WO2012159672A1 - Fluid analysis device - Google Patents

Fluid analysis device Download PDF

Info

Publication number
WO2012159672A1
WO2012159672A1 PCT/EP2011/058544 EP2011058544W WO2012159672A1 WO 2012159672 A1 WO2012159672 A1 WO 2012159672A1 EP 2011058544 W EP2011058544 W EP 2011058544W WO 2012159672 A1 WO2012159672 A1 WO 2012159672A1
Authority
WO
WIPO (PCT)
Prior art keywords
pumping
magnetic element
diaphragm
pump
membrane
Prior art date
Application number
PCT/EP2011/058544
Other languages
German (de)
French (fr)
Inventor
Rolf Uthemann
Michael Kussmann
Original Assignee
Hach Lange Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hach Lange Gmbh filed Critical Hach Lange Gmbh
Priority to PCT/EP2011/058544 priority Critical patent/WO2012159672A1/en
Publication of WO2012159672A1 publication Critical patent/WO2012159672A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • F04B17/042Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the solenoid motor being separated from the fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1077Flow resistance valves, e.g. without moving parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0655Valves, specific forms thereof with moving parts pinch valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Definitions

  • the invention relates to a two-part Fiüsstechniks analyzer, consisting of a base unit and a replaceable separate Fluidikmodu! consists, in which at least the largest part of the liquid fluidics is arranged.
  • the analyzer has a two-part microfluidic liquid membrane pump for transporting the liquid in the fluidic module.
  • Such fluid analysis devices can be designed both as laboratory anafyse devices for carrying out individual measurements and as process analyzers for the quasi-continuous determination of an anhydrite in a liquid, for example in water.
  • the fluidic module comprises most of the fluidic fluid or fluid fluidics, including the pumping mimics required for fluid transport.
  • the two-part diaphragm pump is divided into the pump drive and the pump mimic, the pump drive being arranged on or in the base unit and the pump mimic being arranged on or in the fluidic module.
  • the problem here is a characterizationsunfurfe and precise coupling of the base unit side pump drive with the fluidikmodul moment pumping mimic.
  • the object of the invention is in contrast to provide a two-part Fiüsstechniks- analyzer with a precise and reliable two-part microfluidic liquid membrane pump. This object is achieved according to the invention with the features of claim 1.
  • the Anaiyse réelle invention has a diaphragm pump on or in the Fluidikmodu! a pumping chamber, a pumping membrane, and a ferromagnetic displacing means operatively connected to the pumping membrane.
  • the displacer moves the eiastic pumping membrane between a suction position and an ejection position, and pushes the pumping membrane into the pumping chamber on the way to the ejection position so that the pumping chamber is emptied.
  • the pump parts of the fluidic module form the pumping mimic.
  • the base unit has a magnetic element, which is arranged on the side facing away from the pumping chamber of the pumping membrane.
  • the magnetic element is thus arranged on the rear side of the pumping membrane and not, viewed from the pumping membrane, arranged beyond the pumping chamber.
  • the magnetic element generates a variable magnetic field through which the ferromagnetic displacement means and the pumping membrane moved by the displacer means are moved between a suction position and an ejection position to produce a pumping motion of the pumping membrane.
  • the variable magnetic field can be generated in various ways, for example, by a switchable stationary electromagnet or by a permanent magnet is moved mechanically.
  • the pump drive and the pump mimics of the two-part diaphragm pump are coupled to transmit the pumping movement of the pump drive to the displacement means only magnetic and non-contact with each other.
  • the base unit and the fluidic module can, at least in relation to the diaphragm pump, be designed to be completely free of openings. This ensures high reliability and accuracy of the split diaphragm pump.
  • the displacer may be formed as a ferromagnetic rigid solid body. The displacer forms a plunger which has approximately the shape of the pumping chamber and can push the pumping membrane into the pumping chamber.
  • the displacer means is a liquid ferrofluid in a ferrofluid space of the fluidic module, which is arranged on the side of the pump diaphragm remote from the pumping chamber.
  • the pumping membrane separates the pumping chamber from the ferrofluid space.
  • the volume of the ferrofluid space must be at least as large as the volume of the pumping chamber so that all the ferrofluid in the suction position of the pumping membrane can be pushed into the ferrofluid space.
  • the magnetic element is formed permanent magnetic and arranged to be movable perpendicular to the diaphragm ground plane. In its movement, the permanent magnet magnetic element takes with the Verdrängermittei and moves the Verdrängermittei in this way between its suction position and its ejection position.
  • the magnetic element is preferably made of rare earths, such as neodymium. Such magnetic elements can generate a relatively strong static magnetic field for a long time.
  • the permanent magnet magnetic element is driven by a separate drive arrangement.
  • the drive assembly may consist of an electric motor drive, which moves the permanent magnetic magnetic element via a corresponding mechanism between its end positions.
  • the drive arrangement a Have electromagnet which moves the magnetic element directly or indirectly between its two end positions.
  • a biasing element which biases the Magneteiement, the displacer and / or the pumping membrane in the ejection position.
  • the pumping membrane closes an inlet opening and / or an outlet opening of the pumping chamber.
  • the pumping membrane closes the inlet opening or the outlet opening in the deenergized state of the pump drive, so that a liquid flow in the area of the membrane pump is prevented.
  • a backflow is avoided in this way when the analyzer is switched off. Therefore, the diaphragm pump may preferably be designed completely valve-free,
  • FIG. 1 is a schematic representation of a fluid analyzer consisting of a base unit and a separate exchangeable fluidic module,
  • FIG. 2 shows a two-part microfluidic fluid diaphragm pump of the analyzer of FIG. 1, and FIG.
  • FIG. 3 shows a second embodiment of a two-part fluidic microfluidic diaphragm pump
  • FIG. 1 schematically shows a liquid analyzer 10, which in the present case is a process analyzer designed as a submersible probe for water analysis.
  • the analyzer photometrically determines an analyte in the water.
  • the analyzer 10 is formed in two parts, and consists of a base unit 12 and a separate replaceable fluidic module 14, the has the entire liquid Fiuidik the analyzer.
  • the base module 14 has a carrier liquid tank 26 from which the carrier liquid flows to a dialysis membrane 24, where the assay diffuses through an ion-selective dialysis membrane 24 into the passing carrier liquid.
  • the dialysate flows to a peristaltic pump 19, which is formed by the three diaphragm pumps 20, 21, 22, which are each designed identically to one another.
  • the reagent is fed to the dialysate, which can be precisely metered, for example, by a second peristaltic pump.
  • the peristaltic pump 19 pumps the dialysate with the reagent to a measuring section 27, in which the dialysate is measured photometrically. Subsequently, the dialysate is pumped into a waste tank 30.
  • the base module 14 contains only wear-free modules, while the Fluidikmodui has the wear assemblies, in particular all liquid-conducting assemblies and parts.
  • FIG. 1 The structure of a first embodiment of a two-part microfluidic liquid membrane pump 20 is shown in FIG. This is a diaphragm pump in which a ferromagnetic displacement means 40 is formed as a liquid ferrofluid.
  • the fluidic module 14 is essentially formed by three plastic plates 60, 62, 64, an elastic membrane 54 and a ferrofluid space container 66.
  • the three plates 60, 62, 64 are glued or welded together.
  • a pumping chamber 34 is formed, which is recessed into the middle plate 62 as a concave depression.
  • At the bottom of the chamber are an inlet opening 56 and a Outlet opening 58 is provided, through which the liquid to be pumped flows into the pumping chamber 34 and can flow out of this again.
  • an elastic pumping diaphragm 54 is arranged, which is shown in Figure 2 in the ejection position by the reference numeral 54 and by the reference numeral 54 'in the suction position.
  • the proximal plate 64 has an opening 68 through which the ferrofluid 40 may flow into and out of the cavity located at the back of the pumping membrane 54 to thereby bias the pumping membrane 54 to its ejection position ,
  • the ferrofluid space container 66 encloses a ferrofluid space 39 whose volume is a multiple of the volume of the pumping chamber 34.
  • the ferrofluid space 39 is filled with a liquid ferrofluid 40, wherein in the ferrofluid space 39 at least one volume of air is present which has at least the volume of the pumping chamber 34.
  • the top of the ferrofluid space 39 is closed by a gas-permeable but liquid-tight membrane body 77, for example by a so-called frit, so that the ferrofluid volume in the ferrofluid space 39 can change.
  • the ferrofluid 40 is ferromagnetic, i. it is attracted by an external magnetic field.
  • the ferrofluid 40 in the ferrofluidic space 39 has a magnetic center of gravity 41, 41 'that travels depending on whether or not the pumping chamber 34 is filled with the ferrofluid on the back of the pumping membrane 54.
  • the ferrofluid 40' in the ferrofluid space 39 occupies a larger volume, so that the magnetic center of gravity 41 'of the ferrofluid in the ferrofluid space 39 also moves upwards.
  • a magnetic element 50 On the base unit 12 is as a magnetic element 50 is a ring-shaped permanent magnet made of rare earth, for example, neodymium, arranged, which is axially displaceable.
  • the magnetic center of gravity 51, 51 'of the magnetic element can also be displaced in this way.
  • the two end position magnetic centers 41, 41 'of ferrofluid 40, 40' in ferrofluid space 39 are arranged within the interval defined by the two end position magnetic centers 51, 51 'of magnetic element 50, 50'.
  • the Magneteiement 50 is fixed to a non-ferromagnetic Haitering 70, at the other longitudinal end of an annular permanent magnet 46,46 'is arranged, which can be actively actuated by an electromagnet 48 in the form of a ring coil in both directions.
  • the electromagnet 48 and the permanent magnet 46 form a drive arrangement 44.
  • the annular permanent magnet 46 which is axially magnetized, is displaced between its two end positions.
  • the ferromagnetic fluid displacement means 40, 40 'in the ferrofluid space 39 between its suction volume and its pumping volume is also changed via the magnetic element 50.
  • a biasing element 72 is provided in the form of a compression spring which biases the magnetic element 50 into its pumping position, so that when the analyzer 10 is switched off electrically, the pumping membrane 54 is likewise in its pumping position and closes both the inlet opening 54 and the outlet opening 58. Reflux is therefore excluded even when the analyzer 10 is switched off. As a result, the diaphragm pump 20 can be formed completely valve-free.
  • FIG. 3 shows a second exemplary embodiment of a two-part microfluidic liquid-membrane pump 80.
  • the Displacer 81 is presently designed as a ferromagnetic rigid solid body, and has a mushroom-shaped displacement body, which has approximately the complementary outer shape to the bottom of the pumping chamber 34.
  • an electromagnet is provided in the present case, which acts directly on the ferromagnetic displacement means 81.
  • a biasing member 72 'formed as a compression coil spring biases the displacer 81 into the pumping position.

Abstract

The invention relates to a fluid analysis device (10) having a base device (12) and a separate replaceable fluidic module (14), having a two-part microfluidic fluid diaphragm pump (20, 21, 22; 80). The fluid analysis device (10) comprises a pump chamber (34) and a pump diaphragm (54) having a ferromagnetic displacement means (40) operatively connected to the pump diaphragm (54). The pump chamber (34), the pump diaphragm (54) and the displacement means (40) are provided on the fluidic module (14). A magnetic element (50) that generates a variable magnetic field is provided on the side of the pump diaphragm (54) facing away from the pump chamber (34). The displacement means (40), and the pump diaphragm (54) moved thereby, is moved between an intake position and a discharge position by the magnetic field in order to generate a pumping movement of the pump diaphragm (54), wherein the magnetic element (50) is provided on the base device (12).

Description

B E S C H R E I B U N G  DESCRIPTION
Ferrofluid-Mikropumpe Ferrofluid micropump
Die Erfindung bezieht sich auf ein zweiteiliges Fiüssigkeits-Analysegerät, das aus einem Basisgerät und einem austauschbaren separaten Fluidikmodu! besteht, in dem mindestens der größte Teil der flüssigen Fluidik angeordnet ist. Das Analysegerät weist eine zweigeteilte mikrofluidische Flüssigkeits-Membranpumpe für den Transport der Flüssigkeit in dem Fluidikmodul auf. The invention relates to a two-part Fiüssigkeits analyzer, consisting of a base unit and a replaceable separate Fluidikmodu! consists, in which at least the largest part of the liquid fluidics is arranged. The analyzer has a two-part microfluidic liquid membrane pump for transporting the liquid in the fluidic module.
Derartige Fiüssigkeits-Anaiysegeräte können sowohl als Labor- Anafysegeräte zur Durchführung einzelner Messungen als auch als Prozess-Analysegeräte zur quasi-kontinuierlichen Bestimmung eines Anaiyts in einer Flüssigkeit, beispielsweise in Wasser, ausgebildet sein. Das Fluidikmodul weist den größten Teil der flüssigen Fluidik oder die gesamte flüssige Fluidik auf, einschließlich der zum Flüssigkeits-Transport erforderlichen Pumpmimiken. Die zweiteilige Membranpumpe ist in den Pumpenantrieb und die Pumpmimik gegliedert, wobei der Pumpenantrieb an bzw. in dem Basisgerät und die Pumpmimik an bzw. in dem Fluidikmodul angeordnet ist. Problematisch hierbei ist eine störungsunempfindliche und präzise Kopplung des basisgerätseitigen Pumpenantriebs mit der fluidikmodulseitigen Pumpmimik.  Such fluid analysis devices can be designed both as laboratory anafyse devices for carrying out individual measurements and as process analyzers for the quasi-continuous determination of an anhydrite in a liquid, for example in water. The fluidic module comprises most of the fluidic fluid or fluid fluidics, including the pumping mimics required for fluid transport. The two-part diaphragm pump is divided into the pump drive and the pump mimic, the pump drive being arranged on or in the base unit and the pump mimic being arranged on or in the fluidic module. The problem here is a störungsunempfindliche and precise coupling of the base unit side pump drive with the fluidikmodulseitige pumping mimic.
Aufgabe der Erfindung ist es demgegenüber, ein zweiteiliges Fiüssigkeits- Analysegerät mit einer präzisen und zuverlässigen zweiteiligen mikrofluidischen Flüssigkeits-Membranpumpe zu schaffen. Diese Aufgabe wird erfindungsgemäß gelöst mit den Merkmalen des Anspruches 1. The object of the invention is in contrast to provide a two-part Fiüssigkeits- analyzer with a precise and reliable two-part microfluidic liquid membrane pump. This object is achieved according to the invention with the features of claim 1.
Das erfindungsgemäße Anaiysegerät weist eine Membranpumpe auf, die an bzw. in dem Fluidikmodu! eine Pumpkammer, eine Pumpmembran und ein mit der Pumpmembran in Wirkverbindung verbundenes ferromagnetisches Verdrängermittel aufweist. Das Verdrängermittel bewegt die eiastische Pumpmembran zwischen einer Saugposition und einer Ausstoßposition, und drückt die Pumpmembran auf dem Weg in die Ausstoßposition in die Pumpkammer hinein, so dass die Pumpkammer geleert wird. Die Pumpenteile des Fluidikmoduls bilden die Pumpmimik. The Anaiysegerät invention has a diaphragm pump on or in the Fluidikmodu! a pumping chamber, a pumping membrane, and a ferromagnetic displacing means operatively connected to the pumping membrane. The displacer moves the eiastic pumping membrane between a suction position and an ejection position, and pushes the pumping membrane into the pumping chamber on the way to the ejection position so that the pumping chamber is emptied. The pump parts of the fluidic module form the pumping mimic.
Das Basisgerät weist ein Magnetelement auf, das an der der Pumpkammer abgewandten Seite der Pumpmembrane angeordnet ist. Das Magnetelement ist also rückseitig der Pumpmembrane angeordnet und nicht, von der Pumpmembrane aus gesehen, jenseits der Pumpkammer angeordnet. Das Magnetelement erzeugt ein veränderbares Magnetfeld, durch das das ferromagnetische Verdrängermittel und die durch das Verdrängermittel bewegte Pumpmembran zur Erzeugung einer Pumpbewegung der Pumpmembran zwischen einer Saugposition und einer Ausstoßposition bewegt werden. Das veränderbare Magnetfeld kann auf verschiedenen Wegen generiert werden, beispielsweise durch einen schaltbaren stationären Elektromagneten oder durch einen Dauermagneten der mechanisch bewegt wird. The base unit has a magnetic element, which is arranged on the side facing away from the pumping chamber of the pumping membrane. The magnetic element is thus arranged on the rear side of the pumping membrane and not, viewed from the pumping membrane, arranged beyond the pumping chamber. The magnetic element generates a variable magnetic field through which the ferromagnetic displacement means and the pumping membrane moved by the displacer means are moved between a suction position and an ejection position to produce a pumping motion of the pumping membrane. The variable magnetic field can be generated in various ways, for example, by a switchable stationary electromagnet or by a permanent magnet is moved mechanically.
Der Pumpenantrieb und die Pumpmimiken der zweiteiligen Membranpumpe sind zur Übertragung der Pumpbewegung von dem Pumpenantrieb zu dem Verdrängermittel ausschließlich magnetisch und berührungslos miteinander gekoppelt. Das Basisgerät und das Fluidikmodul können, jedenfalls in Bezug auf die Membranpumpe, völlig öffnungsfrei ausgebildet sein. Hierdurch werden eine hohe Zuverlässigkeit und Genauigkeit der zweigeteilten Membranpumpe sichergestellt. Das Verdrängermittel kann als ferromagnetischer steifer Feststoffkörper ausgebildet sein. Das Verdrängermittel bildet einen Stempel, der ungefähr die Form der Pumpkammer aufweist und die Pumpmembran in die Pumpkammer hineindrücken kann. The pump drive and the pump mimics of the two-part diaphragm pump are coupled to transmit the pumping movement of the pump drive to the displacement means only magnetic and non-contact with each other. The base unit and the fluidic module can, at least in relation to the diaphragm pump, be designed to be completely free of openings. This ensures high reliability and accuracy of the split diaphragm pump. The displacer may be formed as a ferromagnetic rigid solid body. The displacer forms a plunger which has approximately the shape of the pumping chamber and can push the pumping membrane into the pumping chamber.
Alternativ ist das Verdrängermittei ein flüssiges Ferrofluid in einem Ferrofluidraum des Fluidikmoduls, der an der der Pumpkammer abgewandten Seite der Pumpmembran angeordnet ist. Die Pumpmembran trennt die Pumpkammer von dem Ferrofiuidraum. Das Volumen des Ferrofluidraums muss mindestens so groß sein wie das Volumen der Pumpkammer, damit das gesamte Ferrofluid in der Saugposition der Pumpmembran in den Ferrofiuidraum geschoben werden kann. Durch die Verwendung eines flüssigen Ferrofiuids als Verdrängermittel wird über die gesamte Fläche der Pumpmembran eine homogene Spannungsverteilung sichergestellt, wodurch der Verschleiß der Pumpmembran verringert und die Langzeitgenauigkeit der Membranpumpe verbessert werden.  Alternatively, the displacer means is a liquid ferrofluid in a ferrofluid space of the fluidic module, which is arranged on the side of the pump diaphragm remote from the pumping chamber. The pumping membrane separates the pumping chamber from the ferrofluid space. The volume of the ferrofluid space must be at least as large as the volume of the pumping chamber so that all the ferrofluid in the suction position of the pumping membrane can be pushed into the ferrofluid space. By using a liquid ferrofluid as a displacing agent, a homogeneous stress distribution is ensured over the entire surface of the pumping membrane, whereby the wear of the pumping membrane is reduced and the long-term accuracy of the diaphragm pump is improved.
Gemäß einer bevorzugten Ausgestaltung ist das Magnetelement permanentmagnetisch ausgebildet und senkrecht zu der Membran- Grundebene beweglich angeordnet. Bei seiner Bewegung nimmt das permanentmagnetische Magnetelement das Verdrängermittei mit und bewegt das Verdrängermittei auf diese Weise zwischen seiner Saugposition und seiner Ausstoßposition. Das Magnetelement besteht bevorzugt aus Seltenen Erden, beispielsweise aus Neodym. Derartige Magnetelemente können über lange Zeit ein relativ starkes statisches Magnetfeld generieren.  According to a preferred embodiment, the magnetic element is formed permanent magnetic and arranged to be movable perpendicular to the diaphragm ground plane. In its movement, the permanent magnet magnetic element takes with the Verdrängermittei and moves the Verdrängermittei in this way between its suction position and its ejection position. The magnetic element is preferably made of rare earths, such as neodymium. Such magnetic elements can generate a relatively strong static magnetic field for a long time.
Das permanentmagnetische Magnetelement wird durch eine separate Antriebsanordnung angetrieben. Die Antriebsanordnung kann aus einem elektromotorischen Antrieb bestehen, der das permanentmagnetische Magnetelement über eine entsprechende Mechanik zwischen seinen Endpositionen bewegt. Alternativ kann die Antriebsanordnung einen Elektromagneten aufweisen, der das Magnetelement mittelbar oder unmittelbar zwischen seinen beiden Endpositionen bewegt. The permanent magnet magnetic element is driven by a separate drive arrangement. The drive assembly may consist of an electric motor drive, which moves the permanent magnetic magnetic element via a corresponding mechanism between its end positions. Alternatively, the drive arrangement a Have electromagnet which moves the magnetic element directly or indirectly between its two end positions.
Gemäß einer bevorzugten Ausgestaltung Ist ein Vorspannelement vorgesehen, das das Magneteiement, das Verdrängermittel und/oder die Pumpmembran in die Ausstoßposition vorspannt. Die Pumpmembran verschließt in ihrer Ausstoßposition eine Einlassöffnung und/oder eine Auslassöffnung der Pumpkammer, Durch das Vorspannelement verschließt die Pumpmembran im energielosen Zustand des Pumpenantriebs die Einiassöffnung bzw. die Auslassöffnung, so dass ein Flüssigkeits-Fiuss im Bereich der Membranpumpe unterbunden wird. Insbesondere wird bei abgeschaltetem Analysegerät auf diese Weise ein Rückfluss vermieden. Die Membranpumpe kann daher vorzugsweise völlig ventilfrei ausgebildet sein,  According to a preferred embodiment, a biasing element is provided which biases the Magneteiement, the displacer and / or the pumping membrane in the ejection position. In its ejection position, the pumping membrane closes an inlet opening and / or an outlet opening of the pumping chamber. By means of the biasing element, the pumping membrane closes the inlet opening or the outlet opening in the deenergized state of the pump drive, so that a liquid flow in the area of the membrane pump is prevented. In particular, a backflow is avoided in this way when the analyzer is switched off. Therefore, the diaphragm pump may preferably be designed completely valve-free,
Im Folgenden wird unter Bezugnahme auf die Zeichnungen ein Ausführungsbeispiel der Erfindung näher erläutert«  An embodiment of the invention will be explained in more detail below with reference to the drawings.
Es zeigen :  Show it :
Figur 1 eine schematische Darstellung eines Flüssigkeits-Analysegerätes bestehend aus einem Basisgerät und einem separaten austauschbaren Fluidikmodul,  FIG. 1 is a schematic representation of a fluid analyzer consisting of a base unit and a separate exchangeable fluidic module,
Figur 2 eine zweigeteilte mikrofluidische Fiüssigkeits-Membranpumpe des Analysegerätes der Figur 1, und  FIG. 2 shows a two-part microfluidic fluid diaphragm pump of the analyzer of FIG. 1, and FIG
Figur 3 eine zweite Ausführungsform einer zweigeteilten mikrofluidischen Fiüssigkeits-Membranpumpe,  FIG. 3 shows a second embodiment of a two-part fluidic microfluidic diaphragm pump,
In der Figur 1 ist schematisch ein Flüssigkeits-Analysegerät 10 dargestellt, das vorliegend ein als Tauchsonde ausgebildetes Prozess-Analysegerät zur Wasseranalyse ist. Das Analysegerät bestimmt fotometrisch ein Analyt in dem Wasser.  FIG. 1 schematically shows a liquid analyzer 10, which in the present case is a process analyzer designed as a submersible probe for water analysis. The analyzer photometrically determines an analyte in the water.
Das Analysegerät 10 ist zweiteilig ausgebildet, und besteht aus einem Basisgerät 12 und einem separaten austauschbaren Fluidikmodul 14, das die gesamte flüssige Fiuidik des Analysegerätes aufweist. In dem Basisgerät 12 ist unter anderem eine Steuerung 36 zur Steuerung mehrerer zweigeteilter mikrofiuidische Flüssigkeits-Membranpumpen 20, 21,22 und ein Fotometer 28 ohne die dazugehörige Messstrecke untergebracht, die sich in bzw. an dem Basismodul 14 befindet. The analyzer 10 is formed in two parts, and consists of a base unit 12 and a separate replaceable fluidic module 14, the has the entire liquid Fiuidik the analyzer. In the base unit 12, inter alia, a controller 36 for controlling a plurality of two-part microfluidic liquid diaphragm pumps 20, 21,22 and a photometer 28 without the associated measuring section housed, which is located in or on the base module 14.
Das Basismodul 14 weist einen Trägerflüssigkeits-Tank 26 auf, von dem aus die Trägerflüssigkeit zu einer Dialysemembran 24 fließt, wo das Anaiyt durch eine ionenselektive Dialysemembran 24 hindurch in die vorbeifließende Trägerflüssigkeit diffundiert. Von der Dialysemembran 24 aus fließt das Dialysat zu einer Peristaitikpumpe 19, die von den drei Membranpumpen 20, 21,22 gebildet wird, die jeweils identisch zueinander ausgebildet sind. Dem Dialysat wird ein Reagenz zugeführt, das beispielsweise durch eine zweite Peristaitikpumpe genau dosiert werden kann. Die Peristaitikpumpe 19 pumpt das Dialysat mit dem Reagenz zu einer Messstrecke 27, in der das Dialysat fotometrisch vermessen wird, Anschließend wird das Dialysat in einen Abfalltank 30 gepumpt.  The base module 14 has a carrier liquid tank 26 from which the carrier liquid flows to a dialysis membrane 24, where the assay diffuses through an ion-selective dialysis membrane 24 into the passing carrier liquid. From the dialysis membrane 24, the dialysate flows to a peristaltic pump 19, which is formed by the three diaphragm pumps 20, 21, 22, which are each designed identically to one another. The reagent is fed to the dialysate, which can be precisely metered, for example, by a second peristaltic pump. The peristaltic pump 19 pumps the dialysate with the reagent to a measuring section 27, in which the dialysate is measured photometrically. Subsequently, the dialysate is pumped into a waste tank 30.
Das Basismodul 14 enthält ausschließlich verschleißfreie Baugruppen, während das Fluidikmodui die verschleißenden Baugruppen aufweist, insbesondere alle flüssigkeitsführenden Baugruppen und -teile.  The base module 14 contains only wear-free modules, while the Fluidikmodui has the wear assemblies, in particular all liquid-conducting assemblies and parts.
Der Aufbau einer ersten Ausführungsform einer zweigeteilten mikrofiuidischen Flüssigkeits-Membranpumpe 20 ist in der Figur 2 dargestellt. Es handelt sich hierbei um eine Membranpumpe, bei der ein ferromagnetisches Verdrängermittel 40 als flüssiges Ferrofluid ausgebildet ist. The structure of a first embodiment of a two-part microfluidic liquid membrane pump 20 is shown in FIG. This is a diaphragm pump in which a ferromagnetic displacement means 40 is formed as a liquid ferrofluid.
Das Fluidikmodui 14 wird im Wesentlichen von drei Kunststoff- Platten 60, 62,64, einer elastischen Membran 54 und einem Ferrofluidraum- Behälter 66 gebildet. Die drei Platten 60, 62,64 sind miteinander verklebt oder verschweißt. In der mittleren Platte 62 ist eine Pumpkammer 34 ausgebildet, die als konkave Mulde in die mittlere Platte 62 eingelassen ist. Am Kammerboden sind eine Einlassöffnung 56 und eine Auslassöffnung 58 vorgesehen, durch die die zu pumpende Flüssigkeit in die Pumpkammer 34 einfließt bzw, aus dieser wieder herausfließen kann.The fluidic module 14 is essentially formed by three plastic plates 60, 62, 64, an elastic membrane 54 and a ferrofluid space container 66. The three plates 60, 62, 64 are glued or welded together. In the middle plate 62, a pumping chamber 34 is formed, which is recessed into the middle plate 62 as a concave depression. At the bottom of the chamber are an inlet opening 56 and a Outlet opening 58 is provided, through which the liquid to be pumped flows into the pumping chamber 34 and can flow out of this again.
In der Öffnungsebene der Pumpkammer 34 ist eine elastische Pumpmembran 54 angeordnet, die in der Figur 2 in der Ausstoßposition mit dem Bezugszeichen 54 und mit dem Bezugszeichen 54' in der Saugposition dargestellt ist. In the opening plane of the pumping chamber 34, an elastic pumping diaphragm 54 is arranged, which is shown in Figure 2 in the ejection position by the reference numeral 54 and by the reference numeral 54 'in the suction position.
Die proximale Platte 64 weist eine Öffnung 68 auf, durch die das Ferrofiuid 40 in den rückseitig der Pumpmembran 54 gelegenen Hohlraum einfließen und aus diesem wieder heraus fließen kann, um hierbei die Pumpmembran 54 in ihre Ausstoßposition zu spannen bzw. in ihre Saugposition entspannen zu lassen.  The proximal plate 64 has an opening 68 through which the ferrofluid 40 may flow into and out of the cavity located at the back of the pumping membrane 54 to thereby bias the pumping membrane 54 to its ejection position ,
Der Ferrofluidraum-Behälter 66 umschließt einen Ferrofluidraum 39, dessen Volumen ein Vielfaches des Volumens der Pumpkammer 34 beträgt. Der Ferrofluidraum 39 ist mit einem flüssigen Ferrofiuid 40 gefüllt, wobei in dem Ferrofluidraum 39 mindestens ein Luftvolumen vorhanden ist, das mindestens das Volumen der Pumpkammer 34 aufweist. Die Oberseite des Ferrofluidraums 39 ist durch einen gasdurchlässigen jedoch flüssigkeitsdichten Membrankörper 77 verschlossen, beispielsweise durch eine sogenannte Fritte, damit sich das Ferrofiuid-Volumen in dem Ferrofluidraum 39 verändern kann. Das Ferrofiuid 40 ist ferromagnetisch, d.h. es wird von einem äußeren Magnetfeld angezogen. Das Ferrofiuid 40 in dem Ferrofluidraum 39 hat einen magnetischen Schwerpunkt 41,41', der in Abhängigkeit davon, ob die Pumpkammer 34 rückseitig der Pumpmembran 54 mit dem Ferrofiuid gefüllt ist oder nicht, wandert. Wenn die Pumpmembran 54' in ihrer Saugposition steht, nimmt das Ferrofiuid 40' in dem Ferrofluidraum 39 ein größeres Volumen ein, so dass sich auch der magnetische Schwerpunkt 41' des Ferrofluids in dem Ferrofluidraum 39 nach oben verschiebt.  The ferrofluid space container 66 encloses a ferrofluid space 39 whose volume is a multiple of the volume of the pumping chamber 34. The ferrofluid space 39 is filled with a liquid ferrofluid 40, wherein in the ferrofluid space 39 at least one volume of air is present which has at least the volume of the pumping chamber 34. The top of the ferrofluid space 39 is closed by a gas-permeable but liquid-tight membrane body 77, for example by a so-called frit, so that the ferrofluid volume in the ferrofluid space 39 can change. The ferrofluid 40 is ferromagnetic, i. it is attracted by an external magnetic field. The ferrofluid 40 in the ferrofluidic space 39 has a magnetic center of gravity 41, 41 'that travels depending on whether or not the pumping chamber 34 is filled with the ferrofluid on the back of the pumping membrane 54. When the pumping membrane 54 'is in its suction position, the ferrofluid 40' in the ferrofluid space 39 occupies a larger volume, so that the magnetic center of gravity 41 'of the ferrofluid in the ferrofluid space 39 also moves upwards.
An dem Basisgerät 12 ist als Magnetelement 50 ein ringförmiger Permanentmagnet aus Seltenen Erden, beispielsweise aus Neodym, angeordnet, der axial verschiebbar ist. Der magnetische Schwerpunkt 51,51' des Magnetelements iässt sich auf diese Weise ebenfalls verschieben. Die beiden endpositionsseitigen magnetischen Schwerpunkte 41,41' des Ferrofiuids 40,40' in dem Ferrofiuidraum 39 sind innerhalb des Intervalls angeordnet, das durch die beiden endpositionsseitigen magnetischen Schwerpunkte 51,51' des Magnetelements 50,50' definiert sind. Durch das axiale Verschieben des Magnetelements 50,50' zwischen den beiden Endpositionen kann das Ferrof!uid 40 entweder in die Pumpkammer 34 gedrückt oder aber aus dieser abgesaugt werden. Das Magneteiement 50 ist an einem nicht-ferromagnetischen Haitering 70 fixiert, an dessen anderem Längsende ein ringförmiger Permanentmagnet 46,46' angeordnet ist, der durch einen Elektromagneten 48 in Form einer Ringsspule in beide Richtungen aktiv aktuiert werden kann. Der Elektromagnet 48 und der Permanentmagnet 46 bilden eine Antriebsanordnung 44. On the base unit 12 is as a magnetic element 50 is a ring-shaped permanent magnet made of rare earth, for example, neodymium, arranged, which is axially displaceable. The magnetic center of gravity 51, 51 'of the magnetic element can also be displaced in this way. The two end position magnetic centers 41, 41 'of ferrofluid 40, 40' in ferrofluid space 39 are arranged within the interval defined by the two end position magnetic centers 51, 51 'of magnetic element 50, 50'. By the axial displacement of the magnetic element 50,50 'between the two end positions, the Ferrof! Uid 40 can either be pressed into the pumping chamber 34 or sucked out of it. The Magneteiement 50 is fixed to a non-ferromagnetic Haitering 70, at the other longitudinal end of an annular permanent magnet 46,46 'is arranged, which can be actively actuated by an electromagnet 48 in the form of a ring coil in both directions. The electromagnet 48 and the permanent magnet 46 form a drive arrangement 44.
Durch Änderung der Flussrichtung des Spulenstroms in dem Elektromagneten 48 wird der ringförmige Permanentmagnet 46, der axial magnetisiert ist, zwischen seinen beiden Endpositionen verschoben. Hierdurch wird über das Magneteiement 50 auch das ferrofluidische Verdrängermittel 40,40' in dem Ferrofiuidraum 39 zwischen seinem Saugvolumen und seinem Pumpvolumen verändert.  By changing the flow direction of the coil current in the electromagnet 48, the annular permanent magnet 46, which is axially magnetized, is displaced between its two end positions. As a result, the ferromagnetic fluid displacement means 40, 40 'in the ferrofluid space 39 between its suction volume and its pumping volume is also changed via the magnetic element 50.
Es ist ein Vorspannelement 72 in Form einer Druckfeder vorgesehen, das das Magneteiement 50 in seine Pumpposition vorspannt, so dass bei elektrisch abgeschaltetem Analysegerät 10 die Pumpmembran 54 ebenfalls in ihrer Pumpposition steht und sowohl die Einlassöffnung 54 als auch die Auslassöffnung 58 verschließt. Ein Rückfluss ist daher auch bei abgeschaltetem Analysegerät 10 ausgeschlossen. Hierdurch kann die Membranpumpe 20 vollständig ventilfrei ausgebildet werden.  A biasing element 72 is provided in the form of a compression spring which biases the magnetic element 50 into its pumping position, so that when the analyzer 10 is switched off electrically, the pumping membrane 54 is likewise in its pumping position and closes both the inlet opening 54 and the outlet opening 58. Reflux is therefore excluded even when the analyzer 10 is switched off. As a result, the diaphragm pump 20 can be formed completely valve-free.
In der Figur 3 ist ein zweites Ausführungsbeispiel einer zweiteiligen mikrofluidischen Flüssigkeits-Membranpumpe 80 dargestellt. Das Verdrängermittel 81 ist vorliegend als ferromagnetischer steifer Feststoffkörper ausgebildet, und weist einen pilzförmigen Verdrängerkörper auf, der ungefähr die komplementäre Außenform zu dem Boden der Pumpkammer 34 aufweist. Als Magnetelement 82 ist vorliegend ein Elektromagnet vorgesehen, der unmittelbar auf das ferromagnetische Verdrängermittel 81 wirkt. Ein als Druckschraubenfeder ausgebildetes Vorspannelement 72' spannt das Verdrängermittel 81 in die Pumpposition vor. FIG. 3 shows a second exemplary embodiment of a two-part microfluidic liquid-membrane pump 80. The Displacer 81 is presently designed as a ferromagnetic rigid solid body, and has a mushroom-shaped displacement body, which has approximately the complementary outer shape to the bottom of the pumping chamber 34. As the magnetic element 82, an electromagnet is provided in the present case, which acts directly on the ferromagnetic displacement means 81. A biasing member 72 'formed as a compression coil spring biases the displacer 81 into the pumping position.

Claims

A N S P R Ü C H E
1. Fiüssigkeits-Anafysegerät (10) mit einem Basisgerät ( 12) und einem separaten austauschbaren Fiuidikmodui ( 14), mit einer zweigeteilten mikrofluidischen Flüssigkeits-Membranpurnpe (20, 21, 22; 80) mit einer Pumpkammer (34) und einer Pumpmembran (54) mit einem mit der Pumpmembran (54) in Wirkverbindung verbundenen ferromagnetischen Verdrängermittel (40), wobei die Pumpkammer (34), die Pumpmembran (54) und das Verdrängermitte! (40) an dem Fluidikmodu! (14) vorgesehen sind, und A fluid anafyzer (10) comprising a base unit (12) and a separate exchangeable fluidic module (14), comprising a two-part microfluidic fluid diaphragm hub (20, 21, 22, 80) with a pumping chamber (34) and a pumping membrane (54 ) with a ferromagnetic displacement means (40) operatively connected to the pumping membrane (54), the pumping chamber (34), the pumping diaphragm (54) and the displacer center! (40) on the fluidic module! (14) are provided, and
einem Magnetelement (50) an der der Pumpkammer (34) abgewandten Seite der Pumpmembran (54), das ein veränderbares Magnetfeld erzeugt, durch das das Verdrängermittel (40) und die hierdurch bewegte Pumpmembran (54) zur Erzeugung einer a magnetic element (50) on the pump chamber (34) side facing away from the pumping membrane (54) which generates a variable magnetic field through which the displacer (40) and thereby moving pumping diaphragm (54) for generating a
Pumpbewegung der Pumpmembran (54) zwischen einer Saugposition und einer Ausstoßposition bewegt wird, wobei das Magneteiement (50) an dem Basisgerät (12) vorgesehen ist, Pumping movement of the pumping membrane (54) between a suction position and an ejection position is moved, wherein the Magneteiement (50) is provided on the base unit (12),
2. Flüssigkeits-Anaiysegerät (10) nach Anspruch 1, wobei das Verdrängermittel (40) ein flüssiges Ferrofiuid in einem Ferrofluidraum (39) des Fluidikmoduis ( 14) an der der Pumpkammer (34) abgewandten Pumpmembran-Seite ist. The liquid analyzer (10) of claim 1 wherein the displacer means (40) is a liquid ferrofluid in a ferrofluidic space (39) of the fluidic module (14) on the pumping membrane side remote from the pumping chamber (34).
3. Flüssigkeits-Anaiysegerät (10) nach Anspruch 1, wobei das Verdrängermittel (80) ein ferromagnetischer Feststoffkörper ist. The liquid analyzer (10) of claim 1, wherein the displacer (80) is a ferromagnetic solid.
4. Flüssigkeits-Anaiysegerät (10) nach einem der vorangegangenen Ansprüche, wobei das Magnetelement (50) permanentmagnetisch ist und senkrecht zu der Membran-Grundebene beweglich und derart angeordnet ist; dass es bei seiner Bewegung zwischen seinen beiden Endpositionen das Verdrängermittel (40) magnetisch mitnimmt, wobei das Magnetelement (50) durch eine Antriebsanordnung (44) angetrieben wird, 4. A liquid analyzer (10) according to any one of the preceding claims wherein the magnetic element (50) is permanently magnetic and is movably and so disposed normal to the diaphragm ground plane; in its movement between its two end positions it magnetically entrains the displacement means (40), the magnetic element (50) being driven by a drive arrangement (44),
5. Flüssigkeits-Anaiysegerät (10) nach Anspruch 4, wobei das Magnetelement (50) aus Seltenen Erden besteht, A liquid analyzer (10) according to claim 4, wherein the magnetic element (50) is made of rare earths,
6. Flüssigkeits-Anaiysegerät (10) nach Anspruch 4 oder 5, wobei der magnetische Schwerpunkt (41,41') des Ferrofluid- Verdrängermittels (40,40') in seinen beiden Endpositionen zwischen den beiden Positionen des magnetischen Schwerpunktes (51,51') des Magnetelements (50,50') in seinen beiden Endpositionen liegt. 6. A liquid analyzer (10) according to claim 4 or 5, wherein the magnetic center of gravity (41, 41 ') of the ferrofluid displacement means (40, 40') in its two end positions between the two positions of the magnetic center of gravity (51, 51 '). ) of the magnetic element (50, 50 ') lies in its two end positions.
7. Flüssigkeits-Anaiysegerät (10) nach einem der Ansprüche 4 ~ 6, wobei die Antriebsanordnung (44) einen Elektromagneten (48) aufweist, der das Magnetelement (50) mittelbar oder unmittelbar aktuiert. A liquid analyzer (10) according to any one of claims 4 to 6, wherein the drive assembly (44) comprises an electromagnet (48) which directly or indirectly actuates the magnetic element (50).
8. Flüssigkeits-Anaiysegerät (10) nach einem der Ansprüche 1-3, wobei das Magnetelement (82) ein Elektromagnet ist, der unmittelbar das Verdrängermittel (80) aktuiert. A liquid analyzer (10) according to any one of claims 1-3, wherein the magnetic element (82) is an electromagnet which directly actuates the displacer means (80).
9. Flüssigkeits-Anaiysegerät ( 10) nach einem der vorangegangenen Ansprüche, wobei ein Vorspannelement (72; 72') vorgesehen ist, das das Magneteiement (50), das Verdrängermitte! (80) und/oder die Pumpmembran (54) in die Ausstoßposition vorspannt, wobei die Pumpmembran (54) in ihrer Ausstoßposition eine Einiassöffnung (56) und/oder eine Auslassöffnung (58) der Pumpkammer (34) verschließt. A liquid analyzer (10) according to any one of the preceding claims, wherein a biasing member (72; 72 ') is provided. the magnetic element (50), the displacement center! (80) and / or biases the pumping membrane (54) into the ejection position, wherein the pumping membrane (54) in its ejection position closes a Einiassöffnung (56) and / or an outlet opening (58) of the pumping chamber (34).
10. Flüssigkeits-Analysegerät (10) nach einem der vorangegangenen Ansprüche, wobei die Membranpumpe (20; 80) ventllfrei ausgebildet ist. 10. Liquid analyzer (10) according to any one of the preceding claims, wherein the diaphragm pump (20; 80) is formed ventllfrei.
PCT/EP2011/058544 2011-05-25 2011-05-25 Fluid analysis device WO2012159672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/058544 WO2012159672A1 (en) 2011-05-25 2011-05-25 Fluid analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/058544 WO2012159672A1 (en) 2011-05-25 2011-05-25 Fluid analysis device

Publications (1)

Publication Number Publication Date
WO2012159672A1 true WO2012159672A1 (en) 2012-11-29

Family

ID=44262774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/058544 WO2012159672A1 (en) 2011-05-25 2011-05-25 Fluid analysis device

Country Status (1)

Country Link
WO (1) WO2012159672A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954736A (en) * 2014-05-12 2014-07-30 大连海事大学 Underwater real-time micro-fluidic chip biochemical detection device and detection method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116863A (en) * 1997-05-30 2000-09-12 University Of Cincinnati Electromagnetically driven microactuated device and method of making the same
WO2002057744A2 (en) * 2001-01-22 2002-07-25 Microgen Systems, Inc. Automated microfabrication-based biodetector
US20020098122A1 (en) * 2001-01-22 2002-07-25 Angad Singh Active disposable microfluidic system with externally actuated micropump
US20050069424A1 (en) * 2003-09-26 2005-03-31 Ming-Chang Lu Micro pump using ferrofluid or magneto-rheological fluid
WO2005031163A1 (en) * 2003-09-25 2005-04-07 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
US20050238506A1 (en) * 2002-06-21 2005-10-27 The Charles Stark Draper Laboratory, Inc. Electromagnetically-actuated microfluidic flow regulators and related applications
WO2007114912A2 (en) * 2006-03-30 2007-10-11 Wayne State University Check valve diaphragm micropump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116863A (en) * 1997-05-30 2000-09-12 University Of Cincinnati Electromagnetically driven microactuated device and method of making the same
WO2002057744A2 (en) * 2001-01-22 2002-07-25 Microgen Systems, Inc. Automated microfabrication-based biodetector
US20020098122A1 (en) * 2001-01-22 2002-07-25 Angad Singh Active disposable microfluidic system with externally actuated micropump
US20050238506A1 (en) * 2002-06-21 2005-10-27 The Charles Stark Draper Laboratory, Inc. Electromagnetically-actuated microfluidic flow regulators and related applications
WO2005031163A1 (en) * 2003-09-25 2005-04-07 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
US20050069424A1 (en) * 2003-09-26 2005-03-31 Ming-Chang Lu Micro pump using ferrofluid or magneto-rheological fluid
WO2007114912A2 (en) * 2006-03-30 2007-10-11 Wayne State University Check valve diaphragm micropump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954736A (en) * 2014-05-12 2014-07-30 大连海事大学 Underwater real-time micro-fluidic chip biochemical detection device and detection method thereof
CN103954736B (en) * 2014-05-12 2016-03-02 大连海事大学 Real-time micro-fluidic chip biochemical detection device under water

Similar Documents

Publication Publication Date Title
EP2290354B1 (en) Process analyser
DE102012205171B3 (en) Integrated disposable chip cartridge system for mobile multi-parameter analysis of chemical and / or biological substances
DE2628640A1 (en) DEVICE FOR PIPETTING WITH CONSTANT VOLUME INCREMENTS
EP1944084B1 (en) Valve device for a micro fluid system
DE102009000357A1 (en) Kraftstofffpumpe
DE102012200501A1 (en) Microdosing pump and method for manufacturing a microdosing pump
WO2012034238A1 (en) Membrane vacuum pump
DE19837434C2 (en) Automatic chemical analysis device
EP2470915A1 (en) Modular flow injection analysis system
DE202005005619U1 (en) Micro metering valve for proportioning very small liquid quantities has tappet that is movable opposite closing direction to hit impact body
EP2988871B1 (en) Method for filling a microfluidic device using a dispensing system and corresponding test system
WO2012159672A1 (en) Fluid analysis device
DE102017216713A1 (en) Method and metering device for metered fluid dispensing
DE102008042071A1 (en) Micro dosing pump
DE3716408C2 (en)
DE202011110381U1 (en) Ferrofluid micropump
EP2010784B1 (en) Pump element and pump comprising such a pump element
DE102008003020A1 (en) Fluidic controlled fluid handling device and fluidic system having a fluidic device
DE10316395B4 (en) diaphragm pump
DE19847869A1 (en) Pipetting device
DE102009057804A1 (en) Fluidic magnetic particle transport system
DE102009023068A1 (en) Dosing device for supplying e.g. washing liquid to blood sample chamber for analytical tasks for patient, has pistons arranged behind each other in pipe, where fluids flow between pistons and escape out from opening and arrive into chamber
DE102008016549A1 (en) Dosing apparatus for contact free dispensing of liquids, has channel module for collecting and dispensing liquid by capillary and regulated pressure system for generation of over pressure
WO2019008026A1 (en) Fluid analysis module and fluid analyzer
DE102020123539A1 (en) Valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11721327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11721327

Country of ref document: EP

Kind code of ref document: A1