WO2012056118A1 - Izm-4 crystallized solid and process for preparing same - Google Patents

Izm-4 crystallized solid and process for preparing same Download PDF

Info

Publication number
WO2012056118A1
WO2012056118A1 PCT/FR2011/000535 FR2011000535W WO2012056118A1 WO 2012056118 A1 WO2012056118 A1 WO 2012056118A1 FR 2011000535 W FR2011000535 W FR 2011000535W WO 2012056118 A1 WO2012056118 A1 WO 2012056118A1
Authority
WO
WIPO (PCT)
Prior art keywords
izm
crystalline solid
mixture
solid izm
source
Prior art date
Application number
PCT/FR2011/000535
Other languages
French (fr)
Inventor
Elie Fayad
Nicolas Bats
Johan Martens
Christine Kirschhock
Elena Gobechiya
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2012056118A1 publication Critical patent/WO2012056118A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/34Type ZSM-4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates (SAPO compounds), e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds

Definitions

  • the present invention relates to a novel crystallized microporous solid, hereinafter referred to as IZM-4, to the process for preparing said solid as well as to the use of said solid as an adsorbent or separating agent.
  • IZM-4 novel crystallized microporous solid
  • Crystallized microporous materials such as zeolites, aluminophosphates or silicoaluminophosphates, are solids widely used in the petroleum industry as catalyst, catalyst support, adsorbent or separating agent. Although many microporous crystalline structures have been discovered, the refining and petrochemical industry is still searching for new zeolitic structures that have particular properties for applications such as gas purification or separation, conversion of carbon species or others. Microporous crystallized materials with large pore openings are particularly interesting. To date, the known zeolitic structure with the largest pore opening is cloverite which is a gallophosphate solid and exhibits the CLO structural type (M. Estermann, LB McCusker, Ch. Baerlocher, A. Merrouche, & H. Kessler Nature 1991, 352, 320).
  • Microporous crystallized solids have been known for many years. Among these are essentially two families: zeolites (crystallized aluminosilicates) and related solids of the metallophosphate type.
  • zeolites crystallized aluminosilicates
  • the first metallophosphates synthesized were aluminophosphates (US Pat. No. 4,310,440).
  • the framework elements and in particular aluminum may be partially substituted by other elements such as silicon (US-4,440,871) or transition metals (M. Hartmann, L. Kevan, Chem Rev., 1999, 99, 635).
  • These microporous phosphates have ion exchange and acid catalyst properties in various chemical reactions.
  • gallium phosphates also called gallophosphates (EP-A-0,226,219, US-5,420,279 for example). More recently, other metallophosphates have been discovered: the metal constituting the framework may especially be zinc, iron, vanadium, nickel etc. (AK Cheetham, G. Ferey, T. Loiseau, Anaew Chem Int. Ed., 1999, 38, 3268).
  • the metallophosphates are usually obtained by hydrothermal or solvothermal crystallization of a reaction mixture comprising a source of phosphate anion, generally orthophosphoric acid, a source of the required metal, generally an oxide, a carbonate, an ester or an ether of said metal, a structuring agent, in particular an amine, an ammonium cation or a cation of groups IA and MA, optionally a mobilizing agent, for example a fluoride or hydroxylate, and a solvent (water or organic solvent).
  • a source of phosphate anion generally orthophosphoric acid
  • a source of the required metal generally an oxide, a carbonate, an ester or an ether of said metal
  • a structuring agent in particular an amine, an ammonium cation or a cation of groups IA and MA
  • a mobilizing agent for example a fluoride or hydroxylate
  • solvent water or organic solvent
  • ER Cooper et al have described the preparation of zeolitic solids in an ionic liquid medium: their work describes the use of an ionic liquid composed of 1-ethyl-3-methylimidazolium bromide as a solvent and structuring agent for the synthesis of zeolitic solids of known and original topologies (Nature, 2004, 430, 1012-1016).
  • the term ionic liquid is a term used to describe salts that occur in the liquid state at room temperature. By extension, this definition is extended to describe salts that are liquid at a temperature below 200 ° C.
  • the present invention proposes to provide a novel microporous crystalline solid from a new preparation process using an ionic liquid and a quaternary ammonium organic template.
  • the subject of the present invention is a new crystalline solid, called crystalline solid IZM-4, having a new crystalline structure.
  • Said solid has a chemical composition expressed, in terms of moles of oxides, by the following general formula: Y2O3: x XO2: p P2O5: m MO2: r R: f F in which X represents one or more tetravalent element (s) (s), Y represents one or more trivalent elements, M represents one or more divalent metal (s), P represents phosphorus, F represents fluorine and R is a cetyltrimethylammonium salt.
  • the crystalline solid IZM-4 is a metallophosphate. More preferably, said IZM-4 solid is an aluminophosphate.
  • the crystallized solid IZM-4 according to the invention has an X-ray diffraction pattern including at least the lines listed in Table 1.
  • This new crystalline solid IZM-4 has a new crystalline structure.
  • the lines entered in Table 1 are those obtained from the DRX analysis of a crystallized solid IZM-4 in its crude synthesis form.
  • Measurement error A (d hkl) on d h ki is calculated by the Bragg relationship as a function of the absolute error ⁇ (2 ⁇ ) assigned to the measurement of 2 ⁇ .
  • An absolute error ⁇ (2 ⁇ ) equal to ⁇ 0.02 ° is commonly accepted.
  • the relative intensity ⁇ / ⁇ 0 assigned to each dhki value is measured from the height of the corresponding diffraction peak.
  • the X-ray diffraction pattern of the crystallized solid IZM-4 according to the invention comprises at least the dhki lines given in Table 1. In the dhki column, the average values of the inter-reticular distances in Angstroms (A) are indicated. Each of these values shall be assigned the measurement error A (dhki) between ⁇ 0,6A and ⁇ 0,0lA.
  • Table 1 Average dhki values and relative intensities measured on an X-ray diffraction pattern of crystallized solid IZM-4
  • the relative intensity ⁇ / ⁇ 0 is given in relation to a relative intensity scale where a value of 100 is assigned to the most intense line of the X-ray diffraction pattern: ff ⁇ 15; ⁇ F ⁇ 30; ⁇ Mf ⁇ 50; 50 ⁇ m ⁇ 65; 65 ⁇ F ⁇ 85;FF> 85.
  • the crystalline solid IZM-4 according to the invention has a new basic crystal structure or topology which is characterized by its X-ray diffraction pattern given in FIG. 1. This diagram is obtained from a crystallized solid IZM-4 under its raw form of synthesis.
  • Said IZM-4 solid has a chemical composition expressed, in terms of moles of oxides, by the following general formula: Y2O3: x XO2: p P2O5: m MO2: r R: f F, in which X represents one or more elements (s) tetravalent (s), Y represents one or more trivalent elements, M represents one or more divalent metal (s), P represents phosphorus, F represents fluorine and R is a cetyltrimethylammonium salt.
  • x represents the number of moles of XO2 and x is between 0 and 1, very preferably between 0 and 0.5 and even more preferably between 0.01 and 0.3 and p represents the number of moles of P2O5 and is between 0.001 and 1, 2, preferably between 0.3 and 1, more preferably between 0.7 and 1, m represents the number of moles of MO2 and is between 0 and and 0.5, preferably between 0.01 and 0.3, even more preferably between 0.01 and 0.1, r represents the number of moles of cetyltrimethylammonium and is between 0 and 0.5, most preferably included. between 0.01 and 0.3 and even more preferably between 0.015 and 0.2 and f represents the number of moles of fluorine and is between 0 and 0.3, very preferably between 0.009 and 0.2 and even more preferably between 0.01 and 0.1.
  • X is preferably selected from silicon, germanium, titanium and the mixture of at least two of these tetravalent elements, preferentially X is silicon.
  • Y is preferably selected from aluminum, boron, iron, indium and gallium and the mixture of at least two of these trivalent elements, preferably Y is selected from gallium, aluminum and the mixture of these two elements and even more preferably, Y is aluminum.
  • M is at least one divalent metal preferentially chosen from cobalt, zinc, manganese, copper, nickel, magnesium and a mixture of two or more of these metals; very preferably, said metal M is cobalt.
  • said solid IZM-4 has a chemical composition expressed, in terms of moles of oxides, by the following general formula: Y 2 O 3: x XO 2: p P2O 5: m MO 2: r R: wherein X, Y, P, M, R and F have the same definition as indicated above in the present description; x, p, m, r and f respectively representing the number of moles of XO 2, P 2 O 5, M0 2 , R and F, x being between 0 and 1, p being between 0.001 and 1.2, m being between 0 and and 0.5, r being between 0 and 0.5 and f being between 0 and 0.3.
  • This formula and the values taken by x, p, m, r and f are those for which said IZM-4 solid is preferentially in its calcined form.
  • said solid IZM-4 in its crude synthesis form, has a chemical composition expressed, in terms of moles of oxides, by the following general formula: Y 2 O 3: x XO 2: p P2O 5: m MO 2: r R: f F (I), wherein X, Y, P, M, R and F have the same definition as that indicated above in the present description; x, p, m, r and f respectively representing the number of moles of XO2, P2O5, MO2, R and F, x being between 0 and 1, p being between 0.001 and 1.2, m being between 0 and 0.5, r being between 0.01 and 0.3 and preferably between 0.015 and 0.2 and f being between 0.009 and 0.2, preferably between 0.01 and 0.1.
  • the value of x is between 0 and 1, very preferably between 0 and 0.5, and even more preferred between 0.01 and 0.3.
  • the value of p is between 0.001 and 1, 2, very preferably between 0.3 and 1 and even more preferably between 0.7 and 1.
  • the value of m is between 0 and 0.5, very preferably between 0.01 and 0.3 and even more preferably between 0.01 and 0.1.
  • said solid IZM- 4 comprises at least said organic species R consisting of a cetyltrimethylammonium salt.
  • This quaternary ammonium species is commercially available. It plays the role of structurant and can be eliminated by the conventional routes known from the state of the art such as heat and / or chemical treatments.
  • the present invention also relates to a process for preparing crystallized solid IZM-4 according to the invention. Said preparation process comprises the following steps:
  • the ionic liquid used in said step i) of the preparation process of the invention acts as a solvent. It is used in the form of a salt, in particular a halide, a hydroxide, a sulphate, a hexafluorophosphate or an aluminate.
  • the salt of 1-butyl-3-methylimidazolium is used for carrying out said step i) of the process according to the invention, a 1-butyl-3-methylimidazolium halide.
  • said ionic liquid is 1-butyl-3-methylimidazolium bromide (C 4 H 9 -C 3 H 3 N 2 CH 3 + , Br " ).
  • Such an ionic liquid is easily available from chemical suppliers or readily synthesized by the methods described in the literature (AK Burrell, RE Del Sesto, SN Baker, McCleskey TM, GA Baker, Green Chemistry, 2007, 9, 449-454).
  • the ionic liquid has a melting point of 50 to 70 ° C. It is in liquid form at the temperature at which the ionothermal treatment is carried out according to said step ii) of the process according to the invention.
  • the quaternary ammonium species constituted by the cetyltrimethylammonium salt used in said step i) of the preparation process of the invention acts as a structurant.
  • a halide, a hydroxide, a sulphate, a hexafluorophosphate or an aluminate is used as the cetyltrimethylammonium salt for the implementation of said step i) of the preparation method according to the invention.
  • cetyltrimethylammonium salt is used for carrying out said step i) of the process according to the invention, a cetyltrimethylammonium halide and very preferably cetyltrimethylammonium bromide (CTAB of semi-developed formula C16H33-N (CH3) 3 + , Br " )
  • CTAB cetyltrimethylammonium bromide
  • the cetyltrimethylammonium salt is solubilized in said ionic liquid at a temperature equal to or greater than the melting temperature of said ionic liquid.
  • At least one source of phosphate anions is incorporated in the mixture for the implementation of said step i) of the preparation process.
  • a source of phosphate anions a phosphate salt such as KH 2 PO 4, more particularly a phosphate of said trivalent element Y such as a gallium phosphate or an aluminum phosphate, a phosphate ester, an alkyl phosphate ( R 2+ PO 4 2 " , 2R + PO 4 2" ) or orthophosphoric acid.
  • said source of phosphate anions is orthophosphoric acid.
  • At least one source of fluoride anions F " is incorporated in the mixture for the implementation of said step i) of the method of preparation according to the invention.
  • a source of fluoride anions a fluoride salt such as NH 4 F, NaF, KF, LiF and the mixture of at least two of these salts or hydrofluoric acid is used.
  • said source of fluoride anions is hydrofluoric acid HF, preferably present in aqueous solution.
  • At least one source of at least one trivalent element Y is incorporated in the mixture for the implementation of said step i) of the preparation process.
  • Said element Y is preferably chosen from aluminum, boron, iron, indium and gallium and the mixture of at least two of these elements. More particularly, said element Y is chosen from gallium, aluminum and the mixture of these two trivalent elements. Said element Y is very advantageously aluminum.
  • the source (s) of said trivalent element (s) may be any compound comprising element Y and capable of releasing this element in the solvent constituted by said ionic liquid under reactive form. Said element Y may be incorporated in the mixture in the form of oxide, hydroxide, oxyhydroxide or alkoxide.
  • the salts of said element Y are also suitable.
  • the aluminum source is preferably sodium aluminate, an aluminum salt, for example chloride, nitrate, hydroxide or sulphate, an alkoxide aluminum for example aluminum isopropoxide or alumina proper, preferably in hydrated or hydratable form, such as for example colloidal alumina, pseudoboehmite, alumina gamma or alpha or beta trihydrate .
  • At least one source of at least one tetravalent element X is incorporated in the mixture for the implementation of said step i) of the preparation process according to the invention.
  • Said tetravalent element X is selected from silicon, germanium, titanium and the mixture of at least two of these elements.
  • said element X is silicon.
  • the source (s) of said tetravalent element (s) X may be any compound comprising element X and capable of releasing this element in the solvent constituted by said ionic liquid. under reactive form.
  • Element X may be incorporated into the mixture in oxidized form XO 2 or in any other form.
  • X is germanium
  • amorphous GeO 2 is advantageously used as the source of germanium.
  • Ti (EtO) 4 is advantageously used as a source of titanium.
  • the silicon source may be any of the sources commonly used for the synthesis of zeolites, for example powdered silica, silicic acid, colloidal silica, dissolved silica, or a silicon alkoxide such as tetraethoxysilane (TEOS).
  • the silicas in powder form it is possible to use precipitated silicas, especially those obtained by precipitation from an alkali metal silicate solution, pyrogenic silicas, for example "CAB-O-SIL” or Aerosil, and gels from silica.
  • Colloidal silicas having different particle sizes for example having a mean equivalent diameter of between 10 and 15 nm or between 40 and 50 nm, such as those sold under registered trademarks such as "LUDOX", may be used.
  • the silicon source is a fumed silica or a silicon alkoxide such as tetraethoxysilane (TEOS).
  • said trivalent element Y is aluminum and said tetravalent element X is silicon: crystallized metallophosphate solid IZM-4 obtained according to the process of the invention.
  • the invention is a silicoaluminophosphate.
  • At least one source of at least one divalent metal M is incorporated in the mixture for carrying out said step i) of the preparation process according to the invention.
  • Said metal M is advantageously chosen from metals included in the group consisting of cobalt, zinc, manganese, copper, nickel, magnesium and the mixture of at least two of these metals.
  • said divalent metal M is cobalt.
  • the source (s) of the divalent metal M is (are) advantageously chosen from among the salts, for example carbonate, chloride, nitrate, sulfate, acetate, the hydroxides, the oxides and the alkoxides of said metal M.
  • the carbonate , and in particular cobalt carbonate when the metal M is cobalt is preferably used.
  • the preferred embodiments of the preparation method according to the invention described above can be carried out simultaneously or independently of one another.
  • the reaction mixture obtained in step i) has a molar composition such that: 1-butyl-35 to 200 salt, preferably between 10 and 100 methylimidazolium / Y2O3
  • M0 2 / Y2O3 0 to 0.5, preferably between 0.001 and 0.1
  • R / Y2O3 0.001 to 5, preferably 0.1 to 1,
  • H2O / Y2O3 0 to 50, preferably between 0.05 and 50 where X, Y, M and R have the same definition as above.
  • Stage i) of the preparation process according to the invention consists in preparing a reaction mixture in ionic liquid medium consisting of a salt of 1-butyl-3-methylimidazolium, called gel, containing at least one source of at least one trivalent element Y, at least one source of phosphate anions, at least one source of fluoride anions F " and at least one cetylammonium salt and optionally at least one source of at least one tetravalent element X and possibly at least one a source of at least one divalent metal M.
  • ionic liquid medium consisting of a salt of 1-butyl-3-methylimidazolium, called gel, containing at least one source of at least one trivalent element Y, at least one source of phosphate anions, at least one source of fluoride anions F " and at least one cetylammonium salt and optionally at least one source of at least one tetravalent element X and possibly at least one a source of at least one divalent metal M.
  • seeds are added to the reaction mixture during said bait i) of the preparation process according to the invention in order to reduce the time required for crystallization of crystallized solid IZM-4 and / or the total duration of crystallization. It may also be advantageous to use seeds to promote the formation of crystalline solid IZM-4 to the detriment of impurities.
  • Such seeds include crystalline solids, especially IZM-4 solid crystals.
  • the crystalline seeds are generally added in a proportion of between 0.01 and 10% of the mass of the source of said trivalent element Y used in the reaction mixture.
  • the gel is subjected to an ionothermal treatment until the crystallized solid IZM-4 is formed.
  • ionothermal treatment is meant in the sense of the present invention, a treatment of the reaction mixture prepared according to said step i) of the preparation process according to the invention and containing said ionic liquid consisting of a salt of 1-butyl-3-methylimidazolium in a reactor, open or closed, at a temperature between 120 ° C and 200 ° C, preferably between 140 ° C and 180 ° C, and even more preferably between 150 and 175 ° C until the formation of IZM-4 solid crystals in its crude synthetic form.
  • the time required to obtain the crystallization of said solid IZM-4 generally varies between 1 hour and several months, preferably between 2 hours and 2 days. It also depends on the composition of the gel, the presence of seeds in said gel, stirring and the temperature of the ionothermal treatment in particular.
  • the reaction carried out during said step ii) is carried out with stirring or in the absence of stirring. More specifically, the reaction is generally carried out with very slow stirring or without stirring.
  • the reaction mixture used in said step ii) of the preparation process according to the invention is preferably free from any presence of water. However, traces of water may be present in said gel during the implementation of said ionothermal treatment.
  • the solid phase is washed, filtered and dried.
  • the dried solid is then subjected to at least one step of eliminating organic species, in particular cetyltrimethylammonium salt: said elimination step is often carried out by calcination or by solvent extraction according to methods that are well known to a person skilled in the art.
  • the calcination step is advantageously carried out by one or more heating steps carried out at a temperature of between 100 and 1000 ⁇ , preferably between 400 and 650 ° C., for a duration of between a few hours and several days, preferably including between 3 hours and 48 hours.
  • the calcination is carried out in two consecutive heating steps.
  • the obtained IZM-4 solid is free of the cetyltrimethylammonium salt R present in the solid IZM-4 in its crude synthesis form.
  • the present invention also relates to the use of the solid IZM-4 according to the invention as an adsorbent, for example, for the control of pollution or as a molecular sieve for separation.
  • the present invention therefore also relates to an adsorbent comprising crystallized solid IZM-4 according to the invention.
  • the IZM-4 crystallized solid according to the invention is generally dispersed in an inorganic matrix phase which contains channels and cavities which allow access of the fluid to be separated to the crystallized solid.
  • These matrices are preferably mineral oxides, for example silicas, aluminas, silica-aluminas or clays.
  • the matrix generally represents between 2 and 25% by weight of the adsorbent thus formed.
  • Example 1 Preparation of crystalline aluminophosphate solid IZM-4 according to the invention
  • 0.217 g (0.001044 mol, 98.28%, Aldrich) of aluminum isopropoxide, 0.241 g of orthophosphoric acid (0.00209 mol) are then added to this mixture at a temperature of 100 ° C., 85% aqueous, SDS) and 0.023 g of hydrofluoric acid (0.00046 mol, 40%, Prolabo) with stirring (100 rpm). After 5 minutes at 100 ° C with stirring (100 rpm), the temperature is raised to 160 ° C and stirring is reduced to 50 rpm. The duration of the ionothermal treatment is 2 hours. The heating is then stopped and the stirring is stopped: the mixture is allowed to cool in the open air to room temperature. The crystallized product obtained is dissolved in water, filtered and then dried at a temperature of 100 ° C. for 5 hours.
  • the crystallized solid obtained is a crystallized aluminophosphate IZM-4 having an X-ray diffraction pattern including the lines precisely listed in Table 1.
  • the crystallized solid obtained is a crystallized silicoaluminophosphate IZM-4 having an X-ray diffraction pattern including the lines precisely listed in Table 1.

Abstract

A crystallized solid, denoted under the name IZM-4, is described which has an X-ray diffraction diagram as given below. Said solid has a chemical composition expressed, in terms of moles of oxides, by the following general formula: Y2O3: x XO2: p P2O5: m MO2: r R: f F in which X represents one or more tetravalent element(s), Y represents one or more trivalent element(s), M represents one or more divalent metal(s), P represents phosphorus, F represents fluorine and R is a cetyltrimethylammonium salt, x, p, m, r and f representing respectively the number of moles of XO2, P2O5, MO2, R and F, x is between 0 and 1, p is between 0.001 and 1.2, m is between 0 and 0.5, r is between 0.01 and 0.3 and f is between 0.009 and 0.2.

Description

SOLIDE CRISTALLISE IZM-4 ET SON PROCEDE DE PREPARATION  IZM-4 CRYSTALLIZED SOLID AND PROCESS FOR PREPARING THE SAME
Domaine technique Technical area
La présente invention se rapporte à un nouveau solide microporeux cristallisé appelé ci-après IZM-4, au procédé de préparation dudit solide ainsi qu'à l'utilisation dudit solide comme adsorbant ou agent de séparation.  The present invention relates to a novel crystallized microporous solid, hereinafter referred to as IZM-4, to the process for preparing said solid as well as to the use of said solid as an adsorbent or separating agent.
Art antérieur Prior art
Les matériaux microporeux cristallisés, tel que les zéolithes, les aluminophosphates ou les silicoaluminophosphates, sont des solides très utilisés dans l'industrie pétrolière en tant que catalyseur, support de catalyseur, adsorbant ou agent de séparation. Bien que de nombreuses structures cristallines microporeuses aient été découvertes, l'industrie du raffinage et de la pétrochimie est toujours à la recherche de nouvelles structures zéolitiques qui présentent des propriétés particulières pour des applications comme la purification ou la séparation des gaz, la conversion d'espèces carbonées ou autres. Les matériaux microporeux cristallisés avec de grandes ouvertures de pores sont particulièrement intéressants. À ce jour, la structure zéolitique connue avec la plus grande ouverture de pores est la cloverite qui est un solide gallophosphate et présente le type structural CLO (M. Estermann, L. B. McCusker, Ch. Baerlocher, A. Merrouche, & H. Kessler Nature 1991, 352, 320).  Crystallized microporous materials, such as zeolites, aluminophosphates or silicoaluminophosphates, are solids widely used in the petroleum industry as catalyst, catalyst support, adsorbent or separating agent. Although many microporous crystalline structures have been discovered, the refining and petrochemical industry is still searching for new zeolitic structures that have particular properties for applications such as gas purification or separation, conversion of carbon species or others. Microporous crystallized materials with large pore openings are particularly interesting. To date, the known zeolitic structure with the largest pore opening is cloverite which is a gallophosphate solid and exhibits the CLO structural type (M. Estermann, LB McCusker, Ch. Baerlocher, A. Merrouche, & H. Kessler Nature 1991, 352, 320).
Les solides microporeux cristallisés sont connus depuis de nombreuses années. On trouve essentiellement parmi ceux-ci deux familles: les zéolithes (aluminosilicates cristallisés) et les solides apparentés de type métallophosphate. Au début des années 1980, les premiers métallophosphates synthétisés furent des aluminophosphates (US-4, 310,440). Dans ces composés, les éléments de charpente et notamment l'aluminium peuvent être partiellement substitués par d'autres éléments tel que le silicium (US-4,440,871) ou des métaux de transition (M. Hartmann, L. Kevan, Chem. Rev., 1999, 99, 635). Ces phosphates microporeux possèdent des propriétés d'échange d'ions ainsi que de catalyseur acide dans diverses réactions chimiques. L'utilisation de gallium en remplacement de l'aluminium dans les synthèses a permis de réaliser des phosphates de gallium microporeux encore appelés gallophosphates (EP-A-0.226.219 ; US-5,420,279 par exemple). Plus récemment, d'autres métallophosphates ont été découverts : le métal constitutif de la charpente peut notamment être le zinc, le fer, le vanadium, le nickel etc (A.K. Cheetham, G. Férey, T. Loiseau, Anaew. Chem. Int. Ed., 1999, 38, 3268). De façon générale, les métallophosphates s'obtiennent habituellement par cristallisation hydro- ou solvothermale d'un mélange réactionnel comprenant une source d'anion phosphate, généralement l'acide orthophosphorique, une source du métal requis, généralement un oxyde, un carbonate, un ester ou un éther dudit métal, un agent structurant, en particulier une aminé, un cation ammonium ou un cation des groupes IA et MA, éventuellement un agent mobilisateur, par exemple Fanion fluorure ou hydroxyle, et un solvant (eau ou solvant organique). Microporous crystallized solids have been known for many years. Among these are essentially two families: zeolites (crystallized aluminosilicates) and related solids of the metallophosphate type. In the early 1980s, the first metallophosphates synthesized were aluminophosphates (US Pat. No. 4,310,440). In these compounds, the framework elements and in particular aluminum may be partially substituted by other elements such as silicon (US-4,440,871) or transition metals (M. Hartmann, L. Kevan, Chem Rev., 1999, 99, 635). These microporous phosphates have ion exchange and acid catalyst properties in various chemical reactions. The use of gallium instead of aluminum in the syntheses made it possible to produce microporous gallium phosphates also called gallophosphates (EP-A-0,226,219, US-5,420,279 for example). More recently, other metallophosphates have been discovered: the metal constituting the framework may especially be zinc, iron, vanadium, nickel etc. (AK Cheetham, G. Ferey, T. Loiseau, Anaew Chem Int. Ed., 1999, 38, 3268). In general, the metallophosphates are usually obtained by hydrothermal or solvothermal crystallization of a reaction mixture comprising a source of phosphate anion, generally orthophosphoric acid, a source of the required metal, generally an oxide, a carbonate, an ester or an ether of said metal, a structuring agent, in particular an amine, an ammonium cation or a cation of groups IA and MA, optionally a mobilizing agent, for example a fluoride or hydroxylate, and a solvent (water or organic solvent).
Plus récemment, E.R. Cooper et al ont décrit la préparation de solides zéolithiques en milieu liquide ionique : leurs travaux décrivent l'utilisation d'un liquide ionique constitué du bromure de 1-éthyl-3-méthylimidazolium comme solvant et agent structurant pour la synthèse de solides zéolithiques de topologies connues et originales (Nature, 2004, 430, 1012-1016). Le terme liquide ionique est un terme employé pour décrire des sels qui se présentent à l'état liquide à température ambiante. Par extension, cette définition est étendue pour décrire des sels qui sont liquides à une température inférieure à 200°C. L'intérêt principal de l'utilisation des liquides ioniques comme solvant en synthèse de solides zéolithiques réside dans le fait qu'ils présentent une pression de vapeur négligeable qui permet d'effectuer ces synthèses dans des réacteurs ouverts. Depuis la publication des travaux de Cooper et al, l'utilisation du 1-éthyl-3-méthylimidazolium ainsi que du 1-butyl-3- méthylimidazolium comme solvant et/ou agent structurant a été largement décrite pour la synthèse de solides zéolithiques. L'utilisation du 1-éthyl-3-méthylimidazolium conduit principalement à l'obtention de structures de type AEL ou CHA (R.E. Parnham, R.E. Morris, Chem. Mater., 2006, 18, 4882) alors que l'utilisation du 1- butyl-3-méthylimidazolium conduit principalement à la formation de structures de type AFI (Y. Xu et al., Angew. Chem. Int. Ed., 2006, 45, 3965-3970). Plus récemment, Han et al. ont décrit une méthode de préparation de solides d'aluminophosphates (AlPO) et de galloaluminophosphates (GaAIPO) de type structural LTA en présence du liquide ionique 1-éthyl-3-méthylimidazolium comme solvant et agent structurant (L. Han et al., Journal of Crystal Growth, 2008, 311 , 167- 171). L'utilisation de sel d'imidazole du type 1-alkyl-3-méthylimidazolium a également été décrite par H. Ma et al. afin de préparer des gallophosphates de type structural LTA et CLO (H. Ma et al., Microporous Mesoporous Mater., 2009, 120, 278-284). More recently, ER Cooper et al have described the preparation of zeolitic solids in an ionic liquid medium: their work describes the use of an ionic liquid composed of 1-ethyl-3-methylimidazolium bromide as a solvent and structuring agent for the synthesis of zeolitic solids of known and original topologies (Nature, 2004, 430, 1012-1016). The term ionic liquid is a term used to describe salts that occur in the liquid state at room temperature. By extension, this definition is extended to describe salts that are liquid at a temperature below 200 ° C. The main advantage of the use of ionic liquids as a solvent in zeolitic solids synthesis lies in the fact that they have a negligible vapor pressure that allows these syntheses to be carried out in open reactors. Since the publication of the work of Cooper et al, the use of 1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium as solvent and / or structuring agent has been widely described for the synthesis of zeolitic solids. The use of 1-ethyl-3-methylimidazolium leads mainly to obtaining AEL or CHA type structures (RE Parnham, Morris RE, Chem Mater., 2006, 18, 4882) while the use of butyl-3-methylimidazolium leads mainly to the formation of AFI-like structures (Y. Xu et al., Angew Chem Int Ed, 2006, 45, 3965-3970). More recently, Han et al. have described a method for the preparation of aluminophosphate solids (AlPO) and galloaluminophosphates (GaAIPO) of structural type LTA in the presence of the ionic liquid 1-ethyl-3-methylimidazolium as solvent and structuring agent (L. Han et al., Journal of Crystal Growth, 2008, 311, 167-171). The use of imidazole salt of the 1-alkyl-3-methylimidazolium type has also been described by H. Ma et al. to prepare gallophosphates of structural type LTA and CLO (Ma, H. et al., Microporous Mesoporous Mater., 2009, 120, 278-284).
La présente invention se propose de fournir un nouveau solide cristallisé microporeux à partir d'un nouveau procédé de préparation mettant en oeuvre un liquide ionique et un structurant organique de type ammonium quaternaire. The present invention proposes to provide a novel microporous crystalline solid from a new preparation process using an ionic liquid and a quaternary ammonium organic template.
Description de l'invention Description of the invention
La présente invention a pour objet un nouveau solide cristallisé, appelé solide cristallisé IZM-4, présentant une nouvelle structure cristalline. Ledit solide présente une composition chimique exprimée, en termes de moles d'oxydes, par la formule générale suivante : Y2O3 : x XO2 : p P2O5 : m MO2 : r R : f F dans laquelle X représente un ou plusieurs élément(s) tétravalent(s), Y représente un ou plusieurs éléments trivalent(s), M représente un ou plusieurs métal(ux) divalent(s), P représente le phosphore, F représente le fluor et R est un sel de cétyltriméthylammonium. x, p, m, r et f représentent respectivement le nombre de moles de XO2, P2O5, MÛ2, R et F, x est compris entre 0 et 1 , p est compris entre 0,001 et 1 ,2, m est compris entre 0 et 0,5, r est compris entre 0 et 0,5 et f est compris entre 0 et 0,3. Conformément à l'invention, le solide cristallisé IZM-4 est un métallophosphate. De manière plus préférée, ledit solide IZM-4 est un aluminophosphate.  The subject of the present invention is a new crystalline solid, called crystalline solid IZM-4, having a new crystalline structure. Said solid has a chemical composition expressed, in terms of moles of oxides, by the following general formula: Y2O3: x XO2: p P2O5: m MO2: r R: f F in which X represents one or more tetravalent element (s) (s), Y represents one or more trivalent elements, M represents one or more divalent metal (s), P represents phosphorus, F represents fluorine and R is a cetyltrimethylammonium salt. x, p, m, r and f respectively represent the number of moles of XO2, P2O5, M02, R and F, x is between 0 and 1, p is between 0.001 and 1, 2, m is between 0 and 0.5, r is 0 to 0.5 and f is 0 to 0.3. According to the invention, the crystalline solid IZM-4 is a metallophosphate. More preferably, said IZM-4 solid is an aluminophosphate.
Le solide cristallisé IZM-4 selon l'invention présente un diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le tableau 1. Ce nouveau solide cristallisé IZM-4 présente une nouvelle structure cristalline. Les raies inscrites dans ledit tableau 1 sont celles obtenues à partir de l'analyse DRX d'un solide cristallisé IZM-4 sous sa forme brute de synthèse. Ce diagramme de diffraction est obtenu par analyse radiocristallographique au moyen d'un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Koci du cuivre (λ = 1 .5406A). A partir de la position des pics de diffraction représentée par l'angle 2Θ, on calcule, par la relation de Bragg, les équidistances réticulaires dhki caractéristiques de l'échantillon. L'erreur de mesure A(dhki) sur dhki est calculée grâce à la relation de Bragg en fonction de l'erreur absolue Δ(2Θ) affectée à la mesure de 2Θ. Une erreur absolue Δ(2Θ) égale à ± 0,02° est communément admise. L'intensité relative Ι/Ι0 affectée à chaque valeur de dhki est mesurée d'après la hauteur du pic de diffraction correspondant. Le diagramme de diffraction des rayons X du solide cristallisé IZM-4 selon l'invention comporte au moins les raies aux valeurs de dhki données dans le tableau 1 . Dans la colonne des dhki, on a indiqué les valeurs moyennes des distances inter-réticulaires en Angstrôms (A). Chacune de ces valeurs doit être affectée de l'erreur de mesure A(dhki) comprise entre ± 0,6A et ± 0,0lA. The crystallized solid IZM-4 according to the invention has an X-ray diffraction pattern including at least the lines listed in Table 1. This new crystalline solid IZM-4 has a new crystalline structure. The lines entered in Table 1 are those obtained from the DRX analysis of a crystallized solid IZM-4 in its crude synthesis form. This diffraction pattern is obtained by radiocrystallographic analysis using a diffractometer using the conventional powder method with Koci copper radiation (λ = 1.5406A). From the position of the diffraction peaks represented by the angle 2Θ, we calculate, by the Bragg relation, the characteristic dhki reticular equidistances of the sample. Measurement error A (d hkl) on d h ki is calculated by the Bragg relationship as a function of the absolute error Δ (2Θ) assigned to the measurement of 2Θ. An absolute error Δ (2Θ) equal to ± 0.02 ° is commonly accepted. The relative intensity Ι / Ι0 assigned to each dhki value is measured from the height of the corresponding diffraction peak. The X-ray diffraction pattern of the crystallized solid IZM-4 according to the invention comprises at least the dhki lines given in Table 1. In the dhki column, the average values of the inter-reticular distances in Angstroms (A) are indicated. Each of these values shall be assigned the measurement error A (dhki) between ± 0,6A and ± 0,0lA.
Tableau 1 : Valeurs moyennes des dhki et intensités relatives mesurées sur un diagramme de diffraction de rayons X du solide cristallisé IZM-4 Table 1: Average dhki values and relative intensities measured on an X-ray diffraction pattern of crystallized solid IZM-4
Figure imgf000006_0001
où FF = très fort ; F = fort ; m = moyen ; mf = moyen faible ; f = faible ; ff = très faible. L'intensité relative Ι/Ι0 est donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction des rayons X : ff <15 ; 15 <f <30 ; 30 < mf <50 ; 50 <m < 65 ; 65 <F < 85 ; FF > 85. Le solide cristallisé IZM-4 selon l'invention présente une nouvelle structure cristalline de base ou topologie qui est caractérisée par son diagramme de diffraction X donné par la figure 1. Ce diagramme est obtenu à partir d'un solide cristallisé IZM-4 sous sa forme brute de synthèse. Les données cristallographiques du solide IZM-4 selon l'invention ont été déterminées à partir dudit diagramme : le solide cristallisé IZM-4 selon l'invention cristallise dans un système cubique selon le groupe d'espace Pm-3 avec les paramètres de maille suivants a = b = c = 52,675 A (α = β = γ = 90°).
Figure imgf000006_0001
where FF = very strong; F = strong; m = average; mf = weak medium; f = weak; ff = very weak. The relative intensity Ι / Ι0 is given in relation to a relative intensity scale where a value of 100 is assigned to the most intense line of the X-ray diffraction pattern: ff <15;<F<30;<Mf<50; 50 <m <65; 65 <F <85;FF> 85. The crystalline solid IZM-4 according to the invention has a new basic crystal structure or topology which is characterized by its X-ray diffraction pattern given in FIG. 1. This diagram is obtained from a crystallized solid IZM-4 under its raw form of synthesis. The crystallographic data of the IZM-4 solid according to the invention were determined from said diagram: the crystallized solid IZM-4 according to the invention crystallizes in a cubic system according to the Pm-3 space group with the following mesh parameters a = b = c = 52.675 A (α = β = γ = 90 °).
Ledit solide IZM-4 présente une composition chimique exprimée, en termes de moles d'oxydes, par la formule générale suivante : Y2O3 : x XO2 : p P2O5 : m MO2 : r R : f F, dans laquelle X représente un ou plusieurs élément(s) tétravalent(s), Y représente un ou plusieurs éléments trivalent(s), M représente un ou plusieurs métal(ux) divalent(s), P représente le phosphore, F représente le fluor et R est un sel de cétyltriméthylammonium. Dans ladite formule donnée ci-dessus, x représente le nombre de moles de XO2 et x est compris entre 0 et 1 , très préférentiellement compris entre 0 et 0,5 et de manière encore plus préférée entre 0,01 et 0,3 et p représente le nombre de moles de P2O5 et est compris entre 0,001 et 1 ,2, de préférence entre 0,3 et 1 de manière encore plus préférée entre 0,7 et 1 , m représente le nombre de moles de MO2 et est compris entre 0 et 0,5, de préférence entre 0,01 et 0,3 de manière encore plus préférée entre 0,01 et 0,1 , r représente le nombre de moles de cétyltriméthylammonium et est compris entre 0 et 0,5, très préférentiellement compris entre 0,01 et 0,3 et de manière encore plus préférée entre 0,015 et 0,2 et f représente le nombre de moles de fluor et est compris entre 0 et 0,3, très préférentiellement compris entre 0,009 et 0,2 et de manière encore plus préférée entre 0,01 et 0,1. Said IZM-4 solid has a chemical composition expressed, in terms of moles of oxides, by the following general formula: Y2O3: x XO2: p P2O5: m MO2: r R: f F, in which X represents one or more elements (s) tetravalent (s), Y represents one or more trivalent elements, M represents one or more divalent metal (s), P represents phosphorus, F represents fluorine and R is a cetyltrimethylammonium salt. In said formula given above, x represents the number of moles of XO2 and x is between 0 and 1, very preferably between 0 and 0.5 and even more preferably between 0.01 and 0.3 and p represents the number of moles of P2O5 and is between 0.001 and 1, 2, preferably between 0.3 and 1, more preferably between 0.7 and 1, m represents the number of moles of MO2 and is between 0 and and 0.5, preferably between 0.01 and 0.3, even more preferably between 0.01 and 0.1, r represents the number of moles of cetyltrimethylammonium and is between 0 and 0.5, most preferably included. between 0.01 and 0.3 and even more preferably between 0.015 and 0.2 and f represents the number of moles of fluorine and is between 0 and 0.3, very preferably between 0.009 and 0.2 and even more preferably between 0.01 and 0.1.
Conformément à l'invention, X est préférentiellement choisi parmi le silicium, le germanium, le titane et le mélange d'au moins deux de ces éléments tétravalents, préférentiellement X est le silicium. Selon l'invention, Y est préférentiellement choisi parmi l'aluminium, le bore, le fer, l'indium et le gallium et le mélange d'au moins deux de ces éléments trivalents, préférentiellement Y est choisi parmi le gallium, l'aluminium et le mélange de ces deux éléments et de manière encore plus préférée, Y est l'aluminium. M est au moins un métal divalent préférentiellement choisi parmi le cobalt, le zinc, le manganèse, le cuivre, le nickel, le magnésium et le mélange d'au moins deux de ces métaux ; très préférentiellement, ledit métal M est le cobalt. De manière préférée, le solide cristallisé IZM-4 selon l'invention est un aluminophosphate cristallisé (Y = Al) présentant un diagramme de diffraction des rayons X identique à celui décrit dans le tableau 1 lorsqu'il se trouve sous sa forme brute de synthèse. De manière encore plus préférée, le solide cristallisé IZM-4 selon l'invention est un silicoaluminophosphate cristallisé (Y = Al et X = Si) présentant un diagramme de diffraction des rayons X identique à celui décrit dans le tableau 1 lorsqu'il se trouve sous sa forme brute de synthèse. According to the invention, X is preferably selected from silicon, germanium, titanium and the mixture of at least two of these tetravalent elements, preferentially X is silicon. According to the invention, Y is preferably selected from aluminum, boron, iron, indium and gallium and the mixture of at least two of these trivalent elements, preferably Y is selected from gallium, aluminum and the mixture of these two elements and even more preferably, Y is aluminum. M is at least one divalent metal preferentially chosen from cobalt, zinc, manganese, copper, nickel, magnesium and a mixture of two or more of these metals; very preferably, said metal M is cobalt. Preferably, the crystallized solid IZM-4 according to the invention is a crystallized aluminophosphate (Y = Al) having an X-ray diffraction pattern identical to that described in Table 1 when it is in its raw form of synthesis . Even more preferably, the crystalline solid IZM-4 according to the invention is a crystallized silicoaluminophosphate (Y = Al and X = Si) having an X-ray diffraction pattern identical to that described in Table 1 when it is located in its raw form of synthesis.
D'une manière plus générale, ledit solide IZM-4 selon l'invention présente une composition chimique exprimée, en termes de moles d'oxydes, par la formule générale suivante : Y2O3 : x XO2 : p P2O5 : m MO2 : r R : f F, dans laquelle X, Y, P, M, R et F ont la même définition que celle indiquée plus haut dans la présente description ; x, p, m, r et f représentant respectivement le nombre de moles de XÛ2, P2O5, M02, R et F, x étant compris entre 0 et 1 , p étant compris entre 0,001 et 1 ,2, m étant compris entre 0 et 0,5, r étant compris entre 0 et 0,5 et f étant compris entre 0 et 0,3. Cette formule et les valeurs prises par x, p, m, r et f sont celles pour lesquelles ledit solide IZM-4 se trouve préférentiellement sous sa forme calcinée. More generally, said solid IZM-4 according to the invention has a chemical composition expressed, in terms of moles of oxides, by the following general formula: Y 2 O 3: x XO 2: p P2O 5: m MO 2: r R: wherein X, Y, P, M, R and F have the same definition as indicated above in the present description; x, p, m, r and f respectively representing the number of moles of XO 2, P 2 O 5, M0 2 , R and F, x being between 0 and 1, p being between 0.001 and 1.2, m being between 0 and and 0.5, r being between 0 and 0.5 and f being between 0 and 0.3. This formula and the values taken by x, p, m, r and f are those for which said IZM-4 solid is preferentially in its calcined form.
Plus précisément, ledit solide IZM-4, sous sa forme brute de synthèse, présente une composition chimique exprimée, en termes de moles d'oxydes, par la formule générale suivante : Y2O3 : x XO2 : p P2O5 : m MO2 : r R : f F (I), dans laquelle X, Y, P, M, R et F ont la même définition que celle indiquée plus haut dans la présente description ; x, p, m, r et f représentant respectivement le nombre de moles de XO2, P2O5, MO2, R et F, x étant compris entre 0 et 1 , p étant compris entre 0,001 et 1 ,2, m étant compris entre 0 et 0,5, r étant compris entre 0,01 et 0,3 et de préférence entre 0,015 et 0,2 et f étant compris entre 0,009 et 0,2, de préférence entre 0,01 et 0,1. Dans la formule (I) donnée ci-dessus pour définir la composition chimique du solide cristallisé IZM-4 sous sa forme brute de synthèse, la valeur de x est comprise entre 0 et 1 , très préférentiellement comprise entre 0 et 0,5 et de manière encore plus préférée entre 0,01 et 0,3. La valeur de p est comprise entre 0,001 et 1 ,2, très préférentiellement comprise entre 0,3 et 1 et de manière encore plus préférée entre 0,7 et 1. La valeur de m est comprise entre 0 et 0,5, très préférentiellement comprise entre 0,01 et 0,3 et de manière encore plus préférée entre 0,01 et 0,1. More specifically, said solid IZM-4, in its crude synthesis form, has a chemical composition expressed, in terms of moles of oxides, by the following general formula: Y 2 O 3: x XO 2: p P2O 5: m MO 2: r R: f F (I), wherein X, Y, P, M, R and F have the same definition as that indicated above in the present description; x, p, m, r and f respectively representing the number of moles of XO2, P2O5, MO2, R and F, x being between 0 and 1, p being between 0.001 and 1.2, m being between 0 and 0.5, r being between 0.01 and 0.3 and preferably between 0.015 and 0.2 and f being between 0.009 and 0.2, preferably between 0.01 and 0.1. In the formula (I) given above for defining the chemical composition of the crystallized solid IZM-4 in its crude synthesis form, the value of x is between 0 and 1, very preferably between 0 and 0.5, and even more preferred between 0.01 and 0.3. The value of p is between 0.001 and 1, 2, very preferably between 0.3 and 1 and even more preferably between 0.7 and 1. The value of m is between 0 and 0.5, very preferably between 0.01 and 0.3 and even more preferably between 0.01 and 0.1.
Sous sa forme brute de synthèse, c'est-à-dire directement issu de la synthèse et préalablement à toute étape d'élimination de matière organique, par exemple réalisée par calcination, bien connue de l'Homme du métier, ledit solide IZM-4 comporte au moins ladite espèce organique R constituée par un sel de cétyltriméthylammonium. Cette espèce d'ammonium quaternaire est disponible dans le commerce. Elle joue le rôle de structurant et peut être éliminée par les voies classiques connues de l'état de la technique comme des traitements thermiques et/ou chimiques. La présente invention a également pour objet un procédé de préparation du solide cristallisé IZM-4 selon l'invention. Ledit procédé de préparation comprend les étapes suivantes : In its raw form of synthesis, that is to say directly derived from the synthesis and prior to any organic matter removal step, for example performed by calcination, well known to those skilled in the art, said solid IZM- 4 comprises at least said organic species R consisting of a cetyltrimethylammonium salt. This quaternary ammonium species is commercially available. It plays the role of structurant and can be eliminated by the conventional routes known from the state of the art such as heat and / or chemical treatments. The present invention also relates to a process for preparing crystallized solid IZM-4 according to the invention. Said preparation process comprises the following steps:
i) le mélange, en présence d'au moins un liquide ionique constitué d'un sel de 1- butyl-3-méthylimidazolium et d'au moins une espèce organique constituée d'un sel de cétyltriméthylammonium, d'au moins une source d'anions phosphates, d'au moins une source d'au moins un élément trivalent Y et d'au moins une source d'anions fluorures, i) the mixture, in the presence of at least one ionic liquid consisting of a salt of 1-butyl-3-methylimidazolium and at least one organic species consisting of a cetyltrimethylammonium salt, of at least one source of phosphatic anions, at least one source of at least one trivalent element Y and at least one source of fluoride anions,
ii) le traitement ionothermal jusqu'à ce que ledit solide cristallisé IZM-4 se forme. Conformément à l'invention, le liquide ionique employé dans ladite étape i) du procédé de préparation de l'invention joue le rôle de solvant. Il est utilisé sous la forme d'un sel, en particulier un halogénure, un hydroxyde, un sulfate, un hexafluorophosphate ou un aluminate. De manière préférée, on utilise comme sel de 1-butyl-3-méthylimidazolium pour la mise en oeuvre de ladite étape i) du procédé selon l'invention un halogénure de 1-butyl-3-méthylimidazolium. Plus préférentiellement, ledit liquide ionique est le bromure de 1 -butyl-3- méthylimidazolium (C4H9-C3H3N2CH3 +, Br"). Un tel liquide ionique est aisément accessible chez les fournisseurs de produits chimiques ou facilement obtenu par synthèse selon les méthodes décrites dans la littérature (A.K. Burrell, R.E. Del Sesto, S.N. Baker, T.M. McCleskey, G.A. Baker, Green Chemistry, 2007, 9, 449- 454). Ledit liquide ionique présente une température de fusion comprise entre 50 et 70°C. Il se présente sous forme liquide à la température à laquelle est effectué le traitement ionothermal selon ladite étape ii) du procédé selon l'invention. ii) ionothermal treatment until said crystallized solid IZM-4 is formed. According to the invention, the ionic liquid used in said step i) of the preparation process of the invention acts as a solvent. It is used in the form of a salt, in particular a halide, a hydroxide, a sulphate, a hexafluorophosphate or an aluminate. Preferably, the salt of 1-butyl-3-methylimidazolium is used for carrying out said step i) of the process according to the invention, a 1-butyl-3-methylimidazolium halide. More preferably, said ionic liquid is 1-butyl-3-methylimidazolium bromide (C 4 H 9 -C 3 H 3 N 2 CH 3 + , Br " ). Such an ionic liquid is easily available from chemical suppliers or readily synthesized by the methods described in the literature (AK Burrell, RE Del Sesto, SN Baker, McCleskey TM, GA Baker, Green Chemistry, 2007, 9, 449-454). The ionic liquid has a melting point of 50 to 70 ° C. It is in liquid form at the temperature at which the ionothermal treatment is carried out according to said step ii) of the process according to the invention.
Conformément à l'invention, l'espèce d'ammonium quaternaire constituée par le sel de cétyltriméthylammonium, employée dans ladite étape i) du procédé de préparation de l'invention, joue le rôle de structurant. De manière préférée, on utilise comme sel de cétyltriméthylammonium pour la mise en oeuvre de ladite étape i) du procédé de préparation selon l'invention, un halogénure, un hydroxyde, un sulfate, un hexafluorophosphate ou un aluminate. De manière préférée, on utilise comme sel de cétyltriméthylammonium pour la mise en oeuvre de ladite étape i) du procédé selon l'invention un halogénure de cétyltrimethylammonium et très préférentiellement le bromure de cétyltriméthylammonium (CTAB de formule semi-développée C16H33- N(CH3)3+, Br"). Un tel sel d'ammonium quaternaire est aisément accessible chez les fournisseurs de produits chimiques. Conformément à ladite étape i) du procédé de préparation selon l'invention, le sel de cétyltriméthylammonium est solubilisé dans ledit liquide ionique à une température égale ou supérieure à la température de fusion dudit liquide ionique. According to the invention, the quaternary ammonium species constituted by the cetyltrimethylammonium salt used in said step i) of the preparation process of the invention acts as a structurant. In a preferred manner, a halide, a hydroxide, a sulphate, a hexafluorophosphate or an aluminate is used as the cetyltrimethylammonium salt for the implementation of said step i) of the preparation method according to the invention. Preferably, cetyltrimethylammonium salt is used for carrying out said step i) of the process according to the invention, a cetyltrimethylammonium halide and very preferably cetyltrimethylammonium bromide (CTAB of semi-developed formula C16H33-N (CH3) 3 + , Br " ) Such a quaternary ammonium salt is readily available from chemical suppliers In accordance with said step i) of the preparation process according to the invention, the cetyltrimethylammonium salt is solubilized in said ionic liquid at a temperature equal to or greater than the melting temperature of said ionic liquid.
Conformément à l'invention, au moins une source d'anions phosphates est incorporée dans le mélange pour la mise en œuvre de ladite étape i) du procédé de préparation. On utilise comme source d'anions phosphates, un sel de phosphate tel que KH2PO4, plus particulièrement un phosphate dudit élément trivalent Y tel qu'un phosphate de gallium ou un phosphate d'aluminium, un ester de phosphate, un phosphate d'alkyle (R2+PO4 2", 2R+PO4 2") ou l'acide orthophosphorique. De manière préférée, ladite source d'anions phosphates est l'acide orthophosphorique. According to the invention, at least one source of phosphate anions is incorporated in the mixture for the implementation of said step i) of the preparation process. As a source of phosphate anions, a phosphate salt such as KH 2 PO 4, more particularly a phosphate of said trivalent element Y such as a gallium phosphate or an aluminum phosphate, a phosphate ester, an alkyl phosphate ( R 2+ PO 4 2 " , 2R + PO 4 2" ) or orthophosphoric acid. Preferably, said source of phosphate anions is orthophosphoric acid.
Conformément à l'invention, au moins une source d'anions fluorures F" est incorporée dans le mélange pour la mise en œuvre de ladite étape i) du procédé de préparation selon l'invention. On utilise, comme source d'anions fluorures, un sel de fluorures tel que NH4F, NaF, KF, LiF et le mélange d'au moins deux de ces sels ou l'acide fluorhydrique. De manière préférée, ladite source d'anions fluorures est l'acide fluorhydrique HF, préférentiellement présent en solution aqueuse. According to the invention, at least one source of fluoride anions F " is incorporated in the mixture for the implementation of said step i) of the method of preparation according to the invention. As a source of fluoride anions, a fluoride salt such as NH 4 F, NaF, KF, LiF and the mixture of at least two of these salts or hydrofluoric acid is used. Preferably, said source of fluoride anions is hydrofluoric acid HF, preferably present in aqueous solution.
Conformément à l'invention, au moins une source d'au moins un élément trivalent Y est incorporée dans le mélange pour la mise en œuvre de ladite étape i) du procédé de préparation. Ledit élément Y est préférentiellement choisi parmi l'aluminium, le bore, le fer, l'indium et le gallium et le mélange d'au moins deux de ces éléments. Plus particulièrement, ledit élément Y est choisi parmi le gallium, l'aluminium et le mélange de ces deux éléments trivalents. Ledit élément Y est très avantageusement l'aluminium. La ou les source(s) du(es)dit(s) élément(s) trivalent(s) peu(ven)t être tout composé comprenant l'élément Y et pouvant libérer cet élément dans le solvant constitué par ledit liquide ionique sous forme réactive. Ledit élément Y peut être incorporé dans le mélange sous la forme d'oxyde, d'hydroxyde, d'oxyhydroxyde ou d'alcoxyde. Les sels dudit élément Y, notamment les chlorures, les nitrates, les sulfates sont également appropriés. Dans le cas préféré où Y est l'aluminium, la source d'aluminium est de préférence de l'aluminate de sodium, un sel d'aluminium, par exemple du chlorure, du nitrate, de l'hydroxyde ou du sulfate, un alcoxyde d'aluminium par exemple l'isopropoxyde d'aluminium ou de l'alumine proprement dite, de préférence sous forme hydratée ou hydratable, comme par exemple de l'alumine colloïdale, de la pseudoboehmite, de l'alumine gamma ou trihydrate alpha ou bêta. Selon un premier mode préféré de réalisation du procédé de préparation selon l'invention, au moins une source d'au moins un élément tétravalent X est incorporée dans le mélange pour la mise en oeuvre de ladite étape i) du procédé de préparation selon l'invention. Ledit élément X tétravalent est choisi parmi le silicium, le germanium, le titane et le mélange d'au moins deux de ces éléments. De manière très préférée, ledit élément X est le silicium. La ou les source(s) du(es)dit(s) élément(s) tétravalent(s) X peu(ven)t être tout composé comprenant l'élément X et pouvant libérer cet élément dans le solvant constitué par ledit liquide ionique sous forme réactive. L'élément X peut être incorporé dans le mélange sous une forme oxydée XO2 ou sous toute autre forme. Lorsque X est le germanium, on utilise avantageusement GeÛ2 amorphe comme source de germanium. Lorsque X est le titane, on utilise avantageusement Ti(EtO)4 comme source de titane. Dans le cas préféré où X est le silicium, la source de silicium peut être l'une quelconque desdites sources couramment utilisées pour la synthèse de zéolithes, par exemple de la silice en poudre, de l'acide silicique, de la silice colloïdale, de la silice dissoute, ou un alcoxyde de silicium tel que du tétraéthoxysilane (TEOS). Parmi les silices en poudre, on peut utiliser les silices précipitées, notamment celles obtenues par précipitation à partir d'une solution de silicate de métal alcalin, des silices pyrogénées, par exemple du "CAB-O-SIL" ou Aerosil et des gels de silice. On peut utiliser des silices colloïdales présentant différentes tailles de particules, par exemple de diamètre équivalent moyen compris entre 10 et 15 nm ou entre 40 et 50 nm, telles que celles commercialisées sous les marques déposées telle que "LUDOX". De manière préférée, la source de silicium est une silice pyrogénée ou un alcoxyde de silicium tel que du tétraéthoxysilane (TEOS). Selon un mode particulièrement préféré dudit premier mode préféré de réalisation du procédé de préparation selon l'invention, ledit élément trivalent Y est l'aluminium et ledit élément tétravalent X est le silicium : le solide métallophosphate cristallisé IZM-4 obtenu selon le procédé de l'invention est un silicoaluminophosphate. According to the invention, at least one source of at least one trivalent element Y is incorporated in the mixture for the implementation of said step i) of the preparation process. Said element Y is preferably chosen from aluminum, boron, iron, indium and gallium and the mixture of at least two of these elements. More particularly, said element Y is chosen from gallium, aluminum and the mixture of these two trivalent elements. Said element Y is very advantageously aluminum. The source (s) of said trivalent element (s) may be any compound comprising element Y and capable of releasing this element in the solvent constituted by said ionic liquid under reactive form. Said element Y may be incorporated in the mixture in the form of oxide, hydroxide, oxyhydroxide or alkoxide. The salts of said element Y, in particular chlorides, nitrates, sulphates, are also suitable. In the preferred case where Y is aluminum, the aluminum source is preferably sodium aluminate, an aluminum salt, for example chloride, nitrate, hydroxide or sulphate, an alkoxide aluminum for example aluminum isopropoxide or alumina proper, preferably in hydrated or hydratable form, such as for example colloidal alumina, pseudoboehmite, alumina gamma or alpha or beta trihydrate . According to a first preferred embodiment of the preparation method according to the invention, at least one source of at least one tetravalent element X is incorporated in the mixture for the implementation of said step i) of the preparation process according to the invention. invention. Said tetravalent element X is selected from silicon, germanium, titanium and the mixture of at least two of these elements. In a very preferred manner, said element X is silicon. The source (s) of said tetravalent element (s) X may be any compound comprising element X and capable of releasing this element in the solvent constituted by said ionic liquid. under reactive form. Element X may be incorporated into the mixture in oxidized form XO 2 or in any other form. When X is germanium, amorphous GeO 2 is advantageously used as the source of germanium. When X is titanium, Ti (EtO) 4 is advantageously used as a source of titanium. In the preferred case where X is silicon, the silicon source may be any of the sources commonly used for the synthesis of zeolites, for example powdered silica, silicic acid, colloidal silica, dissolved silica, or a silicon alkoxide such as tetraethoxysilane (TEOS). Among the silicas in powder form, it is possible to use precipitated silicas, especially those obtained by precipitation from an alkali metal silicate solution, pyrogenic silicas, for example "CAB-O-SIL" or Aerosil, and gels from silica. Colloidal silicas having different particle sizes, for example having a mean equivalent diameter of between 10 and 15 nm or between 40 and 50 nm, such as those sold under registered trademarks such as "LUDOX", may be used. Preferably, the silicon source is a fumed silica or a silicon alkoxide such as tetraethoxysilane (TEOS). According to a particularly preferred embodiment of said first preferred embodiment of the preparation process according to the invention, said trivalent element Y is aluminum and said tetravalent element X is silicon: crystallized metallophosphate solid IZM-4 obtained according to the process of the invention. The invention is a silicoaluminophosphate.
Selon un deuxième mode préféré de réalisation du procédé de préparation selon l'invention, au moins une source d'au moins un métal divalent M est incorporée dans le mélange pour la mise en oeuvre de ladite étape i) du procédé de préparation selon l'invention. Ledit métal M est avantageusement choisi parmi les métaux compris dans le groupe constitué par le cobalt, le zinc, le manganèse, le cuivre, le nickel, le magnésium et le mélange d'au moins deux de ces métaux. De manière très préférée, ledit métal divalent M est le cobalt. La ou les source(s) du métal divalent M est(sont) avantageusement choisie(s) parmi les sels, par exemple carbonate, chlorure, nitrate, sulfate, acétate, les hydroxydes, les oxydes et les alkoxydes dudit métal M. Le carbonate, et en particulier le carbonate de cobalt quand le métal M est le cobalt, est préférentiellement utilisé. Les modes préférés de réalisation du procédé de préparation selon l'invention décrits ci-dessus peuvent être réalisés simultanément ou indépendamment les uns des autres. According to a second preferred embodiment of the preparation method according to the invention, at least one source of at least one divalent metal M is incorporated in the mixture for carrying out said step i) of the preparation process according to the invention. invention. Said metal M is advantageously chosen from metals included in the group consisting of cobalt, zinc, manganese, copper, nickel, magnesium and the mixture of at least two of these metals. Very preferably, said divalent metal M is cobalt. The source (s) of the divalent metal M is (are) advantageously chosen from among the salts, for example carbonate, chloride, nitrate, sulfate, acetate, the hydroxides, the oxides and the alkoxides of said metal M. The carbonate , and in particular cobalt carbonate when the metal M is cobalt, is preferably used. The preferred embodiments of the preparation method according to the invention described above can be carried out simultaneously or independently of one another.
Conformément au procédé de préparation selon l'invention, le mélange réactionnel obtenu à l'étape i) présente une composition molaire telle que : sel de 1 -butyl-3 5 à 200, de préférence entre 10 et 100 methylimidazolium / Y2O3 According to the preparation method according to the invention, the reaction mixture obtained in step i) has a molar composition such that: 1-butyl-35 to 200 salt, preferably between 10 and 100 methylimidazolium / Y2O3
Y2O3 /X02 1 à °°, de préférence entre 3 à 100 Y2O3 / X0 2 1 to °°, preferably between 3 to 100
P205 / Y2O3 0,001 à 4, de préférence entre 0,7 et 3 P 2 O 5 / Y 2 O 3 0.001 to 4, preferably 0.7 to 3
M02 / Y2O3 0 à 0,5, de préférence entre 0,001 et 0,1 M0 2 / Y2O3 0 to 0.5, preferably between 0.001 and 0.1
R / Y2O3 0,001 à 5, de préférence entre 0,1 et 1 ,  R / Y2O3 0.001 to 5, preferably 0.1 to 1,
F / Y2O3 0,001 à 3, de préférence entre 0,05 et 0,9  F / Y2O3 0.001 to 3, preferably between 0.05 and 0.9
H2O / Y2O3 0 à 50, de préférence entre 0,05 et 50 où X, Y, M et R ont la même définition que précédemment.  H2O / Y2O3 0 to 50, preferably between 0.05 and 50 where X, Y, M and R have the same definition as above.
L'étape i) du procédé de préparation selon l'invention consiste à préparer un mélange réactionnel en milieu liquide ionique constitué d'un sel de 1-butyl-3- méthylimidazolium, appelé gel et renfermant au moins une source d'au moins un élément trivalent Y, au moins une source d'anions phosphates, au moins une source d'anions fluorures F" et au moins un sel de cétylammonium ainsi qu'éventuellement au moins une source d'au moins un élément tétravalent X et éventuellement au moins une source d'au moins un métal divalent M. Les quantités desdits réactifs sont ajustées de manière à conférer à ce gel une composition permettant sa cristallisation en solide cristallisé IZM-4 sous sa forme brute de synthèse de formule générale (I) : Y2O3 : x X02 : p P2O5 : m M02 : r R : f F, où x, p, m, r et f répondent aux critères définis plus haut lorsque r et f sont supérieurs à 0. Ladite étape i) est effectuée à une température telle que ledit liquide ionique se trouve à l'état liquide. Il est également avantageux d'additionner des germes au mélange réactionnel au cours de ladite étrape i) du procédé de préparation selon l'invention afin de réduire le temps nécessaire à la formation des cristaux du solide cristallisé IZM-4 et/ou la durée totale de cristallisation. Il peut également être avantageux d'utiliser des germes afin de favoriser la formation du solide cristallisé IZM-4 au détriment d'impuretés. De tels germes comprennent des solides cristallisés, notamment des cristaux de solide IZM-4. Les germes cristallins sont généralement ajoutés dans une proportion comprise entre 0,01 et 10 % de la masse de la source dudit élément trivalent Y utilisée dans le mélange réactionnel. Stage i) of the preparation process according to the invention consists in preparing a reaction mixture in ionic liquid medium consisting of a salt of 1-butyl-3-methylimidazolium, called gel, containing at least one source of at least one trivalent element Y, at least one source of phosphate anions, at least one source of fluoride anions F " and at least one cetylammonium salt and optionally at least one source of at least one tetravalent element X and possibly at least one a source of at least one divalent metal M. The amounts of said reagents are adjusted so as to confer on this gel a composition enabling it to crystallize crystalline solid IZM-4 in its crude synthetic form of general formula (I): Y2O3: x X0 2 : p P2O5: m M0 2 : r R: f F, where x, p, m, r and f satisfy the criteria defined above when r and f are greater than 0. Said step i) is carried out at a given time. temperature such that said ionic liquid is flush in the liquid state. It is also advantageous to add seeds to the reaction mixture during said bait i) of the preparation process according to the invention in order to reduce the time required for crystallization of crystallized solid IZM-4 and / or the total duration of crystallization. It may also be advantageous to use seeds to promote the formation of crystalline solid IZM-4 to the detriment of impurities. Such seeds include crystalline solids, especially IZM-4 solid crystals. The crystalline seeds are generally added in a proportion of between 0.01 and 10% of the mass of the source of said trivalent element Y used in the reaction mixture.
Conformément à ladite étape ii) du procédé de préparation selon l'invention, le gel est soumis à un traitement ionothermal jusqu'à ce que le solide cristallisé IZM-4 se forme. Par traitement ionothermal, on entend au sens de la présente invention, un traitement du mélange réactionnel préparé selon ladite étape i) du procédé de préparation selon l'invention et renfermant ledit liquide ionique constitué d'un sel de 1-butyl-3-méthylimidazolium dans un réacteur, ouvert ou fermé, à une température comprise entre 120°C et 200°C, de préférence entre 140°C et 180°C, et de manière encore plus préférée entre 150 et 175°C jusqu'à la formation des cristaux de solide IZM-4 sous sa forme brute de synthèse. La durée nécessaire pour obtenir la cristallisation dudit solide IZM-4 varie généralement entre 1 heure et plusieurs mois, de préférence entre 2 heures et 2 jours. Elle dépend également de la composition du gel, de la présence de germes dans ledit gel, de l'agitation et de la température du traitement ionothermal notamment. La réaction mise en oeuvre au cours de ladite étape ii) s'effectue sous agitation ou en l'absence d'agitation. Plus précisément, la mise en réaction s'effectue généralement sous agitation très lente voire en absence d'agitation. Le mélange réactionnel mis en oeuvre dans ladite étape ii) du procédé de préparation selon l'invention est préférentiellement dépourvu de toute présence d'eau. Toutefois, des traces d'eau peuvent être présentes dans ledit gel lors de la mise en oeuvre dudit traitement ionothermal. According to said step ii) of the preparation process according to the invention, the gel is subjected to an ionothermal treatment until the crystallized solid IZM-4 is formed. By ionothermal treatment is meant in the sense of the present invention, a treatment of the reaction mixture prepared according to said step i) of the preparation process according to the invention and containing said ionic liquid consisting of a salt of 1-butyl-3-methylimidazolium in a reactor, open or closed, at a temperature between 120 ° C and 200 ° C, preferably between 140 ° C and 180 ° C, and even more preferably between 150 and 175 ° C until the formation of IZM-4 solid crystals in its crude synthetic form. The time required to obtain the crystallization of said solid IZM-4 generally varies between 1 hour and several months, preferably between 2 hours and 2 days. It also depends on the composition of the gel, the presence of seeds in said gel, stirring and the temperature of the ionothermal treatment in particular. The reaction carried out during said step ii) is carried out with stirring or in the absence of stirring. More specifically, the reaction is generally carried out with very slow stirring or without stirring. The reaction mixture used in said step ii) of the preparation process according to the invention is preferably free from any presence of water. However, traces of water may be present in said gel during the implementation of said ionothermal treatment.
A l'issue de l'étape de traitement ionothermal conduisant à la cristallisation du solide IZM-4, la phase solide est lavée, filtrée puis séchée. Le solide séché est ensuite soumis à au moins une étape d'élimination des espèces organiques, en particulier du sel de cétyltriméthylammonium : ladite étape d'élimination est souvent réalisée par calcination ou par extraction par solvant selon des méthodes bien connues de l'Homme du métier. L'étape de calcination s'effectue avantageusement par une ou plusieurs étapes de chauffage réalisée à une température comprise entre 100 et 1000X, de préférence comprise entre 400 et 650°C, pour une durée comprise entre quelques heures et plusieurs jours, de préférence comprise entre 3 heures et 48 heures. De manière préférée, la calcination s'effectue en deux étapes de chauffage consécutives. At the end of the ionothermal treatment step leading to the crystallization of the solid IZM-4, the solid phase is washed, filtered and dried. The dried solid is then subjected to at least one step of eliminating organic species, in particular cetyltrimethylammonium salt: said elimination step is often carried out by calcination or by solvent extraction according to methods that are well known to a person skilled in the art. The calcination step is advantageously carried out by one or more heating steps carried out at a temperature of between 100 and 1000 ×, preferably between 400 and 650 ° C., for a duration of between a few hours and several days, preferably including between 3 hours and 48 hours. Preferably, the calcination is carried out in two consecutive heating steps.
A l'issue de ladite étape d'élimination des espèces organiques, en particulier de l'étape de calcination, le solide IZM-4 obtenu est dépourvu du sel de cétyltriméthylammonium R présent dans le solide IZM-4 sous sa forme brute de synthèse. La présente invention concerne également l'utilisation du solide IZM-4 selon l'invention comme adsorbant, par exemple, pour le contrôle de la pollution ou comme tamis moléculaire pour la séparation. At the end of said step of removing the organic species, in particular from the calcination step, the obtained IZM-4 solid is free of the cetyltrimethylammonium salt R present in the solid IZM-4 in its crude synthesis form. The present invention also relates to the use of the solid IZM-4 according to the invention as an adsorbent, for example, for the control of pollution or as a molecular sieve for separation.
La présente invention a donc également pour objet un adsorbant comprenant le solide cristallisé IZM-4 selon l'invention. Lorsqu'il est utilisé comme adsorbant, le solide cristallisé IZM-4 selon l'invention est généralement dispersé dans une phase matricielle inorganique qui contient des canaux et des cavités qui permettent l'accès du fluide à séparer au solide cristallisé. Ces matrices sont préférentiellement des oxydes minéraux, par exemple des silices, des alumines, des silice-alumines ou des argiles. La matrice représente de manière générale entre 2 et 25% en masse de l'adsorbant ainsi formé.  The present invention therefore also relates to an adsorbent comprising crystallized solid IZM-4 according to the invention. When used as an adsorbent, the IZM-4 crystallized solid according to the invention is generally dispersed in an inorganic matrix phase which contains channels and cavities which allow access of the fluid to be separated to the crystallized solid. These matrices are preferably mineral oxides, for example silicas, aluminas, silica-aluminas or clays. The matrix generally represents between 2 and 25% by weight of the adsorbent thus formed.
L'invention est illustrée par les exemples suivants qui ne présentent, en aucun cas, un caractère limitatif. Exemple 1 : préparation du solide aluminophosphate cristallisé IZM-4 selon l'invention The invention is illustrated by the following examples, which in no way present a limiting character. Example 1 Preparation of crystalline aluminophosphate solid IZM-4 according to the invention
7g du liquide ionique constitué de bromure de 1-butyl-3-méthylimidazolium (0,03131 mol, 98%, lolitec) sont portés à une température de 100 °C dans un ballon ouvert. A cette température, le liquide ionique est à l'état liquide. A ce liquide ionique, on ajoute 0,097g (0,0003 mol, 98%, AIdrich) du bromure de cétyltriméthylammonium et le mélange est agité (100 tr/min) à 100 °C pendant 5 min. On ajoute ensuite à ce mélange, à une température de 100 °C, consécutivement 0,217 g (0,001044 mol, 98,28%, AIdrich) d'isopropoxide d'aluminium, 0,241g d'acide orthophosphorique (0,00209 mol, 85% aqueux, SDS) et 0,023g d'acide fluorhydrique (0,00046 mol, 40%, Prolabo) sous agitation (100 tr/min). Après 5 minutes à 100 °C sous agitation (100 tr/min), la tempéraure est portée à 160 °C et l'agitation est réduite à 50 tr/min. La durée du traitement ionothermal est de 2 heures. Le chauffage est ensuite arrêté et l'agitation est stoppée : on laisse le mélange se refroidir à l'air libre jusqu'à température ambiante. Le produit cristallisé obtenu est dissout dans l'eau, filtré puis séché à une température égale à 100°C pendant 5 heures.  7 g of the ionic liquid consisting of 1-butyl-3-methylimidazolium bromide (0.03131 mol, 98%, lolitec) are brought to a temperature of 100 ° C. in an open flask. At this temperature, the ionic liquid is in the liquid state. To this ionic liquid was added 0.097 g (0.0003 mol, 98%, Aldrich) cetyltrimethylammonium bromide and the mixture was stirred (100 rpm) at 100 ° C for 5 min. 0.217 g (0.001044 mol, 98.28%, Aldrich) of aluminum isopropoxide, 0.241 g of orthophosphoric acid (0.00209 mol) are then added to this mixture at a temperature of 100 ° C., 85% aqueous, SDS) and 0.023 g of hydrofluoric acid (0.00046 mol, 40%, Prolabo) with stirring (100 rpm). After 5 minutes at 100 ° C with stirring (100 rpm), the temperature is raised to 160 ° C and stirring is reduced to 50 rpm. The duration of the ionothermal treatment is 2 hours. The heating is then stopped and the stirring is stopped: the mixture is allowed to cool in the open air to room temperature. The crystallized product obtained is dissolved in water, filtered and then dried at a temperature of 100 ° C. for 5 hours.
Le solide a été analysé par diffraction des rayons X : le solide cristallisé obtenu est un aluminophosphate cristallisé IZM-4 présentant un diagramme de diffraction de rayons X incluant les raies précisément inscrites dans le tableau 1.  The solid was analyzed by X-ray diffraction: the crystallized solid obtained is a crystallized aluminophosphate IZM-4 having an X-ray diffraction pattern including the lines precisely listed in Table 1.
Exemple 2 : préparation du solide silicoaluminophosphate cristallisé IZM-4 selon l'invention EXAMPLE 2 Preparation of crystallized silicoaluminophosphate solid IZM-4 according to the invention
7g du liquide ionique constitué du bromure de 1-butyl-3-méthylimidazolium (0,03131 mol, 98%, lolitec) sont portés à une température de 100 °C dans un ballon ouvert. A cette température, le liquide ionique est à l'état liquide. A ce liquide ionique, on ajoute 0,097g (0,0003 mol, 98%, AIdrich) du bromure de cétyltriméthylammonium et le mélange est agité (100 tr/min) à 100 °C pendant 5 min. On ajoute ensuite à ce mélange, à une température égale à 100 °C, consécutivement 0,217 g (0,001044 mol, 98,28%, AIdrich) d'isopropoxide d'aluminium, 0,361g d'acide orthophosphorique (0,00313 mol, 85% aqueux, SDS), 0,0666g de tétraéthylorthosilicate (0,0003 mol, 98%, AIdrich) et 0,023g d'acide fluorhydrique (0,00046 mol, 40%, Prolabo) sous agitation (100 tr/min). Après 5 minutes à 100 °C sous agitation (100 tr/min), la tempéraure est portée à 160 °C et l'agitation est réduite à 50 tr/min. La durée du traitement ionothermal est de 3 heures. Le chauffage est ensuite arrêté et l'agitation est interrompue : on laisse le mélange se refroidir à l'air libre jusqu'à température ambiante. Le produit cristallisé obtenu est dissout dans l'eau, filtré puis séché à une température égale à 100°C pendant 5 heures. 7 g of the ionic liquid consisting of 1-butyl-3-methylimidazolium bromide (0.03131 mol, 98%, lolitec) are brought to a temperature of 100 ° C. in an open flask. At this temperature, the ionic liquid is in the liquid state. To this ionic liquid was added 0.097 g (0.0003 mol, 98%, Aldrich) cetyltrimethylammonium bromide and the mixture was stirred (100 rpm) at 100 ° C for 5 min. 100 ml of aluminum isopropoxide, 0.361 g of orthophosphoric acid (0.00313 mol 85% aqueous, SDS), 0.0666 g of tetraethylorthosilicate (0.0003 mol, 98%, Aldrich) and 0.023 g of hydrofluoric acid (0.00046 mol, 40%, Prolabo) with stirring (100 rpm) . After 5 minutes at 100 ° C. with stirring (100 rpm), the The temperature is raised to 160 ° C. and stirring is reduced to 50 rpm. The duration of the ionothermal treatment is 3 hours. The heating is then stopped and the stirring is interrupted: the mixture is allowed to cool in the open air to room temperature. The crystallized product obtained is dissolved in water, filtered and then dried at a temperature of 100 ° C. for 5 hours.
Le solide a été analysé par diffraction des rayons X : le solide cristallisé obtenu est un silicoaluminophosphate cristallisé IZM-4 présentant un diagramme de diffraction de rayons X incluant les raies précisément inscrites dans le tableau 1.  The solid was analyzed by X-ray diffraction: the crystallized solid obtained is a crystallized silicoaluminophosphate IZM-4 having an X-ray diffraction pattern including the lines precisely listed in Table 1.

Claims

REVENDICATIONS
1. Solide cristallisé IZM-4 présentant un diagramme de diffraction des rayons X incluant au moins les raies inscrites dans le tableau ci-dessous : 1. crystalline solid IZM-4 having an X-ray diffraction pattern including at least the lines listed in the table below:
Figure imgf000018_0001
où FF = très fort ; F = fort ; m = moyen ; mf = moyen faible ; f = faible ; ff = très faible, et présentant une composition chimique exprimée, en termes de moles d'oxydes, par la formule générale suivante : Y203 : x X02 : p P2O5 : m M02 : r R : f F dans laquelle X représente un ou plusieurs élément(s) tétravalent(s), Y représente un ou plusieurs éléments trivalent(s), M représente un ou plusieurs métal(ux) divalent(s), P représente le phosphore, F représente le fluor et R est un sel de cétyltriméthylammonium, x, p, m, r et f représentant respectivement le nombre de moles de X02, P205, M02) R et F, x est compris entre 0 et 1 , p est compris entre 0,001 et 1 ,2, m est compris entre 0 et 0,5, r est compris entre 0,01 et 0,3 et f est compris entre 0,009 et 0,2.
Figure imgf000018_0001
where FF = very strong; F = strong; m = average; mf = weak medium; f = weak; ff = very weak, and having a chemical composition expressed, in terms of moles of oxides, by the following general formula: Y 2 0 3 : x X0 2 : p P2O5: m M0 2 : r R: f F in which X represents one or more tetravalent element (s), Y represents one or more trivalent elements, M represents one or more divalent metal (s), P represents phosphorus, F represents fluorine and R is a salt of cetyltrimethylammonium, x, p, m, r and f respectively representing the number of moles of X0 2 , P 2 0 5 , M0 2) R and F, x is between 0 and 1, p is between 0.001 and 1, 2, m is from 0 to 0.5, r is from 0.01 to 0.3 and f is from 0.009 to 0.2.
2. Solide cristallisé IZM-4 selon la revendication 1 dans lequel X est choisi parmi le silicium, le germanium, le titane et le mélange d'au moins deux de ces éléments tétravalents. 2. crystalline solid IZM-4 according to claim 1 wherein X is selected from silicon, germanium, titanium and the mixture of at least two of these tetravalent elements.
3. Solide cristallisé IZM-4 selon la revendication 2 dans lequel X est le silicium. 3. crystalline solid IZM-4 according to claim 2 wherein X is silicon.
4. Solide cristallisé IZM-4 selon l'une des revendications 1 à 3 dans lequel Y est choisi parmi l'aluminium, le bore, le fer, l'indium et le gallium et le mélange d'au moins deux de ces éléments trivalents. 4. crystalline solid IZM-4 according to one of claims 1 to 3 wherein Y is selected from aluminum, boron, iron, indium and gallium and the mixture of at least two of these trivalent elements .
5. Solide cristallisé IZM-4 selon la revendication 4 dans lequel Y est l'aluminium. The crystalline solid IZM-4 according to claim 4 wherein Y is aluminum.
6. Solide cristallisé IZM-4 selon l'une des revendications 1 à 5 dans lequel M est choisi parmi le cobalt, le zinc, le manganèse, le cuivre, le nickel, le magnésium et le mélange d'au moins deux de ces métaux. 6. crystalline solid IZM-4 according to one of claims 1 to 5 wherein M is selected from cobalt, zinc, manganese, copper, nickel, magnesium and the mixture of at least two of these metals .
7. Solide cristallisé IZM-4 selon l'une des revendications 1 à 6 dans lequel x est compris entre 0,01 et 0,3. 7. crystalline solid IZM-4 according to one of claims 1 to 6 wherein x is between 0.01 and 0.3.
8. Solide cristallisé IZM-4 selon l'une des revendications 1 à 7 dans lequel p est compris entre 0,7 et 1. 8. crystalline solid IZM-4 according to one of claims 1 to 7 wherein p is between 0.7 and 1.
9. Solide cristallisé IZM-4 selon l'une des revendications 1 à 8 dans lequel m est compris entre 0,01 et 0,1. 9. crystalline solid IZM-4 according to one of claims 1 to 8 wherein m is between 0.01 and 0.1.
10. Solide cristallisé IZM-4 selon l'une des revendications 1 à 9 dans lequel r est compris entre 0,015 et 0,2. 10. crystalline solid IZM-4 according to one of claims 1 to 9 wherein r is between 0.015 and 0.2.
11. Solide cristallisé IZM-4 selon l'une des revendications 1 à 10 dans lequel f est compris entre 0,01 et 0,1. 11. crystalline solid IZM-4 according to one of claims 1 to 10 wherein f is between 0.01 and 0.1.
12. Procédé de préparation d'un solide cristallisé IZM-4 selon l'une des revendications 1 à 11 comprenant : 12. Process for preparing an IZM-4 crystalline solid according to one of claims 1 to 11, comprising:
i) le mélange, en présence d'au moins un liquide ionique constitué d'un sel de 1- butyl-3-méthylimidazolium et d'au moins une espèce organique constituée d'un sel de cétyltriméthylammonium, d'au moins une source d'anions phosphates, d'au moins une source d'au moins un élément trivalent Y et d'au moins une source d'anions fluorures, ii) le traitement ionothermal jusqu'à ce que ledit solide cristallisé IZM-4 se forme. i) the mixture, in the presence of at least one ionic liquid consisting of a salt of 1-butyl-3-methylimidazolium and at least one organic species consisting of a cetyltrimethylammonium salt, of at least one source of phosphatic anions, at least one source of at least one trivalent element Y and at least one source of fluoride anions, ii) ionothermal treatment until said crystallized solid IZM-4 is formed.
13. Procédé de préparation selon la revendication 12 dans lequel au moins une source d'au moins un élément tétravalent X est incorporée dans le mélange pour la mise en œuvre de ladite étape i), ledit élément X tétravalent étant choisi parmi le silicium, le germanium, le titane et le mélange d'au moins deux de ces éléments. 13. Preparation process according to claim 12 wherein at least one source of at least one tetravalent element X is incorporated in the mixture for the implementation of said step i), said tetravalent element X being chosen from silicon, germanium, titanium and the mixture of at least two of these elements.
14. Procédé de préparation selon la revendication 12 ou la revendication 13 dans lequel au moins une source d'au moins un métal divalent M est incorporée dans le mélange pour la mise en œuvre de ladite étape i), ledit métal M étant choisi parmi les métaux compris dans le groupe constitué par le cobalt, le zinc, le manganèse, le cuivre, le nickel, le magnésium et le mélange d'au moins deux de ces métaux. 14. A method of preparation according to claim 12 or claim 13 wherein at least one source of at least one divalent metal M is incorporated in the mixture for the implementation of said step i), said metal M being chosen from metals comprised in the group consisting of cobalt, zinc, manganese, copper, nickel, magnesium and a mixture of two or more of these metals.
15. Procédé de préparation selon l'une des revendications 12 à 14 dans lequel le mélange réactionnel obtenu à l'étape i) présente une composition molaire telle que : sel de 1 -butyl-3 5 à 200 15. Preparation process according to one of claims 12 to 14 wherein the reaction mixture obtained in step i) has a molar composition such as: salt of 1-butyl-35 to 200
methylimidazolium / Y2O3 methylimidazolium / Y2O3
Figure imgf000020_0001
Figure imgf000020_0001
P2O5 / Y2O3 0,001 à 4  P2O5 / Y2O3 0.001 to 4
M02 / Y2O3 0 à 0,5 M0 2 / Y2O3 0 to 0.5
R / Y203 0,001 à 5 R / Y 2 0 3 0.001 to 5
F / Y2O3 0,001 à 3  F / Y2O3 0.001 to 3
H20 / Y2O3 0 à 50 H 2 0 / Y 2 O 3 0 to 50
où R est un sel de cétyltriméthylammonium. where R is a cetyltrimethylammonium salt.
PCT/FR2011/000535 2010-10-28 2011-10-04 Izm-4 crystallized solid and process for preparing same WO2012056118A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1004244A FR2966816B1 (en) 2010-10-28 2010-10-28 IZM-4 CRYSTALLIZED SOLID AND PROCESS FOR PREPARING THE SAME
FR10/04.244 2010-10-28

Publications (1)

Publication Number Publication Date
WO2012056118A1 true WO2012056118A1 (en) 2012-05-03

Family

ID=43402149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/000535 WO2012056118A1 (en) 2010-10-28 2011-10-04 Izm-4 crystallized solid and process for preparing same

Country Status (2)

Country Link
FR (1) FR2966816B1 (en)
WO (1) WO2012056118A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539146A (en) * 2013-10-28 2014-01-29 中国海洋石油总公司 Ion hot method for continuously synthesizing SAPO-11 molecular sieves
CN103570752A (en) * 2012-07-24 2014-02-12 中国科学院大连化学物理研究所 Method of synthesizing micropore SOD type zeolite imidazolate frameworks by ionothermal method
CN104340992A (en) * 2013-08-02 2015-02-11 中国科学院大连化学物理研究所 Metallic aluminum phosphate (MeAPO) molecular sieve with -CLO structure, and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
EP0226219A2 (en) 1985-12-20 1987-06-24 Uop Crystalline gallophosphate compositions
US5420279A (en) 1991-04-04 1995-05-30 Institut Francais Du Petrole Crystallised microporous gallium phosphate and its substituted derivatives and a method of preparing them
EP1953118A1 (en) * 2007-01-30 2008-08-06 Ifp IZM-1 crystallised solid and preparation method
FR2918050A1 (en) * 2007-06-29 2009-01-02 Inst Francais Du Petrole IZM-2 CRYSTALLIZED SOLID AND PROCESS FOR PREPARING THE SAME
FR2924110A1 (en) * 2007-11-26 2009-05-29 Inst Francais Du Petrole IZM-3 CRYSTALLIZED SOLID AND PROCESS FOR PREPARING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
EP0226219A2 (en) 1985-12-20 1987-06-24 Uop Crystalline gallophosphate compositions
US5420279A (en) 1991-04-04 1995-05-30 Institut Francais Du Petrole Crystallised microporous gallium phosphate and its substituted derivatives and a method of preparing them
EP1953118A1 (en) * 2007-01-30 2008-08-06 Ifp IZM-1 crystallised solid and preparation method
FR2918050A1 (en) * 2007-06-29 2009-01-02 Inst Francais Du Petrole IZM-2 CRYSTALLIZED SOLID AND PROCESS FOR PREPARING THE SAME
FR2924110A1 (en) * 2007-11-26 2009-05-29 Inst Francais Du Petrole IZM-3 CRYSTALLIZED SOLID AND PROCESS FOR PREPARING THE SAME

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
A.K. BURRELL, R.E. DEL SESTO, S.N. BAKER, T.M. MCCLESKEY, G.A. BAKER, GREEN CHEMISTRY, vol. 9, 2007, pages 449 - 454
A.K. CHEETHAM, G. FÉREY, T. LOISEAU, ANGEW. CHEM. INT. ED., vol. 38, 1999, pages 3268
ASLANOV L A ET AL: "Preparation of mesoporous aluminum hydroxide and oxide in ionic liquids", RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, CHEMICAL SOCIETY, LONDON, GB, vol. 52, no. 10, 1 October 2007 (2007-10-01), pages 1511 - 1513, XP002545183, ISSN: 0036-0236, DOI: DOI:10.1134/S0036023607100051 *
H. MA ET AL., MICROPOROUS MESOPOROUS MATER., vol. 120, 2009, pages 278 - 284
HONGZHU XING ET AL: "Cotemplating Ionothermal Synthesis of a New Open-Framework Aluminophosphate with Unique Al/P Ratio of 6/7", CHEM.MATER., vol. 20, no. 13, 4 June 2008 (2008-06-04), pages 4179 - 4181, XP002615849, DOI: 10.1021/cm800701x *
L. HAN ET AL., JOURNAL OF CRYSTAL GROWTH, vol. 311, 2008, pages 167 - 171
M. ESTERMANN, L. B. MCCUSKER, CH. BAERLOCHER, A. MERROUCHE, H. KESSLER, NATURE, vol. 352, 1991, pages 320
M. HARTMANN, L. KEVAN, CHEM. REV., vol. 99, 1999, pages 635
NATURE, vol. 430, 2004, pages 1012 - 1016
R.E. PARNHAM, R.E. MORRIS, CHEM. MATER., vol. 18, 2006, pages 4882
TREWYN B G ET AL: "Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents", NANO LETTERS, ACS, WASHINGTON, DC, US, vol. 4, no. 1, 28 September 2004 (2004-09-28), pages 2139 - 2143, XP002545182, ISSN: 1530-6984, DOI: DOI:10.1021/NL048774R *
Y. XU ET AL., ANGEW. CHEM. INT. ED., vol. 45, 2006, pages 3965 - 3970
YU-PNEG XU ET AL: "MICROWAVE-ENHANCED IONOTHERMAL SYNTHESIS OF ALUMINOPHOSPHATE MOLECULAR SIEVES", ANGEWANDTE CHEMIE INT.ED., vol. 45, 9 May 2006 (2006-05-09), pages 3965 - 3970, XP002615848, DOI: 10.1002/ANIE.200600054 *
ZHEN MA ET AL: "Preparation of Inorganic Materials Using Ionic Liquids", ADVANCED MATERIALS, vol. 22, no. 2, 8 September 2009 (2009-09-08), pages 261 - 285, XP002615850, DOI: 10.1002/adma.200900603 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570752A (en) * 2012-07-24 2014-02-12 中国科学院大连化学物理研究所 Method of synthesizing micropore SOD type zeolite imidazolate frameworks by ionothermal method
CN103570752B (en) * 2012-07-24 2016-09-28 中国科学院大连化学物理研究所 A kind of method of ion full-boiled process synthetic microporous SOD type zeolite imidazole skeleton species
CN104340992A (en) * 2013-08-02 2015-02-11 中国科学院大连化学物理研究所 Metallic aluminum phosphate (MeAPO) molecular sieve with -CLO structure, and preparation method thereof
CN103539146A (en) * 2013-10-28 2014-01-29 中国海洋石油总公司 Ion hot method for continuously synthesizing SAPO-11 molecular sieves

Also Published As

Publication number Publication date
FR2966816B1 (en) 2012-11-30
FR2966816A1 (en) 2012-05-04

Similar Documents

Publication Publication Date Title
EP2170769B1 (en) Crystalline solid izm-2 and method for the preparation thereof
EP3378830B1 (en) Method for synthesising zeolite izm-2 in the presence of 1,6-bis(methylpiperidinium)hexane dibromide as a structure directing agent
EP2379450B1 (en) Im-20 crystallised solid and method for making same
EP1518827B1 (en) Cristalline material IM-12 and process for its manufacture
EP2170768B1 (en) Im-16 crystallized solid and method of preparation thereof
EP3378831A1 (en) Method for synthesising zeolite izm-2 in the presence of a dihydroxide structuring agent of 1,6-bis(methylpiperidinium)hexane
EP2219998B1 (en) Crystallised solid im-18 and method for preparing same
EP2219999B1 (en) Crystallised solid izm-3 and method for preparing same
WO2008059120A2 (en) Im-15 crystallised solid and method for making the same
WO2012056118A1 (en) Izm-4 crystallized solid and process for preparing same
EP2219997A1 (en) Crystallised solid im-17 and method for preparing same
EP1510501B1 (en) IM-11 cristalline solid having LTA-type structure and process for its preparation
WO2007135266A1 (en) Im-13 crystallized solid and preparation method therefor
EP0347273B1 (en) Process for the synthesis of mtt structure-type zeolites
FR2953509A1 (en) Preparing crystallized solid metallophosphate having AFI structure type comprises mixing phosphate anion-, trivalent element- and fluoride anion source with ionic liquid having 1-butyl-3-methylimidazolium salt and ionothermally treating
FR2953506A1 (en) Preparing crystallized solid metallophosphate having AFI structure type comprises mixing phosphate anion source, trivalent element source and fluoride anion source with ionic liquid, and ionothermally treating the obtained mixture
WO2008059121A2 (en) Im-14 crystallised solid and method for making the same
FR2948299A1 (en) PROCESS FOR THE PREPARATION OF A LTA STRUCTURAL TYPE CRYSTALLIZED SOLID IN ION LIQUID MEDIUM
EP1591420A2 (en) Crystallized ITQ-31 solid material and its production process
FR2953508A1 (en) Preparing crystallized solid metallophosphate having AFI structure type comprises mixing phosphate anion source, trivalent element source and fluoride anion source with ionic liquid, and ionothermally treating the mixture
FR2953507A1 (en) Preparing crystallized solid metallophosphate having AFI structure type comprises mixing phosphate anion-, trivalent element- and fluoride anion source with ionic liquid having 1-hexylpyridinium salt, and ionothermally treating the mixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11779465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11779465

Country of ref document: EP

Kind code of ref document: A1