WO2012008482A1 - Flame-retardant deodorizing filter - Google Patents

Flame-retardant deodorizing filter Download PDF

Info

Publication number
WO2012008482A1
WO2012008482A1 PCT/JP2011/065955 JP2011065955W WO2012008482A1 WO 2012008482 A1 WO2012008482 A1 WO 2012008482A1 JP 2011065955 W JP2011065955 W JP 2011065955W WO 2012008482 A1 WO2012008482 A1 WO 2012008482A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
weight
particles
carbon layer
cover material
Prior art date
Application number
PCT/JP2011/065955
Other languages
French (fr)
Japanese (ja)
Inventor
恵子 岩崎
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Publication of WO2012008482A1 publication Critical patent/WO2012008482A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/20Humidity or temperature control also ozone evacuation; Internal apparatus environment control
    • G03G21/206Conducting air through the machine, e.g. for cooling, filtering, removing gases like ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/106Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708

Definitions

  • the present invention relates to a flame-retardant deodorizing filter for removing harmful gas components by being incorporated in electronic devices such as a copying machine, a printer, a multi-function OA machine, a computer, a projector, and a POD printing machine.
  • the toxic gas component referred to here includes not only harmful gas components that affect the human body and the environment, but also gases that cause problems inside the electronic equipment.
  • Deodorizing filter is incorporated inside the electronic device for the purpose of reducing harmful gas components discharged from the electronic device. Since the deodorizing filter is incorporated in an electronic device, it not only excels in removing harmful gas components, but it is essential to acquire a flame retardant standard UL (Underwriters Laboratories Inc.) (see Non-Patent Document 1).
  • Patent Document 1 describes a laminated deodorizing filter medium in which two or more different types of deodorized powder particles are supported on a cover material made of fabric.
  • the filter medium of Patent Document 1 has a fiber web only on one side, the hot-melt resin connecting the fibers melts at the time of combustion, and the deodorized powder is dropped as a flame retardant, resulting in flame retardancy. There was a problem of insufficient.
  • Patent Document 2 describes a gas adsorbing sheet that has a high performance for removing gases harmful to the human body, including ozone, and has a long life. Activated carbon, manganese carbonate, an alkali metal compound, Since the gas layer containing the flame retardant flame retardant is formed, the material of the sheet base material falls and becomes a combustion product at the time of combustion, so that there is a problem that the flame retardancy is insufficient.
  • An adsorbing sheet containing an adsorbent and a thermoplastic resin between base material layers is disclosed (for example, see Patent Documents 3 to 5).
  • these adsorbing sheets there are base material layers above and below the adsorbent layer.
  • these adsorbing sheets do not contain a flame retardant in the base material, the base material melts during combustion. There was a problem that the mixed thermoplastic resin melted and the adsorbent dropped as a flame retardant, resulting in insufficient flame retardancy.
  • deodorizing filters for removing harmful gas components incorporated in electronic devices such as copiers, printers, multi-function OA machines, computers, projectors, and POD printers have sufficient flame retardance during combustion. At present, there is no deodorizing filter.
  • the present invention was devised in view of the above-described state of the art, and is incorporated into electronic devices such as copiers, printers, multi-function OA machines, computers, projectors, and POD printers to remove harmful gas components.
  • Another object of the present invention is to provide a deodorizing filter that can be burned and has sufficient flame retardancy during combustion.
  • the present inventor used a cloth containing fibers that carbonize during combustion as a cover material, and further made the cover material flame-retardant so that the cover material melts during combustion.
  • the inventors have found that the falling of activated carbon particles from the activated carbon layer can be suppressed, and have completed the present invention.
  • the present invention is as follows.
  • Activated carbon layer containing 30 to 200 g / m 2 of activated carbon particles and 1 to 50 parts by weight of thermoplastic resin binder particles with respect to 100 parts by weight of activated carbon particles, cellulose fiber, polyvinyl alcohol fiber, and polyacrylonitrile provided on both sides thereof
  • a flame-retardant deodorizing filter comprising a fabric containing 20 to 100% by weight of one or more fibers selected from fibers and phenol fibers, and a fabric containing 10 to 70% by weight of a phosphorus-based flame retardant based on the weight of the fabric.
  • the flame-retardant deodorizing filter of the present invention has a function of removing harmful gas components, and the cover material that does not melt during combustion does not cause activated carbon particles to drop as a flammable substance during combustion. It has the effect that a flame retardance is obtained.
  • the flame-retardant deodorizing filter of the present invention comprises an activated carbon layer A and cover materials B provided on both surfaces thereof, and the cover material B contains fibers that carbonize during combustion. It is characterized by being combusted.
  • the activated carbon particles used in the activated carbon layer of the filter of the present invention are not particularly limited as long as harmful gas components can be removed.
  • coal-based activated carbon coconut shell activated carbon, wood-based activated carbon, and the like can be used.
  • the specific surface area of the activated carbon particles to be used is preferably 500 m 2 / g or more, more preferably 800 to 2500 m 2 / g. If the specific surface area is less than 500 m 2 / g, toluene removal performance may be lowered.
  • the average particle diameter of the activated carbon particles of the present invention is not particularly limited, but is preferably 50 to 800 ⁇ m. When the average particle diameter is less than 50 ⁇ m, dust and the like are generated, so that the handleability is deteriorated, and when it exceeds 800 ⁇ m, formation of the activated carbon layer may be difficult.
  • the activated carbon particles of the present invention may be subjected to chemical treatment with a water-soluble flame retardant for the purpose of improving flame retardancy.
  • impregnated activated carbon particles impregnated with an alkali metal compound and an alkaline earth metal may be used to assist the ozonolysis function.
  • alkali metal compound and the alkaline earth metal compound include alkali metal hydroxides such as sodium, potassium and lithium, oxides, carbonates, bicarbonates, acetates, and oxalic acid.
  • Salts, phosphates, sulfates, succinates, phthalates, salts of aqueous solutions such as hydrogen phthalate, halides, and other alkaline earth metals include calcium, magnesium, barium, and other alkaline earth metals Examples thereof include salts of aqueous solutions such as hydroxides, oxides, carbonates, hydrogencarbonates, acetates, oxalates, phosphates, halides, and the like.
  • thermoplastic resin binder particles are contained in order to adhere the components of the activated carbon layer to each other and improve the handleability when forming the activated carbon layer.
  • thermoplastic resin binder particles include polyolefin resins (polyethylene resins, polypropylene resins, etc.), polyester resins, polystyrene resins, polyvinyl acetate, urea resins, acrylic resins, acrylate resins, polyamide resins, and the like.
  • a known thermoplastic resin can be used. Among these resins, polyester resins and polyamide resins are particularly preferable.
  • the content of the thermoplastic resin binder particles in the activated carbon layer is 1 to 50 parts by weight with respect to 100 parts by weight of the activated carbon particles.
  • the amount is preferably 5 to 30 parts by weight.
  • the content of the thermoplastic resin binder particles is less than 1 part by weight, the activated carbon layer is weakly fixed and the handleability is deteriorated.
  • the thermoplastic resin binder acts as a combustion product during combustion. May not be able to satisfy.
  • the average particle diameter of the thermoplastic resin binder particles is not particularly limited, but is preferably 1.0 to 100 ⁇ m. More preferably, it is 5.0 to 50 ⁇ m. When the average particle diameter is less than 1.0 ⁇ m, dust and the like are generated, so that the handleability is deteriorated, and when it exceeds 100 ⁇ m, there is a possibility that the activated carbon is not uniformly mixed.
  • the melting point of the thermoplastic resin binder particles is preferably 80 ° C. or higher in consideration of the environmental temperature of office equipment and the like. More preferably, it is 100 ° C. or higher.
  • the content of activated carbon particles in the activated carbon layer is 30 to 200 g / m 2 . Preferably, it is 50 to 200 g / m 2 .
  • the content of the activated carbon particles is less than 30 g / m 2 , the removal performance of harmful gases such as toluene is low.
  • the content exceeds 200 g / m 2 , the activated carbon becomes more effective as a combustion product, and therefore satisfies the UL standard. May not be possible.
  • the flame retardant deodorizing filter of the present invention needs to have a fabric as a cover layer on both sides of the activated carbon layer. With such a laminated structure, the activated carbon can be prevented from falling off during the combustion test.
  • the fabric to be used is not particularly limited, it can be composed of, for example, a non-woven fabric, a knitted fabric, or a woven fabric. Among them, the non-woven fabric is preferable. From the viewpoint of preventing the activated carbon particles from falling off during the formation of the filter, those having a particle size smaller than the particle size of the activated carbon particles are preferable.
  • the non-woven fabric is made of a fiber containing one or more fibers selected from cellulose fiber, polyvinyl alcohol fiber, polyacrylonitrile fiber, and phenol fiber. Those containing 100% by weight are preferred.
  • a method for producing the nonwoven fabric a chemical bond method, a needle punch method, a spunlace method (water flow entanglement method) or the like can be used. It is also preferable that the fabric is made of fibers spun by kneading a flame retardant.
  • the basis weight and thickness of the fabric are not particularly limited, but the basis weight is preferably 10 to 100 g / m 2 and the thickness is preferably 0.05 to 3 mm. If the basis weight is less than 10 g / m 2 , the activated carbon particles fall off from the fabric during sheet processing, and if it exceeds 100 g / m 2 , the workability during formation of the activated carbon layer may be deteriorated. On the other hand, if the thickness is less than 0.05 mm, the activated carbon particles fall off from the fabric during sheet processing, and if it exceeds 3 mm, the handleability during formation of the activated carbon layer may deteriorate.
  • the thickness of the fabric refers to the thickness measured at a load of 7 gf / cm 2 .
  • the fabric needs to contain a flame retardant. This is because the presence of a flame retardant in the fabric has the effect of making the fabric itself flame retardant and the effect of maintaining the fiber shape of the fabric during combustion.
  • a phosphorus flame retardant is preferable from the viewpoint of the flame retardant effect, and since it is applied to the fabric and dried, water-soluble flame retardants such as guanidine phosphate, ammonium phosphate, polyphosphorus are used. Ammonium acid is more preferred.
  • the fabric contains 10 to 70% by weight of the flame retardant with respect to the fabric weight. Preferably, it is 20 to 60% by weight. If the amount is less than 10% by weight, the flame retardancy of the entire filter may be insufficient. If the amount exceeds 70% by weight, the workability when the flame retardant is applied is deteriorated or the pressure loss of the filter increases. Problems may arise.
  • the flame retardant deodorizing filter of the present invention configured as described above does not drop off activated carbon particles in the activated carbon layer even during combustion, so that it can not only effectively remove harmful gas components but also UL standard 94HF- High flame retardant that satisfies 1
  • a flame retardant solution comprising 50 parts of a phosphorus-based flame retardant liquid (aqueous solution in which a flame retardant was dissolved in water: dispersion concentration 60%) and 50 parts of water was prepared.
  • cover material 1 Rayon fiber / polyethylene terephthalate (hereinafter referred to as “PET”) fiber (weight ratio 70:30) mixed spunlace nonwoven fabric (weight per unit area 35 g / m 2 , thickness 0.41 mm) is impregnated with the aqueous flame retardant solution and dried.
  • the cover materials (A1), (A2), (A3), and (A4) having a basis weight of 37 g / m 2 , 40 g / m 2 , 45 g / m 2 , and 55 g / m 2 were obtained.
  • Each cover material is a cover material in which a phosphorus-based flame retardant is attached to the fiber surface of spunlace, which is a fabric.
  • the cover materials (A1), (A2), (A3), and (A4) 2 g / m 2 , 5 g / m 2 , 10 g / m 2 , and 20 g / m 2 of a phosphorus-based flame retardant were included.
  • cover material 1 Rayon fiber / PET (weight ratio 70:30) mixed spunlace nonwoven fabric (weight per unit: 24 g / m 2 , thickness: 0.16 mm) was impregnated with the flame retardant aqueous solution and then dried to have a basis weight of 29 g / m 2 , 34 g / m. 2 cover materials (A5) and (A6) were obtained. Each cover material is a cover material in which a phosphorus-based flame retardant is attached to the fiber surface of spunlace, which is a fabric.
  • the cover materials (A5) and (A6) have 5 g / m 2 and 10 g / m, respectively. 2 phosphorus flame retardants were included.
  • cover material 1 Rayon fiber / PET fiber (weight ratio 20:80) mixed spunlace nonwoven fabric (weight per unit 35 g / m 2 , thickness 0.40 mm), rayon fiber spunlace nonwoven fabric (weight per unit 35 g / m 2 , thickness 0.40 mm), rayon fiber / A PET fiber (weight ratio 10:90) mixed spunlace nonwoven fabric (35 g / m 2 in basis weight, 0.40 mm thickness) impregnated with the flame retardant aqueous solution, and then dried and a cover material (A7) having a basis weight of 45 g / m 2 , (A8) and (A9) were obtained.
  • Each cover material is a cover material in which a phosphorus-based flame retardant is attached to the fiber surface of a spunlace, which is a fabric.
  • Each of the cover materials (A7), (A8), and (A9) includes 10 g / m 2. Of phosphorus flame retardant.
  • Example 1 A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 ⁇ m) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 ⁇ m, polyethylene resin) on the cover material (A2) prepared in Cover Material Preparation 1.
  • the activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A2), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the thermoplastic resin binder
  • the activated carbon layer was fixed with the particles to produce a filter.
  • the basis weight of the filter was 190 g / m 2 .
  • Example 2 A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 ⁇ m) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 ⁇ m, polyethylene resin) on the cover material (A4) prepared in Cover Material Preparation 1.
  • the activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A4), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the thermoplastic resin binder
  • the activated carbon layer was fixed with the particles to produce a filter.
  • the basis weight of the filter was 220 g / m 2 .
  • Example 3 A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 ⁇ m) and 20 parts by weight of thermoplastic resin binder particles (average particle diameter 20 ⁇ m, polyethylene resin) on the cover material (A3) prepared in Cover Material Preparation 1.
  • the activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A3), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to make a thermoplastic resin binder.
  • the activated carbon layer was fixed with the particles to produce a filter.
  • the basis weight of the filter was 210 g / m 2 .
  • Example 4 A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 ⁇ m) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 ⁇ m, polyethylene resin) on the cover material (A3) prepared in Cover Material Preparation 1.
  • the activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A3), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to make a thermoplastic resin binder.
  • the activated carbon layer was fixed with the particles to produce a filter.
  • the basis weight of the filter was 145 g / m 2 .
  • Example 5 A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 ⁇ m) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 ⁇ m, polyethylene resin) on the cover material (A3) prepared in Cover Material Preparation 1.
  • the activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A3), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to make a thermoplastic resin binder.
  • the activated carbon layer was fixed with the particles to produce a filter.
  • the basis weight of the filter was 310 g / m 2 .
  • Example 6 A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 ⁇ m) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 ⁇ m, polyethylene resin) on the cover material (A7) prepared in Cover Material Preparation 3.
  • the activated carbon layer is formed by spraying, and the cover material (A7) is stacked on the activated carbon layer, and then sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the thermoplastic resin binder
  • the activated carbon layer was fixed with the particles to produce a filter.
  • the basis weight of the filter was 200 g / m 2 .
  • Example 7 A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 ⁇ m) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 ⁇ m, polyethylene resin) on the cover material (A8) prepared in Cover Material Preparation 3.
  • the activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A8), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to obtain a thermoplastic resin binder.
  • the activated carbon layer was fixed with the particles to produce a filter.
  • the basis weight of the filter was 200 g / m 2 .
  • Example 8 A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 ⁇ m) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 ⁇ m, polyethylene resin) on the cover material (A5) prepared in Cover Material Preparation 2
  • the activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A5), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to obtain a thermoplastic resin binder.
  • the activated carbon layer was fixed with the particles to produce a filter.
  • the basis weight of the filter was 168 g / m 2 .
  • Example 9 A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 ⁇ m) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 ⁇ m, polyethylene resin) on the cover material (A6) prepared in Cover Material Preparation 2
  • the activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A6), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to obtain a thermoplastic resin binder.
  • the activated carbon layer was fixed with the particles to produce a filter.
  • the basis weight of the filter was 178 g / m 2 .
  • (Comparative Example 4) A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 ⁇ m) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 ⁇ m, polyethylene resin) on the cover material (A3) prepared in Cover Material Preparation 1.
  • the activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A3), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to make a thermoplastic resin binder.
  • the activated carbon layer was fixed with the particles to produce a filter.
  • the basis weight of the filter was 420 g / m 2 .
  • Table 2 shows the details of the filter configurations obtained in Examples 1 to 9 and Comparative Examples 1 to 6 and the evaluation results of flame retardancy.
  • Examples 1 to 9 obtained UL94HF-1 evaluation in the flame retardancy test, whereas in Comparative Example 1, the cover material was only on one side of the activated carbon layer. Activated carbon falls off during combustion, Comparative Examples 2 and 3 have insufficient flame-retardant effect on the cover material, Comparative Example 4 has a large basis weight of activated carbon, and Comparative Example 5 has the constituent fibers of the fabric satisfying the structural requirements. In Comparative Example 6, the content of the thermoplastic binder particles was large, and none of them had flame retardancy satisfying UL standard 94HF-1.
  • the flame-retardant deodorizing filter of the present invention is excellent in the removal of harmful gas components and flame retardancy, it is included in the exhaust gas of electronic devices such as copiers, printers, multifunctional OA machines, computers, projectors, and POD printing machines. It can be suitably used for a flame retardant deodorizing filter for removing harmful gas components contained therein, a flame retardant deodorizing filter for use in refrigerators, toilet deodorizers, and the like.

Abstract

Provided is a deodorizing filter which is capable of removing harmful gas components by being integrated into an electronic device such as a copier, a printer, a multifunction OA device, a computer, a projector, or a POD printing device, and which exhibits sufficient flame retardancy when burned. Specifically provided is a flame-retardant deodorizing filter formed from: an activated carbon layer which contains 30 to 200 g/m2 of activated carbon particles and 1 to 50 parts by weight of thermoplastic resin binder particles per 100 parts by weight of the activated carbon particles; and a fabric which is disposed on both sides of the activated carbon layer and which is obtained by including a phosphorus-based flame retardant to a fabric containing 20 to 10 weight% of one or more fibers selected from among a cellulose fiber, a polyvinyl alcohol fiber, a polyacryl-nitrile fiber, and a phenol fiber, such that the amount of the phosphorus-based flame retardant is 10 to 70 weight% relative to the weight of the aforementioend fabric.

Description

難燃性脱臭フィルタFlame retardant deodorizing filter
 本発明は、コピー機、プリンター、多機能OA機、コンピュータ、プロジェクター、POD印刷機等の電子機器に組み込んで、有害ガス成分を除去するための難燃性脱臭フィルタに関する。ここで言う有毒ガス成分とは、人体や環境へ影響を与える有害ガス成分だけでなく、電子機器内部での問題を引き起こすガス等も含める。 The present invention relates to a flame-retardant deodorizing filter for removing harmful gas components by being incorporated in electronic devices such as a copying machine, a printer, a multi-function OA machine, a computer, a projector, and a POD printing machine. The toxic gas component referred to here includes not only harmful gas components that affect the human body and the environment, but also gases that cause problems inside the electronic equipment.
 コピー機、プリンター、多機能OA機、コンピュータ、プロジェクター、POD印刷機等の電子機器は、近年集積化、小型化が進み、機器内部に熱がこもるのを避けるために、ファン等による排熱が欠かせなくなってきている。そして、インク、トナー等といった印字の際に用いられる成分、電子機器の本体を構成するプラスチック、および、各種接合部に使用されているゴム等に含まれている各種成分がガス化し、有害ガス成分として排熱と共に室内へと排出されている。また、コピー機、レーザープリンター等では高電圧を使用するため、前記ガス成分だけでなく、オゾンといった有害ガス成分も排出されている。近年、環境問題への意識の高まりから、有害ガス成分に関して、排出規制が行われるようになった。例えば、ドイツでは、「BAM(ブルーエンジェルマーク)」という環境ラベルが制定されており、電子機器毎に果たすべき環境性能基準が定められている。 In recent years, electronic devices such as copiers, printers, multi-function OA machines, computers, projectors, and POD printers have been increasingly integrated and miniaturized. It is indispensable. In addition, various components contained in components such as ink, toner, etc. used for printing, plastics constituting the main body of electronic equipment, rubber used in various joints, etc. are gasified, and harmful gas components It is discharged into the room along with exhaust heat. In addition, since a high voltage is used in a copying machine, a laser printer, and the like, not only the gas components but also harmful gas components such as ozone are discharged. In recent years, due to increased awareness of environmental issues, emission regulations have been implemented for harmful gas components. For example, in Germany, an environmental label “BAM (Blue Angel Mark)” has been established, and environmental performance standards to be achieved for each electronic device are defined.
 電子機器から排出される有害ガス成分を低減する目的で、前記電子機器内部に脱臭フィルタが組み込まれている。前記脱臭フィルタは電子機器内部に組み込まれるため、有害ガス成分の除去に優れるだけではなく、難燃規格UL(Underwriters Laboratories Inc.)の取得が必須である(非特許文献1参照)。 Deodorizing filter is incorporated inside the electronic device for the purpose of reducing harmful gas components discharged from the electronic device. Since the deodorizing filter is incorporated in an electronic device, it not only excels in removing harmful gas components, but it is essential to acquire a flame retardant standard UL (Underwriters Laboratories Inc.) (see Non-Patent Document 1).
 レーザープリンターをはじめとする電子機器や、種々の空調機器等に組み込んでオゾン及びVOCを除去するための難燃性オゾンVOC除去フィルタについてはよく知られている。例えば、特許文献1では、布帛からなるカバー材に、相異なる2種類以上の脱臭粉粒体を担持してなる積層型脱臭濾材が記載されている。しかしながら、特許文献1の濾材は繊維ウェブが片側にしかなく、燃焼時には繊維同士を連結しているホットメルト樹脂が溶融し、発炎物質として脱臭粉粒体が滴下してしまい、難燃性が不十分という問題があった。 A flame-retardant ozone VOC removal filter for removing ozone and VOC by being incorporated in electronic devices such as laser printers and various air conditioners is well known. For example, Patent Document 1 describes a laminated deodorizing filter medium in which two or more different types of deodorized powder particles are supported on a cover material made of fabric. However, the filter medium of Patent Document 1 has a fiber web only on one side, the hot-melt resin connecting the fibers melts at the time of combustion, and the deodorized powder is dropped as a flame retardant, resulting in flame retardancy. There was a problem of insufficient.
 特許文献2では、オゾンを初めとする人体に有害なガスの除去性能が高くかつ長寿命なガス吸着用シートが記載されているが、シート基材の両面に活性炭、炭酸マンガン、アルカリ金属化合物、難燃性難燃剤を含むガス層を形成しているため、燃焼時にはシート基材状の物質が落下し、燃焼物となるため、難燃性が不十分という問題があった。 Patent Document 2 describes a gas adsorbing sheet that has a high performance for removing gases harmful to the human body, including ozone, and has a long life. Activated carbon, manganese carbonate, an alkali metal compound, Since the gas layer containing the flame retardant flame retardant is formed, the material of the sheet base material falls and becomes a combustion product at the time of combustion, so that there is a problem that the flame retardancy is insufficient.
 基材層間に吸着剤及び熱可塑性樹脂を含む吸着シートが開示されている(例えば特許文献3~5参照)。これらの吸着シートでは、吸着剤層の上下に基材層があるが、これらの吸着シートは、基材に難燃剤が含有されていないため、燃焼時には基材が溶融し、さらに、吸着剤と混合された熱可塑性樹脂が溶融し、発炎物質として吸着剤が滴下してしまい、難燃性が不十分という問題があった。 An adsorbing sheet containing an adsorbent and a thermoplastic resin between base material layers is disclosed (for example, see Patent Documents 3 to 5). In these adsorbing sheets, there are base material layers above and below the adsorbent layer. However, since these adsorbing sheets do not contain a flame retardant in the base material, the base material melts during combustion. There was a problem that the mixed thermoplastic resin melted and the adsorbent dropped as a flame retardant, resulting in insufficient flame retardancy.
 上述のとおり、コピー機、プリンター、多機能OA機、コンピュータ、プロジェクター、POD印刷機等の電子機器に組み込んで、有害ガス成分を除去するための脱臭フィルタに関して、燃焼時に十分な難燃性を有する脱臭フィルタは見当たらないのが現状である。 As described above, deodorizing filters for removing harmful gas components incorporated in electronic devices such as copiers, printers, multi-function OA machines, computers, projectors, and POD printers have sufficient flame retardance during combustion. At present, there is no deodorizing filter.
特開平11-57467号公報JP-A-11-57467 特開2002-79083号公報JP 2002-79083 A 特開2008-206550号公報JP 2008-206550 A 特開2007-301434号公報JP 2007-301434 A 特許4099714号公報Japanese Patent No. 4099714
 本発明は、上記従来技術の現状に鑑み創案されたものであり、コピー機、プリンター、多機能OA機、コンピュータ、プロジェクター、POD印刷機等の電子機器に組み込んで、有害ガス成分を除去することができ、しかも燃焼時に十分な難燃性を有する脱臭フィルタを提供することを目的とする。 The present invention was devised in view of the above-described state of the art, and is incorporated into electronic devices such as copiers, printers, multi-function OA machines, computers, projectors, and POD printers to remove harmful gas components. Another object of the present invention is to provide a deodorizing filter that can be burned and has sufficient flame retardancy during combustion.
 本発明者は、上記目的を達成するために鋭意研究した結果、燃焼時に炭化する繊維を含んだ布帛をカバー材として使用し、さらにカバー材を難燃化することで、燃焼時にカバー材が溶融せず、しかも、活性炭層からの活性炭粒子の脱落を抑制できることを見出し、本発明の完成に到達した。 As a result of diligent research to achieve the above object, the present inventor used a cloth containing fibers that carbonize during combustion as a cover material, and further made the cover material flame-retardant so that the cover material melts during combustion. In addition, the inventors have found that the falling of activated carbon particles from the activated carbon layer can be suppressed, and have completed the present invention.
 即ち、本発明は、以下の通りである。
 活性炭粒子を30~200g/mと熱可塑性樹脂バインダー粒子を活性炭粒子100重量部に対して1~50重量部含む活性炭層と、その両面に設けられたセルロース繊維、ポリビニルアルコール繊維、ポリアクリルニトリル繊維、フェノール繊維から選択される一種以上の繊維を20~100重量%含んだ布帛にリン系難燃剤を布帛重量に対して10~70重量%含有した布帛とからなる難燃性脱臭フィルタ。
That is, the present invention is as follows.
Activated carbon layer containing 30 to 200 g / m 2 of activated carbon particles and 1 to 50 parts by weight of thermoplastic resin binder particles with respect to 100 parts by weight of activated carbon particles, cellulose fiber, polyvinyl alcohol fiber, and polyacrylonitrile provided on both sides thereof A flame-retardant deodorizing filter comprising a fabric containing 20 to 100% by weight of one or more fibers selected from fibers and phenol fibers, and a fabric containing 10 to 70% by weight of a phosphorus-based flame retardant based on the weight of the fabric.
 本発明の難燃性脱臭フィルタは、有害ガス成分を除去することができるという機能を有し、しかも燃焼時に溶融しないカバー材によって、燃焼時に活性炭粒子が発炎物質として滴下することもなく、十分な難燃性が得られるという効果を有する。 The flame-retardant deodorizing filter of the present invention has a function of removing harmful gas components, and the cover material that does not melt during combustion does not cause activated carbon particles to drop as a flammable substance during combustion. It has the effect that a flame retardance is obtained.
本発明の難燃性脱臭フィルタの概略的断面図を示す。The schematic sectional drawing of the flame-retardant deodorizing filter of this invention is shown.
 以下、本発明の難燃性脱臭フィルタを詳細に説明する。
 本発明の難燃性脱臭フィルタは、図1に示すように、活性炭層Aとその両面に設けられたカバー材Bとからなり、カバー材Bに燃焼時に炭化する繊維が含有されており、難燃化されていることを特徴とする。
Hereinafter, the flame-retardant deodorizing filter of the present invention will be described in detail.
As shown in FIG. 1, the flame-retardant deodorizing filter of the present invention comprises an activated carbon layer A and cover materials B provided on both surfaces thereof, and the cover material B contains fibers that carbonize during combustion. It is characterized by being combusted.
 本発明のフィルタの活性炭層に使用する活性炭粒子は、有害ガス成分を除去できれば特に限定されないが、例えば、石炭系活性炭、ヤシガラ系活性炭、木質系活性炭等を使用することができる。使用する活性炭粒子の比表面積は、好ましくは500m/g以上、より好ましくは800~2500m/gである。比表面積が500m/g未満ではトルエンの除去性能が低くなる可能性がある。 The activated carbon particles used in the activated carbon layer of the filter of the present invention are not particularly limited as long as harmful gas components can be removed. For example, coal-based activated carbon, coconut shell activated carbon, wood-based activated carbon, and the like can be used. The specific surface area of the activated carbon particles to be used is preferably 500 m 2 / g or more, more preferably 800 to 2500 m 2 / g. If the specific surface area is less than 500 m 2 / g, toluene removal performance may be lowered.
 本発明の活性炭粒子の平均粒子直径は、特に限定されないが、50~800μmであることが好ましい。平均粒子直径が50μm未満では、粉塵等が生じるため取り扱い性が悪くなり、800μmを越えると、活性炭層の形成が困難になる可能性がある。 The average particle diameter of the activated carbon particles of the present invention is not particularly limited, but is preferably 50 to 800 μm. When the average particle diameter is less than 50 μm, dust and the like are generated, so that the handleability is deteriorated, and when it exceeds 800 μm, formation of the activated carbon layer may be difficult.
 本発明の活性炭粒子は、難燃性が向上することを目的として、水溶性難燃剤による薬品処理を施してもよい。 The activated carbon particles of the present invention may be subjected to chemical treatment with a water-soluble flame retardant for the purpose of improving flame retardancy.
 本発明の活性炭粒子には、オゾン分解機能を補助するために、アルカリ金属化合物、及びアルカリ土類金属を添着した添着活性炭粒子を用いてもよい。 In the activated carbon particles of the present invention, impregnated activated carbon particles impregnated with an alkali metal compound and an alkaline earth metal may be used to assist the ozonolysis function.
 上記アルカリ金属化合物、及びアルカリ土類金属化合物の具体例として、アルカリ金属としては、ナトリウム、カリウム、リチウム等のアルカリ金属の水酸化物、酸化物、炭酸塩、炭酸水素塩、酢酸塩、シュウ酸塩、リン酸塩、硫酸塩、コハク酸塩、フタル酸塩、フタル酸水素などの水溶液の塩、ハロゲン化物など、アルカリ土類金属としては、カルシウム、マグネシウム、バリウム、などのアルカリ土類金属の水酸化物、酸化物、炭酸塩、炭酸水素塩、酢酸塩、シュウ酸塩、リン酸塩などの水溶液の塩、ハロゲン化物などが挙げられる。 Specific examples of the alkali metal compound and the alkaline earth metal compound include alkali metal hydroxides such as sodium, potassium and lithium, oxides, carbonates, bicarbonates, acetates, and oxalic acid. Salts, phosphates, sulfates, succinates, phthalates, salts of aqueous solutions such as hydrogen phthalate, halides, and other alkaline earth metals include calcium, magnesium, barium, and other alkaline earth metals Examples thereof include salts of aqueous solutions such as hydroxides, oxides, carbonates, hydrogencarbonates, acetates, oxalates, phosphates, halides, and the like.
 本発明の活性炭層には、活性炭層の各成分を互いに接着し、活性炭層形成時の取扱い性を向上させるため、熱可塑性樹脂バインダー粒子が含まれている。熱可塑性樹脂バインダー粒子としては、例えば、ポリオレフィン樹脂(ポリエチレン樹脂、ポロプロピレン樹脂など)、ポリエステル樹脂、ポリスチレン樹脂、ポリ酢酸ビニル、尿素系樹脂、アクリル樹脂、アクリル酸エステル系樹脂、ポリアミド系樹脂等の公知の熱可塑性樹脂を使用することができる。これらの樹脂の中では、特にポリエステル系樹脂、ポリアミド系樹脂が好ましい。 In the activated carbon layer of the present invention, thermoplastic resin binder particles are contained in order to adhere the components of the activated carbon layer to each other and improve the handleability when forming the activated carbon layer. Examples of the thermoplastic resin binder particles include polyolefin resins (polyethylene resins, polypropylene resins, etc.), polyester resins, polystyrene resins, polyvinyl acetate, urea resins, acrylic resins, acrylate resins, polyamide resins, and the like. A known thermoplastic resin can be used. Among these resins, polyester resins and polyamide resins are particularly preferable.
 活性炭層中の熱可塑性樹脂バインダー粒子の含有量は、活性炭粒子100重量部に対して1~50重量部である。好ましくは、5~30重量部である。熱可塑性樹脂バインダー粒子の含有量が1重量部未満では、活性炭層の固着が弱く取り扱い性が悪くなり、50重量部を越えると、燃焼時に熱可塑性樹脂バインダーが燃焼物として作用するため、UL規格を満足することができない可能性がある。 The content of the thermoplastic resin binder particles in the activated carbon layer is 1 to 50 parts by weight with respect to 100 parts by weight of the activated carbon particles. The amount is preferably 5 to 30 parts by weight. When the content of the thermoplastic resin binder particles is less than 1 part by weight, the activated carbon layer is weakly fixed and the handleability is deteriorated. When the content exceeds 50 parts by weight, the thermoplastic resin binder acts as a combustion product during combustion. May not be able to satisfy.
 熱可塑性樹脂バインダー粒子の平均粒子直径は、特に限定されないが、1.0~100μmであることが好ましい。より好ましくは、5.0~50μmである。平均粒子直径が1.0μm未満であると、粉塵等が生じるため取り扱い性が悪くなり、100μmを越えると、活性炭と均一に混合しない可能性がある。 The average particle diameter of the thermoplastic resin binder particles is not particularly limited, but is preferably 1.0 to 100 μm. More preferably, it is 5.0 to 50 μm. When the average particle diameter is less than 1.0 μm, dust and the like are generated, so that the handleability is deteriorated, and when it exceeds 100 μm, there is a possibility that the activated carbon is not uniformly mixed.
 熱可塑性樹脂バインダー粒子の融点は、事務機器等の環境温度などを考慮すると80℃以上が好ましい。より好ましくは、100℃以上である。 The melting point of the thermoplastic resin binder particles is preferably 80 ° C. or higher in consideration of the environmental temperature of office equipment and the like. More preferably, it is 100 ° C. or higher.
 活性炭層中の活性炭粒子の含有量は、30~200g/mである。好ましくは、50~200g/mである。活性炭粒子の含有量が30g/m未満では、トルエン等の有害ガスの除去性能が低く、200g/mを越えると、活性炭の燃焼物としての作用が大きくなるため、UL規格を満足することができない可能性がある。 The content of activated carbon particles in the activated carbon layer is 30 to 200 g / m 2 . Preferably, it is 50 to 200 g / m 2 . When the content of the activated carbon particles is less than 30 g / m 2 , the removal performance of harmful gases such as toluene is low. When the content exceeds 200 g / m 2 , the activated carbon becomes more effective as a combustion product, and therefore satisfies the UL standard. May not be possible.
 本発明の難燃性脱臭フィルタは、活性炭層の両面にカバー層として布帛を有することが必要である。かかる積層構造により、燃焼試験時に活性炭の脱落を抑制することができる。使用する布帛は、特に限定されないが、例えば、不織布、編物、織物からなることがで
き、中でも不織布が好ましい。フィルタ形成時の活性炭粒子の脱落防止の観点から、活性炭粒子の粒径よりも小さい目合いのものが好ましい。不織布は、セルロース繊維、ポリビニルアルコール繊維、ポリアクリルニトリル繊維、フェノール繊維から選択される一種以上の繊維を含んだ繊維から作られ、燃焼時における繊維形状保持性から、これらいずれかの繊維を20~100重量%含有したものが好ましい。不織布の製造法としては、ケミカルボンド法、ニードルパンチ法、スパンレース法(水流絡合法)等が使用できる。布帛は、難燃剤を練りこんで紡糸された繊維からなることも好ましい。
The flame retardant deodorizing filter of the present invention needs to have a fabric as a cover layer on both sides of the activated carbon layer. With such a laminated structure, the activated carbon can be prevented from falling off during the combustion test. Although the fabric to be used is not particularly limited, it can be composed of, for example, a non-woven fabric, a knitted fabric, or a woven fabric. Among them, the non-woven fabric is preferable. From the viewpoint of preventing the activated carbon particles from falling off during the formation of the filter, those having a particle size smaller than the particle size of the activated carbon particles are preferable. The non-woven fabric is made of a fiber containing one or more fibers selected from cellulose fiber, polyvinyl alcohol fiber, polyacrylonitrile fiber, and phenol fiber. Those containing 100% by weight are preferred. As a method for producing the nonwoven fabric, a chemical bond method, a needle punch method, a spunlace method (water flow entanglement method) or the like can be used. It is also preferable that the fabric is made of fibers spun by kneading a flame retardant.
 布帛の目付と厚みは、特に限定されないが、目付は10~100g/m、厚みは0.05~3mmであることが好ましい。目付が10g/m未満では、シート加工時に活性炭粒子が布帛から脱落してしまい、100g/mを越えると、活性炭層形成時の加工性が悪くなる可能性がある。また、厚みが0.05mm未満では、シート加工時に活性炭粒子が布帛から脱落してしまい、3mmを越えると、活性炭層形成時の取り扱い性が悪くなる可能性がある。なお、ここで布帛の厚みは、7gf/cm荷重で測定した厚みを指す。 The basis weight and thickness of the fabric are not particularly limited, but the basis weight is preferably 10 to 100 g / m 2 and the thickness is preferably 0.05 to 3 mm. If the basis weight is less than 10 g / m 2 , the activated carbon particles fall off from the fabric during sheet processing, and if it exceeds 100 g / m 2 , the workability during formation of the activated carbon layer may be deteriorated. On the other hand, if the thickness is less than 0.05 mm, the activated carbon particles fall off from the fabric during sheet processing, and if it exceeds 3 mm, the handleability during formation of the activated carbon layer may deteriorate. Here, the thickness of the fabric refers to the thickness measured at a load of 7 gf / cm 2 .
 本発明では、前記布帛に難燃剤が含まれていることが必要である。布帛に難燃剤が含まれることによって、布帛自体を難燃性にする効果と、燃焼時に布帛の繊維形状が保持されるという効果があるためである。 In the present invention, the fabric needs to contain a flame retardant. This is because the presence of a flame retardant in the fabric has the effect of making the fabric itself flame retardant and the effect of maintaining the fiber shape of the fabric during combustion.
 布帛に含有する難燃剤としては、難燃効果の面からリン系難燃剤が好ましく、布帛に塗布・乾燥することから、水溶性の難燃剤である、例えば、リン酸グアニジン、リン酸アンモニウム、ポリリン酸アンモニウムがより好ましい。 As the flame retardant contained in the fabric, a phosphorus flame retardant is preferable from the viewpoint of the flame retardant effect, and since it is applied to the fabric and dried, water-soluble flame retardants such as guanidine phosphate, ammonium phosphate, polyphosphorus are used. Ammonium acid is more preferred.
 布帛には前記難燃剤が布帛重量に対して、10~70重量%含まれている。好ましくは、20~60重量%である。10重量%未満ではフィルタ全体の難燃性が不十分となる場合があり、70重量%を超えると、難燃剤を添着する際の加工性が悪くなったり、フィルタの圧力損失が上昇するなどの問題が起る場合がある。 The fabric contains 10 to 70% by weight of the flame retardant with respect to the fabric weight. Preferably, it is 20 to 60% by weight. If the amount is less than 10% by weight, the flame retardancy of the entire filter may be insufficient. If the amount exceeds 70% by weight, the workability when the flame retardant is applied is deteriorated or the pressure loss of the filter increases. Problems may arise.
 上記のように構成された本発明の難燃性脱臭フィルタは、燃焼時も活性炭層中の活性炭粒子を脱落させることがないので、有害ガス成分を効果的に除去できるだけでなく、UL規格94HF-1を満足する高い難燃性を持つ。 The flame retardant deodorizing filter of the present invention configured as described above does not drop off activated carbon particles in the activated carbon layer even during combustion, so that it can not only effectively remove harmful gas components but also UL standard 94HF- High flame retardant that satisfies 1
 以下、実施例によって本発明の難燃性脱臭フィルタの作用効果を具体的に示すが、本発明はこれらによって何ら限定されるものではない。なお、実施例中で測定した特性値の評価方法を以下に示す。 Hereinafter, the working effects of the flame-retardant deodorizing filter of the present invention are specifically shown by examples, but the present invention is not limited by these. In addition, the evaluation method of the characteristic value measured in the Example is shown below.
(難燃性)
 非特許文献1に記載されている水平燃焼試験により評価を実施した。この水平燃焼試験では、所定の高さに試験片を配置しておくことができる支持用金網を用い、この金網の下方に175±25mmの距離で脱脂綿(標識綿)を配置しておく。この金網に、長さ150±1mm、幅50±1mmの短冊状に裁断され、しかも長さ方向の一方の端部から、60mm、125mmの各位置に合計2つの標線を予め書き込んだ試験片を設置する。燃焼試験では、試験片を水平に載置した状態で上述した端部に金網の下方から炎を60±1秒間当てたのち、炎を試験片から離す。この時点から計時し、[a]炎が消えた(残炎)時間、[b]炎と赤熱が消えた(残じん)時間、[c]炎又は赤熱の前線が125mm標線に達した時間、もしくは試験片が125mm標線の手前で燃焼又は赤熱が止まった時間、の3種類の時間を記録する。このような評価試験を5回実施し、下記の表1に示すような「94HF-1」又は「94HF-2」の2つの分類に応じて評価する。
(Flame retardance)
Evaluation was carried out by a horizontal combustion test described in Non-Patent Document 1. In this horizontal combustion test, a supporting wire mesh that can place a test piece at a predetermined height is used, and absorbent cotton (marked cotton) is placed under the wire mesh at a distance of 175 ± 25 mm. A test piece that is cut into a strip shape of 150 ± 1 mm in length and 50 ± 1 mm in width on this wire mesh, and in addition, a total of two marked lines are written in advance from one end in the length direction to each position of 60 mm and 125 mm. Is installed. In the combustion test, after the test piece is placed horizontally, a flame is applied to the end portion described above from below the wire mesh for 60 ± 1 second, and then the flame is separated from the test piece. Time is measured from this point, [a] time when the flame disappears (residual flame), [b] time when the flame and red heat disappears (residual dust), [c] time when the front of the flame or red heat reaches the 125 mm mark Or, record the three types of time, that is, the time when the test piece burned or the red heat stopped before the 125 mm mark. Such an evaluation test is conducted five times, and evaluation is performed according to two classifications of “94HF-1” or “94HF-2” as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(平均粒子直径)
 各粒子を走査型電子顕微鏡(SEM)で観察し、100個の粒子の直径を測定し、それから平均直径を算出した。
(Average particle diameter)
Each particle was observed with a scanning electron microscope (SEM), the diameter of 100 particles was measured, and the average diameter was calculated therefrom.
(難燃剤の調整)
 リン系難燃剤液(難燃剤が水に溶解した水溶液:分散液濃度60%)50部と水50部とからなる難燃剤溶液を準備した。
(Adjustment of flame retardant)
A flame retardant solution comprising 50 parts of a phosphorus-based flame retardant liquid (aqueous solution in which a flame retardant was dissolved in water: dispersion concentration 60%) and 50 parts of water was prepared.
(カバー材の準備1)
 レーヨン繊維/ポリエチレンテレフタレート(以下、「PET」という)繊維(重量比70:30)混合スパンレース不織布(目付35g/m、厚み0.41mm)に、前記難燃剤水溶液を含浸した後、乾燥させ、目付37g/m、40g/m、45g/m、55g/mのカバー材(A1)、(A2)、(A3)、(A4)を得た。それぞれのカバー材は、布帛であるスパンレースの繊維表面に、リン系難燃剤が添着されたカバー材であり、カバー材(A1)、(A2)、(A3)、(A4)には、それぞれ2g/m、5g/m、10g/m、20g/mのリン系難燃剤が含まれていた。
(Preparation of cover material 1)
Rayon fiber / polyethylene terephthalate (hereinafter referred to as “PET”) fiber (weight ratio 70:30) mixed spunlace nonwoven fabric (weight per unit area 35 g / m 2 , thickness 0.41 mm) is impregnated with the aqueous flame retardant solution and dried. The cover materials (A1), (A2), (A3), and (A4) having a basis weight of 37 g / m 2 , 40 g / m 2 , 45 g / m 2 , and 55 g / m 2 were obtained. Each cover material is a cover material in which a phosphorus-based flame retardant is attached to the fiber surface of spunlace, which is a fabric. The cover materials (A1), (A2), (A3), and (A4) 2 g / m 2 , 5 g / m 2 , 10 g / m 2 , and 20 g / m 2 of a phosphorus-based flame retardant were included.
(カバー材の準備1)
 レーヨン繊維/PET(重量比 70:30)混合スパンレース不織布(目付24g/m、厚み0.16mm)に、前記難燃剤水溶液を含浸した後、乾燥させ、目付29g/m、34g/mのカバー材(A5)、(A6)を得た。それぞれのカバー材は、布帛であるスパンレースの繊維表面に、リン系難燃剤が添着されたカバー材であり、カバー材(A5)、(A6)には、それぞれ5g/m、10g/mのリン系難燃剤が含まれていた。
(Preparation of cover material 1)
Rayon fiber / PET (weight ratio 70:30) mixed spunlace nonwoven fabric (weight per unit: 24 g / m 2 , thickness: 0.16 mm) was impregnated with the flame retardant aqueous solution and then dried to have a basis weight of 29 g / m 2 , 34 g / m. 2 cover materials (A5) and (A6) were obtained. Each cover material is a cover material in which a phosphorus-based flame retardant is attached to the fiber surface of spunlace, which is a fabric. The cover materials (A5) and (A6) have 5 g / m 2 and 10 g / m, respectively. 2 phosphorus flame retardants were included.
(カバー材の準備1)
 レーヨン繊維/PET繊維(重量比 20:80)混合スパンレース不織布(目付35g/m、厚み0.40mm)、レーヨン繊維スパンレース不織布(目付35g/m、厚み0.40mm)、レーヨン繊維/PET繊維(重量比 10:90)混合スパンレース不織布(目付35g/m、厚み0.40mm)に、前記難燃剤水溶液を含浸した後、乾燥させ目付45g/mのカバー材(A7)、(A8)、(A9)を得た。それぞれのカバー材は、布帛であるスパンレースの繊維表面に、リン系難燃剤が添着されたカバー材であり、カバー材(A7)、(A8)、(A9)には、それぞれ10g/mのリン系難燃剤が含まれていた。
(Preparation of cover material 1)
Rayon fiber / PET fiber (weight ratio 20:80) mixed spunlace nonwoven fabric (weight per unit 35 g / m 2 , thickness 0.40 mm), rayon fiber spunlace nonwoven fabric (weight per unit 35 g / m 2 , thickness 0.40 mm), rayon fiber / A PET fiber (weight ratio 10:90) mixed spunlace nonwoven fabric (35 g / m 2 in basis weight, 0.40 mm thickness) impregnated with the flame retardant aqueous solution, and then dried and a cover material (A7) having a basis weight of 45 g / m 2 , (A8) and (A9) were obtained. Each cover material is a cover material in which a phosphorus-based flame retardant is attached to the fiber surface of a spunlace, which is a fabric. Each of the cover materials (A7), (A8), and (A9) includes 10 g / m 2. Of phosphorus flame retardant.
(実施例1)
 カバー材の準備1で準備したカバー材(A2)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A2)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は190g/mであった。
Example 1
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A2) prepared in Cover Material Preparation 1. The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A2), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the thermoplastic resin binder The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 190 g / m 2 .
(実施例2)
 カバー材の準備1で準備したカバー材(A4)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A4)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は220g/mであった。
(Example 2)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A4) prepared in Cover Material Preparation 1. The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A4), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the thermoplastic resin binder The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 220 g / m 2 .
(実施例3)
 カバー材の準備1で準備したカバー材(A3)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)20重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A3)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は210g/mであった。
(Example 3)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 20 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A3) prepared in Cover Material Preparation 1. The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A3), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to make a thermoplastic resin binder. The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 210 g / m 2 .
(実施例4)
 カバー材の準備1で準備したカバー材(A3)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A3)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は145g/mであった。
Example 4
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A3) prepared in Cover Material Preparation 1. The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A3), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to make a thermoplastic resin binder. The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 145 g / m 2 .
(実施例5)
 カバー材の準備1で準備したカバー材(A3)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A3)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は310g/mであった。
(Example 5)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A3) prepared in Cover Material Preparation 1. The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A3), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to make a thermoplastic resin binder. The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 310 g / m 2 .
(実施例6)
 カバー材の準備3で準備したカバー材(A7)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A7)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は200g/mであった。
(Example 6)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A7) prepared in Cover Material Preparation 3. The activated carbon layer is formed by spraying, and the cover material (A7) is stacked on the activated carbon layer, and then sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute, and the thermoplastic resin binder The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 200 g / m 2 .
(実施例7)
 カバー材の準備3で準備したカバー材(A8)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上に
カバー材(A8)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は200g/mであった。
(Example 7)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A8) prepared in Cover Material Preparation 3. The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A8), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to obtain a thermoplastic resin binder. The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 200 g / m 2 .
(実施例8)
 カバー材の準備2で準備したカバー材(A5)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A5)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は168g/mであった。
(Example 8)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A5) prepared in Cover Material Preparation 2 The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A5), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to obtain a thermoplastic resin binder. The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 168 g / m 2 .
(実施例9)
 カバー材の準備2で準備したカバー材(A6)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A6)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は178g/mであった。
Example 9
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A6) prepared in Cover Material Preparation 2 The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A6), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to obtain a thermoplastic resin binder. The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 178 g / m 2 .
(比較例1)
 カバー材の準備1で準備したカバー材(A3)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は155g/mであった。
(Comparative Example 1)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A3) prepared in Cover Material Preparation 1. Was sprayed to form an activated carbon layer, which was sandwiched between iron plates heated to 140 ° C. and subjected to heat pressing for 1 minute, and the activated carbon layer was fixed by thermoplastic resin binder particles to produce a filter. The basis weight of the filter was 155 g / m 2 .
(比較例2)
 レーヨン繊維/PET繊維(重量比 70:30)混合スパンレース不織布(目付35g/m、厚み0.41mm)に活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にレーヨン繊維/PET繊維(重量比 70:30)混合スパンレース不織布(目付35g/m、厚み0.41mm)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は180g/mであった。
(Comparative Example 2)
Rayon fiber / PET fiber (weight ratio 70:30) mixed spunlace nonwoven fabric (weight per unit area 35 g / m 2 , thickness 0.41 mm) to activated carbon particles (average particle diameter 500 μm) 100 parts by weight, thermoplastic resin binder particles (average particle diameter) An activated carbon layer is formed by spraying a mixture of 20 μm and 10 parts by weight of polyethylene resin, and a rayon fiber / PET fiber (weight ratio 70:30) mixed spunlace nonwoven fabric (weight per unit: 35 g / m) is formed on the activated carbon layer. 2 and a thickness of 0.41 mm), and this was sandwiched between iron plates heated to 140 ° C. and subjected to heat pressing for 1 minute, and the activated carbon layer was fixed with thermoplastic resin binder particles to produce a filter. The basis weight of the filter was 180 g / m 2 .
(比較例3)
 カバー材の準備1で準備したカバー材(A1)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A1)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は184g/mであった。
(Comparative Example 3)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A1) prepared in Cover Material Preparation 1. The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A1), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to obtain a thermoplastic resin binder. The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 184 g / m 2 .
(比較例4)
 カバー材の準備1で準備したカバー材(A3)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上に
カバー材(A3)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は420g/mであった。
(Comparative Example 4)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A3) prepared in Cover Material Preparation 1. The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A3), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to make a thermoplastic resin binder. The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 420 g / m 2 .
(比較例5)
 カバー材の準備3で準備したカバー材(A9)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)10重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A9)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は200g/mであった。
(Comparative Example 5)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 10 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A9) prepared in Cover Material Preparation 3. The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A9), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to obtain a thermoplastic resin binder. The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 200 g / m 2 .
(比較例6)
 カバー材の準備1で準備したカバー材(A3)上に、活性炭粒子(平均粒子直径500μm)100重量部、熱可塑性樹脂バインダー粒子(平均粒子直径20μm、ポリエチレン樹脂)60重量部、を混合したものを散布して活性炭層を形成し、この活性炭層の上にカバー材(A3)を重ねた後、これを140℃に熱した鉄板の間に挟み込んで1分間ヒートプレスを行い、熱可塑性樹脂バインダー粒子によって活性炭層を固着させ、フィルタを作製した。フィルタの目付は250g/mであった。
(Comparative Example 6)
A mixture of 100 parts by weight of activated carbon particles (average particle diameter 500 μm) and 60 parts by weight of thermoplastic resin binder particles (average particle diameter 20 μm, polyethylene resin) on the cover material (A3) prepared in Cover Material Preparation 1. The activated carbon layer is formed by spraying, and after covering the activated carbon layer with the cover material (A3), it is sandwiched between iron plates heated to 140 ° C. and heat-pressed for 1 minute to make a thermoplastic resin binder. The activated carbon layer was fixed with the particles to produce a filter. The basis weight of the filter was 250 g / m 2 .
 実施例1~9、比較例1~6で得られたフィルタの構成の詳細と難燃性の評価結果を表2に示す。 Table 2 shows the details of the filter configurations obtained in Examples 1 to 9 and Comparative Examples 1 to 6 and the evaluation results of flame retardancy.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例1~9は難燃性試験においてUL94HF-1の評価が得られているのに対して、比較例1では、カバー材が活性炭層の片側にしかないために燃焼時に活性炭が脱落し、比較例2および3は、カバー材への難燃効果が不足し、また、比較例4は活性炭目付が大きく、比較例5は布帛の構成繊維が構成要件を満たしておらず、比較例6は熱可塑性バインダー粒子の含有量が多く、いずれもUL規格94HF-1を満足する難燃性を有していないものとなった。 As is clear from Table 2, Examples 1 to 9 obtained UL94HF-1 evaluation in the flame retardancy test, whereas in Comparative Example 1, the cover material was only on one side of the activated carbon layer. Activated carbon falls off during combustion, Comparative Examples 2 and 3 have insufficient flame-retardant effect on the cover material, Comparative Example 4 has a large basis weight of activated carbon, and Comparative Example 5 has the constituent fibers of the fabric satisfying the structural requirements. In Comparative Example 6, the content of the thermoplastic binder particles was large, and none of them had flame retardancy satisfying UL standard 94HF-1.
 本発明の難燃性脱臭フィルタは、有害ガス成分の除去性と難燃性に優れるので、コピー機、プリンター、多機能OA機、コンピュータ、プロジェクター、POD印刷機等の電子機器の排出ガス中に含まれる有害ガス成分を除去するための難燃性脱臭フィルタ、冷蔵庫やトイレ脱臭機などに用いられる難燃性脱臭フィルタ等に好適に使用できる。 Since the flame-retardant deodorizing filter of the present invention is excellent in the removal of harmful gas components and flame retardancy, it is included in the exhaust gas of electronic devices such as copiers, printers, multifunctional OA machines, computers, projectors, and POD printing machines. It can be suitably used for a flame retardant deodorizing filter for removing harmful gas components contained therein, a flame retardant deodorizing filter for use in refrigerators, toilet deodorizers, and the like.
  1 活性炭粒子
  2 熱可塑性バインダー粒子
  A 活性炭層
  B 布帛
1 Activated carbon particles 2 Thermoplastic binder particles A Activated carbon layer B Fabric

Claims (1)

  1.  活性炭粒子を30~200g/mと熱可塑性樹脂バインダー粒子を活性炭粒子100重量部に対して1~50重量部含む活性炭層と、その両面に設けられたセルロース繊維、ポリビニルアルコール繊維、ポリアクリルニトリル繊維、フェノール繊維から選択される一種以上の繊維を20~100重量%含んだ布帛にリン系難燃剤を布帛重量に対して10~70重量%含有した布帛とからなる難燃性脱臭フィルタ。 Activated carbon layer containing 30 to 200 g / m 2 of activated carbon particles and 1 to 50 parts by weight of thermoplastic resin binder particles with respect to 100 parts by weight of activated carbon particles, cellulose fiber, polyvinyl alcohol fiber, and polyacrylonitrile provided on both sides thereof A flame-retardant deodorizing filter comprising a fabric containing 20 to 100% by weight of one or more fibers selected from fibers and phenol fibers, and a fabric containing 10 to 70% by weight of a phosphorus-based flame retardant based on the weight of the fabric.
PCT/JP2011/065955 2010-07-14 2011-07-13 Flame-retardant deodorizing filter WO2012008482A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010159711 2010-07-14
JP2010-159711 2010-07-14
JP2011042057A JP2012035255A (en) 2010-07-14 2011-02-28 Frame-retardant deodorizing filter
JP2011-042057 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012008482A1 true WO2012008482A1 (en) 2012-01-19

Family

ID=45469479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065955 WO2012008482A1 (en) 2010-07-14 2011-07-13 Flame-retardant deodorizing filter

Country Status (2)

Country Link
JP (1) JP2012035255A (en)
WO (1) WO2012008482A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132429A (en) * 2011-12-27 2013-07-08 Toyobo Co Ltd Flame-retardant deodorizing filter
US9760688B2 (en) 2004-07-07 2017-09-12 Cleveland Clinic Foundation Method and device for displaying predicted volume of influence

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592492B (en) * 2020-12-31 2022-04-12 河北大学 Flame retardant, flame-retardant epoxy resin and preparation methods of flame retardant and flame-retardant epoxy resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037288A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Environment purifying material
JP2008114109A (en) * 2006-11-01 2008-05-22 Japan Vilene Co Ltd Flame-retardant ozone/voc removing filter
JP2009202150A (en) * 2008-01-28 2009-09-10 Japan Vilene Co Ltd Flame-retardant filter medium for gas removal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037288A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Environment purifying material
JP2008114109A (en) * 2006-11-01 2008-05-22 Japan Vilene Co Ltd Flame-retardant ozone/voc removing filter
JP2009202150A (en) * 2008-01-28 2009-09-10 Japan Vilene Co Ltd Flame-retardant filter medium for gas removal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9760688B2 (en) 2004-07-07 2017-09-12 Cleveland Clinic Foundation Method and device for displaying predicted volume of influence
JP2013132429A (en) * 2011-12-27 2013-07-08 Toyobo Co Ltd Flame-retardant deodorizing filter

Also Published As

Publication number Publication date
JP2012035255A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5150524B2 (en) Flame retardant filter media for gas removal
JP2011104529A (en) Harmful gas removing material
JP5150090B2 (en) Flame retardant ozone VOC removal filter
JP6729557B2 (en) Filter material for air filter
JP3783820B2 (en) Air purification filter
JP2013033197A (en) Filter for suppressing generation of ultrafine particle
JP2013034941A (en) Oil proof filter
JP5082292B2 (en) Adsorbent sheet
WO2012008482A1 (en) Flame-retardant deodorizing filter
JP3783819B2 (en) Air purification filter
JP5861450B2 (en) Flame retardant deodorizing filter
JP5413101B2 (en) Air cleaning filter
WO2012020824A1 (en) Flame-retardant deodorizing filter
JP5347750B2 (en) Flame retardant deodorizing filter
JP5747495B2 (en) Gas adsorption sheet and air purification filter
JP2006263490A (en) Flame-retardant deodorizing filter material
WO2019188923A1 (en) Wet non-woven fabric for filter, filter medium for filter, and filter
JP2013154289A (en) Air filter filtering material for air cleaner with flame retardancy, and air filter for air cleaner
JP6578673B2 (en) Flame retardant support
JP2015139720A (en) Filter material for deodorization filter
JP2012055879A (en) Flame-retardant deodorizing filter
JP2015044183A (en) Filter medium for deodorization filter
JP2012179504A (en) Flame-retardant deodorizing filter
JP2015002946A (en) Flame-retardant deodorant filter
JP2002292214A (en) Flame-retardant dust collecting filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806812

Country of ref document: EP

Kind code of ref document: A1