WO2013008500A1 - 脳磁計及び脳磁測定方法 - Google Patents

脳磁計及び脳磁測定方法 Download PDF

Info

Publication number
WO2013008500A1
WO2013008500A1 PCT/JP2012/060159 JP2012060159W WO2013008500A1 WO 2013008500 A1 WO2013008500 A1 WO 2013008500A1 JP 2012060159 W JP2012060159 W JP 2012060159W WO 2013008500 A1 WO2013008500 A1 WO 2013008500A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
subject
vapor cell
laser
optical pumping
Prior art date
Application number
PCT/JP2012/060159
Other languages
English (en)
French (fr)
Inventor
張 延平
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2013008500A1 publication Critical patent/WO2013008500A1/ja
Priority to US14/085,371 priority Critical patent/US9113803B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • A61B5/245Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents specially adapted for magnetoencephalographic [MEG] signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/26Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux using optical pumping

Definitions

  • the present invention relates to a magnetoencephalograph and a magnetoencephalogram measurement method.
  • optical pumping magnetometer using an alkali metal has been developed as a high sensitivity magnetometer replacing the SQUID sensor.
  • the optical pumping magnetometer does not require a cooling function and can greatly reduce the running cost of the SQUID sensor. Therefore, application to a magnetoencephalograph is expected.
  • Non-Patent Document 1 an optical pumping magnetometer having a volume of 12 mm 3 has been prototyped.
  • the optical pumping magnetometer described in Non-Patent Document 1 has the following configuration.
  • a vertical cavity surface emitting laser is provided at a position spaced upward from the substrate, a vapor cell filled with rubidium vapor is provided below the vertical cavity surface emitting laser, and a photodiode is further provided below the vapor cell. Is provided.
  • This photodiode is provided on the upper surface of the substrate, and has a light receiving portion at a position for receiving light emitted from the vertical cavity surface emitting laser and passing through the vapor cell.
  • the optical pumping magnetometer is arranged in a plane on the head of the person to be measured, depending on the location, the direction of the magnetic field that can be detected by the optical pumping magnetometer and the direction of the magnetoencephalogram generated by the person to be measured Because of the inconsistency, the magnetoencephalogram cannot be measured with high accuracy.
  • an object of the present invention is to provide a magnetoencephalograph and a magnetoencephalography measurement method with a simple configuration, low cost, and high accuracy.
  • a magnetoencephalograph is a magnetoencephalograph for measuring the magnetoencephalogram of the head of the subject, and a plurality of lights arranged in a helmet shape covering the head of the subject.
  • a pumping magnetometer the optical pumping magnetometer being filled with alkali metal atoms and disposed substantially parallel to the surface of the subject's head, and substantially perpendicular to the surface of the subject's head
  • Laser light emitting means for emitting laser light in a direction toward the head of the person to be measured and causing the laser light to enter the vapor cell, and for the laser light that has passed through the vapor cell to the head of the person to be measured.
  • Reflection means that reflects in a direction substantially perpendicular to the surface and away from the head of the person being measured, and polarization change detection that detects the change in the polarization of the laser light by receiving the laser light reflected by the reflection means Means.
  • the magnetoencephalogram measurement method is a magnetoencephalography measurement method for measuring the magnetoencephalogram of the head of the measurement subject, and a plurality of optical pumping arranged so as to form a helmet shape covering the measurement subject's head.
  • a vapor cell arranged substantially parallel to the surface of the subject's head is filled with alkali metal atoms, and the direction is substantially perpendicular to the surface of the subject's head.
  • the laser beam is emitted in a direction toward the head of the measurement subject, is incident on the vapor cell, and the laser beam that has passed through the vapor cell is substantially perpendicular to the surface of the measurement subject's head.
  • the magnetoencephalogram of the head of the subject is measured by detecting the change in the polarization of the laser light by receiving the reflected laser beam reflected in the direction away from the head of the subject. .
  • a plurality of optical pumping magnetometers are arranged so as to form a helmet shape covering the head of the person to be measured, and the vapor cell constituting the optical pumping magnetometer is almost on the surface of the head of the person to be measured. Arranged in parallel. Therefore, the direction of the magnetic field that can be detected by the optical pumping magnetometer can be matched with the direction of the magnetoencephalogram generated by the measurement subject, and the magnetoencephalogram can be measured with high accuracy.
  • laser light is emitted in a direction substantially perpendicular to the surface of the head of the subject and toward the head of the subject, the laser light is incident on the vapor cell, and the head of the subject is Laser light whose optical path is changed in a direction substantially perpendicular to the surface and away from the head of the subject is received. For this reason, it is not necessary to route the electrical wiring for the light receiving element that receives the laser light from the outside to a position close to the head of the person to be measured. Therefore, when a magnetoencephalograph is manufactured by arranging a large number of optically pumped magnetometers, the magnetoencephalograph can be manufactured with a simple configuration.
  • the vapor cell may allow a plurality of laser beams to pass through. According to this, since a vapor cell can be enlarged and one vapor cell can be shared with respect to a plurality of laser beams, variation in vapor density in a region through which each laser beam passes can be reduced, and measurement accuracy can be improved. Can be increased.
  • the steam cell may be enlarged as long as it maintains a certain flatness. According to this, since the number of cells can be reduced, variation in vapor density can be reduced, and measurement accuracy can be increased.
  • both the laser beam emitting means and the polarization change detecting means may be provided on the vapor cell. According to this, the laser beam emitting means, the polarization change detecting means, and the vapor cell can be handled as an integrated unit, the handling becomes easy, and the magnetoencephalograph can be miniaturized.
  • the laser light emitting means has a pump light emitting means for emitting the pump light and a probe light emitting means for emitting the probe light, and the pump light emitting means receives the pump light.
  • the probe light emitting means is incident on the vapor cell in a first direction parallel to the surface of the measurement subject's head, and the probe light emitting means is in a direction parallel to the surface of the measurement subject's head and in the first direction.
  • the light is incident on the vapor cell in the second vertical direction, the reflection means reflects the probe light that has passed through the vapor cell, and the polarization change detection means detects a change in the polarization of the probe light reflected by the reflection means. It can be configured.
  • the pump light is incident on the vapor cell in a first direction parallel to the surface of the head of the person to be measured, and the laser light is used as the probe light in a direction parallel to the surface of the head of the person to be measured.
  • the vapor cell is incident in a second direction orthogonal to the first direction. Therefore, it is possible to accurately measure the magnetoencephalogram in the direction perpendicular to both the first direction and the second direction, that is, the direction perpendicular to the surface of the head of the subject.
  • the laser light emitting means may cause the laser light to be incident on the vapor cell in a direction substantially perpendicular to the surface of the head of the subject and toward the head of the subject.
  • laser light is incident in a direction substantially perpendicular to the surface of the head of the subject and toward the head of the subject, and then substantially perpendicular to the surface of the head of the subject. Then, the laser beam is reflected in a direction away from the head of the person to be measured, the laser beam is received, and a change in the polarization of the laser beam is detected. For this reason, it is not necessary to prepare two light sources of pump light and probe light, and a magnetoencephalograph can be manufactured at low cost and in a small space.
  • a magnetoencephalograph and a magnetoencephalography measurement method with a simple configuration, low cost, and high accuracy can be obtained.
  • FIG. 1 is a schematic perspective view showing a magnetoencephalograph according to a first embodiment of the present invention. It is a perspective view which shows the optical pumping magnetometer which comprises the magnetoencephalograph which concerns on 1st Embodiment of this invention. It is a perspective view which shows the other optical pumping magnetometer which comprises the magnetoencephalograph which concerns on 1st Embodiment of this invention. It is a perspective view which shows the optical pumping magnetometer which comprises the magnetoencephalograph which concerns on 2nd Embodiment of this invention. It is a perspective view which shows the other optical pumping magnetometer which comprises the magnetoencephalograph which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is a schematic perspective view showing a magnetoencephalograph according to the first embodiment of the present invention. This magnetoencephalograph is for measuring the magnetoencephalogram of a human head.
  • the magnetoencephalograph 100 includes a plurality of optical pumping magnetometers 1.
  • the optical pumping magnetometer 1 has a vapor cell 2 (see FIG. 2).
  • a large number of these steam cells 2 are arranged so as to form a helmet shape covering the head of the measurement subject (following the surface shape of the head).
  • FIG. 2 is a perspective view showing the optical pumping magnetometer 1 according to the first embodiment of the present invention.
  • the optical pumping magnetometer 1 includes a vapor cell 2, a pump light laser (pump light emitting means) 3, a polarizer 4, a mirror 5, a mirror 6, a probe light laser (probe light emitting means) 7, a polarizer 8, a mirror 9, A mirror (reflecting means) 10 and a photodiode (polarization change detecting means) 11 are provided.
  • the head of the person to be measured is on the negative side in the z-axis direction when viewed from the optical pumping magnetometer 1.
  • the surface of the head of the measurement subject is parallel to the xy plane and perpendicular to the z-axis direction. Since the human brain magnetic field is mainly composed of components in the direction perpendicular to the surface of the head, the brain magnetic field of the subject is mainly composed of components in the z-axis direction.
  • the vapor cell 2 is a hollow body made of a transparent material such as glass or quartz.
  • the inside of the vapor cell 2 is filled with an alkali metal such as an alkali metal such as potassium, rubidium or cesium.
  • an alkali metal such as an alkali metal such as potassium, rubidium or cesium.
  • a rare gas such as helium is also filled in the vapor cell 2.
  • a gas such as nitrogen is also filled in the vapor cell 2 as a quenching gas for preventing fluorescence.
  • the steam cell 2 is heated by a heater provided in contact with the wall of the steam cell 2 or by flowing hot air generated at a place different from the steam cell 2 around the steam cell 2.
  • the sensitivity of the magnetoencephalogram measurement increases as the vapor density in the vapor cell 2 increases.
  • the cell temperature is preferably about 100 to 200 degrees Celsius.
  • the entire vapor cell 2 is covered with a heat insulating material.
  • the vapor cell 2 is enlarged as long as it maintains a certain flatness. That is, it is preferable to enlarge the steam cell 2 in a range in which the plane of the steam cell 2 and the surface of the head of the person to be measured can be parallel.
  • the pump light laser 3 irradiates the vapor cell 2 with the pump light L1.
  • the pump light L1 optically pumps the alkali metal in the vapor cell 2.
  • the pump laser 3 emits light having a wavelength capable of optically pumping the alkali metal in the vapor cell 2.
  • the pump light laser 3 emits the pump light L1 in the negative direction in the z-axis direction. This negative direction in the z-axis direction is a direction perpendicular to the surface of the head of the subject and toward the head of the subject.
  • the polarizer 4 is for making the polarization state of the pump light L1 emitted from the pump light laser 3 circularly polarized. Specifically, a ⁇ / 4 plate for converting linearly polarized light into circularly polarized light is used.
  • the mirror 5 is for changing the optical path of the pump light L1 that has passed through the polarizer 4 and making it incident on the vapor cell 2.
  • the mirror 6 is for changing the optical path of the pump light L1 that has passed through the vapor cell 2 in a direction away from the head of the person to be measured.
  • the probe light laser 7 irradiates the vapor cell 2 with the probe light L2.
  • the probe light laser 7 emits the probe light L2 in the negative direction in the z-axis direction.
  • This negative direction in the z-axis direction is a direction perpendicular to the surface of the head of the subject and toward the head of the subject.
  • the polarizer 8 is for making the polarization state of the probe light L2 emitted from the probe light laser 7 linearly polarized light.
  • the mirror 9 is for changing the optical path of the probe light L2 that has passed through the polarizer 8 and making it incident on the vapor cell 2.
  • the mirror 10 is for changing the optical path of the probe light L2 that has passed through the vapor cell 2 and making it incident on the photodiode 11.
  • the mirror 10 reflects the probe light L2 in the positive direction in the z-axis direction.
  • the positive direction in the z-axis direction is a direction perpendicular to the surface of the head of the measurement subject and away from the head of the measurement subject.
  • the photodiode 11 is a light receiving element that receives the probe light L ⁇ b> 2 reflected by the mirror 10.
  • the photodiode 11 can detect the rotation angle of the polarization plane of the probe light L2.
  • the pump light laser 3, the probe light laser 7, and the photodiode 11 are all provided on the vapor cell 2.
  • the optical pumping magnetometer 1 configured as described above measures a magnetic field by the SERF (spin-exchange-relaxation-free) method as described below.
  • pump light L1 is emitted from the pump light laser 3 in a negative direction in the z-axis direction, and the emitted pump light L1 is circularly polarized by the polarizer 4, and the circularly polarized light
  • the pump light L 1 thus reflected is reflected by the mirror 5 in the positive direction (first direction) in the x-axis direction and enters the vapor cell 2.
  • the x-axis direction is a direction parallel to the surface of the measurement subject's head.
  • the mirror 5 generally has a different reflectance for s waves (light whose electric field component is perpendicular to the incident surface) and p wave (light whose electric field components are parallel to the incident surface).
  • the s wave component and the p wave of the pump light L1 incident on the mirror 5 are set so that the polarization state of the pump light L1 is circularly polarized when entering the vapor cell 2.
  • Ingredients are appropriately adjusted. The same applies to a mirror 9 described later.
  • the alkali metal atoms in the vapor cell 2 are optically pumped, and the atomic spins are aligned in the same direction.
  • the pump light L1 passes through the vapor cell 2 and is reflected by the mirror 6 in the positive direction in the z-axis direction.
  • the probe light L2 is emitted in the negative direction in the z-axis direction from the probe light laser 7, and the emitted probe light L2 is The polarization state is changed to linearly polarized light by the polarizer 8, and the probe light L ⁇ b> 2 converted to this linearly polarized light is reflected by the mirror 9 in the positive direction (second direction) in the y-axis direction and enters the vapor cell 2.
  • This y-axis direction is a direction parallel to the surface of the head of the measurement subject and is a direction orthogonal to the x-axis direction.
  • the circularly polarized pump light L1 is incident in the x-axis direction
  • the linearly polarized probe light L2 is incident in the y-axis direction.
  • the polarization plane of the probe light L2 is rotated by an angle corresponding to the direction perpendicular to both the pump light L1 and the probe light L2, that is, the magnetic field Bz in the z-axis direction.
  • the probe light L2 passes through the vapor cell 2, is reflected by the mirror 10 in the positive z-axis direction, and then received by the photodiode 11.
  • the current that flows when the photodiode 11 receives light changes according to the rotation angle of the polarization plane of the probe light L2. Therefore, the photodiode 11 can detect the rotation angle of the polarization plane of the probe light L2, that is, the change in polarization. From the rotation angle of the polarization plane of the probe light L2, the magnetic field Bz in the z-axis direction in the vapor cell 2, That is, it is possible to measure the brain magnetic field of the subject.
  • a plurality of optical pumping magnetometers 1 are arranged so as to form a helmet shape covering the head of the person to be measured, and the optical pumping magnetometer 1 is configured. Since the vapor cell 2 is arranged substantially parallel to the surface of the head of the subject, the direction of the magnetic field that can be detected by the optical pumping magnetometer 1 matches the direction of the magnetoencephalogram generated by the subject. Magnetism can be measured with high accuracy.
  • the pump light L1 that is circularly polarized light is incident on the vapor cell 2 in the x-axis direction parallel to the surface of the head of the measurement subject
  • the probe light L2 that is linearly polarized light is The light is incident on the vapor cell 2 in the y-axis direction that is parallel to the surface of the head of the measurement subject and orthogonal to the x-axis direction. Therefore, the magnetoencephalogram in the direction perpendicular to both the x-axis direction and the y-axis direction, that is, the direction perpendicular to the surface of the head of the subject can be accurately measured.
  • the probe light L2 is emitted in a negative direction in the z-axis direction, which is a direction perpendicular to the surface of the head of the subject and toward the head of the subject, and the polarization state is changed to linearly polarized light. Then, the linearly polarized probe light L2 is incident on the vapor cell 2 and is positive in the z-axis direction, which is a direction perpendicular to the surface of the head of the subject and away from the head of the subject.
  • the magnetoencephalograph 100 can be produced with a simple configuration.
  • the steam cell 2 is enlarged as long as a certain flatness is maintained, the number of the steam cells 2 can be reduced, so that the variation in the steam density can be reduced and the measurement accuracy can be increased.
  • the pump light laser 3, the probe light laser 7, and the photodiode 11 are all provided on the vapor cell 2, the pump light laser 3, the probe light laser 7, the photodiode 11 and the vapor cell 2 are integrated into a unit. As a result, the magnetoencephalograph 100 can be miniaturized.
  • FIG. 3 is a perspective view showing another optical pumping magnetometer 21 according to the first embodiment of the present invention.
  • the optical pumping magnetometer 21 is different from the optical pumping magnetometer 1 in the following points. That is, in the optical pumping magnetometer 1, only one probe light L2 passes through the vapor cell 2, whereas in the optical pumping magnetometer 21, the vapor cell 2 passes a plurality of probe lights L2. As long as a certain flatness is maintained, it is assumed to be large. Thus, how large the steam cell 2 can be is limited by the flatness of the region to be measured. That is, if the vapor cell 2 is made too large, the region to be measured is a curved surface, so that the bottom surface of the vapor cell 2 and the region to be measured are not parallel, and the magnetoencephalogram measurement becomes impossible.
  • the size of the vapor cell 2 is also limited by the attenuation of the intensity of the pump light L1 emitted from the pump light laser 3, the uniformity of the density of the alkali metal vapor in the vapor cell 2, and the like.
  • the configuration and function of the optical pumping magnetometer 21 are the same as those of the optical pumping magnetometer 1.
  • optical pumping magnetometer 21 configured in this way, the same effect as the optical pumping magnetometer 1 can be obtained.
  • the number of the pump light lasers 3 can be reduced, and the cost can be further reduced. it can.
  • the optical pumping magnetometer 21 is configured to provide one large vapor cell 2 instead of providing a plurality of vapor cells 2 for the plurality of probe lights L2 as in the optical pumping magnetometer 1. Yes. For this reason, since one vapor cell 2 can be shared with respect to a plurality of probe lights, variation in vapor density in a region through which each probe light passes can be reduced, and measurement accuracy can be improved.
  • the vapor cell 2 is enlarged as long as a certain flatness is maintained, the number of cells can be reduced, so that variation in vapor density can be reduced and measurement accuracy can be improved.
  • FIG. 4 is a perspective view showing an optical pumping magnetometer 31 according to the second embodiment of the present invention.
  • the optical pumping magnetometer 31 according to the second embodiment is different from the optical pumping magnetometer 1 according to the first embodiment in the following points. That is, the optical pumping magnetometer 1 according to the first embodiment measures the magnetoencephalogram by the SERF method, whereas the optical pumping magnetometer 31 utilizes the so-called nonlinear Faraday rotation phenomenon to Measure magnetism. Therefore, the optical pumping magnetometer 31 according to the second embodiment has a different configuration from the optical pumping magnetometer 1 according to the first embodiment, specifically as follows.
  • the optical pumping magnetometer 31 includes a laser (laser light emitting means) 32, a polarizer 8, a vapor cell 2, a mirror (reflecting means) 33, and a photodiode (polarization change detecting means) 11.
  • the head of the person to be measured is on the negative side in the z-axis direction when viewed from the optical pumping magnetometer 31.
  • the surface of the head of the measurement subject is parallel to the xy plane and perpendicular to the z-axis direction.
  • the laser 32 emits a laser beam L3 in a direction substantially perpendicular to the surface of the head of the subject and toward the head of the subject, and in a direction substantially close to the negative direction of the z axis.
  • the direction substantially close to the negative direction of the z-axis is a direction in which the laser beam L3 causes a nonlinear Faraday rotation phenomenon by a magnetic field in the z-axis direction, and the head of the measurement subject.
  • the laser 32 causes the laser light L3 to enter the vapor cell 2 through the polarizer 8 in a direction substantially close to the negative direction in the z-axis direction.
  • the polarizer 8 emits the laser light L3 in a direction substantially perpendicular to the surface of the head of the measurement subject and toward the measurement subject's head, more specifically in a direction substantially close to the negative direction of the z axis. It is made incident on the vapor cell 2.
  • the mirror 33 causes the laser light L3 that has passed through the vapor cell 2 to travel in a direction perpendicular to the surface of the head of the subject and away from the head of the subject, more specifically in the z-axis direction. Reflects in a direction almost close to the positive direction.
  • the laser 32 and the photodiode 11 are both provided on the vapor cell 2.
  • the optical pumping magnetometer 31 configured as described above measures a magnetic field using a nonlinear Faraday rotation phenomenon as described below.
  • a heater provided in contact with the wall of the steam cell 2 in advance or by flowing hot air generated in a place different from the steam cell 2 around the steam cell 2
  • the steam cell 2 is heated in the same manner as in the optical pumping magnetometer 1.
  • laser light L3 is emitted from the laser 32 in a direction substantially close to the negative direction of the z-axis, and this laser light L3 is converted into linearly polarized light by the polarizer 8, and is converted into this linearly polarized light.
  • the laser light L3 is incident on the vapor cell 2 in a direction substantially close to the negative direction of the z axis.
  • the laser beam L3 travels in the vapor cell 2 in a direction substantially close to the negative direction of the z axis. At this time, the polarization plane of the laser beam L3 is rotated by an angle corresponding to the magnetic field Bz in the z-axis direction due to the nonlinear Faraday rotation phenomenon.
  • the laser beam L3 passes through the vapor cell 2, is reflected by the mirror 33 in the positive z-axis direction, and then received by the photodiode 11.
  • the photodiode 11 detects the rotation angle of the polarization plane of the laser light L3, that is, the change in polarization, and the rotation angle determines the magnetic field in the z-axis direction in the vapor cell 2, that is, the brain magnetic field of the measurement subject. This is the same as in the case of the optical pumping magnetometer 1 according to the first embodiment.
  • the direction of the magnetic field that can be detected by the optical pumping magnetometer 31 and the direction of the magnetoencephalogram generated by the measurement subject coincide with each other. Can be performed with high accuracy.
  • the operation of the optical pumping magnetometer 31 having a plurality of vapor cells 2 is the same as that of the optical pumping magnetometer 1, and therefore the electrical wiring for the photodiode 11 is brought close to the head of the person to be measured from the outside. Therefore, the magnetoencephalograph 100 can be manufactured with a simple configuration.
  • the vapor cell 2 is enlarged as long as it maintains a certain flatness, the number of cells can be reduced, so that the variation in vapor density can be reduced and the measurement accuracy can be increased.
  • both the laser 32 and the photodiode 11 are provided on the vapor cell 2, the laser 32 and the photodiode 11 and the vapor cell 2 can be handled as an integral unit, and handling becomes easy.
  • the magnetoencephalograph 100 can be reduced in size.
  • the laser beam L3 is incident in a direction substantially perpendicular to the surface of the head of the person to be measured and toward the head of the person to be measured.
  • the laser beam L3 is reflected in a direction substantially perpendicular to the surface and away from the head of the measurement subject, and the laser beam L3 is received, and a change in the polarization of the laser beam L3 is detected. For this reason, it is not necessary to prepare two light sources of pump light and probe light, and a magnetoencephalograph can be manufactured at low cost and in a small space.
  • FIG. 5 is a perspective view showing another optical pumping magnetometer 41 according to the second embodiment of the present invention.
  • the optical pumping magnetometer 41 is different from the optical pumping magnetometer 31 in the following points. That is, in the optical pumping magnetometer 31, only one laser beam L3 passes through the vapor cell 2. On the other hand, in the optical pumping magnetometer 41, the vapor cell 2 passes a plurality of laser beams L3. As long as a certain flatness is maintained, it is assumed to be large. In other respects, the configuration and function of the optical pumping magnetometer 41 are the same as those of the optical pumping magnetometer 31.
  • the optical pumping magnetometer 41 has the same effects as the optical pumping magnetometer 31. Further, since the vapor cell 2 allows a plurality of laser beams L3 to pass therethrough, the vapor cell 2 can be enlarged so that one vapor cell 2 can be shared for the plurality of laser beams L3. Variations in vapor density can be reduced, and measurement accuracy can be increased.
  • this invention is not limited to the said embodiment.
  • the photodiode 11 is used as the polarization change detection means in the above embodiment
  • the rotation angle of the polarization plane of the probe light L2 or the laser light L3 is detected by using various known techniques instead. May be.

Abstract

 被測定者の頭部の脳磁を測定するための脳磁計であって、前記被測定者の頭部を覆うヘルメット形状をなすように複数配置された光ポンピング磁力計を備え、前記光ポンピング磁力計は、アルカリ金属原子を充填され、前記被測定者の頭部の表面にほぼ平行に配置された蒸気セルと、前記被測定者の頭部の表面にほぼ垂直な方向であって前記被測定者の頭部に向かう方向にレーザ光を出射して前記蒸気セルに前記レーザ光を入射させるレーザ光出射手段と、前記蒸気セルを通過した前記レーザ光を、前記被測定者の頭部の表面にほぼ垂直な方向であって前記被測定者の頭部から離れる方向に反射する反射手段と、前記反射手段により反射された前記レーザ光を受光して、前記レーザ光の偏光の変化を検出する偏光変化検出手段と、を有する脳磁計。

Description

脳磁計及び脳磁測定方法
 本発明は、脳磁計及び脳磁測定方法に関する。
 近年、SQUIDセンサに代わる高感度磁力計として、アルカリ金属を利用した光ポンピング磁力計が開発されている。光ポンピング磁力計は、冷却機能が不要であり、SQUIDセンサに対して大幅なランニングコスト削減が可能となることからも、脳磁計等への適用が期待されている。
 ここで、光ポンピング磁力計を用いて脳磁場を精密に測定し、また、測定感度を向上するためには、小型の光ポンピング磁力計を多数使用することが必要となる。そこで、例えば下記の非特許文献1に記載されているように、体積12mmの光ポンピング磁力計が試作されている。非特許文献1に記載の光ポンピング磁力計は、次のような構成からなる。垂直共振器面発光レーザが基板から上方に離間した位置に設けられると共に、この垂直共振器面発光レーザの下方に、ルビジウム蒸気を封入した蒸気セルが設けられ、さらにこの蒸気セルの下方にフォトダイオードが設けられる。そして、このフォトダイオードは、基板の上面に設けられており、垂直共振器面発光レーザから発光され、蒸気セルを通り抜けた光を受光する位置に受光部を有する構成とされている。
P. D.D. Schwindt et al., "Chip-scale atomic magnetometer", App. Phys.Lett. Vol.85, No.26, pp.6409-6411 (2004)
 ここで、光ポンピング磁力計を被測定者の頭部の上に平面的に配置した場合、場所によっては光ポンピング磁力計の検出できる磁場の向きと、被測定者の発生する脳磁の向きとが一致しないため、脳磁の測定を精度良く行うことができない。
 また、上記のように、フォトダイオードなどの受光素子を基板上に設ける構成をとると、電気配線を外部から基板上の受光素子まで引き回すことが必要になる。したがって、多数の光ポンピング磁力計を並べて脳磁計を作製する場合に、簡易な構成で脳磁計を作製することができない。
 そこで、本発明は、簡易な構成で、低コストで精度の良い脳磁計及び脳磁測定方法を提供することを課題とする。
 本発明の一側面に係る脳磁計は、被測定者の頭部の脳磁を測定するための脳磁計であって、被測定者の頭部を覆うヘルメット形状をなすように複数配置された光ポンピング磁力計を備え、光ポンピング磁力計は、アルカリ金属原子を充填され、被測定者の頭部の表面にほぼ平行に配置された蒸気セルと、被測定者の頭部の表面にほぼ垂直な方向であって被測定者の頭部に向かう方向にレーザ光を出射して蒸気セルにレーザ光を入射させるレーザ光出射手段と、蒸気セルを通過したレーザ光を、被測定者の頭部の表面にほぼ垂直な方向であって被測定者の頭部から離れる方向に反射する反射手段と、反射手段により反射されたレーザ光を受光して、レーザ光の偏光の変化を検出する偏光変化検出手段と、を有する。
 また、脳磁測定方法は、被測定者の頭部の脳磁を測定するための脳磁測定方法であって、被測定者の頭部を覆うヘルメット形状をなすように複数配置された光ポンピング磁力計を用い、光ポンピング磁力計においては、被測定者の頭部の表面にほぼ平行に配置された蒸気セルにアルカリ金属原子を充填し、被測定者の頭部の表面にほぼ垂直な方向であって被測定者の頭部に向かう方向にレーザ光を出射して蒸気セルにレーザ光を入射させ、蒸気セルを通過したレーザ光を、被測定者の頭部の表面にほぼ垂直な方向であって被測定者の頭部から離れる方向に反射し、反射されたレーザ光を受光して、レーザ光の偏光の変化を検出することにより、被測定者の頭部の脳磁を測定する。
 これらによれば、被測定者の頭部を覆うヘルメット形状をなすように複数の光ポンピング磁力計が配置され、この光ポンピング磁力計を構成する蒸気セルが被測定者の頭部の表面にほぼ平行に配置される。したがって、光ポンピング磁力計の検出できる磁場の向きと、被測定者の発生する脳磁の向きとを一致させることが可能となり、脳磁の測定を精度良く行うことができる。また、被測定者の頭部の表面にほぼ垂直な方向であって被測定者の頭部に向かう方向にレーザ光が出射され、レーザ光が蒸気セルに入射され、被測定者の頭部の表面にほぼ垂直な方向であって被測定者の頭部から離れる方向に光路変更されたレーザ光が受光される。このため、レーザ光を受光する受光素子に対する電気配線を、外部から被測定者の頭部に近接する位置まで引き回すことが不要となる。したがって、多数の光ポンピング磁力計を並べて脳磁計を作製する場合に、簡易な構成で脳磁計を作製することができる。
 また、脳磁計において、蒸気セルは複数のレーザ光を通過させてもよい。これによれば、蒸気セルを大きくして、複数のレーザ光に対して1つの蒸気セルを共用できるため、各レーザ光が通過する領域における蒸気密度のばらつきを小さくすることができ、測定精度を高めることができる。
 また、蒸気セルは、一定の平面度を保つ限り大きくしてもよい。これによれば、セルの数を少なくできるため、蒸気密度のばらつきを小さくすることができ、測定精度を高めることができる。
 また、レーザ光出射手段、偏光変化検出手段は、いずれも蒸気セル上に設けられてもよい。これによれば、レーザ光出射手段、偏光変化検出手段と蒸気セルとを一体のユニットとして扱うことができ、取り扱いが容易になり、また、脳磁計の小型化が図れる。
 また、光ポンピング磁力計において、レーザ光出射手段は、ポンプ光を出射するポンプ光出射手段とプローブ光を出射するプローブ光出射手段を別々に有し、ポンプ光出射手段は、ポンプ光を、被測定者の頭部の表面に平行な第1の方向で蒸気セルに入射させ、プローブ光出射手段は、プローブ光を被測定者の頭部の表面に平行な方向であって第1の方向に垂直な第2の方向で蒸気セルに入射させ、反射手段は、蒸気セルを通過した前記プローブ光を反射し、偏光変化検出手段は、反射手段により反射されたプローブ光の偏光の変化を検出する構成とすることができる。
 これによれば、ポンプ光を、被測定者の頭部の表面に平行な第1の方向で蒸気セルに入射させ、レーザ光をプローブ光として、被測定者の頭部の表面に平行な方向であって第1の方向に直交する第2の方向で蒸気セルに入射させる。したがって、第1の方向と第2の方向のいずれにも垂直な方向、すなわち被測定者の頭部の表面に垂直な方向の脳磁を精度良く測定することができる。
 また、レーザ光出射手段は、被測定者の頭部の表面にほぼ垂直な方向であって被測定者の頭部に向かう方向でレーザ光を蒸気セルに入射させることとしてもよい。
 これによれば、被測定者の頭部の表面にほぼ垂直な方向であって被測定者の頭部に向かう方向でレーザ光を入射させ、その後、被測定者の頭部の表面にほぼ垂直であって被測定者の頭部から離れる方向にレーザ光を反射して、レーザ光を受光して、レーザ光の偏光の変化を検出する。このため、ポンプ光とプローブ光の2つの光源を用意する必要がなく、低コストかつ省スペースで脳磁計を作製することができる。
 本発明によれば、簡易な構成で、低コストで精度の良い脳磁計及び脳磁測定方法が得られる。
本発明の第1実施形態に係る脳磁計を示す概略斜視図である。 本発明の第1実施形態に係る脳磁計を構成する光ポンピング磁力計を示す斜視図である。 本発明の第1実施形態に係る脳磁計を構成する他の光ポンピング磁力計を示す斜視図である。 本発明の第2実施形態に係る脳磁計を構成する光ポンピング磁力計を示す斜視図である。 本発明の第2実施形態に係る脳磁計を構成する他の光ポンピング磁力計を示す斜視図である。
 以下、本発明による脳磁計の好適な実施形態について図面を参照しながら説明する。なお、各図において、同一の要素には同一の符号を付し、重複する説明は省略する。
(第1実施形態)
 図1は、本発明の第1実施形態に係る脳磁計を示す概略斜視図である。この脳磁計は、人間の頭部の脳磁を測定するためのものである。
 図1に示すように、脳磁計100は、複数の光ポンピング磁力計1を備える。光ポンピング磁力計1は、蒸気セル2(図2参照)を有している。これらの蒸気セル2は、被測定者の頭部を覆うヘルメット形状をなすように(頭部の表面形状に倣うように)多数配置されている。
 図2は、本発明の第1実施形態に係る光ポンピング磁力計1を示す斜視図である。
 光ポンピング磁力計1は、蒸気セル2、ポンプ光レーザ(ポンプ光出射手段)3、偏光子4、ミラー5、ミラー6、プローブ光レーザ(プローブ光出射手段)7、偏光子8、ミラー9、ミラー(反射手段)10、フォトダイオード(偏光変化検出手段)11を有している。ここで、被測定者の頭部は、光ポンピング磁力計1から見て、z軸方向の負側にある。また、被測定者の頭部の表面は、xy平面に平行でz軸方向とは垂直である。そして、人間の脳磁は、主に頭部の表面に垂直な方向の成分からなるため、被測定者の脳磁は、主にz軸方向の成分からなる。
 蒸気セル2は、透明な材料、例えばガラスや石英などによって形成される中空体である。この蒸気セル2の内部に、アルカリ金属、例えばカリウム、ルビジウム又はセシウムなどのアルカリ金属が充填される。また、アルカリ金属原子が蒸気セル2の壁に衝突することを防止するためのバッファガスとして、希ガス、例えばヘリウムなども蒸気セル2の内部に充填される。さらに、蛍光防止のためのクエンチングガスとして、例えば窒素などの気体も蒸気セル2の内部に充填される。蒸気セル2は、蒸気セル2の壁に接して設けられるヒーターによって、または、蒸気セル2とは別の場所で発生させた熱風を蒸気セル2の周囲に流すことによって加熱される。脳磁測定の感度は、蒸気セル2中の蒸気の密度が高いほど向上する。しかし、実用性を考慮すると、セルの温度は摂氏100度から200度程度とすることが好ましい。なお、蒸気セル2の温度を保つため、及び、被測定者の頭部を保護するため、蒸気セル2の全体は断熱材で覆われる。ここで、蒸気セル2は、一定の平面度を保つ限り大きくすることが好ましい。すなわち、蒸気セル2の平面と、被測定者の頭部の表面とが平行にできる範囲で、蒸気セル2を大きくすることが好ましい。
 ポンプ光レーザ3は、ポンプ光L1を蒸気セル2に対して照射するものである。ポンプ光L1は、蒸気セル2内のアルカリ金属を光ポンピングする。このポンプ光レーザ3は、蒸気セル2内のアルカリ金属を光ポンピングすることのできる波長を有する光を発光する。そして、ポンプ光レーザ3は、z軸方向の負の向きにポンプ光L1を出射する。このz軸方向の負の向きは、被測定者の頭部の表面に垂直な方向であって被測定者の頭部に向かう方向である。
 偏光子4は、ポンプ光レーザ3から出射されたポンプ光L1の偏光状態を円偏光にするためのものである。具体的には、直線偏光を円偏光にするためのλ/4板などが用いられる。
 ミラー5は、偏光子4を通過したポンプ光L1の光路を変更し、蒸気セル2に入射させるためのものである。
 ミラー6は、蒸気セル2を通過したポンプ光L1の光路を被測定者の頭部から離れる方向に変更するためのものである。
 一方、プローブ光レーザ7は、プローブ光L2を蒸気セル2に対して照射するものである。そして、プローブ光レーザ7は、z軸方向の負の向きにプローブ光L2を出射する。このz軸方向の負の向きは、被測定者の頭部の表面に垂直な方向であって被測定者の頭部に向かう方向である。
 偏光子8は、プローブ光レーザ7から出射されたプローブ光L2の偏光状態を直線偏光にするためのものである。
 ミラー9は、偏光子8を通過したプローブ光L2の光路を変更し、蒸気セル2に入射させるためのものである。
 ミラー10は、蒸気セル2を通過したプローブ光L2の光路を変更し、フォトダイオード11に入射させるためのものである。このミラー10は、プローブ光L2を、z軸方向の正の向きに反射する。このz軸方向の正の向きは、被測定者の頭部の表面に垂直な方向であって、被測定者の頭部から離れる方向である。
 フォトダイオード11は、ミラー10によって反射されたプローブ光L2を受光する受光素子である。そして、このフォトダイオード11は、プローブ光L2の偏光面の回転角を検出することができる。
 なお、ポンプ光レーザ3、プローブ光レーザ7及びフォトダイオード11は、いずれも蒸気セル2上に設けられる。
 上述のように構成される光ポンピング磁力計1は、以下に説明するように、SERF(spin exchange relaxation-free)法によって磁場を測定する。
 被測定者の脳磁を測定するにあたり、あらかじめ、蒸気セル2の壁に接して設けられるヒーターによって、または、蒸気セル2とは別の場所で発生させた熱風を蒸気セル2の周囲に流すことによって、蒸気セル2を加熱しておく。これにより、蒸気セル2の内部のアルカリ金属原子が所定の密度に達する。
 次に、ポンプ光レーザ3からポンプ光L1が、z軸方向の負の向きに出射され、この出射されたポンプ光L1は、偏光子4によって、偏光状態を円偏光とされ、この円偏光とされたポンプ光L1は、ミラー5によってx軸方向の正の向き(第1の方向)に反射され、蒸気セル2へ入射する。このx軸方向は、被測定者の頭部の表面に平行な方向である。なお、ミラー5は、一般にはs波(電界成分が入射面に垂直な光)に対する反射率とp波(電界成分が入射面に平行な光)に対する反射率が異なる。したがって、ポンプ光L1が反射された後、蒸気セル2に入射するときにポンプ光L1の偏光状態が円偏光であるようにすべく、ミラー5に入射するポンプ光L1のs波成分とp波成分は適宜調整される。後述のミラー9も同様である。
 円偏光であるポンプ光L1が蒸気セル2へ入射すると、蒸気セル2内のアルカリ金属原子は光ポンピングされ、その原子スピンが同一方向にそろえられる。
 そして、ポンプ光L1は蒸気セル2を通過し、ミラー6によってz軸方向の正の向きに反射される。
 上記のようにして蒸気セル2内のアルカリ金属が光ポンピングされた状態で、プローブ光レーザ7からプローブ光L2が、z軸方向の負の向きに出射され、この出射されたプローブ光L2は、偏光子8によって、偏光状態を直線偏光とされ、この直線偏光とされたプローブ光L2は、ミラー9によってy軸方向の正の向き(第2の方向)に反射され、蒸気セル2へ入射する。このy軸方向は、被測定者の頭部の表面に平行な方向であって、x軸方向と直交する方向である。
 ここで、蒸気セル2において、円偏光のポンプ光L1はx軸方向に入射し、直線偏光のプローブ光L2はy軸方向に入射している。この場合、プローブ光L2の偏光面は、ポンプ光L1とプローブ光L2のいずれにも垂直な方向、すなわちz軸方向の磁場Bzに応じた角度だけ回転する。
 そして、プローブ光L2は蒸気セル2を通過し、ミラー10によってz軸方向の正の向きに反射され、その後、フォトダイオード11によって受光される。フォトダイオード11が受光することによって流れる電流は、プローブ光L2の偏光面の回転角に応じて変化する。したがって、フォトダイオード11によって、プローブ光L2の偏光面の回転角、すなわち偏光の変化を検出することができ、プローブ光L2の偏光面の回転角から、蒸気セル2におけるz軸方向の磁場Bz、すなわち被測定者の脳磁を測定することができる。
 以上のように、第1実施形態に係る脳磁計100においては、被測定者の頭部を覆うヘルメット形状をなすように複数の光ポンピング磁力計1が配置され、光ポンピング磁力計1を構成する蒸気セル2が被測定者の頭部の表面にほぼ平行に配置されるため、光ポンピング磁力計1の検出できる磁場の向きと、被測定者の発生する脳磁の向きとが一致し、脳磁の測定を精度良く行うことができる。また、光ポンピング磁力計1においては、円偏光であるポンプ光L1を、被測定者の頭部の表面に平行なx軸方向で蒸気セル2に入射させ、直線偏光であるプローブ光L2を、被測定者の頭部の表面に平行であってx軸方向とは直交するy軸方向で蒸気セル2に入射させる。したがって、x軸方向とy軸方向のいずれにも垂直な方向、すなわち被測定者の頭部の表面に垂直な方向の脳磁を精度良く測定することができる。
 また、プローブ光L2は、被測定者の頭部の表面に垂直な方向であって被測定者の頭部に向かう方向であるz軸方向の負の向きに出射され、偏光状態が直線偏光にされ、直線偏光にされたプローブ光L2が蒸気セル2に入射され、被測定者の頭部の表面に垂直な方向であって被測定者の頭部から離れる方向であるz軸方向の正の向きに光路変更されてフォトダイオード11に受光されるため、フォトダイオード11に対する電気配線を、外部から被測定者の頭部に近接する位置まで引き回すことが不要となり、多数の光ポンピング磁力計1を並べて脳磁計100を作製する場合に、簡易な構成で脳磁計100を作製することができる。
 また、蒸気セル2は、一定の平面度を保つ限り大きくされているため、蒸気セル2の数を少なくできるから、蒸気密度のばらつきを小さくすることができ、測定精度を高めることができる。
 また、ポンプ光レーザ3、プローブ光レーザ7及びフォトダイオード11は、いずれも蒸気セル2上に設けられるため、ポンプ光レーザ3、プローブ光レーザ7及びフォトダイオード11と蒸気セル2とを一体のユニットとして扱うことができ、取り扱いが容易になり、また、脳磁計100の小型化が図れる。
 図3は、本発明の第1実施形態に係る他の光ポンピング磁力計21を示す斜視図である。
 光ポンピング磁力計21が光ポンピング磁力計1と異なる点は次の点である。すなわち、光ポンピング磁力計1においては、蒸気セル2を通過するプローブ光L2は1本だけであるが、これに対し、光ポンピング磁力計21においては、蒸気セル2は複数のプローブ光L2を通過させることができるように、一定の平面度を保つ限り大きなものとされている。このように、蒸気セル2をどれだけ大きくできるかは、測定対象となる領域の平面度により制限される。すなわち、蒸気セル2を大きくしすぎると、測定対象となる領域が曲面であることから、蒸気セル2の底面と測定対象となる領域が平行でなくなり、脳磁測定が不可能となってしまう。また、蒸気セル2の大きさは、ポンプ光レーザ3から発光されるポンプ光L1の強度の減衰、蒸気セル2内のアルカリ金属蒸気の密度の均一性などによっても制限される。その他の点においては、光ポンピング磁力計21の構成及び機能は、光ポンピング磁力計1と同様である。
 このように構成された光ポンピング磁力計21においても、光ポンピング磁力計1と同様な効果を得ることができ、加えて、ポンプ光レーザ3の数を低減でき、一層低コスト化を図ることができる。
 また、光ポンピング磁力計21においては、光ポンピング磁力計1のように複数のプローブ光L2に対して複数の蒸気セル2を設けるのではなく、1個の大きな蒸気セル2を設ける構成となっている。このため、複数のプローブ光に対して1つの蒸気セル2を共用できるから、各プローブ光が通過する領域における蒸気密度のばらつきを小さくすることができ、測定精度を高めることができる。
 また、蒸気セル2は、一定の平面度を保つ限り大きくされているため、セルの数を少なくすることができるから、蒸気密度のばらつきを小さくすることができ、測定精度を高めることができる。
(第2実施形態)
 図4は、本発明の第2実施形態に係る光ポンピング磁力計31を示す斜視図である。
 第2実施形態に係る光ポンピング磁力計31が第1実施形態に係る光ポンピング磁力計1と異なる点は、次の点である。すなわち、第1実施形態に係る光ポンピング磁力計1は、SERF法によって脳磁の測定を行っているが、これに対し、光ポンピング磁力計31においては、いわゆる非線形ファラデー回転現象を利用して脳磁の測定を行う。そのため、第2実施形態に係る光ポンピング磁力計31は、第1実施形態に係る光ポンピング磁力計1と、具体的には以下のように異なる構成を備えている。
 第2実施形態に係る光ポンピング磁力計31は、レーザ(レーザ光出射手段)32、偏光子8、蒸気セル2、ミラー(反射手段)33及びフォトダイオード(偏光変化検出手段)11を有する。ここで、被測定者の頭部は、光ポンピング磁力計31から見て、z軸方向の負側にある。また、被測定者の頭部の表面は、xy平面に平行でz軸方向とは垂直である。
 レーザ32は、被測定者の頭部の表面にほぼ垂直な方向であって被測定者の頭部に向かう方向で、z軸の負の向きにほぼ近い方向にレーザ光L3を出射する。なお、ここでのz軸の負の向きにほぼ近い方向とは、レーザ光L3が、z軸方向の磁場によって非線形ファラデー回転現象を生じるような方向であって、かつ、被測定者の頭部の表面に沿って光ポンピング磁力計31を並べて配置したときに、レーザ32やフォトダイオード11の位置が干渉することのないような方向をいう。また、レーザ32は、偏光子8を介して、z軸方向の負の向きにほぼ近い方向で蒸気セル2にレーザ光L3を入射させる。
 偏光子8は、被測定者の頭部の表面にほぼ垂直であって被測定者の頭部に向かう方向、より具体的には、z軸の負の向きにほぼ近い方向でレーザ光L3を蒸気セル2に入射させる。
 ミラー33は、蒸気セル2を通過したレーザ光L3を、被測定者の頭部の表面に垂直な方向であって被測定者の頭部から離れる方向、より具体的には、z軸方向の正の向きにほぼ近い方向に反射する。
 なお、レーザ32及びフォトダイオード11は、いずれも蒸気セル2上に設けられる。
 上述のように構成される光ポンピング磁力計31は、以下に説明するように、非線形ファラデー回転現象を利用して磁場を測定する。
 被測定者の脳磁を測定するにあたり、あらかじめ蒸気セル2の壁に接して設けられるヒーターによって、または、蒸気セル2とは別の場所で発生させた熱風を蒸気セル2の周囲に流すことによって蒸気セル2を加熱しておくのは、光ポンピング磁力計1の場合と同様である。
 次に、レーザ32からレーザ光L3が、z軸の負の向きにほぼ近い方向に出射され、このレーザ光L3は、偏光子8によって、その偏光状態を直線偏光とされ、この直線偏光とされたレーザ光L3は、z軸の負の向きにほぼ近い方向で蒸気セル2へ入射する。
 レーザ光L3は、蒸気セル2の内部を、z軸の負の向きにほぼ近い方向に進む。このとき、レーザ光L3の偏光面は、非線形ファラデー回転現象により、z軸方向の磁場Bzに応じた角度だけ回転する。
 そして、レーザ光L3は蒸気セル2を通過し、ミラー33によってz軸方向の正の向きに反射され、その後、フォトダイオード11によって受光される。フォトダイオード11によってレーザ光L3の偏光面の回転角、すなわち偏光の変化が検出され、この回転角によって蒸気セル2におけるz軸方向の磁場、すなわち被測定者の脳磁が測定されるのは、第1実施形態に係る光ポンピング磁力計1の場合と同様である。
 以上で説明した光ポンピング磁力計31を用いた脳磁計100によっても、光ポンピング磁力計31の検出できる磁場の向きと、被測定者の発生する脳磁の向きとが一致し、脳磁の測定を精度良く行うことができる。
 また、複数の蒸気セル2を有する光ポンピング磁力計31の作用は、光ポンピング磁力計1の場合と同様であり、したがって、フォトダイオード11に対する電気配線を、外部から被測定者の頭部に近接する位置まで引き回すことが不要となり、簡易な構成で脳磁計100を作製することができる。
 また、蒸気セル2は、一定の平面度を保つ限り大きくされるため、セルの数を少なくできるから、蒸気密度のばらつきを小さくすることができ、測定精度を高めることができる。
 また、レーザ32及びフォトダイオード11は、いずれも蒸気セル2上に設けられるため、レーザ32及びフォトダイオード11と蒸気セル2とを一体のユニットとして扱うことができ、取り扱いが容易になり、また、脳磁計100の小型化が図れる。
 さらに、光ポンピング磁力計31においては、被測定者の頭部の表面にほぼ垂直な方向であって被測定者の頭部に向かう方向でレーザ光L3が入射し、被測定者の頭部の表面にほぼ垂直であって被測定者の頭部から離れる方向にレーザ光L3が反射され、レーザ光L3が受光されて、レーザ光L3の偏光の変化が検出される。このため、ポンプ光とプローブ光の2つの光源を用意する必要がなく、低コストかつ省スペースで脳磁計を作製することができる。
 図5は、本発明の第2実施形態に係る他の光ポンピング磁力計41を示す斜視図である。
 光ポンピング磁力計41が光ポンピング磁力計31と異なる点は次の点である。すなわち、光ポンピング磁力計31においては、蒸気セル2を通過するレーザ光L3は1本だけであるが、これに対し、光ポンピング磁力計41においては、蒸気セル2は複数のレーザ光L3を通過させることができるように、一定の平面度を保つ限り大きなものとされている。その他の点においては、光ポンピング磁力計41の構成及び機能は、光ポンピング磁力計31と同様である。
 したがって、光ポンピング磁力計41は、光ポンピング磁力計31と同様の作用効果を奏する。さらに、蒸気セル2は複数のレーザ光L3を通過させるため、蒸気セル2を大きくして、複数のレーザ光L3に対して1つの蒸気セル2を共用できるから、各レーザ光が通過する領域における蒸気密度のばらつきを小さくすることができ、測定精度を高めることができる。
 以上、本発明をその実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではない。例えば、偏光変化検出手段として、上記実施形態ではフォトダイオード11を使用したが、これに代えて、種々の公知の手法を用いて、プローブ光L2又はレーザ光L3の偏光面の回転角を検出してもよい。
 1,21,31,41…光ポンピング磁力計、2…蒸気セル、3…ポンプ光レーザ(レーザ光出射手段、ポンプ光出射手段)、4…偏光子、7…プローブ光レーザ(レーザ光出射手段、プローブ光出射手段)、8…偏光子、10,33…ミラー(反射手段)、11…フォトダイオード(偏光変化検出手段)、32…レーザ(レーザ光出射手段)、100…脳磁計。

Claims (7)

  1.  被測定者の頭部の脳磁を測定するための脳磁計であって、
     前記被測定者の頭部を覆うヘルメット形状をなすように複数配置された光ポンピング磁力計を備え、
     前記光ポンピング磁力計は、
     アルカリ金属原子を充填され、前記被測定者の頭部の表面にほぼ平行に配置された蒸気セルと、
     前記被測定者の頭部の表面にほぼ垂直な方向であって前記被測定者の頭部に向かう方向にレーザ光を出射して前記蒸気セルに前記レーザ光を入射させるレーザ光出射手段と、
     前記蒸気セルを通過した前記レーザ光を、前記被測定者の頭部の表面にほぼ垂直な方向であって前記被測定者の頭部から離れる方向に反射する反射手段と、
     前記反射手段により反射された前記レーザ光を受光して、前記レーザ光の偏光の変化を検出する偏光変化検出手段と、
     を有する脳磁計。
  2.  前記蒸気セルは複数の前記レーザ光を通過させる、請求項1に記載の脳磁計。
  3.  前記蒸気セルは、一定の平面度を保つ限り大きくした、請求項1又は2に記載の脳磁計。
  4.  前記レーザ光出射手段、前記偏光変化検出手段は、いずれも前記蒸気セル上に設けられる、請求項1~3のいずれか1項に記載の脳磁計。
  5.  前記光ポンピング磁力計において、
     前記レーザ光出射手段は、ポンプ光を出射するポンプ光出射手段とプローブ光を出射するプローブ光出射手段を別々に有し、
     前記ポンプ光出射手段は、前記ポンプ光を、前記被測定者の頭部の表面に平行な第1の方向で前記蒸気セルに入射させ、
     前記プローブ光出射手段は、前記プローブ光を前記被測定者の頭部の表面に平行な方向であって前記第1の方向に垂直な第2の方向で前記蒸気セルに入射させ、
     前記反射手段は、前記蒸気セルを通過した前記プローブ光を反射し、
     前記偏光変化検出手段は、前記反射手段により反射された前記プローブ光の偏光の変化を検出する請求項1~4のいずれか1項に記載の脳磁計。
  6.  前記レーザ光出射手段は、前記被測定者の頭部の表面にほぼ垂直な方向であって前記被測定者の頭部に向かう方向で前記レーザ光を前記蒸気セルに入射させる、請求項1~4のいずれか1項に記載の脳磁計。
  7.  被測定者の頭部の脳磁を測定するための脳磁測定方法であって、
     前記被測定者の頭部を覆うヘルメット形状をなすように複数配置された光ポンピング磁力計を用い、
     前記光ポンピング磁力計においては、
     前記被測定者の頭部の表面にほぼ平行に配置された蒸気セルにアルカリ金属原子を充填し、
     前記被測定者の頭部の表面にほぼ垂直な方向であって前記被測定者の頭部に向かう方向にレーザ光を出射して前記蒸気セルに前記レーザ光を入射させ、
     前記蒸気セルを通過した前記レーザ光を、前記被測定者の頭部の表面にほぼ垂直な方向であって前記被測定者の頭部から離れる方向に反射し、
     反射された前記レーザ光を受光して、前記レーザ光の偏光の変化を検出することにより、被測定者の頭部の脳磁を測定する脳磁測定方法。
PCT/JP2012/060159 2011-07-13 2012-04-13 脳磁計及び脳磁測定方法 WO2013008500A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/085,371 US9113803B2 (en) 2011-07-13 2013-11-20 Magnetoencephalography meter for measuring neuromagnetism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011154881A JP5823195B2 (ja) 2011-07-13 2011-07-13 脳磁計及び脳磁測定方法
JP2011-154881 2011-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/085,371 Continuation US9113803B2 (en) 2011-07-13 2013-11-20 Magnetoencephalography meter for measuring neuromagnetism

Publications (1)

Publication Number Publication Date
WO2013008500A1 true WO2013008500A1 (ja) 2013-01-17

Family

ID=47505800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060159 WO2013008500A1 (ja) 2011-07-13 2012-04-13 脳磁計及び脳磁測定方法

Country Status (3)

Country Link
US (1) US9113803B2 (ja)
JP (1) JP5823195B2 (ja)
WO (1) WO2013008500A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113164120A (zh) * 2018-10-23 2021-07-23 梅金有限公司 头部可安装的设备

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132651A1 (ja) * 2013-02-28 2014-09-04 国立大学法人京都大学 アルカリ金属セルの製造方法、アルカリ金属の製造方法、およびアルカリ金属ガス含有セル
KR101507382B1 (ko) * 2013-09-11 2015-04-01 한국표준과학연구원 뇌자도 측정 장치 및 뇌자도 측정 방법
WO2015187669A1 (en) * 2014-06-02 2015-12-10 Twinleaf Llc Circuit board integrated atomic magnetometer and gyroscope
FR3026193B1 (fr) * 2014-09-19 2016-12-23 Commissariat Energie Atomique Magnetometre sans asservissement et a compensation des fluctuations de la pente de resonance en champ faible, reseau de magnetometres et procede de mesure
US10495698B2 (en) 2015-07-28 2019-12-03 Royal Melbourne Institute Of Technology Magneto-encephalography device
AU2016300218A1 (en) * 2015-07-28 2018-02-22 Royal Melbourne Institute Of Technology A magneto-encephalography device
CN105147289B (zh) * 2015-08-18 2018-01-05 高家红 基于原子磁力计的meg系统及方法
JP2018068934A (ja) * 2016-11-04 2018-05-10 セイコーエプソン株式会社 磁気センサーおよびセルユニット
CN106725342B (zh) * 2017-01-09 2019-08-30 上海理工大学 基于矢量漩涡光束的脑磁图检测装置
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
EP3731749A4 (en) 2017-12-31 2022-07-27 Neuroenhancement Lab, LLC NEURO-ACTIVATION SYSTEM AND METHOD FOR ENHANCING EMOTIONAL RESPONSE
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US10976386B2 (en) 2018-07-17 2021-04-13 Hi Llc Magnetic field measurement system and method of using variable dynamic range optical magnetometers
WO2020036666A1 (en) 2018-08-17 2020-02-20 Hi Llc Optically pumped magnetometer
US10983177B2 (en) 2018-08-20 2021-04-20 Hi Llc Magnetic field shaping components for magnetic field measurement systems and methods for making and using
CN110859610B (zh) * 2018-08-27 2023-05-05 中科知影(北京)科技有限公司 脑磁检测装置
US10627460B2 (en) 2018-08-28 2020-04-21 Hi Llc Systems and methods including multi-mode operation of optically pumped magnetometer(s)
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
US11237225B2 (en) 2018-09-18 2022-02-01 Hi Llc Dynamic magnetic shielding and beamforming using ferrofluid for compact Magnetoencephalography (MEG)
US11294008B2 (en) 2019-01-25 2022-04-05 Hi Llc Magnetic field measurement system with amplitude-selective magnetic shield
WO2020167450A1 (en) 2019-02-12 2020-08-20 Hi Llc Neural feedback loop filters for enhanced dynamic range magnetoencephalography (meg) systems and methods
JP2020151023A (ja) * 2019-03-18 2020-09-24 株式会社リコー 磁場検出装置、磁場検出方法、生体磁場計測システム、リハビリテーション手法
US11360164B2 (en) 2019-03-29 2022-06-14 Hi Llc Integrated magnetometer arrays for magnetoencephalography (MEG) detection systems and methods
JP2020168138A (ja) * 2019-04-02 2020-10-15 株式会社リコー 磁気計測装置、及び頭部装着型磁気計測装置
US11269027B2 (en) 2019-04-23 2022-03-08 Hi Llc Compact optically pumped magnetometers with pump and probe configuration and systems and methods
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
US11839474B2 (en) 2019-05-31 2023-12-12 Hi Llc Magnetoencephalography (MEG) phantoms for simulating neural activity
US11131729B2 (en) 2019-06-21 2021-09-28 Hi Llc Systems and methods with angled input beams for an optically pumped magnetometer
US11415641B2 (en) 2019-07-12 2022-08-16 Hi Llc Detachable arrangement for on-scalp magnetoencephalography (MEG) calibration
US10996293B2 (en) 2019-08-06 2021-05-04 Hi Llc Systems and methods having an optical magnetometer array with beam splitters
FR3100125B1 (fr) 2019-08-30 2023-05-26 Commissariat Energie Atomique Casque support pour dispositif de magnétoencéphalographie
WO2021045953A1 (en) 2019-09-03 2021-03-11 Hi Llc Methods and systems for fast field zeroing for magnetoencephalography (meg)
WO2021091867A1 (en) 2019-11-08 2021-05-14 Hi Llc Methods and systems for homogenous optically-pumped vapor cell array assembly from discrete vapor cells
WO2021146766A1 (en) * 2020-01-20 2021-07-29 Noosa Natural Vet Pty Ltd Medical diagnostic device
US11779251B2 (en) 2020-05-28 2023-10-10 Hi Llc Systems and methods for recording neural activity
US11766217B2 (en) * 2020-05-28 2023-09-26 Hi Llc Systems and methods for multimodal pose and motion tracking for magnetic field measurement or recording systems
US11779250B2 (en) 2020-05-28 2023-10-10 Hi Llc Systems and methods for recording biomagnetic fields of the human heart
US11428756B2 (en) * 2020-05-28 2022-08-30 Hi Llc Magnetic field measurement or recording systems with validation using optical tracking data
JP2021194302A (ja) 2020-06-16 2021-12-27 浜松ホトニクス株式会社 脳磁計
JP2021196338A (ja) 2020-06-16 2021-12-27 浜松ホトニクス株式会社 光励起磁気センサ
JP7370009B2 (ja) * 2020-06-16 2023-10-27 浜松ホトニクス株式会社 脳計測装置及び脳計測方法
US11604237B2 (en) 2021-01-08 2023-03-14 Hi Llc Devices, systems, and methods with optical pumping magnetometers for three-axis magnetic field sensing
US11803018B2 (en) 2021-01-12 2023-10-31 Hi Llc Devices, systems, and methods with a piezoelectric-driven light intensity modulator
JP2022186214A (ja) 2021-06-04 2022-12-15 浜松ホトニクス株式会社 光励起磁気センサ
JP2023034046A (ja) 2021-08-30 2023-03-13 浜松ホトニクス株式会社 脳計測装置
CN113827246A (zh) * 2021-11-25 2021-12-24 北京航空航天大学杭州创新研究院 脑磁数据采集分析方法及系统
CN114041797B (zh) * 2022-01-12 2022-04-19 北京航空航天大学杭州创新研究院 一种脑磁测量头盔的传感器布局方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088592A (ja) * 2008-10-07 2010-04-22 National Institute Of Advanced Industrial Science & Technology 生体信号計測システム
JP2011007660A (ja) * 2009-06-26 2011-01-13 Seiko Epson Corp 磁気センサー
JP2011106950A (ja) * 2009-11-17 2011-06-02 Seiko Epson Corp 原子励起層形成方法、原子励起層形成装置および磁場計測システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038450B2 (en) 2002-10-16 2006-05-02 Trustees Of Princeton University High sensitivity atomic magnetometer and methods for using same
US20070167723A1 (en) * 2005-12-29 2007-07-19 Intel Corporation Optical magnetometer array and method for making and using the same
US20100219820A1 (en) 2007-04-13 2010-09-02 University Of Floarida Research Foundation, Inc. Atomic Magnetometer Sensor Array Magnetoencephalogram Systems and Methods
JP2009236599A (ja) * 2008-03-26 2009-10-15 Canon Inc 光ポンピング磁力計
US8334690B2 (en) * 2009-08-07 2012-12-18 The United States of America as represented by the Secretary of Commerce, the National Institute of Standards and Technology Atomic magnetometer and method of sensing magnetic fields

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088592A (ja) * 2008-10-07 2010-04-22 National Institute Of Advanced Industrial Science & Technology 生体信号計測システム
JP2011007660A (ja) * 2009-06-26 2011-01-13 Seiko Epson Corp 磁気センサー
JP2011106950A (ja) * 2009-11-17 2011-06-02 Seiko Epson Corp 原子励起層形成方法、原子励起層形成装置および磁場計測システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113164120A (zh) * 2018-10-23 2021-07-23 梅金有限公司 头部可安装的设备

Also Published As

Publication number Publication date
US20140121491A1 (en) 2014-05-01
JP2013017732A (ja) 2013-01-31
US9113803B2 (en) 2015-08-25
JP5823195B2 (ja) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5823195B2 (ja) 脳磁計及び脳磁測定方法
US10955495B2 (en) Circuit board integrated atomic magnetometer and gyroscope
JP6391370B2 (ja) 光ポンピング磁力計及び磁気センシング方法
JP5666687B2 (ja) 光ポンピング磁力計、脳磁計及びmri装置
US20170023653A1 (en) Optically pumped magnetometer and magnetic sensing method
JP5264242B2 (ja) 原子磁力計及び磁力計測方法
JP2009236599A (ja) 光ポンピング磁力計
JP5434735B2 (ja) セルユニット、セルユニット群および磁場測定装置
JP5874808B2 (ja) 磁場測定装置
Preusser et al. A microfabricated photonic magnetometer
US20180128886A1 (en) Magnetic sensor and cell unit
JP2020060378A (ja) 光励起磁気センサ用セルモジュール
JP6880834B2 (ja) 磁気センサ、生体磁気測定装置
JP2013079893A (ja) 磁気センサー装置及び磁気計測装置
US20210389396A1 (en) Optically pumped magnetometer
JP2012159427A (ja) 磁気測定装置および生体状態測定装置
JP5621240B2 (ja) 磁気計測装置
JP5673791B2 (ja) セルユニット、セルユニット群および磁場測定装置
US11835603B2 (en) Optically pumped magnetometer having lasers and optical systems used to derive an intensity of a magnetic field
US11442119B2 (en) Magnetometer with optical pumping of a sensitive element with linearly polarised light and multiple-pass in the sensitive element
Jia et al. Design of a multi-laser module for optical pumping in compact atomic gyroscopes
WO2024016371A1 (zh) 一种小型化原子磁强计
JP2015062020A (ja) 磁気測定装置および生体状態測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811517

Country of ref document: EP

Kind code of ref document: A1