WO2012131126A1 - Daisy antenna for the emission and reception of linearly and circularly polarized electromagnetic waves - Google Patents

Daisy antenna for the emission and reception of linearly and circularly polarized electromagnetic waves Download PDF

Info

Publication number
WO2012131126A1
WO2012131126A1 PCT/ES2012/070123 ES2012070123W WO2012131126A1 WO 2012131126 A1 WO2012131126 A1 WO 2012131126A1 ES 2012070123 W ES2012070123 W ES 2012070123W WO 2012131126 A1 WO2012131126 A1 WO 2012131126A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
petals
reception
daisy
petal
Prior art date
Application number
PCT/ES2012/070123
Other languages
Spanish (es)
French (fr)
Inventor
Juan LLABRES FOYO
Juan Vassal'lo Sanz
Jorge Caravantes Tortajada
Ángel MEDIAVILLA SÁNCHEZ
Antonio TAZÓN PUENTE
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad De Cantabria
Universidad Complutense De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad De Cantabria, Universidad Complutense De Madrid filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2012131126A1 publication Critical patent/WO2012131126A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre

Definitions

  • the present invention belongs to the sector of transmitting and / or receiving antennas, of electromagnetic signals, and more precisely it is related to the following sub-sectors of antenna technology: broadband antennas, electric and magnetic dipoles, radiating transmission systems and reception, antennas for communication systems, antennas for television signal receivers, antennas of low cost and visual impact, antennas for observation and surveillance systems, and antennas for frequency inhibiting systems.
  • An antenna is an element or system designed and manufactured to receive or emit electromagnetic waves (EM). From an elementary point of view, the emission consists of transforming an electric potential difference, variable in time, applied to the metallic structure of the system in an EM wave train so that they propagate through the free space around. The opposite is the reception of EM waves.
  • EM waves electromagnetic waves
  • the parameter to be taken into account is the radiation diagram, that is, the representation on a graph, depending on the direction, of the intensity of the EM field.
  • Other parameters to consider are: bandwidth, which is the frequency range in which certain characteristics on directivity or gain are met.
  • bandwidth which is the frequency range in which certain characteristics on directivity or gain are met.
  • width of the radiation beam and the polarization of the emitted or captured signal are to be considered (PH Smith, "Cloverleaf Antenna for FM broadcasting", IRE Proc. 35, December 1947, 1556-1563, although the latter is illustrated and explained in Schelkunoff's book, on page 504 and following).
  • the required radiation pattern requires that its omni-directional character be defined according to the trace defined by the generator of a cone, so that for a mobile, located in a position of latitude determined on the earth's surface, the connection with a geostationary satellite can be ensured regardless of the orientation of the mobile. For those 35 ° and 55 ° elevation mentioned above, the connection for a mobile that moves in the southern and central part of Europe would be ensured.
  • the circular polarization diagram is obtained as a result of the sum of the circular polarization diagrams of each of the 8 microstrip radiators. That is, the microstrip radiators themselves, individually, work in circular polarization. Extensive information on microstrip radiators and clusters of this type of radiators can be found in the books: "Microstrip Antennas" by I. Bhal and P. Bhartia, published by Artech House in 1980, and “Microstrip Antenna Design Handbook", by R. Garg , P. Bhartia, I. Bahl and A. Ittipiboon, published by Artech House in 2001, ISBN 0-89006-513-6.
  • Circular polarization can be obtained from radiant elements that work in linear polarization, by what is called “sequential rotation.” This consists of distributing the elements sequentially (every 3607n for n elements), on a circle, rotated and offset that same amount, as can be seen in “3. Improvement of the co-cross polarization ratio" by J. Barbero and J. Vassal'lo, in the "Contribution from Spain” chapter of the "Final Report of the COST 223 - Antennas in the 1990s, Active Array Antennas Future Satellite and Terrestrial Communications", edited by the European Commission, Directorate General XIII : Telecommunications, Information Market and Exploitation of Research, Brussels, 1995.
  • This technique for generating circular polarization is sufficiently known and valid, but is only applicable when the pointing direction coincides with the zenith of the antenna, that is, it is perpendicular to the plane defined by the circular grouping. In no case is the possibility of obtaining a conical beam in circular polarization mentioned, based on a sequential rotation of radiating elements in linear polarization.
  • Non-omni-directional diagrams in a plane but with a maximum radiation in a certain direction can also be obtained with wire antennas, as is the case of the antenna defined by Podger in its US patent 6,255,998 Bl.
  • This patent defines a radiating element called "Lemniscate Antenna Element” that provides a maximum of radiation with linear polarization, according to the direction perpendicular to the plane that contains the antenna.
  • This podger lemniscate antenna comes to have a configuration similar to Smith's "Cloverleaf Antenna", but with only 2 turns (Smith's has 4 turns), and with the essential difference that the current in the turns of the lemniscate circulates in the opposite direction, while the four turns of the Smith antenna have the same direction of rotation of the current.
  • the Podger patent as well as in a later one of the same inventor (US 6,469,674), the possibility of circularly grouping several lemniscate antennas, all with the same center or feeding point, to improve Some of the characteristics of the set.
  • the present invention is an antenna constituted by the coplanar grouping of radiating wires whose assembly adopts a shape similar to the distribution of petals in a daisy (see figure 1).
  • the radiating wires or petals of the daisy antenna work in resonance, have flat geometry, all have the same structure and are contained in the same plane, called the antenna plane.
  • the only difference between the petals is in the relative distribution of the current flow directions, which determines the shape of the radiation pattern and is essential in the characterization of the operating behavior of the antenna.
  • the reason antenna of this invention patent and which we call “daisy” for simplification is constituted by the coplanar grouping of radiant wires working in resonance, adopting a flower-like shape (see figures 1 and 2), and with a special distribution of currents by the radiating wires that determines and fully characterizes the behavior of the antenna.
  • the radiating wires or petals of the antenna which in their most general configuration take the form of the contour of the petals of the flower, in addition to working in resonance, have flat geometry, are contained in the same plane, called the antenna plane, and placed at the same distance from the center of the antenna, where the antenna power and the circuit that distributes the signal to the petals.
  • the operating frequency band of the daisy antenna is in the range of microwaves and millimeter waves.
  • the radiating wires can be constituted by wires or conductive tubes, or they can also be manufactured by photogravure techniques, being constituted by photogravure tapes on dielectric substrate.
  • the elements that make up the antenna and that can be seen in figures 1 to 6 are: the radiating petals or wires (2), and the distribution circuit (3), formed by adaptation or balun, the splitter, and where appropriate the transmitter lines to carry the signal from the splitter to the petals, when they are located far from the center of the antenna. These elements, together with the antenna petals, are distributed in 3 flat layers parallel to each other, as indicated in Figure 3.
  • FIG. 3 shows the layered distribution, seen according to a cross section to the antenna plane.
  • the petals (2) are located in the intermediate layer, while the metallizations of the signal distribution circuit are located in the upper and lower layers.
  • the power of the antenna (1) connected to the center of the antenna is perpendicular to the plane defined by the antenna, and is done by coaxial line, similar to the stem that supports a daisy flower.
  • the metallisations of the coaxial power cable are electrically connected to the metallizations of the distribution circuit (upper and lower layers of the antenna).
  • Bi-filar lines are an integral part of the distribution circuit, together with the splitter and the adaptation circuit or balun.
  • the adaptation circuit can be adjusted by design, varying the capacity between the metallizations of the upper and lower layers, that is: varying their surface and / or the separation between layers, as well as using separators of different dielectric constant between them.
  • Petals are individual radiating elements, which work in resonance and are characterized in that their structure is based on conductive wires or tapes to produce a certain distribution of currents on which the radiation they produce depends.
  • the simplest structure is that of the electric dipole, but it can also take other forms, such as: • turns with circular, elliptical or polygonal geometry, both regular and irregular, any geometric shape that is the result of a mixture of those mentioned being valid, provided that the total length of the loop is a multiple of the wavelength, for that meets the condition of working in resonance.
  • the petals can take different forms of geometric curves, which converted into wires or conductive tapes can channel the electric current. They must also work in resonance, so their length must be a multiple of the wavelength.
  • Figure 5 shows, for comparison, three two-petal daisy antennas with different geometric shapes each: petals similar to those in the antenna of Figure 2, folded dipoles, and the classic electric dipoles.
  • Figure 6 shows a 6-petal daisy antenna, using electric dipoles as petals.
  • the radiating wires that shape the petals of the daisy antenna can be constituted by wires or conductive tubes, or they can also be manufactured using photogravure techniques, being constituted by photogravure tapes on dielectric substrate.
  • Petals are radiant elements that are characterized by their current distribution.
  • a petal can be, for example, a conductive thread.
  • a Jordan curve that is, any closed curve in the plane that does not cut itself. Examples of Jordan's curves arise from the so-called Cassini ovals. These are defined as the geometric place of the plane that fulfills that the product of the distances to two fixed points (the focal points of the curve), is a constant. These curves are defined by the expression in Cartesian coordinates: ⁇ ...,,, 2, 2 ..2, - ... 2 ..: 2 - XJ _ ..4 ⁇ A
  • Cassini ovals are really pairs of curves (when k> l), symmetrical with respect to the center of coordinates, so they are valid for daisies antennas of even number of petals, but obviously they can also be used as isolated elements for the case of daisy antennae with odd number of petals.
  • the ovals can be connected directly to the divider, or through power lines to connect them electrically to the divider, and thus move them away from the geometric center of the daisy antenna, similar to the case shown in Figure 4.
  • the length of the petal (L), which being the resonant petals, must be a multiple of the wavelength at the center frequency of the antenna's operating band
  • x (t, L, e): ⁇ • L. (t 2 - l) - cos (0) • Lt (t 2 - l) -sin (e)
  • Figure 11 shows the definition of the parameters used in this new petal geometry, which is displaced from the center of the daisy by a distance D.
  • the circumference has a radius of value: V 15552
  • the tangent lines pass through the center of coordinates, and have a slope of:
  • the slope of the tangents is independent of the length of the petal (value related to its operating frequency), and only depends on the central opening angle of the petal (2a), which in this case is fixed at ⁇ / 3.
  • connections between the metallizations of the upper or lower layers and the petals are made by means of short-circuit paths between layers. In this way the ends of the petals are contacted with the signal distribution circuit, one end of the petal is connected to the upper layer and the other to the lower one. Depending on which of the ends is connected to one layer or another, so will the direction of the current flowing through the petal.
  • the relative direction of the currents flowing through the petals characterizes the operation of the antenna, and to obtain a maximum of the radiation pattern in linear polarization, in the direction perpendicular to the plane of the antenna, it is enough that:
  • Figure 13 shows the top view of the metallizations of the upper and lower layers of the 6-petal antenna of Figure 1. Said metallizations make up the distribution circuit (adaptation and divider).
  • Figure 14 shows the distribution of currents in the petals of said antenna.
  • Figure 15 shows the top view of the metallizations of the upper and lower layers of the 6-petal antenna of Figure 4. Said metallizations make up the distribution circuit (adaptation, divider and bi-wire transmission lines).
  • Figure 16 shows the distribution of currents in the petals of said antenna, distribution of currents that is identical to that shown in Figure 14.
  • Figure 17 shows the top view of the metallizations of the upper and lower layers of the antenna 6 petals, whose petals are simple electric dipoles. Comparing this figure with figure 15, the different length of the feeding lines derived from the different size of the petals can be seen. Obviously, the line width depends on the value of the impedance of the petal.
  • Figure 18 shows the distribution of currents in the dipoles or petals of the antenna, and as can be seen said distribution of currents is identical to that shown in Figures 14 and 16 for the other 6-petal antennas.
  • Figure 19 shows the top view of the metallizations of the upper and lower layers of the 2-petal antenna, whose petals are electric dipoles.
  • Figure 20 shows the distribution of currents in the petals of said antenna. Comparing figures 18 and 20, it can be seen that this 2-petal antenna matches the central petals of the 6-petal daisy.
  • the circular polarization is obtained by interleaving two equal daisy antennas, rotated 90 ° to each other, to generate the orthogonal linear polarizations, and adding to one of the antennas the length of a quarter of the guided wavelength in the bi-filar power lines, to introduce the required 90 ° offset between polarizations.
  • the antenna is formed by two equal, coplanar and with the same feeding point superimposed on the same flat, with the following particularities:
  • the antenna power is unique to the two daisy antennas, as well as the adaptation and the splitter. If the daisy antennas have 2 petals each the divisor must be 1: 4; if they have 6 petals, the divider should be 1: 12.
  • the bi-filar lines of the signal distribution circuit to the petals must differ by a quarter of a wavelength, to provide the 90 ° offset necessary to generate the circular polarization. That means that the petals of one of the daisies are distributed inside the petal distribution of the other daisy. Since each of the daisy antennas that generate the linear polarizations must have an even number of petals (2, 4, 6 ... n petals), the daisy antennas that generate circular polarization must be 4, 8, 12 .. . 4n petals
  • Figure 21 shows the distribution circuit, separated in layers 2 and 3 according to the exploded view shown in Figure 3. It can be seen in said figure, the different length of the bi-wire feed lines to each of the daisies of 2 petals that make up this antenna.
  • Figure 22 shows the distribution of petals in layer 2 of the daisy with 4 petals (electric dipoles), which generates circular polarization. In this figure, together with the distribution of currents, the lines of symmetry corresponding to each pair of petals, or what is the same, to each polarization can be seen: 5A for petals 2A, and 5B for petals 2B.
  • Figure 23 shows the overall view of the 3 superimposed layers that shape the 4-petal daisy antenna, whose petals are electric dipoles.
  • Figure 24 shows the distribution circuit in layers 2 and 3 of a 12-petal daisy that generates circular polarization. It would therefore be an antenna that is the sum of two 6-petal daisy antennas, with the petals of both overlapping.
  • half (6) of the power lines differ in length from those of the other half, in a quarter of guided wavelength, and that the lines of one of the 6-petal daisy antennas are interspersed between those of the other.
  • Figure 25 shows the distribution of petals in the intermediate layer, also showing the distribution of currents. This figure shows what is the set of 6 petals generated by each of the two linear orthogonal polarizations necessary for circular polarization.
  • Figure 26 shows the overall view of the 3 layers of the 12-petal daisy antenna that generates circular polarization.
  • the daisy antenna is in turn the sum of 2 sub-antenna daisies, so it must have 4n petals.
  • the circular polarization could be obtained by rotating 30 ° , 90 ° or 150 °, and offset 30 °, 90 ° or 150 ° respectively, obviously obtaining cross polarization in other directions with different signal level.
  • the directivity of the daisy antenna that generates a maximum of radiation in the direction perpendicular to the plane of the antenna, both in linear and circular polarization, can be increased by a maximum of 3 dB, by placing a mass plane parallel to the plane of the antenna, at a distance equal to a quarter of the wavelength of the operating frequency of the antenna, thus being able to add in phase, in the desired direction, the signal reflected in the ground plane.
  • the essential characteristic of the daisy antenna is in the distribution of the direction of flow of the current through the petals, and this only has two possibilities: to come or go, which means that in the petals it occurs, in addition to a change of petal position relative to the daisy antenna assembly, a binary phase change of the radiated signal for each petal, that is: 0 or 180 °, depending on the direction of the current flowing through it.
  • the antenna would have a configuration that increases in complexity depending on the volume of the radiating element considered, but in essence it would have an electromagnetic operation similar to that of the previously defined daisy antenna and based on the use of wires.
  • Figure 27 shows the sketch of a 6-petal daisy antenna with a maximum of radiation in the direction perpendicular to the plane of the antenna (performance similar to those described in example 1), where the petals are small speakers in a rectangular guide.
  • EXAMPLE 1 Margarita antenna for maximum radiation in linear polarization, in the direction perpendicular to the antenna plane
  • Figure 28 shows the geometry of the upper and lower layers that make up the distribution circuit and indicates the distribution of currents, of a 4-petal daisy antenna that generates a maximum in linear polarization in the direction perpendicular to the plane of the antenna.
  • the base of the distribution circuit is a metal square 30 mm side.
  • the distance between layers is 5 mm, so the separation between the upper and lower layers is 10 mm.
  • Figure 29 shows the geometry of the central layer containing the 4 petals that are generated by photogravure methods on a dielectric substrate of low effective permittivity.
  • the width of the metal tape is 10 mm, and the length of the petal is 432 mm.
  • Figures 30 and 31 show the two linear electric field components ⁇ and ⁇ , as well as the gain value, in planes E and H respectively, of the radiation pattern of the four-petal antenna of Figures 28 and 29, a the frequency of 800 MHz.
  • Figure 21 shows the geometry of the upper and lower layers that make up the distribution circuit and indicates the distribution of currents, of a 4-petal daisy antenna, which generates a maximum in circular polarization in the direction perpendicular to the plane of the antenna.
  • the base of the distribution circuit is a metal square 40 mm side, and the power lines have a width of 20 mm.
  • the difference in length between the lines that feed the dipoles is 50 mm.
  • the distance between layers is 5 mm, so the separation between the upper and lower layers is 10 mm.
  • Figure 22 shows the geometry of the central layer containing the 4 petals, which in this case are 220 mm long electric dipoles.
  • the width of the metal tape is 10 mm, and the length of the petal is 432 mm. All layers are generated by photogravure methods on dielectric substrate of low effective permittivity.
  • Figure 23 shows the 3 layers superimposed to give an idea of the set.
  • Figure 36 shows the axial ratio in dB as a function of the frequency expressed in GHz.
  • Figure 1 shows a 6 petal daisy antenna.
  • FIG. 2 shows 4 and 2 petal daisy antennas
  • Figure 3 shows a cross section of a daisy antenna
  • Figure 4 shows a 6-petal daisy antenna with power lines in the distribution circuit
  • Figure 5 shows 2-petal daisy antennas, with different petal geometry: polygonal petals, folded dipoles and electric dipoles
  • Figure 6 shows a 6-dipole daisy antenna
  • Figure 9 shows a geometric curve derived from the expressions [2]
  • Figure 10 shows a geometric composition of a 6-petal daisy from the expressions [2]
  • Figure 11 shows a geometric curve derived from the expressions [3]
  • Figure 12 shows a geometric approximation to the curve of Figure 7, by a circle and two lines defined in [4]
  • Figure 13 shows metallizations of the upper and lower layers of the 6-petal daisy antenna of Figure 1.
  • Figure 14 the metallization of the central layer of petals, indicating the distribution of current lines, of the daisy antenna shown in Figure 1
  • Figure 15 shows metallizations of the upper and lower layers of the 6-petal daisy antenna of Figure 4.
  • Figure 16 shows the metallization of the central layer of petals, indicating the distribution of current lines, of the daisy antenna shown in Figure 4.
  • Figure 17 shows metallizations of the upper and lower layers of the 6-petal daisy antenna of Figure 6.
  • Figure 18 shows the metallization of the central layer of petals, indicating the distribution of current lines, of the daisy antenna shown in Figure 6.
  • Figure 19 shows metallizations of the upper and lower layers of the 2-petal daisy antenna of Figure 5 (electric dipoles).
  • Figure 20 shows the metallization of the central layer of petals, indicating the distribution of current lines, of the daisy antenna shown in Figure 5 (electric dipoles).
  • Figure 21 shows metallizations of the upper and lower layers of the 4-petal daisy antenna that generates circular polarization.
  • Figure 22 shows the metallization of the central petal layer, indicating the distribution of current lines, of the 4-petal daisy antenna that generates circular polarization.
  • Figure 23 shows a 4-petal daisy antenna that generates circular polarization.
  • Figure 24 shows metallizations of the upper and lower layers of the 12-petal daisy antenna that generates circular polarization.
  • Figure 25 shows a metallization of the central layer of petals, indicating the distribution of current lines, of the 12-petal daisy antenna that generates circular polarization.
  • Figure 26 shows a 12-petal daisy antenna that generates circular polarization.
  • Figure 27 shows a 6-petal daisy antenna with a maximum of radiation in the direction perpendicular to the plane of the antenna, and where the petals are horns in a rectangular guide.
  • Figure 28 shows metallizations of the upper and lower layers of the 4-petal daisy antenna of Example 1, for linear polarization in the direction perpendicular to the antenna plane.
  • Figure 29 metallization of the central layer of petals, indicating the distribution of current lines, of the 4-petal daisy antenna of Example 1, for linear polarization in the direction perpendicular to the plane of the antenna.
  • Figure 30 shows a flat section E of the radiation diagram, at the frequency of 800 MHz, of the 4-petal antenna of Figures 28 and 29.
  • the gain values are expressed in dBi (diamond curve), and dB the of the two components of the radiated electric field: ⁇ (triangle curve) and ⁇ (square curve).
  • Figure 31 shows a flat section H of the radiation diagram, at the frequency of 800 MHz, of the 4-petal antenna of Figures 28 and 29.
  • the gain values are expressed in dBi (diamond curve), and dB the of the two components of the radiated electric field: ⁇ (triangle curve) and ⁇ (square curve).
  • the gain values are expressed in dBi (diamond curve), and in dB the of the two orthogonal components in circular polarization to the right and left of the electric field RHCP (square curve) and LHCP (triangle curve).
  • the gain values are expressed in dBi (diamond curve), and in dB the of the two orthogonal components in circular polarization to the right and left of the electric field RHCP (square curve) and LHCP (triangle curve).
  • the gain values are expressed in dBi (diamond curve), and in dB those of the two orthogonal components in circular polarization to the right and left of the electric field RHCP (square curve) and LHCP (triangle curve).
  • the gain values are expressed in dBi (diamond curve), and in dB those of the two orthogonal components in circular polarization to the right and left of the electric field RHCP (square curve) and LHCP (triangle curve).
  • Figure 36 shows a graphical representation of the axial ratio in dB, with respect to the frequency expressed in GHz, of the 4-petal daisy antenna of Figures 21, 22 and 23.

Abstract

The invention relates to an antenna formed by the coplanar grouping of an even number of radiating wires which together form a shape similar to the petal distribution of a daisy (see figure 1). The radiating wires or petals of the daisy antenna work by resonance and have a flat geometry, as well as all having the same structure and being in the same plane, referred to as the antenna plane. The only difference between the petals is in the relative distribution of the current flow directions, which determines the form of the radiation diagram and characterizes the behavior of the antenna, in order to allow users a wide range of applications.

Description

ANTENA MARGARITA PARA EMISIÓN Y RECEPCIÓN DE ONDAS ELECTROMAGNÉTICAS POLARIZADAS LINEAL Y CIRCULARMENTE CAMPO DE LA INVENCIÓN  MARGARITE ANTENNA FOR EMISSION AND RECEPTION OF LINEAR AND CIRCULARLY POLARIZED ELECTROMAGNETIC WAVES FIELD OF THE INVENTION
La presente invención pertenece al sector de las antenas emisoras y/o receptoras, de señales electromagnéticas, y más precisamente está relacionada con los siguientes sub-sectores de la tecnología de antenas: antenas de banda ancha, dipolos eléctricos y magnéticos, sistemas radiantes de transmisión y recepción, antenas para sistemas de comunicaciones, antenas para receptores de señal de televisión, antenas de bajo coste e impacto visual, antenas para sistemas de observación y vigilancia, y antenas para sistemas inhibidores de frecuencia.  The present invention belongs to the sector of transmitting and / or receiving antennas, of electromagnetic signals, and more precisely it is related to the following sub-sectors of antenna technology: broadband antennas, electric and magnetic dipoles, radiating transmission systems and reception, antennas for communication systems, antennas for television signal receivers, antennas of low cost and visual impact, antennas for observation and surveillance systems, and antennas for frequency inhibiting systems.
ESTADO DE LA TÉCNICA Una antena es un elemento o sistema pensado y fabricado para recibir o emitir ondas electromagnéticas (EM). Desde un punto de vista elemental, la emisión consiste en transformar una diferencia de potencial eléctrico, variable en el tiempo, aplicado a la estructura metálica del sistema en un tren de ondas EM para que se propaguen por el espacio libre de alrededor. Lo contrario es la recepción de ondas EM. Hay diversas formas y apariencias de antenas, la más sencilla y conocida es el dipolo para captar la emisión de televisión terrestre, la más complicada puede ser cualquiera de los extensos paraboloides empleados en radio astronomía para captar señales débilísimas que llegan de los confines del universo. Los diversos diseños, y por lo tanto sus características técnicas, dependen de la aplicación concreta a la cual se van a reservar. La forma y el concepto que el técnico afronta son determinantes en los resultados operativos de la antena. En términos en exceso básicas, todo reside en comparar las dimensiones geométricas del elemento emisor o receptor y la longitud de onda a emitir o captar. De una parte, la demanda que hacen los mercados de nuevas técnicas tanto para la emisión en el dominio de las ondas de radio como, igualmente, en la TV, como también en el sector de la seguridad, viene demandando desde hace ya tiempo de nuevos diseños, cada vez más complejos, de antenas para cubrir un sin número de aplicaciones nuevas. STATE OF THE TECHNIQUE An antenna is an element or system designed and manufactured to receive or emit electromagnetic waves (EM). From an elementary point of view, the emission consists of transforming an electric potential difference, variable in time, applied to the metallic structure of the system in an EM wave train so that they propagate through the free space around. The opposite is the reception of EM waves. There are various forms and appearances of antennas, the simplest and best known is the dipole to capture the terrestrial television broadcast, the most complicated can be any of the extensive paraboloids used in radio astronomy to capture very weak signals coming from the confines of the universe. The various designs, and therefore their technical characteristics, depend on the specific application to which they will be reserved. The form and concept that the technician faces are decisive in the operating results of the antenna. In basic excess terms, everything lies in comparing the geometric dimensions of the emitting or receiving element and the wavelength to be emitted or captured. On the one hand, the demand made by the markets for new techniques both for broadcasting in the domain of radio waves and, also, on TV, as well as in the security sector, has long been demanding new increasingly complex designs of antennas to cover a number of new applications.
Las ideas básicas a desarrollar están presentadas en el libro "Antennas: Theory and Practice", de Schelkunoff S.A. y Friis H.T., publicado por Bell Telephone Laboratories, Inc., LCCCN 52-5083, 1952, y en el artículo "Ultrahigh-frequency loop antenas", de Andrew Alford and Arming G. Kandoian, publicado en AIEE Trans., 59, 1940, pp 843-848. En el primero, están descritos con detalle los modelos de las clásicas antenas de hilo, como los dipolos, simples y doblados (folded dipols), así como también sistemas de antenas que generan un haz omni-direccional en un plano, con el campo eléctrico polarizado en dicho plano. En el segundo merece citarse las referencias a los "Alford loops" o círculos de Alford, como primer ejemplo de sistemas complejos. Un manual con descripciones más generales sobre antenas de hilo y agrupamientos en general, sería el libro de Stutzman W.L. y Thiele G.A. "Antenna Theory and Design", publicado por John Wiley & Sons, ISBN 0-471-0448-X, 1981. The basic ideas to be developed are presented in the book "Antennas: Theory and Practice", by Schelkunoff SA and Friis HT, published by Bell Telephone Laboratories, Inc., LCCCN 52-5083, 1952, and in the article "Ultrahigh-frequency loop antennas", by Andrew Alford and Arming G. Kandoian, published in AIEE Trans., 59, 1940, pp 843-848. In the first one, the models of the classic wire antennas are described in detail, such as dipoles, simple and folded (folded dipols), as well as antenna systems that generate an omni-directional beam in a plane, with the electric field polarized in said plane. In the second it is worth mentioning the references to the "Alford loops" or Alford circles, as the first example of complex systems. A manual with more general descriptions about wire antennas and clusters in general, would be the book by Stutzman WL and Thiele GA "Antenna Theory and Design", published by John Wiley & Sons, ISBN 0-471-0448-X, 1981.
En el diseño de estos elementos o dispositivos, el parámetro a tener en cuenta es el diagrama de radiación, esto es, la representación en una gráfica, en función de la dirección, de la intensidad del campo EM. Otros parámetros a tener en consideración son: el ancho de banda, que es el rango de frecuencia en el cual se cumplen determinadas características sobre la directividad o la ganancia. Igualmente, son a considerar la anchura del haz de radiación y la polarización de la señal emitida o captada (P.H. Smith, "Cloverleaf Antenna for F.M. broadcasting", IRE Proc. 35, december 1947, 1556-1563, aunque esta ultima esta ilustrada y explicada en el libro de Schelkunoff, en la página 504 y siguientes). En esta referencia, se presenta una antena plana formada por 4 espiras que generan un haz omni- direccional con el campo eléctrico linealmente polarizado en el plano de la antena, pensada expresamente para una aplicación específica que era novedosa por las ventajas que ofrecía a finales de los años 40. En dicho artículo se menciona que la "Cloverleaf Antenna" (Antena Trébol) puede resolver de una manera rápida y natural la influencia perversa del medio ambiental, en especial la nieve y las heladas. In the design of these elements or devices, the parameter to be taken into account is the radiation diagram, that is, the representation on a graph, depending on the direction, of the intensity of the EM field. Other parameters to consider are: bandwidth, which is the frequency range in which certain characteristics on directivity or gain are met. Likewise, the width of the radiation beam and the polarization of the emitted or captured signal are to be considered (PH Smith, "Cloverleaf Antenna for FM broadcasting", IRE Proc. 35, December 1947, 1556-1563, although the latter is illustrated and explained in Schelkunoff's book, on page 504 and following). In this reference, there is a flat antenna formed by 4 turns that generate an omnidirectional beam with the linearly polarized electric field in the plane of the antenna, specifically designed for a specific application that was novel because of the advantages offered at the end of the 40s. In this article it is mentioned that the "Cloverleaf Antenna" (Clover Antenna) can resolve in a fast and natural way the perverse influence of the environment, especially snow and frost.
En el libro de FH. Jasik, "Antenna Engineering Handbook", Me Graw HUI, Ia edición de 1961 (y no en las posteriores), se habla del "Tripolo Radiador" formado por un array plano de 3 dipolos que también presenta un haz omni-direccional similar al de la "Cloverleaf Antenna". En la comunicación de J. Vassal'lo, "Radiador de bajo perfil con polarización horizontal sobre el horizonte", presentada en el X Symposium Nacional URSI 95, Valladolid 1995, pp 743-746, se presenta el mismo radiador de 3 dipolos en circular realizados realizado por técnicas de fotograbado. En estas referencias se mencionan por tanto, diferentes tecnologías sobre agrupamientos circulares de 3 dipolos eléctricos, así como también de 4 espiras para conseguir un mismo objetivo: un diagrama omni-direccional con el campo eléctrico linealmente polarizado y contenido en el plano de la antena. En ninguna de esas referencias se cita nada sobre que otra distribución plana de corrientes podría generar otro tipo de diagramas, tanto en el caso de los dipolos como en el de las espiras. In the book of FH. Jasik, "Antenna Engineering Handbook", Me Graw HUI, I edition of 1961 (rather than later), speaks of "tripole radiator" consists of a flat array of three dipoles which also has an omni-directional beam similar to of the "Cloverleaf Antenna". In the communication by J. Vassal'lo, "Low profile radiator with horizontal polarization on the horizon", presented at the X National Symposium USSR 95, Valladolid 1995, pp 743-746, the same 3-dipole radiator is presented in circular made by photogravure techniques. In these references, different technologies on circular groupings of 3 electric dipoles are mentioned, as well as 4 turns to achieve the same objective: an omni-directional diagram with the linearly polarized electric field and contained in the antenna plane. In none of these references is anything cited that another flat distribution of currents could generate other types of diagrams, both in the case of dipoles and in turns.
Las aplicaciones, cada vez más exclusivas a demanda de los mercados técnicos, han hecho pasar de la antena más simple, como el dipolo o la espira, a otras más complejas. En el artículo "Satellite communication with moving vehicles on Herat: two prototype circular array antenas", publicado en la revista Micro waves and Optical Technology Letters, vol 39, ni, ppl4 - 16, 5 october 2003, los autores F. Ares, G. Franceschetti, J. Mosig, S.Vaccaro, J. Vassal'lo and E. Moreno, presentan un agrupamiento plano y circular de 8 radiadores microstrip que genera un haz cónico en polarización circular para su uso en comunicaciones entre móviles vía satélite. Este agrupamiento proporciona la posibilidad de apuntamiento para elevaciones entre 35° y 55° sobre el plano de la antena. The applications, more and more exclusive on demand from the technical markets, have moved from the simplest antenna, such as the dipole or the spire, to more complex ones. In the article "Satellite communication with moving vehicles on Herat: two prototype circular array antennas", published in the journal Micro waves and Optical Technology Letters, vol 39, ni, ppl4 - 16, 5 October 2003, the authors F. Ares, G Franceschetti, J. Mosig, S.Vaccaro, J. Vassal'lo and E. Moreno, present a flat and circular grouping of 8 microstrip radiators that generates a conical beam in circular polarization for use in communications between mobile phones via satellite. This grouping provides the possibility of pointing for elevations between 35 ° and 55 ° above the plane of the antenna.
En este caso, además de que la polarización debe ser circular, el diagrama de radiación requerido necesita que su carácter omni-direccional esté definido según la traza definida por la generatriz de un cono, de forma que para un móvil, situado en una posición de latitud determinada sobre la superficie terrestre, se pueda asegurar la conexión con un satélite geoestacionario independientemente de la orientación que tenga el móvil. Para esos 35° y 55° de elevación mencionados, se aseguraría de esa forma la conexión para un móvil que se desplace en la zona sur y central de Europa. In this case, in addition to the polarization must be circular, the required radiation pattern requires that its omni-directional character be defined according to the trace defined by the generator of a cone, so that for a mobile, located in a position of latitude determined on the earth's surface, the connection with a geostationary satellite can be ensured regardless of the orientation of the mobile. For those 35 ° and 55 ° elevation mentioned above, the connection for a mobile that moves in the southern and central part of Europe would be ensured.
El diagrama en polarización circular se obtiene como resultado de la suma de los diagramas en polarización circular de cada uno de los 8 radiadores microstrip. Es decir, que los propios radiadores microstrip, de forma individual, trabajan en polarización circular. Amplia información sobre radiadores microstrip y agrupamientos de este tipo de radiadores puede encontrarse en los libros: "Microstrip Antennas" de I. Bhal y P. Bhartia, publicado por Artech House en 1980, y "Microstrip Antenna Design Handbook", de R. Garg, P. Bhartia, I. Bahl y A. Ittipiboon, publicado por Artech House en 2001, ISBN 0-89006-513- 6. La polarización circular se puede obtener a partir de elementos radiantes que trabajan en polarización lineal, mediante lo que llama "rotación secuencial". Esto consiste en distribuir los elementos de forma secuencial (cada 3607n para n elementos), sobre una circunferencia, girados y desfasados esa misma cantidad, tal como se puede ver en "3. Improvement of the co-cross polarisation ratio" de J. Barbero y J. Vassal'lo, en el capítulo sobre la "Contribution from Spain" del "Final Report of the COST 223 - Antennas in the 1990s, Active Array Antennas Future Satellite and Terrestrial Communications", editado por la European Comission, Directorate General XIII: Telecommunications, Information Market and Exploitation of Research, Brussels, 1995. Esta técnica para generar polarización circular es suficientemente conocida y válida, pero solo es aplicable cuando la dirección de apuntamiento coincide con el cénit de la antena, es decir, que es perpendicular al plano definido por el agrupamiento circular. En ningún caso se menciona la posibilidad de obtener un haz cónico en polarización circular, a partir de una rotación secuencial de elementos radiantes en polarización lineal. The circular polarization diagram is obtained as a result of the sum of the circular polarization diagrams of each of the 8 microstrip radiators. That is, the microstrip radiators themselves, individually, work in circular polarization. Extensive information on microstrip radiators and clusters of this type of radiators can be found in the books: "Microstrip Antennas" by I. Bhal and P. Bhartia, published by Artech House in 1980, and "Microstrip Antenna Design Handbook", by R. Garg , P. Bhartia, I. Bahl and A. Ittipiboon, published by Artech House in 2001, ISBN 0-89006-513-6. Circular polarization can be obtained from radiant elements that work in linear polarization, by what is called "sequential rotation." This consists of distributing the elements sequentially (every 3607n for n elements), on a circle, rotated and offset that same amount, as can be seen in "3. Improvement of the co-cross polarization ratio" by J. Barbero and J. Vassal'lo, in the "Contribution from Spain" chapter of the "Final Report of the COST 223 - Antennas in the 1990s, Active Array Antennas Future Satellite and Terrestrial Communications", edited by the European Commission, Directorate General XIII : Telecommunications, Information Market and Exploitation of Research, Brussels, 1995. This technique for generating circular polarization is sufficiently known and valid, but is only applicable when the pointing direction coincides with the zenith of the antenna, that is, it is perpendicular to the plane defined by the circular grouping. In no case is the possibility of obtaining a conical beam in circular polarization mentioned, based on a sequential rotation of radiating elements in linear polarization.
Diagramas no omni-direccionales en un plano sino con un máximo de radiación en una dirección determinas, pueden obtenerse también con antenas de hilos, como es el caso de la antena definida por Podger en su patente US 6,255,998 Bl. En esta patente se define un elemento radiante denominado como "Lemniscate Antenna Element" (Elemento de Antena Lemniscata) que proporciona un máximo de radiación con polarización lineal, según la dirección perpendicular al plano que contiene a la antena. Non-omni-directional diagrams in a plane but with a maximum radiation in a certain direction, can also be obtained with wire antennas, as is the case of the antenna defined by Podger in its US patent 6,255,998 Bl. This patent defines a radiating element called "Lemniscate Antenna Element" that provides a maximum of radiation with linear polarization, according to the direction perpendicular to the plane that contains the antenna.
Esta antena lemniscata de Podger viene a tener una configuración parecida a la "Cloverleaf Antenna" de Smith, pero con solo 2 espiras (la de Smith tiene 4 espiras), y con la diferencia esencial de que la corriente en las espiras de la lemniscata circula en sentido contrario, mientras que las cuatro espiras de la antena de Smith, tienen el mismo sentido de giro de la corriente. Por otra parte, en la patente de Podger así como tampoco en otra posterior del mismo inventor (US 6,469,674), no se menciona en ningún caso la posibilidad de agrupar circularmente varias antenas lemniscatas, todas con el mismo centro o punto de alimentación, para mejorar alguna de las características del conjunto. This podger lemniscate antenna comes to have a configuration similar to Smith's "Cloverleaf Antenna", but with only 2 turns (Smith's has 4 turns), and with the essential difference that the current in the turns of the lemniscate circulates in the opposite direction, while the four turns of the Smith antenna have the same direction of rotation of the current. On the other hand, in the Podger patent as well as in a later one of the same inventor (US 6,469,674), the possibility of circularly grouping several lemniscate antennas, all with the same center or feeding point, to improve Some of the characteristics of the set.
Como se desprende de la descripción de antena lemniscata presentada por Podger en las patentes US 6,255,998 y US 6,469,674, puede considerarse como el caso particular de una de las antenas margaritas objeto de invención en el presente documento. En particular sería el caso de la margarita de dos únicos pétalos, ya que en la invención de la antena margarita del presente documento, el número de pétalos solo presenta la restricción de ser par (pueden ser 2, 4, 6...), y los pétalos pueden tener diferentes geometrías planas (no solo la denominada como "curva lemniscata"), pudiendo también no ser espiras, sino que puede usarse como pétalos otro tipo de elemento radiante, como el clásico dipolo, los radiadores microstrip, o incluso las guías de onda abiertas o acabadas en bocina para aumentar su directividad. Tampoco en ninguna de las dos patentes de Podger mencionadas, se dice que se puede obtener polarización circular con dos antenas lemniscatas, colocadas una a 90° de la otra, en el mismo plano, y con las espiras alejadas λ/4 del centro de la pareja de antenas, las de una lemniscata respecto a las espiras de la otra antena lemniscata. As can be seen from the description of the lemniscata antenna presented by Podger in US 6,255,998 and US 6,469,674, it can be considered as the particular case of one of the daisy antennas object of the invention herein. In particular it would be the case of the daisy with only two petals, since in the invention of the daisy antenna of the present document, the number of petals only presents the restriction of being even (they can be 2, 4, 6 ...), and the petals they can have different flat geometries (not only the so-called "lemniscata curve"), they can also not be turns, but can be used as petals another type of radiating element, such as the classic dipole, microstrip radiators, or even waveguides open or finished in horn to increase its directivity. Nor in any of the two Podger patents mentioned, it is said that circular polarization can be obtained with two lemniscate antennas, placed one at 90 ° from the other, in the same plane, and with the turns λ / 4 away from the center of the pair of antennas, those of a lemniscata with respect to the turns of the other lemniscata antenna.
DESCRIPCIÓN BREVE DE LA INVENCIÓN. BRIEF DESCRIPTION OF THE INVENTION.
La presente invención es una antena constituida por el agrupamiento coplanar de hilos radiantes cuyo conjunto adopta una forma parecida a la distribución de pétalos en una margarita (ver figura 1).  The present invention is an antenna constituted by the coplanar grouping of radiating wires whose assembly adopts a shape similar to the distribution of petals in a daisy (see figure 1).
Los hilos radiantes o pétalos de la antena margarita trabajan en resonancia, tienen geometría plana, todos tienen la misma estructura y están contenidos en un mismo plano, llamado plano de la antena. La única diferencia entre los pétalos está en la distribución relativa de los sentidos de circulación de la corriente, que determina la forma del diagrama de radiación y que es esencial en la caracterización del comportamiento operativo de la antena. The radiating wires or petals of the daisy antenna work in resonance, have flat geometry, all have the same structure and are contained in the same plane, called the antenna plane. The only difference between the petals is in the relative distribution of the current flow directions, which determines the shape of the radiation pattern and is essential in the characterization of the operating behavior of the antenna.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La antena motivo de esta patente de invención y que denominamos "margarita" por simplificación, está constituida por el agrupamiento coplanar de hilos radiantes trabajando en resonancia, adoptando una forma parecida a una flor (ver figuras 1 y 2), y con una especial distribución de corrientes por los hilos radiantes que determina y caracteriza plenamente el comportamiento de la antena. The reason antenna of this invention patent and which we call "daisy" for simplification, is constituted by the coplanar grouping of radiant wires working in resonance, adopting a flower-like shape (see figures 1 and 2), and with a special distribution of currents by the radiating wires that determines and fully characterizes the behavior of the antenna.
Los hilos radiantes o pétalos de la antena, que en su configuración más general toman la forma del contorno de los pétalos de la flor, además de trabajar en resonancia, tienen geometría plana, están contenidos en un mismo plano, llamado plano de la antena, y se colocan a igual distancia del centro de la antena, donde se encuentra la alimentación de la antena y el circuito que distribuye la señal a los pétalos. The radiating wires or petals of the antenna, which in their most general configuration take the form of the contour of the petals of the flower, in addition to working in resonance, have flat geometry, are contained in the same plane, called the antenna plane, and placed at the same distance from the center of the antenna, where the antenna power and the circuit that distributes the signal to the petals.
La banda de frecuencia de funcionamiento de la antena margarita se sitúa en el rango de las microondas y ondas milimétricas. The operating frequency band of the daisy antenna is in the range of microwaves and millimeter waves.
Los hilos radiantes pueden estar constituidos por hilos o tubos conductores, o también fabricarse mediante técnicas de fotograbado, quedando constituidos por cintas fotograbadas sobre sustrato dieléctrico. The radiating wires can be constituted by wires or conductive tubes, or they can also be manufactured by photogravure techniques, being constituted by photogravure tapes on dielectric substrate.
Configuración en capas de la antena margarita Layered configuration of the daisy antenna
Además del circuito de alimentación de la antena (1), los elementos que componen la antena y que pueden verse en las figuras 1 a 6, son: los pétalos o hilos radiantes (2), y el circuito de distribución (3), formado por la adaptación o balun, el divisor, y en su caso las líneas transmisoras para llevar la señal desde el divisor hasta los pétalos, cuando éstos se sitúen lejos del centro de la antena. Estos elementos, junto con los pétalos de la antena, se distribuyen en 3 capas planas y paralelas entre si, tal como se indica en la figura 3.  In addition to the antenna power circuit (1), the elements that make up the antenna and that can be seen in figures 1 to 6, are: the radiating petals or wires (2), and the distribution circuit (3), formed by adaptation or balun, the splitter, and where appropriate the transmitter lines to carry the signal from the splitter to the petals, when they are located far from the center of the antenna. These elements, together with the antenna petals, are distributed in 3 flat layers parallel to each other, as indicated in Figure 3.
Esta distribución en capas facilita el diseño de la antena y optimiza la simetría de la antena, para obtener las características de emisión buscadas. La figura 3 muestra la distribución en capas, vista según una sección transversal al plano de la antena. Los pétalos (2) se sitúan en la capa intermedia, mientras que las metalizaciones propias del circuito de distribución de la señal se sitúan en las capas superior e inferior. La alimentación de la antena (1) conectada al centro de la antena, es perpendicular al plano definido por la antena, y se realiza por línea coaxial, de forma similar a como si fuera el tallo que sustenta a una flor margarita. Las metalizaciones propias del cable coaxial de alimentación, se conectan eléctricamente a las metalizaciones del circuito de distribución (capas superior e inferior de la antena). This layered distribution facilitates the design of the antenna and optimizes the symmetry of the antenna, to obtain the desired emission characteristics. Figure 3 shows the layered distribution, seen according to a cross section to the antenna plane. The petals (2) are located in the intermediate layer, while the metallizations of the signal distribution circuit are located in the upper and lower layers. The power of the antenna (1) connected to the center of the antenna, is perpendicular to the plane defined by the antenna, and is done by coaxial line, similar to the stem that supports a daisy flower. The metallisations of the coaxial power cable are electrically connected to the metallizations of the distribution circuit (upper and lower layers of the antenna).
Circuito de distribución Distribution circuit
Es uno de los elementos esenciales del dispositivo emisor o receptor, pues como se verá en la descripción del funcionamiento de la antena, define los sentidos de circulación de la corriente en los pétalos. En la zona central de la antena se sitúa el circuito de distribución de la señal, (3) en las figuras 1 y 2, que está compuesto de: It is one of the essential elements of the emitting or receiving device, because as will be seen in the description of the operation of the antenna, it defines the directions of circulation of the current in the petals. In the central area of the antenna is the signal distribution circuit, (3) in Figures 1 and 2, which is composed of:
• un circuito de adaptación,  • an adaptation circuit,
• un divisor que reparte la señal a cada unos de los pétalos,  • a splitter that distributes the signal to each of the petals,
· y líneas bi-filares (ver (4) en la figura 4), que se utilizan para llevar la señal del divisor a cada uno de los pétalos. Estas líneas son necesarios cuando el número de pétalos de la antena es alto, o la geometría de los pétalos así lo requiere por su tamaño o configuración. La figura 4 muestra una antena margarita con el mismo número de pétalos que la antena mostrada en la figura 1, pero situados más lejos del centro. Eso implica la existencia de líneas bi-filares de transmisión para llevar la señal del divisor a cada pétalo (3). En el caso de la figura 4, hay por tanto tantas líneas de transmisión como pétalos, y todas esas líneas son exactamente iguales en sección transversal y longitud, para que no introduzcan diferencias en la respuesta radiada por cada pétalo, derivadas de proporcionar diferente amplitud o fase.  · And bi-filar lines (see (4) in Figure 4), which are used to carry the signal from the divider to each of the petals. These lines are necessary when the number of antenna petals is high, or the geometry of the petals requires it because of their size or configuration. Figure 4 shows a daisy antenna with the same number of petals as the antenna shown in Figure 1, but located farther from the center. That implies the existence of bi-filar transmission lines to carry the signal from the divider to each petal (3). In the case of Figure 4, there are therefore as many transmission lines as petals, and all those lines are exactly the same in cross section and length, so that they do not introduce differences in the response radiated by each petal, derived from providing different amplitude or phase.
Las líneas bi-filares son parte integrante del circuito de distribución, junto con el divisor y el circuito de adaptación o balun. Bi-filar lines are an integral part of the distribution circuit, together with the splitter and the adaptation circuit or balun.
El circuito de adaptación puede ajustarse mediante diseño, variando la capacidad entre las metalizaciones de las capas superior e inferior, es decir: variando su superficie y/o la separación entre capas, así como también utilizando separadores de diferente constante dieléctrica entre ellas. The adaptation circuit can be adjusted by design, varying the capacity between the metallizations of the upper and lower layers, that is: varying their surface and / or the separation between layers, as well as using separators of different dielectric constant between them.
Pétalos Petals
Los pétalos son elementos radiantes individuales, que trabajan en resonancia y vienen caracterizados porque su estructura está basada en hilos o cintas conductoras para producir una determinada distribución de corrientes de la que depende la radiación que producen.  Petals are individual radiating elements, which work in resonance and are characterized in that their structure is based on conductive wires or tapes to produce a certain distribution of currents on which the radiation they produce depends.
La estructura más simple es la del dipolo eléctrico, pero puede también adoptar otras formas, como por ejemplo: • espiras con geometría circular, elíptica o poligonal, tanto regular como irregular, siendo también válida cualquier forma geométrica que fuera el resultado de una mezcla de las mencionadas, siempre que la longitud total de la espira sea un múltiplo de la longitud de onda, para que cumpla la condición de que trabaje en resonancia. The simplest structure is that of the electric dipole, but it can also take other forms, such as: • turns with circular, elliptical or polygonal geometry, both regular and irregular, any geometric shape that is the result of a mixture of those mentioned being valid, provided that the total length of the loop is a multiple of the wavelength, for that meets the condition of working in resonance.
• cualquier forma geométrica dada por una función matemática definida en un plano, y cuya longitud sea un múltiplo de la longitud de onda, para que cumpla la condición de que trabaje en resonancia. Los pétalos pueden tomar diferentes formas de curvas geométricas, que convertidas en hilos o cintas conductoras puedan canalizar la corriente eléctrica. Deben además trabajar en resonancia, por lo que su longitud debe ser un múltiplo de la longitud de onda.  • any geometric shape given by a mathematical function defined in a plane, and whose length is a multiple of the wavelength, so that it meets the condition that it works in resonance. The petals can take different forms of geometric curves, which converted into wires or conductive tapes can channel the electric current. They must also work in resonance, so their length must be a multiple of the wavelength.
Es por tanto válido, también, usar como pétalos de la antena margarita los dobles dipolos eléctricos (también llamados folded dipoles), o incluso el clásico dipolo eléctrico, ya que también son antenas de hilos conductores en los que su diagrama de radiación está caracterizado por la distribución de corrientes en el elemento radiante, presentando por tanto la particularidad de que invirtiendo el sentido de la corriente que circula por ellos, se consigue un desfase de 180° en la fase de la señal radiada. It is therefore valid, also, to use double electric dipoles (also called folded dipoles), or even the classic electric dipole, as daisy antenna petals, since they are also conductive wire antennas in which their radiation pattern is characterized by the distribution of currents in the radiating element, thus presenting the particularity that by reversing the direction of the current flowing through them, a 180 ° offset is achieved in the phase of the radiated signal.
La figura 5 muestra, para su comparación, tres antenas margaritas de dos pétalos con diferente forma geométrica cada una: pétalos similares a los de la antena de la figura 2, folded dipolos, y los clásicos dipolos eléctricos. La figura 6 muestra una antena margarita de 6 pétalos, usando dipolos eléctricos como pétalos. Figure 5 shows, for comparison, three two-petal daisy antennas with different geometric shapes each: petals similar to those in the antenna of Figure 2, folded dipoles, and the classic electric dipoles. Figure 6 shows a 6-petal daisy antenna, using electric dipoles as petals.
Los hilos radiantes que dan forma a los pétalos de la antena margarita, pueden estar constituidos por hilos o tubos conductores, o también fabricarse mediante técnicas de fotograbado, quedando constituidos por cintas fotograbadas sobre sustrato dieléctrico. The radiating wires that shape the petals of the daisy antenna, can be constituted by wires or conductive tubes, or they can also be manufactured using photogravure techniques, being constituted by photogravure tapes on dielectric substrate.
Óvalos de Cassini Cassini ovals
Los pétalos son elementos radiantes que se caracterizan por su distribución de corrientes. Tal como se ha descrito líneas arriba, un pétalo puede ser, por ejemplo, un hilo conductor con forma de espira y una espira en su sentido más amplio es lo que se llama en términos matemáticos una curva de Jordán, es decir, cualquier curva cerrada en el plano que no se corte a sí misma. Ejemplos de curvas de Jordán surgen de los denominados óvalos de Cassini. Estos se definen como el lugar geométrico del plano que cumple que el producto de las distancias a dos puntos fijos (los focos de la curva), es una constante. Estas curvas vienen definidas por la expresión en coordenadas cartesianas: Í ... , , ,2 ,2 ..2 ,- ...2 .. :2 -X J_ ..4 ¡A Petals are radiant elements that are characterized by their current distribution. As described above, a petal can be, for example, a conductive thread. With a spiral shape and a spiral in its broadest sense is what is called in mathematical terms a Jordan curve, that is, any closed curve in the plane that does not cut itself. Examples of Jordan's curves arise from the so-called Cassini ovals. These are defined as the geometric place of the plane that fulfills that the product of the distances to two fixed points (the focal points of the curve), is a constant. These curves are defined by the expression in Cartesian coordinates: Í ...,,, 2, 2 ..2, - ... 2 ..: 2 - XJ _ ..4 ¡A
[ : + y ) — ¿a \x — y .! + = o donde, a = b-k  [: + y) - ¿a \ x - y.! + = or where, a = b-k
La figura 7 muestra los óvalos de Cassini para los valores más representativos de k: k = 1, y k > 1. El óvalo de Cassini generado con k = 1, es el más conocido y recibe también el nombre de curva lemniscata. Figure 7 shows the Cassini ovals for the most representative values of k: k = 1, and k> 1. The Cassini oval generated with k = 1, is the best known and is also called the lemniscate curve.
Los óvalos de Cassini son realmente parejas de curvas (cuando k>l), simétricas respecto al centro de coordenadas, por lo que son válidos para antenas margaritas de número par de pétalos, pero evidentemente, pueden usarse también como elementos aislados para el caso de antenas margaritas con número impar de pétalos. Cassini ovals are really pairs of curves (when k> l), symmetrical with respect to the center of coordinates, so they are valid for daisies antennas of even number of petals, but obviously they can also be used as isolated elements for the case of daisy antennae with odd number of petals.
La figura 8 muestra una margarita de 6 pétalos generados por óvalos de Cassini, utilizando k = 1.1. Figure 8 shows a 6 petal daisy generated by Cassini ovals, using k = 1.1.
Los óvalos pueden conectarse directamente al divisor, o a través de líneas de alimentación para unirlos eléctricamente al divisor, y alejarlos así del centro geométrico de la antena margarita, de forma similar al caso que muestra la figura 4. Expresiones analíticas parametrizables de los pétalos The ovals can be connected directly to the divider, or through power lines to connect them electrically to the divider, and thus move them away from the geometric center of the daisy antenna, similar to the case shown in Figure 4. Parameterizable analytical expressions of the petals
Con el fin de automatizar el proceso de diseño de la antena margarita, es útil disponer de expresiones analíticas que permitan determinar explícitamente la geometría de los pétalos, a partir de parámetros de propios del diseño. Además del diseño de la antena, se facilita también la utilización de medios informáticos para otros y diferentes propósitos, tales como el análisis electromagnético de la antena, la elaboración de planos de fabricación, o incluso su uso en los procesos de fabricación y montaje. In order to automate the design process of the daisy antenna, it is useful to have analytical expressions that make it possible to explicitly determine the geometry of the petals, based on parameters of the design itself. In addition to the antenna design, the use of computer means for other and different purposes, such as the electromagnetic analysis of the antenna, the elaboration of manufacturing drawings, or even its use in the manufacturing and assembly processes.
Matemáticamente es conocido que son pocas las geometrías que pueden expresarse analíticamente de forma explícita, respecto a los siguientes parámetros de diseño: Mathematically it is known that there are few geometries that can be expressed analytically explicitly, with respect to the following design parameters:
• la longitud de la curva (L) • the length of the curve (L)
• el ángulo de abertura central del pétalo (2a)  • the central opening angle of the petal (2a)
Los óvalos de Cassini no admiten expresión analítica respecto a ellos, pero no obstante, se puede definir alguna familia de curvas parametrizable analíticamente con vistas a la automatización de procesos. Una de esas familias es la dada por las siguientes expresiones: Cassini's ovals do not admit analytical expression with respect to them, but nevertheless, some family of analytically parameterizable curves can be defined with a view to process automation. One of these families is that given by the following expressions:
Figure imgf000012_0001
Figure imgf000012_0001
siendo:: maíi(¾)  being :: maíi (¾)
sienuo ) y donde t es un número perteneciente al intervalo (-1, 1)  sienuo) and where t is a number belonging to the interval (-1, 1)
Las expresiones [1] dan de forma explícita las coordenadas de los pétalos, en función de los parámetros básicos de diseño mencionados antes: The expressions [1] explicitly give the coordinates of the petals, depending on the basic design parameters mentioned above:
· la longitud del pétalo (L), que al ser los pétalos resonantes, debe ser un múltiplo de la longitud de onda a la frecuencia central de la banda de funcionamiento de la antena  · The length of the petal (L), which being the resonant petals, must be a multiple of the wavelength at the center frequency of the antenna's operating band
• el semi-ángulo (a) de abertura del pétalo, visto desde su vértice La ventaja de las expresiones [1], es que son compatibles con cualquier sistema informático de cálculo numérico, y por tanto son integrables en los proceso de análisis, diseño, dibujo o fabricación de antenas. Por otra parte, esta misma geometría admite una forma de expresión más sencilla para el caso de α = π/6 • the semi-angle (a) of opening of the petal, seen from its vertex The advantage of the expressions [1], is that they are compatible with any computer system of numerical calculation, and therefore are integrable in the process of analysis, design , drawing or manufacture of antennas. On the other hand, this same geometry admits a simpler form of expression in the case of α = π / 6
1 one
x(t, L, e) := ^L.(t2 - l)- cos(0) L-t (t2 - l)-sin(e) x (t, L, e): = ^ L. (t 2 - l) - cos (0) Lt (t 2 - l) -sin (e)
[2][2]
Y(t , L, 9) := ^L-(t2 - l)-sin(0) + Γ— -L-t-(t2 - l)-cos (Θ) donde Θ es el ángulo que forma el eje de simetría de cada pétalo con el eje de abscisas. Y (t, L, 9): = ^ L- (t 2 - l) -sin (0) + Γ— -Lt- (t 2 - l) -cos (Θ) where Θ is the angle that forms the axis of symmetry of each petal with the axis of abscissa.
La figura 9 muestra la forma de típica del pétalo para α = π/6 y θ = 0o. Figure 9 shows the typical petal shape for α = π / 6 and θ = 0 or .
Por estar esta geometría particularizada para el caso α = π/6, admite la representación clásica de la margarita de 6 pétalos que muestra la figura 10. Since this particular geometry is for the case α = π / 6, it admits the classic representation of the 6-petal daisy shown in Figure 10.
Dado que en la zona central de la antena se sitúa el circuito de distribución, es necesario desplazar los pétalos radialmente y hacia el exterior una distancia D del centro de la antena, por lo que la geometría de los pétalos viene dada por las expresiones: x(t, L, 0 , D) Since the distribution circuit is located in the central area of the antenna, it is necessary to move the petals radially and outwardly a distance D from the center of the antenna, so that the geometry of the petals is given by the expressions: x (t, L, 0, D)
Y(t , L, e , D)Y (t, L, e, D)
Figure imgf000013_0001
Figure imgf000013_0001
La figura 11 muestra la definición de los parámetros usados en esta nueva geometría del pétalo, que se encuentra desplazado del centro de la margarita una distancia D. Figure 11 shows the definition of the parameters used in this new petal geometry, which is displaced from the center of the daisy by a distance D.
Puede incluso obtenerse una curva más sencilla, basada en 2 rectas y un tramo de circunferencia, que es una aproximación a la dada por las expresiones [3]. Esta nueva geometría del pétalo se basa en el uso de la circunferencia que para por tres puntos: el extremo exterior y los puntos de máximo y mínimo de la curva dada por las expresiones [3], y trazar a continuación las tangentes a dicha circunferencia desde el vértice del pétalo, situado en el centro de coordenadas. La figura 12, muestra la geometría de esta nueva curva aproximada al pétalo de las expresiones [3], y cuyo eje de simetría es el eje de abscisas. A simpler curve can be obtained, based on 2 lines and a circumference section, which is an approximation to that given by the expressions [3]. This new petal geometry is based on the use of the circumference that stops for three points: the outer end and the maximum and minimum points of the curve given by the expressions [3], and then draw the tangents to said circumference from the apex of the petal, located in the center of coordinates. Figure 12 shows the geometry of this new curve approximated to the petal of the expressions [3], and whose axis of symmetry is the axis of abscissa.
13-L  13-L
La circunferencia tiene un radio de valor: V 15552  The circumference has a radius of value: V 15552
centro está situado en el punto de abscisa:
Figure imgf000014_0001
center is located at the abscissa point:
Figure imgf000014_0001
Las rectas tangentes pasan por el centro de coordenadas, y tienen una pendiente de:
Figure imgf000014_0002
The tangent lines pass through the center of coordinates, and have a slope of:
Figure imgf000014_0002
Como es lógico, la pendiente de las tangentes, es independiente de la longitud del pétalo (valor relacionado con su frecuencia de funcionamiento), y solo depende del ángulo de abertura central del pétalo (2a), que en este caso esta fijado en π/3. Naturally, the slope of the tangents is independent of the length of the petal (value related to its operating frequency), and only depends on the central opening angle of the petal (2a), which in this case is fixed at π / 3.
Conexiones entre capas y sentido de la corriente en los pétalos Connections between layers and sense of current in the petals
Las conexiones entre las metalizaciones de las capas superior o inferior y los pétalos, se realizan mediante vías de corto-circuito entre capas. De esta forma se ponen en contacto los extremos de los pétalos con el circuito de distribución de la señal, un extremo del pétalo se conecta a la capa superior y el otro a la inferior. Dependiendo de cual de los extremos se conecta a una capa o a otra, así será el sentido de la corriente que circula por el pétalo.  The connections between the metallizations of the upper or lower layers and the petals are made by means of short-circuit paths between layers. In this way the ends of the petals are contacted with the signal distribution circuit, one end of the petal is connected to the upper layer and the other to the lower one. Depending on which of the ends is connected to one layer or another, so will the direction of the current flowing through the petal.
Tal como se dice en la definición de la antena margarita, el sentido relativo de las corrientes que circulan por los pétalos, caracteriza el funcionamiento de la antena, y para obtener un máximo del diagrama de radiación en polarización lineal, en la dirección perpendicular al plano de la antena, basta que: As stated in the definition of the daisy antenna, the relative direction of the currents flowing through the petals characterizes the operation of the antenna, and to obtain a maximum of the radiation pattern in linear polarization, in the direction perpendicular to the plane of the antenna, it is enough that:
• la antena esté formada por un número par de pétalos  • the antenna is made up of an even number of petals
• se defina en el plano de la antena, una recta de simetría para las corrientes de los pétalos, que debe ser paralela a la dirección del campo eléctrico de la polarización lineal buscada  • a line of symmetry for the currents of the petals must be defined in the antenna plane, which must be parallel to the direction of the electric field of the linear polarization sought
• la distribución de las corrientes en los pétalos de la antena se realice de forma que todos los pétalos que se sitúan a un mismo lado de la recta de simetría, tengan el mismo sentido de circulación de la corriente, y que lógicamente, dicho sentido sea contrario al de la corriente de los que se sitúan en el otro lado de la recta de simetría. • the distribution of the currents in the antenna petals is done so that all the petals that are located on the same side of the line of symmetry, have the same direction of current flow, and logically, that direction is contrary to the current of those located on the other side of the line of symmetry.
La figura 13 muestra la vista superior de las metalizaciones de las capas superior e inferior de la antena de 6 pétalos de la figura 1. Dichas metalizaciones conforman el circuito de distribución (adaptación y divisor). La figura 14 muestra la distribución de corrientes en los pétalos de dicha antena. Figure 13 shows the top view of the metallizations of the upper and lower layers of the 6-petal antenna of Figure 1. Said metallizations make up the distribution circuit (adaptation and divider). Figure 14 shows the distribution of currents in the petals of said antenna.
La figura 15 muestra la vista superior de las metalizaciones de las capas superior e inferior de la antena de 6 pétalos de la figura 4. Dichas metalizaciones conforman el circuito de distribución (adaptación, divisor y líneas bi-filares de transmisión). La figura 16 muestra la distribución de corrientes en los pétalos de dicha antena, distribución de corrientes que es idéntica a la que muestra la figura 14. La figura 17 muestra la vista superior de las metalizaciones de las capas superior e inferior de la antena de 6 pétalos, cuyos pétalos son simples dipolos eléctricos. Comparando esta figura con la figura 15, puede verse la diferente longitud de las líneas de alimentación derivada del diferente tamaño de los pétalos. Obviamente, el ancho de línea depende del valor de la impedancia del pétalo. Figure 15 shows the top view of the metallizations of the upper and lower layers of the 6-petal antenna of Figure 4. Said metallizations make up the distribution circuit (adaptation, divider and bi-wire transmission lines). Figure 16 shows the distribution of currents in the petals of said antenna, distribution of currents that is identical to that shown in Figure 14. Figure 17 shows the top view of the metallizations of the upper and lower layers of the antenna 6 petals, whose petals are simple electric dipoles. Comparing this figure with figure 15, the different length of the feeding lines derived from the different size of the petals can be seen. Obviously, the line width depends on the value of the impedance of the petal.
La figura 18 muestra la distribución de corrientes en los dipolos o pétalos de la antena, y como puede observarse dicha distribución de corrientes es idéntica a la que muestran las figuras 14 y 16 para las otras antenas de 6 pétalos. La figura 19 muestra la vista superior de las metalizaciones de las capas superior e inferior de la antena de 2 pétalos, cuyos pétalos son dipolos eléctricos. La figura 20 muestra la distribución de corrientes en los pétalos de dicha antena. Comparando las figuras 18 y 20, puede verse que esta antena de 2 pétalos coincide con los pétalos centrales de la margarita de 6 pétalos. Figure 18 shows the distribution of currents in the dipoles or petals of the antenna, and as can be seen said distribution of currents is identical to that shown in Figures 14 and 16 for the other 6-petal antennas. Figure 19 shows the top view of the metallizations of the upper and lower layers of the 2-petal antenna, whose petals are electric dipoles. Figure 20 shows the distribution of currents in the petals of said antenna. Comparing figures 18 and 20, it can be seen that this 2-petal antenna matches the central petals of the 6-petal daisy.
Antena margarita para obtener un máximo de radiación en polarización circular, en la dirección perpendicular al plano de la antena Daisy antenna for maximum radiation in circular polarization, in the direction perpendicular to the antenna plane
La polarización circular se obtiene intercalando dos antenas margaritas iguales, giradas entre si 90°, para generar las polarizaciones lineales ortogonales, y añadiendo a una de las antenas la longitud de un cuarto de la longitud de onda guiada en las líneas bi-filares de alimentación, para introducir el desfase de 90° requerido entre polarizaciones. The circular polarization is obtained by interleaving two equal daisy antennas, rotated 90 ° to each other, to generate the orthogonal linear polarizations, and adding to one of the antennas the length of a quarter of the guided wavelength in the bi-filar power lines, to introduce the required 90 ° offset between polarizations.
Así pues, para obtener un máximo del diagrama de radiación en polarización circular, en la dirección perpendicular al plano de la antena, basta que la antena esté formada por dos antenas margaritas iguales, coplanares y con el mismo punto de alimentación, superpuestas en el mismo plano, con las siguientes particularidades: Thus, to obtain a maximum of the circular polarization radiation pattern, in the direction perpendicular to the plane of the antenna, it is sufficient that the antenna is formed by two equal, coplanar and with the same feeding point superimposed on the same flat, with the following particularities:
• las rectas de simetría que determinan la distribución de corrientes de cada antena, deben ser ortogonales para que la polarización del campo radiado por cada antena también los sea.  • the lines of symmetry that determine the distribution of currents of each antenna must be orthogonal so that the polarization of the field radiated by each antenna is also.
• la alimentación de la antena es única para las dos antenas margarita, así como la adaptación y el divisor. Si las antenas margarita tienen 2 pétalos cada una el divisor debe ser 1 :4; si las tienen 6 pétalos, el divisor debe ser 1 : 12.  • The antenna power is unique to the two daisy antennas, as well as the adaptation and the splitter. If the daisy antennas have 2 petals each the divisor must be 1: 4; if they have 6 petals, the divider should be 1: 12.
• las líneas bi-filares del circuito de distribución de la señal a los pétalos deben diferir en un cuarto de longitud de onda, para proporcionar el desfase de 90° necesario para generar la polarización circular. Eso significa que los pétalos de una de las margaritas se distribuyen en el interior de la distribución de pétalos de la otra margarita. Dado que cada una de las antenas margaritas que generan las polarizaciones lineales debe tener un número par de pétalos (2, 4, 6.. . n pétalos), las antenas margaritas que generan polarización circular deben ser de 4, 8, 12.. . 4n pétalos.  • the bi-filar lines of the signal distribution circuit to the petals must differ by a quarter of a wavelength, to provide the 90 ° offset necessary to generate the circular polarization. That means that the petals of one of the daisies are distributed inside the petal distribution of the other daisy. Since each of the daisy antennas that generate the linear polarizations must have an even number of petals (2, 4, 6 ... n petals), the daisy antennas that generate circular polarization must be 4, 8, 12 .. . 4n petals
El caso más sencillo es el de la antena de cuatro pétalos, que sería el agrupamiento de 2 margaritas de 2 pétalos cada una). La figura 21 muestra el circuito de distribución, separado en las capas 2 y 3 según el despiece mostrado en la figura 3. Puede verse en dicha figura, la diferente longitud de las líneas bi-filares de alimentación a cada una de las margaritas de 2 pétalos que componen esta antena. La figura 22 muestra la distribución de pétalos en la capa 2 de la margarita con 4 pétalos (dipolos eléctricos), que genera polarización circular. En dicha figura, junto con la distribución de corrientes, pueden verse también las rectas de simetría correspondientes a cada pareja de pétalos, o lo que es lo mismo, a cada polarización: 5A para los pétalos 2A, y 5B para los pétalos 2B. La figura 23 muestra la vista en conjunto de las 3 capas superpuestas que dan forma a la antena margarita de 4 pétalos, cuyos pétalos son dipolos eléctricos. La figura 24 muestra el circuito de distribución en las capas 2 y 3 de una margarita de 12 pétalos que genera polarización circular. Sería por tanto una antena que es la suma de dos antenas margaritas de 6 pétalos, con los pétalos de ambas imbricados. En esta figura pueden apreciarse que la mitad (6) de las líneas de alimentación difieren en longitud de las de la otra mitad, en un cuarto de longitud de onda guiada, y que las líneas de una de las antenas margaritas de 6 pétalos están intercaladas entre las de la otra. Esto hace que una de ellas quede contenida dentro de la otra, con el mismo punto o cable de alimentación, e incluso usando el mismo divisor, y así ambas antenas tienen el mismo centro de fase del campo radiado. La figura 25 muestra la distribución de pétalos en la capa intermedia, mostrando también la distribución de corrientes. Esta figura pone en evidencia cual es el conjunto de 6 pétalos que genera cada una de las dos polarizaciones lineales ortogonales necesarias para la polarización circular. La figura 26 la vista en conjunto de las 3 capas de la antena margarita de 12 pétalos que genera polarización circular. The simplest case is that of the four-petal antenna, which would be the grouping of 2 daisies with 2 petals each). Figure 21 shows the distribution circuit, separated in layers 2 and 3 according to the exploded view shown in Figure 3. It can be seen in said figure, the different length of the bi-wire feed lines to each of the daisies of 2 petals that make up this antenna. Figure 22 shows the distribution of petals in layer 2 of the daisy with 4 petals (electric dipoles), which generates circular polarization. In this figure, together with the distribution of currents, the lines of symmetry corresponding to each pair of petals, or what is the same, to each polarization can be seen: 5A for petals 2A, and 5B for petals 2B. Figure 23 shows the overall view of the 3 superimposed layers that shape the 4-petal daisy antenna, whose petals are electric dipoles. Figure 24 shows the distribution circuit in layers 2 and 3 of a 12-petal daisy that generates circular polarization. It would therefore be an antenna that is the sum of two 6-petal daisy antennas, with the petals of both overlapping. In this figure it can be seen that half (6) of the power lines differ in length from those of the other half, in a quarter of guided wavelength, and that the lines of one of the 6-petal daisy antennas are interspersed between those of the other. This causes one of them to be contained within the other, with the same point or power cable, and even using the same splitter, and thus both antennas have the same phase center of the radiated field. Figure 25 shows the distribution of petals in the intermediate layer, also showing the distribution of currents. This figure shows what is the set of 6 petals generated by each of the two linear orthogonal polarizations necessary for circular polarization. Figure 26 shows the overall view of the 3 layers of the 12-petal daisy antenna that generates circular polarization.
Tal como se ha dicho, para tener polarización circular en la dirección perpendicular al plano de la antena, la antena margarita es a su vez la suma de 2 sub-antenas margaritas, por lo que debe tener 4n pétalos. Al ver los casos de 4 y 12 pétalos, podría pensarse que es sumar la misma antena (de 2 ó 6 pétalos), pero girada 90°. Eso es válido en los casos que la antena no tiene pétalo a 90°, aunque más correctamente seria decir que es una de las posibilidades, ya que en el caso de 12 pétalos (2antenas de 6), la polarización circular podría obtenerse girando 30°, 90° ó 150°, y desfasando 30°, 90° ó 150° respectivamente, obteniendo obviamente, polarización cruzada en otras direcciones con diferente nivel de señal. As it has been said, to have circular polarization in the direction perpendicular to the plane of the antenna, the daisy antenna is in turn the sum of 2 sub-antenna daisies, so it must have 4n petals. When looking at the cases of 4 and 12 petals, one might think that it is to add the same antenna (2 or 6 petals), but rotated 90 °. This is valid in cases where the antenna has no petal at 90 °, although more correctly it would be to say that it is one of the possibilities, since in the case of 12 petals (2 antennas of 6), the circular polarization could be obtained by rotating 30 ° , 90 ° or 150 °, and offset 30 °, 90 ° or 150 ° respectively, obviously obtaining cross polarization in other directions with different signal level.
Por esa razón, es posible obtener polarización circular con una antena de 8 pétalos (sumando 2 antenas de 4 pétalos), aunque no pueda resultar de un giro de 90°, sino de 45° ó 135°, por lo que el circuito de distribución debe introducir en este caso un desfase de 45° ó 135° respectivamente. For that reason, it is possible to obtain circular polarization with an 8-petal antenna (adding 2 antennas with 4 petals), although it may not result from a 90 ° rotation, but 45 ° or 135 °, so the distribution circuit must in this case introduce a 45 ° or 135 ° offset respectively.
Ventajas de la antena margarita Advantages of the margarita antenna
La ventaja de este nuevo concepto de antena reside en su capacidad de adaptase a diferentes tipos de aplicación, siendo especialmente útil en: The advantage of this new antenna concept lies in its ability to adapt to different types of applications, being especially useful in:
• los sistemas de recepción de señales en banda ancha y media ganancia, como es el caso de las señales de difusión terrestre de televisión, analógica o digital, en ámbito urbano, en los que se conoce la posición del emisor pero no se localiza visualmente. Su sencillez de diseño y configuración proporciona un bajo coste de fabricación, así como bajo impacto visual y facilidad de apuntamiento al emisor, • the reception systems of broadband and half-gain signals, as is the case of terrestrial television, analog or digital broadcast signals, in urban areas, in which the position of the transmitter is known but not visually located. Its simplicity of design and configuration provides a low manufacturing cost, as well as low visual impact and ease of pointing to the emitter,
• los sistemas pasivos de observación en los que mantener las características del diagrama de radiación en la banda de funcionamiento, como la forma del diagrama, la zona de cobertura y la polarización de la señal, son los requisitos más importantes y restrictivos del sistema. • passive observation systems in which maintaining the characteristics of the radiation pattern in the operating band, such as the shape of the diagram, the coverage area and the polarization of the signal, are the most important and restrictive requirements of the system.
• los sistemas de comunicaciones entre móviles vía satélite, en los que la señal está polarizada circularmente, evitando así el desconocimiento de la posición o actitud del satélite respecto al móvil, y tener que girar la antena del móvil para hacerla coincidir con la del satélite, como sería el caso de que la comunicación se realizase utilizando una señal linealmente polarizada.  • satellite mobile communication systems, in which the signal is circularly polarized, thus avoiding ignorance of the position or attitude of the satellite with respect to the mobile, and having to turn the mobile antenna to match it with the satellite, as it would be the case that the communication was carried out using a linearly polarized signal.
Aumento de directividad incorporando un plano de masa Increased directivity incorporating a mass plane
La directividad de la antena margarita que genera un máximo de radiación en la dirección perpendicular al plano de la antena, tanto en polarización lineal como en circular, puede aumentarse en un máximo de 3 dB, colocando un plano masa paralelo al plano de la antena, a una distancia igual a un cuarto de la longitud de onda de la frecuencia de funcionamiento de la antena, consiguiendo así sumar en fase, en la dirección deseada, la señal reflejada en el plano de masa. Aplicación de este concepto a otros elementos radiantes distintos de hilos  The directivity of the daisy antenna that generates a maximum of radiation in the direction perpendicular to the plane of the antenna, both in linear and circular polarization, can be increased by a maximum of 3 dB, by placing a mass plane parallel to the plane of the antenna, at a distance equal to a quarter of the wavelength of the operating frequency of the antenna, thus being able to add in phase, in the desired direction, the signal reflected in the ground plane. Application of this concept to radiating elements other than wires
Dado que la característica esencial de la antena margarita está en la distribución del sentido de circulación de la corriente por los pétalos, y ésta solo tiene dos posibilidades: ir o venir, lo que significa que en los pétalos se produce, además de un cambio de posición del pétalo respecto al conjunto de la antena margarita, un cambio binario de fase de la señal radiada por cada pétalo, es decir: de 0o o de 180°, en función de cómo sea el sentido de la corriente que circula por él. Since the essential characteristic of the daisy antenna is in the distribution of the direction of flow of the current through the petals, and this only has two possibilities: to come or go, which means that in the petals it occurs, in addition to a change of petal position relative to the daisy antenna assembly, a binary phase change of the radiated signal for each petal, that is: 0 or 180 °, depending on the direction of the current flowing through it.
Esto permite que el concepto definido para hilos radiantes, pueda aplicarse también a otros tipos de elementos radiantes que admitan por construcción un cambio binario de la fase radiada de 0o a 180°. Sería por ejemplo el caso de los radiadores microstrip o de las guías de onda abiertas o terminadas en bocinas, en las que cambiando únicamente la posición de la alimentación se consigue ese cambio de 0o a 180° en la fase de la señal radiada por cada elemento, y manteniendo la dirección de la polarización lineal que generan. This allows the concept defined for radiating wires, can also be applied to other types of radiating elements that admit by construction a binary change of the radiated phase from 0 or 180 °. This would be, for example, the case of microstrip radiators or waveguides open or terminated in horns, where changing only the position of the power supply achieves this change from 0 or 180 ° in the phase of the signal radiated by each element, and maintaining the direction of the linear polarization they generate.
La antena tendría una configuración que aumenta en complejidad en función del volumen del elemento radiante considerado, pero en esencia tendría un funcionamiento electromagnético similar al de la antena margarita definida previamente y basada en el uso de hilos. La figura 27 muestra el boceto de una antena margarita de 6 pétalos con un máximo de radiación en la dirección perpendicular al plano de la antena (prestaciones similares a las descritas en el ejemplo 1), en donde los pétalos son pequeñas bocinas en guía rectangular. The antenna would have a configuration that increases in complexity depending on the volume of the radiating element considered, but in essence it would have an electromagnetic operation similar to that of the previously defined daisy antenna and based on the use of wires. Figure 27 shows the sketch of a 6-petal daisy antenna with a maximum of radiation in the direction perpendicular to the plane of the antenna (performance similar to those described in example 1), where the petals are small speakers in a rectangular guide.
EJEMPLOS DE APLICACIÓN DE LA INVENCIÓN. EXAMPLES OF APPLICATION OF THE INVENTION.
EJEMPLO 1 - Antena margarita para obtener un máximo de radiación en polarización lineal, en la dirección perpendicular al plano de la antena EXAMPLE 1 - Margarita antenna for maximum radiation in linear polarization, in the direction perpendicular to the antenna plane
La figura 28 muestra la geometría de las capas superior e inferior que conforman el circuito de distribución e indica la distribución de corrientes, de una antena margarita de 4 pétalos que genera un máximo en polarización lineal en la dirección perpendicular al plano de la antena. La base del circuito de distribución es un cuadrado metálico de 30 mm de lado. La distancia entre capas es de 5 mm, por lo que separación entre las capas superior e inferior es de 10 mm. Figure 28 shows the geometry of the upper and lower layers that make up the distribution circuit and indicates the distribution of currents, of a 4-petal daisy antenna that generates a maximum in linear polarization in the direction perpendicular to the plane of the antenna. The base of the distribution circuit is a metal square 30 mm side. The distance between layers is 5 mm, so the separation between the upper and lower layers is 10 mm.
La figura 29 muestra la geometría de la capa central que contiene los 4 pétalos que son generados por métodos de fotograbado sobre un sustrato dieléctrico de baja permitividad efectiva. El ancho de la cinta metálica es de 10 mm, y la longitud del pétalo es de 432 mm. Las figuras 30 y 31 muestran las dos componentes lineales de campo eléctrico ΕΘ y ΕΦ, así como el valor de ganancia, en los planos E y H respectivamente, del diagrama de radiación de la antena de cuatro pétalos de las figuras 28 y 29, a la frecuencia de 800 MHz. Figure 29 shows the geometry of the central layer containing the 4 petals that are generated by photogravure methods on a dielectric substrate of low effective permittivity. The width of the metal tape is 10 mm, and the length of the petal is 432 mm. Figures 30 and 31 show the two linear electric field components ΕΘ and ΕΦ, as well as the gain value, in planes E and H respectively, of the radiation pattern of the four-petal antenna of Figures 28 and 29, a the frequency of 800 MHz.
EJEMPLO 2 - Antena margarita para obtener un máximo de radiación en polarización circular, en la dirección perpendicular al plano de la antena EXAMPLE 2 - Margarita antenna to obtain maximum radiation in circular polarization, in the direction perpendicular to the antenna plane
La figura 21 muestra la geometría de las capas superior e inferior que conforman el circuito de distribución e indica la distribución de corrientes, de una antena margarita de 4 pétalos, que genera un máximo en polarización circular en la dirección perpendicular al plano de la antena. La base del circuito de distribución es un cuadrado metálico de 40 mm de lado, y las líneas de alimentación tienen un ancho de 20 mm. La diferencia de longitud entre las líneas que alimentan los dipolos es de 50 mm. La distancia entre capas es de 5 mm, por lo que separación entre las capas superior e inferior es de 10 mm. Figure 21 shows the geometry of the upper and lower layers that make up the distribution circuit and indicates the distribution of currents, of a 4-petal daisy antenna, which generates a maximum in circular polarization in the direction perpendicular to the plane of the antenna. The base of the distribution circuit is a metal square 40 mm side, and the power lines have a width of 20 mm. The difference in length between the lines that feed the dipoles is 50 mm. The distance between layers is 5 mm, so the separation between the upper and lower layers is 10 mm.
La figura 22 muestra la geometría de la capa central que contiene los 4 pétalos, que en este caso son dipolos eléctricos de 220 mm de longitud. El ancho de la cinta metálica es de 10 mm, y la longitud del pétalo es de 432 mm. Todas las capas son generadas por métodos de fotograbado sobre sustrato dieléctrico de baja permitividad efectiva. La figura 23 muestra las 3 capas superpuestas para dar una idea del conjunto. Figure 22 shows the geometry of the central layer containing the 4 petals, which in this case are 220 mm long electric dipoles. The width of the metal tape is 10 mm, and the length of the petal is 432 mm. All layers are generated by photogravure methods on dielectric substrate of low effective permittivity. Figure 23 shows the 3 layers superimposed to give an idea of the set.
Las figuras 32, 33, 34 y 35 muestran las dos componentes ortogonales en polarización circular a derechas e izquierdas del campo eléctrico RHCP y LHCP, así como el valor de ganancia, en los cortes meridianos para Φ = 0o, 30°, 60°, y 90° respectivamente, del diagrama de radiación de la antena de cuatro pétalos de la figura 23 a la frecuencia de 730 MHz. La figura 36 muestra la razón axial en dB en función de la frecuencia expresada en GHz. DESCRIPCIÓN DE INDICADORES EN LAS FIGURAS Figures 32, 33, 34 and 35 show the two orthogonal components in circular polarization to the right and left of the RHCP and LHCP electric field, as well as the gain value, in the meridian cuts for Φ = 0 or , 30 °, 60 ° , and 90 ° respectively, of the radiation pattern of the four-petal antenna of Figure 23 at the frequency of 730 MHz. Figure 36 shows the axial ratio in dB as a function of the frequency expressed in GHz. DESCRIPTION OF INDICATORS IN FIGURES
(1) - alimentación de la antena  (1) - antenna power
(2) - pétalos de la antena  (2) - antenna petals
(2 A) - pétalos que generan la polarización lineal horizontal  (2 A) - petals that generate horizontal linear polarization
(2 B) - pétalos que generan la polarización lineal vertical (3) - circuito de distribución (2 B) - petals that generate vertical linear polarization (3) - distribution circuit
(4) - líneas de alimentación del divisor a los pétalos  (4) - petal divider feed lines
(5) - vías de cortocircuito entre capas  (5) - short circuit paths between layers
(6) - recta de simetría de la distribución de corrientes en los pétalos  (6) - line of symmetry of the distribution of currents in the petals
(6 A) - recta de simetría de los pétalos que generan la polarización lineal horizontal (6 B) - recta de simetría de los pétalos que generan la polarización lineal vertical (6 A) - line of symmetry of the petals that generate the horizontal linear polarization (6 B) - line of symmetry of the petals that generate the vertical linear polarization
(7) - manantiales de líneas de corriente  (7) - springs of power lines
(8) - sumideros de líneas de corriente DESCRIPCIÓN DE LAS FIGURAS  (8) - sinks of power lines DESCRIPTION OF THE FIGURES
Figura 1 muestra una antena margarita de 6 pétalos.  Figure 1 shows a 6 petal daisy antenna.
Figura 2 muestra antenas margarita de 4 y 2 pétalos Figure 2 shows 4 and 2 petal daisy antennas
Figura 3 muestra un corte transversal de una antena margarita Figure 3 shows a cross section of a daisy antenna
Figura 4 muestra una antena margarita de 6 pétalos con líneas de alimentación en el circuito de distribución  Figure 4 shows a 6-petal daisy antenna with power lines in the distribution circuit
Figura 5 muestra antenas margarita de 2 pétalos, con distinta geometría de pétalos: pétalos poligonales, folded dipolos y dipolos eléctricos  Figure 5 shows 2-petal daisy antennas, with different petal geometry: polygonal petals, folded dipoles and electric dipoles
Figura 6 muestra una antena margarita de 6 dipolos eléctricos  Figure 6 shows a 6-dipole daisy antenna
Figura 7 muestra óvalos de Cassini para k = 1, 1.1 y 1.4  Figure 7 shows Cassini ovals for k = 1, 1.1 and 1.4
Figura 8 muestra una agrupación de 6 pétalos originado con 3 parejas de óvalos de Cassini con k = 1.1, en Φ = 0o, 60° y 120° Figure 8 shows a cluster of 6 petals originated with 3 pairs of Cassini ovals with k = 1.1, at Φ = 0 or , 60 ° and 120 °
Figura 9 muestra una curva geométrica derivada de las expresiones [2]  Figure 9 shows a geometric curve derived from the expressions [2]
Figura 10 muestra una composición geométrica de la una margarita de 6 pétalos a partir de las expresiones [2]  Figure 10 shows a geometric composition of a 6-petal daisy from the expressions [2]
Figura 11 muestra una curva geométrica derivada de las expresiones [3]  Figure 11 shows a geometric curve derived from the expressions [3]
Figura 12 muestra una aproximación geométrica a la curva de la ñgura 7, por una circunferencia y dos rectas definidas en [4]  Figure 12 shows a geometric approximation to the curve of Figure 7, by a circle and two lines defined in [4]
Figura 13 muestra metalizaciones de las capas superior e inferior de la antena margarita de 6 pétalos de la figura 1.  Figure 13 shows metallizations of the upper and lower layers of the 6-petal daisy antenna of Figure 1.
Figura 14 la metalización de la capa central de pétalos, indicando la distribución de líneas de corriente, de la antena margarita mostrada en la figura 1  Figure 14 the metallization of the central layer of petals, indicating the distribution of current lines, of the daisy antenna shown in Figure 1
Figura 15 muestra metalizaciones de las capas superior e inferior de la antena margarita de 6 pétalos de la figura 4.  Figure 15 shows metallizations of the upper and lower layers of the 6-petal daisy antenna of Figure 4.
Figura 16 muestra la metalización de la capa central de pétalos, indicando la distribución de líneas de corriente, de la antena margarita mostrada en la figura 4. Figura 17 muestra metalizaciones de las capas superior e inferior de la antena margarita de 6 pétalos de la figura 6. Figure 16 shows the metallization of the central layer of petals, indicating the distribution of current lines, of the daisy antenna shown in Figure 4. Figure 17 shows metallizations of the upper and lower layers of the 6-petal daisy antenna of Figure 6.
Figura 18 muestra la metalización de la capa central de pétalos, indicando la distribución de líneas de corriente, de la antena margarita mostrada en la figura 6.  Figure 18 shows the metallization of the central layer of petals, indicating the distribution of current lines, of the daisy antenna shown in Figure 6.
Figura 19 muestra metalizaciones de las capas superior e inferior de la antena margarita de 2 pétalos de la figura 5 (dipolos eléctricos). Figure 19 shows metallizations of the upper and lower layers of the 2-petal daisy antenna of Figure 5 (electric dipoles).
Figura 20 muestra la metalización de la capa central de pétalos, indicando la distribución de líneas de corriente, de la antena margarita mostrada en la figura 5 (dipolos eléctricos).  Figure 20 shows the metallization of the central layer of petals, indicating the distribution of current lines, of the daisy antenna shown in Figure 5 (electric dipoles).
Figura 21 muestra metalizaciones de las capas superior e inferior de la antena margarita de 4 pétalos que genera polarización circular.  Figure 21 shows metallizations of the upper and lower layers of the 4-petal daisy antenna that generates circular polarization.
Figura 22 muestra la metalización de la capa central de pétalos, indicando la distribución de líneas de corriente, de la antena margarita de 4 pétalos que genera polarización circular.  Figure 22 shows the metallization of the central petal layer, indicating the distribution of current lines, of the 4-petal daisy antenna that generates circular polarization.
Figura 23 muestra una antena margarita de 4 pétalos que genera polarización circular.  Figure 23 shows a 4-petal daisy antenna that generates circular polarization.
Figura 24 muestra metalizaciones de las capas superior e inferior de la antena margarita de 12 pétalos que genera polarización circular.  Figure 24 shows metallizations of the upper and lower layers of the 12-petal daisy antenna that generates circular polarization.
Figura 25 muestra una metalización de la capa central de pétalos, indicando la distribución de líneas de corriente, de la antena margarita de 12 pétalos que genera polarización circular.  Figure 25 shows a metallization of the central layer of petals, indicating the distribution of current lines, of the 12-petal daisy antenna that generates circular polarization.
Figura 26 muestra una antena margarita de 12 pétalos que genera polarización circular.  Figure 26 shows a 12-petal daisy antenna that generates circular polarization.
Figura 27 muestra una antena margarita de 6 pétalos con un máximo de radiación en la dirección perpendicular al plano de la antena, y donde los pétalos son bocinas en guía rectangular.  Figure 27 shows a 6-petal daisy antenna with a maximum of radiation in the direction perpendicular to the plane of the antenna, and where the petals are horns in a rectangular guide.
Figura 28 muestra metalizaciones de las capas superior e inferior de la antena margarita de 4 pétalos del ejemplo 1, para polarización lineal en la dirección perpendicular al plano de la antena.  Figure 28 shows metallizations of the upper and lower layers of the 4-petal daisy antenna of Example 1, for linear polarization in the direction perpendicular to the antenna plane.
Figura 29 metalización de la capa central de pétalos, indicando la distribución de líneas de corriente, de la antena margarita de 4 pétalos del ejemplo 1, para polarización lineal en la dirección perpendicular al plano de la antena. Figure 29 metallization of the central layer of petals, indicating the distribution of current lines, of the 4-petal daisy antenna of Example 1, for linear polarization in the direction perpendicular to the plane of the antenna.
Figura 30 muestra un corte plano E del diagrama de radiación, a la frecuencia de 800 MHz, de la antena de 4 pétalos de las figuras 28 y 29. Los valores de ganancia están expresados en dBi (curva de rombos), y en dB los de las dos componentes del campo eléctrico radiado: ΕΘ (curva de triángulos) y ΕΦ (curva de cuadrados).  Figure 30 shows a flat section E of the radiation diagram, at the frequency of 800 MHz, of the 4-petal antenna of Figures 28 and 29. The gain values are expressed in dBi (diamond curve), and dB the of the two components of the radiated electric field: ΕΘ (triangle curve) and ΕΦ (square curve).
Figura 31 muestra un corte plano H del diagrama de radiación, a la frecuencia de 800 MHz, de la antena de 4 pétalos de las figuras 28 y 29. Los valores de ganancia están expresados en dBi (curva de rombos), y en dB los de las dos componentes del campo eléctrico radiado: ΕΘ (curva de triángulos) y ΕΦ (curva de cuadrados). Figure 31 shows a flat section H of the radiation diagram, at the frequency of 800 MHz, of the 4-petal antenna of Figures 28 and 29. The gain values are expressed in dBi (diamond curve), and dB the of the two components of the radiated electric field: ΕΘ (triangle curve) and ΕΦ (square curve).
Figura 32 muestra un corte meridiano del diagrama de radiación en Φ = 0o, de la antena margarita de 4 pétalos de las figuras 21, 22 y 23. Los valores de ganancia están expresados en dBi (curva de rombos), y en dB los de las dos componentes ortogonales en polarización circular a derechas e izquierdas del campo eléctrico RHCP (curva de cuadrados) y LHCP (curva de triángulos). Figura 33 muestra un corte meridiano del diagrama de radiación en Φ = 30°, de la antena margarita de 4 pétalos de las figuras 21, 22 y 23. Los valores de ganancia están expresados en dBi (curva de rombos), y en dB los de las dos componentes ortogonales en polarización circular a derechas e izquierdas del campo eléctrico RHCP (curva de cuadrados) y LHCP (curva de triángulos). Figure 32 shows a meridian cut of the radiation pattern at Φ = 0 or , of the 4-petal daisy antenna of Figures 21, 22 and 23. The gain values are expressed in dBi (diamond curve), and in dB the of the two orthogonal components in circular polarization to the right and left of the electric field RHCP (square curve) and LHCP (triangle curve). Figure 33 shows a meridian cut of the radiation pattern at Φ = 30 °, of the 4-petal daisy antenna of Figures 21, 22 and 23. The gain values are expressed in dBi (diamond curve), and in dB the of the two orthogonal components in circular polarization to the right and left of the electric field RHCP (square curve) and LHCP (triangle curve).
Figura 34 un corte meridiano del diagrama de radiación en Φ = 60°, de la antena margarita de 4 pétalos de las figuras 21, 22 y 23. Los valores de ganancia están expresados en dBi (curva de rombos), y en dB los de las dos componentes ortogonales en polarización circular a derechas e izquierdas del campo eléctrico RHCP (curva de cuadrados) y LHCP (curva de triángulos). Figure 34 a meridian cut of the radiation pattern at Φ = 60 °, of the 4-petal daisy antenna of Figures 21, 22 and 23. The gain values are expressed in dBi (diamond curve), and in dB those of the two orthogonal components in circular polarization to the right and left of the electric field RHCP (square curve) and LHCP (triangle curve).
Figura 35 un corte meridiano del diagrama de radiación en Φ = 90°, de la antena margarita de 4 pétalos de las figuras 21, 22 y 23. Los valores de ganancia están expresados en dBi (curva de rombos), y en dB los de las dos componentes ortogonales en polarización circular a derechas e izquierdas del campo eléctrico RHCP (curva de cuadrados) y LHCP (curva de triángulos). Figure 35 a meridian cut of the radiation pattern at Φ = 90 °, of the 4-petal daisy antenna of Figures 21, 22 and 23. The gain values are expressed in dBi (diamond curve), and in dB those of the two orthogonal components in circular polarization to the right and left of the electric field RHCP (square curve) and LHCP (triangle curve).
Figura 36 muestra una representación gráfica de la razón axial en dB, respecto a la frecuencia expresada en GHz, de la antena margarita de 4 pétalos de las figuras 21, 22 y 23. Figure 36 shows a graphical representation of the axial ratio in dB, with respect to the frequency expressed in GHz, of the 4-petal daisy antenna of Figures 21, 22 and 23.

Claims

REIVINDICACIONES
1. Antena margarita para emisión y/o recepción de ondas electromagnéticas linealmente polarizadas, caracterizada por ser el agrupamiento circular de un número par de hilos radiantes, cuyo conjunto adopta una forma parecida a la distribución de pétalos en una flor margarita, y en la que los hilos radiantes o pétalos trabajan en resonancia, tienen la misma estructura, están contenidos en mismo plano llamado plano de la antena, y la corriente que circula por los pétalos se dispone de forma simétrica respecto a un diámetro predefinido del agrupamiento circular, que coincide con la dirección de polarización lineal del campo eléctrico radiado. Esta distribución de las corrientes determina y caracteriza el funcionamiento de la antena margarita. 1. Margarita antenna for emission and / or reception of linearly polarized electromagnetic waves, characterized by being the circular grouping of an even number of radiating wires, whose set adopts a similar shape to the distribution of petals in a daisy flower, and in which The radiating wires or petals work in resonance, have the same structure, are contained in the same plane called the antenna plane, and the current flowing through the petals is arranged symmetrically with respect to a predefined diameter of the circular grouping, which coincides with the linear polarization direction of the radiated electric field. This distribution of the currents determines and characterizes the operation of the daisy antenna.
Antena margarita para emisión y/o recepción de ondas electromagnéticas linealmente polarizadas, según la reivindicación 1, caracterizada porque se compone de los siguientes elementos, distribuidos en 3 capas (ver figura 3): una línea de alimentación (1) situada en el centro y conectada a las capas superior e inferior de la antena, los hilos o elementos radiantes también llamados pétalos (2) situados en la capa central de la antena, y el circuito de distribución (3) en las capas superior e inferior, y que a su vez está formado por la adaptación de la antena o balun, el divisor para distribuir la señal entre los pétalos. Margarita antenna for emission and / or reception of linearly polarized electromagnetic waves, according to claim 1, characterized in that it is composed of the following elements, distributed in 3 layers (see figure 3): a power line (1) located in the center and connected to the upper and lower layers of the antenna, the radiating wires or elements also called petals (2) located in the central layer of the antenna, and the distribution circuit (3) in the upper and lower layers, and which at their Once it is formed by the adaptation of the antenna or balun, the splitter to distribute the signal between the petals.
Antena margarita para emisión y/o recepción de ondas electromagnéticas linealmente polarizadas, según las reivindicaciones 1 y 2, caracterizada por la presencia de líneas bi-filares para llevar la señal desde el divisor a los pétalos, o viceversa en el caso de recepción, presencia que es necesaria cuando por motivo del tamaño de los pétalos o por requisitos del diseño, los pétalos se sitúan lejos del divisor. Estas líneas bi-filares son iguales en número al de pétalos, y deben ser todas exactamente iguales para que no introduzcan diferencia alguna en amplitud o fase en las señales que transmiten. Margarita antenna for emission and / or reception of linearly polarized electromagnetic waves, according to claims 1 and 2, characterized by the presence of bi-filar lines to carry the signal from the divider to the petals, or vice versa in the case of reception, presence which is necessary when, due to the size of the petals or due to design requirements, the petals are located far from the divider. These bi-filar lines are equal in number to the petals, and must all be exactly the same so that they do not introduce any difference in amplitude or phase in the signals they transmit.
Antena margarita para emisión y/o recepción de ondas electromagnéticas linealmente polarizadas, según las reivindicaciones 1, 2 y 3, caracterizada por emitir o captar señales en la dirección perpendicular al plano de la antena. Margarita antenna for emission and / or reception of linearly polarized electromagnetic waves, according to claims 1, 2 and 3, characterized by emitting or capturing signals in the direction perpendicular to the antenna plane.
5. Antena margarita para emisión y/o recepción de ondas electromagnéticas linealmente polarizadas, según las reivindicaciones 1, 2, 3 y 4, caracterizada por presentar en el diagrama de radiación un máximo de potencia en la dirección perpendicular al plano de la antena. Antena margarita para emisión y/o recepción de ondas electromagnéticas linealmente polarizadas, según las reivindicaciones 1, 2, 3, 4, y 5, caracterizada porque puede usarse para generar polarización circular intercalando dos antenas margarita en un mismo plano, cuyos pétalos coinciden en forma y número, giradas entre si, con el mismo centro, y compartiendo el mismo circuito de distribución, y con la única diferencia entre ambas antenas margarita de que las líneas bi-ñlares mencionadas en la reivindicación 3, tienen diferente longitud en cada antena con el objeto de proporcionar la diferencia de fase necesaria para compensar el giro entre antenas, y generar así la polarización circular buscada. 5. Margarita antenna for emission and / or reception of linearly polarized electromagnetic waves, according to claims 1, 2, 3 and 4, characterized in that a maximum power in the direction perpendicular to the plane of the antenna is presented in the radiation diagram. Margarita antenna for emission and / or reception of linearly polarized electromagnetic waves, according to claims 1, 2, 3, 4, and 5, characterized in that it can be used to generate circular polarization by inserting two daisy antennas in the same plane, whose petals coincide in shape and number, rotated with each other, with the same center, and sharing the same distribution circuit, and with the only difference between both daisy antennas that the bi-signal lines mentioned in claim 3, have different lengths in each antenna with the in order to provide the necessary phase difference to compensate for the rotation between antennas, and thus generate the desired circular polarization.
Antena margarita para emisión y/o recepción de ondas electromagnéticas lineal o circularmente polarizadas según las reivindicaciones 1, 2, 3, 4, 5 y 6, caracterizada por emitir o captar radiación electromagnética en el rango de las microondas y la banda milimétrica del espectro electromagnético. Antena margarita para emisión y/o recepción de ondas electromagnéticas lineal o circularmente polarizadas según las reivindicaciones 1, 2, 3, 4, 5, 6 y 7, caracterizada porque con el ñn de realizar el diseño de los pétalos se dispone de expresiones matemáticas analíticas de su geometría, que permiten determinarlos explícitamente a partir de los parámetros de diseño: su longitud perimetral y su ángulo de abertura teniendo como vértice el centro de la antena. Se facilita así la utilización de medios informáticos para otros y diferentes propósitos, tales como el análisis del comportamiento electromagnético de la antena, la elaboración de planos de fabricación, o su uso en procesos de fabricación y montaje. Margarita antenna for emission and / or reception of linear or circularly polarized electromagnetic waves according to claims 1, 2, 3, 4, 5 and 6, characterized by emitting or capturing electromagnetic radiation in the microwave range and the millimeter band of the electromagnetic spectrum . Margarita antenna for emission and / or reception of linear or circularly polarized electromagnetic waves according to claims 1, 2, 3, 4, 5, 6 and 7, characterized in that the analytical mathematical expressions are available in order to carry out the design of the petals of their geometry, which allow them to be explicitly determined from the design parameters: their perimeter length and their opening angle having the center of the antenna as a vertex. This facilitates the use of computer means for other and different purposes, such as the analysis of the electromagnetic behavior of the antenna, the preparation of manufacturing drawings, or their use in manufacturing and assembly processes.
Antena margarita para emisión y/o recepción de ondas electromagnéticas lineal o circularmente polarizadas según las reivindicaciones 1, 2, 3, 4, 5, 6, 7 y 8, caracterizada porque los pétalos se diseñan utilizando las expresiones: Margarita antenna for emission and / or reception of linear or circularly polarized electromagnetic waves according to claims 1, 2, 3, 4, 5, 6, 7 and 8, characterized in that the petals are designed using the expressions:
X(t, m, L) :=— -(t2 - l)- t2 (l Om - 5-Jm2 + l) + 2-m - 3· + 1 X (t, m, L): = - - (t 2 - l) - t 2 (l Om - 5-Jm 2 + l) + 2-m - 3 · + 1
16  16
Y(t, m, L) :=Y (t, m, L): =
Figure imgf000025_0001
Figure imgf000025_0001
siendo: L la longitud del perímetro del pétalo  being: L the perimeter length of the petal
α el doble del ángulo de abertura del pétalo  α twice the opening angle of the petal
m la tangente de α  m the tangent of α
t un número perteneciente al intervalo (-1, 1) t a number belonging to the interval (-1, 1)
10. Antena margarita para emisión y/o recepción de ondas electromagnéticas lineal o circularmente polarizadas según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8 y 9, caracterizada porque los pétalos se diseñan utilizando las expresiones para el caso en que el ángulo de abertura del pétalo es π/3: 10. Margarita antenna for emission and / or reception of linear or circularly polarized electromagnetic waves according to claims 1, 2, 3, 4, 5, 6, 7, 8 and 9, characterized in that the petals are designed using the expressions for the case in which the opening angle of the petal is π / 3:
x(t, L, 0 , D) := L t (t2 - l) sin(e) Y(t, L, 9 , D) := -L-t-(t2 - l)-cos(e)
Figure imgf000026_0001
x (t, L, 0, D): = L t (t 2 - l) without (e) Y (t, L, 9, D): = -Lt- (t 2 - l) -cos (e)
Figure imgf000026_0001
siendo:  being:
L la longitud del perímetro del pétalo  L the length of the perimeter of the petal
D la distancia del vértice del pétalo al eje de coordenadas t un número perteneciente al intervalo (-1, 1)  D the distance from the apex of the petal to the coordinate axis t a number belonging to the interval (-1, 1)
Θ el ángulo que forma el eje de simetría de cada pétalo con el eje de abscisas.  Θ the angle that forms the axis of symmetry of each petal with the axis of abscissa.
11. Antena margarita para emisión y/o recepción de ondas electromagnéticas lineal o circularmente polarizadas según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9 y 10, caracterizada porque los pétalos se diseñan utilizando una circunferencia y las dos rectas tangentes trazadas desde el vértice del pétalo, siendo: 11. Margarita antenna for emission and / or reception of linear or circularly polarized electromagnetic waves according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, characterized in that the petals are designed using a circumference and the two tangent lines drawn from the apex of the petal, being:
13- L  13- L
el radio de la circunferencia de valor: V 15552 el centro está situado en el punto de The radius of the circumference value: V 15552 the center is located at the point of
Figure imgf000026_0002
y las rectas tangentes tienen una pendiente de
Figure imgf000026_0002
and the tangent lines have a slope of
Figure imgf000026_0003
Figure imgf000026_0003
12. Antena margarita para emisión y/o recepción de ondas electromagnéticas lineal o circularmente polarizadas según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 y 11, caracterizada porque los pétalos se fabrican por métodos de fotograbado, serigrañado o procesos electroquímicos sobre sustrato dieléctrico, o por cualquier otro método que surja en los mercados por el desarrollo o progreso normal de la tecnología.  12. Margarita antenna for emission and / or reception of linear or circularly polarized electromagnetic waves according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, characterized in that the petals are manufactured by methods of photogravure, screen printing or electrochemical processes on dielectric substrate, or by any other method that arises in the markets due to the development or normal progress of the technology.
13. Antena margarita para emisión y/o recepción de ondas electromagnéticas lineal o circularmente polarizadas según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 y 12, caracterizada porque la directividad de la antena margarita diseñada para obtener un máximo de radiación en la dirección perpendicular al plano de la antena, tanto en polarización lineal como en circular, puede aumentarse en un máximo de 3 dB, colocando un plano de masa paralelo al plano de la antena, a una distancia igual a un cuarto de la longitud de onda de la frecuencia de funcionamiento de la antena, consiguiendo así sumar en fase, en la dirección deseada, la señal de la antena con la reflejada por el plano de masa. 13. Margarita antenna for emission and / or reception of linear or circularly polarized electromagnetic waves according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, characterized in that The directivity of the daisy antenna designed to obtain a maximum of radiation in the direction perpendicular to the plane of the antenna, both in linear and circular polarization, can be increased by a maximum of 3 dB, by placing a plane of mass parallel to the plane of the antenna, at a distance equal to a quarter of the wavelength of the operating frequency of the antenna, thus being able to add in phase, in the desired direction, the antenna signal with that reflected by the ground plane.
14. Antena margarita para emisión y/o recepción de ondas electromagnéticas lineal o circularmente polarizadas según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 y 13, caracterizada por su empleo en sistemas de recepción de televisión terrestre, sistemas de comunicaciones entre sistemas fijos o móviles, con enlace a través de estaciones terrestres o vía satélite, en sistemas de observación y de seguridad, así como también en sistemas dedicados a la investigación científica y técnica. 14. Margarita antenna for emission and / or reception of linear or circularly polarized electromagnetic waves according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13, characterized by their use in terrestrial television reception systems, communication systems between fixed or mobile systems, with link through terrestrial or satellite stations, in observation and security systems, as well as in systems dedicated to scientific and technical research.
PCT/ES2012/070123 2011-03-29 2012-02-28 Daisy antenna for the emission and reception of linearly and circularly polarized electromagnetic waves WO2012131126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201130473A ES2395429B1 (en) 2011-03-29 2011-03-29 MARGARITE ANTENNA FOR EMISSION AND RECEPTION OF LINEAR AND CIRCULAR POLARIZED ELECTROMAGNETIC WAVES.
ESP201130473 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012131126A1 true WO2012131126A1 (en) 2012-10-04

Family

ID=46929526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070123 WO2012131126A1 (en) 2011-03-29 2012-02-28 Daisy antenna for the emission and reception of linearly and circularly polarized electromagnetic waves

Country Status (2)

Country Link
ES (1) ES2395429B1 (en)
WO (1) WO2012131126A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799891A (en) * 2017-09-29 2018-03-13 深圳大学 Be applied to magnetoelectric dipole antenna of 5G communication
CN110620291A (en) * 2019-08-29 2019-12-27 电子科技大学 Circularly polarized dipole antenna for satellite communication
CN114421151A (en) * 2022-03-28 2022-04-29 陕西海积信息科技有限公司 Shaped omnidirectional circularly polarized antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072716A (en) * 2003-08-20 2005-03-17 Furukawa Electric Co Ltd:The Circularly polarized wave antenna
EP2009735A1 (en) * 2007-06-22 2008-12-31 Philippe Herman Antenna with diversity of polarisation for transmitting and/or receiving audio and/or video signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072716A (en) * 2003-08-20 2005-03-17 Furukawa Electric Co Ltd:The Circularly polarized wave antenna
EP2009735A1 (en) * 2007-06-22 2008-12-31 Philippe Herman Antenna with diversity of polarisation for transmitting and/or receiving audio and/or video signals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799891A (en) * 2017-09-29 2018-03-13 深圳大学 Be applied to magnetoelectric dipole antenna of 5G communication
CN110620291A (en) * 2019-08-29 2019-12-27 电子科技大学 Circularly polarized dipole antenna for satellite communication
CN114421151A (en) * 2022-03-28 2022-04-29 陕西海积信息科技有限公司 Shaped omnidirectional circularly polarized antenna
CN114421151B (en) * 2022-03-28 2022-08-02 陕西海积信息科技有限公司 Shaped omnidirectional circularly polarized antenna

Also Published As

Publication number Publication date
ES2395429A1 (en) 2013-02-12
ES2395429B1 (en) 2014-01-07

Similar Documents

Publication Publication Date Title
JP5357275B2 (en) Planar slot antenna and manufacturing method
JP5357274B2 (en) Planar antenna and related methods
Balanis Modern antenna handbook
US7030831B2 (en) Multi-polarized feeds for dish antennas
US7889151B1 (en) Passive wide-band low-elevation nulling antenna
US20110025571A1 (en) Circularly Polarized Microstrip Antennas
Dhande Antennas and its Applications
ES2395429B1 (en) MARGARITE ANTENNA FOR EMISSION AND RECEPTION OF LINEAR AND CIRCULAR POLARIZED ELECTROMAGNETIC WAVES.
Shen et al. Open-ended coaxial waveguide for conical-beam radiation
Jie et al. A proximity-coupled circularly polarized slotted-circular patch antenna for RF energy harvesting applications
Sharma et al. Beam focusing properties of circular monopole array antenna on a finite ground plane
WO2018096307A1 (en) A frequency scanned array antenna
CN106816717A (en) The circular polarized antenna of conical beam
US9590311B2 (en) Antenna system with reduced multipath reception
CN103700924B (en) Circularly polarized angle diversity antenna
See et al. A wideband horizontally polarized omnidirectional antenna
Chou et al. Dual-band hybrid antenna structure with spatial diversity for DTV and WLAN applications
Sadiq et al. Null-filled shaped beam horizontally polarized omnidirectional antenna
JPH06291538A (en) Microwave polarization lens device
Han et al. Design of an l-band cross-dipole phased array feed for fast
Jeong et al. Printed dipole antenna array with reconfigurable feeding network for wide elevation angle of U2X communications
Adewuyi et al. Characteristics of a single element dipole and array of dipoles at frequencies of selected TV stations in Nigeria
Sonkki et al. Dual polarized dual fed Vivaldi antenna for cellular base station operating at 1.7–2.7 GHz
Cole Developing a UHF/VHF Phased-Array Satellite Ground Station
Woo Low gain and steerable vehicle antennas for communications with land mobile satellite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763833

Country of ref document: EP

Kind code of ref document: A1