WO2012090701A1 - ワイヤレス給電装置、ワイヤレス受電装置、ワイヤレス電力伝送システム - Google Patents

ワイヤレス給電装置、ワイヤレス受電装置、ワイヤレス電力伝送システム Download PDF

Info

Publication number
WO2012090701A1
WO2012090701A1 PCT/JP2011/078813 JP2011078813W WO2012090701A1 WO 2012090701 A1 WO2012090701 A1 WO 2012090701A1 JP 2011078813 W JP2011078813 W JP 2011078813W WO 2012090701 A1 WO2012090701 A1 WO 2012090701A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power
resonance
wireless power
detection
Prior art date
Application number
PCT/JP2011/078813
Other languages
English (en)
French (fr)
Inventor
浦野 高志
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2012550815A priority Critical patent/JP5522271B2/ja
Publication of WO2012090701A1 publication Critical patent/WO2012090701A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • the present invention relates to a wireless power feeding device, a wireless power receiving device, and a wireless power transmission system for performing power transmission without contact.
  • Patent Document 1 discloses a wireless power transmission system that performs power transmission from a wireless power feeding device to a wireless power receiving device in a contactless (wireless) manner.
  • the wireless power supply apparatus 10 includes a power supply resonance circuit having a power supply coil 14 and a power supply capacitor 15, and the wireless power reception apparatus 20 also includes a power reception resonance circuit having a power reception coil 21 and a power reception capacitor 22.
  • the power feeding coil 14 and the power receiving coil 21 constitute a power feeding transformer Tf, and electric power transmission is performed in a non-contact manner between them using an electromagnetic induction action.
  • the power factor of the transmission power is set near “1” and the power transmission is efficiently performed.
  • the relative distance between the power supply coil 14 and the power receiving coil 21 changes, the mutual inductance of these coils changes, and the power factor of the transmitted power decreases. As a result, efficient power transmission cannot be performed.
  • Patent Document 1 searches for the frequency of the resonance current of the power supply resonance circuit according to the change in the mutual inductance of the power supply transformer, and sets the frequency of the voltage supplied to the power supply resonance circuit according to the frequency of this resonance current.
  • the wireless power supply apparatus 10 includes a frequency control circuit 31 in the control apparatus 30 that performs PWM control of the voltage type inverter 13 connected to the power supply resonance circuit.
  • the frequency control circuit 31 detects the output current of the voltage type inverter 13 and controls the phase frequency of the output voltage of the voltage type inverter 13 so that the power factor of the output power of the voltage type inverter 13 becomes 1.
  • the frequency control circuit 31 performs control so that the voltage type inverter 13 performs zero current switching.
  • the wireless power supply apparatus includes a power supply resonance circuit having a power supply coil and a power supply capacitor
  • the wireless power reception apparatus also includes a power reception resonance circuit having a power reception coil and a power reception capacitor. Between these, power transmission is performed in a non-contact manner using a magnetic field resonance phenomenon.
  • Patent Document 1 when the technique disclosed in Patent Document 1 is applied to a wireless power transmission system using a magnetic field resonance phenomenon, the present inventor performs transmission in a system including two resonance circuits of a power supply resonance circuit and a power reception resonance circuit. We discovered that there are two frequencies where the power factor of power is 1. Thus, in such a wireless power transmission system, there is a risk of malfunction when performing phase frequency control with a power factor of transmission power of 1.
  • the present invention provides a wireless power feeding device, a wireless power receiving device, and a wireless power transmission capable of performing efficient power transmission without malfunction when performing non-contact power transmission using a magnetic field resonance phenomenon.
  • the purpose is to provide a system.
  • a wireless power supply apparatus is a wireless power supply apparatus that supplies power to a wireless power reception apparatus having a power reception resonance circuit including a power reception coil and a power reception capacitor in a contactless manner, and the resonance current of the power supply coil and the power reception resonance circuit is obtained.
  • a control circuit for associating the frequency of the current with the frequency of the resonance current detected by the resonance current detector, the feeding coil does not substantially constitute a resonance circuit, and the resonance current detector includes the detection coil and the detection capacitor.
  • the winding region of the detection coil in the resonance current detector is smaller than the winding region of the feeding coil, and the detection coil in the resonance current detector has a winding center axis of 80 ° or more and 100 ° with respect to the magnetic field vector generated by the feeding coil. It arrange
  • substantially does not constitute a resonance circuit means that a resonance circuit whose resonance frequency is the resonance frequency of the power reception resonance circuit is not formed. It does not mean to exclude even resonance.
  • substantially does not constitute a resonance circuit means that a capacitor is not provided in series or in parallel with the feeding coil in order to form a resonance circuit whose resonance frequency is the resonance frequency of the power reception resonance circuit. It means that.
  • the “magnetic resonance phenomenon between the feeding coil and the receiving coil” means a resonance phenomenon of the receiving resonance circuit based on the AC magnetic field generated by the feeding coil.
  • an alternating current is supplied to the feeding coil, an alternating magnetic field is generated by the feeding coil.
  • the power feeding coil and the power receiving coil are magnetically coupled, and the power receiving resonance circuit resonates.
  • the power factor of the transmission power can be set to 1 even when the power supply coil itself does not resonate, and highly efficient power transmission is possible. Can be performed.
  • “associating the frequency of the alternating current with the resonant frequency of the power receiving resonant circuit” means that the frequency of the alternating current and the resonant frequency of the power receiving resonant circuit are substantially matched.
  • the frequency of the alternating current and the resonant frequency of the power receiving resonant circuit do not completely match, for example, if they are approximately matched within an error range of about ⁇ 20%, the power factor of the transmission power can be increased, High-efficiency power transmission can be performed.
  • “associating the frequency of the alternating current and the resonant frequency of the power receiving resonant circuit” includes substantially matching the frequency of the alternating current and the resonant frequency of the power receiving resonant circuit within an error range of about ⁇ 20%. Shall be.
  • detecting the resonance current of the power receiving resonance circuit means detecting a signal (information on the resonance current) corresponding to the resonance current flowing through the power receiving resonance circuit.
  • the frequency at which the power factor of the transmission power is 1 is one. Therefore, when control is performed to set the power factor of the transmission power to 1, that is, the control for associating the frequency of the alternating current supplied to the feeding coil with the frequency of the resonant current of the power receiving resonant circuit by the resonant current detector and the control circuit. In this case, malfunction can be prevented.
  • the resonance current of the power receiving resonance circuit is detected by using a current sensor for detecting a current flowing through the feeding coil or a current transformer.
  • the resonance current is detected in this way, the power supply coil does not substantially form a resonance circuit. For example, if the distance between the power supply coil and the power reception coil increases, the resonance current of the power reception resonance circuit is accurately detected. There was room for improvement.
  • the resonance current detector detects the resonance current of the power reception resonance circuit in a non-contact manner using the magnetic field resonance phenomenon.
  • the winding region of the detection coil in the resonance current detector is smaller than the winding region of the power feeding coil, and this sensing coil has a winding center axis of 80 ° or more and 100 ° with respect to the magnetic field vector (lines of magnetic force) generated by the power feeding coil. It is arranged to make an angle of less than °.
  • the resonance current detector can not only obtain the information on the resonance state of the power receiving resonance circuit in a non-contact manner by utilizing the magnetic field resonance phenomenon between the detection coil and the power receiving coil, but also, the power feeding coil. Therefore, it is possible to accurately detect the magnetic field of the power receiving coil without detecting the magnetic field.
  • the length of the winding region of the detection coil in the resonance current detector described above, and the length of the winding region of the detection coil in the winding radial direction of the feeding coil is the length of the winding of the feeding coil in the winding radial direction. It is 1/10 times or less the length of the turning region. Furthermore, the length of the winding region of the detection coil in the resonance current detector described above, and the length of the winding region of the detection coil in the winding radial direction of the power feeding coil is the power feeding in the winding radial direction. It is less than the length of the coil winding region. According to this configuration, the resonance current detector can accurately detect the magnetic field of the power receiving coil without detecting the magnetic field of the power feeding coil.
  • the detection coil in the above-described resonance current detector is arranged on the winding of the feeding coil. According to this configuration, the resonance current detector can accurately detect the magnetic field of the power receiving coil without detecting the magnetic field of the power feeding coil.
  • the above-described resonance current detector further includes a detection resistance element for reducing the Q value of the detection resonance circuit.
  • the purpose of the resonance current detector is to monitor the power-receiving-side resonance frequency, and it is not necessary to pass a large current through the detection coil.
  • the wireless power supply apparatus further includes a plurality of resonance current detectors and an adder that adds output signals from the plurality of resonance current detectors, and the control circuit outputs the frequency of the alternating current and the adder from the adder. Correlate with the frequency of the output signal.
  • the winding center axis of the power feeding coil and the winding center axis of the power receiving coil coincide (the power receiving coil is located directly above the power feeding coil), and the power feeding coil and the power receiving coil are parallel to each other.
  • the resonance current of the power receiving resonance circuit is efficiently detected. It becomes possible to do.
  • Another wireless power supply apparatus of the present invention is a wireless power supply apparatus that supplies power to a wireless power reception apparatus having a power reception resonance circuit including a power reception coil and a power reception capacitor in a contactless manner, and the resonance between the power supply coil and the power reception resonance circuit.
  • a resonance current detector for detecting current and a control circuit for supplying power from the feeding coil to the receiving coil based on a magnetic field resonance phenomenon between the feeding coil and the receiving coil by supplying an alternating current to the feeding coil.
  • the resonance current of the power receiving resonance circuit is detected based on the magnetic field of the power receiving coil, and the outer shape of the magnetic detection element in the resonance current detector is Smaller than the winding region of Le, the magnetic sensing device of the resonance current detector, the magnetic detection direction is arranged so as to form a 100 ° angle of less than at least 80 ° to the magnetic field vector generated by the feeding coil.
  • the frequency at which the power factor of the transmission power is 1 is one. Therefore, when control is performed to set the power factor of the transmission power to 1, that is, the control for associating the frequency of the alternating current supplied to the feeding coil with the frequency of the resonant current of the power receiving resonant circuit by the resonant current detector and the control circuit. In this case, malfunction can be prevented.
  • the external shape of the magnetic detection element in the resonance current detector is smaller than the winding region of the power supply coil, and this magnetic detection element has a magnetic detection direction with respect to a magnetic field vector (line of magnetic force) generated by the power supply coil.
  • a magnetic field vector line of magnetic force generated by the power supply coil.
  • the resonance current detector can accurately detect the magnetic field of the power receiving coil without detecting the magnetic field of the power feeding coil.
  • a wireless power receiving device of the present invention is a wireless power receiving device that obtains power without contact from the wireless power feeding device described above, includes a power receiving resonance circuit including a power receiving coil and a power receiving capacitor, and a power feeding coil in the wireless power feeding device. Based on the magnetic field resonance phenomenon with the power receiving coil in the wireless power receiving device, power is acquired from the power feeding coil by the power receiving coil.
  • the resonant current detector can accurately detect the magnetic field of the power receiving coil without detecting the magnetic field of the power feeding coil.
  • a wireless power transmission system of the present invention is a wireless power transmission system that performs non-contact power transmission between the wireless power feeding device and the wireless power receiving device, and includes a power feeding coil and a wireless power receiving device in the wireless power feeding device. Based on the magnetic field resonance phenomenon with the power receiving coil, power is transmitted from the power feeding coil to the power receiving coil.
  • this wireless power transmission system since power is acquired in a non-contact manner from the above-described wireless power supply apparatus, malfunctions can be prevented when performing control with a power factor of 1 for transmission power. Further, the magnetic field of the power receiving coil can be accurately detected without detecting the magnetic field of the power feeding coil.
  • FIG. 1 is a cross-sectional view showing a physical structure of the power supply coil, the detection coil, the power reception coil, and the power reception load coil shown in FIG.
  • FIG. 2 is a diagram showing a plurality of examples of the detection coil shown in FIG.
  • FIG. 3 is a diagram illustrating an electrical configuration of the wireless power transmission system, the wireless power feeding apparatus, and the wireless power receiving apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an electrical configuration of the wireless power feeder according to the second embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a plurality of arrangement examples of the detection coil with respect to the feeding coil.
  • FIG. 6 is a diagram showing a magnetic field resonance state detected by the detection coil shown in FIG. FIG.
  • FIG. 7 is a diagram illustrating the resonance frequency with respect to the distance between the feeding coil and the receiving coil.
  • FIG. 8 is a diagram showing the resonance current of the power reception resonance circuit with respect to the frequency of the alternating current of the power supply coil (distance between the power supply coil and the power reception coil of 80 mm).
  • FIG. 9 is a diagram schematically showing the current detected by the detection coil shown in FIG. 5 and based on the magnetic field of the feeding coil 1.
  • 10 is a top view and a cross-sectional view showing a physical structure of the power feeding coil and the detection coil shown in FIG.
  • FIG. 11 is a diagram showing an electrical configuration of a wireless power feeding apparatus according to the third embodiment of the present invention.
  • FIG. 12 is a diagram schematically illustrating a positional shift between the power feeding coil and the power receiving coil.
  • FIG. 13 is a diagram illustrating a plurality of arrangement examples of the detection coil with respect to the feeding coil.
  • FIG. 14 is a diagram illustrating a plurality of arrangement examples of the magnetic detection elements with respect to the feeding coil.
  • FIG. 15 is a cross-sectional view illustrating a main part configuration of a wireless power transmission system, a wireless power feeding apparatus, and a wireless power receiving apparatus according to a modification of the present invention.
  • FIG. 16 is a diagram illustrating a plurality of shape examples of the feeding coil and the detection coil.
  • FIG. 17 is a diagram illustrating a plurality of arrangement examples of the detection coil with respect to the feeding coil.
  • FIG. 3 is a diagram showing an electrical configuration of the wireless power transmission system according to the first embodiment of the present invention.
  • a wireless power transmission system 100 shown in FIG. 3 includes a wireless power feeder 110 and a wireless power receiver 120, and performs power transmission from the wireless power feeder 110 to the wireless power receiver 120 in a contactless manner.
  • the wireless power supply apparatus 110 includes a power supply coil 1, a resonance current detector 6, and a control circuit 111.
  • the wireless power receiving apparatus 120 includes a power receiving resonance circuit 122 including the power receiving coil 7 and the power receiving capacitor 8.
  • the control circuit 111 supplies an alternating current (for example, a square wave or sine wave current) to the power supply coil 1, thereby supplying power based on the magnetic resonance phenomenon between the power supply coil 1 and the power reception coil 7. Power is supplied from the coil 1 to the power receiving coil 7.
  • the “magnetic field resonance phenomenon between the power feeding coil 1 and the power receiving coil 7” means a resonance phenomenon of the power receiving resonance circuit 122 based on the AC magnetic field generated by the power feeding coil 1.
  • an alternating current is supplied to the feeding coil 1
  • an alternating magnetic field is generated by the feeding coil 1.
  • the power feeding coil 1 and the power receiving coil 7 are magnetically coupled, and the power receiving resonance circuit 122 resonates.
  • the control circuit 111 matches the frequency of the alternating current with the frequency of the resonance current of the power receiving resonance circuit 122 detected by the resonance current detector 6. Then, even if the feeding coil 1 itself does not resonate, the power factor of the transmission power can be set to 1, and high-efficiency power transmission can be performed.
  • the power feeding coil 1 does not substantially constitute a resonance circuit.
  • “substantially does not constitute a resonance circuit” means that a resonance circuit whose resonance frequency is the resonance frequency of the power reception resonance circuit 122 is not formed. It does not mean to eliminate even resonance.
  • “substantially does not constitute a resonance circuit” means that a capacitor is provided in series or in parallel with the feeding coil 1 in order to form a resonance circuit whose resonance frequency is the resonance frequency of the power reception resonance circuit 122. It means not to do it.
  • the power receiving resonance circuit 122 in a state far away from the resonance frequency shifts with respect to the resonance frequency alone.
  • the wireless power receiving device 120 power is supplied to the load 10 through the power receiving load coil 9 that is magnetically coupled to the power receiving coil 7. Thereby, it is possible to suppress a decrease in the Q value of the power receiving resonance circuit caused by the load 10.
  • the control circuit 111 includes a high-frequency amplifier 2, a phase comparator 3, a low pass filter (LPF) 4, and a voltage controlled oscillator (VCO) 5.
  • LPF low pass filter
  • VCO voltage controlled oscillator
  • the phase comparator 3 generates a pulse voltage corresponding to the phase difference between the voltage corresponding to the resonance current of the power receiving resonance circuit 122 detected by the resonance current detector 6 and the output voltage from the VCO 5 and outputs the pulse voltage to the LPF 4. .
  • the LPF 4 averages the pulse voltage from the phase comparator 3 and outputs it to the VCO 5.
  • the VCO 5 uses the voltage from the LPF 4 as a control voltage and generates an AC voltage having a frequency corresponding to this voltage.
  • the phase comparator 3, the LPF 4, and the VCO 5 constitute a so-called PLL circuit, and an alternating current having a phase frequency corresponding to the phase frequency of the resonance current of the power receiving resonance circuit 122 detected by the resonance current detector 6. Generate voltage.
  • the high-frequency amplifier 2 supplies an AC current having a phase frequency that matches the phase frequency of the resonance current of the power receiving resonance circuit 122 to the feeding coil 1 according to the AC voltage.
  • the resonance current detector 6 includes a detection resonance circuit 112 in series including a detection coil 6a, a detection resistance element 6b, and a detection capacitor 6c.
  • the detection coil 6a In a state where the magnetic coupling between the detection coil 6a and the power receiving coil 7 is sufficiently far away from being negligible, the detection coil 6a has a resonance frequency substantially equal to the resonance frequency of the power reception resonance circuit 122.
  • the inductance, the capacitance of the detection capacitor 6c, the inductance of the power receiving coil 7, and the capacitance of the power receiving capacitor 8 are set.
  • the resonance current of the power reception resonance circuit 122 is detected based on the magnetic field resonance phenomenon between the detection coil 6a and the power reception coil 7 (magnetic field resonance phenomenon between the detection resonance circuit 112 and the power reception resonance circuit 122).
  • the resonance current detector 6 can obtain information on the resonance state of the power reception resonance circuit 122 in a non-contact manner by utilizing the magnetic field resonance phenomenon. It becomes.
  • the voltage across the detection capacitor 6 c is supplied to the phase comparator 3 as the phase frequency information of the resonance current of the power receiving resonance circuit 122.
  • the detection capacitor 6c may be formed as a stray capacitance of the detection coil 6a or may be provided as a lumped constant element (Lumped element), and may form a resonance circuit with the detection coil 6a.
  • FIG. 1 is a cross-sectional view showing the physical structure of the power feeding coil 1, the detection coil 6a, the power receiving coil 7, and the power receiving load coil 9 shown in FIG. FIG. 1 electrically shows peripheral circuit elements of these coils.
  • the power feeding coil 1 and the power receiving coil 7 are provided to face each other, and the power receiving load coil 9 is wound around the outer periphery of the power receiving coil 7.
  • the detection coil 6 a is adjacent to the power feeding coil 1 between the power feeding coil 1 and the power receiving coil 7.
  • the feeding coil 1 may be, for example, a spiral coil, a solenoid coil, or a loop coil.
  • the detection coil 6a may be an air-core coil (FIG. 2a), a coil having a cylindrical ferrite core (FIG. 2b), or a drum type. A coil having a ferrite core may be used (FIG. 2c).
  • the feeding coil 1 and the detection coil 6a may be wound in a circular shape (FIG. 16a), may be wound in an elliptical shape (FIG. 16b), or rectangular. (FIG. 16c), or may be wound in a polygonal shape.
  • the power receiving coil 7 and the power receiving load coil 9 preferably have a shape corresponding to the power feeding coil 1.
  • the winding region RE6a of the detection coil 6a is sufficiently smaller than the winding region RE1 of the feeding coil 1 (for example, the area ratio of the winding region of the winding is preferably 1/10 or less, more preferably 1/100 or less).
  • the length (winding diameter in the case of a circular shape) r6a of the winding region RE6a of the detection coil 6a in the winding radial direction R of the feeding coil 1 is the winding region of the feeding coil 1 in the winding radial direction R.
  • the length of RE1 (in the case of a circular shape, the winding diameter) is preferably 1/10 or less of r1.
  • the length r6a of the winding region RE6a of the detection coil 6a in the winding radial direction R is equal to the length of the winding region of the feeding coil 1 in the winding radial direction R (coil winding width, feeding coil).
  • the winding diameter is d1 or less. If the winding region RE6a of the detection coil 6a is relatively large, the magnetic field generated by the detection coil 6a is relatively large, which affects the power supply coil 1 and the power reception coil 7.
  • the winding region RE6a of the detection coil 6a since the winding region RE6a of the detection coil 6a is relatively small, the strength of the magnetic field generated by the detection coil 6a can be sufficiently reduced, and the power supply coil 1 and the power reception coil 7 can be supplied. Can be reduced. Further, if the winding region RE6a of the detection coil 6a is relatively large, the feeding coil 1 and the detection resonance circuit 112 constitute a resonance circuit, and two resonance frequencies exist. According to the embodiment, since the winding region RE6a of the detection coil 6a is relatively small, the feeding coil 1 and the detection resonance circuit 112 do not form a resonance circuit.
  • the detection coil 6a has a winding center axis X in an angle range of 90 ° ⁇ 10 ° with respect to a magnetic field vector (lines of magnetic force) H generated by the feeding coil 1. It is arranged to be in. Thereby, the detection coil 6a is not affected by the magnetic field of the feeding coil 1.
  • the winding center axis X of the detection coil 6a is preferably in the range of 90 ° ⁇ 5 ° with respect to the magnetic field vector H, and more preferably orthogonal to the magnetic field vector H.
  • the detection coil 6a is arranged on the winding of the feeding coil 1.
  • the detection coil 6 a has a magnetic field vector H such that the winding center axis X is in an angle range of 90 ° ⁇ 10 ° with respect to the magnetic field vector H.
  • the winding radial direction R of the power supply coil 1 or the surface of the winding region of the power supply coil 1 (power supply coil) may be determined as the direction of the magnetic field vector H.
  • the direction of the magnetic field vector H generated by the feeding coil 1 may be determined by electromagnetic field simulation, and further, the direction of the magnetic field vector H may be directly obtained using a Hall element.
  • the detection coil 6a is arranged at a position where the winding center axis X of the detection coil 6a is in a range of 90 ° ⁇ 10 ° with respect to the magnetic field vector H generated by the power supply coil 1, the position is Although not particularly limited, as shown in FIG. 1 and FIG. 13, it is preferable that the feeding coil 1 and the receiving coil 7 are disposed in the vicinity of the feeding coil 1, and the winding of the feeding coil 1 is preferable. More preferably on the line.
  • the Q value is lowered by the detection resistance element 6b to reduce the resonance current of the detection resonance circuit.
  • the purpose of the resonance current detector 6 is to monitor the power reception side resonance frequency, and it is not necessary to pass a large current through the detection coil 6a.
  • the detection resistance element 6b is a means for lowering the Q value of the detection resonance circuit. As shown in FIG. 3, the detection resistance element 6b may be provided independently of the detection coil 6a and the detection capacitor 6c, or the detection coil 6a having a small Q value. Alternatively, it may be provided as an equivalent resistance component using the detection capacitor 6c.
  • the resonance current detector 6 and the control circuit 111 match the frequency of the alternating current supplied to the feeding coil 1 to the resonance current frequency of the power reception resonance circuit 122 as shown in FIG. Automatically controlled to let you. Therefore, the power factor of the transmission power is always 1 and the transmission power is maximized.
  • the wireless power feeder 110, the wireless power receiver 120, and the wireless power transmission system 100 of the first embodiment since the power feeding coil 1 does not substantially constitute a resonance circuit, as shown in FIG. There is one frequency at which the power factor of the transmitted power is 1. Therefore, when phase frequency control is performed with the power factor of the transmission power set to 1, that is, the resonance current detector 6 and the control circuit 111 set the frequency of the alternating current supplied to the feeding coil 1 to the resonance current of the power reception resonance circuit 122. It is possible to prevent malfunctions in automatic control to match the frequency of.
  • the resonance current of the power receiving resonance circuit is detected in a non-contact manner using a current sensor for detecting a current flowing through the power supply coil or a current transformer.
  • the resonance current is detected in this way, the power supply coil does not substantially form a resonance circuit. For example, if the distance between the power supply coil and the power reception coil increases, the resonance current of the power reception resonance circuit is accurately determined. It may be difficult to detect and there is room for improvement.
  • the winding region R6a of the detection coil 6a in the resonance current detector 6 is the winding region of the power supply coil 1.
  • the detection coil 6a is smaller than RE1 and is arranged such that the winding center axis X forms an angle of 90 ° ⁇ 10 ° with respect to a magnetic field vector (lines of magnetic force) H generated by the feeding coil 1.
  • the resonance current detector 6 not only can obtain the information on the resonance state of the power reception resonance circuit 122 in a non-contact manner by utilizing the magnetic field resonance phenomenon between the detection coil 6a and the power reception coil 7.
  • the magnetic field of the power receiving coil can be accurately detected without detecting the magnetic field of the power feeding coil 1. Below, this effect is verified.
  • FIGS. 5A to 5D are diagrams showing different arrangements of the detection coil 6a.
  • the detection coil 6a is arranged on the winding center axis of the feeding coil 1 (for example, the center of the winding region of the feeding coil 1 when the winding of the feeding coil 1 is wound in a circle).
  • the detection coil 6 a is disposed near the inside of the winding of the power feeding coil 1
  • the detection coil 6 a is disposed near the outside of the winding of the power feeding coil 1.
  • the detection coil 6a is arranged almost directly above the winding of the feeding coil 1 as in the present embodiment.
  • FIGS. 6A to 6D are diagrams showing magnetic resonance states detected by the detection coil 6a shown in FIGS. 5A to 5D, respectively.
  • the voltage and current at both ends of the detection capacitor 6c are detected, and the phase difference P6 between these voltage and current is shown.
  • the phase difference is expressed as a minus when the current phase is advanced with respect to the voltage phase and as a plus when the current phase is delayed. In this measurement, the frequency was changed by forcibly changing the frequency of the VCO.
  • the phase difference P7 between the voltage and current of the power receiving coil 7 is also shown as the resonance state of the power receiving coil 7.
  • the voltage and current of the receiving coil 7 were obtained by directly probing the receiving coil 7 using a current probe measuring instrument.
  • the distance between the detection coil 6a and the power receiving coil 7 is 80 mm.
  • FIGS. 5A to 5D schematically show currents detected by the detection coil 6a shown in FIGS. 5A to 5D and based on the magnetic field of the power feeding coil 1, respectively.
  • FIG. 9A to 9D schematically show currents detected by the detection coil 6a shown in FIGS. 5A to 5D and based on the magnetic field of the power feeding coil 1, respectively.
  • the phase difference P6 between the voltage and current of the detection resonance circuit 112 is the voltage and current of the power reception resonance circuit 122. Does not coincide with the phase difference P7, and there is no frequency (control point of the control circuit) that becomes zero. Therefore, it is difficult to detect the resonance state of the power receiving resonance circuit 122 with the arrangement of the detection coil 6a shown in FIG. This is considered to be because the correct phase of the magnetic field generated by the power receiving coil 7 cannot be detected because the detection coil 6a also detects the magnetic field of the power feeding coil 1, as shown in FIG. 9A. .
  • the phase difference P 6 between the voltage and current in the detection resonance circuit 112 is the power reception resonance circuit 122. Does not coincide with the phase difference P7 between the voltage and current, and there is no frequency that becomes zero. Accordingly, it is difficult to detect the resonance state of the power receiving resonance circuit 122 even with the arrangement of the detection coil 6a shown in FIG. This is considered to be because the correct phase of the magnetic field generated by the power receiving coil 7 cannot be detected because the detection coil 6a also detects the magnetic field of the power feeding coil 1, as shown in FIG. 9B. .
  • the phase difference P6 between the voltage and current in the detection resonance circuit 112 is the power reception resonance circuit 122. Does not coincide with the phase difference P7 between the voltage and current, and there is no frequency that becomes zero. Accordingly, it is difficult to detect the resonance state of the power receiving resonance circuit 122 even with the arrangement of the detection coil 6a shown in FIG. This is because the correct phase of the magnetic field generated by the power receiving coil 7 cannot be detected because the detection coil 6a also detects the magnetic field (reverse phase) of the power feeding coil 1, as shown in FIG. 9C. It is considered a thing.
  • FIG. 4 is a diagram showing an electrical configuration of a wireless power feeder 110A according to the second embodiment of the present invention.
  • the wireless power transmission system 100 may include the wireless power supply apparatus 110 ⁇ / b> A instead of the wireless power supply apparatus 110.
  • the wireless power supply apparatus 110A is different from the first embodiment in that the wireless power supply apparatus 110 includes a resonance current detector 6A instead of the resonance current detector 6.
  • Other configurations of the wireless power feeder 110A are the same as those of the wireless power feeder 110.
  • the resonance current detector 6A is a Hall element (magnetic detection element, magnetic sensor) 6d instead of the detection resonance circuit 112 including the detection coil 6a, the detection resistance element 6b, and the detection capacitor 6c in the resonance current detector 6. It has a current source 6e, an operational amplifier 6f, and resistance elements R1 and R2.
  • the Hall element 6d is driven by the current from the current source 6e, generates a voltage corresponding to the resonance current of the power receiving coil 7 based on the magnetic field generated by the power receiving coil 7, and outputs the voltage to the operational amplifier 6f via the resistance element R1.
  • a resistance element R2 is connected between the negative input terminal and the output terminal of the operational amplifier 6f, and a resistance element R2 is also connected between the positive input terminal and the ground potential.
  • the operational amplifier 6f amplifies the signal with an amplification factor represented by R2 / R1.
  • the outer shape of the Hall element 6d is sufficiently smaller than the winding region RE1 of the feeding coil 1.
  • the outer shape of the Hall element 6d is not more than 1/10 times the length (winding diameter in the case of a circular shape) r1 of the winding region RE1 of the feeding coil 1 in the winding radial direction R of the feeding coil 1. More preferably, the length of the winding region of the feeding coil 1 in the winding radial direction R (the winding width of the coil winding or the winding diameter when the number of turns of the feeding coil 1 is 1) is less than d1. It is.
  • the Hall element 6d has an angle of 90 ° ⁇ 10 ° with respect to the magnetic field vector (lines of magnetic force) H generated by the feeding coil 1 in the magnetic detection direction X. Is arranged.
  • the magnetic detection direction X of the Hall element 6d is preferably 90 ° ⁇ 5 ° with respect to the magnetic field vector H, and more preferably orthogonal to the magnetic field vector H.
  • the hall element 6 d is arranged on the winding of the feeding coil 1.
  • the Hall element 6 d includes the feeding coil 1 along the magnetic field vector H such that the magnetic detection direction X forms an angle of 90 ° ⁇ 10 ° with respect to the magnetic field vector H. It may be arranged to be inclined so as to circulate around the winding.
  • a magnetic sensor such as a GMR element or a TMR element may be used instead of the Hall element 6d.
  • the wireless power feeder 110A according to the second embodiment can obtain the same advantages as the wireless power feeder 110 according to the first embodiment. [Third Embodiment]
  • FIG. 11 is a diagram showing an electrical configuration of a wireless power feeder 110B according to the third embodiment of the present invention.
  • the wireless power transmission system 100 may include the wireless power supply apparatus 110 ⁇ / b> B instead of the wireless power supply apparatus 110.
  • the wireless power supply apparatus 110B is different from the first embodiment in that the wireless power supply apparatus 110 includes four resonance current detectors 6 instead of the resonance current detector 6, and further includes an adder 11.
  • the adder 11 adds the voltages at both ends of the detection capacitors 6 c in the four resonance current detectors 6, and outputs them to the phase comparator 3.
  • the other configuration of the wireless power supply apparatus 110B is the same as that of the wireless power supply apparatus 110.
  • FIG. 10A is a diagram showing the arrangement of the detection coil 6a with respect to the feeding coil 1 in the four resonance current detectors 6 from the power receiving coil side
  • FIG. 10B is a cross-sectional view taken along line XX in FIG. It is sectional drawing which follows a line.
  • the detection coils 6 a are arranged at equal intervals on the winding circumference of the power supply coil 1 by being shifted by 90 °.
  • the wireless power feeder 110B according to the third embodiment can obtain the same advantages as the wireless power feeder 110 according to the first embodiment.
  • the winding center axis of the power feeding coil 1 and the winding center axis of the power receiving coil 7 coincide (the power receiving coil). 7 is located directly above the feeding coil 1), and not only when the feeding coil 1 and the receiving coil 7 are parallel to each other, but also as shown in FIG.
  • the resonance current of the power receiving resonance circuit 122 can be efficiently detected even when the angle is deviated obliquely (relative to the lateral direction and non-parallel).
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the number of resonance current detectors is not limited to this.
  • the number of resonant current detectors may be two, three, or five or more. Further, these resonance current detectors do not have to be arranged at equal intervals on the winding circumference of the feeding coil.
  • the example in which the shift of the power receiving coil with respect to the power feeding coil is eliminated by including a plurality of resonance current detectors has been shown.
  • FIG. It may be resolved.
  • the positional relationship is such that the winding surface of the power receiving coil 7 faces diagonally with respect to the winding surface of the power feeding coil 1
  • the winding surface of the power feeding coil 1 and the winding of the power receiving coil 7 are arranged.
  • the actuator unit 12 is controlled so that the surface is always parallel. As a result, the power transmission efficiency is improved, and when a resonance current detector is further provided, the magnetic field resonance state can be detected more stably.
  • the control circuit 111 controls the frequency of the alternating current supplied to the feeding coil 1 and the frequency of the resonant current of the power receiving side resonance circuit 122 to match, but the frequency of the alternating current is not limited. Even if the resonance frequency of the power receiving resonance circuit 122 does not completely match, for example, if it is approximately matched within an error range of about ⁇ 20% (if associated), the power factor of the transmission power can be increased, High-efficiency power transmission can be performed.
  • the control circuit 111 supplies an alternating current having a frequency that matches the frequency of the resonance current of the power reception side resonance circuit 122 to the power supply coil 1 so that the resonance of the power reception side resonance circuit 122 is performed. Control is performed so that the frequency of the current and the frequency of the alternating current supplied to the feeding coil 1 are matched, but the control circuit 111 is configured so as to substantially match the frequency of the resonance current of the power receiving side resonance circuit 122, for example.
  • the frequency of the resonance current of the power receiving resonance circuit 122 and the frequency of the alternating current supplied to the power supply coil 1 may be controlled to be substantially the same by adjusting the inductance of the power supply coil 1.
  • the features of the present invention can be applied not only to power transmission but also to signal transmission.
  • the wireless power transmission system of the present invention can also be applied to a case where an analog signal or a digital signal is transmitted in a non-contact manner using a magnetic field resonance phenomenon.
  • the present invention includes (1) non-contact power supply or charging to home appliances such as mobile phones, music players, TVs and game machines, and LED lighting, (2) transport robots in a factory, biped robots, Non-contact power supply or charging to industrial equipment such as cleaning robots, (3) Non-contact charge of HEV, EV, etc. in which, for example, a power receiving coil is arranged in a vehicle body and a power supply coil is embedded in a parking lot or road, etc. (4)
  • the present invention can be applied to a system that performs non-contact power supply or charging from photovoltaic power generation to household electrical appliances or lighting in a house.
  • the element for the magnetic field resonance phenomenon is referred to as a “coil”, but may be referred to as a “transmitter” or an “antenna” depending on the related technical field.

Abstract

 本発明の一実施形態に係るワイヤレス給電装置110は、受電コイル7と受電コンデンサ8とを含む受電共振回路122を有するワイヤレス受電装置120に非接触で電力供給を行うワイヤレス給電装置であって、給電コイル1と、受電共振回路122の共振電流を検出する共振電流検出器6と、給電コイル1に交流電流を供給することによって、給電コイル1と受電コイル7との磁場共振現象に基づき、給電コイル1から受電コイル7に電力供給を行わせる制御回路であって、交流電流の周波数と共振電流検出器6によって検出した共振電流の周波数とを関連付ける当該制御回路111とを備え、給電コイル1は、実質的に共振回路を構成せず、共振電流検出器6は、検出コイル6aと検出コンデンサ6cとを含む検出共振回路112を有し、検出コイル6aと受電コイル7との磁場共振現象に基づき、受電共振回路122の共振電流を検出し、共振電流検出器6における検出コイル6aの巻回領域は、給電コイル1の巻回領域より小さく、共振電流検出器6における検出コイル6aは、巻回中心軸が給電コイルによって生じる磁場ベクトルに対して80°以上100°以下の角度をなすように配置されている。

Description

ワイヤレス給電装置、ワイヤレス受電装置、ワイヤレス電力伝送システム
 本発明は、非接触で電力伝送を行うためのワイヤレス給電装置、ワイヤレス受電装置、及び、ワイヤレス電力伝送システムに関する。
 下記特許文献1には、ワイヤレス給電装置からワイヤレス受電装置へ非接触(無線)で電力伝送を行うワイヤレス電力伝送システムが開示されている。このワイヤレス電力伝送システムでは、電磁誘導作用を利用して電力伝送を行う。そのため、ワイヤレス給電装置10は、給電コイル14と給電コンデンサ15とを有する給電共振回路を備え、また、ワイヤレス受電装置20も、受電コイル21と受電コンデンサ22とを有する受電共振回路を備える。なお、給電コイル14と受電コイル21とが給電トランスTfを構成し、これらの間で電磁誘導作用を利用して非接触で電力伝送が行われる。
 このように電磁誘導作用を利用したワイヤレス電力伝送システムでは、伝送電力の力率を「1」近傍にして電力伝送を効率的に行う。しかしながら、給電コイル14と受電コイル21との相対距離が変化すると、これらのコイルの相互インダクタンスが変化し、伝送電力の力率が低下してしまう。その結果、効率的な電力伝送を行うことができなくなる。
 この点に関し、特許文献1には、給電トランスの相互インダクタンスの変化に応じた給電共振回路の共振電流の周波数を探索し、給電共振回路に供給する電圧の周波数をこの共振電流の周波数に応じた値とする発明が開示されている。そのために、ワイヤレス給電装置10は、給電共振回路に接続された電圧型インバータ13をPWM制御する制御装置30において、周波数制御回路31を備える。周波数制御回路31は、電圧型インバータ13の出力電流を検出し、電圧型インバータ13の出力電力の力率が1となるように、電圧型インバータ13の出力電圧の位相周波数制御を行う。具体的には、周波数制御回路31は、電圧型インバータ13が零電流スイッチングを行うように制御する。
 ところで、近年、非接触(無線)で電力伝送を行うワイヤレス電力伝送システムとして、ワイヤレス給電装置とワイヤレス受電装置との間の磁場共振現象(磁場共鳴現象)を利用して電力伝送を行うワイヤレス電力伝送システムが考案されている。このワイヤレス電力伝送システムでも、ワイヤレス給電装置は、給電コイルと給電コンデンサとを有する給電共振回路を備え、また、ワイヤレス受電装置も、受電コイルと受電コンデンサとを有する受電共振回路を備える。これらの間で磁場共振現象を利用して非接触で電力伝送が行われる。
特開2010-166693号公報
 ところで、本願発明者は、特許文献1に開示の技術を、磁場共振現象を利用したワイヤレス電力伝送システムに適用した場合、給電共振回路と受電共振回路との2つの共振回路を備えるシステムでは、伝送電力の力率が1となる周波数が2つ存在することを発見した。これにより、このようなワイヤレス電力伝送システムでは、伝送電力の力率を1とする位相周波数制御を行う場合に、誤動作の虞がある。
 そこで、本発明は、磁場共振現象を利用して非接触で電力伝送を行う際に、誤動作なく、効率的な電力伝送を行うことが可能なワイヤレス給電装置、ワイヤレス受電装置、及び、ワイヤレス電力伝送システムを提供することを目的とする。
 本発明のワイヤレス給電装置は、受電コイルと受電コンデンサとを含む受電共振回路を有するワイヤレス受電装置に非接触で電力供給を行うワイヤレス給電装置であって、給電コイルと、受電共振回路の共振電流を検出する共振電流検出器と、給電コイルに交流電流を供給することによって、給電コイルと受電コイルとの磁場共振現象に基づき、給電コイルから受電コイルに電力供給を行わせる制御回路であって、交流電流の周波数と共振電流検出器によって検出した共振電流の周波数とを関連付ける当該制御回路とを備え、給電コイルは、実質的に共振回路を構成せず、共振電流検出器は、検出コイルと検出コンデンサとを含む検出共振回路を有し、検出コイルと受電コイルとの磁場共振現象に基づき、受電共振回路の共振電流を検出し、共振電流検出器における検出コイルの巻回領域は、給電コイルの巻回領域より小さく、共振電流検出器における検出コイルは、巻回中心軸が給電コイルによって生じる磁場ベクトルに対して80°以上100°以下の角度をなすように配置されている。
 ここで、「実質的に共振回路を構成しない」とは、受電共振回路の共振周波数を共振周波数とする共振回路を形成しないことを意味するものであり、給電コイルが何らかの回路要素と偶発的に共振することまでも排除する意味ではない。例えば、「実質的に共振回路を構成しない」とは、受電共振回路の共振周波数を共振周波数とする共振回路を形成するために、給電コイルに対して直列又は並列にコンデンサを設けることを行わないことを意味するものである。
 また、「給電コイルと受電コイルとの磁場共振現象」とは、給電コイルによって発生する交流磁場に基づく受電共振回路の共振現象を意味する。給電コイルに交流電流を供給すると、給電コイルによって交流磁場が発生する。これによって、給電コイルと受電コイルとが磁場結合し、受電共振回路が共振する。その際、例えば、交流電流の周波数と受電共振回路の共振周波数とを関連付ければ、給電コイル自体が共振しなくても、伝送電力の力率を1とすることができ、高効率な電力伝送を行うことが可能となる。例えば、「交流電流の周波数と受電共振回路の共振周波数とを関連付ける」とは、交流電流の周波数と受電共振回路の共振周波数とを略一致させることである。なお、交流電流の周波数と受電共振回路の共振周波数とは完全に一致せずとも、例えば、±20%程度の誤差範囲内で略一致させれば、伝送電力の力率を高めることができ、高効率な電力伝送を行うことが可能となる。これより、「交流電流の周波数と受電共振回路の共振周波数とを関連付ける」とは、交流電流の周波数と受電共振回路の共振周波数とを±20%程度の誤差範囲内で略一致させることも含むものとする。
 また、「受電共振回路の共振電流を検出する」とは、受電共振回路を流れる共振電流に応じた信号(共振電流に関しての情報)を検出することを意味している。
 このように、このワイヤレス給電装置によれば、給電コイルが実質的に共振回路を構成しないので、伝送電力の力率が1となる周波数は1つとなる。したがって、伝送電力の力率を1とする制御を行う場合に、すなわち、共振電流検出器及び制御回路によって、給電コイルに供給する交流電流の周波数と受電共振回路の共振電流の周波数とを関連付ける制御において、誤動作を防止することができる。
 ところで、このようなワイヤレス給電装置では、通常は、給電コイルを流れる電流を検出する電流センサや、或いはカレントトランスを用いて受電共振回路の共振電流を検出する。しかしながら、このようにして共振電流を検出すると、給電コイルが実質的に共振回路を構成しないので、例えば給電コイルと受電コイルとの間の距離が大きくなると、受電共振回路の共振電流を正確に検出することが困難となる場合があり改善の余地があった。
 そこで、このワイヤレス給電装置では、共振電流検出器によって、磁場共振現象を利用して非接触で受電共振回路の共振電流を検出する。また、共振電流検出器における検出コイルの巻回領域が、給電コイルの巻回領域より小さく、この検出コイルは、巻回中心軸が給電コイルによって生じる磁場ベクトル(磁力線)に対して80°以上100°以下の角度をなすように配置されている。これにより、共振電流検出器は、検出コイルと受電コイルとの磁場共振現象を利用して、非接触で受電共振回路の共振状態の情報を得ることが可能となるだけでなく、更に、給電コイルの磁場を検出することなく、受電コイルの磁場を正確に検出することが可能となる。
 上記した共振電流検出器における検出コイルの巻回領域の長さであって、給電コイルの巻回径方向における当該検出コイルの巻回領域の長さは、当該巻回径方向における給電コイルの巻回領域の長さの1/10倍以下である。更には、上記した共振電流検出器における検出コイルの巻回領域の長さであって、給電コイルの巻回径方向における当該検出コイルの巻回領域の長さは、当該巻回径方向における給電コイルの巻線領域の長さ以下である。この構成によれば、共振電流検出器は、給電コイルの磁場を検出することなく、受電コイルの磁場を正確に検出することが可能となる。
 また、上記した共振電流検出器における検出コイルは、給電コイルの巻線上に配置されている。この構成によれば、共振電流検出器は、給電コイルの磁場を検出することなく、受電コイルの磁場を正確に検出することが可能となる。
 また、上記した共振電流検出器は、検出共振回路のQ値を低下させるための検出抵抗素子を更に備える。共振電流検出器の目的は、受電側共振周波数をモニタするためであり、検出コイルには大電流を流す必要はない。
 また、上記したワイヤレス給電装置は、複数の共振電流検出器と、複数の共振電流検出器からの出力信号を加算する加算器とを更に備え、制御回路は、交流電流の周波数と加算器からの出力信号の周波数とを関連付ける。この構成によれば、給電コイルの巻回中心軸と受電コイルの巻回中心軸とが一致し(受電コイルが給電コイルに対して真上に位置し)、給電コイルと受電コイルとが互いに平行である場合のみならず、受電コイルが給電コイルに対して斜めにずれた場合(相対的に横方向にずれると共に、非平行となる場合)にも、受電共振回路の共振電流を効率的に検出することが可能となる。
 本発明の別のワイヤレス給電装置は、受電コイルと受電コンデンサとを含む受電共振回路を有するワイヤレス受電装置に非接触で電力供給を行うワイヤレス給電装置であって、給電コイルと、受電共振回路の共振電流を検出する共振電流検出器と、給電コイルに交流電流を供給することによって、給電コイルと受電コイルとの磁場共振現象に基づき、給電コイルから受電コイルに電力供給を行わせる制御回路であって、交流電流の周波数と共振電流検出器によって検出した共振電流の周波数とを関連付ける当該制御回路とを備え、給電コイルは、実質的に共振回路を構成せず、共振電流検出器は、磁気検出素子を有し、受電コイルの磁場に基づき、受電共振回路の共振電流を検出し、共振電流検出器における磁気検出素子の外形は、給電コイルの巻回領域より小さく、共振電流検出器における磁気検出素子は、磁気検出方向が給電コイルによって生じる磁場ベクトルに対して80°以上100°以下の角度をなすように配置されている。
 このワイヤレス給電装置でも、給電コイルが実質的に共振回路を構成しないので、伝送電力の力率が1となる周波数は1つとなる。したがって、伝送電力の力率を1とする制御を行う場合に、すなわち、共振電流検出器及び制御回路によって、給電コイルに供給する交流電流の周波数と受電共振回路の共振電流の周波数とを関連付ける制御において、誤動作を防止することができる。
 また、このワイヤレス給電装置では、共振電流検出器における磁気検出素子の外形が、給電コイルの巻回領域より小さく、この磁気検出素子は、磁気検出方向が給電コイルによって生じる磁場ベクトル(磁力線)に対して80°以上100°以下の角度をなすように配置されている。これにより、共振電流検出器は、給電コイルの磁場を検出することなく、受電コイルの磁場を正確に検出することが可能となる。
 本発明のワイヤレス受電装置は、上記のワイヤレス給電装置から非接触で電力取得を行うワイヤレス受電装置であって、受電コイルと受電コンデンサとを含む受電共振回路を有し、ワイヤレス給電装置における給電コイルとワイヤレス受電装置における受電コイルとの磁場共振現象に基づき、受電コイルによって給電コイルから電力取得を行う。
 このワイヤレス受電装置によれば、上記したワイヤレス給電装置から非接触で電力取得を行うので、伝送電力の力率を1とする制御を行う場合に、誤動作を防止することができる。また、共振電流検出器が給電コイルの磁場を検出することなく、受電コイルの磁場を正確に検出することが可能となる。
 本発明のワイヤレス電力伝送システムは、上記のワイヤレス給電装置と上記のワイヤレス受電装置との間で非接触で電力伝送を行うワイヤレス電力伝送システムであって、ワイヤレス給電装置における給電コイルとワイヤレス受電装置における受電コイルとの磁場共振現象に基づき、給電コイルから受電コイルに電力伝送を行う。
 このワイヤレス電力伝送システムによれば、上記したワイヤレス給電装置から非接触で電力取得を行うので、伝送電力の力率を1とする制御を行う場合に、誤動作を防止することができる。また、給電コイルの磁場を検出することなく、受電コイルの磁場を正確に検出することが可能となる。
 本発明によれば、磁場共振現象を利用して非接触で電力伝送を行う際に、誤動作なく、効率的な電力伝送を行うことができる。
図1は、図3に示す給電コイル、検出コイル、受電コイル、及び、受電ロードコイルの物理的な構造を示す断面図である。 図2は、図1に示す検出コイルの複数の例を示す図である。 図3は、本発明の第1の実施形態に係るワイヤレス電力伝送システム、ワイヤレス給電装置、及び、ワイヤレス受電装置の電気的な構成を示す図である。 図4は、本発明の第2の実施形態に係るワイヤレス給電装置の電気的な構成を示す図である。 図5は、給電コイルに対する検出コイルの複数の配置例を示す図である。 図6は、図5に示す検出コイルによって検出した磁場共振状態を示す図である。 図7は、給電コイルと受電コイルとの距離に対する共振周波数を示す図である。 図8は、給電コイルの交流電流の周波数に対する受電共振回路の共振電流を示す図である(給電コイルと受電コイルとの距離80mm) 図9は、図5に示す検出コイルによって検出する電流であって、給電コイル1の磁場に基づく電流を模式的に示す図である。 図10は、図11に示す給電コイル及び検出コイルの物理的な構造を示す上面図及び断面図である。 図11は、本発明の第3の実施形態に係るワイヤレス給電装置の電気的な構成を示す図である。 図12は、給電コイルと受電コイルとの位置ずれを模式的に示す図である。 図13は、給電コイルに対する検出コイルの複数の配置例を示す図である。 図14は、給電コイルに対する磁気検出素子の複数の配置例を示す図である。 図15は、本発明の変形例に係るワイヤレス電力伝送システム、ワイヤレス給電装置、及び、ワイヤレス受電装置の主要部構成を示す断面図である。 図16は、給電コイル及び検出コイルの複数の形状例を示す図である。 図17は、給電コイルに対する検出コイルの複数の配置例を示す図である。
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
[第1の実施形態]
 図3は、本発明の第1の実施形態に係るワイヤレス電力伝送システムの電気的な構成を示す図である。図3に示すワイヤレス電力伝送システム100は、ワイヤレス給電装置110とワイヤレス受電装置120とを備え、ワイヤレス給電装置110からワイヤレス受電装置120へ非接触で電力伝送を行うものである。
 ワイヤレス給電装置110は、給電コイル1と、共振電流検出器6と、制御回路111とを有する。一方、ワイヤレス受電装置120は、受電コイル7と受電コンデンサ8とからなる受電共振回路122を有する。
 ワイヤレス給電装置110では、制御回路111が、給電コイル1に交流電流(例えば、方形波または正弦波の電流)を供給することによって、給電コイル1と受電コイル7との磁場共振現象に基づき、給電コイル1から受電コイル7に電力供給が行われる。ここで、「給電コイル1と受電コイル7との磁場共振現象」とは、給電コイル1によって発生する交流磁場に基づく受電共振回路122の共振現象を意味する。給電コイル1に交流電流を供給すると、給電コイル1によって交流磁場が発生する。これによって、給電コイル1と受電コイル7とが磁場結合し、受電共振回路122が共振する。その際、制御回路111は、交流電流の周波数を、共振電流検出器6によって検出された受電共振回路122の共振電流の周波数に一致させる。すると、給電コイル1自体が共振しなくても、伝送電力の力率を1とすることができ、高効率な電力伝送を行うことが可能となる。
 このように、ワイヤレス給電装置110では、給電コイル1は、実質的に共振回路を構成しない。ここで、「実質的に共振回路を構成しない」とは、受電共振回路122の共振周波数を共振周波数とする共振回路を形成しないことを意味するものであり、給電コイル1が何らかの回路要素と偶発的に共振することまでも排除する意味ではない。例えば、「実質的に共振回路を構成しない」とは、受電共振回路122の共振周波数を共振周波数とする共振回路を形成するために、給電コイル1に対して直列又は並列にコンデンサを設けることを行わないことを意味するものである。
 ワイヤレス給電装置110では、給電コイル1と受電コイル7との磁場結合が強くなればなるほど受電共振回路122の共振周波数に影響が及ぶ。すなわち、給電コイル1と受電コイル7とを十分に磁場結合できる程度に近づけた状態での受電共振回路122の共振周波数は、給電コイル1と受電コイル7との磁場結合を無視できるほど両者が充分に離れた状態における受電共振回路122単独での共振周波数に対してずれていく。受電共振回路122の共振周波数近傍の周波数の交流電流を給電コイル1に供給することにより、磁場共振型のワイヤレス給電が実現可能となる。
 なお、ワイヤレス受電装置120では、受電コイル7と磁場結合する受電ロードコイル9を介して、負荷10に電力が供給される。これにより、負荷10に起因する受電共振回路のQ値の低下を抑制することができる。
 次に、ワイヤレス給電装置110における制御回路111について詳細に説明する。制御回路111は、高周波増幅器2と、位相比較器3と、ローパスフィルタ(LPF)4と、電圧制御発振器(VCO)5とを有する。
 位相比較器3は、共振電流検出器6によって検出された受電共振回路122の共振電流に応じた電圧と、VCO5からの出力電圧との位相差に応じたパルス電圧を生成し、LPF4へ出力する。LPF4は、位相比較器3からのパルス電圧を平均化し、それをVCO5へ出力する。VCO5は、LPF4からの電圧を制御電圧として、この電圧に応じた周波数を有する交流電圧を生成する。このように、位相比較器3、LPF4、及び、VCO5は、いわゆるPLL回路を構成し、共振電流検出器6によって検出された受電共振回路122の共振電流の位相周波数に応じた位相周波数を有する交流電圧を生成する。
 高周波増幅器2は、この交流電圧に応じて、受電共振回路122の共振電流の位相周波数に一致した位相周波数を有する交流電流を、給電コイル1に供給する。
 次に、ワイヤレス給電装置110における共振電流検出器6について詳細に説明する。共振電流検出器6は、検出コイル6aと、検出抵抗素子6bと、検出コンデンサ6cとからなる直列の検出共振回路112を有する。検出コイル6aと受電コイル7との磁場結合を無視できるほど両者が十分に離れた状態では、検出共振回路112の共振周波数が受電共振回路122の共振周波数とほぼ等しくなるように、検出コイル6aのインダクタンス、検出コンデンサ6cのキャパシタンス、受電コイル7のインダクタンス、受電コンデンサ8のキャパシタンスが設定されている。したがって、検出コイル6aと受電コイル7との磁場共振現象(検出共振回路112と受電共振回路122との磁場共振現象)に基づき、受電共振回路122の共振電流を検出する。これにより、給電コイルが実質的に共振回路を構成しない場合においても、共振電流検出器6は、磁場共振現象を利用して、非接触で受電共振回路122の共振状態の情報を得ることが可能となる。本実施形態では、受電共振回路122の共振電流の位相周波数情報として、検出コンデンサ6cの両端電圧が位相比較器3に供給される。検出コンデンサ6cは、検出コイル6aの浮遊容量として形成されていてもよいし、集中定数素子 (Lumped element)として設けられていてもよく、検出コイル6aと共振回路を形成すればよい。
 図1は、図3に示す給電コイル1、検出コイル6a、受電コイル7、及び、受電ロードコイル9の物理的な構造を示す断面図である。なお、図1には、これらのコイルの周辺回路要素が電気的に示されている。
 給電コイル1と受電コイル7とは、互いに対向して設けられており、受電ロードコイル9は、受電コイル7の外周を巻回している。そして、検出コイル6aは、給電コイル1と受電コイル7との間において、給電コイル1に隣接している。給電コイル1は、例えばスパイラルコイルでもよいし、ソレノイドコイルでもよいし、ループコイルであってもよい。また、検出コイル6aは、図2に示すように、空芯コイルであってもよいし(図2a)、円筒型のフェライトを磁心としたコイルであってもよいし(図2b)、ドラム型フェライトを磁心としたコイルであってもよい(図2c)。
 また、給電コイル1及び検出コイル6aは、図16に示すように、円形状に巻回していてもよいし(図16a)、楕円形状に巻回していてもよいし(図16b)、長方形状に巻回していてもよいし(図16c)、あるいは、多角形状に巻回していてもよい。なお、受電コイル7及び受電ロードコイル9は、給電コイル1に対応した形状であることが好ましい。
 この検出コイル6aの巻回領域RE6aは、給電コイル1の巻回領域RE1よりも十分に小さい(例えば、巻線の巻回領域の面積比で1/10以下であることが好ましく、更に好ましくは1/100以下である)。例えば、給電コイル1の巻回径方向Rにおける検出コイル6aの巻回領域RE6aの長さ(円形状の場合には巻回径)r6aは、巻回径方向Rにおける給電コイル1の巻回領域RE1の長さ(円形状の場合には巻回径)r1の1/10倍以下であることが好ましい。更に好ましくは、巻回径方向Rにおける検出コイル6aの巻回領域RE6aの長さr6aは、巻回径方向Rにおける給電コイル1の巻線領域の長さ(コイル巻線の巻幅、給電コイル1の巻数が1である場合には巻線径)d1以下である。検出コイル6aの巻回領域RE6aが比較的大きいと、検出コイル6aによって発生する磁場が比較的大きくなり、給電コイル1及び受電コイル7に影響を与えてしまう。しかしながら、本実施形態によれば、検出コイル6aの巻回領域RE6aが比較的小さいので、検出コイル6aによって発生する磁場の強さを十分に小さくすることができ、給電コイル1及び受電コイル7への影響を低減することができる。また、検出コイル6aの巻回領域RE6aが比較的大きいと、給電コイル1と検出共振回路112とが共振回路を構成してしまい、共振周波数が2つ存在してしまうこととなるが、本実施形態によれば、検出コイル6aの巻回領域RE6aが比較的小さいので、給電コイル1と検出共振回路112とが共振回路を構成することがない。
 また、検出コイル6aは、図17(a)~(c)に示すように、巻回中心軸Xが給電コイル1によって生じる磁場ベクトル(磁力線)Hに対して90°±10°の角度の範囲にあるように配置されている。これにより、検出コイル6aは給電コイル1の磁場の影響を受けない。なお、検出コイル6aの巻回中心軸Xは、磁場ベクトルHに対して90°±5°の角度の範囲にあることが好ましく、磁場ベクトルHに直交することが更に好ましい。
 図13(a)に示すように、検出コイル6aは、給電コイル1の巻線上に配置されることとなる。しかしながら、図13(b),(c)に示すように、検出コイル6aは、巻回中心軸Xが磁場ベクトルHに対して90°±10°の角度の範囲にあるように、磁場ベクトルHに沿って、給電コイル1の巻線の周りを周回するように傾けて配置されてもよい。例えば、図13(a)に対して(θ=0°)、図13(b)では、検出コイル6aの巻回中心軸Xがθ=10°傾けられており、図13(c)では、検出コイル6aの巻回中心軸Xがθ=20°傾けられている。ここで、例えば、検出コイル6aが給電コイル1の巻線の略真上に配置されている場合には給電コイル1の巻回径方向Rや、給電コイル1の巻回領域の面(給電コイル面)に沿った方向を磁場ベクトルHの方向として定めても良い。また、例えば、給電コイル1により生じる磁場ベクトルHの方向を、電磁界シミュレーションにより定めてもよいし、更には、ホール素子を用いて磁場ベクトルHの方向を直接求めてもよい。また、検出コイル6aは、検出コイル6aの巻回中心軸Xが給電コイル1によって生じる磁場ベクトルHに対して90°±10°の角度の範囲にあるような位置に配置されていれば位置は特に限定されないが、図1や図13に示すように、給電コイル1の近傍であって、給電コイル1と受電コイル7とが対抗する側に配置されていることが好ましく、給電コイル1の巻線上であると更に好ましい。
 また、検出コイル6aを含む検出共振回路では、検出抵抗素子6bによってQ値を下げ、検出共振回路の共振電流を低下させている。共振電流検出器6の目的は、受電側共振周波数をモニタするためであり、検出コイル6aには大電流を流す必要はない。検出抵抗素子6bは、検出共振回路のQ値低下手段であり、図3のように、検出コイル6aや検出コンデンサ6cとは独立して設けられていてもよいし、Q値の小さな検出コイル6aや検出コンデンサ6cを用いて、その等価抵抗成分として設けられていてもよい。
 この第1の実施形態のワイヤレス給電装置110、ワイヤレス受電装置120、及び、ワイヤレス電力伝送システム100によれば、給電コイル1と受電コイル7との距離が変化して、給電コイル1と受電コイル7との相互インダクタンスが変化しても、図7に示すように、共振電流検出器6及び制御回路111によって、給電コイル1に供給する交流電流の周波数を受電共振回路122の共振電流の周波数に一致させるように自動的に制御される。したがって、常に、伝送電力の力率が1となり、伝送電力が最大となる。
 そして、第1の実施形態のワイヤレス給電装置110、ワイヤレス受電装置120、及び、ワイヤレス電力伝送システム100によれば、給電コイル1が実質的に共振回路を構成しないので、図8に示すように、伝送電力の力率が1となる周波数は1つとなる。したがって、伝送電力の力率を1とする位相周波数制御を行う場合に、すなわち、共振電流検出器6及び制御回路111によって、給電コイル1に供給する交流電流の周波数を受電共振回路122の共振電流の周波数に一致させる自動制御において、誤動作を防止することができる。
 ところで、このようなワイヤレス給電装置では、通常は、給電コイルを流れる電流を検出する電流センサや、或いはカレントトランスを用いて非接触で受電共振回路の共振電流を検出する。しかしながら、このようにして共振電流を検出すると、給電コイルが実質的に共振回路を構成しないので、例えば、給電コイルと受電コイルとの間の距離が大きくなると、受電共振回路の共振電流を正確に検出することが困難となる場合があり改善の余地があった。
 そこで、第1の実施形態のワイヤレス給電装置110、ワイヤレス受電装置120、及び、ワイヤレス電力伝送システム100では、共振電流検出器6における検出コイル6aの巻回領域R6aが、給電コイル1の巻回領域RE1より小さく、この検出コイル6aは、巻回中心軸Xが給電コイル1によって生じる磁場ベクトル(磁力線)Hに対して90°±10°の角度をなすように配置されている。これにより、共振電流検出器6は、検出コイル6aと受電コイル7との磁場共振現象を利用して、非接触で受電共振回路122の共振状態の情報を得ることが可能となるだけでなく、更に、給電コイル1の磁場を検出することなく、受電コイルの磁場を正確に検出することが可能となる。以下では、この作用効果について検証する。
 図5(A)~(D)は、検出コイル6aの異なる配置を示す図である。図5(A)では、給電コイル1の巻回中心軸(例えば、給電コイル1の巻線が円形に巻回されている場合、給電コイル1の巻回領域の中央)に検出コイル6aを配置し、図5(B)では、給電コイル1の巻線の内側近傍に検出コイル6aを配置し、図5(C)では、給電コイル1の巻線の外側近傍に検出コイル6aを配置した。そして、図5(D)では、本実施形態のように、給電コイル1の巻線の略真上に検出コイル6aを配置した。
 また、図6(A)~(D)は、それぞれ、図5(A)~(D)に示す検出コイル6aによって検出した磁場共振状態を示す図である。図6では、検出コンデンサ6cの両端電圧及び電流を検出し、これらの電圧と電流との位相差P6を示す。位相差は、電圧位相を基準として電流位相が進んでいる状態をマイナスとし、逆に遅れている状態をプラスとして表す。なお、この測定では、VCOの周波数を強制変更して、周波数を変更した。また、比較のために、受電コイル7の共振状態として、受電コイル7の電圧と電流との位相差P7も示す。受電コイル7の電圧及び電流は、電流プローブ測定器を使用し、受電コイル7を直接プロービングすることにより得た。なお、検出コイル6aと受電コイル7と距離は80mmである。
 また、図9(A)~(D)は、それぞれ、図5(A)~(D)に示す検出コイル6aによって検出する電流であって、給電コイル1の磁場に基づく電流を模式的に示す図である。
 図6(A)によれば、検出コイル6aが給電コイル1の巻回中心軸に配置される場合、検出共振回路112の電圧と電流との位相差P6は、受電共振回路122の電圧と電流との位相差P7に一致しておらず、またゼロになる周波数(制御回路の制御ポイント)がない。これより、図5(A)に示す検出コイル6aの配置では、受電共振回路122の共振状態を検出することが困難であった。これは、図9(A)に示すように、検出コイル6aが給電コイル1の磁場をも検出してしまうことにより、受電コイル7が発生する磁場の正しい位相が検出できないことによるものと考えられる。
 同様に、図6(B)によれば、検出コイル6aが給電コイル1の巻線の内側近傍に配置される場合、検出共振回路112における電圧と電流との位相差P6は、受電共振回路122の電圧と電流との位相差P7に一致しておらず、またゼロになる周波数がない。これより、図5(B)に示す検出コイル6aの配置でも、受電共振回路122の共振状態を検出することが困難であった。これは、図9(B)に示すように、検出コイル6aが給電コイル1の磁場をも検出してしまうことにより、受電コイル7が発生する磁場の正しい位相が検出できないことによるものと考えられる。
 同様に、図6(C)によれば、検出コイル6aが給電コイル1の巻線の外側近傍に配置される場合、検出共振回路112における電圧と電流との位相差P6は、受電共振回路122の電圧と電流との位相差P7に一致しておらず、またゼロになる周波数がない。これより、図5(C)に示す検出コイル6aの配置でも、受電共振回路122の共振状態を検出することが困難であった。これは、図9(C)に示すように、検出コイル6aが給電コイル1の磁場(逆位相)をも検出してしまうことにより、受電コイル7が発生する磁場の正しい位相が検出できないことによるものと考えられる。
 一方、図6(D)によれば、本実施形態のように、検出コイル6aが給電コイル1の巻線のほぼ真上に配置される場合、検出共振回路112における電圧と電流との位相差P6は、受電共振回路122の電圧と電流との位相差P7と一致した。これより、図5(D)に示す検出コイル6aの配置によれば、受電共振回路122の共振状態を正確に検出することができた。これは、検出コイル6aの巻回中心軸Xが給電コイル1によって発生する磁場ベクトルHに直交するので、検出コイル6aは、図9(D)に示すように、給電コイル1によって発生する磁場を検出することなく、受電コイル7によって発生する磁場を主として検出することによるものと考えられる。
[第2の実施形態]
 図4は、本発明の第2の実施形態に係るワイヤレス給電装置110Aの電気的な構成を示す図である。このように、ワイヤレス電力伝送システム100は、ワイヤレス給電装置110に代えてワイヤレス給電装置110Aを備えてもよい。
 ワイヤレス給電装置110Aは、ワイヤレス給電装置110において共振電流検出器6に代えて共振電流検出器6Aを備えている点で第1の実施形態と異なる。ワイヤレス給電装置110Aのその他の構成はワイヤレス給電装置110と同一である。
 共振電流検出器6Aは、共振電流検出器6において、検出コイル6a、検出抵抗素子6b、及び、検出コンデンサ6cからなる検出共振回路112に代えて、ホール素子(磁気検出素子、磁気センサ)6d、電流源6e、オペアンプ6f、及び、抵抗素子R1,R2を有する。
 ホール素子6dは、電流源6eからの電流によって駆動され、受電コイル7によって発生する磁場に基づいて、受電コイル7の共振電流に応じた電圧を生成し、抵抗素子R1を介してオペアンプ6fへ出力する。オペアンプ6fのマイナス入力端子と出力端子の間には抵抗素子R2が接続されており、プラス入力端子と接地電位との間にも抵抗素子R2が接続されている。オペアンプ6fは、R2/R1で表される増幅率で信号を増幅する。
 このホール素子6dの外形は、給電コイル1の巻回領域RE1よりも十分に小さい。例えば、ホール素子6dの外形は、給電コイル1の巻回径方向Rにおける給電コイル1の巻回領域RE1の長さ(円形状の場合には巻回径)r1の1/10倍以下であることが好ましく、更に好ましくは、巻回径方向Rにおける給電コイル1の巻線領域の長さ(コイル巻線の巻幅、給電コイル1の巻数が1である場合には巻線径)d1以下である。
 また、ホール素子6dは、図14(a)~(b)に示すように、磁気検出方向Xが給電コイル1によって生じる磁場ベクトル(磁力線)Hに対して90°±10°の角度をなすように配置されている。なお、ホール素子6dの磁気検出方向Xは、磁場ベクトルHに対して90°±5°の角度をなすことが好ましく、磁場ベクトルHに直交することが更に好ましい。
 具体的には、図2d及び図14(a)に示すように、ホール素子6dは、給電コイル1の巻線上に配置されることとなる。しかしながら、図14(b)に示すように、ホール素子6dは、磁気検出方向Xが磁場ベクトルHに対して90°±10°の角度をなすように、磁場ベクトルHに沿って、給電コイル1の巻線の周りを周回するように傾けて配置されてもよい。例えば、図14(a)に対して(θ=0°)、図14(b)では、ホール素子6dの磁気検出方向Xがθ=10°傾けられている。
 なお、ホール素子6dに代えてGMR素子、TMR素子等の磁気センサが用いられてもよい。
 この第2の実施形態のワイヤレス給電装置110Aでも、第1の実施形態のワイヤレス給電装置110と同様の利点を得ることができる。
[第3の実施形態]
 図11は、本発明の第3の実施形態に係るワイヤレス給電装置110Bの電気的な構成を示す図である。このように、ワイヤレス電力伝送システム100は、ワイヤレス給電装置110に代えてワイヤレス給電装置110Bを備えてもよい。
 ワイヤレス給電装置110Bは、ワイヤレス給電装置110において共振電流検出器6に代えて4つの共振電流検出器6を備え、更に加算器11を備えている点で第1の実施形態と異なる。加算器11は、4つの共振電流検出器6における検出コンデンサ6cの両端電圧を加算し、位相比較器3へ出力する。ワイヤレス給電装置110Bのその他の構成はワイヤレス給電装置110と同一である。
 図10(a)は、4つの共振電流検出器6における検出コイル6aの給電コイル1に対する配置を受電コイル側から示す図であり、図10(b)は、図10(a)におけるX-X線に沿う断面図である。検出コイル6aは、給電コイル1の巻回周上において、それぞれ90°ずつずれて、等間隔に配置されている。
 この第3の実施形態のワイヤレス給電装置110Bでも、第1の実施形態のワイヤレス給電装置110と同様の利点を得ることができる。
 更に、第3の実施形態のワイヤレス給電装置110Bによれば、図12(a)に示すように、給電コイル1の巻回中心軸と受電コイル7の巻回中心軸とが一致し(受電コイル7が給電コイル1に対して真上に位置し)、給電コイル1と受電コイル7とが互いに平行である場合のみならず、図12(b)に示すように、受電コイル7が給電コイル1に対して斜めにずれた場合(相対的に横方向にずれると共に、非平行となる場合)にも、受電共振回路122の共振電流を効率的に検出することが可能となる。
 なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。例えば、第3の実施形態では、共振電流検出器を4個備える形態を例示したが、共振電流検出器の数はこれに限定されない。例えば、共振電流検出器は2個でも3個でも良いし、あるいは5個以上でもあってもよい。また、これらの共振電流検出器は、給電コイルの巻回周上において等間隔に配置されなくてもよい。
 また、第3の実施形態では、給電コイルに対する受電コイルのずれを、複数の共振電流検出器を備えることで解消する例を示したが、図15に示すように、アクチュエータ部12を備えることによって解消してもよい。図15に示すように、給電コイル1の巻回面に対して受電コイル7の巻回面が斜めに向かい合うような位置関係となる場合、給電コイル1の巻回面と受電コイル7の巻回面とが常に平行になるようにアクチュエータ部12を制御する。これにより、電力伝送効率が向上すると共に、更に共振電流検出器を設けた場合には、磁場共振状態をより安定して検出することが可能となる。
 また、本実施の形態では、制御回路111は、給電コイル1に供給する交流電流の周波数と受電側共振回路122の共振電流の周波数とを一致させるように制御しているが、交流電流の周波数と受電共振回路122の共振周波数とは完全に一致せずとも、例えば、±20%程度の誤差範囲内で略一致させれば(関連付ければ)、伝送電力の力率を高めることができ、高効率な電力伝送を行うことが可能となる。
 また、本実施の形態では、制御回路111は、受電側共振回路122の共振電流の周波数に一致した周波数を有する交流電流を、給電コイル1に供給するようにして、受電側共振回路122の共振電流の周波数と、給電コイル1に供給する交流電流の周波数とを一致させるように制御しているが、制御回路111は、受電側共振回路122の共振電流の周波数に略一致させるように、例えば、給電コイル1のインダクタンスを調整することにより、受電側共振回路122の共振電流の周波数と、給電コイル1に供給する交流電流の周波数とを略一致させるように制御してもよい。
 また、本発明の特徴は、電力伝送のみならず、信号伝送においても適用可能である。例えば、磁場共振現象を利用して、アナログ信号やデジタル信号を非接触で伝送する場合にも、本発明のワイヤレス電力伝送システムを適用可能である。
 なお、本発明は、(1)携帯電話、音楽プレーヤー、TVやゲーム機等のコントローラ、LED照明などの家電製品への非接触給電又は充電、(2)工場内の搬送ロボット、2足ロボット、掃除ロボットなどの産業機器への非接触給電又は充電、(3)例えば、車体に受電コイルを配置し、駐車場や道路等に給電コイルを埋設するHEV、EV等の非接触充電、(4)太陽光発電から住宅内の家電製品、照明などへの非接触給電又は充電を行うシステムに適用可能である。
 なお、本明細書では、磁場共振現象のための素子を「コイル」と称したが、関連の技術分野によっては、「トランスミッタ」や「アンテナ」等と称することもある。
 以上、好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置及び詳細において変更され得ることができることは、当業者によって認識される。本発明は実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲及びその精神の範囲から来るすべての修正及び変更に権利を請求する。
 磁場共振現象を利用して非接触で電力伝送を行う際に、誤動作なく、効率的な電力伝送を行う用途に適用することができる。
 1 給電コイル、
 2 高周波増幅器
 3 位相比較器
 6,6A 共振電流検出器
 6a 検出コイル
 6b 検出抵抗素子
 6c 検出コンデンサ
 6d ホール素子
 6e 電流源
 6f オペアンプ
 7 受電コイル
 8 受電コンデンサ
 9 受電ロードコイル
 10 負荷
 11 加算器
 12 アクチュエータ部
 100 ワイヤレス電力伝送システム
 110,110A,110B ワイヤレス給電装置
 111 制御回路
 112 検出共振回路
 120 ワイヤレス受電装置
 122 受電共振回路

Claims (10)

  1.  受電コイルと受電コンデンサとを含む受電共振回路を有するワイヤレス受電装置に非接触で電力供給を行うワイヤレス給電装置であって、
     給電コイルと、
     前記受電共振回路の共振電流を検出する共振電流検出器と、
     前記給電コイルに交流電流を供給することによって、前記給電コイルと前記受電コイルとの磁場共振現象に基づき、前記給電コイルから前記受電コイルに電力供給を行わせる制御回路であって、前記交流電流の周波数と前記共振電流検出器によって検出した共振電流の周波数とを関連付ける当該制御回路と、を備え、
     前記給電コイルは、実質的に共振回路を構成せず、
     前記共振電流検出器は、検出コイルと検出コンデンサとを含む検出共振回路を有し、前記検出コイルと前記受電コイルとの磁場共振現象に基づき、前記受電共振回路の共振電流を検出し、
     前記共振電流検出器における前記検出コイルの巻回領域は、前記給電コイルの巻回領域より小さく、
     前記共振電流検出器における前記検出コイルは、巻回中心軸が前記給電コイルによって生じる磁場ベクトルに対して80°以上100°以下の角度をなすように配置されている、
    ワイヤレス給電装置。
  2.  前記共振電流検出器における前記検出コイルの巻回領域の長さであって、前記給電コイルの巻回径方向における当該検出コイルの巻回領域の長さは、当該巻回径方向における前記給電コイルの巻回領域の長さの1/10倍以下である、請求項1に記載のワイヤレス給電装置。
  3.  前記共振電流検出器における前記検出コイルの巻回領域の長さであって、前記給電コイルの巻回径方向における当該検出コイルの巻回領域の長さは、当該巻回径方向における前記給電コイルの巻線領域の長さ以下である、請求項1に記載のワイヤレス給電装置。
  4.  前記共振電流検出器における前記検出コイルは、前記給電コイルの巻線上に配置されている、請求項2に記載のワイヤレス給電装置。
  5.  前記共振電流検出器における前記検出コイルは、前記給電コイルの巻線上に配置されている、請求項3に記載のワイヤレス給電装置。
  6.  前記共振電流検出器は、前記検出共振回路のQ値を低下させるための検出抵抗素子を更に備える、請求項1に記載のワイヤレス給電装置。
  7.  複数の前記共振電流検出器と、複数の前記共振電流検出器からの出力信号を加算する加算器とを更に備え、
     前記制御回路は、前記交流電流の周波数と前記加算器からの出力信号の周波数とを関連付ける、
    請求項1に記載のワイヤレス給電装置。
  8.  受電コイルと受電コンデンサとを含む受電共振回路を有するワイヤレス受電装置に非接触で電力供給を行うワイヤレス給電装置であって、
     給電コイルと、
     前記受電共振回路の共振電流を検出する共振電流検出器と、
     前記給電コイルに交流電流を供給することによって、前記給電コイルと前記受電コイルとの磁場共振現象に基づき、前記給電コイルから前記受電コイルに電力供給を行わせる制御回路であって、前記交流電流の周波数と前記共振電流検出器によって検出した共振電流の周波数とを関連付ける当該制御回路と、を備え、
     前記給電コイルは、実質的に共振回路を構成せず、
     前記共振電流検出器は、磁気検出素子を有し、前記受電コイルの磁場に基づき、前記受電共振回路の共振電流を検出し、
     前記共振電流検出器における前記磁気検出素子の外形は、前記給電コイルの巻回領域より小さく、
     前記共振電流検出器における前記磁気検出素子は、磁気検出方向が前記給電コイルによって生じる磁場ベクトルに対して80°以上100°以下の角度をなすように配置されている、
    ワイヤレス給電装置。
  9.  請求項1~8の何れか1項に記載のワイヤレス給電装置から非接触で電力取得を行うワイヤレス受電装置であって、
     受電コイルと受電コンデンサとを含む受電共振回路を有し、前記ワイヤレス給電装置における給電コイルと前記受電コイルとの磁場共振現象に基づき、前記受電コイルによって前記給電コイルから電力取得を行う当該ワイヤレス受電装置。
  10.  請求項1~8の何れか1項に記載のワイヤレス給電装置と請求項9に記載のワイヤレス受電装置との間で非接触で電力伝送を行うワイヤレス電力伝送システムであって、前記ワイヤレス給電装置における給電コイルと前記ワイヤレス受電装置における受電コイルとの磁場共振現象に基づき、前記給電コイルから前記受電コイルに電力伝送を行うワイヤレス電力伝送システム。
PCT/JP2011/078813 2010-12-28 2011-12-13 ワイヤレス給電装置、ワイヤレス受電装置、ワイヤレス電力伝送システム WO2012090701A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550815A JP5522271B2 (ja) 2010-12-28 2011-12-13 ワイヤレス給電装置、ワイヤレス受電装置、ワイヤレス電力伝送システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201061427607P 2010-12-28 2010-12-28
US61/427,607 2010-12-28
US13/250,054 2011-09-30
US13/250,054 US8669677B2 (en) 2010-12-28 2011-09-30 Wireless power feeder, wireless power receiver, and wireless power transmission system

Publications (1)

Publication Number Publication Date
WO2012090701A1 true WO2012090701A1 (ja) 2012-07-05

Family

ID=46315735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078813 WO2012090701A1 (ja) 2010-12-28 2011-12-13 ワイヤレス給電装置、ワイヤレス受電装置、ワイヤレス電力伝送システム

Country Status (3)

Country Link
US (1) US8669677B2 (ja)
JP (1) JP5522271B2 (ja)
WO (1) WO2012090701A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488760B2 (ja) * 2011-02-22 2014-05-14 Tdk株式会社 ワイヤレス給電装置、ワイヤレス受電装置およびワイヤレス電力伝送システム
JP2016226236A (ja) * 2015-06-03 2016-12-28 有限会社日本テクモ 非接触給電装置及び非接触受電装置
WO2018037698A1 (ja) * 2016-08-26 2018-03-01 株式会社日立製作所 無線通信機
JP7443825B2 (ja) 2020-03-02 2024-03-06 Tdk株式会社 コイル部品

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2293411B1 (en) * 2009-09-03 2021-12-15 TDK Corporation Wireless power feeder and wireless power transmission system
JP5736991B2 (ja) * 2010-07-22 2015-06-17 Tdk株式会社 ワイヤレス給電装置およびワイヤレス電力伝送システム
US9893566B2 (en) * 2011-06-30 2018-02-13 Yazaki Corporation Power supply system
JP6035711B2 (ja) * 2011-07-21 2016-11-30 ソニー株式会社 検知装置、受電装置、送電装置、非接触電力伝送システム及び検知方法
JP5838768B2 (ja) 2011-11-30 2016-01-06 ソニー株式会社 検知装置、受電装置、非接触電力伝送システム及び検知方法
JP2013192391A (ja) * 2012-03-14 2013-09-26 Sony Corp 検知装置、受電装置、送電装置及び非接触給電システム
US9412513B2 (en) * 2012-03-30 2016-08-09 Tdk Corporation Wireless power transmission system
US9506952B2 (en) * 2012-12-31 2016-11-29 Veris Industries, Llc Power meter with automatic configuration
US10192678B2 (en) * 2013-02-21 2019-01-29 Ferrarispower Co., Ltd Current transformer system with sensor CT and generator CT separately arranged in parallel in electric power line, and integrated system for controlling same in wireless communications network
US9958480B2 (en) * 2015-02-10 2018-05-01 Qualcomm Incorporated Apparatus and method for a current sensor
KR101843064B1 (ko) 2015-10-22 2018-03-29 한국철도기술연구원 단상 공진형 무선 전력 전송 시스템의 동기 좌표계 dq 모델링을 이용한 부하 모니터링 방법 및 부하 추정 시스템
US10714960B2 (en) * 2015-12-22 2020-07-14 Intel Corporation Uniform wireless charging device
US11129996B2 (en) * 2016-06-15 2021-09-28 Boston Scientific Neuromodulation Corporation External charger for an implantable medical device for determining position and optimizing power transmission using resonant frequency as determined from at least one sense coil
TWI605664B (zh) * 2016-06-29 2017-11-11 立錡科技股份有限公司 諧振式無線電源發送電路及其控制方法
WO2020159323A1 (ko) * 2019-02-01 2020-08-06 주식회사 와이파워원 전기차량 및 산업용 장비의 주행 중 무선충전 급전 시스템
CN111293789B (zh) * 2020-02-19 2022-04-08 华为技术有限公司 检测装置及方法、无线电能发射装置、无线电能接收装置
CN112186908B (zh) * 2020-09-27 2022-06-14 东南大学 一种无线充电线圈三维多自由度精确角度定位方法
EP4016798A1 (en) * 2020-12-17 2022-06-22 Stichting IMEC Nederland A powering apparatus for wireless powering and a method for controlling a powering apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398432A (ja) * 1989-09-11 1991-04-24 Eito Denshi:Kk 電磁誘導による電力供給
JPH06178464A (ja) * 1992-10-21 1994-06-24 Alps Electric Co Ltd 非接触電力供給装置
JPH08322252A (ja) * 1995-05-29 1996-12-03 Matsushita Electric Ind Co Ltd 直流電源装置
JP2010239769A (ja) * 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP2010252624A (ja) * 2009-03-26 2010-11-04 Seiko Epson Corp コイルユニット、それを用いた送電装置及び受電装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291994B1 (en) * 2000-01-14 2001-09-18 Quantum Magnetics, Inc. Active Q-damping sub-system using nuclear quadrupole resonance and nuclear magnetic resonance for improved contraband detection
WO2006022365A1 (ja) 2004-08-27 2006-03-02 Hokushin Denki Co., Ltd. 非接触電力伝送装置
JP4774217B2 (ja) 2005-02-15 2011-09-14 高石 好 電力伝送装置、電力伝送方法
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
AU2006269374C1 (en) 2005-07-12 2010-03-25 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8378523B2 (en) 2007-03-02 2013-02-19 Qualcomm Incorporated Transmitters and receivers for wireless energy transfer
US8378522B2 (en) 2007-03-02 2013-02-19 Qualcomm, Incorporated Maximizing power yield from wireless power magnetic resonators
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US9634730B2 (en) 2007-07-09 2017-04-25 Qualcomm Incorporated Wireless energy transfer using coupled antennas
EP2176939B1 (en) 2007-08-09 2017-09-13 Qualcomm Incorporated Increasing the q factor of a resonator
WO2009023646A2 (en) 2007-08-13 2009-02-19 Nigelpower, Llc Long range low frequency resonator and materials
EP2188867A4 (en) 2007-09-13 2014-12-10 Qualcomm Inc ANTENNA FOR WIRELESS ELECTRICITY APPLICATIONS
CN104283332B (zh) 2007-09-17 2018-08-07 高通股份有限公司 无线功率磁谐振器中的高效率和功率转移
KR101515727B1 (ko) 2007-09-19 2015-04-27 퀄컴 인코포레이티드 무선 전력 자기 공진기로부터의 전력 수율의 최대화
KR101312215B1 (ko) 2007-10-11 2013-09-27 퀄컴 인코포레이티드 자기 기계 시스템을 이용하는 무선 전력 전송
CN107086677A (zh) 2007-11-28 2017-08-22 高通股份有限公司 使用寄生天线的无线功率射程增加
US9128687B2 (en) 2008-01-10 2015-09-08 Qualcomm Incorporated Wireless desktop IT environment
US8294300B2 (en) 2008-01-14 2012-10-23 Qualcomm Incorporated Wireless powering and charging station
US8487479B2 (en) 2008-02-24 2013-07-16 Qualcomm Incorporated Ferrite antennas for wireless power transfer
US8344552B2 (en) 2008-02-27 2013-01-01 Qualcomm Incorporated Antennas and their coupling characteristics for wireless power transfer via magnetic coupling
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US8421267B2 (en) 2008-03-10 2013-04-16 Qualcomm, Incorporated Packaging and details of a wireless power device
KR101589836B1 (ko) 2008-04-21 2016-01-28 퀄컴 인코포레이티드 근거리 효율적인 무선 전력 송신
US20090273242A1 (en) 2008-05-05 2009-11-05 Nigelpower, Llc Wireless Delivery of power to a Fixed-Geometry power part
EP2281322B1 (en) 2008-05-14 2016-03-23 Massachusetts Institute of Technology Wireless energy transfer, including interference enhancement
JP2012504387A (ja) 2008-09-27 2012-02-16 ウィトリシティ コーポレーション 無線エネルギー伝達システム
EP2345100B1 (en) 2008-10-01 2018-12-05 Massachusetts Institute of Technology Efficient near-field wireless energy transfer using adiabatic system variations
JP5369693B2 (ja) 2009-01-15 2013-12-18 日産自動車株式会社 非接触給電装置
KR101197579B1 (ko) * 2009-11-04 2012-11-06 한국전기연구원 감쇄파 공진을 이용한 공간 적응형 무선전력전송 시스템 및 방법
US8729735B2 (en) * 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398432A (ja) * 1989-09-11 1991-04-24 Eito Denshi:Kk 電磁誘導による電力供給
JPH06178464A (ja) * 1992-10-21 1994-06-24 Alps Electric Co Ltd 非接触電力供給装置
JPH08322252A (ja) * 1995-05-29 1996-12-03 Matsushita Electric Ind Co Ltd 直流電源装置
JP2010252624A (ja) * 2009-03-26 2010-11-04 Seiko Epson Corp コイルユニット、それを用いた送電装置及び受電装置
JP2010239769A (ja) * 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488760B2 (ja) * 2011-02-22 2014-05-14 Tdk株式会社 ワイヤレス給電装置、ワイヤレス受電装置およびワイヤレス電力伝送システム
JP2016226236A (ja) * 2015-06-03 2016-12-28 有限会社日本テクモ 非接触給電装置及び非接触受電装置
WO2018037698A1 (ja) * 2016-08-26 2018-03-01 株式会社日立製作所 無線通信機
JPWO2018037698A1 (ja) * 2016-08-26 2019-04-04 株式会社日立製作所 無線通信機
JP7443825B2 (ja) 2020-03-02 2024-03-06 Tdk株式会社 コイル部品

Also Published As

Publication number Publication date
JPWO2012090701A1 (ja) 2014-06-05
US8669677B2 (en) 2014-03-11
JP5522271B2 (ja) 2014-06-18
US20120161533A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5522271B2 (ja) ワイヤレス給電装置、ワイヤレス受電装置、ワイヤレス電力伝送システム
JP5488760B2 (ja) ワイヤレス給電装置、ワイヤレス受電装置およびワイヤレス電力伝送システム
JP6401275B2 (ja) 無線電力直交偏波アンテナアレイ
EP3093958B1 (en) Foreign object detecting device, wireless power transmitting apparatus, and wireless power transfer system
US8664803B2 (en) Wireless power feeder, wireless power receiver, and wireless power transmission system
EP3355083B1 (en) Foreign-object detecting device, wireless electric-power transmitting device, and wireless electric-power transmission system
JP6741985B2 (ja) 異物検出装置、無線送電装置、及び無線電力伝送システム
JP5964985B2 (ja) 低損失ワイヤレス電力送信のためのシステムおよび方法
US9148201B2 (en) Systems and methods for calibration of a wireless power transmitter
EP2973939B1 (en) Systems and methods for extending the power capability of a wireless charger
JP5549745B2 (ja) ワイヤレス給電装置およびワイヤレス電力伝送システム
JP6079026B2 (ja) コイルユニットおよびそれを用いたワイヤレス給電装置
BR112016022779B1 (pt) Sistemas, aparelhos, e métodos para configuração de bobina receptora de potência sem fio
WO2014028271A2 (en) Wireless power system with capacitive proximity sensing
JP2012182975A (ja) ワイヤレス給電装置およびワイヤレス電力伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852794

Country of ref document: EP

Kind code of ref document: A1