WO2013107955A1 - Method for the production of a proton exchange membrane for a fuel cell - Google Patents

Method for the production of a proton exchange membrane for a fuel cell Download PDF

Info

Publication number
WO2013107955A1
WO2013107955A1 PCT/FR2012/053043 FR2012053043W WO2013107955A1 WO 2013107955 A1 WO2013107955 A1 WO 2013107955A1 FR 2012053043 W FR2012053043 W FR 2012053043W WO 2013107955 A1 WO2013107955 A1 WO 2013107955A1
Authority
WO
WIPO (PCT)
Prior art keywords
proton exchange
exchange membrane
membrane
fuel cell
superacid
Prior art date
Application number
PCT/FR2012/053043
Other languages
French (fr)
Inventor
Yannick MOLMERET
Arnaud Morin
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2013107955A1 publication Critical patent/WO2013107955A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a process for the preparation by evaporation casting of a proton exchange membrane for PEMFC (Proton Exchange Membrane Fuel Cell).
  • PEMFC Proton Exchange Membrane Fuel Cell
  • the field of use of the invention mainly relates to current generators, whose operating principle is based on the conversion of chemical energy into electrical energy and into heat by electrochemical reaction, especially between hydrogen and oxygen.
  • a proton exchange membrane fuel cell comprises an anode to which the fuel, H 2 , is oxidized to protons and electrons, and a cathode to which oxygen is reduced to water according to the following reactions:
  • the electrodes are separated by an electrolyte, or proton exchange membrane, the membrane / electrode assembly (AME) constituting the core of the cell.
  • This proton exchange membrane is an electronic insulating medium but protonic conductor.
  • the membrane makes it possible to pass the protons from the anode to the cathode while preventing the gases and the electrons from passing from one electrode to the other.
  • current collectors provide the transfer of electrons from the electrode to the external circuit.
  • the first type consists of a polymer cation exchanger such as Nafion (Dupont) or PAquivion ® (Solvay Solexis-), which are perfluorinated copolymers comprising sulfonate groups S0 3 ⁇ , perfluorosulfonic acid ionomers known.
  • the proton conductivity is ensured by a strong acidic group, SO 3 H, very hydrophilic, and dissociating easily in water to form charged species likely to move.
  • the proton conductivity is ensured by the species H 3 0 + and H 5 0 2 + (solvated protons) and increases with the amount of water which constitutes the medium in which these species move.
  • membranes consisting of a cationic exchange polymer require the presence of water to obtain a proton conductivity sufficient to achieve the performance required for different applications, namely generally greater than 10 -2 S. cm -1 .
  • the amount of water in the membrane depends, among other things and strongly, the relative humidity of the gas inlet. This therefore implies the presence of humidification auxiliaries of the inlet gases, and consequently, complexification and a decrease in the reliability of the system associated with the PEMFC. This problem is even more acute at high temperatures. Indeed, the energy and the quantity of water necessary for the hydration of the inlet gases increase with temperature and become unacceptable for the efficiency of the system, in particular above 90 ° C.
  • perfluorosulfonated ionomer-based membranes are generally used nominally between 0 and 80 ° C.
  • the second type of membrane used in commercial batteries relates to membranes based on polybenzimidazole (PBI) and phosphoric acid H3PO 4 (He R, Li Q, Xiao G, Bjerrum NJ "Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors ", J. of Memb. Sci., 226, 2003, 169-184).
  • PBI polybenzimidazole
  • H3PO 4 He R, Li Q, Xiao G, Bjerrum NJ “Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors ", J. of Memb. Sci., 226, 2003, 169-184.
  • These membranes can be manufactured by impregnation of phosphoric acid for example, by immersion for 7 days before being dried for 24 hours.
  • US 2008/031746 discloses a process for preparing a PBI-based membrane. According to this
  • the resulting solution is then deposited on a substrate and then gelled by contacting with water.
  • the membrane is obtained after doping the gel thus obtained with phosphoric acid or sulfuric acid.
  • the solvent is a strong acid which thus makes it possible to solubilize the polyazole. This strong acid is removed during the doping of the gel.
  • the membrane thus consists of a polyazole impregnated with an inorganic acid which is either phosphoric acid or sulfuric acid.
  • the combination PBI / H 3 PO 4 makes it possible to increase the temperature of use of the PEMFC up to 220 ° C because of the chemical stability of the PBI and the nature of the electrolyte which can drive the protons into the atmosphere. lack of water.
  • the proton conduction mechanism does not require water, it is also possible to use dry gases. Nevertheless, the activation energy of this proton conduction mechanism is high.
  • the conductivity of these membranes greatly decreases at temperatures below 120 ° C. They are even unusable at temperatures below 40 ° C due to the crystallization of phosphoric acid. The battery must therefore be preheated before use.
  • These membranes also require a break-in period of one hundred hours.
  • PBI / H 3 PO 4 membranes are generally used nominally between 120 and 180 ° C.
  • 40 to 50% of the energy produced by a PEMFC is heat. Therefore, when operating as an electrical generator, a PEMFC must be cooled.
  • the greater the temperature difference between the battery and the ambient temperature the easier it is to dissipate the heat produced.
  • the cooling system is simpler and less bulky when the battery is operating at high temperature. This is all the more important for the transport application for which the constraints in terms of compactness and reliability of the system are the most drastic.
  • the internal temperature of the heat engines being of the order of 110 ° C this operating temperature is often targeted for this application, and even for the cogeneration application.
  • the hydrogen used as fuel may comprise carbon monoxide capable of polluting platinum catalysts by adsorption.
  • the adsorption of carbon monoxide on platinum decreases when the temperature increases, especially above 80 ° C ([Baschuk JJ, Li X. "Carbon monoxide poison of proton exchange membrane fuel cells” Int. J. Energy Res 2001, 25, 695-713). Therefore, a PEMFC operating at a temperature higher than 80 ° C could also contribute to the decrease of the adsorption of carbon monoxide on the catalyst.
  • the Applicant has developed a method for preparing a polymeric membrane for PEMFC that can be used over a wide range of temperatures compared to the membranes of the prior art, particularly those comprising phosphoric acid.
  • the method which is the subject of the invention makes it possible to prepare a proton exchange membrane that can be used at a temperature of between 0 and 130 ° C.
  • This polymer electrolyte membrane comprises a polymer soaked in a superacid. Said polymer is stable in the presence of superacid and under strong oxidizing or reducing conditions, such as those encountered in PEMFCs, even at temperatures up to 130 ° C. More specifically, the present invention relates to a method for preparing a proton exchange membrane for fuel cells, comprising:
  • preparing a solution comprising at least one solvent whose weight represents from 5 to 75%, advantageously from 5 to 50% by weight of the solution, and at least one superacid with a pKa between -3 and -30 and whose weight represents between 25 and 95%, advantageously between 50 and 95% by weight of the solution; and
  • the polymer constituting the polymer membrane is not necessarily a proton exchanger, since this function is fulfilled by the superacid.
  • the polymer forming the membrane is not dissolved by the superacid but swollen.
  • Superacid means a chemical compound that is more acidic than pure sulfuric acid. In other words, this is an acid whose pKa is less than -3.
  • the superacid has a pKa between -3 and -15.
  • the superacid is trifluoromethanesulfonic acid.
  • the membrane comprises from 5 to 100, and advantageously from 10 to 100 superacid molecules per monomer repetition unit.
  • the superacid swollen polymer membrane can thus have a weight 2 to 10 times greater than its initial weight.
  • the dimensions (width, length and thickness) of the polymer membrane can also be modified following this treatment.
  • the method according to the invention does not dissolve the polymer membrane with regard to the dilution of the superacid and the time during which the membrane is immersed in the superacid solution. The mechanical strength of the membrane can be preserved.
  • the membrane is dissolved in an acidic medium before being gelled, the mechanical strength of the gel thus obtained being lower than that of the membrane before dissolution.
  • the method which is the subject of the invention makes it possible to obtain a membrane which does not necessarily appear in the form of a gel.
  • the polymer forming the polymer membrane may be a polymer having basic groups, advantageously secondary or tertiary amines, which may facilitate a proton exchange in a protonic medium, in particular azoles, polyazoles, oxazoles, and thiazoles.
  • polymer of basic or fluorinated character may be chosen from the group comprising polybenzimidazole (PBI), polymers containing at least one monomer tetrafluoroethylene (TFE), hexafluoropropene (HFP), vinylidene fluoride (VDF ); poly (VDF-co-HFP) polymers (PVDF-HFP), perfluoroalkoxy polymers (PFA), poly (ethylene-co-tetrafluoroethylene) (polyETFE), poly perfluoro (ethylene-propylene) (polyFEP); aromatic polyether copolymers, copolymers having pyridine units, polyimides of formula (I), polybenzoxazoles of formula (II), aromatic polyamides of formula (III), and mixtures thereof.
  • PBI polybenzimidazole
  • TFE tetrafluoroethylene
  • HFP hexafluoropropene
  • VDF vinylidene fluoride
  • PVDF-HFP poly (
  • polymers based on fluorinated groups are preferably polymers based on fluorinated groups. Indeed, these allow to obtain a film having good mechanical properties. In addition, they are very stable vis-à-vis the oxidation possible by superacids but also during stack operation.
  • the membrane impregnated with superacid according to the invention may be in the form of a self-supporting film, or a gel. It is advantageously a self-supporting film.
  • the membrane is advantageously in the form of a film or a gel before impregnation.
  • the polymer of the membrane according to the present invention is polybenzimidazole (PBI).
  • the solvent used to prepare the superacid solution may be water, or a fluorinated oil. However, it is advantageously water.
  • the mass ratio between the superacid and the solvent is advantageously between 25/75 and 95/05.
  • the superacid dilution rate may be of the order of 85/15 relative to the weight of the solvent.
  • a solution of 100 g of 85/15 superacid comprises 85 g of pure acid and 15 g of solvent. It should be noted that the superacid solution does not make it possible to dissolve the polymer, at least under the conditions of the process according to the invention. The conditions of temperature and dilution of the acid are thus defined according to the polymer without allowing its dissolution.
  • the time during which the membrane is immersed in the superacid solution does not exceed one hour. It is advantageously between 1 and 30 minutes, more preferably between 5 and 30 minutes, and even more advantageously between 10 and 20 minutes.
  • This duration may advantageously be of the order of 5 minutes in the case of a PBI membrane and a solution at 85 ° C. containing 85% by weight of perfluorosulfonic acid and 15% by weight of water.
  • the process according to the invention does not require a step of drying the membrane. It is therefore not necessary to dry the polymer membrane.
  • the membrane may be deposited on an absorbent paper after impregnation with the superacid.
  • the present invention also relates to a proton exchange membrane polymer impregnated with superacid, such as in particular the membrane that can be obtained according to the method described above.
  • the membrane after impregnation may have a thickness of between 10 and 100 microns, more advantageously of the order of 90 microns.
  • the proton conductivity of the proton exchange membrane according to the present invention and so imbibed with superacid can be between 20 and 180 mS / cm at room temperature (25 ° C) and at 50% relative humidity. This range of values relates to the membrane with or without polymeric protective layers.
  • the polymer membrane according to the present invention may have at least two main faces, at least one of which is covered with a polymeric protective layer. It is advantageously a perfluorosulphonated polymer thus avoiding the elution of the acid.
  • the protective layer of this membrane may be deposited by spraying a dispersion or solution of a perfluorosulfonated polymer such as Nafion® (Dupont) or Aquivion® (Solvay-Solexis) on at least one main surface of the membrane object of the invention, that is to say a membrane impregnated with a superacid.
  • the amount of perfluorosulfonated polymer to be sprayed is a function of the thickness of the protective layer.
  • the membrane can be dried, for example in an oven or a vacuum oven, at a suitable temperature, typically of the order of 80.degree.
  • a suitable temperature typically of the order of 80.degree.
  • the protective layer may have a thickness of between 1 and 10 microns. It can be advantageously equal to 1 micrometer.
  • the present invention also relates to the use of the proton exchange membrane as described above in a fuel cell, as well as a fuel cell comprising said proton exchange membrane.
  • the membrane according to the present invention can be used at temperatures above 100 ° C at low relative humidity without causing a significant decrease in conductivity. Indeed, the membrane according to the present invention can operate under low humidification conditions. Furthermore, in general, with regard to the properties of the superacids used, the membrane according to the invention can also be used at temperatures below 40 ° C., at which temperatures the phosphoric acid doping the membranes of the prior art is solid. . Indeed, unlike phosphoric acid, the superacids considered are typically in liquid form at room temperature.
  • the membrane according to the invention has a conductivity greater than an operating temperature of the PEMFC of less than 150 ° C.
  • the polymer does not contribute to the proton conductivity, the latter being provided by the superacid. The polymer contributes to the mechanical strength of the membrane.
  • the pro tonic conductivity of the membrane obtained according to the method which is the subject of the invention can be measured according to the techniques known to those skilled in the art (see, in particular: Lee et al., Ind Eng Chem Res 2005, 44, 7617 Or Casciola et al., Journal of Power Sources 20066, 162, 141-145). In general, and unless otherwise indicated, the conductivity is measured at room temperature (25 ° C) and 50% relative humidity. It is measured in the direction of the thickness of the membrane.
  • FIG. 1 represents the diagram of the operating principle of a PEMFC fuel cell of the prior art.
  • a proton exchange membrane fuel cell comprising a 5 cm 2 surface monocell, is prepared as follows.
  • the membrane / electrode assembly AME comprises two electrodes (ELAT 250 EWSI from Johnson Matthey) of dimension 2.7 x 2.7 cm 2 . These electrodes are based on nonwoven carbon paper, platinum and teflon.
  • the AME also includes a membrane of dimension 4 x 4 cm 2 positioned between the two electrodes.
  • the MEA is then inserted between two type seals SIL-PAD (from BERGQUIST), the difference in thickness between the electrode and the seal being offset by two wedges advantageously made of Teflon ®, having a thickness of 75 micrometers.
  • the single cell is then closed and tightened to 7 Nm
  • the membrane of this monocell comprises a polymer PBI (from Fumatech, reference FUMAPEM APCL) having the following dimensions: thickness: 40 ⁇ + 1- 2 ⁇
  • the PBI membrane is then immersed in this superacid solution so that it is completely immersed. Once closed, the pillbox containing the solution and the membrane is then heated rapidly (within the limits of the apparatus, ie about 5 minutes for this example) at a temperature of 85 ° C for 5 minutes.
  • the membrane is then removed from the aqueous superacid solution, deposited on an absorbent paper to remove excess acid, and stored in an airtight bag. After impregnation with acid, the dimensions of the membrane are then 5.3 ⁇ 5.3 cm 2 .
  • the impregnated membrane has a thickness of about 10 micrometers. Its weight is then 522 mg, that is to say a weight 7.5 times higher than that of the membrane before impregnation of superacid. During the impregnation with superacid, the length and the width of the membrane thus passed from 4 cm to 5.3 cm. The thickness has increased from 40 microns to about 10 micrometers.
  • Superacid impregnated membrane exhibits proton conductivity at ambient temperature and relative humidity of 1 10 mS / cm PEMFC tests according to the invention
  • the PEMFC thus obtained is tested at ambient temperature under a dry H2 / O2 flux at 667 ml / min, under a total pressure of 1.6 bar.
  • the cell is gradually heated to a temperature of 70 ° C. Gases with a relative humidity of 30% are then introduced. The cell then produces 1.7 A at 0.5 V. The relative humidity of the gases (H 2 and O 2 ) is then increased by 50%. The production of the battery then corresponds to 3.4 A at 0.5 V.
  • the cell is then heated to 120 ° C at 50% relative humidity.
  • the output of the battery then corresponds to 400 mA / cm 2 for a voltage of 0.5 V.
  • the electrodes used although commercial, are optimized electrodes for membranes based on polyfluorosulphonated polymers, and not membranes based on PBI as is the case here. As a result, the contact between the electrodes and the PBI-based membrane is not optimized.

Abstract

The invention relates to a method for the production of a proton exchange membrane for a fuel cell, consisting in: preparing a solution comprising at least one solvent representing between 5 and 75 wt.-%, advantageously between 5 and 50 wt.-%, in relation to the weight of the solution, and at least one superacid having a pKa of between -3 and -30 and representing between 25 and 95 wt.-%, advantageously between 50 and 95 wt.-% in relation to the weight of the solution; and impregnating a polymer membrane in said superacid solution for a period of less than one hour and at a temperature of between 25 and 90°C.

Description

PROCEDE DE PREPARATION D'UNE MEMBRANE ECHANGEUSE DE PROTONS POUR PILE A COMBUSTIBLE PROCESS FOR PREPARING A PROTON EXCHANGE MEMBRANE FOR A FUEL CELL
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention concerne un procédé de préparation par coulée évaporation d'une membrane échangeuse de protons pour PEMFC (selon l'acronyme anglo-saxon « Proton Exchange Membrane Fuel Cell » ou pile à combustible à membrane échangeuse de protons). The present invention relates to a process for the preparation by evaporation casting of a proton exchange membrane for PEMFC (Proton Exchange Membrane Fuel Cell).
Le domaine d'utilisation de l'invention concerne principalement les générateurs de courant, dont le principe de fonctionnement repose sur la conversion de l'énergie chimique en énergie électrique et en chaleur par réaction électrochimique notamment entre l'hydrogène et l'oxygène. The field of use of the invention mainly relates to current generators, whose operating principle is based on the conversion of chemical energy into electrical energy and into heat by electrochemical reaction, especially between hydrogen and oxygen.
ETAT ANTERIEUR DE LA TECHNIQUE PRIOR STATE OF THE TECHNIQUE
Typiquement, une pile à combustible à membrane échangeuse de protons (PEMFC) comprend une anode à laquelle le combustible, H2, est oxydé en protons et électrons, et une cathode à laquelle l'oxygène est réduit en eau selon les réactions suivantes : Typically, a proton exchange membrane fuel cell (PEMFC) comprises an anode to which the fuel, H 2 , is oxidized to protons and electrons, and a cathode to which oxygen is reduced to water according to the following reactions:
H2→ 2H+ + 2 e" (oxydation à l'anode) H 2 → 2H + + 2 e " (oxidation at the anode)
4 H+ + 4 e" + 02→ 2 H20 (réduction à la cathode) 4 H + + 4 e " + 0 2 → 2 H 2 0 (reduction at the cathode)
Dans une PEMFC, les électrodes sont séparées par un électrolyte, ou membrane échangeuse de protons, l'assemblage membrane/électrodes (AME) constituant le cœur de la pile. Cette membrane échangeuse de protons constitue un milieu isolant électronique mais conducteur protonique. En d'autres termes, la membrane permet d'assurer le passage des protons de l'anode à la cathode tout en empêchant les gaz et les électrons de passer d'une électrode à l'autre. En outre, des collecteurs de courant assurent le transfert des électrons de l'électrode jusqu'au circuit externe. In a PEMFC, the electrodes are separated by an electrolyte, or proton exchange membrane, the membrane / electrode assembly (AME) constituting the core of the cell. This proton exchange membrane is an electronic insulating medium but protonic conductor. In other words, the membrane makes it possible to pass the protons from the anode to the cathode while preventing the gases and the electrons from passing from one electrode to the other. In addition, current collectors provide the transfer of electrons from the electrode to the external circuit.
Deux types de membranes sont principalement employés dans les piles commerciales. Le premier type est constitué d'un polymère échangeur cationique, tel que le Nafïon (Dupont) ou PAquivion® (Solvay-Solexis), qui sont des copolymères perfluorés comprenant des groupements sulfonates S03 ~, appelés ionomères perfluorosulfonés. La conductivité protonique est assurée par un groupement acide fort, SO3H, très hydrophile, et se dissociant aisément dans l'eau pour former des espèces chargées susceptibles de se déplacer. Dans ces membranes, la conductivité protonique est assurée par les espèces H30+ et H502 + (protons solvatés) et augmente avec la quantité d'eau qui constitue le milieu dans lequel ces espèces se déplacent. Ces membranes constituées d'un polymère échangeur cationique nécessitent la présence d'eau afin d'obtenir une conductivité protonique suffisante pour atteindre les performances requises pour les différentes applications, à savoir généralement supérieure à 10"2 S. cm"1. Or, la quantité d'eau dans la membrane dépend, entre autre et fortement, de l'humidité relative d'entrée des gaz. Ceci implique donc la présence d'auxiliaires d'humidification des gaz d'entrée, et en conséquence, des complexifîcations et une diminution de la fiabilité du système associé à la PEMFC. Ce problème est encore plus aigu à haute température. En effet, l'énergie et la quantité d'eau nécessaires à l'hydratation des gaz d'entrée augmentent avec la température et deviennent rédhibitoires pour le rendement du système, en particulier au-dessus de 90°C. En outre, les propriétés mécaniques de ces membranes, et par conséquent, la durabilité de la membrane diminuent fortement lorsque la température augmente, en particulier au-delà de 90°C,. Enfin, leur perméabilité aux gaz augmente également signifîcativement avec la température, conduisant à une accélération des mécanismes de vieillissement chimique des membranes et électrochimique du catalyseur des électrodes. Toutefois, ces membranes présentent l'avantage de pouvoir permettre à la PEMFC d'être démarrée très rapidement à température ambiante et même pour des températures inférieures à 0 °C, jusqu'à -10 °C. Two types of membranes are mainly used in commercial batteries. The first type consists of a polymer cation exchanger such as Nafion (Dupont) or PAquivion ® (Solvay Solexis-), which are perfluorinated copolymers comprising sulfonate groups S0 3 ~, perfluorosulfonic acid ionomers known. The proton conductivity is ensured by a strong acidic group, SO 3 H, very hydrophilic, and dissociating easily in water to form charged species likely to move. In these membranes, the proton conductivity is ensured by the species H 3 0 + and H 5 0 2 + (solvated protons) and increases with the amount of water which constitutes the medium in which these species move. These membranes consisting of a cationic exchange polymer require the presence of water to obtain a proton conductivity sufficient to achieve the performance required for different applications, namely generally greater than 10 -2 S. cm -1 . However, the amount of water in the membrane depends, among other things and strongly, the relative humidity of the gas inlet. This therefore implies the presence of humidification auxiliaries of the inlet gases, and consequently, complexification and a decrease in the reliability of the system associated with the PEMFC. This problem is even more acute at high temperatures. Indeed, the energy and the quantity of water necessary for the hydration of the inlet gases increase with temperature and become unacceptable for the efficiency of the system, in particular above 90 ° C. In addition, the mechanical properties of these membranes, and therefore, the durability of the membrane decrease sharply when the temperature increases, especially above 90 ° C. Finally, their gas permeability also increases significantly with temperature, leading to an acceleration of the mechanisms of chemical aging of the membranes and electrochemical electrode catalyst. However, these membranes have the advantage of allowing the PEMFC to be started very quickly at room temperature and even for temperatures below 0 ° C, down to -10 ° C.
Ainsi, les membranes à base d'ionomère perfluorosulfoné sont généralement employées de façon nominale entre 0 et 80 °C.  Thus, perfluorosulfonated ionomer-based membranes are generally used nominally between 0 and 80 ° C.
Le second type de membranes utilisées dans les piles commerciales concerne les membranes à base de de polybenzimidazole (PBI) et d'acide phosphorique H3PO4 (He R, Li Q, Xiao G, Bjerrum NJ « Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors », J. of Memb. Sci., 226, 2003, 169-184). Ces membranes peuvent être fabriquées par imprégnation d'acide phosphorique par exemple, par immersion pendant 7 jours avant d'être séchées pendant 24 heures. Le document US 2008/031746 décrit un procédé de préparation d'une membrane à base de PBI. Selon ce procédé, un polymère de type polyazole est tout d'abord dissous dans une solution anhydre d'acide fort. La solution résultante est ensuite déposée sur un substrat, puis gélifiée par mise en contact avec de l'eau. La membrane est obtenue après dopage du gel ainsi obtenu, avec de l'acide phosphorique ou de l'acide sulfurique. Dans ce procédé, le solvant est un acide fort qui permet donc de solubiliser le polyazole. Cet acide fort est éliminé lors du dopage du gel. La membrane est donc constituée d'un polyazole imbibé d'un acide inorganique qui est soit de l'acide phosphorique, soit de l'acide sulfurique. The second type of membrane used in commercial batteries relates to membranes based on polybenzimidazole (PBI) and phosphoric acid H3PO 4 (He R, Li Q, Xiao G, Bjerrum NJ "Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors ", J. of Memb. Sci., 226, 2003, 169-184). These membranes can be manufactured by impregnation of phosphoric acid for example, by immersion for 7 days before being dried for 24 hours. US 2008/031746 discloses a process for preparing a PBI-based membrane. According to this process, a polyazole polymer is first dissolved in an anhydrous solution of strong acid. The resulting solution is then deposited on a substrate and then gelled by contacting with water. The membrane is obtained after doping the gel thus obtained with phosphoric acid or sulfuric acid. In this process, the solvent is a strong acid which thus makes it possible to solubilize the polyazole. This strong acid is removed during the doping of the gel. The membrane thus consists of a polyazole impregnated with an inorganic acid which is either phosphoric acid or sulfuric acid.
L'association PBI/H3PO4 permet d'augmenter la température d'utilisation de la PEMFC jusqu'à 220 °C du fait de la stabilité chimique du PBI et de la nature de l'électrolyte qui peut conduire les protons en l'absence d'eau. Ainsi, dans la mesure où le mécanisme de conduction protonique ne nécessite pas d'eau, il est également possible d'utiliser des gaz secs. Néanmoins, l'énergie d'activation de ce mécanisme de conduction protonique est élevée. En conséquence, la conductivité de ces membranes diminue fortement à des températures inférieures à 120 °C. Elles sont même inutilisables aux températures inférieures à 40°C en raison de la cristallisation de l'acide phosphorique. La pile doit donc être préchauffée avant utilisation. Ces membranes requièrent en outre une période de rodage d'une centaine d'heure. The combination PBI / H 3 PO 4 makes it possible to increase the temperature of use of the PEMFC up to 220 ° C because of the chemical stability of the PBI and the nature of the electrolyte which can drive the protons into the atmosphere. lack of water. Thus, since the proton conduction mechanism does not require water, it is also possible to use dry gases. Nevertheless, the activation energy of this proton conduction mechanism is high. As a result, the conductivity of these membranes greatly decreases at temperatures below 120 ° C. They are even unusable at temperatures below 40 ° C due to the crystallization of phosphoric acid. The battery must therefore be preheated before use. These membranes also require a break-in period of one hundred hours.
Ainsi, les membranes PBI/H3PO4 sont généralement employées de façon nominale entre 120 et 180 °C. Typiquement, en fonctionnement nominal, 40 à 50 % de l'énergie produite par une PEMFC est constitué de chaleur. Par conséquent, lors de son fonctionnement en tant que générateur électrique, une PEMFC doit être refroidie. Toutefois, plus l'écart de température entre la pile et la température ambiante est grand, plus il est aisé de dissiper la chaleur produite. En d'autres termes, le système de refroidissement est plus simple et moins volumineux lorsque la pile fonctionne à haute température. Ceci est d'autant plus important pour l'application transport pour laquelle les contraintes en termes de compacité et de fiabilité du système sont les plus drastiques. La température interne des moteurs thermiques étant de l'ordre de 110 °C cette température de fonctionnement est bien souvent visée pour cette application, et même pour l'application cogénération. Il est également à noter que l'hydrogène utilisé en tant que combustible peut comprendre du monoxyde de carbone susceptible de polluer les catalyseurs à base de platine par adsorption. Or, l'adsorption du monoxyde de carbone sur le platine diminue lorsque la température augmente, en particulier au-delà de 80°C ([Baschuk JJ, Li X. « Carbon monoxide poisoning of proton exchange membrane fuel cells » Int. J. Energy Res. 2001, 25, 695-713). Par conséquent, une PEMFC fonctionnant à une température supérieure à 80 °C pourrait également contribuer à la diminution de l'adsorption du monoxyde de carbone sur le catalyseur. En conséquence, il serait avantageux de pouvoir augmenter la température de fonctionnement des PEMFC dont la membrane est à base d'ionomère perfluorosulfoné et de diminuer la température de fonctionnement des PEMFC dont la membrane est à base de PBI/H3PO4 pour de nombreuses applications afin que la température de fonctionnement nominale se situe entre 100 et 130 °C. Toutefois, pour la plupart des applications, il est généralement souhaitable de disposer d'un système dont la PEMFC est opérationnelle sans apport d'énergie extérieur et rapidement, même à température ambiante. Thus, PBI / H 3 PO 4 membranes are generally used nominally between 120 and 180 ° C. Typically, in nominal operation, 40 to 50% of the energy produced by a PEMFC is heat. Therefore, when operating as an electrical generator, a PEMFC must be cooled. However, the greater the temperature difference between the battery and the ambient temperature, the easier it is to dissipate the heat produced. In other words, the cooling system is simpler and less bulky when the battery is operating at high temperature. This is all the more important for the transport application for which the constraints in terms of compactness and reliability of the system are the most drastic. The internal temperature of the heat engines being of the order of 110 ° C this operating temperature is often targeted for this application, and even for the cogeneration application. It should also be noted that the hydrogen used as fuel may comprise carbon monoxide capable of polluting platinum catalysts by adsorption. However, the adsorption of carbon monoxide on platinum decreases when the temperature increases, especially above 80 ° C ([Baschuk JJ, Li X. "Carbon monoxide poison of proton exchange membrane fuel cells" Int. J. Energy Res 2001, 25, 695-713). Therefore, a PEMFC operating at a temperature higher than 80 ° C could also contribute to the decrease of the adsorption of carbon monoxide on the catalyst. Consequently, it would be advantageous to be able to increase the operating temperature of the PEMFCs whose membrane is based on perfluorosulfonated ionomer and to reduce the operating temperature of the PEMFCs whose membrane is based on PBI / H 3 PO 4 for many applications so that the nominal operating temperature is between 100 and 130 ° C. However, for most applications, it is generally desirable to have a system in which the PEMFC is operational without external energy input and quickly, even at room temperature.
Le développement d'une membrane pouvant fonctionner à un faible taux d'humidification et dans une gamme de température comprise entre 0 et 130 °C permettrait ainsi de s'affranchir de certains des problèmes de l'art antérieur. The development of a membrane that can operate at a low humidification rate and in a temperature range of between 0 and 130 ° C. would thus make it possible to overcome some of the problems of the prior art.
Le Demandeur a mis au point un procédé de préparation d'une membrane polymérique pour PEMFC pouvant être utilisée dans une vaste gamme de températures par rapport aux membranes de l'art antérieur, en particulier celles comprenant de l'acide phosphorique. The Applicant has developed a method for preparing a polymeric membrane for PEMFC that can be used over a wide range of temperatures compared to the membranes of the prior art, particularly those comprising phosphoric acid.
EXPOSE DE L'INVENTION Le procédé objet de l'invention permet de préparer une membrane échangeuse de protons pouvant être utilisée à une température comprise entre 0 et 130 °C. Cette membrane électrolyte polymère comprend un polymère imbibé d'un superacide. Ledit polymère est stable en présence du superacide et dans des conditions oxydantes ou réductrices fortes, telles que celles rencontrées dans les PEMFC, même à des températures pouvant atteindre 130 °C. Plus précisément, la présente invention concerne un procédé de préparation d'une membrane échangeuse de protons pour pile à combustible, consistant : SUMMARY OF THE INVENTION The method which is the subject of the invention makes it possible to prepare a proton exchange membrane that can be used at a temperature of between 0 and 130 ° C. This polymer electrolyte membrane comprises a polymer soaked in a superacid. Said polymer is stable in the presence of superacid and under strong oxidizing or reducing conditions, such as those encountered in PEMFCs, even at temperatures up to 130 ° C. More specifically, the present invention relates to a method for preparing a proton exchange membrane for fuel cells, comprising:
à préparer une solution comprenant au moins un solvant dont le poids représente de 5 à 75 %, avantageusement de 5 à 50% par rapport au poids de la solution, et au moins un superacide dont le pKa est compris entre - 3 et - 30 et dont le poids représente entre 25 et 95 %, avantageusement entre 50 et 95 % par rapport poids de la solution ; et  preparing a solution comprising at least one solvent whose weight represents from 5 to 75%, advantageously from 5 to 50% by weight of the solution, and at least one superacid with a pKa between -3 and -30 and whose weight represents between 25 and 95%, advantageously between 50 and 95% by weight of the solution; and
à imprégner une membrane polymère dans ladite solution de superacide, pendant une durée inférieure à une heure, et à une température comprise entre 25 et 90°C, et encore plus avantageusement entre 60 et 80 °C.  impregnating a polymer membrane in said superacid solution, for a period of less than one hour, and at a temperature between 25 and 90 ° C, and even more preferably between 60 and 80 ° C.
Le polymère constituant la membrane polymère n'est pas nécessairement échangeur de protons, étant donné que cette fonction est remplie par le superacide. En outre, dans ce procédé, le polymère formant la membrane n'est pas dissous par le superacide mais gonflé. The polymer constituting the polymer membrane is not necessarily a proton exchanger, since this function is fulfilled by the superacid. In addition, in this process, the polymer forming the membrane is not dissolved by the superacid but swollen.
Par superacide, on entend un composé chimique plus acide que l'acide sulfurique pur. En d'autres termes, il s'agit ici d'un acide dont le pKa est inférieur à -3. De manière avantageuse, le superacide présente un pKa compris entre - 3 et - 15. Superacid means a chemical compound that is more acidic than pure sulfuric acid. In other words, this is an acid whose pKa is less than -3. Advantageously, the superacid has a pKa between -3 and -15.
Le superacide peut être avantageusement un superacide organique présentant des groupements fluorés. Il peut notamment être choisi dans le groupe comprenant l'acide disulfurique (pKa = -3,1), l'acide fiuorosulfurique (pKa = -10), l'acide trifiuorométhane sulfonique (TFSA) (pKa = -14,9), l'acide fiuoroantimonique (pKa = - 25). The superacid may advantageously be an organic superacid having fluorinated groups. It may especially be chosen from the group comprising disulphuric acid (pKa = -3.1), fluorosulfuric acid (pKa = -10), trifluoromethanesulfonic acid (TFSA) (pKa = -14.9), fiuoroantimonic acid (pKa = -25).
Encore plus avantageusement, le superacide est l'acide trifiuorométhane sulfonique. De manière avantageuse, après avoir été imbibée de superacide, la membrane comprend de 5 à 100, et avantageusement de 10 à 100 molécules de superacide par unité de répétition monomère. La membrane polymère gonflée au superacide peut ainsi présenter un poids 2 à 10 fois plus important que son poids initial. Les dimensions (largeur, longueur et épaisseur) de la membrane polymère peuvent également être modifiées suite à ce traitement. Contrairement aux procédés de l'art antérieur, le procédé selon l'invention ne dissout pas la membrane polymère eu égard à la dilution du superacide et à la durée pendant laquelle la membrane est plongée dans la solution de superacide. La tenue mécanique de la membrane peut ainsi être conservée. Dans l'art antérieur, la membrane est dissoute en milieu acide avant d'être gélifiée, la tenue mécanique du gel ainsi obtenu étant inférieure à celle de la membrane avant dissolution. Au contraire, le procédé objet de l'invention permet d'obtenir une membrane qui ne se présente pas forcément sous la forme d'un gel. Le polymère formant la membrane polymère peut être un polymère présentant des groupements basiques, avantageusement des aminés secondaires ou tertiaires, pouvant faciliter un échange de protons en milieu protonique, notamment les azoles, polyazoles, oxazoles, et les thiazoles. Il peut notamment s'agir d'un polymère à caractère basique ou fluoré pouvant être choisi dans le groupe comprenant le polybenzimidazole (PBI), les polymères contenant au moins un monomère tétrafluoroéthylène (TFE), hexafluoropropène (HFP), fluorure de vinylidène (VDF) ; les polymères de type poly(VDF-co-HFP) (PVDF-HFP), les polymères perfluoroalkoxy (PFA), les poly(éthylène-co-tétrafluoroéthyléne) (polyETFE), poly perfluoro(éthylène-propylène) (polyFEP) ; les copolymères polyéthers aromatiques, les copolymères présentant des motifs pyridine, les polyimides de formule (I), les polybenzoxazoles de formule (II), les polyamides aromatiques de formule (III), et leurs mélanges. Even more advantageously, the superacid is trifluoromethanesulfonic acid. Advantageously, after having been soaked with superacid, the membrane comprises from 5 to 100, and advantageously from 10 to 100 superacid molecules per monomer repetition unit. The superacid swollen polymer membrane can thus have a weight 2 to 10 times greater than its initial weight. The dimensions (width, length and thickness) of the polymer membrane can also be modified following this treatment. Unlike the processes of the prior art, the method according to the invention does not dissolve the polymer membrane with regard to the dilution of the superacid and the time during which the membrane is immersed in the superacid solution. The mechanical strength of the membrane can be preserved. In the prior art, the membrane is dissolved in an acidic medium before being gelled, the mechanical strength of the gel thus obtained being lower than that of the membrane before dissolution. On the contrary, the method which is the subject of the invention makes it possible to obtain a membrane which does not necessarily appear in the form of a gel. The polymer forming the polymer membrane may be a polymer having basic groups, advantageously secondary or tertiary amines, which may facilitate a proton exchange in a protonic medium, in particular azoles, polyazoles, oxazoles, and thiazoles. It may especially be a polymer of basic or fluorinated character may be chosen from the group comprising polybenzimidazole (PBI), polymers containing at least one monomer tetrafluoroethylene (TFE), hexafluoropropene (HFP), vinylidene fluoride (VDF ); poly (VDF-co-HFP) polymers (PVDF-HFP), perfluoroalkoxy polymers (PFA), poly (ethylene-co-tetrafluoroethylene) (polyETFE), poly perfluoro (ethylene-propylene) (polyFEP); aromatic polyether copolymers, copolymers having pyridine units, polyimides of formula (I), polybenzoxazoles of formula (II), aromatic polyamides of formula (III), and mixtures thereof.
Figure imgf000007_0001
Figure imgf000007_0001
Figure imgf000007_0002
(III)
Figure imgf000007_0002
(III)
Figure imgf000008_0001
Figure imgf000008_0001
De manière générale, il s'agit préférentiellement de polymères à base de groupements fluorés. En effet, ces derniers permettent d'obtenir un film présentant des bonnes propriétés mécaniques. En outre, ils sont très stables vis-à-vis de l'oxydation possible par les superacides mais également lors du fonctionnement en pile. In general, it is preferably polymers based on fluorinated groups. Indeed, these allow to obtain a film having good mechanical properties. In addition, they are very stable vis-à-vis the oxidation possible by superacids but also during stack operation.
La membrane imprégnée de superacide selon l'invention peut se présenter sous forme d'un film autosupporté, ou d'un gel. Il s'agit avantageusement d'un film autosupporté. En outre, la membrane se présente avantageusement sous la forme d'un film ou d'un gel avant imprégnation. The membrane impregnated with superacid according to the invention may be in the form of a self-supporting film, or a gel. It is advantageously a self-supporting film. In addition, the membrane is advantageously in the form of a film or a gel before impregnation.
Selon un mode de réalisation, le polymère de la membrane selon la présente invention est le polybenzimidazole (PBI). According to one embodiment, the polymer of the membrane according to the present invention is polybenzimidazole (PBI).
Typiquement, le solvant utilisé pour préparer la solution de superacide peut être de l'eau, ou une huile fluorée. Toutefois, il s'agit avantageusement de l'eau. Typically, the solvent used to prepare the superacid solution may be water, or a fluorinated oil. However, it is advantageously water.
Le rapport massique entre le superacide et le solvant est avantageusement compris entre 25/75 et 95/05. The mass ratio between the superacid and the solvent is advantageously between 25/75 and 95/05.
Selon un mode de réalisation particulièrement avantageux, le taux de dilution du superacide peut être de l'ordre de 85/15 par rapport au poids du solvant. En d'autres termes, une solution de 100 g de superacide à 85/15 comprend 85 g d'acide pur et 15 g de solvant. Il est à noter que la solution de superacide ne permet pas de dissoudre le polymère, à tout le moins dans les conditions du procédé selon l'invention. Les conditions de température et de dilution de l'acide sont ainsi définies en fonction du polymère sans pour autant permettre sa dissolution. According to a particularly advantageous embodiment, the superacid dilution rate may be of the order of 85/15 relative to the weight of the solvent. In other words, a solution of 100 g of 85/15 superacid comprises 85 g of pure acid and 15 g of solvent. It should be noted that the superacid solution does not make it possible to dissolve the polymer, at least under the conditions of the process according to the invention. The conditions of temperature and dilution of the acid are thus defined according to the polymer without allowing its dissolution.
Comme déjà indiqué, la durée pendant laquelle la membrane est plongée dans la solution de superacide n'excède pas une heure. Elle est avantageusement comprise entre 1 et 30 minutes, plus avantageusement entre 5 et 30 minutes, et encore plus avantageusement entre 10 et 20 minutes. Cette durée peut être avantageusement de l'ordre de 5 minutes dans le cas d'une membrane en PBI et d'une solution à 85 °C contenant 85 % en poids d'acide perfluorosulfonique et 15% en poids d'eau. As already indicated, the time during which the membrane is immersed in the superacid solution does not exceed one hour. It is advantageously between 1 and 30 minutes, more preferably between 5 and 30 minutes, and even more advantageously between 10 and 20 minutes. This duration may advantageously be of the order of 5 minutes in the case of a PBI membrane and a solution at 85 ° C. containing 85% by weight of perfluorosulfonic acid and 15% by weight of water.
De manière générale, le procédé selon l'invention ne nécessite pas d'étape de séchage de la membrane. Il n'est donc pas nécessaire de sécher la membrane polymère. Toutefois, la membrane peut être déposée sur un papier absorbant après imprégnation par le superacide. In general, the process according to the invention does not require a step of drying the membrane. It is therefore not necessary to dry the polymer membrane. However, the membrane may be deposited on an absorbent paper after impregnation with the superacid.
La présente invention concerne également une membrane polymère échangeuse de protons imprégnée de superacide, telle que notamment la membrane susceptible d'être obtenue selon le procédé décrit ci-avant. The present invention also relates to a proton exchange membrane polymer impregnated with superacid, such as in particular the membrane that can be obtained according to the method described above.
De manière avantageuse, la membrane après imprégnation peut présenter une épaisseur comprise entre 10 et 100 micromètres, encore plus avantageusement de l'ordre de 90 micromètres. Advantageously, the membrane after impregnation may have a thickness of between 10 and 100 microns, more advantageously of the order of 90 microns.
Typiquement, la conductivité protonique de la membrane échangeuse de protons selon la présente invention et donc imbibée de superacide peut être comprise entre 20 et 180 mS/cm à température ambiante (25°C) et à 50 % d'humidité relative. Cette plage de valeurs concerne la membrane avec ou sans couches protectrices polymériques. Typically, the proton conductivity of the proton exchange membrane according to the present invention and so imbibed with superacid can be between 20 and 180 mS / cm at room temperature (25 ° C) and at 50% relative humidity. This range of values relates to the membrane with or without polymeric protective layers.
En effet, selon un mode de réalisation particulier, la membrane polymère selon la présente invention peut présenter au moins deux faces principales, dont au moins l'une d'entre elles est recouverte d'une couche protectrice polymérique. Il s'agit avantageusement d'un polymère perfluorosulfoné permettant ainsi éviter l'élution de l'acide. La couche protectrice de cette membrane peut être déposée par pulvérisation d'une dispersion ou solution d'un polymère perfluorosulfoné tel que le Nafïon® (Dupont) ou l'Aquivion® (Solvay-Solexis) sur au moins une face principale de la membrane objet de l'invention, c'est-à-dire une membrane imbibée d'un superacide. La quantité de polymère perfluorosulfoné à pulvériser est fonction de l'épaisseur de la couche protectrice. Une fois la couche protectrice déposée, la membrane peut être séchée, par exemple dans une étuve ou un four à vide, à une température adaptée, typiquement de l'ordre de 80 °C. Par faces principales, on entend préférentiellement les faces en contact ou en regard avec les deux électrodes de la pile à combustible. Indeed, according to a particular embodiment, the polymer membrane according to the present invention may have at least two main faces, at least one of which is covered with a polymeric protective layer. It is advantageously a perfluorosulphonated polymer thus avoiding the elution of the acid. The protective layer of this membrane may be deposited by spraying a dispersion or solution of a perfluorosulfonated polymer such as Nafion® (Dupont) or Aquivion® (Solvay-Solexis) on at least one main surface of the membrane object of the invention, that is to say a membrane impregnated with a superacid. The amount of perfluorosulfonated polymer to be sprayed is a function of the thickness of the protective layer. Once the protective layer has been deposited, the membrane can be dried, for example in an oven or a vacuum oven, at a suitable temperature, typically of the order of 80.degree. By principal faces, one preferably hears the faces in contact or facing the two electrodes of the fuel cell.
Typiquement, la couche protectrice peut présenter une épaisseur comprise entre 1 et 10 micromètres. Elle peut être avantageusement égale à 1 micromètre. Typically, the protective layer may have a thickness of between 1 and 10 microns. It can be advantageously equal to 1 micrometer.
Certaines membranes de l'art antérieur comprennent de la céramique de taille nanométrique. L'acide est ainsi retenu au sein des pores nanométriques de la céramique. Ce n'est pas le cas de la membrane objet de l'invention. La présente invention concerne également l'utilisation de la membrane échangeuse de protons telle que décrite ci-avant dans une pile à combustible, ainsi qu'une pile à combustible comprenant ladite membrane échangeuse de protons. Some membranes of the prior art comprise nanoscale ceramic. The acid is thus retained within the nanometric pores of the ceramic. This is not the case of the membrane which is the subject of the invention. The present invention also relates to the use of the proton exchange membrane as described above in a fuel cell, as well as a fuel cell comprising said proton exchange membrane.
Comme déjà indiqué, contrairement aux membranes de l'art antérieur comprenant des polymères polyfluorosulfonés, la membrane selon la présente invention peut être utilisée à des températures supérieures à 100 °C à faible humidité relative sans provoquer de diminution importante de conductivité. En effet, la membrane selon la présente invention peut fonctionner dans des conditions de faible humidification. En outre, de manière générale, eu égard aux propriétés des superacides utilisés, la membrane selon l'invention peut également être utilisée à des températures inférieures à 40 °C, températures auxquelles l'acide phosphorique dopant les membranes de l'art antérieur est solide. En effet, contrairement à l'acide phosphorique, les superacides considérés se présentent typiquement sous forme liquide à température ambiante. Il est également à noter que par rapport aux membranes dopées à l'acide phosphorique, la membrane selon l'invention présente une conductivité supérieure à une température de fonctionnement de la PEMFC inférieure à 150 °C. Toutefois, le polymère ne contribue pas à la conductivité protonique, cette dernière étant assurée par le superacide. Le polymère contribue à la tenue mécanique de la membrane. As already indicated, unlike the prior art membranes comprising polyfluorosulfonated polymers, the membrane according to the present invention can be used at temperatures above 100 ° C at low relative humidity without causing a significant decrease in conductivity. Indeed, the membrane according to the present invention can operate under low humidification conditions. Furthermore, in general, with regard to the properties of the superacids used, the membrane according to the invention can also be used at temperatures below 40 ° C., at which temperatures the phosphoric acid doping the membranes of the prior art is solid. . Indeed, unlike phosphoric acid, the superacids considered are typically in liquid form at room temperature. It should also be noted that, with respect to membranes doped with phosphoric acid, the membrane according to the invention has a conductivity greater than an operating temperature of the PEMFC of less than 150 ° C. However, the polymer does not contribute to the proton conductivity, the latter being provided by the superacid. The polymer contributes to the mechanical strength of the membrane.
La conductivité pro tonique de la membrane obtenu selon le procédé objet de l'invention peut être mesurée selon les techniques connues de l'homme du métier (voir notamment : Lee et al. Ind. Eng. Chem. Res. 2005, 44, 7617-7626 ; ou Casciola et al. Journal of Power Sources 20066, 162, 141-145). De manière générale et sauf indication contraire, la conductivité est mesurée à la température ambiante (25 °C) et à 50 % d'humidité relative. Elle est mesurée dans le sens de l'épaisseur de la membrane. The pro tonic conductivity of the membrane obtained according to the method which is the subject of the invention can be measured according to the techniques known to those skilled in the art (see, in particular: Lee et al., Ind Eng Chem Res 2005, 44, 7617 Or Casciola et al., Journal of Power Sources 20066, 162, 141-145). In general, and unless otherwise indicated, the conductivity is measured at room temperature (25 ° C) and 50% relative humidity. It is measured in the direction of the thickness of the membrane.
L'invention et les avantages qui en découlent ressortiront mieux des figures et exemples suivants donnés afin d'illustrer l'invention, et non de manière limitative. The invention and the advantages thereof will appear more clearly from the following figures and examples given to illustrate the invention, and not in a limiting manner.
DESCRIPTION DES FIGURES DESCRIPTION OF THE FIGURES
La figure 1 représente le schéma du principe de fonctionnement d'une pile à combustible PEMFC de l'art antérieur. FIG. 1 represents the diagram of the operating principle of a PEMFC fuel cell of the prior art.
EXEMPLE DE REALISATION DE L'INVENTION EXAMPLE OF CARRYING OUT THE INVENTION
Préparation d'une PEMFC selon l'invention Preparation of a PEMFC according to the invention
Une pile à combustible à membrane échangeuse de protons, comprenant une monocellule de 5 cm2 de surface est préparée comme ci-après. A proton exchange membrane fuel cell, comprising a 5 cm 2 surface monocell, is prepared as follows.
L'assemblage membrane/électrode AME comprend deux électrodes (ELAT 250 EWSI de chez Johnson Matthey) de dimension 2,7 x 2,7 cm2. Ces électrodes sont à base de papier carbone non tissé, de platine et de téflon. The membrane / electrode assembly AME comprises two electrodes (ELAT 250 EWSI from Johnson Matthey) of dimension 2.7 x 2.7 cm 2 . These electrodes are based on nonwoven carbon paper, platinum and teflon.
L'AME comprend également une membrane de dimension 4 x 4 cm2 positionnée entre les deux électrodes. L'AME est ensuite insérée entre deux joints de type SIL-PAD (de chez BERGQUIST), la différence d'épaisseur entre l'électrode et le joint étant compensée par deux cales avantageusement réalisées en Téflon®, présentant une épaisseur de 75 micromètres. La monocellule est ensuite fermée et serrée à 7 N.m. The AME also includes a membrane of dimension 4 x 4 cm 2 positioned between the two electrodes. The MEA is then inserted between two type seals SIL-PAD (from BERGQUIST), the difference in thickness between the electrode and the seal being offset by two wedges advantageously made of Teflon ®, having a thickness of 75 micrometers. The single cell is then closed and tightened to 7 Nm
La membrane de cette monocellule comprend un polymère PBI (de chez FUMATECH, référence FUMAPEM APCL) présentant les dimensions suivantes : épaisseur : 40 μιη +1- 2 μιη The membrane of this monocell comprises a polymer PBI (from Fumatech, reference FUMAPEM APCL) having the following dimensions: thickness: 40 μιη + 1- 2 μιη
surface : 4 x 4 cm2 surface: 4 x 4 cm 2
- poids de la membrane sèche : 70 mg - dry weight of the membrane: 70 mg
En parallèle, 21 ml d'une solution aqueuse d'acide perfluorosulfonique présentant un rapport massique de 85 % d'acide pour 15 % d'eau est préparé dans un pilulier en verre de 25 ml. In parallel, 21 ml of an aqueous solution of perfluorosulfonic acid having a weight ratio of 85% acid to 15% water is prepared in a 25 ml glass pill.
La membrane de PBI est ensuite plongée dans cette solution de superacide de manière à ce qu'elle soit totalement immergée. Une fois refermée, le pilulier contenant la solution et la membrane est alors chauffé rapidement (dans les limites de l'appareil, soit environ 5 minutes pour cet exemple) à une température de 85 °C pendant 5 minutes. The PBI membrane is then immersed in this superacid solution so that it is completely immersed. Once closed, the pillbox containing the solution and the membrane is then heated rapidly (within the limits of the apparatus, ie about 5 minutes for this example) at a temperature of 85 ° C for 5 minutes.
La membrane est ensuite sortie de la solution aqueuse de superacide, déposée sur un papier absorbant afin d'éliminer l'excès d'acide, et stockée dans un sachet hermétique. Après imprégnation à l'aide de l'acide, les dimensions de la membrane sont alors de 5,3 x 5,3 cm2. En outre, la membrane imbibée présente une épaisseur d'environ 1 10 micromètres. Son poids est alors de 522 mg, c'est-à-dire un poids 7,5 fois plus élevé que celui de la membrane avant imprégnation de superacide. Lors de l'imprégnation à l'aide de superacide, la longueur et la largeur de la membrane sont donc passées de 4 cm à 5,3 cm. L'épaisseur est passée de 40 micromètres à 1 10 micromètres environ. The membrane is then removed from the aqueous superacid solution, deposited on an absorbent paper to remove excess acid, and stored in an airtight bag. After impregnation with acid, the dimensions of the membrane are then 5.3 × 5.3 cm 2 . In addition, the impregnated membrane has a thickness of about 10 micrometers. Its weight is then 522 mg, that is to say a weight 7.5 times higher than that of the membrane before impregnation of superacid. During the impregnation with superacid, the length and the width of the membrane thus passed from 4 cm to 5.3 cm. The thickness has increased from 40 microns to about 10 micrometers.
La membrane imbibée de superacide présente une conductivité protonique, à température et humidité relative ambiantes de 1 10 mS/cm Tests de la PEMFC selon l'invention Superacid impregnated membrane exhibits proton conductivity at ambient temperature and relative humidity of 1 10 mS / cm PEMFC tests according to the invention
La PEMFC ainsi obtenue est testée à température ambiante sous flux H2/O2 sec à 667 mL/min, sous une pression totale de 1 ,6 bar. The PEMFC thus obtained is tested at ambient temperature under a dry H2 / O2 flux at 667 ml / min, under a total pressure of 1.6 bar.
La cellule est chauffée progressivement jusqu'à une température de 70 °C. Les gaz présentant une humidité relative de 30% sont alors introduits. La pile produit alors 1,7 A à 0,5 V. L'humidité relative des gaz (H2 et 02) est ensuite augmentée à hauteur de 50 %. La production de la pile correspond alors à 3,4 A à 0,5 V. The cell is gradually heated to a temperature of 70 ° C. Gases with a relative humidity of 30% are then introduced. The cell then produces 1.7 A at 0.5 V. The relative humidity of the gases (H 2 and O 2 ) is then increased by 50%. The production of the battery then corresponds to 3.4 A at 0.5 V.
La cellule est ensuite chauffée à 120 °C à 50 % d'humidité relative. La conductivité protonique mesurée in situ est alors de 25 mS/cm. Cette valeur est nettement supérieure à la conductivité de 0.1 mS/cm mesurée à 25°C pour une membrane PBI/H3PO4 présentant un rapport (en mole de H3PO4 par motif de répétition du polymère) polymère/H3P04 = 1,5. The cell is then heated to 120 ° C at 50% relative humidity. The proton conductivity measured in situ is then 25 mS / cm. This value is clearly greater than the conductivity of 0.1 mS / cm measured at 25 ° C for a PBI / H 3 PO 4 membrane having a ratio (in moles of H 3 PO 4 per repeating unit of the polymer) polymer / H 3 PO 4 = 1.5.
La production de la pile correspond alors à 400 mA/cm2 pour une tension de 0,5 V. The output of the battery then corresponds to 400 mA / cm 2 for a voltage of 0.5 V.
Les différents tests mettent en évidence que la membrane permet de faire fonctionner la pile à des températures dites classiques, de l'ordre de 70 °C ainsi qu'à des températures plus élevées comme 120 °C. The various tests show that the membrane makes it possible to operate the cell at so-called conventional temperatures, of the order of 70 ° C. and at higher temperatures, such as 120 ° C.
En outre, les électrodes utilisés, bien que commerciales, sont des électrodes optimisées pour des membranes à base de polymères polyfluorosulfonés, et non des membranes à base de PBI comme c'est le cas ici. En conséquence, le contact entre les électrodes et la membrane à base de PBI n'est pas optimisé. In addition, the electrodes used, although commercial, are optimized electrodes for membranes based on polyfluorosulphonated polymers, and not membranes based on PBI as is the case here. As a result, the contact between the electrodes and the PBI-based membrane is not optimized.

Claims

REVENDICATIONS
Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible, consistant : A method of preparing a proton exchange membrane for a fuel cell, comprising:
à préparer une solution comprenant au moins un solvant dont le poids représente de 5 à 75 % par rapport au poids de la solution, et au moins un superacide dont le pKa est compris entre - 3 et - 30 et dont le poids représente entre 25 et 95 % par rapport poids de la solution ; et  preparing a solution comprising at least one solvent whose weight represents from 5 to 75% by weight of the solution, and at least one superacid whose pKa is between -3 and -30 and whose weight represents between 25 and 95% by weight of the solution; and
à imprégner une membrane polymère dans ladite solution de superacide, pendant une durée inférieure à une heure, et à une température comprise entre 25 et 90 °C.  impregnating a polymer membrane in said superacid solution for a period of less than one hour and at a temperature of between 25 and 90 ° C.
Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible selon la revendication 1, caractérisé en ce que le superacide présente un pKa compris entre - 3 et - 15. Process for the preparation of a fuel cell proton exchange membrane according to claim 1, characterized in that the superacid has a pKa of between -3 and -15.
Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible selon la revendication 1, caractérisé en ce que le superacide est choisi dans le groupe comprenant l'acide disulfurique, l'acide fluorosulfurique, l'acide trifluorométhane sulfonique, l'acide fluoroantimonique. Process for the preparation of a fuel cell proton exchange membrane according to Claim 1, characterized in that the superacid is selected from the group consisting of disulfuric acid, fluorosulfuric acid, trifluoromethanesulfonic acid, acid fluoroantimonique.
Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible selon l'une des revendications 1 à 3, caractérisé en ce que la membrane polymère est choisie dans le groupe comprenant les polymères présentant des groupements azoles, polyazoles, oxazoles, ou thiazoles ; le polybenzimidazole (PBI) ; les polymères contenant au moins un monomère tétrafluoroéthylène (TFE), hexafluoropropène (HFP), fluorure de vinylidène (VDF) ; les polymères de type poly(VDF-co-HFP) (PVDF-HFP), les polymères perfluoroalkoxy (PFA), les poly(éthylène-co-tétrafluoroéthyléne) (polyETFE), poly perfluoro(éthylène-propylène) (polyFEP) ; les copolymères polyéthers aromatiques, les copolymères présentant des motifs pyridine, les polyimides de formule (I), les polybenzoxazoles de formule (II), les polyamides aromatiques de formule (III), et leurs mélanges ;
Figure imgf000015_0001
Process for the preparation of a fuel cell proton exchange membrane according to one of Claims 1 to 3, characterized in that the polymer membrane is chosen from the group consisting of polymers containing azoles, polyazoles, oxazoles or thiazoles. ; polybenzimidazole (PBI); polymers containing at least one tetrafluoroethylene (TFE) monomer, hexafluoropropene (HFP), vinylidene fluoride (VDF); poly (VDF-co-HFP) polymers (PVDF-HFP), perfluoroalkoxy polymers (PFA), poly (ethylene-co-tetrafluoroethylene) (polyETFE), poly perfluoro (ethylene-propylene) (polyFEP); aromatic polyether copolymers, copolymers having pyridine units, polyimides of formula (I), polybenzoxazoles of formula (II), aromatic polyamides of formula (III), and mixtures thereof;
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0002
Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible selon l'une des revendications 1 à 4, caractérisé en ce que la durée d'imprégnation de la membrane polymère est comprise entre 1 et 30 minutes, avantageusement entre 5 et 30 minutes. Process for the preparation of a proton exchange membrane for a fuel cell according to one of Claims 1 to 4, characterized in that the impregnation time of the polymer membrane is between 1 and 30 minutes, advantageously between 5 and 30 minutes. minutes.
Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible selon l'une des revendications 1 à 5, caractérisé en ce que le solvant est l'eau, ou une huile fluorée. Process for the preparation of a proton exchange membrane for a fuel cell according to one of Claims 1 to 5, characterized in that the solvent is water, or a fluorinated oil.
7. Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible selon l'une des revendications 1 à 6, caractérisé en ce que le rapport en poids superacide/solvant est compris entre 25/75 et 95/05. 8. Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible selon la revendication 1, caractérisé en ce que le poids du solvant représente de 50 à 95 % par rapport au poids de la solution. 9. Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible selon la revendication 1, caractérisé en ce que le poids du superacide représente de 5 à 50 % par rapport au poids de la solution. 7. A method for preparing a fuel cell proton exchange membrane according to one of claims 1 to 6, characterized in that the superacid weight ratio / solvent is between 25/75 and 95/05. 8. Process for the preparation of a proton exchange membrane for a fuel cell according to claim 1, characterized in that the weight of the solvent represents from 50 to 95% relative to the weight of the solution. 9. Process for the preparation of a proton exchange membrane for fuel cells according to claim 1, characterized in that the weight of the superacid represents from 5 to 50% relative to the weight of the solution.
10. Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible selon la revendication 1, caractérisé en ce que la température d'imprégnation est comprise entre 60 et80 °C. 10. Process for the preparation of a proton exchange membrane for fuel cells according to claim 1, characterized in that the impregnation temperature is between 60 and 80 ° C.
11. Procédé de préparation d'une membrane échangeuse de protons pour pile à combustible selon la revendication 1, caractérisé en ce que la membrane se présente sous la forme d'un film ou d'un gel avant imprégnation. 11. Process for preparing a proton exchange membrane for a fuel cell according to claim 1, characterized in that the membrane is in the form of a film or a gel before impregnation.
12. Membrane échangeuse de protons comprenant un polymère imprégné par au moins un superacide, obtenue selon le procédé objet de l'une quelconque des revendications 1 à 11. 12. Proton exchange membrane comprising a polymer impregnated with at least one superacid, obtained by the method according to any one of claims 1 to 11.
13. Membrane échangeuse de protons selon la revendication 12, caractérisée en ce que la conductivité protonique de la membrane est comprise entre 20 et 180 mS/cm, à 25°C et à 50 % d'humidité relative. 14. Membrane échangeuse de protons selon la revendication 12 ou 13, caractérisée en ce qu'elle présente au moins deux faces principales, dont au moins l'une d'entre elles est recouverte d'une couche de polymère perfluorosulfoné. 13. Proton exchange membrane according to claim 12, characterized in that the proton conductivity of the membrane is between 20 and 180 mS / cm at 25 ° C and 50% relative humidity. 14. Proton exchange membrane according to claim 12 or 13, characterized in that it has at least two main faces, at least one of which is covered with a perfluorosulfonated polymer layer.
15. Pile à combustible comprenant une membrane échangeuse de protons selon l'une des revendications 12 à 14. Fuel cell comprising a proton exchange membrane according to one of claims 12 to 14.
PCT/FR2012/053043 2012-01-18 2012-12-21 Method for the production of a proton exchange membrane for a fuel cell WO2013107955A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1250517A FR2985860A1 (en) 2012-01-18 2012-01-18 PROCESS FOR PREPARING A PROTON EXCHANGE MEMBRANE FOR A FUEL CELL
FR1250517 2012-01-18

Publications (1)

Publication Number Publication Date
WO2013107955A1 true WO2013107955A1 (en) 2013-07-25

Family

ID=47599110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/053043 WO2013107955A1 (en) 2012-01-18 2012-12-21 Method for the production of a proton exchange membrane for a fuel cell

Country Status (2)

Country Link
FR (1) FR2985860A1 (en)
WO (1) WO2013107955A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019200187A1 (en) * 2018-04-12 2019-10-17 Arges Christopher George Electrochemical reactor for upgrading methane and small alkanes to longer alkanes and alkenes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004444A1 (en) * 1997-07-16 1999-01-28 Aventis Research And Technologies Gmbh & Co. Kg Process for producing fabrics of polybenzimidazole fibers for use in fuel cells
EP1359142A1 (en) * 2001-02-01 2003-11-05 Asahi Kasei Kabushiki Kaisha Perfluorovinyl ether monomer having sulfonamide group
US20080031746A9 (en) 2000-07-10 2008-02-07 Deka Products Limited Partnership Method and device for regulating fluid pump pressures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004444A1 (en) * 1997-07-16 1999-01-28 Aventis Research And Technologies Gmbh & Co. Kg Process for producing fabrics of polybenzimidazole fibers for use in fuel cells
US20080031746A9 (en) 2000-07-10 2008-02-07 Deka Products Limited Partnership Method and device for regulating fluid pump pressures
EP1359142A1 (en) * 2001-02-01 2003-11-05 Asahi Kasei Kabushiki Kaisha Perfluorovinyl ether monomer having sulfonamide group

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BASCHUK JJ; LI X.: "Carbon monoxide poisoning ofproton exchange membranefuel cells", INT. J. ENERGY RES., vol. 25, 2001, pages 695 - 713
CASCIOLA ET AL., JOURNAL OF POWER SOURCES, vol. 20066, no. 162, pages 141 - 145
HE R; LI Q; XIAO G; BJERRUM NJ: "Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors", J. OF MEMB. SCI., vol. 226, 2003, pages 169 - 184, XP004473659, DOI: doi:10.1016/j.memsci.2003.09.002
LEE ET AL., IND. ENG. CHEM. RES., vol. 44, 2005, pages 7617 - 7626
PELED E ET AL: "A NOVEL PROTON-CONDUCTING MEMBRANE", ELECTROCHEMICAL AND SOLID-STATE LETTERS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 1, no. 5, 1 November 1998 (1998-11-01), pages 210/211, XP000785681, ISSN: 1099-0062, DOI: 10.1149/1.1390687 *
SOPHIA N. SUAREZ ET AL: "A Fundamental Study of the Transport Properties of Aqueous Superacid Solutions", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 114, no. 27, 15 July 2010 (2010-07-15), pages 8941 - 8947, XP055039934, ISSN: 1520-6106, DOI: 10.1021/jp909572q *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019200187A1 (en) * 2018-04-12 2019-10-17 Arges Christopher George Electrochemical reactor for upgrading methane and small alkanes to longer alkanes and alkenes
US11591699B2 (en) 2018-04-12 2023-02-28 Board Of Supervisors Of Louisiana State University Electrochemical reactor for upgrading methane and small alkanes to longer alkanes and alkenes

Also Published As

Publication number Publication date
FR2985860A1 (en) 2013-07-19

Similar Documents

Publication Publication Date Title
EP1648047B1 (en) Polymer electrolyte for a direct oxidation fuel cell, method of preparing the same, and direct oxidation fuell cell comprising the same
Wang et al. Grafting free radical scavengers onto polyarylethersulfone backbones for superior chemical stability of high temperature polymer membrane electrolytes
JPH11503262A (en) Proton conductive polymer
JP4920889B2 (en) Membrane electrode assembly, polymer membrane, polymer electrolyte fuel cell, method for producing membrane electrode assembly, and method for producing polymer electrolyte fuel cell
US20070166592A1 (en) Polymer electrolyte membrane, method of preparing the same and fuel cell employing the same
FR2755542A1 (en) GAS DIFFUSION ELECTRODES BASED ON POLYETHERSULFONE AND CARBON MIXTURES
EP2893583B1 (en) Formulation of an active layer having improved performances
JP4870360B2 (en) FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE
EP3095150B1 (en) Membrane for a proton exchange membrane fuel cell
JP4684935B2 (en) Cathode electrode for fuel cell and fuel cell
WO2013107955A1 (en) Method for the production of a proton exchange membrane for a fuel cell
EP2805372B1 (en) Method for the production of a proton exchange membrane for a fuel cell by means of solvent-casting
KR101317510B1 (en) Polybenzimidazole-based film with hydrazinium sulfate and membrane for fuel cell comprising the same
EP2774946B1 (en) Use of a functionalised polysiloxane network for chemically stabilizing a polymer, membrane thus stabilized, process for preparing same and uses thereof
EP3120406B1 (en) Membrane-electrodes assembly for proton exchange membrane fuel cells (pemfc), and manufacturing method
KR20200009544A (en) Membrane-electrode assembly for fuel cell, fuel cell comprising the same and method for membrane-electrode assembly for fuel cell
KR102546869B1 (en) Method for manufacturing the membrane, the membrane, membrane-electorode assembly and the fuel cell comprising the same
JP4687038B2 (en) Manufacturing method of electrolyte membrane for fuel cell
JP2011238496A (en) Electrode for fuel cell, membrane electrode assembly and fuel cell using the same, and method for manufacturing electrode for fuel cell
JP2008034163A (en) Manufacturing method of hydrocarbon-based polymer electrolyte membrane
JP2008153114A (en) Solid polymer electrolyte for fuel cell, manufacturing method of solid polymer electrolyte for fuel cell, and fuel cell
JP2005339991A (en) Polyelectrolyte film, and solid polymer fuel cell and direct methanol type fuel cell using the same
JP2006147478A (en) Proton conductive composition, membrane, and fuel cell
JP2006324140A (en) Cathode electrode for fuel cell and fuel cell
da Silva Multi-stabilized hybrid membranes for fuel cell and electrolyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12816765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12816765

Country of ref document: EP

Kind code of ref document: A1