WO2012115248A1 - Solar cell module and solar generator device - Google Patents

Solar cell module and solar generator device Download PDF

Info

Publication number
WO2012115248A1
WO2012115248A1 PCT/JP2012/054639 JP2012054639W WO2012115248A1 WO 2012115248 A1 WO2012115248 A1 WO 2012115248A1 JP 2012054639 W JP2012054639 W JP 2012054639W WO 2012115248 A1 WO2012115248 A1 WO 2012115248A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
solar cell
light
cell module
main surface
Prior art date
Application number
PCT/JP2012/054639
Other languages
French (fr)
Japanese (ja)
Inventor
内田 秀樹
英臣 由井
時由 梅田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012115248A1 publication Critical patent/WO2012115248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module and a solar power generation device.
  • This application claims priority based on Japanese Patent Application No. 2011-040191 filed in Japan on February 25, 2011, the contents of which are incorporated herein by reference.
  • the solar power generation device of Patent Document 1 is a window-type solar power generation device that uses a light guide as a window.
  • a part of sunlight incident from one main surface of the light guide is propagated into the light guide and guided to the solar cell element.
  • a phosphor is applied to the surface of the light guide, and the phosphor is excited by sunlight incident on the light guide.
  • Light (fluorescence) emitted from the phosphor propagates through the light guide and enters the solar cell element to generate power.
  • the sunlight used for exciting the phosphor is very small of the sunlight incident on the light guide. Most of the sunlight incident on the light guide is transmitted through the light guide and does not contribute to power generation. Therefore, a solar power generation device with high power generation efficiency cannot be provided.
  • An object of the aspect of the present invention is to provide a solar cell module with high power generation efficiency and a solar power generation device using the solar cell module.
  • the solar cell module includes a phosphor, has a first main surface and a first end surface, and absorbs a part of external light incident from the first main surface by the phosphor,
  • a fluorescent light guide configured to propagate the first light emitted from the body and emit the light from the first end surface; a second main surface; a third main surface having a first inclined surface; and a second end surface. Second light that is not absorbed by the phosphor but transmitted through the fluorescent light guide is incident from the second main surface, is reflected by the first inclined surface, and is propagated.
  • a first light guide configured to emit from two end faces;
  • first solar cell element that receives the first light
  • second solar cell element that receives the second light
  • the wavelength characteristics may be different from each other.
  • the fluorescent light guide may include at least two types of fluorescent materials having different emission spectrum peak wavelengths as the fluorescent material.
  • the first solar cell element may receive the fluorescence emitted from the phosphor having the largest peak wavelength of the emission spectrum among the at least two kinds of phosphors.
  • the spectral sensitivity of the first solar cell element at the peak wavelength of the emission spectrum of the phosphor having the largest emission spectrum peak wavelength among the at least two types of phosphors is any of the other ones provided in the fluorescence light guide. It may be larger than the spectral sensitivity of the first solar cell element at the peak wavelength of the emission spectrum of the phosphor.
  • the fluorescent light guide may include a quantum dot fluorescent material as the fluorescent material.
  • a first light condensing member that condenses the first light emitted from the first end face of the fluorescent light guide and enters the first solar cell element may be provided.
  • the first light collecting member may be configured to make the intensity distribution of the first light emitted from the first end face of the fluorescent light guide uniform and emit the same to the first solar cell element.
  • a second condensing member that condenses the second light emitted from the second end face of the first light guide and enters the second solar cell element may be provided.
  • the second light collecting member may be configured to uniformize the intensity distribution of the second light emitted from the second end face of the first light guide and emit the same to the second solar cell element.
  • the solar cell element that receives the first light emitted from the first end surface of the fluorescent light guide and the second light emitted from the second end surface of the first light guide, and the solar cell The first light emitted from the first end surface of the fluorescent light guide and the first light between the element and the first end surface of the fluorescent light guide and between the second end surface of the first light guide.
  • a condensing member configured to condense the second light emitted from the second end face of the one light guide and make it incident on the solar cell element.
  • the condensing member equalizes the intensity distribution of the first light emitted from the first end face of the fluorescent light guide and the second light emitted from the second end face of the first light guide, and You may be comprised so that it inject
  • the fluorescent light guide may be formed by dispersing the fluorescent material inside a transparent light guide.
  • the fluorescent light guide may include a transparent light guide and a phosphor layer provided on the first main surface of the transparent light guide and having the phosphor dispersed therein.
  • It may further include an adhesive layer for releasably bonding the transparent light guide and the phosphor layer.
  • the second main surface is the third main surface so that the thickness of the first light guide gradually decreases from the second end surface of the first light guide toward the third end surface facing the second end surface. It may be inclined with respect to the surface.
  • the fluorescent light guide includes a fourth main surface different from the first main surface, and a fourth end surface opposite to the first end surface, and the first end surface to the fourth end surface of the fluorescent light guide.
  • the first main surface may be inclined with respect to the fourth main surface so that the thickness of the fluorescent light guide gradually decreases toward the surface.
  • the first end face of the fluorescent light guide and the third end face of the first light guide are arranged in the same direction, and the fourth end face of the fluorescent light guide and the second end face of the first light guide are
  • the fluorescent light guide and the first light guide may be laminated so as to face the same direction.
  • a second light guide having a fifth main surface, a sixth main surface, and a fifth end surface, wherein the first light guide is disposed between the fluorescent light guide and the second light guide.
  • the second light guide causes a part of the second light transmitted through the first light guide to be incident from the fifth main surface and reflected by the second inclined surface provided on the sixth main surface. It may be configured to propagate and emit from the fifth end face.
  • the angle of the first inclined surface and the angle of the second inclined surface may be different from each other.
  • a condensing member configured to condense the second light emitted from the second end surface of the first light guide and the fifth end surface of the second light guide so as to enter the solar cell element. You may have.
  • the condensing member that condenses the second light emitted from the second end surface of the first light guide and the fifth end surface of the second light guide is the second end surface of the first light guide and the second end surface of the first light guide.
  • the intensity distribution of the second light emitted from the fifth end surface of the two light guides may be uniformized and emitted to the solar cell element.
  • a solar power generation device includes the solar cell module.
  • FIG. 1st Embodiment It is a schematic perspective view of the solar cell module of 1st Embodiment. It is sectional drawing of a solar cell module. It is an enlarged view of sectional drawing of a solar cell module. It is a figure which shows the absorption characteristic of fluorescent substance. It is a figure which shows the absorption characteristic of fluorescent substance. It is a figure which shows the light emission characteristic of fluorescent substance. It is a figure which shows the light emission characteristic of fluorescent substance. It is a figure which shows the energy transfer by photoluminescence. It is explanatory drawing of a Forster mechanism. It is explanatory drawing of a Forster mechanism. It is explanatory drawing of a Forster mechanism. It is explanatory drawing of a Forster mechanism. It is a figure which shows the spectral sensitivity curve of the solar cell using a compound semiconductor.
  • FIG. 1 is a schematic perspective view of the solar cell module 1 of the first embodiment.
  • the solar cell module 1 includes a light guide unit 2, a solar cell element 5, a solar cell element 6, and a frame body 10.
  • the light guide unit 2 is formed by laminating a first light guide (shape light guide) 3 and a second light guide (fluorescent light guide) 4.
  • the solar cell element 5 receives light emitted from the first end surface 3 c of the first light guide 3.
  • the solar cell element 6 receives light emitted from the first end face 4 c of the second light guide 4.
  • the frame body 10 integrally holds the light guide unit 2, the solar cell element 5, and the solar cell element 6.
  • the first light guide 3 includes a first main surface 3a that is a light incident surface, a second main surface 3b that faces the first main surface 3a, and a first end surface 3c that is a light emission surface.
  • the second light guide 4 includes a first main surface 4a that is a light incident surface, a second main surface 4b that faces the first main surface 4a, and a first end surface 4c that is a light emission surface.
  • the first light guide 3 and the second light guide 4 are arranged such that the first main surface 3a of the first light guide 3 and the second main surface 4b of the second light guide 4 are opposed to each other.
  • the light guide 3 and the second light guide 4 are stacked in the Z direction via an air layer K (low refractive index layer) having a smaller refractive index than the light guide 3 and the second light guide 4.
  • the first main surface 3a of the first light guide 3 and the first main surface 4a of the second light guide 4 face the same direction (light incident side: -Z direction).
  • the first light guide 3 and the second light guide 4 By laminating the first light guide 3 and the second light guide 4 along the incident direction of the light L, it is captured by the second light guide 4 on the front stage side (side closer to the light L incident side).
  • the light that has not been received can be taken in by the first light guide 3 on the rear stage side (the side far from the light incident side).
  • the first end surface 3c of the first light guide 3 and the first end surface 4c of the second light guide 4 are oriented in the same direction.
  • the first end surface 3c of the first light guide 3 and the first end surface 4c of the second light guide 4 are arranged on the same plane parallel to the XZ plane. Therefore, the solar cell element 5 that receives the light emitted from the first end surface 3c of the first light guide 3 and the solar cell element 6 that receives the light emitted from the first end surface 4c of the second light guide 4; Can be placed in one place.
  • the first light guide 3 is a substantially rectangular plate-like member having a first main surface 3a and a second main surface 3b perpendicular to the Z axis (parallel to the XY plane).
  • a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass is used.
  • the second main surface 3b of the first light guide 3 is provided with a plurality of grooves T extending in the X direction.
  • the groove T is a V-shaped groove having an inclined surface T1 that is inclined with respect to a plane parallel to the XY plane and a surface T2 that intersects the inclined surface T1.
  • FIG. 1 only a few grooves T are shown in order to simplify the drawing, but in practice, a large number of fine grooves T having a width of about 100 ⁇ m are formed.
  • the groove T is formed, for example, by injection molding a resin (for example, polymethyl methacrylate resin: PMMA) using a mold.
  • a resin for example, polymethyl methacrylate resin: PMMA
  • the inclined surface T1 is a reflecting surface that totally reflects the light L (for example, sunlight) incident from the first main surface 3a and changes the traveling direction of the light to the direction toward the first end surface 3c.
  • the light L incident at an angle close to perpendicular to the first main surface 3a is reflected by the inclined surface T1 and propagates in the first light guide 3 in the Y direction.
  • the second main surface 3b of the first light guide 3 is provided with a plurality of such grooves T in the Y direction so that the inclined surfaces T1 and T2 are in contact with each other.
  • the shape and size of the plurality of grooves T provided on the second main surface 3b are all the same.
  • the second light guide 4 is a substantially rectangular plate-like member having a first main surface 4a and a second main surface 4b perpendicular to the Z axis (parallel to the XY plane).
  • the second light guide 4 is obtained by dispersing a phosphor in a base material made of a highly transparent organic or inorganic material such as acrylic resin, polycarbonate resin, or glass.
  • the phosphor include a plurality of types of phosphors that absorb ultraviolet light or visible light and emit visible light or infrared light. The light emitted from the phosphor propagates through the second light guide 4 and is emitted from the first end face 4 c, and is used for power generation by the solar cell element 6.
  • visible light is light in a wavelength region of 380 nm to 750 nm
  • ultraviolet light is light in a wavelength region less than 380 nm
  • infrared light is light in a wavelength region larger than 750 nm.
  • the material of the light guide constituting the light guide unit has transparency to wavelengths of 400 nm or less so that external light can be taken in effectively.
  • a material having a transmittance of 90% or more, more preferably 93% or more with respect to light in a wavelength region of 360 nm to 800 nm is suitable.
  • “Acrylite” (registered trademark) manufactured by Mitsubishi Rayon is suitable because it has high transparency to light in a wide wavelength region. .
  • the first main surface 4a and the second main surface 4b of the second light guide 4 are flat surfaces substantially parallel to the XY plane.
  • a reflection layer 9 that reflects light (fluorescence) emitted from the phosphor is provided.
  • the second main surface 3 b of the first light guide 3 is provided with a reflective layer 7 that reflects the light transmitted through the second main surface 3 b of the first light guide 3 to the inside of the first light guide 3. Yes. Although illustration is omitted, light that leaks from the end face to the outside of the first light guide 3 is reflected to the inside of the first light guide 3 on the end face other than the first end face 3 c of the first light guide 3.
  • a reflective layer may be provided.
  • the solar cell element 5 is disposed with the light receiving surface facing the first end surface 3 c of the first light guide 3.
  • the solar cell element 6 is disposed with the light receiving surface facing the first end surface 4 c of the second light guide 4.
  • the solar cell element 5 and the solar cell element 6 known solar cells such as silicon solar cells, compound solar cells, and organic solar cells can be used.
  • the compound type solar cell using a compound semiconductor is suitable as the solar cell element 5 and the solar cell element 6 since high-efficiency electric power generation is possible.
  • the frame body 10 includes a transmission surface 10a that transmits light L on a surface facing the first main surface 4a of the second light guide 4 disposed on the most front side.
  • the transmission surface 10a may be an opening of the frame 10, or may be a transparent member such as glass fitted in the opening of the frame 10.
  • the first main surface 4 a of the second light guide 4 that overlaps the transmission surface 10 a of the frame 10 when viewed from the Z direction is the light incident surface of the light guide unit 2.
  • the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 are the first light exit surfaces of the light guide unit 2.
  • FIG. 2A is a cross-sectional view of the solar cell module 1.
  • FIG. 2B is a cross-sectional view of the groove T provided in the second main surface 3 b of the first light guide 3.
  • the second main surface 3b of the first light guide 3 is provided with a plurality of grooves T that reflect the light incident from the first main surface 3a and change the traveling direction of the light toward the first end surface 3c.
  • the groove T is a V-shaped groove in which an inclined surface T1 that forms an angle ⁇ with respect to the Y axis and a surface T2 that is perpendicular to the Y axis intersect at a ridgeline T3.
  • a surface T2 is disposed on the first end surface 3c side with the ridge line T3 interposed therebetween, and an inclined surface T1 is disposed on the opposite side to the first end surface 3c.
  • the angle ⁇ is 42 °
  • the width W in the Y direction of one groove T is 100 ⁇ m
  • the depth D in the Z direction of the groove T is 90 ⁇ m
  • the refractive index of the first light guide 3 is 1.5.
  • the angle ⁇ , the width of the groove T in the Y direction, the depth of the groove T in the Z direction, and the refractive index of the first light guide 3 are not limited thereto.
  • a plurality of types of phosphors having different absorption wavelength ranges (for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c in FIG. 2) are dispersed.
  • the first phosphor 8a absorbs ultraviolet light and emits blue fluorescence
  • the second phosphor 8b absorbs blue light and emits green fluorescence
  • the third phosphor 8c emits green light. Absorbs and emits red fluorescence.
  • the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are mixed when, for example, a PMMA resin is molded.
  • the mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is as follows.
  • the mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is shown as a volume ratio with respect to the PMMA resin.
  • Lumogen F Blue (trade name) manufactured by BASF is used, and the mixing ratio is 0.02%.
  • Lumogen F Green (trade name) manufactured by BASF is used as the second phosphor 8b, and the mixing ratio is 0.02%.
  • BASF Lumogen F Red (trade name) is used, and the mixing ratio is 0.02%.
  • 3 to 6 are diagrams showing the emission characteristics and absorption characteristics of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
  • the white squares indicate the spectrum of sunlight after the ultraviolet light is absorbed by the first phosphor 8a.
  • the triangle indicates the spectrum of sunlight after the blue light is absorbed by the second phosphor 8b.
  • the cross mark indicates the spectrum of sunlight after the green light is absorbed by the third phosphor 8c.
  • a black square shows the spectrum of sunlight.
  • circles indicate the spectrum of sunlight after ultraviolet light, blue light, and green light are absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
  • a square shows the spectrum of sunlight.
  • FIG. 3 to 6 are diagrams showing the emission characteristics and absorption characteristics of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
  • the white squares indicate the spectrum of sunlight after the ultraviolet light is absorbed by the first phosphor
  • the black square is an emission spectrum of the first phosphor 8a.
  • the triangle is the emission spectrum of the second phosphor 8b.
  • a white square is an emission spectrum of the third phosphor 8c.
  • FIG. 6 shows a spectrum of light emitted from the first end face of the second light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
  • the first phosphor 8a absorbs light having a wavelength of approximately 420 nm or less.
  • the second phosphor 8b absorbs light having a wavelength of approximately 420 nm or more and 520 nm or less.
  • the third phosphor 8c absorbs light having a wavelength of approximately 520 nm or more and 620 nm or less.
  • the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c absorb almost all light having a wavelength of 620 nm or less in the sunlight incident on the second light guide. In the sunlight spectrum, the proportion of light having a wavelength of 620 nm or less is about 48%.
  • the first phosphor 8a and the second phosphor 8b included in the second light guide 48% of the light incident on the light incident surface of the light guide unit (the first main surface of the second light guide) is the first phosphor 8a and the second phosphor 8b included in the second light guide. And the remaining 52% is transmitted through the second light guide and incident on the first light guide.
  • the emission spectrum of the first phosphor 8a has a peak wavelength at 430 nm.
  • the emission spectrum of the second phosphor 8b has a peak wavelength at 520 nm.
  • the emission spectrum of the third phosphor 8c has a peak wavelength at 630 nm.
  • the spectrum of light emitted from the first end face of the second light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is the third phosphor.
  • the cause of the disappearance of the peak of the emission spectrum corresponding to the first phosphor 8a and the peak of the emission spectrum corresponding to the second phosphor 8b is the energy transfer between the phosphors due to photoluminescence (PL) and the Forster mechanism.
  • Examples thereof include energy transfer between phosphors by (fluorescence resonance energy transfer).
  • Energy transfer by photoluminescence occurs when fluorescence emitted from one phosphor is used as excitation energy for another phosphor.
  • excitation energy directly moves between two adjacent phosphors by electron resonance without going through such light emission and absorption processes.
  • Energy transfer between the phosphors by the Förster mechanism is performed without going through the process of light emission and absorption, so that energy loss is small. Therefore, it contributes to the improvement of the power generation efficiency of the solar cell module.
  • FIG. 7A is a diagram illustrating energy transfer by photoluminescence
  • FIGS. 8A and 8B are diagrams illustrating energy transfer by a Forster mechanism.
  • FIG. 7B is a diagram showing color conversion by energy transfer.
  • energy transfer may occur from the molecule A in the excited state to the molecule B in the ground state by the Forster mechanism.
  • the phosphor when the molecule A is excited and undergoes energy transfer to the molecule B, only the molecule B emits light. This energy transfer depends on the distance between molecules, the emission spectrum of molecule A, and the absorption spectrum of molecule B.
  • the rate constant (movement probability) when energy is transferred is as shown in Equation (1).
  • is the frequency
  • f ′ H ( ⁇ ) is the emission spectrum of the host molecule A
  • ⁇ ( ⁇ ) is the absorption spectrum of the guest molecule B
  • N is the Avogadro constant
  • n is the refractive index
  • ⁇ 0 is the fluorescence lifetime of the host molecule A
  • R is the intermolecular distance
  • K 2 is the transition dipole moment (2/3 at random).
  • [1] represents the ease of resonance between two adjacent phosphors.
  • FIG. 8A when the peak wavelength of the emission spectrum PL1 of the host molecule A is close to the peak wavelength of the absorption spectrum AB2 of the guest molecule B, energy transfer due to the Forster mechanism is likely to occur.
  • AB1 represents the absorption spectrum of the host molecule A
  • PL2 represents the emission spectrum of the guest molecule B.
  • FIG. 8B when the guest molecule B in the ground state exists in the vicinity of the host molecule A excited by the excitation energy EE, the wave function of the guest molecule A changes due to the resonance property, and the ground state host A molecule A and an excited guest molecule B are formed. Thereby, energy transfer ET occurs between the host molecule A and the guest molecule B, and only the guest molecule B emits light.
  • the intermolecular distance at which energy transfer by the Forster mechanism occurs is usually about 10 nm. If the conditions are met, energy transfer occurs even when the intermolecular distance is about 20 nm. If the mixing ratio of the first phosphor, the second phosphor, and the third phosphor described above is used, the distance between the phosphors is shorter than 20 nm. Therefore, energy transfer by the Forster mechanism can occur sufficiently. In addition, the emission spectra and absorption spectra of the first phosphor, the second phosphor, and the third phosphor shown in FIGS. 3 and 5 sufficiently satisfy the condition [1].
  • the energy transfer by the Förster mechanism Substantially only the third phosphor emits light.
  • the emission quantum efficiency of the third phosphor is, for example, 92%. Therefore, by mixing the first phosphor, the second phosphor, and the third phosphor in the second light guide, the light in the wavelength region up to 620 nm is absorbed, and the red having a peak wavelength of 630 nm with an efficiency of 92%. Can be emitted.
  • FIG. 7A is a diagram illustrating color conversion by photoluminescence (PL). Normally, when two types of phosphors are mixed, as shown in FIG. 7A, first, phosphor A emits light with a certain efficiency (PL), enters phosphor B, and absorbs light (AB). ) And light emission (PL), light is emitted from phosphor B. In such energy transfer by photoluminescence, energy loss occurs in the light emission process in the phosphor A and the light absorption process in the phosphor B, and the energy transfer efficiency is small. On the other hand, in the color conversion in the energy transfer by the Förster mechanism shown in FIG. 7B, only the energy moves directly between the phosphors, so the energy transfer efficiency (energy conversion efficiency) is 100%, and the energy transfer is highly efficient. Can be generated.
  • PL photoluminescence
  • FIG. 9 is a spectral sensitivity curve of the compound semiconductor used for the solar cell element 5 and the solar cell element 6.
  • FIG. 2A light having a wavelength of 620 nm or less out of the light L incident on the light incident surface 2 ⁇ / b> A (the first main surface 4 a of the second light guide 4) of the light guide unit 2 is emitted from the second light guide 4. Almost all of the light is absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c dispersed therein. Then, the light L2 having a wavelength larger than 620 nm that has not been absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c passes through the second light guide 4 and passes through the first light guide 3. Is incident on.
  • the spectrum of the light L1 emitted from the first end face 4c of the second light guide 4 substantially matches the emission spectrum of the third phosphor 8c. Therefore, the solar cell element 6 should just have a high sensitivity in the peak wavelength (630 nm) of the emission spectrum of the 3rd fluorescent substance 8c. As shown in FIG. 9, GaAs (square) has a spectral sensitivity of almost 100% for light in the wavelength region of 600 nm to 850 nm. Therefore, if a compound solar cell using GaAs is used as the solar cell element 6 installed in the second light guide 4 (fluorescent light guide), power generation can be performed with high efficiency.
  • the light L2 emitted from the first end face 3c of the first light guide 3 is light in a wavelength region larger than 620 nm that has passed through the second light guide 4. Therefore, the solar cell element 5 does not need to have high spectral sensitivity for light with a wavelength of 620 nm or less, and has high spectral sensitivity for light with a long wavelength such as InGaAs (triangle in FIG. 9). Any device having sensitivity may be used. For example, if a compound solar cell in which GaAs and InGaAs are stacked is used as the solar cell element 5 installed in the first light guide 3 (shape light guide), power generation can be performed with high efficiency.
  • the type of solar cell applied to the solar cell element 5 and the solar cell element 6 is determined according to the wavelength of light incident on the solar cell element.
  • the solar cell element 6 an amorphous silicon solar cell having the spectral sensitivity shown in FIG.
  • the amorphous silicon solar cell has a spectral sensitivity exceeding 90% with respect to light having a wavelength of 630 nm. Therefore, power generation can be performed with high efficiency with respect to light having a wavelength of 620 nm to 700 nm emitted from the first end face 4 c of the second light guide 4.
  • the solar cell element 5 and the solar cell element 6 it cannot have high spectral sensitivity for the entire wavelength region of sunlight, such as a dye-sensitized solar cell and an organic solar cell, but has a specific narrow wavelength. It is also possible to actively use solar cells that have a very high spectral sensitivity for light in the region.
  • 11A to 13 are diagrams showing simulation results of light extraction efficiency in the first light guide 3 and the second light guide 4.
  • FIG. 11A is a diagram showing the light extraction efficiency of the second light guide 4.
  • the proportion of light having a wavelength of 620 nm or less in the spectrum of sunlight is 48%. Therefore, the proportion of light absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is 48% of the light incident on the first main surface 4a. 52% of the light that has not been absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c passes through the second main surface 4b and is emitted to the outside of the second light guide 4.
  • the fluorescence quantum yields of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are all 92%. Therefore, 92% of the light absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is converted into fluorescence.
  • the fluorescence propagates through the second light guide 4 and is emitted from the first end face 4c. At this time, light leaking out of the second light guide 4 without being totally reflected by the first main surface 4a and the second main surface 4b due to a difference in refractive index between the second light guide 4 and the surrounding air layer. Since the ratio is 25% and the loss of light when propagating through the second light guide 4 is 5%, the ratio of the light emitted from the first end face 4c is the ratio of the light incident on the first main surface 4a. 30%.
  • FIG. 11B is a diagram showing the light extraction efficiency of the first light guide 3.
  • a part of the light incident perpendicularly to the first main surface 3 a of the first light guide 3 is reflected by the inclined surface of the groove T provided on the second main surface 3 b, and passes through the inside of the first light guide 3. It propagates toward the first end face 3c.
  • the ratio of the light reflected by the inclined surface of the groove T is 60% of the light incident on the first main surface 3a.
  • the remaining 40% of light passes through the second main surface 3b and is emitted to the outside of the first light guide 3.
  • a part of the light propagating in the first light guide 3 is refracted on the inclined surface of the groove T on the way, leaks out of the first light guide 3 outside the total reflection condition. Therefore, the ratio of the light emitted from the first end surface 3c is 25% of the light incident on the first main surface 3a.
  • FIG. 12 is a diagram showing the light extraction efficiency when the first light guide 3 and the second light guide 4 are laminated in this order from the light incident side.
  • the first light guide 3 emits 25% of the light incident perpendicularly to the first main surface 3a from the first end surface 3c and 40% of the light incident perpendicularly to the first main surface 3a. From the second main surface 3b.
  • the second light guide 4 converts 30% of the light incident on the first main surface 4a into fluorescence and emits the light from the first end surface 4c. Therefore, the ratio of the light emitted from the first end surface 3c of the first light guide 3 is 25% of the light incident on the first main surface 3a of the first light guide 3, and the second light guide 4
  • the ratio of the light emitted from the first end face 4 c is 12% of the light incident on the first main surface 3 a of the first light guide 3. Therefore, the ratio of the light emitted from the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 is the light incident on the first main surface 3 a of the first light guide 3. 37%.
  • FIG. 13 is a diagram showing the light extraction efficiency when the second light guide 4 and the first light guide 3 are stacked in this order from the light incident side.
  • the second light guide 4 converts 30% of the light incident on the first main surface 4a into fluorescence and emits it from the first end surface 4c, and 52% of the light incident on the first main surface 4a is converted into the second main surface 4a. Ejected from the surface 4b.
  • the first light guide 3 emits 25% of light incident perpendicularly to the first main surface 3a from the first end surface 3c. Therefore, the ratio of the light emitted from the first end surface 4 c of the second light guide 4 is 30% of the light incident on the first main surface 4 a of the second light guide 4, and the first light guide 3
  • the ratio of the light emitted from the first end surface 3 c is 13% of the light incident on the first main surface 4 a of the second light guide 4. Therefore, the ratio of the light emitted from the first end surface 4 c of the second light guide 4 and the first end surface 3 c of the first light guide 3 is the light incident on the first main surface 4 a of the second light guide 4. Of 43%.
  • the light extraction efficiency of the entire light guide unit 2 is higher in the configuration of FIG. This is because the light extraction efficiency of the second light guide 4 alone is higher than the light extraction efficiency of the first light guide 3 alone, as shown in FIG.
  • the method of guiding external fluorescence by absorbing external light and guiding the obtained fluorescence has higher light extraction efficiency than the method of guiding light by reflecting light by the inclined surface of the second main surface. . This is because phosphors can absorb and guide light incident at any angle, whereas the method of reflecting light at an inclined surface can only guide light incident at an angle less than the critical angle of the inclined surface. . Therefore, the configuration in which the second light guide 4 is disposed closer to the light incident side than the first light guide 3 is effective in increasing the light extraction efficiency.
  • the second light guide 4 and the first light guide 3 are laminated in this order from the light incident side. Therefore, the light incident on the light incident surface of the light guide unit 2 (the first main surface 4a of the second light guide 4) can be efficiently incident on the solar cell element 5 and the solar cell element 6.
  • the second light guide 4 is disposed on the light incident side, and light radiated from the phosphor (light having a peak wavelength at 630 nm and a narrow half-value width) is incident on the solar cell element 5.
  • light radiated from the phosphor (light having a peak wavelength at 630 nm and a narrow half-value width) is incident on the solar cell element 5.
  • light that is not absorbed by the phosphor (light having a wavelength greater than 620 nm) is incident on the solar cell element 6. Therefore, as the solar cell element 5 and the solar cell element 6, an inexpensive solar cell having high spectral sensitivity only in a specific wavelength region can be used.
  • the solar cell element 5 when the first light guide 3 is arranged on the light incident side as shown in FIG. 12, the solar cell element 5 has a wide wavelength range from the ultraviolet light region to the infrared light region as shown in FIG. Light is incident. Therefore, as the solar cell element 5, it is necessary to use a solar cell having high spectral sensitivity in a wide wavelength range from the ultraviolet light region to the infrared light region. As such a solar cell, for example, a compound solar cell having spectral sensitivity as shown in FIG. 14 can be considered.
  • FIG. 14 is a tandem solar cell (three-layer junction compound solar cell) in which a plurality of semiconductor layers (InGaP, GaAs, and InGaAs) having different absorption wavelengths are stacked, and the specific structure is shown in FIG. It ’s like that.
  • the white squares indicate the absorption spectrum of InGaP
  • the black squares indicate the absorption spectrum of GaAs
  • the triangles indicate the absorption spectrum of InGaAs
  • the crosses indicate the sum of these three absorption spectra. Indicates.
  • an InGaP layer 61, a GaAs layer 62, and an InGaAs layer 63 are stacked between two electrodes 64 and 65.
  • the solar cell in FIG. 15 has a composition and a composition ratio of a compound, and a plurality of semiconductor layers having three different band gaps are stacked.
  • a manufacturing process becomes more complicated as a multilayer structure is formed.
  • the power generation efficiency for each layer is generally smaller than that of a single-layer solar cell. Therefore, the power generation efficiency as expected may not be obtained.
  • the second light guide 4 is disposed on the light incident side, and a configuration in which light in a specific wavelength region is selectively incident on the solar cell element 5 and the solar cell element 6 is adopted.
  • the solar cell element 5 and the solar cell element 6 may have any high spectral sensitivity with respect to light in a narrow wavelength region. Therefore, even when a tandem solar cell is used, the number of semiconductor layers to be manufactured can be reduced.
  • a solar cell including only one GaAs layer is used as the solar cell element 6, and a solar cell including a two-layer structure of a GaAs layer and an InGaAs layer is used as the solar cell element 5.
  • Table 1 shows the simulation results of the power generation amount of the solar cell modules having various configurations.
  • “Configuration Example 1” is a solar cell module having the configuration of FIG. 12
  • “Configuration Example 2” is a solar cell module having the configuration of FIG. 13
  • “Configuration Example 3” is a light guide. It is a solar cell module of a single crystal silicon solar cell which does not use
  • the size of the first light guide and the second light guide used in “Configuration Example 1” and “Configuration Example 2” is 10 cm ⁇ 10 cm, and the end surfaces of the first light guide and the second light guide are The “three-layer junction compound solar cell” (InGaP / GaAs / InGaS) having the spectral sensitivity shown in FIG.
  • “Configuration example 3” is a structure in which single crystal silicon solar cells are spread over the same 10 cm ⁇ 10 cm region as the first light guide and the second light guide.
  • the numerical values in Table 1 indicate the light incident perpendicularly to the light incident surface (“Configuration Example 1” and “Configuration Example 2”) of the light guide unit or the light receiving surface (“Configuration Example 3”) of the single crystal silicon solar cell.
  • the power generation efficiency of the “3-layer junction compound solar cell” is 40%
  • the power generation efficiency of the single crystal silicon solar cell is 15%
  • the power generation efficiency of the “optimized solar cell” is It is calculated as 65%.
  • the power generation amount is 14.8 W
  • “three-layer junction solar cell” is set to “configuration example 2”.
  • the power generation amount is 17.2W.
  • FIGS. 12 and 13 in “Configuration Example 2”, compared with “Configuration Example 1”, the amount of power generation is increased due to the higher light extraction efficiency. Since “Configuration Example 3” does not collect light using the light guide as in “Configuration Example 1” and “Configuration Example 2”, almost all of the incident light is used for power generation. However, since the power generation efficiency of the single crystal silicon solar cell is low, the power generation amount is 13.5 W, which is smaller than “Configuration Example 1” and “Configuration Example 2”.
  • the configuration of FIG. 13 is adopted, so that the first solar cell installed on the end face of the first light guide has an extremely high spectral sensitivity in a limited narrow wavelength range.
  • a solar cell can be used. Since such a solar cell has a smaller number of stacked semiconductor layers and fewer crystal defects in the semiconductor layer than a “three-layer junction solar cell”, the power generation efficiency of each layer is high. Therefore, the power generation efficiency of the “optimized solar cell” is 65%, which is higher than 40% of the “three-layer junction compound solar cell”, and the power generation amount is also very high at 28 W.
  • FIG. 16 is a diagram showing an absorption spectrum and an emission spectrum of the quantum dot phosphor used in the solar cell module of the second embodiment.
  • Quantum dot phosphors are semiconductor fine particles having a diameter of 1 nm to 10 nm.
  • the quantum dot phosphor is a phosphor having a high fluorescence quantum yield and excellent photochemical stability.
  • the emission wavelength of the quantum dot phosphor can be controlled by the size of the quantum dot, and the wavelength range of light that can be absorbed is wide. In addition, since light scattering hardly occurs, scattering loss is small when light propagates inside the second light guide. Therefore, high power generation efficiency can be realized.
  • Quantum dot phosphor materials include group I elements such as copper (Cu), silver (Ag), and gold (Au), fluorine (F), chlorine (Cl), bromine (Br), and iodine (I).
  • Group I-VII compound semiconductors consisting of Group VII elements such as, Group II elements such as zinc (Zn), cadmium (Cd), mercury (Hg), oxygen (O), sulfur (S), selenium (Se), II-VI compound semiconductors composed of group VI elements such as tellurium (Te), group III elements such as aluminum (Al), gallium (Ga), indium (In), nitrogen (N), phosphorus (P), arsenic Group III-V compound semiconductor composed of Group V elements such as (As) and antimony (Sb), Group IV such as carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb) Elemental semiconductor, carbon (C), silicon (Si), germany IV-VI composed of group IV elements such as sulfur (Ge), t
  • FIG. 17 is a diagram showing simulation results of the light extraction efficiency of the first light guide 3 and the second light guide 4.
  • symbol is attached
  • the quantum dot phosphor 8d has a peak wavelength of the emission spectrum at 800 nm and absorbs light of almost all wavelengths below 800 nm.
  • the light having a wavelength of 800 nm or less out of the light incident on the first main surface 4a of the second light guide 4 by the quantum dot phosphor 8d All absorbed.
  • the proportion of light with a wavelength of 800 nm or less is 65%. Therefore, 65% of the light incident on the first main surface 4a is absorbed by the quantum dot phosphor 8d, and the remaining 35% is transmitted through the second main surface 4b and incident on the first light guide 3.
  • the quantum quantum yield of the quantum dot phosphor 8d is 35%. Therefore, 35% of the light absorbed by the quantum dot phosphor 8d is converted into fluorescence. Considering the loss of light when the fluorescence propagates inside the second light guide 4, the ratio of the light emitted from the first end face 4 c of the second light guide 4 is the first of the second light guide 4. This is 20% of the light incident on the main surface 4a.
  • the first light guide 3 emits 25% of the light incident perpendicularly to the first main surface 3a from the first end surface 3c. Therefore, the ratio of the light emitted from the first end surface 3 c of the first light guide 3 is 9% of the light incident on the first main surface 4 a of the second light guide 4. Therefore, the ratio of the light emitted from the first end surface 4 c of the second light guide 4 and the first end surface 3 c of the first light guide 3 is the light incident on the first main surface 4 a of the second light guide 4. Of 29%.
  • the fluorescence quantum yield of the quantum dot phosphor 8d is low, high power generation efficiency cannot be obtained as compared with the solar cell module 1 of the first embodiment.
  • the quantum quantum yield of the quantum dot phosphor can theoretically be 100%, and if the fluorescence quantum yield is increased, a larger power generation efficiency can be obtained.
  • FIG. 18 is a cross-sectional view of the solar cell module 11 of the third embodiment. Constituent elements common to the solar cell module 1 of the first embodiment in the solar cell module 11 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the solar cell module 11 is different from the solar cell module 1 of the first embodiment in that light collecting members 12 and 13 are provided.
  • a condensing member that condenses light emitted from the first end surface 3 c of the first light guide 3 toward the first solar cell module 5 between the first light guide 3 and the first solar cell module 5. 12 is arranged.
  • a condensing member that condenses light emitted from the first end face 4 c of the second light guide 4 toward the second solar cell module 6 between the second light guide 4 and the second solar cell module 6. 13 is arranged.
  • the condensing member 12 is an integrator optical element (homogenizer) that uniformizes the intensity distribution of the light emitted from the first end face 3 c of the first light guide 3 and emits it to the solar cell element 5.
  • the condensing member 12 includes a light incident surface 12a, a light exit surface 12b, and a reflective surface 12c.
  • the light incident surface 12 a faces the first end surface 3 c of the first light guide 3.
  • the light emission surface 12b emits light incident from the light incident surface 12a.
  • the reflecting surface 12c reflects the light incident from the light incident surface 12a and propagates it to the light emitting surface 12b.
  • the condensing member 12 has, for example, a quadrangular pyramid shape having the light incident surface 12a as the bottom surface, the light exit surface 12b as the top surface, and the reflecting surface 12c as the side surface.
  • the condensing member 12 is formed by, for example, injection molding a resin such as polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • the reflection surface 12c reflects light by total reflection.
  • a reflection layer made of a metal film or a dielectric multilayer film may be formed on the reflection surface 12c, and the reflection layer 12c may reflect light. .
  • the solar cell element 5 is disposed with its light receiving surface facing the light exit surface 12 b of the light collecting member 12.
  • the light from the first light guide 3 that has entered the light incident surface 12 a of the light collecting member 12 has a uniform illuminance distribution while being repeatedly reflected by the reflecting surface 12 c of the light collecting member 12. Then, light with uniform illuminance distribution is incident on the solar cell element 5.
  • the power generation efficiency of the solar cell element 5 can be increased.
  • the condensing member 13 is an integrator optical element (homogenizer) that equalizes the intensity distribution of the light emitted from the first end face 4 c of the second light guide 4 and emits it to the solar cell element 6.
  • the condensing member 13 includes a light incident surface 13a, a light exit surface 13b, and a reflective surface 13c.
  • the light incident surface 13 a faces the first end surface 4 c of the second light guide 4.
  • the light emission surface 13b emits light incident from the light incident surface 13a.
  • the reflecting surface 13c reflects the light incident from the light incident surface 13a and propagates it to the light emitting surface 13b.
  • the function and configuration of the light collecting member 13 are the same as those of the light collecting member 12.
  • the solar cell element 6 is disposed with the light receiving surface facing the light emitting surface 13b of the light collecting member 13.
  • the light from the second light guide 4 that has entered the light incident surface 13 a of the light collecting member 13 has a uniform illuminance distribution as it is repeatedly reflected by the reflecting surface 13 c of the light collecting member 13. Then, the light with uniform illuminance distribution is incident on the solar cell element 6.
  • the power generation efficiency of the solar cell element 6 can be increased by making the illuminance distribution of the light incident on the solar cell element 6 uniform.
  • the solar cell module 11 In the solar cell module 11, light emitted from the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 is collected and incident on the solar cell element 5 and the solar cell element 6. I am letting. Therefore, size reduction of the solar cell element 5 and the solar cell element 6 and cost reduction of the solar cell module 11 can be achieved.
  • FIG. 19 is a cross-sectional view of the solar cell module 21 of the fourth embodiment. Constituent elements common to the solar cell module 1 of the first embodiment in the solar cell module 21 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the solar cell module 21 is different from the solar cell module 1 of the first embodiment in that the light emitted from the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 are emitted.
  • the light is received by one solar cell element 22, the light emitted from the first end face 3 c of the first light guide 3 and the first end face 4 c of the second light guide 4. This is a point in which a light collecting member 23 for condensing light toward the solar cell element 22 is provided.
  • the light collecting member 23 equalizes the intensity distribution of light emitted from the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 and emits the light to the solar cell element 22.
  • It is an integrator optical element (homogenizer).
  • the condensing member 23 includes a light incident surface 23a, a light exit surface 23b, and a reflective surface 23c.
  • the light incident surface 23 a faces the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4.
  • the light emission surface 23b emits light incident from the light incident surface 23a.
  • the reflecting surface 23c reflects the light incident from the light incident surface 23a and propagates it to the light emitting surface 23b.
  • the condensing member 23 has, for example, a quadrangular pyramid shape having the light incident surface 23a as the bottom surface, the light exit surface 23b as the top surface, and the reflecting surface 23c as the side surface.
  • the condensing member 23 is formed, for example, by injection molding a resin such as polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • the reflection surface 23c reflects light by total reflection, but a reflection layer made of a metal film or a dielectric multilayer film may be formed on the reflection surface 23c so that the reflection layer 23 reflects light. .
  • the solar cell element 22 is disposed with the light receiving surface facing the light emitting surface 23 b of the light collecting member 23.
  • the light from the first light guide 3 and the light from the second light guide 4 incident on the light incident surface 23 a of the light collecting member 23 have an illuminance distribution while being repeatedly reflected by the reflective surface 23 c of the light collecting member 23. It is made uniform. Then, the light having a uniform illuminance distribution is incident on the solar cell element 22. By making the illuminance distribution of light incident on the solar cell element 22 uniform, the power generation efficiency of the solar cell element 22 can be increased.
  • the solar cell element 22 a known solar cell such as a silicon solar cell, a compound solar cell, or an organic solar cell can be used.
  • a compound solar cell using a compound semiconductor is suitable as the solar cell element 22 because it enables highly efficient power generation.
  • compound solar cells are generally expensive, the area of the solar cell element 22 can be kept small because light can be collected by the first light guide 3, the second light guide 4 and the light collecting member 23. It is done. Therefore, an increase in member cost can be suppressed.
  • the solar cell element 22 has a spectral sensitivity with respect to both the light emitted from the first end face 4 c of the second light guide 4 and the light emitted from the first end face 3 c of the first light guide 3. High solar cells are used.
  • the light emitted from the first end face 4c of the second light guide 4 is light having a peak wavelength at 630 nm shown in FIG. 3 (light having substantially the same spectrum as the emission spectrum of the third phosphor 8c). is there.
  • the light emitted from the first end face 3c of the first light guide 3 is light having a wavelength larger than 620 nm shown in FIG. Therefore, a tandem solar cell in which GaAs and InGaAs shown in FIG. 9 are stacked may be used as the solar electric element 22. Thereby, highly efficient power generation can be performed for light of all wavelengths incident on the solar cell element 22.
  • the solar cell module 21 In the solar cell module 21, light emitted from the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 is condensed and made incident on the solar cell element 22. Therefore, size reduction of the solar cell element 22 and cost reduction of the solar cell module 21 can be achieved. Further, since the solar cell element 22 is a common solar cell element for the first light guide 3 and the second light guide 4, the first end surface 3c of the first light guide 3 and the second light guide. Compared with the case where a solar cell element is installed on each of the first end faces 4c of the body 4, the number of parts can be reduced.
  • FIG. 20 is a cross-sectional view of a second light guide (fluorescent light guide) 24 applied to the solar cell module of the fifth embodiment.
  • the configuration other than the second light guide 24 is the same as that of the solar cell module 1 of the first embodiment. Therefore, only the configuration of the second light guide 24 will be described here.
  • symbol is attached
  • the second light guide 24 includes a transparent light guide 25, a fluorescent film 26, and a transparent protective film 27.
  • the fluorescent film 26 is bonded to the first main surface 25 a of the transparent light guide 25.
  • the bright protective film 27 covers the surface of the fluorescent film 26.
  • the fluorescent film 26 is a film-like phosphor layer in which the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are dispersed.
  • the fluorescent film 26 converts part of the external light (for example, sunlight) incident on the first main surface 26 a into fluorescence and radiates it toward the transparent light guide 25.
  • the phosphor film 26 includes a PMMA resin in which 0.2% of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are mixed in a volume ratio with respect to the PMMA resin to form a film having a thickness of 200 ⁇ m. Formed.
  • the transparent light guide 25 and the transparent protective film 27 a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass is used.
  • the transparent light guide 25 is made of an acrylic plate having a thickness of 5 mm
  • the transparent protective film 27 is made of a PMMA resin film having a thickness of 200 ⁇ m.
  • the transparent protective film 27, the fluorescent film 26, and the transparent light guide 25 are arranged in this order from the incident side of the external light L. However, as shown in FIG. You may arrange
  • the transparent light guide 25 and the transparent protective film 27 are made of a highly transparent material that does not contain a phosphor. A part of the fluorescence emitted from the fluorescent film 26 (light having a spectrum substantially the same as the emission spectrum of the third phosphor 8c shown in FIG. 3) is totally reflected inside the transparent light guide 25 and the transparent protective film 27. However, it propagates toward the end surfaces of the transparent light guide 25 and the transparent protective film 27. The light emitted from the end surfaces of the transparent light guide 25 and the transparent protective film 27 enters the solar cell element and is used for power generation.
  • the fluorescent film 26 and the transparent light guide 25 are bonded together by a peelable adhesive layer 28 as shown in FIG.
  • the fluorescent film 26 is peeled off from the transparent light guide 25 and replaced when damage, deterioration, or foreign matter (such as dust or bird droppings) adheres.
  • the refractive indexes of the fluorescent film 26, the adhesive layer 28, and the transparent light guide 25 are all 1.49.
  • the fluorescence emitted from the fluorescent film 26 propagates through the fluorescent film 26, the adhesive layer 28, and the transparent light guide 25 without loss.
  • a gel poly (trade name) manufactured by Panac Corporation can be used.
  • the fluorescent film 26 and the transparent light guide 25 are bonded to each other with a peelable adhesive layer 28. Therefore, when the fluorescent film 26 is damaged, deteriorated, or has foreign matter attached (such as dust or bird droppings) and the power generation efficiency is reduced, only the fluorescent film 26 is peeled off from the transparent light guide 25 and replaced. Can do. Therefore, the cost of maintenance can be reduced compared with the case where the entire second light guide is replaced.
  • FIG. 23 is a cross-sectional view of the solar cell module 31 of the sixth embodiment. Constituent elements common to the solar cell module 1 of the first embodiment in the solar cell module 31 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the solar cell module 31 is different from the solar cell module 1 of the first embodiment in that the thickness of the first light guide (shape light guide) 32 (the thickness of the portion where the groove T is not formed) is the first end face 32c. It is the point comprised so that it may become thin gradually as it distances from.
  • the first light guide 32 is different from the first light guide 3 of the first embodiment in that the first main surface 32a and the second main surface 32b are inclined so as to form an angle ⁇ 1.
  • the material of the first light guide 32 and the configuration of the groove T provided on the second main surface 32b of the first light guide 32 are the same as the material of the first light guide 3 of the first embodiment and the first guide. This is the same as the groove T provided on the second main surface 3 b of the light body 3.
  • the angle ⁇ 1 formed by the first main surface 32a and the second main surface 32b of the first light guide 32 is, for example, 5 °.
  • An interval in the Z direction between the first main surface 32a and the second main surface 32b (thickness of the first light guide 32) is gradually increased from the first end surface 32c toward the second end surface 32d facing the first end surface 32c. It is getting smaller.
  • the solar cell element 5 is disposed to face the first end surface 32c having a larger cross-sectional area than the second end surface 32d.
  • FIG. 24 is a diagram illustrating a state in which the light L2 propagates inside the first light guide 32.
  • the 1st light guide 32 it is comprised so that the space
  • the traveling direction and the second main surface 32b of the light L2 incident on the first main surface 32a and theta A, the traveling direction and the second main surface 32b of the light L2 reflected by the first major surface 32a When the angle of the theta B, the traveling direction of the light L2 so that theta B becomes smaller than theta a is converted. Therefore, in the process in which the light L2 propagates to the first end face 32c, the traveling direction of the light L2 gradually approaches a direction parallel to the second main surface 32b, and the number of times the light enters the groove T decreases.
  • the light L2 incident on the groove T is largely refracted by the groove T and cannot be totally reflected by the first main surface 32a or the second main surface 32b. May leak to the outside.
  • Such light loss increases as the propagation distance of the light L2 becomes longer (as the number of times the light L2 enters the groove T increases). For example, consider a case where light propagates through the first light guide having a constant thickness. In that case, if the distance between the first end face and the second end face is 10 cm, the proportion of light emitted from the first end face of the first light guide is incident on the first main face of the first light guide. 25% of the light emitted. If the distance between the first end face and the second end face is 30 cm, the ratio is 10%, and if the distance between the first end face and the second end face is 1 m, the ratio is 2%.
  • the number of times light enters the groove increases in proportion to the propagation distance.
  • the first main surface 32a and the second main surface 32b are arranged non-parallel as shown in FIG. 24, the number of times the light L2 is incident on the groove T is increased even if the propagation distance of the light L2 increases. Not so much.
  • the first light guide when the simulation is performed with the angle formed by the first main surface 32a and the second main surface 32b being 5 °, when the distance between the first end surface 32c and the second end surface 32d is 10 cm, the first light guide The ratio of the light L2 emitted from the first end surface 32c of 32 is 28% of the light L2 incident on the first main surface 32a of the first light guide 32, but the first end surface 32c and the second end surface 32d Even if the distance is 30 cm or 1 m, the ratio is 28%, which does not change greatly.
  • the first main surface 32a of the first light guide 32 is inclined with respect to the second main surface 32b, so that the inside of the first light guide 31 is light L2. Reduces the number of total reflections. Therefore, it is possible to provide a solar cell module in which light loss caused by the light L2 being refracted in the groove T is reduced, and the light extraction efficiency is not greatly reduced by long-distance propagation.
  • the loss of light during propagation is large, so the size of the first light guide is increased to increase the light extraction amount. Even in such a case, the light amount as expected may not be obtained, but in the solar cell module 31 of the present embodiment, such a problem is improved, so that the first light guide 32 is enlarged and sufficient. It is possible to obtain a light extraction amount.
  • FIG. 25 is a cross-sectional view of the solar cell module 41 of the seventh embodiment. Constituent elements common to the solar cell module 31 of the sixth embodiment in the solar cell module 41 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the solar cell module 41 is different from the solar cell module 31 of the sixth embodiment in that the thickness of the second light guide (fluorescent light guide) 42 (the thickness of the portion where the groove T is not formed) is the first end face 42c. It is the point comprised so that it may become thin gradually as it distances from.
  • the second light guide 42 is different from the second light guide 4 of the sixth embodiment in that the first main surface 42a and the second main surface 42b are inclined so as to form an angle ⁇ 1.
  • the material of the second light guide 42 and the type and concentration of the phosphor included in the second light guide 42 are included in the material of the second light guide 4 and the second light guide 4 of the sixth embodiment. It is the same as the type and concentration of the phosphor.
  • the angle ⁇ 1 formed by the first main surface 42a and the second main surface 42b of the second light guide 42 is the same as the angle ⁇ 1 formed by the first main surface 32a and the second main surface 32b of the first light guide 32. It is.
  • the first main surface 32 a of the first light guide 32 and the second main surface 42 b of the second light guide 42 are parallel to each other, and the second main surface 32 b of the first light guide 32 and the second light guide 42 are used.
  • the first main surface 42a is parallel to the first main surface 42a.
  • the first end face 32c of the first light guide 32 and the first end face 42c of the second light guide 42 face in opposite directions.
  • the Z-direction interval (thickness of the second light guide 42) between the first main surface 42a and the second main surface 42b of the second light guide 42 is the first distance from the first end surface 42c to the first end surface 42c. 2 gradually decreases toward the end face 42d.
  • the light radiated from the phosphor inside the second light guide 42 is totally reflected by the first main surface 42a and the second main surface 42b of the second light guide 42. Since the two principal surfaces 42b are arranged obliquely, the totally reflected light is easily collected in the direction in which the thickness of the second light guide 42 is large. Therefore, the solar cell element 6 is disposed to face the first end surface 32c having a larger cross-sectional area than the second end surface 42d.
  • the thick part and the thin part of the first light guide 32 and the second light guide 42 are arranged to overlap each other. Therefore, the overall thickness of the first light guide 32 and the second light guide 42 laminated is uniform, and the handleability is improved.
  • FIG. 26A is a cross-sectional view showing the configuration of two types of first light guides (first light guide 52 and first light guide 53) applied to the solar cell module of the eighth embodiment.
  • FIG. 26B is a cross-sectional view of the groove T provided on the second main surface of the first light guide (shape light guide) 52 and the first light guide (shape light guide) 53.
  • the solar cell module of the present embodiment is different from the solar cell module 1 of the first embodiment in that a plurality of (two in the present embodiment) first light guides 52 and first light guides are used as the first light guide. That is, the body 53 is laminated. That is, the second light guide 4 shown in FIG. 1 is laminated on the light incident side of the first light guide 52. The second light guide 4, the first light guide 52 and the first light guide 53 are stacked in order from the light incident side, and these three light guides (the second light guide 4 and the first light guide are stacked). 52 and the first light guide 53) constitute a light guide unit.
  • the first light guide 52 includes a first main surface 52a that is a light incident surface, a second main surface 52b that faces the first main surface 52a, and a first end surface 52c that is a light emission surface. It is a plate-shaped member.
  • the first light guide 53 includes a first main surface 53a that is a light incident surface, a second main surface 53b that faces the first main surface 53a, and a first end surface 53c that is a light emission surface. It is a plate-shaped member.
  • the first light guide 52 and the first light guide 53 are arranged such that the first main surface 53a of the first light guide 53 and the second main surface 52b of the first light guide 52 face each other.
  • the light guide 52 and the first light guide 53 are stacked in the Z direction via an air layer K (low refractive index layer) having a lower refractive index than that of the first light guide 53.
  • the first main surface 52a of the first light guide 52 and the first main surface 53a of the first light guide 53 are oriented in the same direction (light incident side: -Z direction). By laminating the first light guide 52 and the first light guide 53 along the light incident direction, the first light guide 52 on the previous stage side (side closer to the light incident side) could not be captured. Light can be taken in by the first light guide 53 on the rear stage side (the side far from the light incident side).
  • the first end face 52c of the first light guide 52 and the first end face 53c of the first light guide 53 are oriented in the same direction.
  • the first end face 52c of the first light guide 52 and the first end face 53c of the first light guide 53 are disposed on the same plane parallel to the XZ plane. Therefore, a solar cell element 54 that receives light emitted from the first end surface 52c of the first light guide 52, and a solar cell element 55 that receives light emitted from the first end surface 53c of the first light guide 53, Can be placed in one place.
  • the solar cell element 54 and the solar cell element 55 generate power by using light transmitted through the second light guide 4 (see FIG. 1) arranged on the front side. Therefore, as the solar cell element 54 and the solar cell element 55, the same thing as the solar cell element 5 of 1st Embodiment can be used.
  • first light guide 52 and the first light guide 53 a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass is used.
  • the second main surface 52b of the first light guide 52 and the second main surface 53b of the first light guide 53 are provided with a plurality of grooves T extending in the X direction.
  • the groove T is a V-shaped groove in which an inclined surface T1 forming an angle ⁇ 3 with respect to a surface parallel to the XY plane and a surface T2 forming an angle ⁇ 2 with respect to a surface parallel to the XY plane intersect at a ridgeline T3. It is.
  • a region T4 between the grooves T is a surface parallel to the XY plane.
  • FIG. 26A only a few grooves T are shown to simplify the drawing, but in practice, a large number of fine grooves T with a width of about 100 ⁇ m are formed.
  • the groove T is formed, for example, by injection molding a resin (for example, polymethyl methacrylate resin: PMMA) using a mold.
  • the inclined surface T1 is a reflecting surface that totally reflects light (for example, sunlight) incident from the first main surface of the first light guide and changes the traveling direction of the light toward the first end surface. Light incident at an angle close to perpendicular to the first main surface of the first light guide is reflected by the inclined surface T1 and propagates in the first light guide generally in the Y direction.
  • light for example, sunlight
  • the shape of the groove T of the first light guide 52 and the shape of the groove T of the first light guide 53 are different.
  • the groove T of the first light guide 52 has an angle ⁇ 2 of 45 °, an angle ⁇ 3 of 15 °, and the width of the region T4 in the Y direction is zero.
  • the groove T of the second light guide 53 has an angle ⁇ 2 of 90 °, an angle ⁇ 3 of 45 °, and the width of the region T4 in the Y direction is zero.
  • the refractive index of the first light guide 52 and the second light guide 53 is 1.5.
  • the first light guide 52 and the first light guide 53 are different from each other in the angle ⁇ 3 of the inclined surface T1. Therefore, the incident angle ranges of light that can be taken in the first light guide 52 and the first light guide 53 are different from each other.
  • the angle ⁇ 3 of the inclined surface T1 of the first light guide 52 is smaller than the angle ⁇ 3 of the inclined surface T1 of the first light guide 53
  • the first light guide 52 is shallow with respect to the first main surface 52a ( It is easy to capture light incident at a large angle with respect to the Z axis, and the first light guide 53 easily captures light incident at a deep angle (small angle with respect to the Z axis) into the first main surface 53a. Therefore, by stacking such a plurality of first light guides, it is possible to efficiently capture light incident at various angles from an oblique direction, and to suppress fluctuations in the amount of light captured due to the incident angle.
  • the first main surface 52a is changed by changing the incident angle of light incident on the first main surface 52a of the first light guide 52 (the incident angle is 0 ° when incident from a direction parallel to the Z direction).
  • the ratio of the light emitted from the first end face 52c of the first light guide 52 and the first end face 53c of the first light guide 53 is simulated with respect to the light incident on the light, the ratio is obtained when the incident angle is 0 ° Is 27%, and when the incident angle is 45 °, the ratio is 32%, and it can be seen that the amount of light extraction does not change greatly depending on the incident angle.
  • the plurality of first light guides the first light guide 52 and the first light guide 53
  • the incident angle ranges of the light that can be captured are different from each other in the plurality of first light guides, the light incident at various angles from the oblique direction can be efficiently captured, depending on the incident angle. Variations in the amount of light taken in can also be suppressed. Therefore, stable power generation can be performed with high power generation efficiency even if the incident angle of light changes due to the movement of the sun or changes in weather.
  • FIG. 27 is a cross-sectional view showing configurations of two types of first light guides (first light guide 52 and first light guide 53) and a light collecting member 57 applied to the solar cell module of the ninth embodiment. It is.
  • first light guides first light guide 52 and first light guide 53
  • light collecting member 57 applied to the solar cell module of the ninth embodiment. It is.
  • the same reference numerals are given to components common to the solar cell module of the eighth embodiment, and detailed description thereof is omitted.
  • the solar cell module of the present embodiment is different from the solar cell module of the eighth embodiment in that light emitted from the first end surface 52 c of the first light guide 52 and the first end surface 53 c of the first light guide 53 are used.
  • the point where the emitted light is received by one solar cell element 56, the light emitted from the first end surface 52c of the first light guide 52, and the first end surface 53c of the first light guide 53 The light collecting member 57 for condensing the emitted light toward the solar cell element 56 is provided.
  • the light collecting member 57 equalizes the intensity distribution of light emitted from the first end surface 52 c of the first light guide 52 and the first end surface 53 c of the first light guide 53 and emits the light to the solar cell element 56.
  • It is an integrator optical element (homogenizer).
  • the condensing member 57 includes a light incident surface 57a, a light exit surface 57b, and a reflective surface 57c.
  • the light incident surface 57 a faces the first end surface 52 c of the first light guide 52 and the first end surface 53 c of the first light guide 53.
  • the light emission surface 57b emits light incident from the light incident surface 57a.
  • the reflecting surface 57c reflects the light incident from the light incident surface 57a and propagates it to the light emitting surface 57b.
  • the condensing member 57 has, for example, a quadrangular pyramid shape having the light incident surface 57a as a bottom surface, the light exit surface 57b as a top surface, and the reflecting surface 57c as a side surface.
  • the condensing member 57 is formed, for example, by injection molding a resin such as polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • the reflection surface 57c reflects light by total reflection, but a reflection layer made of a metal film or a dielectric multilayer film may be formed on the reflection surface 57c so that the reflection layer 57 reflects light. .
  • the solar cell element 56 is disposed with its light receiving surface facing the light emitting surface 57 b of the light collecting member 57.
  • the light from the first light guide 52 and the light from the first light guide 53 incident on the light incident surface 57 a of the light collecting member 57 have an illuminance distribution while being repeatedly reflected by the reflective surface 57 c of the light collecting member 57. It is made uniform. Then, the light with uniform illuminance distribution is incident on the solar cell element 56. By making the illuminance distribution of light incident on the solar cell element 56 uniform, the power generation efficiency of the solar cell element 56 can be increased.
  • the solar cell element 56 generates power by using light transmitted through the second light guide 4 (see FIG. 1) arranged on the front side. Therefore, as the solar cell element 56, the same thing as the solar cell element 5 of 1st Embodiment can be used.
  • the solar cell module of the present embodiment the light emitted from the first end surface 52 c of the first light guide 52 and the first end surface 53 c of the first light guide 53 is collected and incident on the solar cell element 56. Yes. Therefore, it is possible to reduce the size of the solar cell element 56 and reduce the cost of the solar cell module. Further, since the solar cell element 56 is a common solar cell element for the first light guide 52 and the first light guide 53, the first end surface 52c of the first light guide 52 and the first light guide are used. Compared with the case where a solar cell element is installed on each of the first end faces 53c of the body 53, the number of parts can be reduced.
  • FIG. 28 is a schematic configuration diagram of the solar power generation device 1000.
  • the photovoltaic power generation apparatus 1000 includes a solar cell module 1001, an inverter (DC / AC converter) 1004, and a storage battery 1005.
  • the solar cell module 1001 converts sunlight energy into electric power.
  • the inverter 1004 converts the DC power output from the solar cell module 1001 into AC power.
  • the storage battery 1005 stores the DC power output from the solar cell module 1001.
  • the solar cell module 1001 includes a light guide body 1002 that collects sunlight, and a solar cell element 1003 that generates power using sunlight collected by the light guide body 1002.
  • a solar cell module 1001 for example, the solar cell module described in the first to ninth embodiments is used.
  • the solar power generation apparatus 1000 supplies power to the external electronic device 1006.
  • the electronic device 1006 is supplied with power from the auxiliary power source 1007 as necessary.
  • the solar power generation device 1000 includes the solar cell module according to the above-described embodiment, the solar power generation device 1000 has a high power generation efficiency.
  • the aspect of the present invention can be used for a solar cell module and a solar power generation device.
  • SYMBOLS 1 Solar cell module, 3 ... 1st light guide (shape light guide), 3a ... 1st main surface, 3b ... 2nd main surface, 3c ... 1st end surface, 4 ... 2nd light guide (fluorescence guide) 4a ... first main surface, 4c ... first end face, 5,6 ... solar cell element, 8a, 8b, 8c, 8d ... phosphor, 12, 13 ... light collecting member, 21 ... solar cell module, 22 ... solar cell element, 23 ... condensing member, 24 ... second light guide (fluorescent light guide), 25 ... transparent light guide, 25a ... first main surface, 26 ...
  • shape light guide shape light guide
  • 3a ... 1st main surface
  • 3b ... 2nd main surface
  • 3c ... 1st end surface

Abstract

A solar cell module comprises: a fluorescent light guiding body which includes a fluorescent light body, and which is configured to further comprise a first primary face and a first end face, to absorb by the fluorescent light body a portion of exterior light which has entered via the first primary face, to propagate a first light which is radiated from the fluorescent light body and to discharge same from the first end face; and a first light guiding body, which is configured to further comprise a second primary face, a third primary face further comprising a first oblique face, and a second end face, for a second light among the exterior light which passes through the fluorescent light guiding body without being absorbed by the fluorescent light body to enter via the second primary face, to be reflected and propagated with the first oblique face, and to be emitted from the second end face.

Description

太陽電池モジュールおよび太陽光発電装置Solar cell module and solar power generation device
 本発明は、太陽電池モジュールおよび太陽光発電装置に関する。
 本願は、2011年2月25日に、日本に出願された特願2011-040191号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a solar cell module and a solar power generation device.
This application claims priority based on Japanese Patent Application No. 2011-040191 filed in Japan on February 25, 2011, the contents of which are incorporated herein by reference.
 導光体の端面に太陽電池素子を設置し、導光体の内部を伝播した光を太陽電池素子に入射させて発電を行う太陽光発電装置として、特許文献1に記載の太陽光発電装置が知られている。特許文献1の太陽光発電装置は、導光体を窓として用いる窓型の太陽光発電装置である。特許文献1の太陽光発電装置では、導光体の一主面から入射した太陽光の一部を導光体の内部に伝播させて太陽電池素子に導く。導光体の表面には蛍光体が塗布されており、導光体に入射した太陽光によって蛍光体が励起される。蛍光体から放射された光(蛍光)は導光体の内部を伝播し、太陽電池素子に入射して発電が行われる。 As a solar power generation device that installs a solar cell element on the end face of a light guide and makes light propagated through the light guide enter the solar cell element to generate power, the solar power generation device described in Patent Document 1 is Are known. The solar power generation device of Patent Document 1 is a window-type solar power generation device that uses a light guide as a window. In the solar power generation device of Patent Document 1, a part of sunlight incident from one main surface of the light guide is propagated into the light guide and guided to the solar cell element. A phosphor is applied to the surface of the light guide, and the phosphor is excited by sunlight incident on the light guide. Light (fluorescence) emitted from the phosphor propagates through the light guide and enters the solar cell element to generate power.
特開平3-273686号公報JP-A-3-273686
 特許文献1の太陽光発電装置では、蛍光体の励起に用いられる太陽光は、導光体に入射する太陽光のうちのごく僅かである。導光体に入射した太陽光の大部分は導光体を透過し、発電に寄与しない。よって、発電効率の高い太陽光発電装置を提供することができない。 In the solar power generation device of Patent Document 1, the sunlight used for exciting the phosphor is very small of the sunlight incident on the light guide. Most of the sunlight incident on the light guide is transmitted through the light guide and does not contribute to power generation. Therefore, a solar power generation device with high power generation efficiency cannot be provided.
 本発明の態様における目的は、発電効率の高い太陽電池モジュールおよびこれを用いた太陽光発電装置を提供することにある。 An object of the aspect of the present invention is to provide a solar cell module with high power generation efficiency and a solar power generation device using the solar cell module.
 本発明の態様における太陽電池モジュールは、蛍光体を含み、第1主面および第1端面を有し、前記第1主面から入射した外光の一部を前記蛍光体によって吸収し、前記蛍光体から放射された第1光を伝播させて前記第1端面から射出するよう構成された蛍光導光体と、第2主面、第1傾斜面を有する第3主面、及び第2端面を有し、前記外光のうち前記蛍光体に吸収されずに前記蛍光導光体を透過した第2光を前記第2主面から入射し、前記第1傾斜面で反射して伝播させ前記第2端面から射出するよう構成された第1導光体と、備えている。 The solar cell module according to the aspect of the present invention includes a phosphor, has a first main surface and a first end surface, and absorbs a part of external light incident from the first main surface by the phosphor, A fluorescent light guide configured to propagate the first light emitted from the body and emit the light from the first end surface; a second main surface; a third main surface having a first inclined surface; and a second end surface. Second light that is not absorbed by the phosphor but transmitted through the fluorescent light guide is incident from the second main surface, is reflected by the first inclined surface, and is propagated. A first light guide configured to emit from two end faces;
 さらに、前記第1光を受光する第1太陽電池素子と、前記第2光を受光する第2太陽電池素子と、を備え、前記第1太陽電池素子と前記第2太陽電池素子の分光感度の波長特性は互いに異なっていてもよい。 And a first solar cell element that receives the first light, and a second solar cell element that receives the second light, the spectral sensitivity of the first solar cell element and the second solar cell element. The wavelength characteristics may be different from each other.
 前記蛍光導光体は、前記蛍光体として、互いに発光スペクトルのピーク波長が異なる少なくとも二種類の蛍光体を含んでいてもよい。 The fluorescent light guide may include at least two types of fluorescent materials having different emission spectrum peak wavelengths as the fluorescent material.
 前記第1太陽電池素子は、前記少なくとも二種類の蛍光体のうち最も発光スペクトルのピーク波長が大きい蛍光体から放射された蛍光を受光してもよい。 The first solar cell element may receive the fluorescence emitted from the phosphor having the largest peak wavelength of the emission spectrum among the at least two kinds of phosphors.
 前記少なくとも二種類の蛍光体のうち最も発光スペクトルのピーク波長が大きい蛍光体の発光スペクトルのピーク波長における前記第1太陽電池素子の分光感度は、前記蛍光導光体に備えられた他のいずれの蛍光体の発光スペクトルのピーク波長における前記第1太陽電池素子の分光感度よりも大きくてもよい。 The spectral sensitivity of the first solar cell element at the peak wavelength of the emission spectrum of the phosphor having the largest emission spectrum peak wavelength among the at least two types of phosphors is any of the other ones provided in the fluorescence light guide. It may be larger than the spectral sensitivity of the first solar cell element at the peak wavelength of the emission spectrum of the phosphor.
 前記蛍光導光体は、前記蛍光体として、量子ドット蛍光体を含んでいてもよい。 The fluorescent light guide may include a quantum dot fluorescent material as the fluorescent material.
 さらに、前記蛍光導光体の第1端面から射出された前記第1光を集光して前記第1太陽電池素子に入射させる第1集光部材を備えていてもよい。 Furthermore, a first light condensing member that condenses the first light emitted from the first end face of the fluorescent light guide and enters the first solar cell element may be provided.
 前記第1集光部材は、前記蛍光導光体の第1端面から射出された前記第1光の強度分布を均一化して前記第1太陽電池素子に射出するよう構成されていてもよい。 The first light collecting member may be configured to make the intensity distribution of the first light emitted from the first end face of the fluorescent light guide uniform and emit the same to the first solar cell element.
 さらに、前記第1導光体の第2端面から射出された前記第2光を集光して前記第2太陽電池素子に入射させる第2集光部材を備えていてもよい。 Furthermore, a second condensing member that condenses the second light emitted from the second end face of the first light guide and enters the second solar cell element may be provided.
 前記第2集光部材は、前記第1導光体の第2端面から射出された前記第2光の強度分布を均一化して前記第2太陽電池素子に射出するよう構成されていてもよい。 The second light collecting member may be configured to uniformize the intensity distribution of the second light emitted from the second end face of the first light guide and emit the same to the second solar cell element.
 さらに、前記蛍光導光体の第1端面から射出された前記第1光と前記第1導光体の第2端面から射出された前記第2光とを受光する太陽電池素子と、前記太陽電池素子と前記蛍光導光体の第1端面との間及び前記第1導光体の第2端面との間に、前記蛍光導光体の第1端面から射出された前記第1光と前記第1導光体の第2端面から射出された前記第2光とを集光して前記太陽電池素子に入射させるよう構成されている集光部材と、を備えていてもよい。 Furthermore, the solar cell element that receives the first light emitted from the first end surface of the fluorescent light guide and the second light emitted from the second end surface of the first light guide, and the solar cell The first light emitted from the first end surface of the fluorescent light guide and the first light between the element and the first end surface of the fluorescent light guide and between the second end surface of the first light guide. And a condensing member configured to condense the second light emitted from the second end face of the one light guide and make it incident on the solar cell element.
 前記集光部材は、前記蛍光導光体の第1端面から射出された前記第1光と前記第1導光体の第2端面から射出された前記第2光の強度分布を均一化して前記太陽電池素子に射出するよう構成されていてもよい。 The condensing member equalizes the intensity distribution of the first light emitted from the first end face of the fluorescent light guide and the second light emitted from the second end face of the first light guide, and You may be comprised so that it inject | emits to a solar cell element.
 前記蛍光導光体は、透明導光体の内部に前記蛍光体を分散させることにより形成されていてもよい。 The fluorescent light guide may be formed by dispersing the fluorescent material inside a transparent light guide.
 前記蛍光導光体は、透明導光体と、前記透明導光体の第1主面に設けられ、内部に前記蛍光体が分散された蛍光体層と、を備えていてもよい。 The fluorescent light guide may include a transparent light guide and a phosphor layer provided on the first main surface of the transparent light guide and having the phosphor dispersed therein.
 前記透明導光体と前記蛍光体層とを剥離可能に接着する粘着層をさらに有していてもよい。 It may further include an adhesive layer for releasably bonding the transparent light guide and the phosphor layer.
 前記第1導光体の第2端面から前記第2端面と対向する第3端面に向けて前記第1導光体の厚みが徐々に小さくなるように、前記第2主面が前記第3主面に対して傾斜していてもよい。 The second main surface is the third main surface so that the thickness of the first light guide gradually decreases from the second end surface of the first light guide toward the third end surface facing the second end surface. It may be inclined with respect to the surface.
 前記蛍光導光体は、前記第1主面とは異なる第4主面と、前記第1端面と対向する第4端面と、を備え、前記蛍光導光体の第1端面から前記第4端面に向けて前記蛍光導光体の厚みが徐々に小さくなるように、前記第1主面が前記第4主面に対して傾斜していてもよい。 The fluorescent light guide includes a fourth main surface different from the first main surface, and a fourth end surface opposite to the first end surface, and the first end surface to the fourth end surface of the fluorescent light guide. The first main surface may be inclined with respect to the fourth main surface so that the thickness of the fluorescent light guide gradually decreases toward the surface.
 前記蛍光導光体の第1端面と前記第1導光体の第3端面とが同じ方向に配置され、前記蛍光導光体の第4端面と前記第1導光体の第2端面とが同じ方向を向くように、前記蛍光導光体と前記第1導光体とが積層されていてもよい。 The first end face of the fluorescent light guide and the third end face of the first light guide are arranged in the same direction, and the fourth end face of the fluorescent light guide and the second end face of the first light guide are The fluorescent light guide and the first light guide may be laminated so as to face the same direction.
 さらに、第5主面、第6主面、第5端面を有する第2導光体を備え、前記第1導光体が、前記蛍光導光体と前記第2導光体との間に配置され、前記第2導光体が、前記第1導光体を透過した第2光の一部を第5主面から入射させ、第6主面に設けられた第2傾斜面で反射して伝播させ前記第5端面から射出するよう構成されていてもよい。 And a second light guide having a fifth main surface, a sixth main surface, and a fifth end surface, wherein the first light guide is disposed between the fluorescent light guide and the second light guide. And the second light guide causes a part of the second light transmitted through the first light guide to be incident from the fifth main surface and reflected by the second inclined surface provided on the sixth main surface. It may be configured to propagate and emit from the fifth end face.
 前記第1傾斜面の角度と、前記第2の傾斜面の角度は互いに異なっていてもよい。 The angle of the first inclined surface and the angle of the second inclined surface may be different from each other.
 さらに、前記第1導光体の第2端面及び第2導光体の第5端面から射出された前記第2光を集光して太陽電池素子に入射させるよう構成されている集光部材を備えていてもよい。 Furthermore, a condensing member configured to condense the second light emitted from the second end surface of the first light guide and the fifth end surface of the second light guide so as to enter the solar cell element. You may have.
 前記第1導光体の第2端面及び第2導光体の第5端面から射出された前記第2光を集光する前記集光部材は、前記第1導光体の第2端面及び第2導光体の第5端面から射出された前記第2光の強度分布を均一化して前記太陽電池素子に射出するように構成されていてもよい。 The condensing member that condenses the second light emitted from the second end surface of the first light guide and the fifth end surface of the second light guide is the second end surface of the first light guide and the second end surface of the first light guide. The intensity distribution of the second light emitted from the fifth end surface of the two light guides may be uniformized and emitted to the solar cell element.
 本発明の一態様における太陽光発電装置は、前記太陽電池モジュールを備えている。 A solar power generation device according to an aspect of the present invention includes the solar cell module.
 本発明の態様によれば、発電効率の高い太陽電池モジュールおよびこれを用いた太陽光発電装置を提供することができる。 According to the aspect of the present invention, it is possible to provide a solar cell module with high power generation efficiency and a solar power generation apparatus using the solar cell module.
第1実施形態の太陽電池モジュールの概略斜視図である。It is a schematic perspective view of the solar cell module of 1st Embodiment. 太陽電池モジュールの断面図である。It is sectional drawing of a solar cell module. 太陽電池モジュールの断面図の拡大図である。It is an enlarged view of sectional drawing of a solar cell module. 蛍光体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of fluorescent substance. 蛍光体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of fluorescent substance. 蛍光体の発光特性を示す図である。It is a figure which shows the light emission characteristic of fluorescent substance. 蛍光体の発光特性を示す図である。It is a figure which shows the light emission characteristic of fluorescent substance. フォトルミネッセンスによるエネルギー移動を示す図である。It is a figure which shows the energy transfer by photoluminescence. フェルスター機構の説明図である。It is explanatory drawing of a Forster mechanism. フェルスター機構の説明図である。It is explanatory drawing of a Forster mechanism. フェルスター機構の説明図である。It is explanatory drawing of a Forster mechanism. 化合物半導体を用いた太陽電池の分光感度曲線を示す図である。It is a figure which shows the spectral sensitivity curve of the solar cell using a compound semiconductor. アモルファスシリコンを用いた太陽電池の分光感度曲線である。It is a spectral sensitivity curve of a solar cell using amorphous silicon. 第1導光体光の取り出し効率を示す図である。It is a figure which shows the extraction efficiency of 1st light guide body light. 第2導光体光の取り出し効率を示す図である。It is a figure which shows the taking-out efficiency of 2nd light guide body light. 光の入射側から第1導光体と第2導光体をこの順に積層した場合の光の取り出し効率を示す図である。It is a figure which shows the extraction efficiency of light at the time of laminating | stacking a 1st light guide and a 2nd light guide in this order from the incident side of light. 光の入射側から第2導光体と第1導光体をこの順に積層した場合の光の取り出し効率を示す図である。It is a figure which shows the extraction efficiency of light at the time of laminating | stacking a 2nd light guide and a 1st light guide in this order from the incident side of light. InGaP、GaAs及びInGaAsを積層した3層接合化合物太陽電池の分光感度曲線である。It is a spectral sensitivity curve of the three-layer junction compound solar cell which laminated InGaP, GaAs, and InGaAs. 3層接合化合物太陽電池の構造を示す図である。It is a figure which shows the structure of a 3 layer joining compound solar cell. 第2実施形態の太陽電池モジュールに用いる量子ドット蛍光体の吸収スペクトル及び発光スペクトルを示す図である。It is a figure which shows the absorption spectrum and emission spectrum of the quantum dot fluorescent substance used for the solar cell module of 2nd Embodiment. 第1導光体及び第2導光体の光取り出し効率のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the light extraction efficiency of a 1st light guide and a 2nd light guide. 第3実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 3rd Embodiment. 第4実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 4th Embodiment. 第5実施形態の太陽電池モジュールに適用される第2導光体の断面図である。It is sectional drawing of the 2nd light guide applied to the solar cell module of 5th Embodiment. 第5実施形態の第2導光体の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the 2nd light guide of 5th Embodiment. 第2導光体の要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of a 2nd light guide. 第6実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 6th Embodiment. 第1導光体の内部を光が伝播する様子を示す図である。It is a figure which shows a mode that light propagates the inside of a 1st light guide. 第7実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 7th Embodiment. 第8実施形態の太陽電池モジュールに適用される2種類の第1導光体の構成を示す断面図である。It is sectional drawing which shows the structure of two types of 1st light guides applied to the solar cell module of 8th Embodiment. 第8実施形態の太陽電池モジュールに適用される2種類の第1導光体の構成を示す断面図の拡大図である。It is an enlarged view of sectional drawing showing composition of two kinds of 1st light guides applied to a solar cell module of an 8th embodiment. 第9実施形態の太陽電池モジュールに適用される2種類の第1導光体及び集光部材の構成を示す断面図である。It is sectional drawing which shows the structure of two types of 1st light guides and condensing members applied to the solar cell module of 9th Embodiment. 太陽光発電装置の概略構成図である。It is a schematic block diagram of a solar power generation device.
[第1実施形態]
 図1は、第1実施形態の太陽電池モジュール1の概略斜視図である。
[First Embodiment]
FIG. 1 is a schematic perspective view of the solar cell module 1 of the first embodiment.
 太陽電池モジュール1は、導光体ユニット2と、太陽電池素子5と、太陽電池素子6と、枠体10と、を備えている。導光体ユニット2は、第1導光体(形状導光体)3と第2導光体(蛍光導光体)4とを積層してなる。太陽電池素子5は、第1導光体3の第1端面3cから射出された光を受光する。太陽電池素子6は、第2導光体4の第1端面4cから射出された光を受光する。枠体10は、導光体ユニット2と太陽電池素子5と太陽電池素子6とを一体に保持する。 The solar cell module 1 includes a light guide unit 2, a solar cell element 5, a solar cell element 6, and a frame body 10. The light guide unit 2 is formed by laminating a first light guide (shape light guide) 3 and a second light guide (fluorescent light guide) 4. The solar cell element 5 receives light emitted from the first end surface 3 c of the first light guide 3. The solar cell element 6 receives light emitted from the first end face 4 c of the second light guide 4. The frame body 10 integrally holds the light guide unit 2, the solar cell element 5, and the solar cell element 6.
 第1導光体3は、光入射面である第1主面3aと、第1主面3aと対向する第2主面3bと、光射出面である第1端面3cと、を備えている。第2導光体4は、光入射面である第1主面4aと、第1主面4aと対向する第2主面4bと、光射出面である第1端面4cと、を備えている。第1導光体3と第2導光体4とは、第1導光体3の第1主面3aと第2導光体4の第2主面4bとが対向するように、第1導光体3及び第2導光体4よりも屈折率の小さい空気層K(低屈折率層)を介してZ方向に積層されている。 The first light guide 3 includes a first main surface 3a that is a light incident surface, a second main surface 3b that faces the first main surface 3a, and a first end surface 3c that is a light emission surface. . The second light guide 4 includes a first main surface 4a that is a light incident surface, a second main surface 4b that faces the first main surface 4a, and a first end surface 4c that is a light emission surface. . The first light guide 3 and the second light guide 4 are arranged such that the first main surface 3a of the first light guide 3 and the second main surface 4b of the second light guide 4 are opposed to each other. The light guide 3 and the second light guide 4 are stacked in the Z direction via an air layer K (low refractive index layer) having a smaller refractive index than the light guide 3 and the second light guide 4.
 第1導光体3の第1主面3aと第2導光体4の第1主面4aは、互いに同じ方向(光入射側:-Z方向)を向いている。第1導光体3と第2導光体4とを光Lの入射方向に沿って積層することで、前段側(光Lが入射する側に近い側)の第2導光体4で取り込めなかった光を後段側(光Lが入射する側から遠い側)の第1導光体3で取り込むことが可能となる。 The first main surface 3a of the first light guide 3 and the first main surface 4a of the second light guide 4 face the same direction (light incident side: -Z direction). By laminating the first light guide 3 and the second light guide 4 along the incident direction of the light L, it is captured by the second light guide 4 on the front stage side (side closer to the light L incident side). The light that has not been received can be taken in by the first light guide 3 on the rear stage side (the side far from the light incident side).
 第1導光体3の第1端面3cと第2導光体4の第1端面4cは、互いに同じ向きを向いている。第1導光体3の第1端面3cと第2導光体4の第1端面4cは、XZ平面と平行な同一平面上に配置されている。したがって、第1導光体3の第1端面3cから射出された光を受光する太陽電池素子5と第2導光体4の第1端面4cから射出された光を受光する太陽電池素子6とを一箇所に配置することができるようになっている。 The first end surface 3c of the first light guide 3 and the first end surface 4c of the second light guide 4 are oriented in the same direction. The first end surface 3c of the first light guide 3 and the first end surface 4c of the second light guide 4 are arranged on the same plane parallel to the XZ plane. Therefore, the solar cell element 5 that receives the light emitted from the first end surface 3c of the first light guide 3 and the solar cell element 6 that receives the light emitted from the first end surface 4c of the second light guide 4; Can be placed in one place.
 第1導光体3は、Z軸に垂直な(XY平面と平行な)第1主面3a及び第2主面3bを有する略矩形の板状部材である。第1導光体3としては、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料が用いられる。 The first light guide 3 is a substantially rectangular plate-like member having a first main surface 3a and a second main surface 3b perpendicular to the Z axis (parallel to the XY plane). As the first light guide 3, a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass is used.
 第1導光体3の第2主面3bには、X方向に延びる複数の溝Tが設けられている。溝Tは、XY平面と平行な面に対して斜めに傾斜した傾斜面T1と、傾斜面T1と交差する面T2と、を有するV字状の溝である。図1では、図面を簡略化するために、溝Tを数本しか記載していないが、実際には、幅100μm程度の細かい溝Tが多数本形成されている。溝Tは、例えば、金型を用いて樹脂(例えばポリメタクリル酸メチル樹脂:PMMA)を射出成形することにより形成されている。 The second main surface 3b of the first light guide 3 is provided with a plurality of grooves T extending in the X direction. The groove T is a V-shaped groove having an inclined surface T1 that is inclined with respect to a plane parallel to the XY plane and a surface T2 that intersects the inclined surface T1. In FIG. 1, only a few grooves T are shown in order to simplify the drawing, but in practice, a large number of fine grooves T having a width of about 100 μm are formed. The groove T is formed, for example, by injection molding a resin (for example, polymethyl methacrylate resin: PMMA) using a mold.
 傾斜面T1は、第1主面3aから入射した光L(例えば太陽光)を全反射して光の進行方向を第1端面3cに向かう方向に変更する反射面である。第1主面3aに対して垂直に近い角度で入射した光Lは、傾斜面T1で反射して第1導光体3の内部を概ねY方向に伝播する。 The inclined surface T1 is a reflecting surface that totally reflects the light L (for example, sunlight) incident from the first main surface 3a and changes the traveling direction of the light to the direction toward the first end surface 3c. The light L incident at an angle close to perpendicular to the first main surface 3a is reflected by the inclined surface T1 and propagates in the first light guide 3 in the Y direction.
 第1導光体3の第2主面3bには、このような溝Tが、傾斜面T1と面T2とが互いに接するようにY方向に複数設けられている。第2主面3bに設けられた複数の溝Tの形状及び大きさは、全て同じである。 The second main surface 3b of the first light guide 3 is provided with a plurality of such grooves T in the Y direction so that the inclined surfaces T1 and T2 are in contact with each other. The shape and size of the plurality of grooves T provided on the second main surface 3b are all the same.
 第2導光体4は、Z軸に垂直な(XY平面と平行な)第1主面4a及び第2主面4bを有する略矩形の板状部材である。第2導光体4は、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料からなる基材の内部に、蛍光体を分散させたものである。蛍光体としては、例えば、紫外光又は可視光を吸収して可視光又は赤外光を放射する複数種類の蛍光体が含まれている。蛍光体から放射された光は、第2導光体4の内部を伝播して第1端面4cから射出され、太陽電池素子6で発電に利用される。 The second light guide 4 is a substantially rectangular plate-like member having a first main surface 4a and a second main surface 4b perpendicular to the Z axis (parallel to the XY plane). The second light guide 4 is obtained by dispersing a phosphor in a base material made of a highly transparent organic or inorganic material such as acrylic resin, polycarbonate resin, or glass. Examples of the phosphor include a plurality of types of phosphors that absorb ultraviolet light or visible light and emit visible light or infrared light. The light emitted from the phosphor propagates through the second light guide 4 and is emitted from the first end face 4 c, and is used for power generation by the solar cell element 6.
 なお、可視光は380nm以上750nm以下の波長領域の光であり、紫外光は380nm未満の波長領域の光であり、赤外光は750nmよりも大きい波長領域の光である。 Note that visible light is light in a wavelength region of 380 nm to 750 nm, ultraviolet light is light in a wavelength region less than 380 nm, and infrared light is light in a wavelength region larger than 750 nm.
 外光を有効に取り込めるように、導光体ユニットを構成する導光体の材料は400nm以下の波長に対して透過性を有することが望ましい。例えば、360nm以上800nm以下の波長領域の光に対して90%以上、より好ましくは93%以上の透過率を有するものが好適である。例えば、シリコン樹脂基板や石英基板、或いは、PMMA樹脂基板においては三菱レイヨン社製の「アクリライト」(登録商標)は、広い波長領域に光に対して高い透明性を有することから、好適である。 It is desirable that the material of the light guide constituting the light guide unit has transparency to wavelengths of 400 nm or less so that external light can be taken in effectively. For example, a material having a transmittance of 90% or more, more preferably 93% or more with respect to light in a wavelength region of 360 nm to 800 nm is suitable. For example, in the case of a silicon resin substrate, a quartz substrate, or a PMMA resin substrate, “Acrylite” (registered trademark) manufactured by Mitsubishi Rayon is suitable because it has high transparency to light in a wide wavelength region. .
 第2導光体4の第1主面4a及び第2主面4bは概ねXY平面と平行な平坦な面である。第2導光体4の第1端面4c以外の端面には、蛍光体から放射された光(蛍光)を反射する反射層9が設けられている。 The first main surface 4a and the second main surface 4b of the second light guide 4 are flat surfaces substantially parallel to the XY plane. On the end face other than the first end face 4c of the second light guide 4, a reflection layer 9 that reflects light (fluorescence) emitted from the phosphor is provided.
 第1導光体3の第2主面3bには、第1導光体3の第2主面3bを透過した光を第1導光体3の内部に反射する反射層7が設けられている。図示は省略するが、第1導光体3の第1端面3c以外の端面には、当該端面から第1導光体3の外部に漏れ出す光を第1導光体3の内部に反射する反射層が設けられていてもよい。 The second main surface 3 b of the first light guide 3 is provided with a reflective layer 7 that reflects the light transmitted through the second main surface 3 b of the first light guide 3 to the inside of the first light guide 3. Yes. Although illustration is omitted, light that leaks from the end face to the outside of the first light guide 3 is reflected to the inside of the first light guide 3 on the end face other than the first end face 3 c of the first light guide 3. A reflective layer may be provided.
 太陽電池素子5は、受光面を第1導光体3の第1端面3cと対向させて配置されている。太陽電池素子6は、受光面を第2導光体4の第1端面4cと対向させて配置されている。 The solar cell element 5 is disposed with the light receiving surface facing the first end surface 3 c of the first light guide 3. The solar cell element 6 is disposed with the light receiving surface facing the first end surface 4 c of the second light guide 4.
 太陽電池素子5及び太陽電池素子6としては、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などの公知の太陽電池を使用することができる。中でも、化合物半導体を用いた化合物系太陽電池は、高効率な発電が可能であることから、太陽電池素子5及び太陽電池素子6として好適である。 As the solar cell element 5 and the solar cell element 6, known solar cells such as silicon solar cells, compound solar cells, and organic solar cells can be used. Especially, the compound type solar cell using a compound semiconductor is suitable as the solar cell element 5 and the solar cell element 6 since high-efficiency electric power generation is possible.
 枠体10は、最も前段側に配置された第2導光体4の第1主面4aと対向する面に光Lを透過する透過面10aを備えている。透過面10aは枠体10の開口部であってもよく、枠体10の開口部に嵌め込まれたガラス等の透明部材であってもよい。枠体10の透過面10aとZ方向から見て重なる部分の第2導光体4の第1主面4aが、導光体ユニット2の光入射面である。また、第1導光体3の第1端面3cと第2導光体4の第1端面4cが導光体ユニット2の第1光射出面である。 The frame body 10 includes a transmission surface 10a that transmits light L on a surface facing the first main surface 4a of the second light guide 4 disposed on the most front side. The transmission surface 10a may be an opening of the frame 10, or may be a transparent member such as glass fitted in the opening of the frame 10. The first main surface 4 a of the second light guide 4 that overlaps the transmission surface 10 a of the frame 10 when viewed from the Z direction is the light incident surface of the light guide unit 2. The first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 are the first light exit surfaces of the light guide unit 2.
 図2Aは、太陽電池モジュール1の断面図である。図2Bは、第1導光体3の第2主面3bに設けられる溝Tの断面図である。 FIG. 2A is a cross-sectional view of the solar cell module 1. FIG. 2B is a cross-sectional view of the groove T provided in the second main surface 3 b of the first light guide 3.
 第1導光体3の第2主面3bには、第1主面3aから入射した光を反射させて光の進行方向を第1端面3cに向かう方向に変更する複数の溝Tが設けられている。溝Tは、Y軸に対して角度θをなす傾斜面T1と、Y軸に対して垂直な面T2と、が稜線T3において交差するV字状の溝である。稜線T3を挟んで第1端面3c側に面T2が配置され、第1端面3cとは反対側に傾斜面T1が配置されている。 The second main surface 3b of the first light guide 3 is provided with a plurality of grooves T that reflect the light incident from the first main surface 3a and change the traveling direction of the light toward the first end surface 3c. ing. The groove T is a V-shaped groove in which an inclined surface T1 that forms an angle θ with respect to the Y axis and a surface T2 that is perpendicular to the Y axis intersect at a ridgeline T3. A surface T2 is disposed on the first end surface 3c side with the ridge line T3 interposed therebetween, and an inclined surface T1 is disposed on the opposite side to the first end surface 3c.
 例えば、角度θは42°であり、1本の溝TのY方向の幅Wは100μmであり、溝TのZ方向の深さDは90μmであり、第1導光体3の屈折率は1.5である。しかし、角度θ、溝TのY方向の幅、溝TのZ方向の深さ、及び第1導光体3の屈折率はこれに限定されない。 For example, the angle θ is 42 °, the width W in the Y direction of one groove T is 100 μm, the depth D in the Z direction of the groove T is 90 μm, and the refractive index of the first light guide 3 is 1.5. However, the angle θ, the width of the groove T in the Y direction, the depth of the groove T in the Z direction, and the refractive index of the first light guide 3 are not limited thereto.
 第2導光体4の内部には、互いに吸収波長域の異なる複数種類の蛍光体(図2では例えば第1蛍光体8a、第2蛍光体8b及び第3蛍光体8c)が分散されている。第1蛍光体8aは、紫外光を吸収して青色の蛍光を放射し、第2蛍光体8bは、青色光を吸収して緑色の蛍光を放射し、第3蛍光体8cは、緑色光を吸収して赤色の蛍光を放射する。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cは、例えば、PMMA樹脂を成型する際に混入される。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの混合比率は以下の通りである。なお、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの混合比率はPMMA樹脂に対する体積比率で示している。 In the second light guide 4, a plurality of types of phosphors having different absorption wavelength ranges (for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c in FIG. 2) are dispersed. . The first phosphor 8a absorbs ultraviolet light and emits blue fluorescence, the second phosphor 8b absorbs blue light and emits green fluorescence, and the third phosphor 8c emits green light. Absorbs and emits red fluorescence. The first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are mixed when, for example, a PMMA resin is molded. The mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is as follows. The mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is shown as a volume ratio with respect to the PMMA resin.
第1蛍光体8aとして、BASF社製Lumogen F Blue(商品名)を用い、混合比率は0.02%とする。第2蛍光体8bとして、BASF社製Lumogen F Green(商品名)を用い、混合比率は0.02%とする。第3蛍光体8cとして、BASF社製Lumogen F Red(商品名)を用い、混合比率は0.02%とする。 As the first phosphor 8a, Lumogen F Blue (trade name) manufactured by BASF is used, and the mixing ratio is 0.02%. Lumogen F Green (trade name) manufactured by BASF is used as the second phosphor 8b, and the mixing ratio is 0.02%. As the third phosphor 8c, BASF Lumogen F Red (trade name) is used, and the mixing ratio is 0.02%.
 図3ないし図6は、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの発光特性及び吸収特性を示す図である。図3において、白抜きの四角は、第1蛍光体8aによって紫外光が吸収された後の太陽光のスペクトルを示す。三角は、第2蛍光体8bによって青色光が吸収された後の太陽光のスペクトルを示す。バツ印は、第3蛍光体8cによって緑色光が吸収された後の太陽光のスペクトルを示す。黒四角は、太陽光のスペクトルを示す。図4において、丸は、第1蛍光体8a、第2蛍光体及8b及び第3蛍光体8cによって紫外光、青色光及び緑色光が吸収された後の太陽光のスペクトルを示す。四角は、太陽光のスペクトルを示す。図5において、黒四角は、第1蛍光体8aの発光スペクトルである。三角は、第2蛍光体8bの発光スペクトルである。白抜きの四角は、第3蛍光体8cの発光スペクトルである。図6は、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cを含む第2導光体の第1端面から射出される光のスペクトルを示す。 3 to 6 are diagrams showing the emission characteristics and absorption characteristics of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. In FIG. 3, the white squares indicate the spectrum of sunlight after the ultraviolet light is absorbed by the first phosphor 8a. The triangle indicates the spectrum of sunlight after the blue light is absorbed by the second phosphor 8b. The cross mark indicates the spectrum of sunlight after the green light is absorbed by the third phosphor 8c. A black square shows the spectrum of sunlight. In FIG. 4, circles indicate the spectrum of sunlight after ultraviolet light, blue light, and green light are absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. A square shows the spectrum of sunlight. In FIG. 5, the black square is an emission spectrum of the first phosphor 8a. The triangle is the emission spectrum of the second phosphor 8b. A white square is an emission spectrum of the third phosphor 8c. FIG. 6 shows a spectrum of light emitted from the first end face of the second light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
 図3及び図4に示すように、第1蛍光体8aは、概ね420nm以下の波長の光を吸収する。第2蛍光体8bは、概ね420nm以上520nm以下の波長の光を吸収する。第3蛍光体8cは、概ね520nm以上620nm以下の波長の光を吸収する。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cによって、第2導光体に入射した太陽光のうち620nm以下の波長の光が概ね全て吸収される。太陽光のスペクトルにおいて波長が620nm以下の光の割合は48%程度である。よって、導光体ユニットの光入射面(第2導光体の第1主面)に入射した光のうち48%は第2導光体に含まれる第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収され、残りの52%は第2導光体を透過して第1導光体に入射する。 As shown in FIGS. 3 and 4, the first phosphor 8a absorbs light having a wavelength of approximately 420 nm or less. The second phosphor 8b absorbs light having a wavelength of approximately 420 nm or more and 520 nm or less. The third phosphor 8c absorbs light having a wavelength of approximately 520 nm or more and 620 nm or less. The first phosphor 8a, the second phosphor 8b, and the third phosphor 8c absorb almost all light having a wavelength of 620 nm or less in the sunlight incident on the second light guide. In the sunlight spectrum, the proportion of light having a wavelength of 620 nm or less is about 48%. Therefore, 48% of the light incident on the light incident surface of the light guide unit (the first main surface of the second light guide) is the first phosphor 8a and the second phosphor 8b included in the second light guide. And the remaining 52% is transmitted through the second light guide and incident on the first light guide.
 図5に示すように、第1蛍光体8aの発光スペクトルは、430nmにピーク波長を有する。第2蛍光体8bの発光スペクトルは、520nmにピーク波長を有する。第3蛍光体8cの発光スペクトルは、630nmにピーク波長を有する。しかしながら、図6に示すように、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cを含む第2導光体の第1端面から射出される光のスペクトルは、第3蛍光体8cの発光スペクトルのピーク波長(630nm)に対応する波長にのみピーク波長を有し、第1蛍光体8aの発光スペクトルのピーク波長(430nm)及び第2蛍光体8bの発光スペクトルのピーク波長(520nm)に対応する波長にはピーク波長を有しない。 As shown in FIG. 5, the emission spectrum of the first phosphor 8a has a peak wavelength at 430 nm. The emission spectrum of the second phosphor 8b has a peak wavelength at 520 nm. The emission spectrum of the third phosphor 8c has a peak wavelength at 630 nm. However, as shown in FIG. 6, the spectrum of light emitted from the first end face of the second light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is the third phosphor. It has a peak wavelength only at a wavelength corresponding to the peak wavelength (630 nm) of the emission spectrum of 8c, the peak wavelength (430 nm) of the emission spectrum of the first phosphor 8a and the peak wavelength (520 nm of the emission spectrum of the second phosphor 8b). ) Does not have a peak wavelength.
 第1蛍光体8aに対応する発光スペクトルのピーク及び第2蛍光体8bに対応する発光スペクトルのピークが消失した原因は、フォトルミネッセンス(Photoluminescence;PL)による蛍光体間のエネルギー移動や、フェルスター機構(蛍光共鳴エネルギー移動)による蛍光体間のエネルギー移動などが挙げられる。フォトルミネッセンスによるエネルギー移動は、一の蛍光体から放射された蛍光が他の蛍光体の励起エネルギーとして利用されることにより生じるものである。フェルスター機構は、このような光の発光及び吸収のプロセスを経ずに、近接した2つの蛍光体の間で励起エネルギーが電子の共鳴により直接移動するものである。フェルスター機構による蛍光体間のエネルギー移動は、光の発光及び吸収のプロセスを介さずに行われるため、エネルギーのロスが小さい。よって、太陽電池モジュールの発電効率の向上に寄与する。 The cause of the disappearance of the peak of the emission spectrum corresponding to the first phosphor 8a and the peak of the emission spectrum corresponding to the second phosphor 8b is the energy transfer between the phosphors due to photoluminescence (PL) and the Forster mechanism. Examples thereof include energy transfer between phosphors by (fluorescence resonance energy transfer). Energy transfer by photoluminescence occurs when fluorescence emitted from one phosphor is used as excitation energy for another phosphor. In the Förster mechanism, excitation energy directly moves between two adjacent phosphors by electron resonance without going through such light emission and absorption processes. Energy transfer between the phosphors by the Förster mechanism is performed without going through the process of light emission and absorption, so that energy loss is small. Therefore, it contributes to the improvement of the power generation efficiency of the solar cell module.
 ここで、図7A~図8Bを用いてフェルスター機構について説明する。図7Aは、フォトルミネッセンスによるエネルギー移動を示す図であり、図8A及び図8Bは、フェルスター機構によるエネルギー移動を示す図である。 Here, the Förster mechanism will be described with reference to FIGS. 7A to 8B. FIG. 7A is a diagram illustrating energy transfer by photoluminescence, and FIGS. 8A and 8B are diagrams illustrating energy transfer by a Forster mechanism.
 図7Bは、エネルギー移動による色変換を示す図である。図7Bに示すように、有機の蛍光体では、励起状態にある分子Aから基底状態の分子Bに対してフェルスター機構によってエネルギー移動が生じることがある。蛍光体では、分子Aが励起されたときに、分子Bにエネルギー移動を起こすと、分子Bのみが発光する。このエネルギー移動は、分子間の距離と分子Aの発光スペクトルと分子Bの吸収スペクトルに依存する。分子Aをホスト分子、分子Bをゲスト分子とするとき、エネルギー移動するときの速度定数(移動確率)は式(1)のようになる。 FIG. 7B is a diagram showing color conversion by energy transfer. As shown in FIG. 7B, in the organic phosphor, energy transfer may occur from the molecule A in the excited state to the molecule B in the ground state by the Forster mechanism. In the phosphor, when the molecule A is excited and undergoes energy transfer to the molecule B, only the molecule B emits light. This energy transfer depends on the distance between molecules, the emission spectrum of molecule A, and the absorption spectrum of molecule B. When the molecule A is a host molecule and the molecule B is a guest molecule, the rate constant (movement probability) when energy is transferred is as shown in Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)において、νは振動数、f′(ν)はホスト分子Aの発光スペクトル、ε(ν)はゲスト分子Bの吸収スペクトル、Nはアボガドロ定数、nは屈折率、τはホスト分子Aの蛍光寿命、Rは分子間距離、Kは遷移双極子モーメント(ランダム時2/3)である。 In equation (1), ν is the frequency, f ′ H (ν) is the emission spectrum of the host molecule A, ε (ν) is the absorption spectrum of the guest molecule B, N is the Avogadro constant, n is the refractive index, τ 0 is the fluorescence lifetime of the host molecule A, R is the intermolecular distance, and K 2 is the transition dipole moment (2/3 at random).
 速度定数が大きいと、蛍光体間でエネルギー移動が生じやすくなる。大きな速度定数を得るためには、以下の条件が満たされることが望ましい。
[1]ホスト分子Aの発光スペクトルとゲスト分子の吸収スペクトルの重なりが大きい。
[2]ゲスト分子Bの吸光係数が大きい。
[3]ホスト分子Aとゲスト分子Bとの間の距離が小さい。
When the rate constant is large, energy transfer tends to occur between the phosphors. In order to obtain a large rate constant, it is desirable that the following conditions are satisfied.
[1] The overlap between the emission spectrum of the host molecule A and the absorption spectrum of the guest molecule is large.
[2] The extinction coefficient of guest molecule B is large.
[3] The distance between the host molecule A and the guest molecule B is small.
 上記[1]は、近接した2つの蛍光体間での共鳴のし易さを表すものである。例えば、図8Aに示すように、ホスト分子Aの発光スペクトルPL1のピーク波長とゲスト分子Bの吸収スペクトルAB2のピーク波長とが近いと、フェルスター機構によるエネルギー移動が生じやすくなる。ここで、AB1はホスト分子Aの吸収スペクトル、PL2はゲスト分子Bの発光スペクトルを示す。図8Bに示すように、励起エネルギーEEによって励起状態となったホスト分子Aの近くに基底状態のゲスト分子Bが存在すると、共鳴的性質によりゲスト分子Aの波動関数が変化し、基底状態のホスト分子Aと励起状態のゲスト分子Bができる。これにより、ホスト分子Aとゲスト分子Bとの間でエネルギー移動ETが生じ、ゲスト分子Bのみが発光する。 [1] represents the ease of resonance between two adjacent phosphors. For example, as shown in FIG. 8A, when the peak wavelength of the emission spectrum PL1 of the host molecule A is close to the peak wavelength of the absorption spectrum AB2 of the guest molecule B, energy transfer due to the Forster mechanism is likely to occur. Here, AB1 represents the absorption spectrum of the host molecule A, and PL2 represents the emission spectrum of the guest molecule B. As shown in FIG. 8B, when the guest molecule B in the ground state exists in the vicinity of the host molecule A excited by the excitation energy EE, the wave function of the guest molecule A changes due to the resonance property, and the ground state host A molecule A and an excited guest molecule B are formed. Thereby, energy transfer ET occurs between the host molecule A and the guest molecule B, and only the guest molecule B emits light.
 上記[3]において、フェルスター機構によるエネルギー移動が起こる分子間距離は、通常、10nm程度である。条件が合えば、分子間距離が20nm程度であってもエネルギー移動は起きる。上述した第1蛍光体、第2蛍光体及び第3蛍光体の混合比率であれば、蛍光体間の距離は20nmよりも短くなる。よって、フェルスター機構によるエネルギー移動は十分に生じうる。また、図3及び図5に示した第1蛍光体、第2蛍光体及び第3蛍光体の発光スペクトル及び吸収スペクトルは、上記[1]の条件を十分に満たしている。よって、第1蛍光体から第2蛍光体へのエネルギー移動、及び、第2蛍光体から第3蛍光体へのエネルギー移動が生じ、第1蛍光体、第2蛍光体、第3蛍光体の順にカスケード型のエネルギー移動が生じる。 In the above [3], the intermolecular distance at which energy transfer by the Forster mechanism occurs is usually about 10 nm. If the conditions are met, energy transfer occurs even when the intermolecular distance is about 20 nm. If the mixing ratio of the first phosphor, the second phosphor, and the third phosphor described above is used, the distance between the phosphors is shorter than 20 nm. Therefore, energy transfer by the Forster mechanism can occur sufficiently. In addition, the emission spectra and absorption spectra of the first phosphor, the second phosphor, and the third phosphor shown in FIGS. 3 and 5 sufficiently satisfy the condition [1]. Therefore, energy transfer from the first phosphor to the second phosphor and energy transfer from the second phosphor to the third phosphor occur, and the first phosphor, the second phosphor, and the third phosphor in this order. Cascade type energy transfer occurs.
 第2導光体では、3つの異なる発光スペクトルを有する蛍光体(第1蛍光体、第2蛍光体、第3蛍光体)を混入しているのもかかわらず、フェルスター機構によるエネルギー移動により、実質的には第3蛍光体の発光のみが生じる。第3蛍光体の発光量子効率は例えば92%である。よって、第2導光体に第1蛍光体、第2蛍光体及び第3蛍光体を混入することで、620nmまでの波長領域の光を吸収し、92%の効率でピーク波長が630nmの赤色の発光を生じさせることができる。 In the second light guide, despite the fact that phosphors having three different emission spectra (first phosphor, second phosphor, and third phosphor) are mixed, the energy transfer by the Förster mechanism Substantially only the third phosphor emits light. The emission quantum efficiency of the third phosphor is, for example, 92%. Therefore, by mixing the first phosphor, the second phosphor, and the third phosphor in the second light guide, the light in the wavelength region up to 620 nm is absorbed, and the red having a peak wavelength of 630 nm with an efficiency of 92%. Can be emitted.
 このようなエネルギー移動現象は、有機の蛍光体に特有の現象で、一般的に無機の蛍光体では起こらない。図7Aは、フォトルミネッセンス(PL)による色変換を示す図である。通常、2種類の蛍光体を混入した場合には、図7Aのように、まず蛍光体Aがある効率で発光し(PL)、蛍光体Bに入射し、蛍光体Bで光の吸収(AB)及び発光(PL)のプロセスを経ることによって、蛍光体Bから光が放射される。このようなフォトルミネッセンスによるエネルギー移動は、蛍光体Aにおける光の発光プロセス及び蛍光体Bにおける光の吸収プロセスでエネルギーのロスが生じ、エネルギー移動効率が小さい。一方、図7Bに示したフェルスター機構によるエネルギー移動における色変換では、蛍光体間でダイレクトにエネルギーのみが移動するので、エネルギー移動効率(エネルギー変換効率)は100%であり、高効率にエネルギー移動を生じさせることができる。 This kind of energy transfer phenomenon is unique to organic phosphors and generally does not occur with inorganic phosphors. FIG. 7A is a diagram illustrating color conversion by photoluminescence (PL). Normally, when two types of phosphors are mixed, as shown in FIG. 7A, first, phosphor A emits light with a certain efficiency (PL), enters phosphor B, and absorbs light (AB). ) And light emission (PL), light is emitted from phosphor B. In such energy transfer by photoluminescence, energy loss occurs in the light emission process in the phosphor A and the light absorption process in the phosphor B, and the energy transfer efficiency is small. On the other hand, in the color conversion in the energy transfer by the Förster mechanism shown in FIG. 7B, only the energy moves directly between the phosphors, so the energy transfer efficiency (energy conversion efficiency) is 100%, and the energy transfer is highly efficient. Can be generated.
 図9は、太陽電池素子5及び太陽電池素子6に用いられる化合物半導体の分光感度曲線である。 FIG. 9 is a spectral sensitivity curve of the compound semiconductor used for the solar cell element 5 and the solar cell element 6.
 図2Aにおいて、導光体ユニット2の光入射面2A(第2導光体4の第1主面4a)に入射した光Lのうち620nm以下の波長の光は、第2導光体4の内部に分散された第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cによって概ね全て吸収される。そして、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cで吸収されなかった620nmよりも大きな波長の光L2が、第2導光体4を透過して第1導光体3に入射する。 In FIG. 2A, light having a wavelength of 620 nm or less out of the light L incident on the light incident surface 2 </ b> A (the first main surface 4 a of the second light guide 4) of the light guide unit 2 is emitted from the second light guide 4. Almost all of the light is absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c dispersed therein. Then, the light L2 having a wavelength larger than 620 nm that has not been absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c passes through the second light guide 4 and passes through the first light guide 3. Is incident on.
 第2導光体4の第1端面4cから射出される光L1のスペクトルは、第3蛍光体8cの発光スペクトルと概ね一致する。よって、太陽電池素子6は、第3蛍光体8cの発光スペクトルのピーク波長(630nm)において高い感度を有するものであればよい。図9に示すように、GaAs(四角)は600nmないし850nmの波長領域の光に対してほぼ100%の分光感度を有する。そのため、第2導光体4(蛍光導光体)に設置される太陽電池素子6としてGaAsを用いた化合物系太陽電池を用いれば、高い効率で発電を行うことができる。 The spectrum of the light L1 emitted from the first end face 4c of the second light guide 4 substantially matches the emission spectrum of the third phosphor 8c. Therefore, the solar cell element 6 should just have a high sensitivity in the peak wavelength (630 nm) of the emission spectrum of the 3rd fluorescent substance 8c. As shown in FIG. 9, GaAs (square) has a spectral sensitivity of almost 100% for light in the wavelength region of 600 nm to 850 nm. Therefore, if a compound solar cell using GaAs is used as the solar cell element 6 installed in the second light guide 4 (fluorescent light guide), power generation can be performed with high efficiency.
 第1導光体3の第1端面3cから射出される光L2は、第2導光体4を透過した620nmよりも大きい波長領域の光である。そのため、太陽電池素子5は、620nm以下の波長の光に対して高い分光感度を有している必要はなく、InGaAs(図9中の三角)などのように長波長の光に対して高い分光感度を有するものであればよい。例えば、第1導光体3(形状導光体)に設置される太陽電池素子5として、GaAsとInGaAsとを積層した化合物系太陽電池を用いれば、高い効率で発電を行うことができる。 The light L2 emitted from the first end face 3c of the first light guide 3 is light in a wavelength region larger than 620 nm that has passed through the second light guide 4. Therefore, the solar cell element 5 does not need to have high spectral sensitivity for light with a wavelength of 620 nm or less, and has high spectral sensitivity for light with a long wavelength such as InGaAs (triangle in FIG. 9). Any device having sensitivity may be used. For example, if a compound solar cell in which GaAs and InGaAs are stacked is used as the solar cell element 5 installed in the first light guide 3 (shape light guide), power generation can be performed with high efficiency.
 太陽電池素子5及び太陽電池素子6に適用する太陽電池の種類は、当該太陽電池素子に入射する光の波長に応じて決定される。例えば、太陽電池素子6として、図10に示した分光感度を有するアモルファスシリコン太陽電池を用いることもできる。アモルファスシリコン太陽電池は、630nmの波長の光に対して90%を超える分光感度を有する。そのため、第2導光体4の第1端面4cから射出される620nmないし700nmの波長の光に対して高い効率で発電を行うことができる。また、太陽電池素子5及び太陽電池素子6として、色素増感型太陽電池や有機系太陽電池など、太陽光の全波長領域に対しては高い分光感度を有することはできないが、特定の狭い波長領域の光に対しては非常に高い分光感度を有するような太陽電池を積極的に使用することも可能である。 The type of solar cell applied to the solar cell element 5 and the solar cell element 6 is determined according to the wavelength of light incident on the solar cell element. For example, as the solar cell element 6, an amorphous silicon solar cell having the spectral sensitivity shown in FIG. The amorphous silicon solar cell has a spectral sensitivity exceeding 90% with respect to light having a wavelength of 630 nm. Therefore, power generation can be performed with high efficiency with respect to light having a wavelength of 620 nm to 700 nm emitted from the first end face 4 c of the second light guide 4. In addition, as the solar cell element 5 and the solar cell element 6, it cannot have high spectral sensitivity for the entire wavelength region of sunlight, such as a dye-sensitized solar cell and an organic solar cell, but has a specific narrow wavelength. It is also possible to actively use solar cells that have a very high spectral sensitivity for light in the region.
 図11Aないし図13は、第1導光体3及び第2導光体4における光の取り出し効率のシミュレーション結果を示す図である。 11A to 13 are diagrams showing simulation results of light extraction efficiency in the first light guide 3 and the second light guide 4.
 図11Aは、第2導光体4の光の取り出し効率を示す図である。 FIG. 11A is a diagram showing the light extraction efficiency of the second light guide 4.
 前述したように、第2導光体4の第1主面4aに入射する光の光量を100%とすると、第1主面4aに入射した光のうち620nm以下の波長の光は、第2導光体4に含まれる第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cによって概ね全て吸収される。太陽光のスペクトルにおいて波長が620nm以下の光の割合は48%である。よって、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収される光の割合は、第1主面4aに入射した光の48%である。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収されなかった52%の光は第2主面4bを透過して第2導光体4の外部に射出される。 As described above, assuming that the amount of light incident on the first main surface 4a of the second light guide 4 is 100%, light having a wavelength of 620 nm or less out of the light incident on the first main surface 4a is second. Almost all of the light is absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c included in the light guide 4. The proportion of light having a wavelength of 620 nm or less in the spectrum of sunlight is 48%. Therefore, the proportion of light absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is 48% of the light incident on the first main surface 4a. 52% of the light that has not been absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c passes through the second main surface 4b and is emitted to the outside of the second light guide 4.
 第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの蛍光量子収率はいずれも92%である。よって、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収された光のうち92%は蛍光に変換される。蛍光は、第2導光体4の内部を伝播し、第1端面4cから射出される。このとき、第2導光体4と周囲の空気層との屈折率差により第1主面4a及び第2主面4bで全反射せずに第2導光体4の外部に漏れ出す光の割合は25%、第2導光体4の内部を伝播する際の光のロスは5%であるので、第1端面4cから射出される光の割合は第1主面4aに入射した光の30%となる。 The fluorescence quantum yields of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are all 92%. Therefore, 92% of the light absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is converted into fluorescence. The fluorescence propagates through the second light guide 4 and is emitted from the first end face 4c. At this time, light leaking out of the second light guide 4 without being totally reflected by the first main surface 4a and the second main surface 4b due to a difference in refractive index between the second light guide 4 and the surrounding air layer. Since the ratio is 25% and the loss of light when propagating through the second light guide 4 is 5%, the ratio of the light emitted from the first end face 4c is the ratio of the light incident on the first main surface 4a. 30%.
 図11Bは、第1導光体3の光の取り出し効率を示す図である。 FIG. 11B is a diagram showing the light extraction efficiency of the first light guide 3.
 第1導光体3の第1主面3aに垂直に入射した光の一部は、第2主面3bに設けられた溝Tの傾斜面によって反射され、第1導光体3の内部を第1端面3cに向けて伝播する。
 溝Tの傾斜面で反射される光の割合は、第1主面3aに入射した光の60%である。残りの40%の光は第2主面3bを透過して第1導光体3の外部に射出される。第1導光体3の内部を伝播する光の一部は、途中で溝Tの傾斜面で屈折し、全反射条件から外れて第1導光体3の外部に漏れ出す。そのため、第1端面3cから射出される光の割合は、第1主面3aに入射した光の25%となる。
A part of the light incident perpendicularly to the first main surface 3 a of the first light guide 3 is reflected by the inclined surface of the groove T provided on the second main surface 3 b, and passes through the inside of the first light guide 3. It propagates toward the first end face 3c.
The ratio of the light reflected by the inclined surface of the groove T is 60% of the light incident on the first main surface 3a. The remaining 40% of light passes through the second main surface 3b and is emitted to the outside of the first light guide 3. A part of the light propagating in the first light guide 3 is refracted on the inclined surface of the groove T on the way, leaks out of the first light guide 3 outside the total reflection condition. Therefore, the ratio of the light emitted from the first end surface 3c is 25% of the light incident on the first main surface 3a.
 図12は、光の入射側から第1導光体3と第2導光体4をこの順に積層した場合の光の取り出し効率を示す図である。 FIG. 12 is a diagram showing the light extraction efficiency when the first light guide 3 and the second light guide 4 are laminated in this order from the light incident side.
 上述のように、第1導光体3は、第1主面3aに垂直に入射した光の25%を第1端面3cから射出し、第1主面3aに垂直に入射した光の40%を第2主面3bから射出する。第2導光体4は、第1主面4aに入射した光の30%を蛍光に変換し、第1端面4cから射出する。よって、第1導光体3の第1端面3cから射出される光の割合は、第1導光体3の第1主面3aに入射した光の25%となり、第2導光体4の第1端面4cから射出される光の割合は、第1導光体3の第1主面3aに入射した光の12%となる。よって、第1導光体3の第1端面3c及び第2導光体4の第1端面4cから射出される光の割合は、第1導光体3の第1主面3aに入射した光の37%となる。 As described above, the first light guide 3 emits 25% of the light incident perpendicularly to the first main surface 3a from the first end surface 3c and 40% of the light incident perpendicularly to the first main surface 3a. From the second main surface 3b. The second light guide 4 converts 30% of the light incident on the first main surface 4a into fluorescence and emits the light from the first end surface 4c. Therefore, the ratio of the light emitted from the first end surface 3c of the first light guide 3 is 25% of the light incident on the first main surface 3a of the first light guide 3, and the second light guide 4 The ratio of the light emitted from the first end face 4 c is 12% of the light incident on the first main surface 3 a of the first light guide 3. Therefore, the ratio of the light emitted from the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 is the light incident on the first main surface 3 a of the first light guide 3. 37%.
 図13は、光の入射側から第2導光体4と第1導光体3をこの順に積層した場合の光の取り出し効率を示す図である。 FIG. 13 is a diagram showing the light extraction efficiency when the second light guide 4 and the first light guide 3 are stacked in this order from the light incident side.
 第2導光体4は、第1主面4aに入射した光の30%を蛍光に変換して第1端面4cから射出し、第1主面4aに入射した光の52%を第2主面4bから射出する。第1導光体3は、第1主面3aに垂直に入射した光の25%を第1端面3cから射出する。よって、第2導光体4の第1端面4cから射出される光の割合は、第2導光体4の第1主面4aに入射した光の30%となり、第1導光体3の第1端面3cから射出される光の割合は、第2導光体4の第1主面4aに入射した光の13%となる。よって、第2導光体4の第1端面4c及び第1導光体3の第1端面3cから射出される光の割合は、第2導光体4の第1主面4aに入射した光の43%となる。 The second light guide 4 converts 30% of the light incident on the first main surface 4a into fluorescence and emits it from the first end surface 4c, and 52% of the light incident on the first main surface 4a is converted into the second main surface 4a. Ejected from the surface 4b. The first light guide 3 emits 25% of light incident perpendicularly to the first main surface 3a from the first end surface 3c. Therefore, the ratio of the light emitted from the first end surface 4 c of the second light guide 4 is 30% of the light incident on the first main surface 4 a of the second light guide 4, and the first light guide 3 The ratio of the light emitted from the first end surface 3 c is 13% of the light incident on the first main surface 4 a of the second light guide 4. Therefore, the ratio of the light emitted from the first end surface 4 c of the second light guide 4 and the first end surface 3 c of the first light guide 3 is the light incident on the first main surface 4 a of the second light guide 4. Of 43%.
 図12と図13とを比較すると、図13の構成のほうが導光体ユニット2全体の光の取り出し効率が高い。これは、図11に示したように、第2導光体4単独の光の取り出し効率が、第1導光体3単独の光の取り出し効率よりも高いためである。一般に、外光を蛍光体に吸収させて、得られた蛍光を導光する方式は、第2主面の傾斜面によって光を反射させて光を導光する方式よりも光の取り出し効率が高い。蛍光体はあらゆる角度で入射した光を吸収し導光できるのに対し、傾斜面で光を反射させる方式は傾斜面の臨界角以下の角度で入射した光しか導光させることができないからである。よって、第2導光体4を第1導光体3よりも光入射側に配置する構成は、光の取り出し効率を高める上で有効である。 12 and 13 are compared, the light extraction efficiency of the entire light guide unit 2 is higher in the configuration of FIG. This is because the light extraction efficiency of the second light guide 4 alone is higher than the light extraction efficiency of the first light guide 3 alone, as shown in FIG. In general, the method of guiding external fluorescence by absorbing external light and guiding the obtained fluorescence has higher light extraction efficiency than the method of guiding light by reflecting light by the inclined surface of the second main surface. . This is because phosphors can absorb and guide light incident at any angle, whereas the method of reflecting light at an inclined surface can only guide light incident at an angle less than the critical angle of the inclined surface. . Therefore, the configuration in which the second light guide 4 is disposed closer to the light incident side than the first light guide 3 is effective in increasing the light extraction efficiency.
 図1に示したように、本実施形態の太陽電池モジュール1では、光の入射側から第2導光体4と第1導光体3がこの順に積層されている。そのため、導光体ユニット2の光入射面(第2導光体4の第1主面4a)に入射した光を効率よく太陽電池素子5及び太陽電池素子6に入射させることができる。 As shown in FIG. 1, in the solar cell module 1 of the present embodiment, the second light guide 4 and the first light guide 3 are laminated in this order from the light incident side. Therefore, the light incident on the light incident surface of the light guide unit 2 (the first main surface 4a of the second light guide 4) can be efficiently incident on the solar cell element 5 and the solar cell element 6.
 また、太陽電池モジュール1では、光の入射側に第2導光体4を配置し、蛍光体から放射された光(630nmにピーク波長を有する半値幅の狭い光)を太陽電池素子5に入射させ、蛍光体に吸収されなかった光(620nmよりも大きな波長の光)を太陽電池素子6に入射させている。そのため、太陽電池素子5及び太陽電池素子6としては、特定の波長領域のみで高い分光感度を有する安価な太陽電池が利用できる。 In the solar cell module 1, the second light guide 4 is disposed on the light incident side, and light radiated from the phosphor (light having a peak wavelength at 630 nm and a narrow half-value width) is incident on the solar cell element 5. Thus, light that is not absorbed by the phosphor (light having a wavelength greater than 620 nm) is incident on the solar cell element 6. Therefore, as the solar cell element 5 and the solar cell element 6, an inexpensive solar cell having high spectral sensitivity only in a specific wavelength region can be used.
 例えば、図12のように光の入射側に第1導光体3を配置した場合、太陽電池素子5には、図3に示したような紫外光領域から赤外光領域までの広い波長範囲の光が入射される。そのため、太陽電池素子5としても、紫外光領域から赤外光領域までの広い波長範囲において高い分光感度を有する太陽電池を利用する必要がある。このような太陽電池としては、例えば、図14のような分光感度を有する化合物系太陽電池が考えられる。図14の太陽電池は、吸収波長の異なる複数の半導体層(InGaP、GaAs及びInGaAs)を積層したタンデム型の太陽電池(3層接合化合物太陽電池)であり、具体的な構造は図15に示すようなものである。なお、図14において、白抜きの四角はInGaPの吸収スペクトルを示し、黒四角はGaAsの吸収スペクトルを示し、三角はInGaAsの吸収スペクトルを示し、バツ印はこれら三つの吸収スペクトルを足し合わせたものを示す。 For example, when the first light guide 3 is arranged on the light incident side as shown in FIG. 12, the solar cell element 5 has a wide wavelength range from the ultraviolet light region to the infrared light region as shown in FIG. Light is incident. Therefore, as the solar cell element 5, it is necessary to use a solar cell having high spectral sensitivity in a wide wavelength range from the ultraviolet light region to the infrared light region. As such a solar cell, for example, a compound solar cell having spectral sensitivity as shown in FIG. 14 can be considered. The solar cell in FIG. 14 is a tandem solar cell (three-layer junction compound solar cell) in which a plurality of semiconductor layers (InGaP, GaAs, and InGaAs) having different absorption wavelengths are stacked, and the specific structure is shown in FIG. It ’s like that. In FIG. 14, the white squares indicate the absorption spectrum of InGaP, the black squares indicate the absorption spectrum of GaAs, the triangles indicate the absorption spectrum of InGaAs, and the crosses indicate the sum of these three absorption spectra. Indicates.
 図15に示すように、二つの電極64および65の間に、InGaP層61、GaAs層62、InGaAs層63が積層されている。図15の太陽電池は、化合物の組成や組成比率を変え、3層の異なるバンドギャップを持つ複数の半導体層を積層している。バンドギャップの異なる複数の半導体層を積層することで、取り込む光の波長領域を拡大し、高い発電効率を実現している。しかし、このような太陽電池は、複数の半導体層を積層するため、多層構造になればなるほど作製プロセスが複雑化する。また、多層構造の太陽電池は、半導体層中に結晶欠陥が生じやすくなるため、一般に1層ごとの発電効率は単層構造の太陽電池に比べて小さくなる。そのため、期待したほどの発電効率が得られない場合がある。 As shown in FIG. 15, an InGaP layer 61, a GaAs layer 62, and an InGaAs layer 63 are stacked between two electrodes 64 and 65. The solar cell in FIG. 15 has a composition and a composition ratio of a compound, and a plurality of semiconductor layers having three different band gaps are stacked. By laminating a plurality of semiconductor layers having different band gaps, the wavelength range of the light to be captured is expanded and high power generation efficiency is realized. However, in such a solar cell, since a plurality of semiconductor layers are stacked, a manufacturing process becomes more complicated as a multilayer structure is formed. In addition, since a multi-layer solar cell is likely to have crystal defects in a semiconductor layer, the power generation efficiency for each layer is generally smaller than that of a single-layer solar cell. Therefore, the power generation efficiency as expected may not be obtained.
 一方、図13のように光の入射側に第2導光体4を配置し、太陽電池素子5及び太陽電池素子6に対して特定の波長領域の光を選択的に入射させる構成を採用した場合には、太陽電池素子5及び太陽電池素子6として、狭い波長領域の光に対して高い分光感度を有するものであればよい。そのため、仮にタンデム型の太陽電池を用いる場合でも、作製すべき半導体層の数を少なくすることができる。例えば、図9の例では、太陽電池素子6として、GaAs層1層のみからなる太陽電池を用い、太陽電池素子5として、GaAs層とInGaAs層の2層構造からなる太陽電池を用いている。 On the other hand, as shown in FIG. 13, the second light guide 4 is disposed on the light incident side, and a configuration in which light in a specific wavelength region is selectively incident on the solar cell element 5 and the solar cell element 6 is adopted. In such a case, the solar cell element 5 and the solar cell element 6 may have any high spectral sensitivity with respect to light in a narrow wavelength region. Therefore, even when a tandem solar cell is used, the number of semiconductor layers to be manufactured can be reduced. For example, in the example of FIG. 9, a solar cell including only one GaAs layer is used as the solar cell element 6, and a solar cell including a two-layer structure of a GaAs layer and an InGaAs layer is used as the solar cell element 5.
 最近の開発では、色素増感型太陽電池や有機太陽電池において、特定の波長に対して高い分光感度を持つものが提案されている。これらの太陽電池は、太陽光の全波長領域において効率のよい発電を行うことはできないが、太陽電池モジュール1のように特定の波長に限定して発電を行う構成に適用した場合には、高い効率で発電を行うことができる。これらの太陽電池は、有機材料や塗布プロセスだけで作製することが可能で、非常に低コストである。太陽電池モジュール1にこれらの低コストで作製できる太陽電池を適用すれば、太陽電池モジュール1の大幅なコストダウンにつながり、且つ、発電効率の向上も実現できる。 Recent developments have proposed dye-sensitized solar cells and organic solar cells having high spectral sensitivity for a specific wavelength. These solar cells cannot perform efficient power generation in the entire wavelength region of sunlight, but are high when applied to a configuration in which power generation is limited to a specific wavelength like the solar cell module 1. Electricity can be generated with efficiency. These solar cells can be manufactured only with organic materials and coating processes, and are very low cost. If these solar cells that can be manufactured at low cost are applied to the solar cell module 1, the cost of the solar cell module 1 can be greatly reduced, and the power generation efficiency can be improved.
 表1は、各種構成の太陽電池モジュールの発電量のシミュレーション結果である。 Table 1 shows the simulation results of the power generation amount of the solar cell modules having various configurations.
 表1において、「構成例1」は、図12の構成の太陽電池モジュールであり、「構成例2」は、図13の構成の太陽電池モジュールであり、「構成例3」は、導光体を用いない単結晶シリコン太陽電池の太陽電池モジュールである。「構成例1」及び「構成例2」で用いる第1導光体及び第2導光体の大きさは10cm×10cmであり、第1導光体及び第2導光体の端面には、図14に示した分光感度を有する「3層接合化合物太陽電池」(InGaP/GaAs/InGaS)又は図9に示した分光感度を有する「最適化した太陽電池」(GaAs又はGaAs/InGaAs)が設置される。「構成例3」は、第1導光体及び第2導光体と同じ10cm×10cmの領域に単結晶シリコン太陽電池を敷き詰めたものである。表1中の数値は、導光体ユニットの光入射面(「構成例1」及び「構成例2」)又は単結晶シリコン太陽電池の受光面(「構成例3」)に垂直に入射する光の光量を1Sun(100mW/cm)とし、「3層接合化合物太陽電池」の発電効率を40%、単結晶シリコン太陽電池の発電効率を15%、「最適化した太陽電池」の発電効率を65%として計算している。 In Table 1, “Configuration Example 1” is a solar cell module having the configuration of FIG. 12, “Configuration Example 2” is a solar cell module having the configuration of FIG. 13, and “Configuration Example 3” is a light guide. It is a solar cell module of a single crystal silicon solar cell which does not use The size of the first light guide and the second light guide used in “Configuration Example 1” and “Configuration Example 2” is 10 cm × 10 cm, and the end surfaces of the first light guide and the second light guide are The “three-layer junction compound solar cell” (InGaP / GaAs / InGaS) having the spectral sensitivity shown in FIG. 14 or the “optimized solar cell” (GaAs or GaAs / InGaAs) having the spectral sensitivity shown in FIG. Is done. “Configuration example 3” is a structure in which single crystal silicon solar cells are spread over the same 10 cm × 10 cm region as the first light guide and the second light guide. The numerical values in Table 1 indicate the light incident perpendicularly to the light incident surface (“Configuration Example 1” and “Configuration Example 2”) of the light guide unit or the light receiving surface (“Configuration Example 3”) of the single crystal silicon solar cell. 1Sun (100 mW / cm 2 ), the power generation efficiency of the “3-layer junction compound solar cell” is 40%, the power generation efficiency of the single crystal silicon solar cell is 15%, and the power generation efficiency of the “optimized solar cell” is It is calculated as 65%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、「構成例1」に「3層接合太陽電池」を適用した場合には、発電量は14.8Wであり、「構成例2」に「3層接合太陽電池」を適用した場合には、発電量は17.2Wである。図12及び図13に示したように、「構成例2」では、「構成例1」と比較して、光の取り出し効率が高い分、発電量も大きくなる。「構成例3」は、「構成例1」や「構成例2」のように導光体を用いて光を集光しないので、入射した光が概ね全て発電に利用される。しかし、単結晶シリコン太陽電池の発電効率が低いので、発電量は「構成例1」や「構成例2」よりも小さい13.5Wとなっている。 As shown in Table 1, when “three-layer junction solar cell” is applied to “configuration example 1”, the power generation amount is 14.8 W, and “three-layer junction solar cell” is set to “configuration example 2”. When applied, the power generation amount is 17.2W. As shown in FIGS. 12 and 13, in “Configuration Example 2”, compared with “Configuration Example 1”, the amount of power generation is increased due to the higher light extraction efficiency. Since “Configuration Example 3” does not collect light using the light guide as in “Configuration Example 1” and “Configuration Example 2”, almost all of the incident light is used for power generation. However, since the power generation efficiency of the single crystal silicon solar cell is low, the power generation amount is 13.5 W, which is smaller than “Configuration Example 1” and “Configuration Example 2”.
 「構成例2」では、図13の構成を採用しているので、第1導光体の端面に設置する第1太陽電池として、限定された狭い波長範囲において非常に高い分光感度を示す「最適化した太陽電池」を用いることができる。そのような太陽電池は、「3層接合太陽電池」に比べて半導体層の積層数が少なく、半導体層中の結晶欠陥も少ないため、1層ごとの発電効率は高い。そのため、「最適化した太陽電池」の発電効率は、「3層接合化合物太陽電池」の40%よりも高い65%となり、その分、発電量も28Wと非常に高くなる。 In “Configuration Example 2”, the configuration of FIG. 13 is adopted, so that the first solar cell installed on the end face of the first light guide has an extremely high spectral sensitivity in a limited narrow wavelength range. A solar cell ”can be used. Since such a solar cell has a smaller number of stacked semiconductor layers and fewer crystal defects in the semiconductor layer than a “three-layer junction solar cell”, the power generation efficiency of each layer is high. Therefore, the power generation efficiency of the “optimized solar cell” is 65%, which is higher than 40% of the “three-layer junction compound solar cell”, and the power generation amount is also very high at 28 W.
[第2実施形態]
 図16は、第2実施形態の太陽電池モジュールに用いる量子ドット蛍光体の吸収スペクトル及び発光スペクトルを示す図である。
[Second Embodiment]
FIG. 16 is a diagram showing an absorption spectrum and an emission spectrum of the quantum dot phosphor used in the solar cell module of the second embodiment.
 量子ドット蛍光体は、直径が1nmないし10nmの半導体の微粒子である。量子ドット蛍光体は、蛍光量子収率が高く、優れた光化学的安定性を有する蛍光体である。量子ドット蛍光体の発光波長は、量子ドットのサイズによって制御でき、吸収できる光の波長範囲も広い。また、光散乱が生じにくいので、第2導光体の内部を光が伝播する際に散乱損失が小さい。よって、高い発電効率を実現することができる。 Quantum dot phosphors are semiconductor fine particles having a diameter of 1 nm to 10 nm. The quantum dot phosphor is a phosphor having a high fluorescence quantum yield and excellent photochemical stability. The emission wavelength of the quantum dot phosphor can be controlled by the size of the quantum dot, and the wavelength range of light that can be absorbed is wide. In addition, since light scattering hardly occurs, scattering loss is small when light propagates inside the second light guide. Therefore, high power generation efficiency can be realized.
 量子ドット蛍光体の材料としては、銅(Cu)、銀(Ag)、金(Au)等のI族元素と、フッ素(F)、塩素(Cl)、臭素(Br)、よう素(I)等のVII族元素からなるI-VII族化合物半導体、亜鉛(Zn)、カドミウム(Cd)、水銀(Hg)等のII族元素と、酸素(O)、硫黄(S)、セレン(Se)、テルル(Te)等のVI族元素からなるII-VI族化合物半導体、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)等のIII族元素と、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)等のV族元素からなるIII-V族化合物半導体、炭素(C)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)等のIV族元素半導体、炭素(C)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)等のIV族元素と、酸素(O)、硫黄(S)、セレン(Se)、テルル(Te)等のVI族元素からなるIV-VI族化合物半導体、およびこれらの混晶が挙げられる。中でも、CdSe、InP、PbS、InN、PbSe、Cu(In,Ga)(S,Se)、およびこれらの混晶などは、太陽光のスペクトルに適した吸収特性を有することから、好ましい。 Quantum dot phosphor materials include group I elements such as copper (Cu), silver (Ag), and gold (Au), fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). Group I-VII compound semiconductors consisting of Group VII elements such as, Group II elements such as zinc (Zn), cadmium (Cd), mercury (Hg), oxygen (O), sulfur (S), selenium (Se), II-VI compound semiconductors composed of group VI elements such as tellurium (Te), group III elements such as aluminum (Al), gallium (Ga), indium (In), nitrogen (N), phosphorus (P), arsenic Group III-V compound semiconductor composed of Group V elements such as (As) and antimony (Sb), Group IV such as carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb) Elemental semiconductor, carbon (C), silicon (Si), germany IV-VI composed of group IV elements such as sulfur (Ge), tin (Sn), lead (Pb) and the like and group VI elements such as oxygen (O), sulfur (S), selenium (Se) and tellurium (Te) Group compound semiconductors, and mixed crystals thereof. Among these, CdSe, InP, PbS, InN, PbSe, Cu (In, Ga) (S, Se), and mixed crystals thereof are preferable because they have absorption characteristics suitable for the spectrum of sunlight.
 図17は、第1導光体3及び第2導光体4の光の取り出し効率のシミュレーション結果を示す図である。図17において、第1実施形態の太陽光モジュール1と共通の構成要素については、同じ符号を付し、詳細な説明は省略する。 FIG. 17 is a diagram showing simulation results of the light extraction efficiency of the first light guide 3 and the second light guide 4. In FIG. 17, the same code | symbol is attached | subjected about the same component as the solar module 1 of 1st Embodiment, and detailed description is abbreviate | omitted.
 第2導光体4の内部には、図16に示した発光特性及び吸収特性を有する量子ドット蛍光体8dが5%添加されている。図16の黒四角で示す発光スペクトルで示されるように、量子ドット蛍光体8dは、800nmに発光スペクトルのピーク波長を有し、800nm以下の概ね全ての波長の光を吸収する。また、白抜きの四角で示される吸収スペクトルに示されるように、量子ドット蛍光体8dによって、第2導光体4の第1主面4aに入射した光のうち800nm以下の波長の光が概ね全て吸収される。太陽光のスペクトルにおいて波長が800nm以下の光の割合は65%である。よって、第1主面4aに入射した光のうち65%は量子ドット蛍光体8dに吸収され、残りの35%は第2主面4bを透過して第1導光体3に入射する。 In the second light guide 4, 5% of the quantum dot phosphor 8d having the light emission characteristics and the absorption characteristics shown in FIG. 16 is added. As indicated by the emission spectrum indicated by the black squares in FIG. 16, the quantum dot phosphor 8d has a peak wavelength of the emission spectrum at 800 nm and absorbs light of almost all wavelengths below 800 nm. In addition, as shown in the absorption spectrum indicated by the white squares, the light having a wavelength of 800 nm or less out of the light incident on the first main surface 4a of the second light guide 4 by the quantum dot phosphor 8d. All absorbed. In the sunlight spectrum, the proportion of light with a wavelength of 800 nm or less is 65%. Therefore, 65% of the light incident on the first main surface 4a is absorbed by the quantum dot phosphor 8d, and the remaining 35% is transmitted through the second main surface 4b and incident on the first light guide 3.
 量子ドット蛍光体8dの蛍光量子収率は35%である。よって、量子ドット蛍光体8dに吸収された光のうち35%は蛍光に変換される。第2導光体4の内部を蛍光が伝播する際の光のロスを考慮すると、第2導光体4の第1端面4cから射出される光の割合は第2導光体4の第1主面4aに入射した光の20%である。 The quantum quantum yield of the quantum dot phosphor 8d is 35%. Therefore, 35% of the light absorbed by the quantum dot phosphor 8d is converted into fluorescence. Considering the loss of light when the fluorescence propagates inside the second light guide 4, the ratio of the light emitted from the first end face 4 c of the second light guide 4 is the first of the second light guide 4. This is 20% of the light incident on the main surface 4a.
 図11Bに示したように、第1導光体3は、第1主面3aに垂直に入射した光の25%を第1端面3cから射出する。よって、第1導光体3の第1端面3cから射出される光の割合は、第2導光体4の第1主面4aに入射した光の9%となる。よって、第2導光体4の第1端面4c及び第1導光体3の第1端面3cから射出される光の割合は、第2導光体4の第1主面4aに入射した光の29%となる。 As shown in FIG. 11B, the first light guide 3 emits 25% of the light incident perpendicularly to the first main surface 3a from the first end surface 3c. Therefore, the ratio of the light emitted from the first end surface 3 c of the first light guide 3 is 9% of the light incident on the first main surface 4 a of the second light guide 4. Therefore, the ratio of the light emitted from the first end surface 4 c of the second light guide 4 and the first end surface 3 c of the first light guide 3 is the light incident on the first main surface 4 a of the second light guide 4. Of 29%.
 上記の例では、量子ドット蛍光体8dの蛍光量子収率が低いため、第1実施形態の太陽電池モジュール1に比べて高い発電効率は得られない。しかし、量子ドット蛍光体の蛍光量子収率は原理的には100%が可能であり、蛍光量子収率が高くなれば、より大きな発電効率が得られる。 In the above example, since the fluorescence quantum yield of the quantum dot phosphor 8d is low, high power generation efficiency cannot be obtained as compared with the solar cell module 1 of the first embodiment. However, the quantum quantum yield of the quantum dot phosphor can theoretically be 100%, and if the fluorescence quantum yield is increased, a larger power generation efficiency can be obtained.
[第3実施形態]
 図18は、第3実施形態の太陽電池モジュール11の断面図である。太陽電池モジュール11において第1実施形態の太陽電池モジュール1と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Third Embodiment]
FIG. 18 is a cross-sectional view of the solar cell module 11 of the third embodiment. Constituent elements common to the solar cell module 1 of the first embodiment in the solar cell module 11 are denoted by the same reference numerals, and detailed description thereof is omitted.
 太陽電池モジュール11において第1実施形態の太陽電池モジュール1と異なる点は、集光部材12および13を設けた点である。第1導光体3と第1太陽電池モジュール5との間に、第1導光体3の第1端面3cから射出された光を第1太陽電池モジュール5に向けて集光する集光部材12を配置する。第2導光体4と第2太陽電池モジュール6との間に、第2導光体4の第1端面4cから射出された光を第2太陽電池モジュール6に向けて集光する集光部材13を配置する。 The solar cell module 11 is different from the solar cell module 1 of the first embodiment in that light collecting members 12 and 13 are provided. A condensing member that condenses light emitted from the first end surface 3 c of the first light guide 3 toward the first solar cell module 5 between the first light guide 3 and the first solar cell module 5. 12 is arranged. A condensing member that condenses light emitted from the first end face 4 c of the second light guide 4 toward the second solar cell module 6 between the second light guide 4 and the second solar cell module 6. 13 is arranged.
 集光部材12は、第1導光体3の第1端面3cから射出された光の強度分布を均一化して太陽電池素子5に射出するインテグレータ光学素子(ホモジナイザー)である。集光部材12は、光入射面12aと、光射出面12bと、反射面12cと、を備えている。光入射面12aは、第1導光体3の第1端面3cと対向する。光射出面12bは、光入射面12aから入射した光を射出する。反射面12cは、光入射面12aから入射した光を反射させて光射出面12bに伝播させる。 The condensing member 12 is an integrator optical element (homogenizer) that uniformizes the intensity distribution of the light emitted from the first end face 3 c of the first light guide 3 and emits it to the solar cell element 5. The condensing member 12 includes a light incident surface 12a, a light exit surface 12b, and a reflective surface 12c. The light incident surface 12 a faces the first end surface 3 c of the first light guide 3. The light emission surface 12b emits light incident from the light incident surface 12a. The reflecting surface 12c reflects the light incident from the light incident surface 12a and propagates it to the light emitting surface 12b.
 集光部材12は、例えば、光入射面12aを底面、光射出面12bを上面、反射面12cを側面とする四角錐台の形状を有する。集光部材12は、例えば、ポリメタクリル酸メチル(PMMA)などの樹脂を射出成形することにより形成されている。反射面12cは、全反射により光を反射するものとされるが、反射面12cに金属膜又は誘電体多層膜からなる反射層を形成し、該反射層によって光を反射するようにしてもよい。 The condensing member 12 has, for example, a quadrangular pyramid shape having the light incident surface 12a as the bottom surface, the light exit surface 12b as the top surface, and the reflecting surface 12c as the side surface. The condensing member 12 is formed by, for example, injection molding a resin such as polymethyl methacrylate (PMMA). The reflection surface 12c reflects light by total reflection. However, a reflection layer made of a metal film or a dielectric multilayer film may be formed on the reflection surface 12c, and the reflection layer 12c may reflect light. .
 太陽電池素子5は、受光面を集光部材12の光射出面12bと対向させて配置されている。集光部材12の光入射面12aに入射した第1導光体3からの光は、集光部材12の反射面12cで反射を繰り返すうちに照度分布が均一化される。そして、照度分布が均一化された光が太陽電池素子5に入射される。太陽電池素子5に入射する光の照度分布が均一化されることにより、太陽電池素子5の発電効率を高めることができる。 The solar cell element 5 is disposed with its light receiving surface facing the light exit surface 12 b of the light collecting member 12. The light from the first light guide 3 that has entered the light incident surface 12 a of the light collecting member 12 has a uniform illuminance distribution while being repeatedly reflected by the reflecting surface 12 c of the light collecting member 12. Then, light with uniform illuminance distribution is incident on the solar cell element 5. By making the illuminance distribution of the light incident on the solar cell element 5 uniform, the power generation efficiency of the solar cell element 5 can be increased.
 集光部材13は、第2導光体4の第1端面4cから射出された光の強度分布を均一化して太陽電池素子6に射出するインテグレータ光学素子(ホモジナイザー)である。集光部材13は、光入射面13aと、光射出面13bと、反射面13cと、を備えている。光入射面13aは、第2導光体4の第1端面4cと対向する。光射出面13bは、光入射面13aから入射した光を射出する。反射面13cは、光入射面13aから入射した光を反射させて光射出面13bに伝播させる。集光部材13の機能及び構成は、集光部材12と同じである。 The condensing member 13 is an integrator optical element (homogenizer) that equalizes the intensity distribution of the light emitted from the first end face 4 c of the second light guide 4 and emits it to the solar cell element 6. The condensing member 13 includes a light incident surface 13a, a light exit surface 13b, and a reflective surface 13c. The light incident surface 13 a faces the first end surface 4 c of the second light guide 4. The light emission surface 13b emits light incident from the light incident surface 13a. The reflecting surface 13c reflects the light incident from the light incident surface 13a and propagates it to the light emitting surface 13b. The function and configuration of the light collecting member 13 are the same as those of the light collecting member 12.
 太陽電池素子6は、受光面を集光部材13の光射出面13bと対向させて配置されている。集光部材13の光入射面13aに入射した第2導光体4からの光は、集光部材13の反射面13cで反射を繰り返すうちに照度分布が均一化される。そして、照度分布が均一化された光が太陽電池素子6に入射される。太陽電池素子6に入射する光の照度分布が均一化されることにより、太陽電池素子6の発電効率を高めることができる。 The solar cell element 6 is disposed with the light receiving surface facing the light emitting surface 13b of the light collecting member 13. The light from the second light guide 4 that has entered the light incident surface 13 a of the light collecting member 13 has a uniform illuminance distribution as it is repeatedly reflected by the reflecting surface 13 c of the light collecting member 13. Then, the light with uniform illuminance distribution is incident on the solar cell element 6. The power generation efficiency of the solar cell element 6 can be increased by making the illuminance distribution of the light incident on the solar cell element 6 uniform.
 太陽電池モジュール11では、第1導光体3の第1端面3c及び第2導光体4の第1端面4cから射出される光を集光して太陽電池素子5及び太陽電池素子6に入射させている。そのため、太陽電池素子5及び太陽電池素子6の小型化、及び、太陽電池モジュール11の低コスト化を図ることができる。 In the solar cell module 11, light emitted from the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 is collected and incident on the solar cell element 5 and the solar cell element 6. I am letting. Therefore, size reduction of the solar cell element 5 and the solar cell element 6 and cost reduction of the solar cell module 11 can be achieved.
[第4実施形態]
 図19は、第4実施形態の太陽電池モジュール21の断面図である。太陽電池モジュール21において第1実施形態の太陽電池モジュール1と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Fourth Embodiment]
FIG. 19 is a cross-sectional view of the solar cell module 21 of the fourth embodiment. Constituent elements common to the solar cell module 1 of the first embodiment in the solar cell module 21 are denoted by the same reference numerals, and detailed description thereof is omitted.
 太陽電池モジュール21において第1実施形態の太陽電池モジュール1と異なる点は、第1導光体3の第1端面3cから射出された光及び第2導光体4の第1端面4cから射出された光を1つの太陽電池素子22で受光するようにした点と、第1導光体3の第1端面3cから射出された光及び第2導光体4の第1端面4cから射出された光を太陽電池素子22に向けて集光する集光部材23を設けた点である。 The solar cell module 21 is different from the solar cell module 1 of the first embodiment in that the light emitted from the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 are emitted. The light is received by one solar cell element 22, the light emitted from the first end face 3 c of the first light guide 3 and the first end face 4 c of the second light guide 4. This is a point in which a light collecting member 23 for condensing light toward the solar cell element 22 is provided.
 集光部材23は、例えば、第1導光体3の第1端面3c及び第2導光体4の第1端面4cから射出された光の強度分布を均一化して太陽電池素子22に射出するインテグレータ光学素子(ホモジナイザー)である。 For example, the light collecting member 23 equalizes the intensity distribution of light emitted from the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 and emits the light to the solar cell element 22. It is an integrator optical element (homogenizer).
 集光部材23は、光入射面23aと、光射出面23bと、反射面23cと、を備えている。光入射面23aは、第1導光体3の第1端面3c及び第2導光体4の第1端面4cと対向する。光射出面23bは、光入射面23aから入射した光を射出する。反射面23cは、光入射面23aから入射した光を反射させて光射出面23bに伝播させる。 The condensing member 23 includes a light incident surface 23a, a light exit surface 23b, and a reflective surface 23c. The light incident surface 23 a faces the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4. The light emission surface 23b emits light incident from the light incident surface 23a. The reflecting surface 23c reflects the light incident from the light incident surface 23a and propagates it to the light emitting surface 23b.
 集光部材23は、例えば、光入射面23aを底面、光射出面23bを上面、反射面23cを側面とする四角錐台の形状を有する。集光部材23は、例えば、ポリメタクリル酸メチル(PMMA)などの樹脂を射出成形することにより形成されている。反射面23cは、全反射により光を反射するものとされるが、反射面23cに金属膜又は誘電体多層膜からなる反射層を形成し、前記反射層によって光を反射するようにしてもよい。 The condensing member 23 has, for example, a quadrangular pyramid shape having the light incident surface 23a as the bottom surface, the light exit surface 23b as the top surface, and the reflecting surface 23c as the side surface. The condensing member 23 is formed, for example, by injection molding a resin such as polymethyl methacrylate (PMMA). The reflection surface 23c reflects light by total reflection, but a reflection layer made of a metal film or a dielectric multilayer film may be formed on the reflection surface 23c so that the reflection layer 23 reflects light. .
 太陽電池素子22は、受光面を集光部材23の光射出面23bと対向させて配置されている。集光部材23の光入射面23aに入射した第1導光体3からの光及び第2導光体4からの光は、集光部材23の反射面23cで反射を繰り返すうちに照度分布が均一化される。そして、照度分布が均一化された光が太陽電池素子22に入射される。太陽電池素子22に入射する光の照度分布が均一化されることにより、太陽電池素子22の発電効率を高めることができる。 The solar cell element 22 is disposed with the light receiving surface facing the light emitting surface 23 b of the light collecting member 23. The light from the first light guide 3 and the light from the second light guide 4 incident on the light incident surface 23 a of the light collecting member 23 have an illuminance distribution while being repeatedly reflected by the reflective surface 23 c of the light collecting member 23. It is made uniform. Then, the light having a uniform illuminance distribution is incident on the solar cell element 22. By making the illuminance distribution of light incident on the solar cell element 22 uniform, the power generation efficiency of the solar cell element 22 can be increased.
 太陽電池素子22としては、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などの公知の太陽電池を使用することができる。中でも、化合物半導体を用いた化合物系太陽電池は、高効率な発電が可能となることから、太陽電池素子22として好適である。
 化合物系太陽電池は、一般に高価であるが、第1導光体3、第2導光体4及び集光部材23によって光を集光することができることから、太陽電池素子22の面積は小さく抑えられる。よって、部材コストの上昇は抑えられる。
As the solar cell element 22, a known solar cell such as a silicon solar cell, a compound solar cell, or an organic solar cell can be used. Among these, a compound solar cell using a compound semiconductor is suitable as the solar cell element 22 because it enables highly efficient power generation.
Although compound solar cells are generally expensive, the area of the solar cell element 22 can be kept small because light can be collected by the first light guide 3, the second light guide 4 and the light collecting member 23. It is done. Therefore, an increase in member cost can be suppressed.
 太陽電池素子22には、第2導光体4の第1端面4cから射出される光と第1導光体3の第1端面3cから射出された光の双方が入射する。よって、太陽電池素子22としては、第2導光体4の第1端面4cから射出される光と第1導光体3の第1端面3cから射出された光の双方に対して分光感度の高い太陽電池が用いられる。 Both the light emitted from the first end face 4 c of the second light guide 4 and the light emitted from the first end face 3 c of the first light guide 3 are incident on the solar cell element 22. Therefore, the solar cell element 22 has a spectral sensitivity with respect to both the light emitted from the first end face 4 c of the second light guide 4 and the light emitted from the first end face 3 c of the first light guide 3. High solar cells are used.
 すなわち、第2導光体4の第1端面4cから射出される光は、図3に示した630nmにピーク波長を有する光(第3蛍光体8cの発光スペクトルと概ね同じスペクトルを有する光)である。第1導光体3の第1端面3cから射出される光は、図4に示した620nmよりも大きな波長の光である。よって、太陽電地素子22としては、図9に示したGaAsとInGaAsとを積層したタンデム型の太陽電池を用いればよい。これにより、太陽電池素子22に入射する全ての波長の光に対して高効率な発電を行うことができる。 That is, the light emitted from the first end face 4c of the second light guide 4 is light having a peak wavelength at 630 nm shown in FIG. 3 (light having substantially the same spectrum as the emission spectrum of the third phosphor 8c). is there. The light emitted from the first end face 3c of the first light guide 3 is light having a wavelength larger than 620 nm shown in FIG. Therefore, a tandem solar cell in which GaAs and InGaAs shown in FIG. 9 are stacked may be used as the solar electric element 22. Thereby, highly efficient power generation can be performed for light of all wavelengths incident on the solar cell element 22.
 太陽電池モジュール21では、第1導光体3の第1端面3c及び第2導光体4の第1端面4cから射出される光を集光して太陽電池素子22に入射させている。そのため、太陽電池素子22の小型化、及び、太陽電池モジュール21の低コスト化を図ることができる。また、太陽電池素子22が第1導光体3と第2導光体4に対して共通の太陽電池素子となっているため、第1導光体3の第1端面3cと第2導光体4の第1端面4cのそれぞれに太陽電池素子を設置する場合と比較して、部品点数の削減が図られる。 In the solar cell module 21, light emitted from the first end surface 3 c of the first light guide 3 and the first end surface 4 c of the second light guide 4 is condensed and made incident on the solar cell element 22. Therefore, size reduction of the solar cell element 22 and cost reduction of the solar cell module 21 can be achieved. Further, since the solar cell element 22 is a common solar cell element for the first light guide 3 and the second light guide 4, the first end surface 3c of the first light guide 3 and the second light guide. Compared with the case where a solar cell element is installed on each of the first end faces 4c of the body 4, the number of parts can be reduced.
[第5実施形態]
 図20は、第5実施形態の太陽電池モジュールに適用される第2導光体(蛍光導光体)24の断面図である。第2導光体24以外の構成は、第1実施形態の太陽電池モジュール1と同じである。よって、ここでは第2導光体24の構成のみを説明する。また、第1実施形態の太陽電池モジュール1と共通する構成については、同じ符号を付し、詳細な説明は省略する。
[Fifth Embodiment]
FIG. 20 is a cross-sectional view of a second light guide (fluorescent light guide) 24 applied to the solar cell module of the fifth embodiment. The configuration other than the second light guide 24 is the same as that of the solar cell module 1 of the first embodiment. Therefore, only the configuration of the second light guide 24 will be described here. Moreover, about the structure which is common in the solar cell module 1 of 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 第2導光体24は、透明導光体25と、蛍光フィルム26と、透明保護膜27と、を備えている。蛍光フィルム26は、透明導光体25の第1主面25aに接着されている。明保護膜27は、蛍光フィルム26の表面を覆う。 The second light guide 24 includes a transparent light guide 25, a fluorescent film 26, and a transparent protective film 27. The fluorescent film 26 is bonded to the first main surface 25 a of the transparent light guide 25. The bright protective film 27 covers the surface of the fluorescent film 26.
 蛍光フィルム26は、内部に第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cが分散されたフィルム状の蛍光体層である。蛍光フィルム26は、第1主面26aに入射した外光(例えば太陽光)の一部を蛍光に変換し、透明導光体25に向けて放射する。蛍光フィルム26は、例えば、PMMA樹脂の内部に第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cをそれぞれPMMA樹脂に対する体積比率で0.2%混入し、200μmの厚みのフィルムに形成したものである。 The fluorescent film 26 is a film-like phosphor layer in which the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are dispersed. The fluorescent film 26 converts part of the external light (for example, sunlight) incident on the first main surface 26 a into fluorescence and radiates it toward the transparent light guide 25. For example, the phosphor film 26 includes a PMMA resin in which 0.2% of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are mixed in a volume ratio with respect to the PMMA resin to form a film having a thickness of 200 μm. Formed.
 透明導光体25及び透明保護膜27としては、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料が用いられる。例えば、透明導光体25は、厚さ5mmのアクリル板からなり、透明保護膜27は、厚さ200μmのPMMA樹脂の膜からなる。図20では、透明保護膜27と蛍光フィルム26と透明導光体25とをこの順に外光Lの入射側から配置しているが、図21のように透明導光体25と蛍光フィルム26と透明保護膜27とをこの順に外光Lの入射側から配置してもよい。 As the transparent light guide 25 and the transparent protective film 27, a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass is used. For example, the transparent light guide 25 is made of an acrylic plate having a thickness of 5 mm, and the transparent protective film 27 is made of a PMMA resin film having a thickness of 200 μm. In FIG. 20, the transparent protective film 27, the fluorescent film 26, and the transparent light guide 25 are arranged in this order from the incident side of the external light L. However, as shown in FIG. You may arrange | position the transparent protective film 27 from the incident side of the external light L in this order.
 透明導光体25及び透明保護膜27は、蛍光体を含まない透明性の高い材料で構成されている。蛍光フィルム26から放射された蛍光(図3に示した第3蛍光体8cの発光スペクトルと概ね同じスペクトルの光)の一部は、透明導光体25及び透明保護膜27の内部を全反射しながら透明導光体25及び透明保護膜27の端面に向けて伝播する。透明導光体25及び透明保護膜27の端面から射出された光は、太陽電池素子に入射し、発電に利用される。 The transparent light guide 25 and the transparent protective film 27 are made of a highly transparent material that does not contain a phosphor. A part of the fluorescence emitted from the fluorescent film 26 (light having a spectrum substantially the same as the emission spectrum of the third phosphor 8c shown in FIG. 3) is totally reflected inside the transparent light guide 25 and the transparent protective film 27. However, it propagates toward the end surfaces of the transparent light guide 25 and the transparent protective film 27. The light emitted from the end surfaces of the transparent light guide 25 and the transparent protective film 27 enters the solar cell element and is used for power generation.
 蛍光フィルム26と透明導光体25とは、図22に示すような剥離可能な粘着層28によって接着されている。蛍光フィルム26は、破損、劣化、又は異物(砂埃や鳥の糞など)の付着などが生じた場合に、透明導光体25から剥離して交換される。蛍光フィルム26と粘着層28と透明導光体25の屈折率はいずれも1.49である。蛍光フィルム26から放射された蛍光は、蛍光フィルム26、粘着層28及び透明導光体25の内部をロスなく伝播する。このような粘着層28としては、例えば、パナック社製のゲルポリ(商品名)などが利用できる。 The fluorescent film 26 and the transparent light guide 25 are bonded together by a peelable adhesive layer 28 as shown in FIG. The fluorescent film 26 is peeled off from the transparent light guide 25 and replaced when damage, deterioration, or foreign matter (such as dust or bird droppings) adheres. The refractive indexes of the fluorescent film 26, the adhesive layer 28, and the transparent light guide 25 are all 1.49. The fluorescence emitted from the fluorescent film 26 propagates through the fluorescent film 26, the adhesive layer 28, and the transparent light guide 25 without loss. As such an adhesive layer 28, for example, a gel poly (trade name) manufactured by Panac Corporation can be used.
 上記構成の第2導光体24では、蛍光フィルム26と透明導光体25とが剥離可能な粘着層28で接着されている。そのため、蛍光フィルム26に破損、劣化、又は異物の付着(砂埃や鳥の糞など)などが生じ発電効率が低下した場合には、蛍光フィルム26のみを透明導光体25から剥がして交換することができる。よって、第2導光体全体を交換する場合に比べて、保守の費用を少なくすることができる。 In the second light guide 24 configured as described above, the fluorescent film 26 and the transparent light guide 25 are bonded to each other with a peelable adhesive layer 28. Therefore, when the fluorescent film 26 is damaged, deteriorated, or has foreign matter attached (such as dust or bird droppings) and the power generation efficiency is reduced, only the fluorescent film 26 is peeled off from the transparent light guide 25 and replaced. Can do. Therefore, the cost of maintenance can be reduced compared with the case where the entire second light guide is replaced.
[第6実施形態]
 図23は、第6実施形態の太陽電池モジュール31の断面図である。太陽電池モジュール31において第1実施形態の太陽電池モジュール1と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Sixth Embodiment]
FIG. 23 is a cross-sectional view of the solar cell module 31 of the sixth embodiment. Constituent elements common to the solar cell module 1 of the first embodiment in the solar cell module 31 are denoted by the same reference numerals, and detailed description thereof is omitted.
 太陽電池モジュール31において第1実施形態の太陽電池モジュール1と異なる点は、第1導光体(形状導光体)32の厚み(溝Tの形成されていない部分の厚み)が第1端面32cから遠ざかるにつれて徐々に薄くなるように構成されている点である。第1導光体32は、第1実施形態の第1導光体3と比較して、第1主面32aと第2主面32bとが角度θ1をなすように傾いている点が異なる。第1導光体32の材料や、第1導光体32の第2主面32bに設けられた溝Tの構成は、第1実施形態の第1導光体3の材料や、第1導光体3の第2主面3bに設けられた溝Tと同じである。 The solar cell module 31 is different from the solar cell module 1 of the first embodiment in that the thickness of the first light guide (shape light guide) 32 (the thickness of the portion where the groove T is not formed) is the first end face 32c. It is the point comprised so that it may become thin gradually as it distances from. The first light guide 32 is different from the first light guide 3 of the first embodiment in that the first main surface 32a and the second main surface 32b are inclined so as to form an angle θ1. The material of the first light guide 32 and the configuration of the groove T provided on the second main surface 32b of the first light guide 32 are the same as the material of the first light guide 3 of the first embodiment and the first guide. This is the same as the groove T provided on the second main surface 3 b of the light body 3.
 第1導光体32の第1主面32aと第2主面32bとのなす角θ1は、例えば5°である。第1主面32aと第2主面32bとのZ方向の間隔(第1導光体32の厚み)は、第1端面32cから、第1端面32cと対向する第2端面32dに向けて徐々に小さくなっている。太陽電池素子5は、第2端面32dよりも断面積の大きい第1端面32cと対向配置されている。 The angle θ1 formed by the first main surface 32a and the second main surface 32b of the first light guide 32 is, for example, 5 °. An interval in the Z direction between the first main surface 32a and the second main surface 32b (thickness of the first light guide 32) is gradually increased from the first end surface 32c toward the second end surface 32d facing the first end surface 32c. It is getting smaller. The solar cell element 5 is disposed to face the first end surface 32c having a larger cross-sectional area than the second end surface 32d.
 図24は、第1導光体32の内部を光L2が伝播する様子を示す図である。 FIG. 24 is a diagram illustrating a state in which the light L2 propagates inside the first light guide 32. FIG.
 第1導光体32では、第1主面32aと第2主面32bとの間隔が第2端面32dから第1端面32cに向けて広がるように構成されている。そのため、第1主面32aで光L2が全反射する際に、光L2の進行方向が第2主面32bに対して平行に近くなるように光の進行方向が変換される。すなわち、第1主面32aに入射する光L2の進行方向と第2主面32bとのなす角度をθとし、第1主面32aで反射した光L2の進行方向と第2主面32bとのなす角度をθとすると、θがθよりも小さくなるように光L2の進行方向が変換される。そのため、第1端面32cに光L2が伝播する過程で、光L2の進行方向が徐々に第2主面32bと平行な方向に近付き、溝Tに光が入射する回数が減る。 In the 1st light guide 32, it is comprised so that the space | interval of the 1st main surface 32a and the 2nd main surface 32b may spread toward the 1st end surface 32c from the 2nd end surface 32d. Therefore, when the light L2 is totally reflected by the first main surface 32a, the light traveling direction is converted so that the traveling direction of the light L2 is nearly parallel to the second main surface 32b. That is, the angle between the traveling direction and the second main surface 32b of the light L2 incident on the first main surface 32a and theta A, the traveling direction and the second main surface 32b of the light L2 reflected by the first major surface 32a When the angle of the theta B, the traveling direction of the light L2 so that theta B becomes smaller than theta a is converted. Therefore, in the process in which the light L2 propagates to the first end face 32c, the traveling direction of the light L2 gradually approaches a direction parallel to the second main surface 32b, and the number of times the light enters the groove T decreases.
 第1導光体32の内部を光L2が伝播する場合、溝Tに入射した光L2が溝Tで大きく屈折され、第1主面32a又は第2主面32bで全反射することができずに外部に漏れ出すことがある。このような光のロスは、光L2の伝播距離が長くなるほど(溝Tに光L2が入射する回数が多くなるほど)大きくなる。例えば、厚みが一定の第1導光体の内部を光が伝播する場合を考える。その場合、第1端面と第2端面との距離が10cmであるとすると、第1導光体の第1端面から射出される光の割合は、第1導光体の第1主面に入射した光の25%である。第1端面と第2端面との距離を30cmとすると、その割合は10%となり、第1端面と第2端面との距離を1mとすると、その割合は2%となる。 When the light L2 propagates inside the first light guide 32, the light L2 incident on the groove T is largely refracted by the groove T and cannot be totally reflected by the first main surface 32a or the second main surface 32b. May leak to the outside. Such light loss increases as the propagation distance of the light L2 becomes longer (as the number of times the light L2 enters the groove T increases). For example, consider a case where light propagates through the first light guide having a constant thickness. In that case, if the distance between the first end face and the second end face is 10 cm, the proportion of light emitted from the first end face of the first light guide is incident on the first main face of the first light guide. 25% of the light emitted. If the distance between the first end face and the second end face is 30 cm, the ratio is 10%, and if the distance between the first end face and the second end face is 1 m, the ratio is 2%.
 第1主面と第2主面とが平行に配置された第1導光体では、光の伝播距離が大きくなると、溝に光が入射する回数も伝播距離に比例して多くなる。しかし、図24のように第1主面32aと第2主面32bとを非平行に配置した場合には、光L2の伝播距離が大きくなっても、溝Tに光L2が入射する回数はさほど多くならない。例えば、第1主面32aと第2主面32bとのなす角を5°としてシミュレーションを行うと、第1端面32cと第2端面32dとの距離が10cmの場合には、第1導光体32の第1端面32cから射出される光L2の割合は、第1導光体32の第1主面32aに入射した光L2の28%となるが、第1端面32cと第2端面32dとの距離が30cm或いは1mの場合でもその割合は28%となり、大きく変化しない。 In the first light guide in which the first main surface and the second main surface are arranged in parallel, when the propagation distance of light increases, the number of times light enters the groove increases in proportion to the propagation distance. However, when the first main surface 32a and the second main surface 32b are arranged non-parallel as shown in FIG. 24, the number of times the light L2 is incident on the groove T is increased even if the propagation distance of the light L2 increases. Not so much. For example, when the simulation is performed with the angle formed by the first main surface 32a and the second main surface 32b being 5 °, when the distance between the first end surface 32c and the second end surface 32d is 10 cm, the first light guide The ratio of the light L2 emitted from the first end surface 32c of 32 is 28% of the light L2 incident on the first main surface 32a of the first light guide 32, but the first end surface 32c and the second end surface 32d Even if the distance is 30 cm or 1 m, the ratio is 28%, which does not change greatly.
 このように本実施形態の太陽電池モジュール31では、第1導光体32の第1主面32aを第2主面32bに対して傾斜させることにより、第1導光体31の内部を光L2が全反射する回数を減らしている。そのため、光L2が溝Tで屈折されることにより生じる光のロスが低減され、長距離の伝播によっても光の取り出し効率が大きく低下しない太陽電池モジュールを提供することができる。第1導光体のように溝Tで光を反射させて光を導光させる方式では、伝播中の光のロスが大きいため、第1導光体を大型化して光の取り出し量を増加させようとしても、期待したほどの光量が得られない場合があるが、本実施形態の太陽電池モジュール31では、このような課題が改善されるので、第1導光体32を大型化して十分な光の取り出し量を得ることが可能となる。 As described above, in the solar cell module 31 according to the present embodiment, the first main surface 32a of the first light guide 32 is inclined with respect to the second main surface 32b, so that the inside of the first light guide 31 is light L2. Reduces the number of total reflections. Therefore, it is possible to provide a solar cell module in which light loss caused by the light L2 being refracted in the groove T is reduced, and the light extraction efficiency is not greatly reduced by long-distance propagation. In the method of guiding light by reflecting light at the groove T like the first light guide, the loss of light during propagation is large, so the size of the first light guide is increased to increase the light extraction amount. Even in such a case, the light amount as expected may not be obtained, but in the solar cell module 31 of the present embodiment, such a problem is improved, so that the first light guide 32 is enlarged and sufficient. It is possible to obtain a light extraction amount.
[第7実施形態]
 図25は、第7実施形態の太陽電池モジュール41の断面図である。太陽電池モジュール41において第6実施形態の太陽電池モジュール31と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Seventh Embodiment]
FIG. 25 is a cross-sectional view of the solar cell module 41 of the seventh embodiment. Constituent elements common to the solar cell module 31 of the sixth embodiment in the solar cell module 41 are denoted by the same reference numerals, and detailed description thereof is omitted.
 太陽電池モジュール41において第6実施形態の太陽電池モジュール31と異なる点は、第2導光体(蛍光導光体)42の厚み(溝Tの形成されていない部分の厚み)が第1端面42cから遠ざかるにつれて徐々に薄くなるように構成されている点である。第2導光体42は、第6実施形態の第2導光体4と比較して、第1主面42aと第2主面42bとが角度θ1をなすように傾いている点が異なる。第2導光体42の材料や、第2導光体42に含まれる蛍光体の種類や濃度は、第6実施形態の第2導光体4の材料や、第2導光体4に含まれる蛍光体の種類や濃度と同じである。 The solar cell module 41 is different from the solar cell module 31 of the sixth embodiment in that the thickness of the second light guide (fluorescent light guide) 42 (the thickness of the portion where the groove T is not formed) is the first end face 42c. It is the point comprised so that it may become thin gradually as it distances from. The second light guide 42 is different from the second light guide 4 of the sixth embodiment in that the first main surface 42a and the second main surface 42b are inclined so as to form an angle θ1. The material of the second light guide 42 and the type and concentration of the phosphor included in the second light guide 42 are included in the material of the second light guide 4 and the second light guide 4 of the sixth embodiment. It is the same as the type and concentration of the phosphor.
 第2導光体42の第1主面42aと第2主面42bとのなす角θ1は、第1導光体32の第1主面32aと第2主面32bとのなす角θ1と同じである。第1導光体32の第1主面32aと第2導光体42の第2主面42bとは平行であり、第1導光体32の第2主面32bと第2導光体42の第1主面42aとは平行である。第1導光体32の第1端面32cと第2導光体42の第1端面42cは反対方向を向いている。 The angle θ1 formed by the first main surface 42a and the second main surface 42b of the second light guide 42 is the same as the angle θ1 formed by the first main surface 32a and the second main surface 32b of the first light guide 32. It is. The first main surface 32 a of the first light guide 32 and the second main surface 42 b of the second light guide 42 are parallel to each other, and the second main surface 32 b of the first light guide 32 and the second light guide 42 are used. The first main surface 42a is parallel to the first main surface 42a. The first end face 32c of the first light guide 32 and the first end face 42c of the second light guide 42 face in opposite directions.
 第2導光体42の第1主面42aと第2主面42bとのZ方向の間隔(第2導光体42の厚み)は、第1端面42cから、第1端面42cと対向する第2端面42dに向けて徐々に小さくなっている。第2導光体42の内部の蛍光体から放射された光は、第2導光体42の第1主面42a及び第2主面42bで全反射されるが、第1主面42aと第2主面42bとが斜めに傾いて配置されているため、全反射された光は第2導光体42の厚みの大きい方向に集光され易い。そのため、太陽電池素子6は、第2端面42dよりも断面積の大きい第1端面32cと対向配置されている。 The Z-direction interval (thickness of the second light guide 42) between the first main surface 42a and the second main surface 42b of the second light guide 42 is the first distance from the first end surface 42c to the first end surface 42c. 2 gradually decreases toward the end face 42d. The light radiated from the phosphor inside the second light guide 42 is totally reflected by the first main surface 42a and the second main surface 42b of the second light guide 42. Since the two principal surfaces 42b are arranged obliquely, the totally reflected light is easily collected in the direction in which the thickness of the second light guide 42 is large. Therefore, the solar cell element 6 is disposed to face the first end surface 32c having a larger cross-sectional area than the second end surface 42d.
 太陽電池モジュール41では、第1導光体32と第2導光体42の厚みの厚い部分と厚みの薄い部分を重ねて配置している。そのため、第1導光体32と第2導光体42とを積層した全体の厚みが均一になり、取り扱い性が向上する。 In the solar cell module 41, the thick part and the thin part of the first light guide 32 and the second light guide 42 are arranged to overlap each other. Therefore, the overall thickness of the first light guide 32 and the second light guide 42 laminated is uniform, and the handleability is improved.
[第8実施形態]
 図26Aは、第8実施形態の太陽電池モジュールに適用される2種類の第1導光体(第1導光体52及び第1導光体53)の構成を示す断面図である。図26Bは、第1導光体(形状導光体)52及び第1導光体(形状導光体)53の第2主面に設けられる溝Tの断面図である。
[Eighth Embodiment]
FIG. 26A is a cross-sectional view showing the configuration of two types of first light guides (first light guide 52 and first light guide 53) applied to the solar cell module of the eighth embodiment. FIG. 26B is a cross-sectional view of the groove T provided on the second main surface of the first light guide (shape light guide) 52 and the first light guide (shape light guide) 53.
 本実施形態の太陽電池モジュールにおいて第1実施形態の太陽電池モジュール1と異なる点は、第1導光体として、複数(本実施形態では2つ)の第1導光体52及び第1導光体53が積層されている点である。すなわち、第1導光体52の光入射側には、図1に示した第2導光体4が積層されている。光入射側から順に第2導光体4、第1導光体52及び第1導光体53が積層されており、これら3つの導光体(第2導光体4、第1導光体52及び第1導光体53)によって導光体ユニットが構成されている。 The solar cell module of the present embodiment is different from the solar cell module 1 of the first embodiment in that a plurality of (two in the present embodiment) first light guides 52 and first light guides are used as the first light guide. That is, the body 53 is laminated. That is, the second light guide 4 shown in FIG. 1 is laminated on the light incident side of the first light guide 52. The second light guide 4, the first light guide 52 and the first light guide 53 are stacked in order from the light incident side, and these three light guides (the second light guide 4 and the first light guide are stacked). 52 and the first light guide 53) constitute a light guide unit.
 よって、ここでは第1実施形態との相違点である第1導光体52及び第1導光体53の構成のみを説明する。また、第1実施形態の太陽電池モジュール1と共通する構成については、同じ符号を付し、詳細な説明は省略する。 Therefore, here, only the configurations of the first light guide 52 and the first light guide 53, which are different from the first embodiment, will be described. Moreover, about the structure which is common in the solar cell module 1 of 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 第1導光体52は、光入射面である第1主面52aと、第1主面52aと対向する第2主面52bと、光射出面である第1端面52cと、を有する略矩形の板状部材である。第1導光体53は、光入射面である第1主面53aと、第1主面53aと対向する第2主面53bと、光射出面である第1端面53cと、を有する略矩形の板状部材である。第1導光体52と第1導光体53とは、第1導光体53の第1主面53aと第1導光体52の第2主面52bとが対向するように、第1導光体52及び第1導光体53よりも屈折率の小さい空気層K(低屈折率層)を介してZ方向に積層されている。 The first light guide 52 includes a first main surface 52a that is a light incident surface, a second main surface 52b that faces the first main surface 52a, and a first end surface 52c that is a light emission surface. It is a plate-shaped member. The first light guide 53 includes a first main surface 53a that is a light incident surface, a second main surface 53b that faces the first main surface 53a, and a first end surface 53c that is a light emission surface. It is a plate-shaped member. The first light guide 52 and the first light guide 53 are arranged such that the first main surface 53a of the first light guide 53 and the second main surface 52b of the first light guide 52 face each other. The light guide 52 and the first light guide 53 are stacked in the Z direction via an air layer K (low refractive index layer) having a lower refractive index than that of the first light guide 53.
 第1導光体52の第1主面52aと第1導光体53の第1主面53aは、互いに同じ方向(光入射側:-Z方向)を向いている。第1導光体52と第1導光体53とを光の入射方向に沿って積層することで、前段側(光が入射する側に近い側)の第1導光体52で取り込めなかった光を後段側(光が入射する側から遠い側)の第1導光体53で取り込むことが可能となる。 The first main surface 52a of the first light guide 52 and the first main surface 53a of the first light guide 53 are oriented in the same direction (light incident side: -Z direction). By laminating the first light guide 52 and the first light guide 53 along the light incident direction, the first light guide 52 on the previous stage side (side closer to the light incident side) could not be captured. Light can be taken in by the first light guide 53 on the rear stage side (the side far from the light incident side).
 第1導光体52の第1端面52cと第1導光体53の第1端面53cは、互いに同じ向きを向いている。第1導光体52の第1端面52cと第1導光体53の第1端面53cは、XZ平面と平行な同一平面上に配置されている。そのため、第1導光体52の第1端面52cから射出された光を受光する太陽電池素子54と第1導光体53の第1端面53cから射出された光を受光する太陽電池素子55とを一箇所に配置することができるようになっている。 The first end face 52c of the first light guide 52 and the first end face 53c of the first light guide 53 are oriented in the same direction. The first end face 52c of the first light guide 52 and the first end face 53c of the first light guide 53 are disposed on the same plane parallel to the XZ plane. Therefore, a solar cell element 54 that receives light emitted from the first end surface 52c of the first light guide 52, and a solar cell element 55 that receives light emitted from the first end surface 53c of the first light guide 53, Can be placed in one place.
 太陽電池素子54と太陽電池素子55は、前段側に配置された第2導光体4(図1参照)を透過した光によって発電を行うものである。よって、太陽電池素子54及び太陽電池素子55としては、第1実施形態の太陽電池素子5と同じものを用いることができる。 The solar cell element 54 and the solar cell element 55 generate power by using light transmitted through the second light guide 4 (see FIG. 1) arranged on the front side. Therefore, as the solar cell element 54 and the solar cell element 55, the same thing as the solar cell element 5 of 1st Embodiment can be used.
 第1導光体52及び第1導光体53としては、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料が用いられる。 As the first light guide 52 and the first light guide 53, a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass is used.
 第1導光体52の第2主面52b及び第1導光体53の第2主面53bには、X方向に延びる複数の溝Tが設けられている。溝Tは、XY平面と平行な面に対して角度θ3をなす傾斜面T1と、XY平面と平行な面に対して角度θ2をなす面T2と、が稜線T3において交差するV字状の溝である。溝T間の領域T4はXY平面と平行な面である。図26Aでは、図面を簡略化するために、溝Tを数本しか記載していないが、実際には、幅100μm程度の細かい溝Tが多数本形成されている。溝Tは、例えば、金型を用いて樹脂(例えばポリメタクリル酸メチル樹脂:PMMA)を射出成形することにより形成されている。 The second main surface 52b of the first light guide 52 and the second main surface 53b of the first light guide 53 are provided with a plurality of grooves T extending in the X direction. The groove T is a V-shaped groove in which an inclined surface T1 forming an angle θ3 with respect to a surface parallel to the XY plane and a surface T2 forming an angle θ2 with respect to a surface parallel to the XY plane intersect at a ridgeline T3. It is. A region T4 between the grooves T is a surface parallel to the XY plane. In FIG. 26A, only a few grooves T are shown to simplify the drawing, but in practice, a large number of fine grooves T with a width of about 100 μm are formed. The groove T is formed, for example, by injection molding a resin (for example, polymethyl methacrylate resin: PMMA) using a mold.
 傾斜面T1は、第1導光体の第1主面から入射した光(例えば太陽光)を全反射して光の進行方向を第1端面に向かう方向に変更する反射面である。第1導光体の第1主面に対して垂直に近い角度で入射した光は、傾斜面T1で反射して第1導光体の内部を概ねY方向に伝播する。 The inclined surface T1 is a reflecting surface that totally reflects light (for example, sunlight) incident from the first main surface of the first light guide and changes the traveling direction of the light toward the first end surface. Light incident at an angle close to perpendicular to the first main surface of the first light guide is reflected by the inclined surface T1 and propagates in the first light guide generally in the Y direction.
 第1導光体52の溝Tの形状と第1導光体53の溝Tの形状とは異なる。例えば、第1導光体52の溝Tは、角度θ2が45°であり、角度θ3が15°であり、領域T4のY方向の幅は0である。第2導光体53の溝Tは、角度θ2が90°であり、角度θ3が45°であり、領域T4のY方向の幅は0である。第1導光体52と第2導光体53の屈折率は1.5である。 The shape of the groove T of the first light guide 52 and the shape of the groove T of the first light guide 53 are different. For example, the groove T of the first light guide 52 has an angle θ2 of 45 °, an angle θ3 of 15 °, and the width of the region T4 in the Y direction is zero. The groove T of the second light guide 53 has an angle θ2 of 90 °, an angle θ3 of 45 °, and the width of the region T4 in the Y direction is zero. The refractive index of the first light guide 52 and the second light guide 53 is 1.5.
 第1導光体52と第1導光体53は、傾斜面T1の角度θ3が互いに異なる。そのため、第1導光体52と第1導光体53において、取り込むことのできる光の入射角度範囲は互いに異なる。例えば、第1導光体52の傾斜面T1の角度θ3が第1導光体53の傾斜面T1の角度θ3よりも小さい場合、第1導光体52は第1主面52aに浅い角度(Z軸に対して大きな角度)で入射した光を取り込み易く、第1導光体53は第1主面53aに深い角度(Z軸に対して小さい角度)で入射した光を取り込み易い。そのため、このような複数の第1導光体を積層することで、斜め方向から様々な角度で入射する光を効率よく取り込むことができ、入射角度による光の取り込み量の変動も抑制できる。 The first light guide 52 and the first light guide 53 are different from each other in the angle θ3 of the inclined surface T1. Therefore, the incident angle ranges of light that can be taken in the first light guide 52 and the first light guide 53 are different from each other. For example, when the angle θ3 of the inclined surface T1 of the first light guide 52 is smaller than the angle θ3 of the inclined surface T1 of the first light guide 53, the first light guide 52 is shallow with respect to the first main surface 52a ( It is easy to capture light incident at a large angle with respect to the Z axis, and the first light guide 53 easily captures light incident at a deep angle (small angle with respect to the Z axis) into the first main surface 53a. Therefore, by stacking such a plurality of first light guides, it is possible to efficiently capture light incident at various angles from an oblique direction, and to suppress fluctuations in the amount of light captured due to the incident angle.
 例えば、第1導光体52の第1主面52aに入射する光の入射角度(Z方向と平行な方向から入射した場合を入射角度0°とする)を変化させて、第1主面52aに入射した光に対する、第1導光体52の第1端面52c及び第1導光体53の第1端面53cから射出される光の割合をシミュレーションすると、入射角度が0°の場合はその割合は27%となり、入射角度が45°の場合はその割合は32%となり、入射角度によって光の取り出し量が大きく変化しないことがわかる。 For example, the first main surface 52a is changed by changing the incident angle of light incident on the first main surface 52a of the first light guide 52 (the incident angle is 0 ° when incident from a direction parallel to the Z direction). When the ratio of the light emitted from the first end face 52c of the first light guide 52 and the first end face 53c of the first light guide 53 is simulated with respect to the light incident on the light, the ratio is obtained when the incident angle is 0 ° Is 27%, and when the incident angle is 45 °, the ratio is 32%, and it can be seen that the amount of light extraction does not change greatly depending on the incident angle.
 本実施形態の太陽電池モジュールでは、図1に示した第1実施形態の太陽電池モジュール1と比較して、第2導光体4(図1参照)の後段側に配置される第1導光体の数が多い。そのため、第2導光体4(図1参照)で取り込めなかった光を後段側の複数の第1導光体(第1導光体52及び第1導光体53)で多く取り込むことができる。この際、複数の第1導光体において、取り込むことのできる光の入射角度範囲を互いに異ならせているので、斜め方向から様々な角度で入射する光を効率よく取り込むことができ、入射角度による光の取り込み量の変動も抑制できる。よって、太陽の動きや天候の変化などによって光の入射角度が変化しても、高い発電効率で安定した発電を行うことができる。 In the solar cell module of the present embodiment, the first light guide disposed on the rear stage side of the second light guide 4 (see FIG. 1) as compared to the solar cell module 1 of the first embodiment shown in FIG. There are many bodies. Therefore, a large amount of light that cannot be captured by the second light guide 4 (see FIG. 1) can be captured by the plurality of first light guides (the first light guide 52 and the first light guide 53) on the rear stage side. . At this time, since the incident angle ranges of the light that can be captured are different from each other in the plurality of first light guides, the light incident at various angles from the oblique direction can be efficiently captured, depending on the incident angle. Variations in the amount of light taken in can also be suppressed. Therefore, stable power generation can be performed with high power generation efficiency even if the incident angle of light changes due to the movement of the sun or changes in weather.
[第9実施形態]
 図27は、第9実施形態の太陽電池モジュールに適用される2種類の第1導光体(第1導光体52及び第1導光体53)及び集光部材57の構成を示す断面図である。本実施形態の太陽電池モジュールにおいて第8実施形態の太陽電池モジュールと共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Ninth Embodiment]
FIG. 27 is a cross-sectional view showing configurations of two types of first light guides (first light guide 52 and first light guide 53) and a light collecting member 57 applied to the solar cell module of the ninth embodiment. It is. In the solar cell module of this embodiment, the same reference numerals are given to components common to the solar cell module of the eighth embodiment, and detailed description thereof is omitted.
 本実施形態の太陽電池モジュールにおいて第8実施形態の太陽電池モジュールと異なる点は、第1導光体52の第1端面52cから射出された光及び第1導光体53の第1端面53cから射出された光を1つの太陽電池素子56で受光するようにした点と、第1導光体52の第1端面52cから射出された光及び第1導光体53の第1端面53cから射出された光を太陽電池素子56に向けて集光する集光部材57を設けた点である。 The solar cell module of the present embodiment is different from the solar cell module of the eighth embodiment in that light emitted from the first end surface 52 c of the first light guide 52 and the first end surface 53 c of the first light guide 53 are used. The point where the emitted light is received by one solar cell element 56, the light emitted from the first end surface 52c of the first light guide 52, and the first end surface 53c of the first light guide 53 The light collecting member 57 for condensing the emitted light toward the solar cell element 56 is provided.
 集光部材57は、例えば、第1導光体52の第1端面52c及び第1導光体53の第1端面53cから射出された光の強度分布を均一化して太陽電池素子56に射出するインテグレータ光学素子(ホモジナイザー)である。 For example, the light collecting member 57 equalizes the intensity distribution of light emitted from the first end surface 52 c of the first light guide 52 and the first end surface 53 c of the first light guide 53 and emits the light to the solar cell element 56. It is an integrator optical element (homogenizer).
 集光部材57は、光入射面57aと、光射出面57bと、反射面57cと、を備えている。光入射面57aは、第1導光体52の第1端面52c及び第1導光体53の第1端面53cと対向する。光射出面57bは、光入射面57aから入射した光を射出する。反射面57cは、光入射面57aから入射した光を反射させて光射出面57bに伝播させる。 The condensing member 57 includes a light incident surface 57a, a light exit surface 57b, and a reflective surface 57c. The light incident surface 57 a faces the first end surface 52 c of the first light guide 52 and the first end surface 53 c of the first light guide 53. The light emission surface 57b emits light incident from the light incident surface 57a. The reflecting surface 57c reflects the light incident from the light incident surface 57a and propagates it to the light emitting surface 57b.
 集光部材57は、例えば、光入射面57aを底面、光射出面57bを上面、反射面57cを側面とする四角錐台の形状を有する。集光部材57は、例えば、ポリメタクリル酸メチル(PMMA)などの樹脂を射出成形することにより形成されている。反射面57cは、全反射により光を反射するものとされるが、反射面57cに金属膜又は誘電体多層膜からなる反射層を形成し、前記反射層によって光を反射するようにしてもよい。 The condensing member 57 has, for example, a quadrangular pyramid shape having the light incident surface 57a as a bottom surface, the light exit surface 57b as a top surface, and the reflecting surface 57c as a side surface. The condensing member 57 is formed, for example, by injection molding a resin such as polymethyl methacrylate (PMMA). The reflection surface 57c reflects light by total reflection, but a reflection layer made of a metal film or a dielectric multilayer film may be formed on the reflection surface 57c so that the reflection layer 57 reflects light. .
 太陽電池素子56は、受光面を集光部材57の光射出面57bと対向させて配置されている。集光部材57の光入射面57aに入射した第1導光体52からの光及び第1導光体53からの光は、集光部材57の反射面57cで反射を繰り返すうちに照度分布が均一化される。そして、照度分布が均一化された光が太陽電池素子56に入射される。太陽電池素子56に入射する光の照度分布が均一化されることにより、太陽電池素子56の発電効率を高めることができる。 The solar cell element 56 is disposed with its light receiving surface facing the light emitting surface 57 b of the light collecting member 57. The light from the first light guide 52 and the light from the first light guide 53 incident on the light incident surface 57 a of the light collecting member 57 have an illuminance distribution while being repeatedly reflected by the reflective surface 57 c of the light collecting member 57. It is made uniform. Then, the light with uniform illuminance distribution is incident on the solar cell element 56. By making the illuminance distribution of light incident on the solar cell element 56 uniform, the power generation efficiency of the solar cell element 56 can be increased.
 太陽電池素子56は、前段側に配置された第2導光体4(図1参照)を透過した光によって発電を行うものである。よって、太陽電池素子56としては、第1実施形態の太陽電池素子5と同じものを用いることができる。 The solar cell element 56 generates power by using light transmitted through the second light guide 4 (see FIG. 1) arranged on the front side. Therefore, as the solar cell element 56, the same thing as the solar cell element 5 of 1st Embodiment can be used.
 本実施形態の太陽電池モジュールでは、第1導光体52の第1端面52c及び第1導光体53の第1端面53cから射出される光を集光して太陽電池素子56に入射させている。そのため、太陽電池素子56の小型化、及び、太陽電池モジュールの低コスト化を図ることができる。また、太陽電池素子56が第1導光体52と第1導光体53に対して共通の太陽電池素子となっているため、第1導光体52の第1端面52cと第1導光体53の第1端面53cのそれぞれに太陽電池素子を設置する場合と比較して、部品点数の削減が図られる。 In the solar cell module of the present embodiment, the light emitted from the first end surface 52 c of the first light guide 52 and the first end surface 53 c of the first light guide 53 is collected and incident on the solar cell element 56. Yes. Therefore, it is possible to reduce the size of the solar cell element 56 and reduce the cost of the solar cell module. Further, since the solar cell element 56 is a common solar cell element for the first light guide 52 and the first light guide 53, the first end surface 52c of the first light guide 52 and the first light guide are used. Compared with the case where a solar cell element is installed on each of the first end faces 53c of the body 53, the number of parts can be reduced.
[太陽光発電装置]
 図28は、太陽光発電装置1000の概略構成図である。
[Solar power generator]
FIG. 28 is a schematic configuration diagram of the solar power generation device 1000.
 太陽光発電装置1000は、太陽電池モジュール1001と、インバータ(直流/交流変換器)1004と、蓄電池1005と、を備えている。太陽電池モジュール1001は、太陽光のエネルギーを電力に変換する。インバータ1004は、太陽電池モジュール1001から出力された直流電力を交流電力に変換する。蓄電池1005は、太陽電池モジュール1001から出力された直流電力を蓄える。 The photovoltaic power generation apparatus 1000 includes a solar cell module 1001, an inverter (DC / AC converter) 1004, and a storage battery 1005. The solar cell module 1001 converts sunlight energy into electric power. The inverter 1004 converts the DC power output from the solar cell module 1001 into AC power. The storage battery 1005 stores the DC power output from the solar cell module 1001.
 太陽電池モジュール1001は、太陽光を集光する導光体1002と、導光体1002によって集光された太陽光によって発電を行う太陽電池素子1003と、を備えている。
太陽電池モジュール1001としては、例えば、第1実施形態ないし第9実施形態で説明した太陽電池モジュールが用いられる。
The solar cell module 1001 includes a light guide body 1002 that collects sunlight, and a solar cell element 1003 that generates power using sunlight collected by the light guide body 1002.
As the solar cell module 1001, for example, the solar cell module described in the first to ninth embodiments is used.
 太陽光発電装置1000は外部の電子機器1006に対して電力を供給する。電子機器1006には、必要に応じて補助電力源1007から電力が供給される。 The solar power generation apparatus 1000 supplies power to the external electronic device 1006. The electronic device 1006 is supplied with power from the auxiliary power source 1007 as necessary.
 太陽光発電装置1000は、上述した本実施形態に係る太陽電池モジュールを備えているため、発電効率の高い太陽光発電装置となる。 Since the solar power generation device 1000 includes the solar cell module according to the above-described embodiment, the solar power generation device 1000 has a high power generation efficiency.
 本発明の態様は、太陽電池モジュールおよび太陽光発電装置に利用することができる。 The aspect of the present invention can be used for a solar cell module and a solar power generation device.
1…太陽電池モジュール、3…第1導光体(形状導光体)、3a…第1主面、3b…第2主面、3c…第1端面、4…第2導光体(蛍光導光体)、4a…第1主面、4c…第1端面、5,6…太陽電池素子、8a,8b,8c,8d…蛍光体、12,13…集光部材、21…太陽電池モジュール、22…太陽電池素子、23…集光部材、24…第2導光体(蛍光導光体)、25…透明導光体、25a…第1主面、26…蛍光フィルム(蛍光体層)、28…粘着層、31…太陽電池モジュール、32…第1導光体(形状導光体)、32a…第1主面、32b…第2主面、32c…第1端面、32d…第2端面、41…太陽電池モジュール、42…第2導光体(蛍光導光体)、42a…第1主面、42b…第2主面、42c…第1端面、42d…第2端面、52…第1導光体(形状導光体)、52a…第1主面、52b…第2主面、52c…第1端面、53…第1導光体(形状導光体)、53a…第1主面、53b…第2主面、53c…第1端面、54,55…太陽電池素子、56…太陽電池素子、57…集光部材、1000…太陽光発電装置、L,L1,L2…光、T1…傾斜面 DESCRIPTION OF SYMBOLS 1 ... Solar cell module, 3 ... 1st light guide (shape light guide), 3a ... 1st main surface, 3b ... 2nd main surface, 3c ... 1st end surface, 4 ... 2nd light guide (fluorescence guide) 4a ... first main surface, 4c ... first end face, 5,6 ... solar cell element, 8a, 8b, 8c, 8d ... phosphor, 12, 13 ... light collecting member, 21 ... solar cell module, 22 ... solar cell element, 23 ... condensing member, 24 ... second light guide (fluorescent light guide), 25 ... transparent light guide, 25a ... first main surface, 26 ... fluorescent film (phosphor layer), DESCRIPTION OF SYMBOLS 28 ... Adhesion layer, 31 ... Solar cell module, 32 ... 1st light guide (shape light guide), 32a ... 1st main surface, 32b ... 2nd main surface, 32c ... 1st end surface, 32d ... 2nd end surface 41 ... solar cell module, 42 ... second light guide (fluorescent light guide), 42a ... first main surface, 42b ... second main surface, 42c ... first end surface, 42d ... 2 end surfaces, 52 ... 1st light guide (shape light guide), 52a ... 1st main surface, 52b ... 2nd main surface, 52c ... 1st end surface, 53 ... 1st light guide (shape light guide) 53a ... first main surface, 53b ... second main surface, 53c ... first end surface, 54, 55 ... solar cell element, 56 ... solar cell element, 57 ... condensing member, 1000 ... solar power generation device, L, L1, L2 ... Light, T1 ... Inclined surface

Claims (23)

  1.  蛍光体を含み、第1主面および第1端面を有し、前記第1主面から入射した外光の一部を前記蛍光体によって吸収し、前記蛍光体から放射された第1光を伝播させて前記第1端面から射出するよう構成された蛍光導光体と、
     第2主面、第1傾斜を有する第3主面、及び第2端面を有し、前記外光のうち前記蛍光体に吸収されずに前記蛍光導光体を透過した第2光を前記第2主面から入射し、前記第1傾斜面で反射して伝播させ前記第2端面から射出するよう構成された第1導光体と、備えている太陽電池モジュール。
    A phosphor includes a first main surface and a first end surface, a part of external light incident from the first main surface is absorbed by the phosphor, and the first light emitted from the phosphor is propagated. A fluorescent light guide configured to be emitted from the first end surface;
    A second main surface, a third main surface having a first inclination, and a second end surface, wherein the second light transmitted through the fluorescent light guide without being absorbed by the fluorescent material out of the external light is A solar cell module comprising: a first light guide configured to be incident from two principal surfaces, reflected and propagated by the first inclined surface, and emitted from the second end surface.
  2.  さらに、前記第1光を受光する第1太陽電池素子と、
     前記第2光を受光する第2太陽電池素子と、を備え、
     前記第1太陽電池素子と前記第2太陽電池素子の分光感度の波長特性は互いに異なっている請求項1に記載の太陽電池モジュール。
    A first solar cell element that receives the first light;
    A second solar cell element that receives the second light,
    The solar cell module according to claim 1, wherein wavelength characteristics of spectral sensitivity of the first solar cell element and the second solar cell element are different from each other.
  3.  前記蛍光導光体は、前記蛍光体として、互いに発光スペクトルのピーク波長が異なる少なくとも二種類の蛍光体を含む請求項2に記載の太陽電池モジュール。 The solar cell module according to claim 2, wherein the fluorescent light guide includes at least two kinds of fluorescent materials having different emission spectrum peak wavelengths as the fluorescent material.
  4.  前記第1太陽電池素子は、前記少なくとも二種類の蛍光体のうち最も発光スペクトルのピーク波長が大きい蛍光体から放射された蛍光を受光する請求項3に記載の太陽電池モジュール。 The solar cell module according to claim 3, wherein the first solar cell element receives fluorescence emitted from a phosphor having the largest peak wavelength of an emission spectrum among the at least two types of phosphors.
  5.  前記少なくとも二種類の蛍光体のうち最も発光スペクトルのピーク波長が大きい蛍光体の発光スペクトルのピーク波長における前記第1太陽電池素子の分光感度は、前記蛍光導光体に備えられた他のいずれの蛍光体の発光スペクトルのピーク波長における前記第1太陽電池素子の分光感度よりも大きい請求項4に記載の太陽電池モジュール。 The spectral sensitivity of the first solar cell element at the peak wavelength of the emission spectrum of the phosphor having the largest emission spectrum peak wavelength among the at least two types of phosphors is any of the other ones provided in the fluorescence light guide. The solar cell module according to claim 4, wherein the solar cell module is larger than a spectral sensitivity of the first solar cell element at a peak wavelength of an emission spectrum of the phosphor.
  6.  前記蛍光導光体は、前記蛍光体として、量子ドット蛍光体を含む請求項2に記載の太陽電池モジュール。 The solar cell module according to claim 2, wherein the fluorescent light guide includes a quantum dot fluorescent material as the fluorescent material.
  7.  さらに、前記蛍光導光体の第1端面から射出された前記第1光を集光して前記第1太陽電池素子に入射させる第1集光部材を備えている請求項2に記載の太陽電池モジュール。 The solar cell according to claim 2, further comprising a first light collecting member that condenses the first light emitted from the first end face of the fluorescent light guide and causes the first light to enter the first solar cell element. module.
  8.  前記第1集光部材は、前記蛍光導光体の第1端面から射出された前記第1光の強度分布を均一化して前記第1太陽電池素子に射出するよう構成されている請求項7に記載の太陽電池モジュール。 The said 1st condensing member is comprised so that intensity distribution of the said 1st light inject | emitted from the 1st end surface of the said fluorescent light guide may be equalize | homogenized, and it inject | emits to the said 1st solar cell element. The solar cell module described.
  9.  さらに、前記第1導光体の第2端面から射出された前記第2光を集光して前記第2太陽電池素子に入射させる第2集光部材を備えている請求項2に記載の太陽電池モジュール。 3. The sun according to claim 2, further comprising a second condensing member that condenses the second light emitted from the second end face of the first light guide and enters the second solar cell element. Battery module.
  10.  前記第2集光部材は、前記第1導光体の第2端面から射出された前記第2光の強度分布を均一化して前記第2太陽電池素子に射出するよう構成されている請求項9に記載の太陽電池モジュール。 The second light collecting member is configured to uniformize the intensity distribution of the second light emitted from the second end face of the first light guide and emit the same to the second solar cell element. The solar cell module according to.
  11.  さらに、前記蛍光導光体の第1端面から射出された前記第1光と前記第1導光体の第2端面から射出された前記第2光とを受光する太陽電池素子と、
     前記太陽電池素子と前記蛍光導光体の第1端面との間及び前記太陽電池素子と前記第1導光体の第2端面との間に、前記蛍光導光体の第1端面から射出された前記第1光と前記導光体の第2端面から射出された前記第2光とを集光して前記太陽電池素子に入射させるよう構成されている集光部材と、を備えている請求項1に記載の太陽電池モジュール。
    A solar cell element that receives the first light emitted from the first end face of the fluorescent light guide and the second light emitted from the second end face of the first light guide;
    Injected from the first end surface of the fluorescent light guide between the solar cell element and the first end surface of the fluorescent light guide and between the solar cell element and the second end surface of the first light guide. And a condensing member configured to condense the first light and the second light emitted from the second end surface of the light guide so as to be incident on the solar cell element. Item 2. The solar cell module according to Item 1.
  12.  前記集光部材は、前記蛍光導光体の第1端面から射出された前記第1光と前記第1導光体の第2端面から射出された前記第2光の強度分布を均一化して前記太陽電池素子に射出するよう構成されている請求項11に記載の太陽電池モジュール。 The condensing member equalizes the intensity distribution of the first light emitted from the first end face of the fluorescent light guide and the second light emitted from the second end face of the first light guide, and The solar cell module according to claim 11, wherein the solar cell module is configured to inject the solar cell element.
  13.  前記蛍光導光体は、透明導光体の内部に前記蛍光体を分散させることにより形成されている請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the fluorescent light guide is formed by dispersing the fluorescent material in a transparent light guide.
  14.  前記蛍光導光体は、透明導光体と、前記透明導光体の第1主面に設けられ、内部に前記蛍光体が分散された蛍光体層と、を備えている請求項1に記載の太陽電池モジュール。 The said fluorescent light guide is provided with the transparent light guide and the fluorescent substance layer in which the said fluorescent substance was disperse | distributed inside provided in the 1st main surface of the said transparent light guide. Solar cell module.
  15.  前記透明導光体と前記蛍光体層とを剥離可能に接着する粘着層をさらに含む請求項14に記載の太陽電池モジュール。 The solar cell module according to claim 14, further comprising an adhesive layer that releasably adheres the transparent light guide and the phosphor layer.
  16.  前記第1導光体の第2端面から前記第2端面と対向する第3端面に向けて前記第1導光体の厚みが徐々に小さくなるように、前記第2主面が前記第3主面に対して傾斜している請求項1に記載の太陽電池モジュール。 The second main surface is the third main surface so that the thickness of the first light guide gradually decreases from the second end surface of the first light guide toward the third end surface facing the second end surface. The solar cell module according to claim 1, wherein the solar cell module is inclined with respect to the surface.
  17.  前記蛍光導光体は、前記第1主面とは異なる第4主面と、前記第1端面と対向する第4端面と、を備え、
     前記蛍光導光体の第1端面から前記第4端面に向けて前記蛍光導光体の厚みが徐々に小さくなるように、前記蛍光導光体の第1主面が前記蛍光導光体の第4主面に対して傾斜している請求項16に記載の太陽電池モジュール。
    The fluorescent light guide includes a fourth main surface different from the first main surface, and a fourth end surface facing the first end surface,
    The first main surface of the fluorescent light guide is the first of the fluorescent light guide so that the thickness of the fluorescent light guide gradually decreases from the first end surface of the fluorescent light guide toward the fourth end surface. The solar cell module of Claim 16 which inclines with respect to 4 main surfaces.
  18.  前記蛍光導光体の第1端面と前記第1導光体の第3端面とが同じ方向に配置され、前記蛍光導光体の第4端面と前記第1導光体の第2端面とが同じ方向に配置されるように、前記蛍光導光体と前記第1導光体とが積層されている請求項17に記載の太陽電池モジュール。 The first end face of the fluorescent light guide and the third end face of the first light guide are arranged in the same direction, and the fourth end face of the fluorescent light guide and the second end face of the first light guide are The solar cell module according to claim 17, wherein the fluorescent light guide and the first light guide are stacked so as to be arranged in the same direction.
  19.  さらに、第5主面、第6主面、第5端面を有する第2導光体を備え、
     前記第1導光体は、前記蛍光導光体と前記第2導光体との間に配置され、
     前記第2導光体は、前記第1導光体を透過した第2光の一部を前記第5主面から入射させ、前記第6主面に設けられた第2傾斜面で反射して伝播させ前記第5端面から射出するよう構成されている請求項1記載の太陽電池モジュール。
    And a second light guide having a fifth main surface, a sixth main surface, and a fifth end surface,
    The first light guide is disposed between the fluorescent light guide and the second light guide,
    The second light guide causes a part of the second light transmitted through the first light guide to be incident from the fifth main surface and reflected by a second inclined surface provided on the sixth main surface. The solar cell module according to claim 1, wherein the solar cell module is configured to propagate and emit from the fifth end face.
  20.  前記第1傾斜面の角度と、前記第2傾斜面の角度は互いに異なっている請求項19に記載の太陽電池モジュール。 The solar cell module according to claim 19, wherein an angle of the first inclined surface and an angle of the second inclined surface are different from each other.
  21. さらに、前記第1導光体の第2端面及び第2導光体の第5端面から射出された前記第2光を集光して太陽電池素子に入射させるよう構成されている集光部材を備えている請求項20に記載の太陽電池モジュール。 Furthermore, a condensing member configured to condense the second light emitted from the second end surface of the first light guide and the fifth end surface of the second light guide so as to enter the solar cell element. The solar cell module of Claim 20 provided.
  22.  前記第1導光体の第2端面及び第2導光体の第5端面から射出された前記第2光を集光する前記集光部材は、前記第1導光体の第2端面及び第2導光体の第5端面から射出された前記第2光の強度分布を均一化して前記太陽電池素子に射出するよう構成されている請求項21に記載の太陽電池モジュール。 The condensing member that condenses the second light emitted from the second end surface of the first light guide and the fifth end surface of the second light guide is the second end surface of the first light guide and the second end surface of the first light guide. The solar cell module according to claim 21, wherein the solar cell module is configured to make the intensity distribution of the second light emitted from the fifth end face of the two light guides uniform and emit the same to the solar cell element.
  23.  請求項1に記載の太陽電池モジュールを備えている太陽光発電装置。 A solar power generation apparatus comprising the solar cell module according to claim 1.
PCT/JP2012/054639 2011-02-25 2012-02-24 Solar cell module and solar generator device WO2012115248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011040191 2011-02-25
JP2011-040191 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012115248A1 true WO2012115248A1 (en) 2012-08-30

Family

ID=46721020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054639 WO2012115248A1 (en) 2011-02-25 2012-02-24 Solar cell module and solar generator device

Country Status (1)

Country Link
WO (1) WO2012115248A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042688A1 (en) * 2011-09-22 2013-03-28 シャープ株式会社 Solar cell module and solar power generation apparatus
JP2019054251A (en) * 2013-12-06 2019-04-04 ナノコ テクノロジーズ リミテッド Core-shell nanoparticles for photovoltaic absorber films
EP4177969A1 (en) * 2021-11-05 2023-05-10 Korea Electronics Technology Institute Light concentrator based on quantum dot, and photovoltaic module including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131051A (en) * 1993-09-07 1995-05-19 Mitsubishi Motors Corp Solar cell panel
JP2000147262A (en) * 1998-11-11 2000-05-26 Nobuyuki Higuchi Converging device and photovoltaic power generation system utilizing the device
WO2000054340A1 (en) * 1999-03-11 2000-09-14 Imperial College Of Science, Technology And Medicine Radiation concentrator for a photovoltaic device
WO2004114418A1 (en) * 2003-06-23 2004-12-29 Hitachi Chemical Co., Ltd. Concentrating photovoltaic power generation system
US20080223438A1 (en) * 2006-10-19 2008-09-18 Intematix Corporation Systems and methods for improving luminescent concentrator performance
WO2009002943A2 (en) * 2007-06-22 2008-12-31 Ultradots, Inc. Solar modules with enhanced efficiencies via use of spectral concentrators
WO2010085598A2 (en) * 2009-01-22 2010-07-29 OmniPV, Inc. Solar modules including spectral concentrators and related manufacturing methods
WO2012050059A1 (en) * 2010-10-15 2012-04-19 シャープ株式会社 Solar cell module and solar power generation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131051A (en) * 1993-09-07 1995-05-19 Mitsubishi Motors Corp Solar cell panel
JP2000147262A (en) * 1998-11-11 2000-05-26 Nobuyuki Higuchi Converging device and photovoltaic power generation system utilizing the device
WO2000054340A1 (en) * 1999-03-11 2000-09-14 Imperial College Of Science, Technology And Medicine Radiation concentrator for a photovoltaic device
WO2004114418A1 (en) * 2003-06-23 2004-12-29 Hitachi Chemical Co., Ltd. Concentrating photovoltaic power generation system
US20080223438A1 (en) * 2006-10-19 2008-09-18 Intematix Corporation Systems and methods for improving luminescent concentrator performance
WO2009002943A2 (en) * 2007-06-22 2008-12-31 Ultradots, Inc. Solar modules with enhanced efficiencies via use of spectral concentrators
WO2010085598A2 (en) * 2009-01-22 2010-07-29 OmniPV, Inc. Solar modules including spectral concentrators and related manufacturing methods
WO2012050059A1 (en) * 2010-10-15 2012-04-19 シャープ株式会社 Solar cell module and solar power generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042688A1 (en) * 2011-09-22 2013-03-28 シャープ株式会社 Solar cell module and solar power generation apparatus
JP2019054251A (en) * 2013-12-06 2019-04-04 ナノコ テクノロジーズ リミテッド Core-shell nanoparticles for photovoltaic absorber films
EP4177969A1 (en) * 2021-11-05 2023-05-10 Korea Electronics Technology Institute Light concentrator based on quantum dot, and photovoltaic module including the same

Similar Documents

Publication Publication Date Title
Bronstein et al. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells
JP6532179B2 (en) Lighting device, display device, and television receiver
US20090056791A1 (en) Solar modules with enhanced efficiencies via use of spectral concentrators
US20090224177A1 (en) Color conversion member and light emitting apparatus using the color conversion member
US10222543B2 (en) Lighting device, display device, and television device
US20120247536A1 (en) Solar cell module
US20230363230A1 (en) Array substrate, method for preparing array substrate, display panel and display apparatus
US20110216554A1 (en) Light emitting device
WO2013077323A1 (en) Light guide body, solar cell module, and solar photovoltaic power generation device
WO2011033958A1 (en) Solar cell module and solar photovoltaic system
WO2013183752A1 (en) Solar cell module and photovoltaic power generation device
US20170341346A1 (en) Laminated glass luminescent concentrator
WO2013069785A1 (en) Light guide body, solar cell module, and photovoltaic power generation device
US20110168236A1 (en) Portable photovoltaics with scalable integrated concentrator of light energy
JP2019520696A (en) Large area light emitting solar concentrator based on indirect transition semiconductor nanocrystals
WO2012115248A1 (en) Solar cell module and solar generator device
US20140318621A1 (en) Solar cell module and photovoltaic power generation device
WO2012128339A1 (en) Solar cell module, solar photovoltaic power generation device, and method for installing solar cell module
JP2011165754A (en) Solar cell module
WO2012050059A1 (en) Solar cell module and solar power generation device
US20110192446A1 (en) Solar cell module and solar panel
WO2014030546A1 (en) Solar cell module and photovoltaic power generating device
WO2012144431A1 (en) Solar cell module and solar power generation apparatus
Kim et al. Optimal design of a quantum dot color conversion film in LCD backlighting
JP2014139957A (en) Management device, management method, and management program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP