WO2013016931A1 - Masking method for deep etching based on buffer layer - Google Patents

Masking method for deep etching based on buffer layer Download PDF

Info

Publication number
WO2013016931A1
WO2013016931A1 PCT/CN2011/084524 CN2011084524W WO2013016931A1 WO 2013016931 A1 WO2013016931 A1 WO 2013016931A1 CN 2011084524 W CN2011084524 W CN 2011084524W WO 2013016931 A1 WO2013016931 A1 WO 2013016931A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
buffer layer
functional material
pattern
microstructure
Prior art date
Application number
PCT/CN2011/084524
Other languages
French (fr)
Chinese (zh)
Inventor
刘若鹏
赵治亚
缪锡根
张贤高
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013016931A1 publication Critical patent/WO2013016931A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • B81C1/00492Processes for surface micromachining not provided for in groups B81C1/0046 - B81C1/00484
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures

Definitions

  • the present invention relates to the field of processing of materials, and more particularly to a masking method for deep etching based on a buffer layer required for ion beam deep etching.
  • the flat exposure technology is constantly updated and developed, and it has been widely used in many fields.
  • These technologies include optical exposure (lithography), electron beam exposure, and nanoimprint.
  • the planar exposure technique is merely a pattern for forming a resist, but the resist itself is not a functional material, but merely a masking material for subsequent processing.
  • These resists include photoresists, electron beam exposure pastes such as PMMA.
  • the microstructure of the final formed functional material is transferred to the functional material by subsequent processing and preparation techniques.
  • Dry etching generally refers to ion beam etching. This method involves a chemical reaction process and also includes a physical bombardment process. The ion beam also etches the resist while etching the functional material. Therefore, there is a certain requirement for the thickness of the resist mask, and the specific requirements vary depending on the etching depth.
  • the etching depth of the structure is relatively deep, the resist is difficult to mask in the later stage. Therefore, it is necessary to provide a new masking technique.
  • the technical problem to be solved by the present invention is to provide a masking method for deep etching based on a buffer layer required for ion beam deep etching, which can ensure smooth etching and etched microstructure during deep etching of microstructure. the quality of.
  • an embodiment of the present invention provides a masking method for deep etching based on a buffer layer, the method comprising:
  • the microstructure pattern on the buffer layer is etched back onto the functional material layer; the resist material and the buffer layer are removed to obtain a functional material having a microstructured pattern.
  • the above technical solution has the following advantages: In the process of forming a microstructure on a functional material, a buffer layer is first formed on the functional material layer, and then a resist material layer is formed on the buffer layer, and when the functional material is deeply etched, The presence of the buffer layer can protect the functional material without causing damage to the functional material, thereby ensuring the etching quality of the functional material.
  • FIG. 1 is a state diagram of a masking method for deep etching based on a buffer layer according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a masking method for deep etching based on a buffer layer according to Embodiment 1 of the present invention
  • FIG. 3 is a flow chart of a masking method for deep etching based on a buffer layer according to Embodiment 2 of the present invention.
  • FIG. 4 is a flow chart of a masking method for deep etching based on a buffer layer according to Embodiment 3 of the present invention.
  • FIG. 1 is a state diagram of a deep etching process based on a buffer layer according to an embodiment of the present invention, wherein: 11 is a state diagram shown after forming a functional material layer on a substrate; 12 is a buffer layer formed on a functional material layer. State diagram shown; 13 is a state diagram shown after applying a layer of resist material on the buffer layer; 14 is to form a preset micro on the resist material State diagram shown after the structure array pattern; 15 State diagram shown after transferring the microstructure array pattern on the resist material onto the buffer layer; 16 to transfer the microstructure array pattern on the buffer layer to the functional material State diagram shown after layer; 17 State diagram shown after removal of resist material and buffer layer. It can be seen from 17 that the functional material having the microstructure array pattern can be obtained by the deep etching process based on the buffer layer provided by the embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for deep etching based on a buffer layer according to Embodiment 1 of the present invention, where the method includes the following steps:
  • a layer of functional material may be laminated on the substrate; or a layer of functional material may be plated on the substrate; or a layer of functional material may be evaporated on the substrate.
  • functional materials refer to materials that have excellent electrical, magnetic, optical, thermal, acoustic, mechanical, chemical, and biomedical functions, special physical, chemical, and biological effects that can transform each other into functions.
  • the resist material is a photoresist or a resist material other than the photoresist.
  • each microstructure in the microstructure array pattern may be an axisymmetric pattern, such as a "work" font, or a non-axisymmetric pattern, such as a parallelogram; and between each microstructure in each microstructure array pattern The spacing is not zero.
  • the microstructured array pattern is etched on the buffer layer by masking the resist material having the microstructured array pattern.
  • the chemical substance used when the buffer layer is chemically etched, the chemical substance used only chemically reacts with the substance of the buffer layer, and does not chemically react with the functional material layer.
  • the buffer layer having the microstructure array pattern is used as a mask, and the microstructure array pattern is etched on the functional material layer by the particle beam.
  • the particle beam is a sulphur hexafluoride particle beam, a carbon tetrafluoride particle beam, or a trifluoromethane particle beam.
  • both the resist material and the buffer layer can be removed by chemical means.
  • a buffer layer is first formed on the functional material layer, and then a resist material layer is formed on the buffer layer, and when the functional material is deeply etched, The presence of the buffer layer protects the functional material and does not damage the functional material, thus ensuring the quality of the functional material.
  • Embodiment 2 3 is a flowchart of a masking method for deep etching based on a buffer layer according to Embodiment 2 of the present invention, where the method includes the following steps:
  • functional materials refer to materials that have excellent electrical, magnetic, optical, thermal, acoustic, mechanical, chemical, and biomedical functions, special physical, chemical, and biological effects that can transform each other into functions.
  • S34 planarly exposing the photoresist to form a predetermined microstructure pattern on the photoresist.
  • each microstructure in the microstructured pattern may be an axisymmetric figure, such as a "work” type, or a non-axisymmetric figure, such as a parallelogram;
  • the chemical used only chemically reacts with chromium and does not chemically react with the functional material layer.
  • the ion beam may be a sulphur hexafluoride ion beam, a carbon tetrafluoride ion beam, or a trifluoromethane ion beam.
  • S37 Removing the photoresist and chromium to obtain a functional material having a microstructured pattern.
  • both the photoresist and the chromium can be removed by chemical means.
  • the functional material when the functional material is etched, if the thickness of the photoresist cannot satisfy the etching requirement, and chromium is used as a buffer layer to protect the functional material, the quality of the deep etching can be ensured.
  • FIG. 4 is a flowchart of a masking method for deep etching based on a buffer layer according to Embodiment 3 of the present invention, where the method includes the following steps:
  • functional materials refer to materials that have excellent electrical, magnetic, optical, thermal, acoustic, mechanical, chemical, and biomedical functions, special physical, chemical, and biological effects that can transform each other into functions.
  • S43 A layer of photoresist is spin-coated on the aluminum layer.
  • each microstructure in the microstructure pattern may be an axisymmetric figure, such as a "work" type, or a non-axisymmetric figure, such as a parallelogram.
  • the chemicals used react only with aluminum and do not react chemically with the functional material layer.
  • the ion beam may be a sulphur hexafluoride ion beam, a carbon tetrafluoride ion beam, or a trifluoro formazan ion beam.
  • both the photoresist and the aluminum can be removed by chemical means.

Abstract

Provided is a masking method for deep etching based on a buffer layer, which method comprises forming a functional material layer on a substrate; forming a buffer layer on the functional material layer; coating a layer of photoresist material on the buffer layer; exposing the photoresist material in a planar manner to form a pre-set micro-structural pattern on the photoresist material; transferring the micro-structural pattern to the buffer layer; etching the micro-structural pattern on the buffer layer deeply into the functional material layer; and removing the photoresist material and the buffer layer so as to obtain a functional material layer with the micro-structural pattern.

Description

一种基于缓冲层进行深刻蚀的掩蔽方法  Masking method based on buffer layer for deep etching
【技术领域】 [Technical Field]
本发明涉及材料的加工领域,尤其涉及离子束深刻蚀中需要的一 种基于缓冲层进行深刻蚀的掩蔽方法。  The present invention relates to the field of processing of materials, and more particularly to a masking method for deep etching based on a buffer layer required for ion beam deep etching.
【背景技术】  【Background technique】
现在的平面曝光技术不断更新发展,在很多领域都得到很广泛的 应用。 这些技术包含光学曝光 (光刻)、 电子束曝光、 纳米压印。 但 是平面曝光技术仅仅是形成抗蚀剂的图形,但抗蚀剂自身并不是功能 材料, 而仅仅是一种后续加工的掩蔽材料。 这些抗蚀剂包括光刻胶、 电子束曝光胶, 如 PMMA。 通过后续的加工制备技术, 将在抗蚀剂形 成的图形转移到功能材料上, 最终成型的功能材料的微结构。  Nowadays, the flat exposure technology is constantly updated and developed, and it has been widely used in many fields. These technologies include optical exposure (lithography), electron beam exposure, and nanoimprint. However, the planar exposure technique is merely a pattern for forming a resist, but the resist itself is not a functional material, but merely a masking material for subsequent processing. These resists include photoresists, electron beam exposure pastes such as PMMA. The microstructure of the final formed functional material is transferred to the functional material by subsequent processing and preparation techniques.
在现有技术中, 常用的后续加工工艺分为湿法蚀刻和干法刻蚀。 干法刻蚀一般指离子束刻蚀, 这种方法包含化学反应过程, 同时也包 含物理的轰击过程, 离子束在刻蚀功能材料的同时, 也在对抗蚀剂进 行刻蚀。 因此对抗蚀剂掩蔽的厚度有一定的要求, 具体要求根据刻蚀 深度的不同而不同。 发明人在对现有技术的研究和实践过程中发现: 一般的抗蚀剂厚度大约在 0. 5 μ -3. 0 μ, 而这个厚度很难保证长时间 的刻蚀, 特别是当要求微结构的刻蚀深度比较深时, 抗蚀剂在后期很 难起到掩蔽的作用。 因此, 很有必要提供一种新的掩蔽技术。  In the prior art, commonly used subsequent processing techniques are classified into wet etching and dry etching. Dry etching generally refers to ion beam etching. This method involves a chemical reaction process and also includes a physical bombardment process. The ion beam also etches the resist while etching the functional material. Therefore, there is a certain requirement for the thickness of the resist mask, and the specific requirements vary depending on the etching depth. The inventors found in the research and practice of the prior art that the thickness of the general resist is about 0.5 μ -3. 0 μ, and this thickness is difficult to ensure long-time etching, especially when micro-requirement is required. When the etching depth of the structure is relatively deep, the resist is difficult to mask in the later stage. Therefore, it is necessary to provide a new masking technique.
【发明内容】 本发明所要解决的技术问题是提供离子束深刻蚀中需要的一种 基于缓冲层进行深刻蚀的掩蔽方法, 在进行微结构的深刻蚀时, 可以 保证刻蚀的顺利进行和所刻蚀微结构的质量。 [Summary of the Invention] The technical problem to be solved by the present invention is to provide a masking method for deep etching based on a buffer layer required for ion beam deep etching, which can ensure smooth etching and etched microstructure during deep etching of microstructure. the quality of.
为解决深刻蚀中掩蔽的技术问题,本发明实施例提供了一种基于 缓冲层进行深刻蚀的掩蔽方法, 该方法包括:  In order to solve the technical problem of masking in deep etching, an embodiment of the present invention provides a masking method for deep etching based on a buffer layer, the method comprising:
在衬底上形成功能材料层;  Forming a layer of functional material on the substrate;
在所述功能材料层上形成缓冲层;  Forming a buffer layer on the functional material layer;
在所述缓冲层上涂敷一层抗蚀剂材料;  Coating a layer of resist material on the buffer layer;
对所述抗蚀剂材料进行平面曝光,在所述抗蚀剂材料上形成预设 的微结构图形;  Performing planar exposure on the resist material to form a predetermined microstructure pattern on the resist material;
将抗蚀剂材料上的微结构图形转移到所述缓冲层上;  Transferring a microstructure pattern on the resist material to the buffer layer;
将缓冲层上的微结构图形深刻蚀到所述功能材料层上; 去除抗蚀剂材料和缓冲层, 获得具有微结构图形的功能材料。 上述技术方案具有以下优点: 在功能材料上形成微结构的过程 中, 首先在功能材料层上形成缓冲层, 然后在缓冲层上形成抗蚀剂材 料层, 对功能材料进行深刻蚀的时候, 由于缓冲层的存在, 能够对功 能材料起到保护作用, 不会对功能材料造成损坏, 从而保证了功能材 料的刻蚀质量。  The microstructure pattern on the buffer layer is etched back onto the functional material layer; the resist material and the buffer layer are removed to obtain a functional material having a microstructured pattern. The above technical solution has the following advantages: In the process of forming a microstructure on a functional material, a buffer layer is first formed on the functional material layer, and then a resist material layer is formed on the buffer layer, and when the functional material is deeply etched, The presence of the buffer layer can protect the functional material without causing damage to the functional material, thereby ensuring the etching quality of the functional material.
【附图说明】  [Description of the Drawings]
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例 描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其它的附 图。 In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described below. It is obvious that the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, Other drawings may also be obtained from these drawings without the inventive labor.
图 1 是本发明实施例提供的一种基于缓冲层进行深刻蚀的掩蔽 方法状态图;  1 is a state diagram of a masking method for deep etching based on a buffer layer according to an embodiment of the present invention;
图 2 是本发明实施例一提供的一种基于缓冲层进行深刻蚀的掩 蔽方法流程图;  2 is a flow chart of a masking method for deep etching based on a buffer layer according to Embodiment 1 of the present invention;
图 3 是本发明实施例二提供的一种基于缓冲层进行深刻蚀的掩 蔽方法流程图;  3 is a flow chart of a masking method for deep etching based on a buffer layer according to Embodiment 2 of the present invention;
图 4 是本发明实施例三提供的一种基于缓冲层进行深刻蚀的掩 蔽方法流程图。  4 is a flow chart of a masking method for deep etching based on a buffer layer according to Embodiment 3 of the present invention.
【具体实施方式】  【detailed description】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普 通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。  The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
首先, 为了本领域技术人员更容易理解本发明的技术方案, 下面 结合图 1对本发明的技术方案进行总体介绍:  First, in order to better understand the technical solution of the present invention by those skilled in the art, the technical solution of the present invention will be generally described below with reference to FIG. 1 :
图 1 为本发明实施例提供的基于缓冲层进行深刻蚀过程的状态 图, 其中: 11为在衬底上形成功能材料层后所示的状态图; 12为在 功能材料层上形成缓冲层后所示的状态图; 13 为在缓冲层上涂敷一 层抗蚀剂材料后所示的状态图; 14 为在抗蚀剂材料上形成预设的微 结构阵列图形后所示的状态图; 15 为将抗蚀剂材料上的微结构阵列 图形转移到缓冲层上后所示的状态图; 16 为将缓冲层上的微结构阵 列图形转移到功能材料层上后所示的状态图; 17 为去除抗蚀剂材料 和缓冲层后所示的状态图。 从 17可以看出, 采用本发明实施例提供 的基于缓冲层进行深刻蚀的过程,可以得到具有微结构阵列图形的功 能材料。 FIG. 1 is a state diagram of a deep etching process based on a buffer layer according to an embodiment of the present invention, wherein: 11 is a state diagram shown after forming a functional material layer on a substrate; 12 is a buffer layer formed on a functional material layer. State diagram shown; 13 is a state diagram shown after applying a layer of resist material on the buffer layer; 14 is to form a preset micro on the resist material State diagram shown after the structure array pattern; 15 State diagram shown after transferring the microstructure array pattern on the resist material onto the buffer layer; 16 to transfer the microstructure array pattern on the buffer layer to the functional material State diagram shown after layer; 17 State diagram shown after removal of resist material and buffer layer. It can be seen from 17 that the functional material having the microstructure array pattern can be obtained by the deep etching process based on the buffer layer provided by the embodiment of the present invention.
实施例一、  Embodiment 1
参见图 2, 为本发明实施例一提供的一种基于缓冲层进行深刻蚀 的方法流程图, 该方法包括如下步骤:  2 is a flowchart of a method for deep etching based on a buffer layer according to Embodiment 1 of the present invention, where the method includes the following steps:
S21 : 在衬底上形成功能材料层。  S21: forming a functional material layer on the substrate.
在具体的实施过程中,可以通过在衬底上压合一层功能材料的方 式; 也可以通过在衬底上电镀一层功能材料的方式; 还可以通过在衬 底上蒸镀一层功能材料的方式。  In a specific implementation process, a layer of functional material may be laminated on the substrate; or a layer of functional material may be plated on the substrate; or a layer of functional material may be evaporated on the substrate. The way.
其中, 功能材料指具有优良的电学、 磁学、 光学、 热学、 声学、 力学、 化学、 生物医学功能, 特殊的物理、 化学、 生物学效应, 能完 成功能相互转化的材料。  Among them, functional materials refer to materials that have excellent electrical, magnetic, optical, thermal, acoustic, mechanical, chemical, and biomedical functions, special physical, chemical, and biological effects that can transform each other into functions.
S22 : 在功能材料层上形成缓冲层。  S22: forming a buffer layer on the functional material layer.
S23 : 在缓冲层上涂敷一层抗蚀剂材料。  S23: coating a layer of resist material on the buffer layer.
其中, 抗蚀剂材料为光刻胶或者除光刻胶以外的其他抗蚀剂材 料。  Wherein, the resist material is a photoresist or a resist material other than the photoresist.
S24 : 对抗蚀剂材料进行光刻, 在抗蚀剂材料上形成预设的微结 构阵列图形。 其中,微结构阵列图形中的各微结构可以为轴对称图形,如"工" 字型, 也可以为非轴对称图形, 如平行四边形; 并且各微结构阵列图 形中的各微结构之间的间距不为零。 S24: Photolithography is performed on the resist material to form a predetermined microstructure array pattern on the resist material. Wherein, each microstructure in the microstructure array pattern may be an axisymmetric pattern, such as a "work" font, or a non-axisymmetric pattern, such as a parallelogram; and between each microstructure in each microstructure array pattern The spacing is not zero.
S25 : 将抗蚀剂材料上的微结构阵列图形转移到缓冲层上。  S25: Transfer the microstructure array pattern on the resist material to the buffer layer.
具体的, 以具有微结构阵列图形的抗蚀剂材料作掩蔽, 在缓冲层 上蚀刻出微结构阵列图形。  Specifically, the microstructured array pattern is etched on the buffer layer by masking the resist material having the microstructured array pattern.
在实施过程中, 采用化学的方式对缓冲层进行蚀刻时, 所采用的 化学物质仅与缓冲层的物质起化学反应, 与功能材料层不起化学反 应。  In the implementation process, when the buffer layer is chemically etched, the chemical substance used only chemically reacts with the substance of the buffer layer, and does not chemically react with the functional material layer.
S26 : 将缓冲层上的微结构阵列图形转移到功能材料层上。  S26: Transfer the microstructure array pattern on the buffer layer to the functional material layer.
具体的, 以具有微结构阵列图形的缓冲层作掩蔽, 用粒子束在功 能材料层上刻蚀出微结构阵列图形。  Specifically, the buffer layer having the microstructure array pattern is used as a mask, and the microstructure array pattern is etched on the functional material layer by the particle beam.
其中: 粒子束为六氟化硫粒子束、 四氟化碳粒子束、 或者三氟甲 垸粒子束。  Wherein: the particle beam is a sulphur hexafluoride particle beam, a carbon tetrafluoride particle beam, or a trifluoromethane particle beam.
S27 : 去除抗蚀剂材料和缓冲层, 获得具有微结构阵列图形的功 能材料。  S27: removing the resist material and the buffer layer to obtain a functional material having a microstructure array pattern.
其中, 抗蚀剂材料与缓冲层均可以通过化学的方式去除。  Wherein, both the resist material and the buffer layer can be removed by chemical means.
本实施例可以看出, 在功能材料上形成微结构的过程中, 首先在 功能材料层上形成缓冲层, 然后在缓冲层上形成抗蚀剂材料层, 对功 能材料进行深刻蚀的时候, 由于缓冲层的存在, 能够对功能材料起到 保护作用, 不会对功能材料造成损坏, 从而保证了功能材料的质量。  In this embodiment, it can be seen that in the process of forming a microstructure on the functional material, a buffer layer is first formed on the functional material layer, and then a resist material layer is formed on the buffer layer, and when the functional material is deeply etched, The presence of the buffer layer protects the functional material and does not damage the functional material, thus ensuring the quality of the functional material.
实施例二、 参见图 3, 为本发明实施例二提供的一种基于缓冲层进行深刻蚀 的掩蔽方法流程图, 该方法包括如下步骤: Embodiment 2 3 is a flowchart of a masking method for deep etching based on a buffer layer according to Embodiment 2 of the present invention, where the method includes the following steps:
S31 : 在衬底上电镀一层功能材料。  S31: plating a layer of functional material on the substrate.
在具体的实施过程中,还可以通过在衬底上蒸镀一层功能材料的 方式。  In a specific implementation, it is also possible to evaporate a layer of functional material on the substrate.
其中, 功能材料指具有优良的电学、 磁学、 光学、 热学、 声学、 力学、 化学、 生物医学功能, 特殊的物理、 化学、 生物学效应, 能完 成功能相互转化的材料。  Among them, functional materials refer to materials that have excellent electrical, magnetic, optical, thermal, acoustic, mechanical, chemical, and biomedical functions, special physical, chemical, and biological effects that can transform each other into functions.
S32 : 在功能材料层上电镀一层铬。  S32: Plating a layer of chromium on the functional material layer.
S33 : 在铬层上旋涂一层光刻胶。  S33: A layer of photoresist is spin-coated on the chrome layer.
S34 : 对光刻胶进行平面曝光, 在光刻胶上形成预设的微结构图 形。  S34: planarly exposing the photoresist to form a predetermined microstructure pattern on the photoresist.
其中, 微结构图形中的各微结构可以为轴对称图形, 如 "工"字 型, 也可以为非轴对称图形, 如平行四边形;。  Wherein, each microstructure in the microstructured pattern may be an axisymmetric figure, such as a "work" type, or a non-axisymmetric figure, such as a parallelogram;
S35 : 以具有微结构图形的光刻胶作掩蔽, 在铬层上蚀刻出微结 构图形。  S35: masking the photoresist with a microstructured pattern to etch a microstructure pattern on the chrome layer.
在蚀刻的过程中, 所采用的化学物质仅与铬起化学反应, 与功能 材料层不起化学反应。  During the etching process, the chemical used only chemically reacts with chromium and does not chemically react with the functional material layer.
S36 : 以具有微结构图形的铬层作掩蔽, 用离子束在功能材料层 上深刻蚀出微结构图形。  S36: masking the chrome layer having a microstructured pattern, and etching the microstructure pattern on the functional material layer with an ion beam.
其中: 离子束可以为六氟化硫离子束、 四氟化碳离子束、 或者三 氟甲垸离子束。 S37 : 去除光刻胶和铬, 获得具有微结构图形的功能材料。 Wherein: the ion beam may be a sulphur hexafluoride ion beam, a carbon tetrafluoride ion beam, or a trifluoromethane ion beam. S37: Removing the photoresist and chromium to obtain a functional material having a microstructured pattern.
其中, 光刻胶与铬均可以通过化学的方式去除。  Among them, both the photoresist and the chromium can be removed by chemical means.
本实施例中, 对功能材料进行刻蚀时, 如果光刻胶的厚度不能满 足刻蚀需求, 以铬作为缓冲层, 起到保护功能材料的作用, 因此能够 保证深刻蚀的质量。  In this embodiment, when the functional material is etched, if the thickness of the photoresist cannot satisfy the etching requirement, and chromium is used as a buffer layer to protect the functional material, the quality of the deep etching can be ensured.
实施例三、  Embodiment 3
参见图 4, 为本发明实施例三提供的一种基于缓冲层进行深刻蚀 的掩蔽方法流程图, 该方法包括如下步骤:  4 is a flowchart of a masking method for deep etching based on a buffer layer according to Embodiment 3 of the present invention, where the method includes the following steps:
S41 : 在衬底上用粘合剂压合一层功能材料。  S41: Pressing a layer of functional material with an adhesive on the substrate.
其中, 功能材料指具有优良的电学、 磁学、 光学、 热学、 声学、 力学、 化学、 生物医学功能, 特殊的物理、 化学、 生物学效应, 能完 成功能相互转化的材料。  Among them, functional materials refer to materials that have excellent electrical, magnetic, optical, thermal, acoustic, mechanical, chemical, and biomedical functions, special physical, chemical, and biological effects that can transform each other into functions.
S42 : 在功能材料层上蒸镀一层铝。  S42: A layer of aluminum is evaporated on the functional material layer.
S43 : 在铝层上旋涂一层光刻胶。  S43: A layer of photoresist is spin-coated on the aluminum layer.
S44: 对光刻胶进行光刻, 在光刻胶上形成预设的微结构图形。 其中, 微结构图形中的各微结构可以为轴对称图形, 如 "工"字 型, 也可以为非轴对称图形, 如平行四边形。  S44: Photolithography is performed to form a predetermined microstructure pattern on the photoresist. Wherein, each microstructure in the microstructure pattern may be an axisymmetric figure, such as a "work" type, or a non-axisymmetric figure, such as a parallelogram.
S45 : 以具有微结构图形的光刻胶作掩蔽, 在铝层上蚀刻出微结 构图形。  S45: masking the photoresist with a microstructured pattern to etch a microstructure pattern on the aluminum layer.
在蚀刻的过程中, 所采用的化学物质仅与铝起化学反应, 与功能 材料层不起化学反应。  During the etching process, the chemicals used react only with aluminum and do not react chemically with the functional material layer.
S46 : 以具有微结构图形的铝层作掩蔽, 用离子束在功能材料层 上深刻蚀出微结构图形。 S46: masking with an aluminum layer having a microstructured pattern, using an ion beam in the functional material layer The microstructure pattern is etched deep.
其中: 离子束可以为六氟化硫离子束、 四氟化碳离子束、 或者三 氟甲垸离子束。  Wherein: the ion beam may be a sulphur hexafluoride ion beam, a carbon tetrafluoride ion beam, or a trifluoro formazan ion beam.
S47 : 去除光刻胶和铝, 获得具有微结构图形的功能材料。  S47: Removing the photoresist and aluminum to obtain a functional material having a microstructured pattern.
其中, 光刻胶与铝均可以通过化学的方式去除。  Among them, both the photoresist and the aluminum can be removed by chemical means.
本实施例中, 对功能材料进行刻蚀时, 如果光刻胶的厚度不能满 足刻蚀需求, 以铝作为缓冲层, 起到保护功能材料的作用, 因此能够 保证深刻蚀的质量。  In this embodiment, when the functional material is etched, if the thickness of the photoresist cannot satisfy the etching requirement, aluminum is used as a buffer layer to protect the functional material, thereby ensuring the quality of the deep etching.
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对 本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮 助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人 员, 依据本发明的思想, 在具体实施方式及应用范围上均会有改变之 处, 综上所述, 本说明书内容不应理解为对本发明的限制。  The embodiments of the present invention have been described in detail above, and the principles and implementations of the present invention are described in detail herein. The description of the above embodiments is only used to help understand the method of the present invention and its core ideas; The present invention is not limited by the scope of the present invention, and the details of the present invention are not limited by the scope of the present invention.

Claims

权 利 要 求 书 Claim
1、 一种基于缓冲层进行深刻蚀的掩蔽方法, 其特征在于, 所述 方法包括: A masking method for performing deep etching based on a buffer layer, wherein the method comprises:
在衬底上形成功能材料层;  Forming a layer of functional material on the substrate;
在所述功能材料层上形成缓冲层;  Forming a buffer layer on the functional material layer;
在所述缓冲层上涂敷一层抗蚀剂材料;  Coating a layer of resist material on the buffer layer;
对所述抗蚀剂材料进行平面曝光,在所述抗蚀剂材料上形成预设 的微结构图形;  Performing planar exposure on the resist material to form a predetermined microstructure pattern on the resist material;
将抗蚀剂材料上的微结构图形转移到所述缓冲层上;  Transferring a microstructure pattern on the resist material to the buffer layer;
将缓冲层上的微结构图形深刻蚀到所述功能材料层上; 去除抗蚀剂材料和缓冲层, 获得具有微结构图形的功能材料。 The microstructure pattern on the buffer layer is etched back onto the functional material layer; the resist material and the buffer layer are removed to obtain a functional material having a microstructured pattern.
2、 根据权利要求 1所述的方法, 其特征在于, 在衬底上形成功 能材料层, 具体包括: 2. The method of claim 1 wherein forming a layer of successful material on the substrate comprises:
在衬底上用粘结剂压合一层功能材料。  A layer of functional material is laminated to the substrate with an adhesive.
3、 根据权利要求 1所述的方法, 其特征在于, 在衬底上形成功 能材料层, 具体包括:  3. The method according to claim 1, wherein forming a layer of a successful material on the substrate comprises:
在衬底上电镀一层功能材料; 或者,  Plating a layer of functional material on the substrate; or
在衬底上蒸镀一层功能材料  Evaporating a layer of functional material on the substrate
4、 根据权利要求 1所述的方法, 其特征在于, 在所述功能材料 层上形成缓冲层, 具体包括:  4. The method according to claim 1, wherein the forming a buffer layer on the functional material layer comprises:
在所述功能材料上电镀缓冲层。 A buffer layer is plated on the functional material.
5、 根据权利要求 1所述的方法, 其特征在于, 在所述功能材料 层上形成缓冲层, 具体包括: The method according to claim 1, wherein the forming a buffer layer on the functional material layer comprises:
在所述功能材料上蒸镀缓冲层。  A buffer layer is evaporated on the functional material.
6、 根据权利要求 1所述的方法, 其特征在于, 所述缓冲层为金 属、 或耐刻蚀的氧化物。  6. The method of claim 1 wherein the buffer layer is a metal or an etch-resistant oxide.
7、 根据权利要求 6所述的方法, 其特征在于, 所述金属为铬或 者铝。  7. A method according to claim 6 wherein the metal is chromium or aluminum.
8、 根据权利要求 1所述的方法, 其特征在于, 将抗蚀剂材料上 的微结构图形转移到所述缓冲层上, 具体包括:  The method according to claim 1, wherein the transferring the microstructure pattern on the resist material to the buffer layer comprises:
以具有微结构图形的抗蚀剂材料作掩蔽,在所述缓冲层上蚀刻出 微结构图形。  A microstructure pattern is etched on the buffer layer by masking a resist material having a microstructured pattern.
9、 根据权利要求 1所述的方法, 其特征在于, 将缓冲层上的微 结构图形深刻蚀到所述功能材料层上, 具体包括:  The method according to claim 1, wherein the etching the microstructure pattern on the buffer layer onto the functional material layer comprises:
以具有微结构图形的缓冲层作掩蔽,用离子束在所述功能材料层 上深刻蚀出微结构图形。  The buffer layer having a microstructured pattern is used as a mask, and the microstructure pattern is deeply etched on the functional material layer with an ion beam.
10、 根据权利要求 9所述的方法, 其特征在于, 所述离子束为六 氟化硫离子束、 四氟化碳离子束、 或者三氟甲垸离子束。  10. The method according to claim 9, wherein the ion beam is a hexafluoride ion beam, a carbon tetrafluoride ion beam, or a trifluoromethane ion beam.
PCT/CN2011/084524 2011-07-29 2011-12-23 Masking method for deep etching based on buffer layer WO2013016931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110215430.1 2011-07-29
CN2011102154301A CN102903627A (en) 2011-07-29 2011-07-29 Masking method for deep etching based on buffer layer

Publications (1)

Publication Number Publication Date
WO2013016931A1 true WO2013016931A1 (en) 2013-02-07

Family

ID=47575811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084524 WO2013016931A1 (en) 2011-07-29 2011-12-23 Masking method for deep etching based on buffer layer

Country Status (2)

Country Link
CN (1) CN102903627A (en)
WO (1) WO2013016931A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779246A (en) * 2014-02-21 2014-05-07 江阴长电先进封装有限公司 High-reliability copper cylinder bump packaging method and packaging structure
CN103871908A (en) * 2014-03-28 2014-06-18 江阴长电先进封装有限公司 Method for encapsulating copper pillar bump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080681A (en) * 1998-01-21 2000-06-27 Yamaha Corporation Method of forming wiring pattern
US20010019036A1 (en) * 2000-02-21 2001-09-06 Akifumi Kamijima Thin-film patterning method, manufacturing method of thin-film device and manufacturing method of thin-film magnetic head
JP2004063506A (en) * 2002-07-24 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> Method of processing ferro-dielectric material film
US6846750B1 (en) * 1999-06-29 2005-01-25 Kabushiki Kaisha Toshiba High precision pattern forming method of manufacturing a semiconductor device
CN101071754A (en) * 2006-05-09 2007-11-14 海力士半导体有限公司 Method for forming fine pattern of semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548268B2 (en) * 1988-01-18 1996-10-30 松下電子工業株式会社 Method of forming resist pattern
JP3194410B2 (en) * 1994-08-05 2001-07-30 凸版印刷株式会社 Manufacturing method of halftone type phase shift mask

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080681A (en) * 1998-01-21 2000-06-27 Yamaha Corporation Method of forming wiring pattern
US6846750B1 (en) * 1999-06-29 2005-01-25 Kabushiki Kaisha Toshiba High precision pattern forming method of manufacturing a semiconductor device
US20010019036A1 (en) * 2000-02-21 2001-09-06 Akifumi Kamijima Thin-film patterning method, manufacturing method of thin-film device and manufacturing method of thin-film magnetic head
JP2004063506A (en) * 2002-07-24 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> Method of processing ferro-dielectric material film
CN101071754A (en) * 2006-05-09 2007-11-14 海力士半导体有限公司 Method for forming fine pattern of semiconductor device

Also Published As

Publication number Publication date
CN102903627A (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5563544B2 (en) Method for forming a recess in a surface
KR100876805B1 (en) Template for Nano Imprint Lithography Process and Method of Manufacturing Semiconductor Device Using the Same
TW201044439A (en) Method for reducing tip-to-tip spacing between lines
JP2010158805A (en) Method of manufacturing mold for photo imprinting
US8486608B2 (en) Printing substrate for liquid crystal display, and manufacturing method thereof
JP2014167992A (en) Pattern forming method
US20110081618A1 (en) Litho-litho etch (lle) double patterning methods
JP2010503993A (en) Improved etching techniques for lift-off patterning
US20140212818A1 (en) Method for forming graphene pattern
US9919929B2 (en) Graphene etching methods, systems, and composites
WO2013016931A1 (en) Masking method for deep etching based on buffer layer
JP5341579B2 (en) Manufacturing method of fine structure
TW201024075A (en) Double sidewall angle nano-imprint template
Du et al. Fabrication of hierarchical nanostructures using free-standing trilayer membrane
JP2012023242A (en) Pattern manufacturing method and pattern formed body formed thereby
CN111115564A (en) Method for preparing micro-nano structure by dry transfer printing of photoresist
CN111115563A (en) Method for stripping functional material by full-dry method
WO2015172505A1 (en) Ion implantation method
CN106444293A (en) Preparation method of metal pattern
JP6063825B2 (en) Pattern formation method
JP2009194170A (en) Micro pattern forming method
CN1996141A (en) Impression die with zero film thickness and impression-photoetched pattern transferring method
JP5892690B2 (en) Resist pattern forming method and mold manufacturing method
JP4465090B2 (en) Manufacturing method of mask member
JPH1154460A (en) Manufacture of electrically conductive structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870385

Country of ref document: EP

Kind code of ref document: A1