) 2012-06-28 2021-06-22 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US11141155B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Drive system for surgical tool
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
WO2014004251A2 (en) * 2012-06-28 2014-01-03 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11058423B2 (en) 2012-06-28 2021-07-13 Cilag Gmbh International Stapling system including first and second closure systems for use with a surgical robot
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US11918213B2 (en) 2012-06-28 2024-03-05 Cilag Gmbh International Surgical stapler including couplers for attaching a shaft to an end effector
US11806013B2 (en) 2012-06-28 2023-11-07 Cilag Gmbh International Firing system arrangements for surgical instruments
US11083457B2 (en) 2012-06-28 2021-08-10 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11109860B2 (en) 2012-06-28 2021-09-07 Cilag Gmbh International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11373755B2 (en) 2012-08-23 2022-06-28 Cilag Gmbh International Surgical device drive system including a ratchet mechanism
US10064639B2 (en) 2012-09-26 2018-09-04 Karl Storz Se & Co. Kg Brake release mechanism and medical manipulator provided with same
EP2901948A4 (en) * 2012-09-26 2016-05-11 Storz Karl Gmbh & Co Kg Brake release mechanism and medical manipulator provided with same
US9999434B2 (en) 2012-09-26 2018-06-19 Karl Storz Se & Co. Kg Brake mechanism and medical manipulator provided with same
EP2901956A4 (en) * 2012-09-26 2016-05-25 Storz Karl Gmbh & Co Kg Brake mechanism and medical manipulator provided with same
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US11246618B2 (en) 2013-03-01 2022-02-15 Cilag Gmbh International Surgical instrument soft stop
US9468438B2 (en) 2013-03-01 2016-10-18 Eticon Endo-Surgery, LLC Sensor straightened end effector during removal through trocar
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US9782169B2 (en) 2013-03-01 2017-10-10 Ethicon Llc Rotary powered articulation joints for surgical instruments
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US9554794B2 (en) 2013-03-01 2017-01-31 Ethicon Endo-Surgery, Llc Multiple processor motor control for modular surgical instruments
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
US11529138B2 (en) 2013-03-01 2022-12-20 Cilag Gmbh International Powered surgical instrument including a rotary drive screw
US9398911B2 (en) 2013-03-01 2016-07-26 Ethicon Endo-Surgery, Llc Rotary powered surgical instruments with multiple degrees of freedom
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9358003B2 (en) 2013-03-01 2016-06-07 Ethicon Endo-Surgery, Llc Electromechanical surgical device with signal relay arrangement
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US11266406B2 (en) 2013-03-14 2022-03-08 Cilag Gmbh International Control systems for surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9888919B2 (en) 2013-03-14 2018-02-13 Ethicon Llc Method and system for operating a surgical instrument
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US10893867B2 (en) 2013-03-14 2021-01-19 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US11395652B2 (en) 2013-04-16 2022-07-26 Cilag Gmbh International Powered surgical stapler
US11633183B2 (en) 2013-04-16 2023-04-25 Cilag International GmbH Stapling assembly comprising a retraction drive
US11406381B2 (en) 2013-04-16 2022-08-09 Cilag Gmbh International Powered surgical stapler
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US10888318B2 (en) 2013-04-16 2021-01-12 Ethicon Llc Powered surgical stapler
US11690615B2 (en) 2013-04-16 2023-07-04 Cilag Gmbh International Surgical system including an electric motor and a surgical instrument
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
US11638581B2 (en) 2013-04-16 2023-05-02 Cilag Gmbh International Powered surgical stapler
US10149680B2 (en) 2013-04-16 2018-12-11 Ethicon Llc Surgical instrument comprising a gap setting system
US11564679B2 (en) 2013-04-16 2023-01-31 Cilag Gmbh International Powered surgical stapler
US10702266B2 (en) 2013-04-16 2020-07-07 Ethicon Llc Surgical instrument system
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11701110B2 (en) 2013-08-23 2023-07-18 Cilag Gmbh International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
US11134940B2 (en) 2013-08-23 2021-10-05 Cilag Gmbh International Surgical instrument including a variable speed firing member
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US11109858B2 (en) 2013-08-23 2021-09-07 Cilag Gmbh International Surgical instrument including a display which displays the position of a firing element
US10898190B2 (en) 2013-08-23 2021-01-26 Ethicon Llc Secondary battery arrangements for powered surgical instruments
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
US11918209B2 (en) 2013-08-23 2024-03-05 Cilag Gmbh International Torque optimization for surgical instruments
US9510828B2 (en) 2013-08-23 2016-12-06 Ethicon Endo-Surgery, Llc Conductor arrangements for electrically powered surgical instruments with rotatable end effectors
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US11376001B2 (en) 2013-08-23 2022-07-05 Cilag Gmbh International Surgical stapling device with rotary multi-turn retraction mechanism
US9445813B2 (en) 2013-08-23 2016-09-20 Ethicon Endo-Surgery, Llc Closure indicator systems for surgical instruments
US11504119B2 (en) 2013-08-23 2022-11-22 Cilag Gmbh International Surgical instrument including an electronic firing lockout
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
US9987006B2 (en) 2013-08-23 2018-06-05 Ethicon Llc Shroud retention arrangement for sterilizable surgical instruments
US11026680B2 (en) 2013-08-23 2021-06-08 Cilag Gmbh International Surgical instrument configured to operate in different states
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
US10869665B2 (en) 2013-08-23 2020-12-22 Ethicon Llc Surgical instrument system including a control system
US11389160B2 (en) 2013-08-23 2022-07-19 Cilag Gmbh International Surgical system comprising a display
US10828032B2 (en) 2013-08-23 2020-11-10 Ethicon Llc End effector detection systems for surgical instruments
US11000274B2 (en) 2013-08-23 2021-05-11 Ethicon Llc Powered surgical instrument
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9220508B2 (en) 2013-09-06 2015-12-29 Ethicon Endo-Surgery, Inc. Surgical clip applier with articulation section
US10016202B2 (en) 2013-09-06 2018-07-10 Ethicon Llc Surgical clip applier with articulation section
WO2015034682A1 (en) * 2013-09-06 2015-03-12 Ethicon Endo-Surgery, Inc. Surgical clip applier with articulation section
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US11020109B2 (en) 2013-12-23 2021-06-01 Ethicon Llc Surgical stapling assembly for use with a powered surgical interface
US11896223B2 (en) 2013-12-23 2024-02-13 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US11364028B2 (en) 2013-12-23 2022-06-21 Cilag Gmbh International Modular surgical system
US10588624B2 (en) 2013-12-23 2020-03-17 Ethicon Llc Surgical staples, staple cartridges and surgical end effectors
US11583273B2 (en) 2013-12-23 2023-02-21 Cilag Gmbh International Surgical stapling system including a firing beam extending through an articulation region
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US10265065B2 (en) 2013-12-23 2019-04-23 Ethicon Llc Surgical staples and staple cartridges
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9763662B2 (en) 2013-12-23 2017-09-19 Ethicon Llc Fastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US10925599B2 (en) 2013-12-23 2021-02-23 Ethicon Llc Modular surgical instruments
US11123065B2 (en) 2013-12-23 2021-09-21 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US11950776B2 (en) 2013-12-23 2024-04-09 Cilag Gmbh International Modular surgical instruments
US11026677B2 (en) 2013-12-23 2021-06-08 Cilag Gmbh International Surgical stapling assembly
US11779327B2 (en) 2013-12-23 2023-10-10 Cilag Gmbh International Surgical stapling system including a push bar
US11246587B2 (en) 2013-12-23 2022-02-15 Cilag Gmbh International Surgical cutting and stapling instruments
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US11759201B2 (en) 2013-12-23 2023-09-19 Cilag Gmbh International Surgical stapling system comprising an end effector including an anvil with an anvil cap
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US9839423B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
US9775608B2 (en) 2014-02-24 2017-10-03 Ethicon Llc Fastening system comprising a firing member lockout
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9884456B2 (en) 2014-02-24 2018-02-06 Ethicon Llc Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US10898185B2 (en) 2014-03-26 2021-01-26 Ethicon Llc Surgical instrument power management through sleep and wake up control
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US10117653B2 (en) 2014-03-26 2018-11-06 Ethicon Llc Systems and methods for controlling a segmented circuit
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US10863981B2 (en) 2014-03-26 2020-12-15 Ethicon Llc Interface systems for use with surgical instruments
US10136889B2 (en) 2014-03-26 2018-11-27 Ethicon Llc Systems and methods for controlling a segmented circuit
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US11918222B2 (en) 2014-04-16 2024-03-05 Cilag Gmbh International Stapling assembly having firing member viewing windows
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11596406B2 (en) 2014-04-16 2023-03-07 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US10010324B2 (en) 2014-04-16 2018-07-03 Ethicon Llc Fastener cartridge compromising fastener cavities including fastener control features
US11925353B2 (en) 2014-04-16 2024-03-12 Cilag Gmbh International Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11382625B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US10470768B2 (en) 2014-04-16 2019-11-12 Ethicon Llc Fastener cartridge including a layer attached thereto
US9877721B2 (en) 2014-04-16 2018-01-30 Ethicon Llc Fastener cartridge comprising tissue control features
US11944307B2 (en) 2014-04-16 2024-04-02 Cilag Gmbh International Surgical stapling system including jaw windows
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US11298134B2 (en) 2014-04-16 2022-04-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US10327776B2 (en) 2014-04-16 2019-06-25 Ethicon Llc Surgical stapling buttresses and adjunct materials
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US11653918B2 (en) 2014-09-05 2023-05-23 Cilag Gmbh International Local display of tissue parameter stabilization
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US11717297B2 (en) 2014-09-05 2023-08-08 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11406386B2 (en) 2014-09-05 2022-08-09 Cilag Gmbh International End effector including magnetic and impedance sensors
US11389162B2 (en) 2014-09-05 2022-07-19 Cilag Gmbh International Smart cartridge wake up operation and data retention
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US11076854B2 (en) 2014-09-05 2021-08-03 Cilag Gmbh International Smart cartridge wake up operation and data retention
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US10426477B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Staple cartridge assembly including a ramp
US10751053B2 (en) 2014-09-26 2020-08-25 Ethicon Llc Fastener cartridges for applying expandable fastener lines
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US10426476B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Circular fastener cartridges for applying radially expandable fastener lines
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US11185325B2 (en) 2014-10-16 2021-11-30 Cilag Gmbh International End effector including different tissue gaps
US11701114B2 (en) 2014-10-16 2023-07-18 Cilag Gmbh International Staple cartridge
US10052104B2 (en) 2014-10-16 2018-08-21 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US11931031B2 (en) 2014-10-16 2024-03-19 Cilag Gmbh International Staple cartridge comprising a deck including an upper surface and a lower surface
US11918210B2 (en) 2014-10-16 2024-03-05 Cilag Gmbh International Staple cartridge comprising a cartridge body including a plurality of wells
US11241229B2 (en) 2014-10-29 2022-02-08 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11864760B2 (en) 2014-10-29 2024-01-09 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11931038B2 (en) 2014-10-29 2024-03-19 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11457918B2 (en) 2014-10-29 2022-10-04 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11337698B2 (en) 2014-11-06 2022-05-24 Cilag Gmbh International Staple cartridge comprising a releasable adjunct material
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US11382628B2 (en) 2014-12-10 2022-07-12 Cilag Gmbh International Articulatable surgical instrument system
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11517311B2 (en) 2014-12-18 2022-12-06 Cilag Gmbh International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US11571207B2 (en) 2014-12-18 2023-02-07 Cilag Gmbh International Surgical system including lateral supports for a flexible drive member
US11812958B2 (en) 2014-12-18 2023-11-14 Cilag Gmbh International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11083453B2 (en) 2014-12-18 2021-08-10 Cilag Gmbh International Surgical stapling system including a flexible firing actuator and lateral buckling supports
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US11553911B2 (en) 2014-12-18 2023-01-17 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US11547403B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument having a laminate firing actuator and lateral buckling supports
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11547404B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US11399831B2 (en) 2014-12-18 2022-08-02 Cilag Gmbh International Drive arrangements for articulatable surgical instruments
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11324506B2 (en) 2015-02-27 2022-05-10 Cilag Gmbh International Modular stapling assembly
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US10045779B2 (en) 2015-02-27 2018-08-14 Ethicon Llc Surgical instrument system comprising an inspection station
US11744588B2 (en) 2015-02-27 2023-09-05 Cilag Gmbh International Surgical stapling instrument including a removably attachable battery pack
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US11426160B2 (en) 2015-03-06 2022-08-30 Cilag Gmbh International Smart sensors with local signal processing
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US11109859B2 (en) 2015-03-06 2021-09-07 Cilag Gmbh International Surgical instrument comprising a lockable battery housing
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US10966627B2 (en) 2015-03-06 2021-04-06 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11350843B2 (en) 2015-03-06 2022-06-07 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10729432B2 (en) 2015-03-06 2020-08-04 Ethicon Llc Methods for operating a powered surgical instrument
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US11918212B2 (en) 2015-03-31 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US10201381B2 (en) 2015-06-11 2019-02-12 Conmed Corporation Hand instruments with shaped shafts for use in laparoscopic surgery
WO2016200496A1 (en) * 2015-06-11 2016-12-15 Surgiquest, Inc. Hand instruments with shaped shafts for use in laparoscopic surgery
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
US10213203B2 (en) 2015-08-26 2019-02-26 Ethicon Llc Staple cartridge assembly without a bottom cover
US10166026B2 (en) 2015-08-26 2019-01-01 Ethicon Llc Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom
US11510675B2 (en) 2015-08-26 2022-11-29 Cilag Gmbh International Surgical end effector assembly including a connector strip interconnecting a plurality of staples
US10433845B2 (en) 2015-08-26 2019-10-08 Ethicon Llc Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US11058426B2 (en) 2015-08-26 2021-07-13 Cilag Gmbh International Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
US10980538B2 (en) 2015-08-26 2021-04-20 Ethicon Llc Surgical stapling configurations for curved and circular stapling instruments
US11051817B2 (en) 2015-08-26 2021-07-06 Cilag Gmbh International Method for forming a staple against an anvil of a surgical stapling instrument
US11103248B2 (en) 2015-08-26 2021-08-31 Cilag Gmbh International Surgical staples for minimizing staple roll
US11219456B2 (en) 2015-08-26 2022-01-11 Cilag Gmbh International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
US10966724B2 (en) 2015-08-26 2021-04-06 Ethicon Llc Surgical staples comprising a guide
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
US10470769B2 (en) 2015-08-26 2019-11-12 Ethicon Llc Staple cartridge assembly comprising staple alignment features on a firing member
US10188394B2 (en) 2015-08-26 2019-01-29 Ethicon Llc Staples configured to support an implantable adjunct
US10390829B2 (en) 2015-08-26 2019-08-27 Ethicon Llc Staples comprising a cover
US11213295B2 (en) 2015-09-02 2022-01-04 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US10357252B2 (en) 2015-09-02 2019-07-23 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US10251648B2 (en) 2015-09-02 2019-04-09 Ethicon Llc Surgical staple cartridge staple drivers with central support features
US10314587B2 (en) 2015-09-02 2019-06-11 Ethicon Llc Surgical staple cartridge with improved staple driver configurations
US11382624B2 (en) 2015-09-02 2022-07-12 Cilag Gmbh International Surgical staple cartridge with improved staple driver configurations
US11589868B2 (en) 2015-09-02 2023-02-28 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US11026678B2 (en) 2015-09-23 2021-06-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US11849946B2 (en) 2015-09-23 2023-12-26 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US11490889B2 (en) 2015-09-23 2022-11-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US11344299B2 (en) 2015-09-23 2022-05-31 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11076929B2 (en) 2015-09-25 2021-08-03 Cilag Gmbh International Implantable adjunct systems for determining adjunct skew
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US11690623B2 (en) 2015-09-30 2023-07-04 Cilag Gmbh International Method for applying an implantable layer to a fastener cartridge
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US11944308B2 (en) 2015-09-30 2024-04-02 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10932779B2 (en) 2015-09-30 2021-03-02 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11553916B2 (en) 2015-09-30 2023-01-17 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US11712244B2 (en) 2015-09-30 2023-08-01 Cilag Gmbh International Implantable layer with spacer fibers
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11903586B2 (en) 2015-09-30 2024-02-20 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US11058422B2 (en) 2015-12-30 2021-07-13 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11083454B2 (en) 2015-12-30 2021-08-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US11129613B2 (en) 2015-12-30 2021-09-28 Cilag Gmbh International Surgical instruments with separable motors and motor control circuits
US11484309B2 (en) 2015-12-30 2022-11-01 Cilag Gmbh International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11759208B2 (en) 2015-12-30 2023-09-19 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11730471B2 (en) 2016-02-09 2023-08-22 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US10470764B2 (en) 2016-02-09 2019-11-12 Ethicon Llc Surgical instruments with closure stroke reduction arrangements
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11826045B2 (en) 2016-02-12 2023-11-28 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11779336B2 (en) 2016-02-12 2023-10-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11344303B2 (en) 2016-02-12 2022-05-31 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10342543B2 (en) 2016-04-01 2019-07-09 Ethicon Llc Surgical stapling system comprising a shiftable transmission
US10709446B2 (en) 2016-04-01 2020-07-14 Ethicon Llc Staple cartridges with atraumatic features
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10433849B2 (en) 2016-04-01 2019-10-08 Ethicon Llc Surgical stapling system comprising a display including a re-orientable display field
US10568632B2 (en) 2016-04-01 2020-02-25 Ethicon Llc Surgical stapling system comprising a jaw closure lockout
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US11337694B2 (en) 2016-04-01 2022-05-24 Cilag Gmbh International Surgical cutting and stapling end effector with anvil concentric drive member
US11058421B2 (en) 2016-04-01 2021-07-13 Cilag Gmbh International Modular surgical stapling system comprising a display
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10531874B2 (en) 2016-04-01 2020-01-14 Ethicon Llc Surgical cutting and stapling end effector with anvil concentric drive member
US10856867B2 (en) 2016-04-01 2020-12-08 Ethicon Llc Surgical stapling system comprising a tissue compression lockout
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US10413297B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Surgical stapling system configured to apply annular rows of staples having different heights
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system
US11045191B2 (en) 2016-04-01 2021-06-29 Cilag Gmbh International Method for operating a surgical stapling system
US10675021B2 (en) 2016-04-01 2020-06-09 Ethicon Llc Circular stapling system comprising rotary firing system
US10542991B2 (en) 2016-04-01 2020-01-28 Ethicon Llc Surgical stapling system comprising a jaw attachment lockout
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10420552B2 (en) 2016-04-01 2019-09-24 Ethicon Llc Surgical stapling system configured to provide selective cutting of tissue
US10682136B2 (en) 2016-04-01 2020-06-16 Ethicon Llc Circular stapling system comprising load control
US10478190B2 (en) 2016-04-01 2019-11-19 Ethicon Llc Surgical stapling system comprising a spent cartridge lockout
US11766257B2 (en) 2016-04-01 2023-09-26 Cilag Gmbh International Surgical instrument comprising a display
US11771454B2 (en) 2016-04-15 2023-10-03 Cilag Gmbh International Stapling assembly including a controller for monitoring a clamping laod
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11026684B2 (en) 2016-04-15 2021-06-08 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11284891B2 (en) 2016-04-15 2022-03-29 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11350932B2 (en) 2016-04-15 2022-06-07 Cilag Gmbh International Surgical instrument with improved stop/start control during a firing motion
US11191545B2 (en) 2016-04-15 2021-12-07 Cilag Gmbh International Staple formation detection mechanisms
US11517306B2 (en) 2016-04-15 2022-12-06 Cilag Gmbh International Surgical instrument with detection sensors
US11051810B2 (en) 2016-04-15 2021-07-06 Cilag Gmbh International Modular surgical instrument with configurable operating mode
US11642125B2 (en) 2016-04-15 2023-05-09 Cilag Gmbh International Robotic surgical system including a user interface and a control circuit
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11311292B2 (en) 2016-04-15 2022-04-26 Cilag Gmbh International Surgical instrument with detection sensors
US11931028B2 (en) 2016-04-15 2024-03-19 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11317910B2 (en) 2016-04-15 2022-05-03 Cilag Gmbh International Surgical instrument with detection sensors
US11147554B2 (en) 2016-04-18 2021-10-19 Cilag Gmbh International Surgical instrument system comprising a magnetic lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US11559303B2 (en) 2016-04-18 2023-01-24 Cilag Gmbh International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US11811253B2 (en) 2016-04-18 2023-11-07 Cilag Gmbh International Surgical robotic system with fault state detection configurations based on motor current draw
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
USD896379S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
USD896380S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
USD894389S1 (en) 2016-06-24 2020-08-25 Ethicon Llc Surgical fastener
US10893863B2 (en) 2016-06-24 2021-01-19 Ethicon Llc Staple cartridge comprising offset longitudinal staple rows
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
US11786246B2 (en) 2016-06-24 2023-10-17 Cilag Gmbh International Stapling system for use with wire staples and stamped staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD948043S1 (en) 2016-06-24 2022-04-05 Cilag Gmbh International Surgical fastener
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
US11690619B2 (en) 2016-06-24 2023-07-04 Cilag Gmbh International Staple cartridge comprising staples having different geometries
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US11191540B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US10905422B2 (en) 2016-12-21 2021-02-02 Ethicon Llc Surgical instrument for use with a robotic surgical system
US11369376B2 (en) 2016-12-21 2022-06-28 Cilag Gmbh International Surgical stapling systems
US11701115B2 (en) 2016-12-21 2023-07-18 Cilag Gmbh International Methods of stapling tissue
US10639035B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical stapling instruments and replaceable tool assemblies thereof
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US11350935B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Surgical tool assemblies with closure stroke reduction features
US11350934B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Staple forming pocket arrangement to accommodate different types of staples
US10639034B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
US11931034B2 (en) 2016-12-21 2024-03-19 Cilag Gmbh International Surgical stapling instruments with smart staple cartridges
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10687809B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11918215B2 (en) 2016-12-21 2024-03-05 Cilag Gmbh International Staple cartridge with array of staple pockets
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US11653917B2 (en) 2016-12-21 2023-05-23 Cilag Gmbh International Surgical stapling systems
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US11000276B2 (en) 2016-12-21 2021-05-11 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10542982B2 (en) 2016-12-21 2020-01-28 Ethicon Llc Shaft assembly comprising first and second articulation lockouts
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10835247B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Lockout arrangements for surgical end effectors
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US10813638B2 (en) 2016-12-21 2020-10-27 Ethicon Llc Surgical end effectors with expandable tissue stop arrangements
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US11497499B2 (en) 2016-12-21 2022-11-15 Cilag Gmbh International Articulatable surgical stapling instruments
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US11096689B2 (en) 2016-12-21 2021-08-24 Cilag Gmbh International Shaft assembly comprising a lockout
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11564688B2 (en) 2016-12-21 2023-01-31 Cilag Gmbh International Robotic surgical tool having a retraction mechanism
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US11160553B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Surgical stapling systems
US11849948B2 (en) 2016-12-21 2023-12-26 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US11191543B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Assembly comprising a lock
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US11179155B2 (en) 2016-12-21 2021-11-23 Cilag Gmbh International Anvil arrangements for surgical staplers
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10595882B2 (en) 2017-06-20 2020-03-24 Ethicon Llc Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11672532B2 (en) 2017-06-20 2023-06-13 Cilag Gmbh International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11871939B2 (en) 2017-06-20 2024-01-16 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11213302B2 (en) 2017-06-20 2022-01-04 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11793513B2 (en) 2017-06-20 2023-10-24 Cilag Gmbh International Systems and methods for controlling motor speed according to user input for a surgical instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US11090049B2 (en) 2017-06-27 2021-08-17 Cilag Gmbh International Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11766258B2 (en) 2017-06-27 2023-09-26 Cilag Gmbh International Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
CN110891509A (en) * 2017-06-28 2020-03-17 爱惜康有限责任公司 System for controlling control circuitry for independent energy delivery on segmented portions
US10758232B2 (en) 2017-06-28 2020-09-01 Ethicon Llc Surgical instrument with positive jaw opening features
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11696759B2 (en) 2017-06-28 2023-07-11 Cilag Gmbh International Surgical stapling instruments comprising shortened staple cartridge noses
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11083455B2 (en) 2017-06-28 2021-08-10 Cilag Gmbh International Surgical instrument comprising an articulation system ratio
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD1018577S1 (en) 2017-06-28 2024-03-19 Cilag Gmbh International Display screen or portion thereof with a graphical user interface for a surgical instrument
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11529140B2 (en) 2017-06-28 2022-12-20 Cilag Gmbh International Surgical instrument lockout arrangement
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10786253B2 (en) 2017-06-28 2020-09-29 Ethicon Llc Surgical end effectors with improved jaw aperture arrangements
US11000279B2 (en) 2017-06-28 2021-05-11 Ethicon Llc Surgical instrument comprising an articulation system ratio
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11642128B2 (en) 2017-06-28 2023-05-09 Cilag Gmbh International Method for articulating a surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11890005B2 (en) 2017-06-29 2024-02-06 Cilag Gmbh International Methods for closed loop velocity control for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11478244B2 (en) 2017-10-31 2022-10-25 Cilag Gmbh International Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11452572B2 (en) 2017-12-14 2022-09-27 Intuitive Surgical Operations, Inc. Medical tools having tension bands
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11896222B2 (en) 2017-12-15 2024-02-13 Cilag Gmbh International Methods of operating surgical end effectors
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11284953B2 (en) 2017-12-19 2022-03-29 Cilag Gmbh International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11337691B2 (en) 2017-12-21 2022-05-24 Cilag Gmbh International Surgical instrument configured to determine firing path
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11369368B2 (en) 2017-12-21 2022-06-28 Cilag Gmbh International Surgical instrument comprising synchronized drive systems
US11576668B2 (en) 2017-12-21 2023-02-14 Cilag Gmbh International Staple instrument comprising a firing path display
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US11849939B2 (en) 2017-12-21 2023-12-26 Cilag Gmbh International Continuous use self-propelled stapling instrument
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11883019B2 (en) 2017-12-21 2024-01-30 Cilag Gmbh International Stapling instrument comprising a staple feeding system
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11439376B2 (en) 2018-03-07 2022-09-13 Intuitive Surgical Operations, Inc. Low-friction, small profile medical tools having easy-to-assemble components
CN111936072A (en) * 2018-04-10 2020-11-13 直观外科手术操作公司 Articulatable medical device with flex routing
EP3773302A4 (en) * 2018-04-10 2022-01-05 Intuitive Surgical Operations, Inc. Articulable medical devices having flexible wire routing
WO2019199827A1 (en) 2018-04-10 2019-10-17 Intuitive Surgical Operations, Inc. Articulable medical devices having flexible wire routing
WO2020014401A1 (en) * 2018-07-10 2020-01-16 Boards Of Regents Of The University Of Texas System Articulable devices for in vivo tissue evaluation
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11744593B2 (en) 2019-06-28 2023-09-05 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11684369B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11553919B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
WO2021126545A1 (en) * 2019-12-16 2021-06-24 Covidien Lp Surgical robotic systems including surgical instruments with articulation
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US11826013B2 (en) 2020-07-28 2023-11-28 Cilag Gmbh International Surgical instruments with firing member closure features
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
US11883024B2 (en) 2020-07-28 2024-01-30 Cilag Gmbh International Method of operating a surgical instrument
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11660090B2 (en) 2020-07-28 2023-05-30 Cllag GmbH International Surgical instruments with segmented flexible drive arrangements
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
US11864756B2 (en) 2020-07-28 2024-01-09 Cilag Gmbh International Surgical instruments with flexible ball chain drive arrangements
US11871925B2 (en) 2020-07-28 2024-01-16 Cilag Gmbh International Surgical instruments with dual spherical articulation joint arrangements
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11918275B2 (en) 2021-04-30 2024-03-05 Cilag Gmbh International Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11918217B2 (en) 2021-05-28 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US11957344B2 (en) 2021-09-27 2024-04-16 Cilag Gmbh International Surgical stapler having rows of obliquely oriented staples
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11957339B2 (en) 2021-11-09 2024-04-16 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11957795B2 (en) 2021-12-13 2024-04-16 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US11957345B2 (en) 2022-12-19 2024-04-16 Cilag Gmbh International Articulatable surgical instruments with conductive pathways for signal communication

Also Published As

Publication number Publication date
WO2012006306A3 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
US8834466B2 (en) Surgical instrument comprising an articulatable end effector
US9149324B2 (en) Surgical instrument comprising an articulatable end effector
WO2012006306A2 (en) Surgical instrument comprising an articulatable end effector
US9610091B2 (en) Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion
US20180125571A1 (en) Surgical instruments and end effectors therefor
US9808308B2 (en) Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8623044B2 (en) Cable actuated end-effector for a surgical instrument
US10278721B2 (en) Electrosurgical instrument with separate closure and cutting members
US8496682B2 (en) Electrosurgical cutting and sealing instruments with cam-actuated jaws
US9375232B2 (en) Surgical cutting and sealing instrument with reduced firing force
US9237900B2 (en) Surgical instrument with split jaw
US9775667B2 (en) Surgical instrument with articulation indicator
WO2011156546A1 (en) Electrosurgical instrument employing a thermal management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731232

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11731232

Country of ref document: EP

Kind code of ref document: A2