WO2013118415A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2013118415A1
WO2013118415A1 PCT/JP2012/083529 JP2012083529W WO2013118415A1 WO 2013118415 A1 WO2013118415 A1 WO 2013118415A1 JP 2012083529 W JP2012083529 W JP 2012083529W WO 2013118415 A1 WO2013118415 A1 WO 2013118415A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive pattern
fixed
insulating substrate
pin
Prior art date
Application number
PCT/JP2012/083529
Other languages
English (en)
French (fr)
Inventor
真史 堀尾
恭平 福田
堀 元人
池田 良成
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201280066705.2A priority Critical patent/CN104040715B/zh
Priority to JP2013557387A priority patent/JP5971263B2/ja
Priority to KR1020147019191A priority patent/KR101926854B1/ko
Priority to EP12868019.6A priority patent/EP2814059B1/en
Priority to US14/368,432 priority patent/US9059009B2/en
Publication of WO2013118415A1 publication Critical patent/WO2013118415A1/ja
Priority to US14/706,601 priority patent/US9305910B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/074Stacked arrangements of non-apertured devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13062Junction field-effect transistor [JFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Definitions

  • the present invention relates to a semiconductor device such as a semiconductor module.
  • FIG. 16 A conventional semiconductor device will be described with reference to a cross-sectional view of relevant parts in FIG.
  • the semiconductor device in FIG. 16 is exemplified by a 2-in-1 semiconductor module 500.
  • 101 is a metal base plate for heat dissipation.
  • Reference numeral 102 denotes an insulating substrate with a conductive pattern (ceramic insulating substrate) mounted on the metal base plate 101 and joined by solder 103.
  • the insulating substrate with a conductive pattern (ceramic insulating substrate) 102 is a substrate in which a conductive pattern 102b is bonded to the surface of an insulating substrate (ceramic substrate) 102a and a back conductive film 102c is bonded to the back surface (metal patterns 102b and 102c on the front and back surfaces). is there.
  • Reference numeral 104 denotes a semiconductor chip (semiconductor power chip) mounted on the conductive pattern 102 b of the insulating substrate with conductive pattern 102 via the solder 105.
  • a resin case 106 accommodates a cooling base (metal base plate) 101 bonded to the back surface conductive film 102c of the insulating substrate with a conductive pattern (ceramic insulating substrate) 102 via the solder 103.
  • Reference numeral 107 denotes a metal bar terminal which is an external lead-out terminal joined to the conductive pattern 102 b by solder 105.
  • the semiconductor chips 104 or the conductive pattern 102b in a different region from the semiconductor chip 104 are joined by a bonding wire 108.
  • Patent Document 1 describes a semiconductor device in which a semiconductor chip is arranged on an insulating substrate with a conductive pattern, a large number of metal pins are fixed to the semiconductor chip or the conductive pattern, and the large number of metal pins are fixed to a printed circuit board. ing. It is described that the wiring inductance can be reduced by arranging the metal foils attached to the front and back of the printed board so as to face each other in the printed board.
  • Patent Documents 2 and 3 disclose that an external lead terminal of a P electrode and an external lead electrode terminal of an N electrode are arranged in parallel in a semiconductor device to reduce wiring inductance.
  • the wiring inductance is the sum of the inductances of individual members such as an insulating substrate with a conductive pattern, bonding wires, and external lead-out terminals, and it is difficult to realize low inductance.
  • Patent Documents 1, 2, and 3 a metal bar disposed on the front surface of a printed board with metal pins and a metal foil disposed on the back surface of the printed circuit board with metal pins opposed to each other on a semiconductor chip are used. There is no description of reducing the wiring inductance and further downsizing the semiconductor device by combining the configuration in which the formed external lead-out terminals (P terminal and N terminal, U terminal and P terminal, N terminal, etc.) are arranged adjacently in parallel. .
  • An object of the present invention is to provide a semiconductor device having a printed circuit board with metal pins that can solve the above-described problems and reduce wiring inductance and achieve miniaturization.
  • a semiconductor device has the following characteristics.
  • An insulating substrate with a conductive pattern having at least a first conductive pattern, a second conductive pattern, and a third conductive pattern on the first insulating substrate, an external lead terminal of a positive electrode fixed to the first conductive pattern, and the second conductive pattern A negative external lead terminal fixed to the third conductive pattern, an intermediate potential external lead terminal fixed to the third conductive pattern, a first semiconductor element having one surface fixed to the first conductive pattern, and a third conductive pattern
  • a conductive pin-equipped insulating substrate having a plurality of second conductive pins fixed to a conductive layer on the front surface of the second insulating substrate, wherein the positive lead-out terminal and the negative
  • a part of the pin constituting the second conductive pin is fixed to the other surface of the second semiconductor element, and another pin constituting the second conductive pin is fixed to the conductive pattern. 2 is fixed to the conductive pattern, and the insulating substrate with conductive pins is disposed on the other surface side of the first semiconductor element and on the other surface side of the second semiconductor element.
  • the size of the region where the semiconductor element is disposed is substantially the same as the size of the surface of the insulating substrate with conductive pins.
  • the positive external lead-out terminal and the negative external lead-out terminal are arranged adjacent to and parallel to each other, and a part of the pin constituting the first conductive pin is on the other surface of the first semiconductor element.
  • the other pin constituting the first conductive pin is fixed to the third conductive pattern, and a part of the pin constituting the second conductive pin is the other surface of the second semiconductor element. And other pins constituting the second conductive pins are fixed to the second conductive pattern, and the insulating substrate with conductive pins is connected to the other surface of the first semiconductor element and the second semiconductor. It is sandwiched between the other surfaces of the element.
  • the semiconductor device according to the present invention is the above-described invention, wherein the insulating substrate with conductive pins is a metal foil fixed to the front surface and the back surface of the second insulating substrate made of ceramic, and the metal foil on the back surface. It is good that it is a printed circuit board with a metal pin which has the 1st metal pin fixed to the 2nd metal pin fixed to the metal foil of the front surface.
  • the external lead terminal of the positive electrode and the external lead terminal of the negative electrode may be rectangular conductive plates.
  • the first semiconductor element and the second semiconductor element are connected in series via the first conductive pin and the third conductive pattern in the above-described invention, and the upper arm or the lower arm
  • the semiconductor module may be any one of 2in1, 4in1 and 6in1.
  • the first semiconductor element and the second semiconductor element may each be composed of a switching transistor chip and a diode chip connected in reverse parallel to the switching transistor chip.
  • the switching transistor chip is any of an IGBT chip, a MOSFET chip, a junction field effect transistor chip, or a bipolar transistor chip
  • the diode chip is a pn diode chip.
  • it may be a Schottky barrier diode chip.
  • the semiconductor device in the above-described invention, it is preferable that three sides of the second conductive pattern are surrounded by the first conductive pattern.
  • the second conductive pin fixed to the second conductive pattern penetrates the second insulating substrate.
  • a semiconductor element is disposed on an insulating substrate with a conductive pattern
  • the insulating substrate with a conductive pin is disposed above the insulating substrate with the conductive pattern on the side where the semiconductor element is disposed
  • a plurality of insulating substrates with a conductive pattern are disposed on the insulating substrate with a conductive pattern.
  • the insulating substrate with conductive pins can be made smaller, and the semiconductor device can be downsized. can do.
  • a plurality of semiconductor elements are fixed to insulating plates with different conductive patterns, the semiconductor elements are opposed to each other with an insulating substrate with conductive pins interposed therebetween, and the conductive pins are fixed to the respective semiconductor elements and the conductive patterns.
  • a semiconductor device having a small inductance and a small floor area can be manufactured.
  • FIG. 7 is a cross-sectional view of a principal part taken along line XX of FIG. It is the top view which looked at the metal foil and metal pin of the front surface of the printed circuit board with a metal pin from the direction of arrow P of FIG. It is the top view which looked at the metal foil and metal pin of the back surface of the printed circuit board with a metal pin from the direction of arrow P of FIG. It is the top view of the back surface side which looked at the metal foil and metal pin of each of the front surface of a printed circuit board with a metal pin, and a back surface from the direction of arrow Q of FIG.
  • FIG. 1 It is a circuit diagram of a semiconductor module incorporating a three-phase inverter circuit, and a diagram showing a current flow during steady operation. It is a figure which shows the path
  • FIG. 3 is a main part configuration diagram showing a modification of the semiconductor module 100 of the first embodiment of the present invention, where (a) is a plan view of the main part, and (b) is a cross section of the main part taken along line XX of (a).
  • FIG. It is principal part sectional drawing of the conventional semiconductor device.
  • FIG. 1A and 1B are main part configuration diagrams of a semiconductor module device 100 according to a first embodiment of the present invention.
  • FIG. 1A is a plan view of the main part
  • FIG. 1B is an XX of FIG. It is principal part sectional drawing cut
  • the printed circuit board 13 with metal pins is shown by a dotted line
  • members below the printed circuit board 13 with metal pins are shown by a solid line.
  • FIG. 2 is a plan view of the metal foil and the metal pin of the printed circuit board 13 with the metal pin as viewed from the direction of the arrow P in FIG. 1B.
  • FIG. 2A is the metal foil and the metal pin on the front surface.
  • FIG. 4B is a diagram showing a metal foil and a metal pin on the back surface. In the figure, the gate terminal is not shown.
  • FIG. 3 is a plan view of the back surface side of the metal foil and the metal pins on the front surface and the back surface of the printed board 13 with metal pins as viewed from the direction of the arrow Q in FIG.
  • the semiconductor module device 100 shown in FIGS. 1 to 3 includes an upper arm in which an IGBT (insulated gate bipolar transistor) chip 9 and an FWD (free wheeling diode) chip 10 connected in reverse parallel to the IGBT chip 9 are combined.
  • a 2-in-1 semiconductor module composed of a lower arm in which an IGBT chip 11 and an FWD chip 12 connected in reverse parallel to the IGBT chip 11 are combined (hereinafter, a set of IGBT and FWD connected in reverse parallel is referred to as a “semiconductor element”.
  • the IGBT chips 9 and 11 have a collector terminal C on one side and an emitter terminal E on the other side.
  • the FWD chips 10 and 12 include a cathode terminal K on one surface and an anode terminal A on the other surface.
  • the conductive patterns 4, 5, 6 are formed on the front surface of the ceramic substrate 2, and the back conductive film 3 is formed on the back surface.
  • the conductive pattern 5 is formed in an island shape surrounded by the conductive pattern 4. In some cases, a metal foil is bonded to these conductive patterns 4, 5, 6 and the back surface conductive film 3 to increase the thickness.
  • the printed circuit board 13 with metal pins is formed by bonding metal foils 15 and 16 to the front surface and the back surface of an insulating substrate 14 made of ceramic, respectively.
  • the printed circuit board 13 with metal pins has the metal foil 15 on the front surface and the metal foil 16 on the back surface opposed to each other in the printed circuit board 13.
  • the printed circuit board 13 with metal pins is disposed on the semiconductor element side of the insulating substrate 1 with a conductive pattern.
  • Metal pins 17, 18, 19, and 20 are fixed in the same direction on the metal foils 15 and 16 of the printed circuit board 13 with metal pins.
  • These metal pins and metal foils may be conductive pins or conductors having a large electric conduction.
  • the metal pins 17 and 20 are fixed to the metal foil 15 on the front surface, and the metal pins 18 and 19 are fixed to the metal foil 16 on the back surface and are electrically connected to the metal foil 15 and the metal foil 16, respectively.
  • the metal pin 17 is fixed to the metal foil 15 and penetrates the insulating substrate 14.
  • the external lead-out terminals include a P terminal 21, an N end 22, and a U terminal 23.
  • the P terminal 21 and the N terminal 22 are arranged close to each other in parallel.
  • the collector side of the IGBT chip 9, the cathode side of the FWD 10, and the P terminal 21 are fixed and electrically connected to the conductive pattern 4 on the insulating substrate with conductive pattern 1.
  • An N terminal 22 is fixed and electrically connected to the conductive pattern 5.
  • the collector side of the IGBT chip 11, the cathode side of the FWD chip 12, and the U terminal 23 are fixed and electrically connected to the conductive pattern 6.
  • the metal pin 17 is fixed to the conductive pattern 5, and the metal pin 18 is fixed to the emitter side of the IGBT chip 9 and the anode side of the FWD chip 10 and is electrically connected to each other.
  • the metal pin 19 is fixed to the conductive pattern 6, and the metal pin 20 is fixed to and electrically connected to the emitter side of the IGBT chip 11 and the anode side of the FWD chip 12.
  • the IGBT chips 9 and 11 and the FWD chips 10 and 12 are fixed by solders 7 and 8 which are bonding materials. Of course, a bonding material or a sintered material other than solder may be used in place of the solders 7 and 8.
  • the shape of the printed circuit board 13 with metal pins is selected so that the metal pins 17 to 20 can be easily connected to the IGBT chips 9 and 11, the FWD chips 10 and 12, and the conductive patterns 5 and 6, for example, square or rectangular.
  • the printed circuit board 13 with metal pins is, for example, substantially the same size as the region surrounding the IGBT chips 9 and 11 and the FWD chips 10 and 12, and preferably, the metal pins 17 and 19 of the conductive patterns 5 and 6 are further fixed.
  • the area is almost the same size as the area including the part. This region corresponds to, for example, the region indicated by the dotted line (reference numeral 13) in FIG.
  • the tips of the P terminal 21, N terminal 22 and U terminal 23, which are external lead-out terminals, are exposed, and the whole is sealed with an epoxy resin 24 so that the back surface conductive film 3 of the insulating substrate 1 with a conductive pattern is exposed.
  • the semiconductor module 100 is completed.
  • FIG. 4 is a diagram showing a circuit diagram of the 2-in-1 semiconductor module 100 and the direction of a current that flows during commutation.
  • FIG. 5 is a diagram showing a path of a current flowing in the 2-in-1 semiconductor module 100 during commutation.
  • FIG. 5A shows a path of a current flowing in the front-side metal foil 15 and the back-side metal foil 16.
  • FIG. 2B is a cross-sectional view showing a current path.
  • the time of commutation refers to, for example, a case where the U-phase upper arm element (in this case, the IGBT chip 9) shifts to an off state and the W-phase upper arm element shifts to an on state.
  • a dotted line indicates another arm constituting the three-phase inverter circuit.
  • the current a flows through the conductive pattern 4
  • the current b flows through the path of the metal pin 18 and the metal foil 16 and the metal pin 19 on the back surface
  • the current c flows through the conductive pattern 6.
  • the current d passes through the path of the V-phase lower arm element (IGBT-V) -N terminal 22-FWD chip 12-U terminal 23-load M. e and f flow, and the currents d, e, and f increase.
  • the current d flows through the conductive pattern 5
  • the current e flows through the path of the metal pin 17 and the metal foil 15 and the metal pin 20 on the front surface
  • the current f flows through the conductive pattern 6 and flows into the U terminal 23.
  • the voltage (L ⁇ ( ⁇ di / dt)) generated in the conductive pattern generated by the product of the decrease rate ( ⁇ di / dt) of the current b and the inductance (L) of the metal foil 16 is the increase rate of the current e. It is canceled out by the resulting magnetic flux and becomes smaller.
  • the wiring inductance refers to inductance caused by wiring including self-inductance, mutual inductance, and stray inductance.
  • the wiring inductance can be reduced by forming the P terminal 21 and the N terminal 22 which are external output terminals with metal bars (plates) and arranging them in parallel with each other. Further, by shortening the metal pins 17 to 20, the distance between the printed board 13 with metal pins and the conductive pattern 4 can be shortened, and the wiring inductance can be reduced.
  • the metal foil 15 on the front surface and the metal foil 16 on the back surface of the printed circuit board 13 with metal pins are opposed to each other in the printed circuit board 13. Thereby, the wiring inductance which influences at the time of commutation can be reduced.
  • di / dt is increased in the same way even in a large current element, the use of the semiconductor module 100 can suppress the generation of a large surge voltage.
  • the printed board 13 with metal pins can be made smaller.
  • the semiconductor module 100 can be reduced in size.
  • a method for calculating the wiring inductance of the 2-in-1 semiconductor module 100 by simulation will be described.
  • the inductance of the wiring connecting the P terminal 21 and the N terminal 22 is calculated by simulation. This inductance does not necessarily match the operating inductance when two or three semiconductor modules 100 are connected to form a single-phase inverter circuit or a three-phase inverter circuit, but at least the inductance calculated by this simulation If is small, it has been confirmed that the inductance during operation is also small.
  • the inductance calculated by the simulation is much lower in the semiconductor module 100 of the present invention.
  • the inductance reduction is about 1/8 to 1/5 of the conventional semiconductor module 500, for example.
  • FIGS. 6 and 7 are configuration diagrams of a semiconductor device according to a second embodiment of the present invention.
  • FIG. 6 is a plan view of the main part, and FIG. .
  • the printed circuit board 13a with metal pins is shown by a dotted line, and members below the printed circuit board 13a with metal pins are shown by a solid line.
  • 8 and 9 are configuration diagrams of the printed circuit board 13a with metal pins.
  • FIG. 8 is a plan view of the metal foil and the metal pins on the front surface as viewed from the direction of the arrow P in FIG. 7, and FIG. It is the top view which looked at metal foil and the metal pin from the direction of arrow P of FIG.
  • FIG. 10 is a plan view of the back surface side of the metal foil and the metal pins on the front surface and the back surface of the printed circuit board 13a with metal pins as viewed from the direction of the arrow Q in FIG.
  • FIG. 6, FIG. 7 and FIG. 1 The difference between FIG. 6, FIG. 7 and FIG. 1 is that the IGBT chip and FWD chip built in 2 in 1 of FIG. 1 are arranged in the U phase, V phase, and W phase. The number of metal pins 17 is tripled.
  • the semiconductor device 200 includes a U phase, a V phase, and a W phase.
  • the U phase an upper arm in which an IGBT chip 9a and an FWD chip 10a connected in reverse parallel to the IGBT chip 9a are combined (semiconductor element), and an FWD chip 12a connected in reverse parallel to the IGBT chip 11a is combined.
  • the V-phase is constituted by an upper arm and a lower arm in which IGBT chips 9b and 11b and FWD chips 10b and 12b connected in reverse parallel to the IGBT chips 9b and 11b are combined.
  • the W phase is composed of an upper arm and a lower arm, each of which is a set of IGBT chips 9c, 11c and FWD chips 10c, 12c connected in reverse parallel to the IGBT chips 9c, 11c.
  • conductive patterns 4a, 5a, 6a, 6b, 6c are formed on the front surface of the ceramic substrate 2a, and a back conductive film 3a is formed on the back surface.
  • the conductive pattern 5a is formed in an island shape surrounded by the conductive pattern 4a.
  • a metal foil is bonded to the conductive patterns 4a, 5a, 6a, 6b, 6c and the back conductive film 3a to increase the thickness.
  • the printed circuit board 13a with metal pins is formed by bonding metal foils 15a and 16a to the front surface and the back surface of an insulating substrate 14a made of ceramic, respectively.
  • the printed circuit board 13a with metal pins has the front surface metal foil 15a and the rear surface metal foil 16a opposed to each other in the printed circuit board 13a.
  • the printed circuit board 13a with metal pins is arranged on the semiconductor element side of the insulating substrate with conductive pattern 1a. Metal pins 17, 18, 19, and 20 are fixed to the metal foils 15a and 16a in the same direction.
  • the metal pins 17 and 20 are fixed to the metal foil 15a on the front surface, and the metal pins 18 and 19 are fixed to the metal foil 16a on the back surface and are electrically connected to the metal foil 15a and the metal foil 16a, respectively.
  • the metal pin 17 is fixed to the metal foil 15a and penetrates the insulating substrate 14a.
  • the external lead-out terminals include a P terminal 21a, an N end 22a, a U terminal 23a, a V terminal 23b, and a W terminal 23c.
  • the P terminal 21a and the N terminal 22a are arranged close to each other in parallel.
  • the collector side of the IGBT chips 9a, 9b, 9c, the cathode side of the FWD chips 10a, 10b, 10c and the P terminal 21a are fixed and electrically connected to the conductive pattern 4a on the insulating substrate with conductive pattern 1a.
  • An N terminal 22a is fixed and electrically connected to the conductive pattern 5a.
  • the collector side of the IGBT chips 11a, 11b, and 11c, the cathode side of the FWD chips 12a, 12b, and 12c, and the U terminal 23a, the V terminal 23b, and the W terminal 23c are fixed and electrically connected to the conductive patterns 6a, 6b, and 6c, respectively.
  • the IGBT chip and the FWD chip are fixed to each conductive pattern with solder 7a as a bonding material.
  • the metal pin 17 is fixed to the conductive pattern 5a, and the metal pin 18 is fixed to the emitter side of the IGBT chips 9a, 9b, and 9c and the anode side of the FWD chips 10a, 10b, and 10c with solder 8a as a bonding material.
  • the metal pin 19 is fixed to the conductive pattern 6a, and the metal pin 20 is fixed to the emitter side of the IGBT chips 11a, 11b, and 11c and the anode side of the FWD chips 12a, 12b, and 12c with solder 8a that is a bonding material. Connected.
  • An epoxy resin 24a is used so that the tips of the P terminal 21a, the N terminal 22a, the U terminal 23a, the V terminal 23b, and the W terminal 23c, which are external lead-out terminals, are exposed and the back surface conductive film 3a of the insulating substrate with conductive pattern 1a is exposed. The whole is sealed, and a 6 in 1 semiconductor module 200 is completed.
  • FIG. 11 is a circuit diagram of a semiconductor module incorporating a three-phase inverter circuit and a diagram showing a current flow during steady operation.
  • FIG. 12 is a diagram illustrating a current path during steady operation and commutation using FIG. 7.
  • the current input from the P terminal 21a flows out from the U terminal 23a to the load M, for example. Then, for example, the current returned from the load M to the V terminal 23b returns to the N terminal 22a. Specifically, the current a of the conductive pattern 4a enters the metal foil 16a through the IGBT chip 9a, and the current b of the metal foil 16a enters the conductive pattern 6a through the metal pin 19. The current c entering the conductive pattern 6a flows to the load M through the U terminal 23a.
  • the current g returned from the load M enters the IGBT chip 11b through the conductive pattern 6b.
  • the current h that has entered the metal foil 15a from the IGBT chip 11b passes through the metal pin 17 and enters the conductive pattern 5a.
  • the current i entering the conductive pattern 5a flows out from the N terminal 22a to the external circuit.
  • the current a flowing in the conductive pattern 4a and the current h of the metal foil 15a on the front surface are opposite (B portion). Further, the current b flowing through the metal foil 16a on the back surface and the current h flowing through the metal foil 15a on the front surface are in the opposite directions (C portion). Furthermore, the current a flowing through the P terminal 21a and the current i flowing through the N terminal 22a are also opposite (A part). Therefore, the wiring inductance is reduced during steady operation.
  • FIG. 13 is a fragmentary cross-sectional view of the semiconductor device according to the third embodiment of the present invention.
  • This semiconductor device is a 2 in 1 semiconductor module 300.
  • two insulating substrates with conductive patterns (ceramic insulating substrates) 1d and 1e were used, and a circuit was configured in the vertical direction so as to minimize the area of the printed board 13d with metal pins.
  • the collector side of the IGBT chip 9d and the cathode side of the FWD chip are fixed with solder 7d.
  • the collector side of the IGBT chip 11d and the cathode side of the FWD chip are fixed with solder 7d.
  • the printed circuit board 13d with metal pins is formed by bonding metal foils 15d and 16d to the front surface and the back surface of an insulating substrate 14d made of ceramic, respectively. Accordingly, the printed circuit board 13d with metal pins has the front surface metal foil 15d and the back surface metal foil 16d opposed to each other in the printed circuit board 13d. Metal pins 17d, 18d, 19d, and 20d are fixed and electrically connected to the printed board 13d with metal pins.
  • the metal pin 18d and the emitter side of the IGBT chip 9d and the anode side of the FWD chip (not shown) are fixed with solder 8d, and the metal pin 20d and the emitter side of the IGBT chip 11d and the anode side of the FWD chip (not shown) are fixed with solder 8d. , Each is electrically connected.
  • the metal pin 17d is fixed to the metal foil 15d and penetrates through the insulating substrate 14d.
  • the metal pin 19d is fixed to the metal foil 16d and penetrates through the insulating substrate 14d.
  • the P terminal 21d is fixed and electrically connected to the conductive pattern 4d of the insulating substrate with conductive pattern 1d.
  • a metal pin 17d and an N terminal 22d are fixed to and electrically connected to the conductive pattern 5d.
  • the P terminal 21d and the N terminal 22d are adjacently arranged in parallel and are formed of a metal bar (plate).
  • the U terminal 23d and the metal pin 19d are fixed and electrically connected to the conductive pattern 6d of the insulating substrate with conductive pattern 1e.
  • the conductive pattern 5d is formed in an island shape surrounded by the conductive pattern 4d.
  • Insulating substrates 1d and 1e with conductive patterns are arranged on both sides of printed board 13d with metal pins, and semiconductor elements (IGBT chips 9d and 11d and FWD chips (IGBT in FIG. 13) are disposed on the insulating substrates 1d and 1e with conductive patterns. Chips 9d and 11d are located behind) and are electrically connected.
  • the semiconductor module 300 is completed by sealing the whole with resin 24d.
  • the height of the semiconductor module 300 is increased, but the floor area (footprint) of the semiconductor module 300 is significantly reduced, which contributes to size reduction in a system in which the semiconductor module 300 is incorporated. it can.
  • FIG. 14 is a diagram illustrating current paths in the semiconductor device of FIG. 13 during commutation (solid line) and other than commutation (dotted line).
  • the current a entered from the P terminal 21d enters the metal pin 18d through the conductive pattern 4d of the insulating substrate with conductive pattern 1d.
  • the current b that has entered the metal foil 16d on the back side of the printed circuit board 13d with the metal pin from the metal pin 18d flows out of the metal pin 19d.
  • the current c flowing out from the metal pin 19d flows through the conductive pattern 6d to the U terminal 23d.
  • the current d enters the conductive pattern 5d from the N terminal 22d.
  • a current e flowing from the conductive pattern 5d to the FWD chip (not shown in the figure) through the metal pin 17b, the metal foil 15d on the front surface, and the metal pin 20d flows to the conductive pattern 6d.
  • the current f flowing through the conductive pattern 6d flows to the U terminal 23d.
  • the voltage (L ⁇ ( ⁇ di / dt)) generated in the conductive pattern generated by the product of the decrease rate ( ⁇ di / dt) of the current b and the inductance (L) of the metal foil 16d is the increase rate of the current f. It is canceled out by the resulting magnetic flux and becomes smaller.
  • the wiring inductance is reduced, and the conductive patterns 4d and 6d and the metal foils 15d and 16d at the time of commutation. Can be reduced in voltage.
  • the jumping voltage (surge voltage) when the IGBT chip 9d shifts to the off state can be suppressed.
  • the wiring inductance can be reduced by forming the P terminal 21d and the N terminal 22d, which are external output terminals, by metal bars (plates) and arranging them parallel to each other.
  • the distance between the printed circuit board with metal pin 13d and the conductive patterns 4d and 6d can be reduced, and the inductance of the wiring can be reduced.
  • the 2-in-1 semiconductor module 300 is described. However, this structure can also be applied to 4-in-1 and 6-in-1 semiconductor modules.
  • the IGBT chip and the FWD chip are exemplified as the semiconductor elements.
  • a MOSFET (field effect transistor) chip and a J-FET (junction field effect transistor) chip are used instead of the IGBT chip.
  • a switching transistor chip such as a bipolar transistor chip may be used.
  • Examples of the FWD chip include a pn diode chip and a Schottky barrier diode chip.
  • the example of the 2-in-1 semiconductor module 100 and the second example of the 6-in-1 semiconductor module 200 have been described.
  • four semiconductor elements a combination of an IGBT chip and an FWD chip
  • the present invention can also be applied to a 4-in-1 semiconductor module.
  • the example in which the conductive patterns 5, 5a, and 5d are formed in an island shape surrounded by the conductive patterns 4, 4a, and 4d has been described. It is not always necessary to be surrounded by the conductive patterns 4, 4a, 4d, and other modes may be used.
  • the conductive pattern 4 is U-shaped and the conductive pattern 5 is surrounded by the conductive pattern 4. Good.
  • a further smaller semiconductor device can be provided.

Abstract

 導電パターン付絶縁基板1上に半導体チップ9~12を配置し、半導体チップ9~12を挟んで導電パターン付絶縁基板1の上方に金属ピン付プリント基板13を配置し、導電パターン付絶縁基板1に複数の外部導出端子21,22、23を固着し、複数の外部導出端子21,22を隣接平行配置する。また、金属ピン付プリント基板13のおもて面と裏面に互いに対向して形成された金属箔15,16を半導体チップ9~12の上方に配置する。

Description

半導体装置
 この発明は、半導体モジュールなどの半導体装置に関する。
 従来の半導体装置を、図16の要部断面図を用いて説明する。図16の半導体装置は2in1の半導体モジュール500を例として挙げた。図中、101は放熱用の金属ベース板である。102は金属ベース板101の上に搭載してハンダ103で接合した導電パターン付絶縁基板(セラミック絶縁基板)である。この導電パターン付絶縁基板(セラミック絶縁基板)102は、絶縁基板(セラミック基板)102aの表面に導電パターン102b、裏面に裏面導電膜102c(表裏面に金属パターン102b,102c)を貼り合せた基板である。104は導電パターン付絶縁基板102の導電パターン102bにハンダ105を介しマウントした半導体チップ(半導体パワーチップ)である。106は導電パターン付絶縁基板(セラミック絶縁基板)102の裏面導電膜102cにハンダ103を介し接合した冷却ベース(金属ベース板)101を収納する樹脂ケースである。107はハンダ105で導電パターン102bに接合された外部導出端子である金属バー端子である。半導体チップ104同士、又は半導体チップ104と別の領域の導電パターン102bは、ボンディングワイヤ108で接合されている。
 また、特許文献1では、導電パターン付絶縁基板上に半導体チップを配置し、半導体チップや導電パターンに多数の金属ピンを固着し、この多数の金属ピンをプリント基板に固着した半導体装置が記載されている。このプリント基板の表裏に貼り付けた金属箔をプリント基板内において対向するように配置することで配線インダクタンスを低減できることが記載されている。
 また、特許文献2、3では、半導体装置内のP電極の外部導出端子およびN電極の外部導出極端子を平行に配置し、配線インダクタンスを低減することが開示されている。
特開2009-64852号公報(段落0132~0134および図17) 特開2001-274322号公報 特開2004-214452号公報
 半導体装置において、スイッチング動作時に発生するサージ電圧や外来の電圧サージを低下させるために、半導体装置内部の配線インダクタンスを低減することが求められる。
 しかし、図16の半導体装置では、配線インダクタンスは導電パターン付絶縁基板、ボンディングワイヤおよび外部導出端子などの部材単体のインダクタンスの合算となり低インダクタンスを実現することは難しい。
 また、特許文献1,2,3では、金属ピン付プリント基板のおもて面に配置された金属箔と裏面に配置した金属箔とを互いに半導体チップ上で対向させた構造と、金属バーで形成された外部導出端子(P端子とN端子、U端子とP端子やN端子など)を隣接平行配置した構成を組み合わせることで、配線インダクタンスを低減し、さらに半導体装置を小型化する記載はない。
 また、特許文献1では、プリント基板のおもて面と裏側の金属箔がプリント基板内において対向する箇所が半導体チップから外れた箇所にあり、その外れた箇所に外部導出端子を接続しているため、プリント基板が大きくなり、半導体装置は大型化する。また、プリント基板に外部導出端子を接続しているため、接続箇所の機械的強度が弱い。
 この発明の目的は、前記の課題を解決して、配線インダクタンスを低減し小型化を図ることができる金属ピン付プリント基板を有する半導体装置を提供することにある。
 前記の目的を達成するために、この発明にかかる半導体装置は、次の特徴を有する。少なくとも第1導電パターン、第2導電パターンおよび第3導電パターンを第1絶縁基板上に有する導電パターン付絶縁基板と、前記第1導電パターンに固着した正極の外部導出端子と、前記第2導電パターンに固着した負極の外部導出端子と、前記第3導電パターンに固着した中間電位の外部導出端子と、前記第1導電パターンに一方の面が固着した第1半導体素子と、前記第3導電パターンに一方の面が固着した第2半導体素子と、第2絶縁基板の裏面とおもて面にそれぞれ導電層を有し、前記第2絶縁基板の裏面の導電層に固着した複数の第1導電ピンおよび前記第2絶縁基板のおもて面の導電層に固着した複数の第2導電ピンを有する導電ピン付絶縁基板と、を具備し、前記正極の外部導出端子と負極の外部導出端子が互いに隣接して平行に配置されており、前記第1導電ピンを構成するピンの一部が前記第1半導体素子の他方の面に固着しているとともに該第1導電ピンを構成する他のピンが前記第3導電パターンに固着しており、前記第2導電ピンを構成するピンの一部が前記第2半導体素子の他方の面に固着しているとともに該第2導電ピンを構成する他のピンが前記第2導電パターンに固着しており、前記導電ピン付絶縁基板が前記第1半導体素子の他方の面側および第2半導体素子の他方の面側に配置されており、該第1半導体素子および第2半導体素子が配置された領域の大きさと前記導電ピン付絶縁基板面の大きさがほぼ同じである。
 また、この発明にかかる半導体装置の別の態様は、次の特徴を有する。少なくとも第1導電パターンおよび第2導電パターンを第1絶縁基板上に有する第1導電パターン付絶縁基板と、少なくとも第3導電パターンを第3絶縁基板上に有する第2導電パターン付絶縁基板と、前記第1導電パターンに固着した正極の外部導出端子と、前記第2導電パターンに固着した負極の外部導出端子と、前記第3導電パターンに固着した中間電位の外部導出端子と、前記第1導電パターンに一方の面が固着した第1半導体素子と、前記第3導電パターンに一方の面が固着した第2半導体素子と、第2絶縁基板の裏面とおもて面にそれぞれ導電層を有し、前記第2絶縁基板の裏面の導電層に固着した複数の第1導電ピンおよび前記第2絶縁基板のおもて面の導電層に固着した複数の第2導電ピンを有する導電ピン付絶縁基板と、を具備し、前記正極の外部導出端子と負極の外部導出端子が互いに隣接して平行に配置されており、前記第1導電ピンを構成するピンの一部が前記第1半導体素子の他方の面に固着しているとともに該第1導電ピンを構成する他のピンが前記第3導電パターンに固着しており、前記第2導電ピンを構成するピンの一部が前記第2半導体素子の他方の面に固着しているとともに該第2導電ピンを構成する他のピンが前記第2導電パターンに固着しており、前記導電ピン付絶縁基板が前記第1半導体素子の他方の面と前記第2半導体素子の他方の面の間に挟まれて配置されている。
 また、この発明にかかる半導体装置は、上述した発明において、前記導電ピン付絶縁基板が、セラミックからなる前記第2絶縁基板のおもて面と裏面にそれぞれ固着した金属箔と、裏面の金属箔に固着した第1金属ピンと、おもて面の金属箔に固着した第2金属ピンと、を有する金属ピン付プリント基板であるとよい。
 また、この発明にかかる半導体装置は、上述した発明において、前記正極の外部導出端子および前記負極の外部導出端子が、長方形の導電板であるとよい。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1半導体素子と前記第2半導体素子が前記第1導電ピンおよび前記第3導電パターンを介して直列接続し、上アームまたは下アームを構成している2in1,4in1もしくは6in1のいずれかの半導体モジュールであるとよい。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1半導体素子および第2半導体素子のそれぞれが、スイッチングトランジスタチップと該スイッチングトランジスタチップに逆並列接続するダイオードチップからなるとよい。
 また、この発明にかかる半導体装置は、上述した発明において、前記スイッチングトランジスタチップが、IGBTチップ、MOSFETチップ、接合型電界効果トランジスタチップもしくはバイポーラトランジスタチップのいずれかであり、前記ダイオードチップがpnダイオードチップもしくはショットキーバリアダイオードチップであるとよい。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2導電パターンの3方が、前記第1導電パターンに囲まれているとよい。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2導電パターンに固着している前記第2導電ピンが、前記第2絶縁基板を貫通しているとよい。
 この発明によれば、導電パターン付絶縁基板上に半導体素子を配置し、導電パターン付絶縁基板の半導体素子を配置した側の上方に導電ピン付絶縁基板を配置し、導電パターン付絶縁基板に複数の外部導出端子に固着し、正極の外部導出端子と負極の外部導出端子を隣接平行配置することにより、配線インダクタンスを低減した半導体装置を提供することができる。さらに、これら外部導出端子を導電板とすることにより半導体装置の配線インダクタンスを低減することができる。
 また、導電ピン付絶縁基板のおもて面と裏面に互いに対向して形成された導電層を半導体素子の上方に配置することで、導電ピン付絶縁基板を小さくできて、半導体装置を小型化することができる。
 また、複数の半導体素子をそれぞれ異なる導電パターン付絶縁板に固着し、半導体素子同士が導電ピン付絶縁基板を挟んで対向し、導電ピンをそれぞれの半導体素子および導電パターンに固着させることで、配線インダクタンスが小さく、床面積が小さな半導体装置を製作することができる。
この発明の第1実施例の半導体モジュール100の要部構成図であり、(a)は要部平面図、(b)は(a)のX-X線で切断した要部断面図である。 金属ピン付プリント基板の金属箔と金属ピンを図1(b)の矢印Pの方向から見た平面図であり、(a)はおもて面の金属箔と金属ピンを表した図、(b)は裏面の金属箔と金属ピンを表した図である。 金属ピン付プリント基板のおもて面と裏面のそれぞれの金属箔と金属ピンを図1(b)の矢印Qの方向から見た裏面側の平面図である。 2in1の半導体モジュール100の回路図と転流時に流れる電流の向きを示す図である。 転流時に2in1の半導体モジュール100内に流れる電流の経路を示す図であり、(a)はおもて面側の金属箔15と裏側の金属箔16に流れる電流の経路を示す平面図、(b)は電流の経路を示す断面図である。 この発明の第2実施例の半導体装置の要部平面図である。 図6のX-X線で切断した要部断面図である。 金属ピン付プリント基板のおもて面の金属箔と金属ピンを図7の矢印Pの方向から見た平面図である。 金属ピン付プリント基板の裏面の金属箔と金属ピンを図7の矢印Pの方向から見た平面図である。 金属ピン付プリント基板のおもて面と裏面のそれぞれの金属箔と金属ピンを図7の矢印Qの方向から見た裏面側の平面図である。 3相インバータ回路を内蔵した半導体モジュールの回路図と定常動作時の電流の流れを示す図である。 図7を用いて、定常動作時と転流時の電流の経路を示す図である。 この発明の第3実施例の半導体装置の要部断面図である。 図13の半導体装置で、転流時(実線)と転流時以外(点線)の電流の経路を示す図である。 この発明の第1実施例の半導体モジュール100の変形例を示す要部構成図であり、(a)は要部平面図、(b)は(a)のX-X線で切断した要部断面図である。 従来の半導体装置の要部断面図である。
 実施の形態を以下の実施例で説明する。
<実施例1>
 図1は、この発明の第1実施例の半導体モジュール装置100の要部構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX-X線で切断した要部断面図である。図1は、この発明の理解を容易にするために、金属ピン付プリント基板13を点線で示し、金属ピン付プリント基板13より下方の部材を実線で示した。
 図2は、金属ピン付プリント基板13の金属箔と金属ピンを図1(b)の矢印Pの方向から見た平面図であり、同図(a)はおもて面の金属箔と金属ピンを表した図、同図(b)は裏面の金属箔と金属ピンを表した図である。図では、ゲート端子は示されていない。
 図3は、金属ピン付プリント基板13のおもて面と裏面のそれぞれの金属箔と金属ピンを図1(b)の矢印Q方向から見た裏面側の平面図である。
 図1~3に示す、この半導体モジュール装置100は、IGBT(絶縁ゲート型バイポーラトランジスタ)チップ9とIGBTチップ9に逆並列接続するFWD(フリーホイーリングダイオード)チップ10とを組にした上アームと、IGBTチップ11とIGBTチップ11に逆並列接続するFWDチップ12とを組にした下アームとにより構成された2in1半導体モジュールである(以下、逆並列接続したIGBTとFWDの組を「半導体素子」ともいう。)。IGBTチップ9,11は、その一方の面にコレクタ端子Cを備え、他方の面にエミッタ端子Eを備えている。FWDチップ10,12は、その一方の面にカソード端子Kを備え、他方の面にアノード端子Aを備えている。導電パターン付絶縁基板1ではセラミック基板2のおもて面に導電パターン4,5,6が形成され、裏面に裏面導電膜3が形成されている。導電パターン5は、導電パターン4に囲まれて島状に形成されている。これらの導電パターン4,5,6や裏面導電膜3に金属箔を接合して、厚みを厚くした導電体とする場合もある。
 金属ピン付プリント基板13は、セラミックからなる絶縁基板14のおもて面と裏面にそれぞれ金属箔15、16が接合されてなる。これにより、金属ピン付プリント基板13は、おもて面の金属箔15と裏面の金属箔16を当該プリント基板13内において互いに対向させている。金属ピン付プリント基板13は、導電パターン付絶縁基板1の半導体素子側に配置されている。金属ピン付プリント基板13の金属箔15,16には金属ピン17,18,19,20が同一方向に固着している。これらの金属ピンや金属箔は電気伝導が大きな導電ピンや導電体であればよい。
 金属ピン17、20はおもて面の金属箔15に固着し、金属ピン18,19は裏面の金属箔16に固着し、それぞれ金属箔15,金属箔16と電気的に接続されている。金属ピン17は金属箔15に固着するとともに絶縁基板14を貫通している。外部導出端子はP端子21、N端22、U端子23があり、P端子21とN端子22は互いに近接して平行に配置されている。
 導電パターン付絶縁基板1上の導電パターン4にIGBTチップ9のコレクタ側とFWD10のカソード側およびP端子21が固着されて電気的に接続されている。導電パターン5にN端子22が固着されて電気的に接続されている。導電パターン6にIGBTチップ11のコレクタ側とFWDチップ12のカソード側およびU端子23が固着されて電気的に接続されている。
 金属ピン17は導電パターン5に固着され、金属ピン18はIGBTチップ9のエミッタ側およびFWDチップ10のアノード側に固着して、それぞれ電気的に接続されている。金属ピン19は導電パターン6に固着し、金属ピン20はIGBTチップ11のエミッタ側およびFWDチップ12のアノード側に固着してそれぞれ電気的に接続されている。尚、IGBTチップ9,11、FWDチップ10,12は接合材である半田7,8で固着される。この半田7,8の代わりに、半田以外の接合材や焼結材を用いても勿論構わない。
 金属ピン付プリント基板13の形状は、金属ピン17~20をIGBTチップ9,11、FWDチップ10,12および導電パターン5,6に接続しやすいように選択され、例えば正方形あるいは長方形である。金属ピン付プリント基板13は、例えば、IGBTチップ9,11とFWDチップ10,12を囲む領域とほぼ同じ大きさであり、好ましくは、さらに導電パターン5,6の金属ピン17、19が固着された部分を含む領域とほぼ同じ大きさである。この領域は、例えば図1(a)の点線(符号13)で示した領域に相当する。
 外部導出端子であるP端子21、N端子22およびU端子23の先端を露出させ、導電パターン付絶縁基板1の裏面導電膜3が露出するようにエポキシ樹脂24で全体を封止して、2in1の半導体モジュール100が出来上がる。
 図4は、2in1の半導体モジュール100の回路図と転流時に流れる電流の向きを示す図である。
 図5は、転流時に2in1の半導体モジュール100内に流れる電流の経路を示す図であり、同図(a)はおもて面側の金属箔15と裏側の金属箔16に流れる電流の経路を示す平面図、同図(b)は電流の経路を示す断面図である。
 転流時とは、例えば、U相の上アーム素子(ここではIGBTチップ9)がオフ状態に移行し、W相の上アーム素子がオン状態に移行する場合などをいう。
 また、点線は3相インバータ回路を構成する他のアームを示している。
 P端子21-IGBTチップ9-U端子23-負荷M(モータ)へ向かって流れる電流a,b,cはIGBTチップ9がオフ状態に移行するため減少する。電流aは導電パターン4を流れ、電流bは金属ピン18と裏面の金属箔16および金属ピン19の経路で流れ、電流cは導電パターン6を流れる。
 一方、負荷に流れる電流IMは一定電流を流し続けようとするため、V相の下アーム素子(IGBT-V)-N端子22-FWDチップ12-U端子23-負荷Mの経路で電流d、e、fが流れ、その電流d、e、fは増加する。電流dは導電パターン5を流れ、電流eは金属ピン17とおもて面の金属箔15および金属ピン20の経路で流れ、電流fは導電パターン6を流れてU端子23へ流れ込む。
 電流aと電流eは向かい合って同じ方向に流れ、電流bと電流eも向かい合って同じ方法に流れる。電流aの減少率(-di/dt)と導電パターン4のインダクタンス(L)の積で発生する導電パターンに生ずる電圧(L・(-di/dt))は、電流eの増加率に起因する磁束により打ち消されて小さくなる。
 また、電流bの減少率(-di/dt)と金属箔16のインダクタンス(L)の積で発生する導電パターンに生ずる電圧(L・(-di/dt))は、電流eの増加率に起因する磁束により打ち消されて小さくなる。
 このように、導電パターン4と金属箔15、金属箔15と金属箔16を接近して平行に配置することで、配線インダクタンスを小さくし、転流時に導電パターン4、金属箔15,16に配線インダクタンスにより発生する電圧を小さくすることができる。但し、ここでは配線インダクタンスは自己インダクタンス、相互インダクタンスおよび浮遊インダクタンスを含めた配線に起因するインダクタンスをいう。
 前記のように、配線インダクタンスにより発生する電圧を小さくすることで、IGBTチップ9がオフ状態に移行するときの跳ね上がり電圧(サージ電圧)を抑制することができる。
 さらに、外部出力端子であるP端子21、N端子22を金属バー(板)で形成し互いに隣接させて平行に配置することにより、配線インダクタンスを低減することができる。
 また、金属ピン17~20を短くすることで、金属ピン付プリント基板13と導電パターン4の間の距離を縮めて、配線インダクタンスを小さくできる。
 前記したように、金属ピン付プリント基板13のおもて面の金属箔15と裏面の金属箔16を当該プリント基板13内において互いに対向させる。これにより、転流時に影響を及ぼす配線インダクタンスを低減することができる。
 また、大電流素子でも同じようにdi/dtが大きくなるが、本半導体モジュール100とすることで、大きなサージ電圧の発生を抑制することができる。
 また、金属ピン付プリント基板13のおもて面と裏面に互いに対向して形成された金属箔15,16を半導体チップ9~12上に配置することで、金属ピン付プリント基板13を小さくできて、半導体モジュール100を小型化することができる。
 これにより、シリコンカーバイドなどワイドギャップ半導体のようにスイッチング速度が速く、di/dtが大きいデバイスを搭載する半導体装置においても、大きなサージ電圧の発生を抑制することができる。
 この2in1の半導体モジュール100の配線インダクタンスをシミュレーションで算出する方法を説明する。P端子21からN端子22を結ぶ配線のインダクタンスをシミュレーションで算出する。このインダクタンスは半導体モジュール100を2個、あるいは3個接続して単相インバータ回路や3相インバータ回路を組んだときの動作時のインダクタンスとは必ずしも一致しないが、少なくとも、このシミュレーションで算出されたインダクタンスが小さければ、動作時のインダクタンスも小さいことは確認されている。
 従来の半導体モジュール500と本発明の半導体モジュール100を比較するとシミュレーションで算出したインダクタンスは、本発明の半導体モジュール100の方が大幅に低下している。そのインダクタンスの低減は、従来の半導体モジュール500に対して、例えば、1/8~1/5程度になる。
<実施例2>
 図6および図7は、この発明の第2実施例の半導体装置の構成図であり、図6は要部平面図、図7は図6のX-X線で切断した要部断面図である。図6は、この発明の理解を容易にするために、金属ピン付プリント基板13aを点線で示し、金属ピン付プリント基板13aより下方の部材を実線で示した。図8および図9は、金属ピン付プリント基板13aの構成図であり、図8はおもて面の金属箔と金属ピンを図7の矢印Pの方向から見た平面図、図9は裏面の金属箔と金属ピンを図7の矢印Pの方向から見た平面図である。
 図10は、金属ピン付プリント基板13aのおもて面と裏面のそれぞれの金属箔と金属ピンを図7の矢印Qの方向から見た裏面側の平面図である。
 図6、図7と図1との違いは、図1の2in1に内蔵されているIGBTチップとFWDチップがU相、V相、W相に配置されている点である。金属ピン17は本数が3倍になっている。
 この半導体装置200は、U相とV相およびW相で構成されている。U相は、IGBTチップ9aとIGBTチップ9aに逆並列接続するFWDチップ10aとを組(半導体素子)にした上アームと、IGBTチップ11aとIGBTチップ11aに逆並列接続するFWDチップ12aとを組にした下アームとにより構成されている。V相は、同様に、IGBTチップ9b,11bとIGBTチップ9b,11bに逆並列接続するFWDチップ10b,12bとをそれぞれ組にした上アームと下アームにより構成されている。W相は、同様に、IGBTチップ9c,11cとIGBTチップ9c,11cに逆並列接続するFWDチップ10c,12cとをそれぞれ組にした上アームと下アームにより構成されている。
 導電パターン付絶縁基板1aでセラミック基板2aのおもて面に導電パターン4a,5a,6a,6b,6cが形成され、裏面に裏面導電膜3aが形成されている。導電パターン5aは、導電パターン4aに囲まれて島状に形成されている。これらの導電パターン4a,5a,6a,6b,6cや裏面導電膜3aに金属箔を接合して、厚みを厚くする場合もある。
 金属ピン付プリント基板13aは、セラミックからなる絶縁基板14aのおもて面と裏面にそれぞれ金属箔15a、16aが接合されてなる。これにより、金属ピン付プリント基板13aは、おもて面の金属箔15aと裏面の金属箔16aを当該プリント基板13a内において互いに対向させている。金属ピン付プリント基板13aは、導電パターン付絶縁基板1aの半導体素子側に配置されている。この金属箔15a,16aには金属ピン17,18,19,20が同一方向に固着している。
 金属ピン17、20はおもて面の金属箔15aに固着し、金属ピン18,19は裏面の金属箔16aに固着してそれぞれ金属箔15a、金属箔16aと電気的に接続されている。金属ピン17は金属箔15aに固着するとともに絶縁基板14aを貫通している。外部導出端子はP端子21a、N端22a、U端子23a、V端子23b、W端子23cがあり、P端子21aとN端子22aは互いに近接して平行に配置されている。
 導電パターン付絶縁基板1a上の導電パターン4aにIGBTチップ9a,9b,9cのコレクタ側とFWDチップ10a,10b,10cのカソード側およびP端子21aが固着されて電気的に接続されている。導電パターン5aにN端子22aが固着されて電気的に接続されている。導電パターン6a、6b、6cにそれぞれIGBTチップ11a,11b,11cのコレクタ側とFWDチップ12a,12b,12cのカソード側およびU端子23a、V端子23b、W端子23cが固着されて電気的に接続されている。前記のIGBTチップとFWDチップは各導電パターンに接合材である半田7aで固着される。
 金属ピン17は導電パターン5aに固着され、金属ピン18はIGBTチップ9a,9b,9cのエミッタ側およびFWDチップ10a,10b,10cのアノード側に接合材である半田8aで固着して、それぞれ電気的に接続されている。金属ピン19は導電パターン6aに固着し、金属ピン20はIGBTチップ11a,11b,11cのエミッタ側およびFWDチップ12a,12b,12cのアノード側に接合材である半田8aで固着して、それぞれ電気的に接続されている。
 外部導出端子であるP端子21a,N端子22a,U端子23a,V端子23b,W端子23cの先端を露出させ、導電パターン付絶縁基板1aの裏面導電膜3aが露出するようにエポキシ樹脂24aで全体を封止して、6in1の半導体モジュール200が出来上がる。
 図11は、3相インバータ回路を内蔵した半導体モジュールの回路図と定常動作時の電流の流れを示す図である。
 図12は、図7を用いて、定常動作時と転流時の電流の経路を示す図である。
 定常動作時には、P端子21aから入った電流は、例えば、U端子23aから負荷Mに流れ出る。そして負荷Mから、例えば、V端子23bに戻った電流はN端子22aに戻る。具体的には、導電パターン4aの電流aがIGBTチップ9aを通って金属箔16aに入り、金属箔16aの電流bは金属ピン19を通って導電パターン6aに入る。導電パターン6aに入った電流cはU端子23aを通って負荷Mに流れる。
 負荷Mから戻った電流gは導電パターン6bを通ってIGBTチップ11bに入る。IGBTチップ11bから金属箔15aに入った電流hは金属ピン17を通って導電パターン5aに入る。導電パターン5aに入った電流iはN端子22aから外部回路へ流れ出る。
 この電流経路で、導電パターン4aに流れる電流aとおもて面の金属箔15aの電流hは逆向き(B部)になる。また、裏面の金属箔16aに流れる電流bとおもて面の金属箔15aに流れる電流hは逆向き(C部)になる。さらに、P端子21aに流れる電流aとN端子22aに流れる電流iも逆向き(A部)になる。そのため、定常動作時において、配線インダクタンスが小さくなる。
 しかし、転流時には負荷M-IGBTチップ11b-FWDチップ12a-負荷Mの経路で流れる点線で示す電流g、h‘,fと、P端子21a-IGBTチップ9a-負荷Mに流れる電流a,b,cの間ではそれぞれ離れているので相互干渉は少なく相互インダクタンスが低減する割合は低い。
 そのため、6in1の半導体モジュール200では、定常動作時において、配線インダクタンスは低減できる。
<実施例3>
 図13は、この発明の第3実施例の半導体装置の要部断面図である。この半導体装置は2in1の半導体モジュール300である。この半導体モジュール300は、2個の導電パターン付絶縁基板(セラミック絶縁基板)1d,1eを使用し、金属ピン付プリント基板13dの面積を最小限とするよう縦方向に回路を構成した。
 導電パターン付絶縁基板1d上にIGBTチップ9dのコレクタ側と図示しないFWDチップのカソード側を半田で7dで固着する。
 導電パターン付絶縁基板1e上にIGBTチップ11dのコレクタ側と図示しないFWDチップのカソード側を半田7dで固着する。
 金属ピン付プリント基板13dは、セラミックからなる絶縁基板14dのおもて面と裏面にそれぞれ金属箔15d、16dが接合されてなる。これにより、金属ピン付プリント基板13dは、おもて面の金属箔15dと裏面の金属箔16dを当該プリント基板13d内において互いに対向させている。この金属ピン付プリント基板13dには金属ピン17d,18d,19d,20dが固着してそれぞれ電気的に接続されている。金属ピン18dとIGBTチップ9dのエミッタ側および図示しないFWDチップのアノード側を半田8dで固着し、金属ピン20dとIGBTチップ11dのエミッタ側と図示しないFWDチップのアノード側を半田8dで固着して、それぞれ電気的に接続している。金属ピン17dは金属箔15dに固着するとともに絶縁基板14dを貫通している。金属ピン19dは金属箔16dに固着するとともに絶縁基板14dを貫通している。
 導電パターン付絶縁基板1dの導電パターン4dにはP端子21dが固着されて電気的に接続されている。導電パターン5dには金属ピン17dとN端子22dが固着されて電気的に接続されている。P端子21dとN端子22dは隣接して平行配置され、金属バー(板)で形成される。導電パターン付絶縁基板1eの導電パターン6dにはU端子23dと金属ピン19dが固着されて電気的に接続されている。導電パターン5dは、導電パターン4dに囲まれて島状に形成されている。
 また、金属ピン付プリント基板13dを挟んで導電パターン付絶縁基板1d,1eを配置し、その導電パターン付絶縁基板1d,1e上に半導体素子(IGBTチップ9d,11dとFWDチップ(図13でIGBTチップ9d,11dの背後に位置する))を固着して電気的に接続している。全体を樹脂24dで封止して半導体モジュール300が出来上がる。
 図13の構造とすることで、半導体モジュール300の高さは大きくなるものの半導体モジュール300の床面積(フットプリント)は大幅に小さくなり、半導体モジュール300を組み込むシステムでのサイズ低減に寄与することができる。
 この場合は、実施例1の金属ピン付プリント基板13をさらに小さくすることができることにより、半導体モジュール300の配線インダクタンスはさらに低くすることが可能となる。
 図14は、図13の半導体装置で、転流時(実線)と転流時以外(点線)の電流の経路を示す図である。P端子21dから入った電流aは導電パターン付絶縁基板1dの導電パターン4dを通って金属ピン18dに入る。金属ピン18dから金属ピン付プリント基板13dの裏側の金属箔16dに入った電流bは金属ピン19dから流れ出す。金属ピン19dから流れ出した電流cは導電パターン6dを通ってU端子23dへ流れてゆく。
 転流時にはN端子22dから電流dが導電パターン5dに入る。導電パターン5dから金属ピン17b、おもて面の金属箔15d、金属ピン20dを通ってFWDチップ(図に表れず)へ流れる電流eは導電パターン6dへ流れてゆく。導電パターン6dを流れる電流fはU端子23dへ流れてゆく。
 電流aと電流eは向かい合って同じ方向に流れ、電流bと電流fも向かい合って同じ方向に流れる。電流aの減少率(-di/dt)と導電パターン4dのインダクタンス(L)の積で発生する導電パターン4dに生ずる電圧(L・(-di/dt))は、電流eの増加率に起因する磁束により打ち消されて小さくなる。
 また、電流bの減少率(-di/dt)と金属箔16dのインダクタンス(L)の積で発生する導電パターンに生ずる電圧(L・(-di/dt))は、電流fの増加率に起因する磁束により打ち消されて小さくなる。
 このように、導電パターン4dと金属箔15d、金属箔16dと導電パターン6dを接近して平行に配置することで、配線インダクタンスを小さくし、転流時に導電パターン4d、6d、金属箔15d,16dに発生する電圧を小さくすることができる。
 つまり、IGBTチップ9dがオフ状態に移行するときの跳ね上がり電圧(サージ電圧)を抑制することができる。
 さらに、外部出力端子であるP端子21d、N端子22dを金属バー(板)で形成し互いに平行に配置することにより、配線インダクタンスを低減することができる。
 また、金属ピンを短くすることで、金属ピン付プリント基板13dと導電パターン4d,6dの間の距離を縮めて、配線のインダクタンスを小さくできる。
 尚、実施例3では2in1の半導体モジュール300について記載したが、この構造は4in1および6in1の半導体モジュールにも適用できる。
 また、実施例1~実施例3では半導体素子としてIGBTチップとFWDチップを例として挙げたが、IGBTチップの代わりにMOSFET(電界効果型トランジスタ)チップ、J-FET(接合型電界効果トランジスタ)チップまたはバイポーラトランジスタチップなどのスイッチングトランジスタチップとしてもよい。
 また、FWDチップとしてはpnダイオードチップやショットキーバリアダイオードチップなどがある。
 また、実施例1では2in1の半導体モジュール100、実施例2では6in1の半導体モジュール200の例を説明したが、半導体素子(IGBTチップとFWDチップの組み合わせたもの)が4個が同一パッケージに収納された4in1の半導体モジュールにも本発明は適用できる。
 さらに、上記実施例では、導電パターン5、5a、5dが導電パターン4、4a、4dに囲まれて島状に形成されている例を説明したが、導電パターン5、5a、5dの4方が必ずしも導電パターン4、4a、4dに囲まれる必要はなく、他の態様でもよい。例えば、図15に示す第1実施例の半導体モジュール100の変形例のように、導電パターン4がU字状をしており、導電パターン5の3方が導電パターン4に囲まれるようにしてもよい。このように導電パターン5の少なくとも3方が導電パターン4に囲まれる形態とすることにより、さらに小型の半導体装置を提供することができる。
   1,1a,1d,1e 導電パターン付絶縁基板
   2,2a,2d,2e セラミック基板(第1絶縁基板)
   3,3a 裏面導電膜
   4,4a,4d 導電パターン(第1導電パターン)
   5,5a,5d 導電パターン(第2導電パターン)
   6,6a,6b,6c,6d 導電パターン(第3導電パターン)
   7,7a,7d,8,8a,8d 半田
   9,9a,9d,11,11a,11d IGBTチップ
  10,10a,12,12a FWDチップ
  13,13a,13d 金属ピン付プリント基板(導電ピン付絶縁基板)
  14,14a,14d 絶縁基板(第2絶縁基板)
  15,15a,15d おもて面の金属箔(導電層)
  16,16a 裏面の金属箔(導電層)
  17,17d 金属ピン(第2導電ピン)
  18,18d 金属ピン(第1導電ピン)
  19,19d 金属ピン(第1導電ピン)
  20,20d 金属ピン(第2導電ピン)
  21,21a,21d P端子(正極の外部導出端子)
  22,22a,22d N端子(負極の外部導出端子)
  23,23a,23d U端子(中間電位の外部導出端子)
  23b  V端子
  23c  W端子
  24,24a エポキシ樹脂
  24d  樹脂
 100,200、300 半導体モジュール
   a~i,r 電流

Claims (9)

  1.  少なくとも第1導電パターン、第2導電パターンおよび第3導電パターンを第1絶縁基板上に有する導電パターン付絶縁基板と、前記第1導電パターンに固着した正極の外部導出端子と、前記第2導電パターンに固着した負極の外部導出端子と、前記第3導電パターンに固着した中間電位の外部導出端子と、前記第1導電パターンに一方の面が固着した第1半導体素子と、前記第3導電パターンに一方の面が固着した第2半導体素子と、第2絶縁基板の裏面とおもて面にそれぞれ導電層を有し、前記第2絶縁基板の裏面の導電層に固着した複数の第1導電ピンおよび前記第2絶縁基板のおもて面の導電層に固着した複数の第2導電ピンを有する導電ピン付絶縁基板と、を具備し、
     前記正極の外部導出端子と負極の外部導出端子が互いに隣接して平行に配置されており、前記第1導電ピンを構成するピンの一部が前記第1半導体素子の他方の面に固着しているとともに該第1導電ピンを構成する他のピンが前記第3導電パターンに固着しており、前記第2導電ピンを構成するピンの一部が前記第2半導体素子の他方の面に固着しているとともに該第2導電ピンを構成する他のピンが前記第2導電パターンに固着しており、前記導電ピン付絶縁基板が前記第1半導体素子の他方の面側および第2半導体素子の他方の面側に配置されており、該第1半導体素子および第2半導体素子が配置された領域の大きさと前記導電ピン付絶縁基板面の大きさがほぼ同じであることを特徴とする半導体装置。
  2.  少なくとも第1導電パターンおよび第2導電パターンを第1絶縁基板上に有する第1導電パターン付絶縁基板と、少なくとも第3導電パターンを第3絶縁基板上に有する第2導電パターン付絶縁基板と、前記第1導電パターンに固着した正極の外部導出端子と、前記第2導電パターンに固着した負極の外部導出端子と、前記第3導電パターンに固着した中間電位の外部導出端子と、前記第1導電パターンに一方の面が固着した第1半導体素子と、前記第3導電パターンに一方の面が固着した第2半導体素子と、第2絶縁基板の裏面とおもて面にそれぞれ導電層を有し、前記第2絶縁基板の裏面の導電層に固着した複数の第1導電ピンおよび前記第2絶縁基板のおもて面の導電層に固着した複数の第2導電ピンを有する導電ピン付絶縁基板と、を具備し、
     前記正極の外部導出端子と負極の外部導出端子が互いに隣接して平行に配置されており、前記第1導電ピンを構成するピンの一部が前記第1半導体素子の他方の面に固着しているとともに該第1導電ピンを構成する他のピンが前記第3導電パターンに固着しており、前記第2導電ピンを構成するピンの一部が前記第2半導体素子の他方の面に固着しているとともに該第2導電ピンを構成する他のピンが前記第2導電パターンに固着しており、前記導電ピン付絶縁基板が前記第1半導体素子の他方の面と前記第2半導体素子の他方の面の間に挟まれて配置されていることを特徴とする半導体装置。
  3.  前記導電ピン付絶縁基板が、セラミックからなる前記第2絶縁基板のおもて面と裏面にそれぞれ固着した金属箔と、裏面の金属箔に固着した第1金属ピンと、おもて面の金属箔に固着した第2金属ピンと、を有する金属ピン付プリント基板であることを特徴とする請求項1または2に記載の半導体装置。
  4.  前記正極の外部導出端子および前記負極の外部導出端子が、長方形の導電板であることを特徴とする請求項1または2に記載の半導体装置。
  5.  前記第1半導体素子と前記第2半導体素子が前記第1導電ピンおよび前記第3導電パターンを介して直列接続し、上アームまたは下アームを構成している2in1,4in1もしくは6in1のいずれかの半導体モジュールであることを特徴とする請求項1または2に記載の半導体装置。
  6.  前記第1半導体素子および第2半導体素子のそれぞれが、スイッチングトランジスタチップと該スイッチングトランジスタチップに逆並列接続するダイオードチップからなることを特徴とする請求項1または2に記載の半導体装置。
  7.  前記スイッチングトランジスタチップが、IGBTチップ、MOSFETチップ、接合型電界効果トランジスタチップもしくはバイポーラトランジスタチップのいずれかであり、前記ダイオードチップがpnダイオードチップもしくはショットキーバリアダイオードチップであることを特徴とする請求項6に記載の半導体装置。
  8.  前記第2導電パターンの3方が、前記第1導電パターンに囲まれていることを特徴とする請求項1または2に記載の半導体装置。
  9.  前記第2導電パターンに固着している前記第2導電ピンが、前記第2絶縁基板を貫通していることを特徴とする請求項1または2に記載の半導体装置。
PCT/JP2012/083529 2012-02-09 2012-12-25 半導体装置 WO2013118415A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280066705.2A CN104040715B (zh) 2012-02-09 2012-12-25 半导体器件
JP2013557387A JP5971263B2 (ja) 2012-02-09 2012-12-25 半導体装置
KR1020147019191A KR101926854B1 (ko) 2012-02-09 2012-12-25 반도체 장치
EP12868019.6A EP2814059B1 (en) 2012-02-09 2012-12-25 Semiconductor device
US14/368,432 US9059009B2 (en) 2012-02-09 2012-12-25 Semiconductor device
US14/706,601 US9305910B2 (en) 2012-02-09 2015-05-07 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012026340 2012-02-09
JP2012-026340 2012-02-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/368,432 A-371-Of-International US9059009B2 (en) 2012-02-09 2012-12-25 Semiconductor device
US14/706,601 Continuation US9305910B2 (en) 2012-02-09 2015-05-07 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2013118415A1 true WO2013118415A1 (ja) 2013-08-15

Family

ID=48947199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083529 WO2013118415A1 (ja) 2012-02-09 2012-12-25 半導体装置

Country Status (6)

Country Link
US (2) US9059009B2 (ja)
EP (1) EP2814059B1 (ja)
JP (1) JP5971263B2 (ja)
KR (1) KR101926854B1 (ja)
CN (1) CN104040715B (ja)
WO (1) WO2013118415A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151235A1 (ja) * 2014-04-01 2015-10-08 富士電機株式会社 半導体装置
WO2015159751A1 (ja) * 2014-04-14 2015-10-22 富士電機株式会社 半導体装置
JP5884922B2 (ja) * 2012-12-18 2016-03-15 株式会社村田製作所 積層型電子装置およびその製造方法
JP2016146444A (ja) * 2015-02-09 2016-08-12 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2016195206A (ja) * 2015-04-01 2016-11-17 富士電機株式会社 半導体モジュール
JPWO2015064232A1 (ja) * 2013-10-29 2017-03-09 富士電機株式会社 半導体モジュール
WO2017175686A1 (ja) * 2016-04-04 2017-10-12 ローム株式会社 パワーモジュールおよびその製造方法
US9905494B2 (en) 2015-04-27 2018-02-27 Fuji Electric Co., Ltd. Semiconductor device
EP3208838A4 (en) * 2014-10-16 2018-05-30 Shindengen Electric Manufacturing Co., Ltd. Semiconductor module
JP2018137283A (ja) * 2017-02-20 2018-08-30 株式会社東芝 半導体装置
US10446460B2 (en) 2017-04-27 2019-10-15 Fuji Electric Co., Ltd. Semiconductor device
JP2020013987A (ja) * 2018-07-18 2020-01-23 台達電子企業管理(上海)有限公司 パワーモジュール構造
JP2020047658A (ja) * 2018-09-14 2020-03-26 富士電機株式会社 半導体モジュール
JP2020155557A (ja) * 2019-03-19 2020-09-24 富士電機株式会社 半導体ユニット、半導体モジュール及び半導体装置
US10971431B2 (en) 2018-05-30 2021-04-06 Fuji Electric Co., Ltd. Semiconductor device, cooling module, power converting device, and electric vehicle
US11127714B2 (en) 2019-07-19 2021-09-21 Fuji Electric Co., Ltd. Printed board and semiconductor device
US11201121B2 (en) 2017-04-14 2021-12-14 Fuji Electric Co., Ltd Semiconductor device
US11342241B2 (en) 2018-07-18 2022-05-24 Delta Electronics (Shanghai) Co., Ltd Power module
WO2022249814A1 (ja) * 2021-05-27 2022-12-01 株式会社デンソー 半導体装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102034717B1 (ko) * 2013-02-07 2019-10-21 삼성전자주식회사 파워모듈용 기판, 파워모듈용 터미널 및 이들을 포함하는 파워모듈
JP6202094B2 (ja) * 2013-05-16 2017-09-27 富士電機株式会社 半導体装置
US10242969B2 (en) * 2013-11-12 2019-03-26 Infineon Technologies Ag Semiconductor package comprising a transistor chip module and a driver chip module and a method for fabricating the same
US9385111B2 (en) * 2013-11-22 2016-07-05 Infineon Technologies Austria Ag Electronic component with electronic chip between redistribution structure and mounting structure
JP2015225988A (ja) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 半導体装置
JP6245365B2 (ja) 2014-07-03 2017-12-13 日産自動車株式会社 ハーフブリッジパワー半導体モジュール及びその製造方法
JP6305302B2 (ja) * 2014-10-02 2018-04-04 三菱電機株式会社 半導体装置およびその製造方法
CN107155372B (zh) * 2014-11-28 2019-10-01 日产自动车株式会社 半桥功率半导体模块及其制造方法
CN107210290B (zh) * 2015-02-13 2019-07-30 株式会社日产Arc 半桥式功率半导体模块及其制造方法
EP3163608A4 (en) * 2015-04-28 2017-11-01 Shindengen Electric Manufacturing Co., Ltd. Semiconductor module and production method for semiconductor module
JP7221579B2 (ja) * 2016-03-22 2023-02-14 富士電機株式会社 樹脂組成物
MX2019002116A (es) * 2016-08-22 2019-07-08 Neturen Co Ltd Modulo semiconductor de potencia, circuito amortiguador y aparato de alimentaion mediante calentamiento por induccion.
JP2018074088A (ja) * 2016-11-02 2018-05-10 富士電機株式会社 半導体装置
US10347555B2 (en) * 2016-12-26 2019-07-09 Shindengen Electric Manufacturing Co., Ltd. Electronic device and method for manufacturing electronic device
EP3355349B1 (en) * 2017-01-26 2022-05-11 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Efficient heat removal from component carrier with embedded diode
CN110268517B (zh) * 2017-02-01 2023-03-21 日立能源瑞士股份公司 具有短路失效模式的功率半导体模块
JP6981033B2 (ja) * 2017-04-19 2021-12-15 富士電機株式会社 半導体装置及び半導体装置の製造方法
CN107464785A (zh) * 2017-08-30 2017-12-12 扬州国扬电子有限公司 一种多支路交错排布的双面散热功率模块
JP6732118B2 (ja) 2017-09-14 2020-07-29 新電元工業株式会社 電子モジュール及び電子モジュールの製造方法
WO2019087540A1 (ja) * 2017-10-30 2019-05-09 住友電気工業株式会社 半導体モジュール
JP6884723B2 (ja) 2018-03-23 2021-06-09 株式会社東芝 半導体装置
EP3598490A1 (en) * 2018-07-18 2020-01-22 Delta Electronics (Shanghai) Co., Ltd. Power module
US11444036B2 (en) 2018-07-18 2022-09-13 Delta Electronics (Shanghai) Co., Ltd. Power module assembly
CN110739294B (zh) * 2018-07-18 2021-03-16 台达电子企业管理(上海)有限公司 功率模块结构
CN111384036B (zh) * 2018-12-28 2021-07-13 台达电子企业管理(上海)有限公司 功率模块
JP6741135B1 (ja) * 2019-10-02 2020-08-19 富士電機株式会社 半導体モジュール及び半導体モジュールの製造方法
JP7413720B2 (ja) * 2019-10-28 2024-01-16 富士電機株式会社 半導体モジュール
WO2021230615A1 (ko) * 2020-05-15 2021-11-18 주식회사 아모센스 파워모듈 및 그 제조방법
KR20210146809A (ko) * 2020-05-27 2021-12-06 주식회사 아모센스 파워모듈
JP2022020941A (ja) * 2020-07-21 2022-02-02 新光電気工業株式会社 半導体装置
CN116960072A (zh) * 2022-10-31 2023-10-27 苏州悉智科技有限公司 功率器件封装结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274322A (ja) 2000-03-27 2001-10-05 Mitsubishi Electric Corp パワー半導体モジュール
JP2004172211A (ja) * 2002-11-18 2004-06-17 Yaskawa Electric Corp パワーモジュール
JP2004214452A (ja) 2003-01-06 2004-07-29 Fuji Electric Device Technology Co Ltd 電力用半導体モジュールおよび外部電極との結線方法
JP2005026524A (ja) * 2003-07-03 2005-01-27 Fuji Electric Device Technology Co Ltd 半導体装置及びその製造方法
JP2005216876A (ja) * 2004-01-27 2005-08-11 Fuji Electric Device Technology Co Ltd 電力用半導体モジュール
JP2009064852A (ja) 2007-09-05 2009-03-26 Okutekku:Kk 半導体装置及び半導体装置の製造方法
JP2009141288A (ja) * 2007-12-11 2009-06-25 Mitsubishi Electric Corp 電力用半導体モジュール
JP2011023570A (ja) * 2009-07-16 2011-02-03 Fuji Electric Systems Co Ltd 半導体パワーモジュール

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138438A (en) * 1987-06-24 1992-08-11 Akita Electronics Co. Ltd. Lead connections means for stacked tab packaged IC chips
US5130768A (en) * 1990-12-07 1992-07-14 Digital Equipment Corporation Compact, high-density packaging apparatus for high performance semiconductor devices
KR940003015B1 (ko) * 1991-06-28 1994-04-09 주식회사 금성사 초전센서를 이용한 전자레인지의 자동 가열장치
JP2850606B2 (ja) * 1991-11-25 1999-01-27 富士電機株式会社 トランジスタモジュール
US5479319A (en) * 1992-12-30 1995-12-26 Interconnect Systems, Inc. Multi-level assemblies for interconnecting integrated circuits
JPH06268101A (ja) * 1993-03-17 1994-09-22 Hitachi Ltd 半導体装置及びその製造方法、電子装置、リ−ドフレ−ム並びに実装基板
US5563447A (en) * 1993-09-07 1996-10-08 Delco Electronics Corp. High power semiconductor switch module
EP0706221B8 (en) * 1994-10-07 2008-09-03 Hitachi, Ltd. Semiconductor device comprising a plurality of semiconductor elements
US5613033A (en) * 1995-01-18 1997-03-18 Dell Usa, Lp Laminated module for stacking integrated circuits
JP2944449B2 (ja) * 1995-02-24 1999-09-06 日本電気株式会社 半導体パッケージとその製造方法
JP2716012B2 (ja) * 1995-08-10 1998-02-18 日本電気株式会社 半導体パッケージ及びその実装方法
US5994166A (en) * 1997-03-10 1999-11-30 Micron Technology, Inc. Method of constructing stacked packages
JP2000164800A (ja) * 1998-11-30 2000-06-16 Mitsubishi Electric Corp 半導体モジュール
JP4220094B2 (ja) * 1999-04-05 2009-02-04 三菱電機株式会社 パワー半導体モジュール
JP3923716B2 (ja) * 2000-09-29 2007-06-06 株式会社東芝 半導体装置
DE10232566B4 (de) * 2001-07-23 2015-11-12 Fuji Electric Co., Ltd. Halbleiterbauteil
JP2005011986A (ja) * 2003-06-19 2005-01-13 Sanyo Electric Co Ltd 半導体装置
DE10333315B4 (de) * 2003-07-22 2007-09-27 Infineon Technologies Ag Leistungshalbleitermodul
JP4752369B2 (ja) * 2004-08-24 2011-08-17 ソニー株式会社 半導体装置および基板
JP4566678B2 (ja) * 2004-10-04 2010-10-20 日立オートモティブシステムズ株式会社 パワーモジュール
JP4972306B2 (ja) * 2004-12-21 2012-07-11 オンセミコンダクター・トレーディング・リミテッド 半導体装置及び回路装置
US7371676B2 (en) * 2005-04-08 2008-05-13 Micron Technology, Inc. Method for fabricating semiconductor components with through wire interconnects
US7906846B2 (en) * 2005-09-06 2011-03-15 Nec Corporation Semiconductor device for implementing signal transmission and/or power supply by means of the induction of a coil
US7514780B2 (en) * 2006-03-15 2009-04-07 Hitachi, Ltd. Power semiconductor device
US7656031B2 (en) * 2007-02-05 2010-02-02 Bridge Semiconductor Corporation Stackable semiconductor package having metal pin within through hole of package
US7800222B2 (en) * 2007-11-29 2010-09-21 Infineon Technologies Ag Semiconductor module with switching components and driver electronics
JP5176507B2 (ja) * 2007-12-04 2013-04-03 富士電機株式会社 半導体装置
JP5550553B2 (ja) * 2008-07-10 2014-07-16 三菱電機株式会社 電力用半導体モジュール
US8150273B2 (en) * 2008-09-04 2012-04-03 Finisar Corporation Optical receiver with threshold voltage compensation
KR101354083B1 (ko) * 2009-05-14 2014-01-24 메키트 에퀴지션 코포레이션 시스템-인 패키지들

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274322A (ja) 2000-03-27 2001-10-05 Mitsubishi Electric Corp パワー半導体モジュール
JP2004172211A (ja) * 2002-11-18 2004-06-17 Yaskawa Electric Corp パワーモジュール
JP2004214452A (ja) 2003-01-06 2004-07-29 Fuji Electric Device Technology Co Ltd 電力用半導体モジュールおよび外部電極との結線方法
JP2005026524A (ja) * 2003-07-03 2005-01-27 Fuji Electric Device Technology Co Ltd 半導体装置及びその製造方法
JP2005216876A (ja) * 2004-01-27 2005-08-11 Fuji Electric Device Technology Co Ltd 電力用半導体モジュール
JP2009064852A (ja) 2007-09-05 2009-03-26 Okutekku:Kk 半導体装置及び半導体装置の製造方法
JP2009141288A (ja) * 2007-12-11 2009-06-25 Mitsubishi Electric Corp 電力用半導体モジュール
JP2011023570A (ja) * 2009-07-16 2011-02-03 Fuji Electric Systems Co Ltd 半導体パワーモジュール

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014097725A1 (ja) * 2012-12-18 2017-01-12 株式会社村田製作所 積層型電子装置およびその製造方法
JP5884922B2 (ja) * 2012-12-18 2016-03-15 株式会社村田製作所 積層型電子装置およびその製造方法
JPWO2015064232A1 (ja) * 2013-10-29 2017-03-09 富士電機株式会社 半導体モジュール
WO2015151235A1 (ja) * 2014-04-01 2015-10-08 富士電機株式会社 半導体装置
JPWO2015151235A1 (ja) * 2014-04-01 2017-04-13 富士電機株式会社 半導体装置
US9559042B2 (en) 2014-04-01 2017-01-31 Fuji Electric Co., Ltd. Semiconductor device
US10187973B2 (en) 2014-04-14 2019-01-22 Fuji Electric Co., Ltd. Semiconductor device
US20160219689A1 (en) * 2014-04-14 2016-07-28 Fuji Electric Co., Ltd. Semiconductor device
CN105612690A (zh) * 2014-04-14 2016-05-25 富士电机株式会社 半导体装置
CN105612690B (zh) * 2014-04-14 2018-11-09 富士电机株式会社 半导体装置
WO2015159751A1 (ja) * 2014-04-14 2015-10-22 富士電機株式会社 半導体装置
US10398023B2 (en) 2014-04-14 2019-08-27 Fuji Electric Co., Ltd. Semiconductor device
EP3208838A4 (en) * 2014-10-16 2018-05-30 Shindengen Electric Manufacturing Co., Ltd. Semiconductor module
JP2016146444A (ja) * 2015-02-09 2016-08-12 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2016195206A (ja) * 2015-04-01 2016-11-17 富士電機株式会社 半導体モジュール
US9905494B2 (en) 2015-04-27 2018-02-27 Fuji Electric Co., Ltd. Semiconductor device
WO2017175686A1 (ja) * 2016-04-04 2017-10-12 ローム株式会社 パワーモジュールおよびその製造方法
US10861833B2 (en) 2017-02-20 2020-12-08 Kabushiki Kaisha Toshiba Semiconductor device
JP2018137283A (ja) * 2017-02-20 2018-08-30 株式会社東芝 半導体装置
US11201121B2 (en) 2017-04-14 2021-12-14 Fuji Electric Co., Ltd Semiconductor device
US10446460B2 (en) 2017-04-27 2019-10-15 Fuji Electric Co., Ltd. Semiconductor device
US10971431B2 (en) 2018-05-30 2021-04-06 Fuji Electric Co., Ltd. Semiconductor device, cooling module, power converting device, and electric vehicle
US11342241B2 (en) 2018-07-18 2022-05-24 Delta Electronics (Shanghai) Co., Ltd Power module
JP2020013987A (ja) * 2018-07-18 2020-01-23 台達電子企業管理(上海)有限公司 パワーモジュール構造
US11490516B2 (en) 2018-07-18 2022-11-01 Delta Electronics (Shanghai) Co., Ltd Power module structure
US11923265B2 (en) 2018-07-18 2024-03-05 Delta Electronics (Shanghai) Co., Ltd Power module
JP2020047658A (ja) * 2018-09-14 2020-03-26 富士電機株式会社 半導体モジュール
JP7279324B2 (ja) 2018-09-14 2023-05-23 富士電機株式会社 半導体モジュール
JP2020155557A (ja) * 2019-03-19 2020-09-24 富士電機株式会社 半導体ユニット、半導体モジュール及び半導体装置
JP7215265B2 (ja) 2019-03-19 2023-01-31 富士電機株式会社 半導体ユニット、半導体モジュール及び半導体装置
US11127714B2 (en) 2019-07-19 2021-09-21 Fuji Electric Co., Ltd. Printed board and semiconductor device
WO2022249814A1 (ja) * 2021-05-27 2022-12-01 株式会社デンソー 半導体装置
JP7400774B2 (ja) 2021-05-27 2023-12-19 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
CN104040715B (zh) 2017-02-22
JP5971263B2 (ja) 2016-08-17
US20150243640A1 (en) 2015-08-27
EP2814059A4 (en) 2015-10-14
JPWO2013118415A1 (ja) 2015-05-11
US9059009B2 (en) 2015-06-16
US20140346676A1 (en) 2014-11-27
CN104040715A (zh) 2014-09-10
KR20140123935A (ko) 2014-10-23
US9305910B2 (en) 2016-04-05
KR101926854B1 (ko) 2018-12-07
EP2814059B1 (en) 2020-08-05
EP2814059A1 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5971263B2 (ja) 半導体装置
JP5289348B2 (ja) 車載用電力変換装置
JP5644440B2 (ja) パワー半導体モジュール
JP5259016B2 (ja) パワー半導体モジュール
WO2013146212A1 (ja) 半導体装置及び半導体装置の製造方法
US10079552B2 (en) Power conversion device
JP5434986B2 (ja) 半導体モジュールおよびそれを備えた半導体装置
JP6836201B2 (ja) 電力変換装置
JP6096614B2 (ja) パワー半導体モジュールおよびそれを用いた電力変換装置
JP6591556B2 (ja) 電力変換装置
JP2018117048A (ja) 半導体装置
US10199953B2 (en) Power conversion device
JP2007236044A (ja) 電力半導体装置及びそれを使用したインバータブリッジモジュール
JP2016197932A (ja) 半導体装置
JP2018207044A (ja) 半導体モジュール
JP2015053410A (ja) 半導体モジュール
JP2019067813A (ja) 半導体モジュール
JP2014096412A (ja) 半導体モジュール
JP6123722B2 (ja) 半導体装置
JP5277806B2 (ja) 半導体装置
JP7113936B1 (ja) 電力用半導体モジュール
WO2022137811A1 (ja) 半導体ユニット及び半導体装置
JP2014127582A (ja) 半導体モジュール
JP2018037452A (ja) パワー半導体モジュール
JP2004363225A (ja) 積層型半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868019

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14368432

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013557387

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012868019

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147019191

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE