WO2013153723A1 - Bulb type lamp and illumination device - Google Patents

Bulb type lamp and illumination device Download PDF

Info

Publication number
WO2013153723A1
WO2013153723A1 PCT/JP2013/000842 JP2013000842W WO2013153723A1 WO 2013153723 A1 WO2013153723 A1 WO 2013153723A1 JP 2013000842 W JP2013000842 W JP 2013000842W WO 2013153723 A1 WO2013153723 A1 WO 2013153723A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
sensor
light emitting
shaped lamp
axis
Prior art date
Application number
PCT/JP2013/000842
Other languages
French (fr)
Japanese (ja)
Inventor
将司 坂田
松井 伸幸
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013535982A priority Critical patent/JP5583288B2/en
Priority to CN201390000388.4U priority patent/CN204437732U/en
Publication of WO2013153723A1 publication Critical patent/WO2013153723A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • F21V23/0442Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
    • F21V23/0471Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors the sensor detecting the proximity, the presence or the movement of an object or a person
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/049Patterns or structured surfaces for diffusing light, e.g. frosted surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/062Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light bulb shaped lamp and a lighting device which detect and light a person or the like.
  • Patent Document 1 discloses a luminaire including a socket for mounting a substantially straight tubular lamp, and a sensor for lighting control at a lower portion of the socket.
  • the lighting fixture of patent document 1 makes a substantially straight tubular lamp light, when a person is detected with a sensor, and turns off a substantially straight tubular lamp by the state which does not detect a person continuing for a predetermined period. As a result, it is possible to reduce power consumption while preventing the light from turning off.
  • Patent Document 1 only discloses a substantially straight tubular lamp, and there is no disclosure of a light bulb-shaped lamp.
  • This invention is made in view of said subject, and it aims at providing a lightbulb-shaped lamp with a lighting control function which can be installed easily.
  • a bulb-shaped lamp includes a base mounted on a socket of a lighting fixture, a lamp body rotatably mounted on the base, around an axial center of the base, and a sensor for detecting a detection target And a light emitting element held by the lamp body and lit in response to detection of the detection target by the sensor. And the said sensor is attached to the said lamp main body so that the detection range of the said sensor may become asymmetrical with respect to the axial center of the said nozzle
  • the lamp body holds the light emitting element such that the light transmitting glove has a light emitting direction and the main emission direction faces the direction of the glove, and a housing disposed between the glove and the mouthpiece It consists of The housing may be attached to the base so as to be rotatable about an axis of the base.
  • the lamp body holds the light emitting element such that the light transmitting glove has a light emitting direction and the main emission direction faces the direction of the glove, and the case is disposed between the glove and the mouthpiece. It may be composed of the body.
  • the housing may be fixed to the base, and the globe may be rotatably attached to the housing about an axial center of the base.
  • the senor may be attached to the glove such that the sensor is on the axis of the base and the central axis of the detection range is inclined with respect to the axis of the base.
  • the senor may be configured of a detection element and a lens for condensing external light on the detection element, and may be attached to the globe on the axis of the base.
  • the said lens may be comprised so that the condensing range of external light may become asymmetrical with respect to the axial center of the said nozzle
  • the senor may be attached to the lamp body at a position off the axial center of the base.
  • the light emitting element may be a light emitting diode (LED).
  • LED light emitting diode
  • a lighting device includes the light bulb shaped lamp described above.
  • FIG. 1 is a perspective view of a light bulb shaped lamp according to an embodiment of the present invention.
  • FIG. 2 is a partially broken side view of the light bulb shaped lamp of FIG.
  • FIG. 3 is an exploded perspective view of a housing, a circuit holder, and a base.
  • FIG. 4 is a plan view of the semiconductor light emitting module.
  • FIG. 5 is a view showing an example of a detection range of a sensor mounted on a light bulb shaped lamp.
  • FIG. 6 is a view showing an example of the light bulb shaped lamp according to the first modification.
  • FIG. 7 is a view showing an example of a light bulb shaped lamp according to the second modification.
  • FIG. 8 is a schematic cross-sectional view of a lighting device according to an embodiment of the present invention.
  • the lightbulb-shaped lamp which concerns on one form of this invention is rotatably attached to the base
  • the said sensor is attached to the said lamp main body so that the detection range of the said sensor may become asymmetrical with respect to the axial center of the said nozzle
  • FIG. 1 is a perspective view of a light bulb shaped lamp 100 according to an embodiment of the present invention.
  • FIG. 2 is a partially cutaway side view of the light bulb shaped lamp 100 of FIG.
  • FIG. 3 is an exploded perspective view of the housing 120, the circuit holder 122, and the base 130.
  • FIG. 4 is a plan view of the semiconductor light emitting module 140.
  • the bulb-shaped lamp 100 mainly includes a glove 110, a housing 120, a base 130, a semiconductor light emitting module 140, and a sensor 150, as shown in FIG.
  • the glove 110 and the housing 120 may be collectively referred to as a “lamp main body”.
  • the globe 110 is a hemispherical-shaped translucent cover for emitting the light emitted from the semiconductor light emitting module 140 to the outside of the lamp. That is, the light emitted from the light emitting module passes through the globe 110 and is extracted to the outside.
  • the globe 110 has a shape that simulates a bulb of an A-shaped bulb that is a general bulb shape, and is attached by pressing the opening side end of the globe 110 into the upper side end of the housing 120.
  • globe 110 is not limited to the shape which imitated the bulb
  • the glove 110 may be fixed to the housing 120 by an adhesive or the like.
  • the globe 110 be subjected to a diffusion process for diffusing the light emitted from the semiconductor light emitting module 140.
  • a diffusion process for diffusing the light emitted from the semiconductor light emitting module 140.
  • the globe 110 can have a light diffusion function.
  • the light diffusion film can be formed by applying a resin containing a light diffusion material such as silica or calcium carbonate, a white pigment, or the like on the entire inner surface or outer surface of the glove 110.
  • the light diffusion function can be given to the globe 110 by forming light diffusion dots on the globe 110.
  • the globe 110 can have a light diffusing function by forming a plurality of dots or forming minute dimples.
  • the light diffusion function can be provided by embossing the globe 110 as well.
  • glove 110 concerning this embodiment is hemispherical shape
  • the shape of the globe 110 may be, for example, a spheroid or a spheroid.
  • the material of the glove 110 is not particularly limited, for example, a glass material or a resin material such as a synthetic resin can be adopted.
  • the housing 120 is configured of a main body portion 120 a located on the glove 110 side and a base end portion 120 b located on the cap 130 side.
  • the housing 120 holds the base 121 holding the semiconductor light emitting module 140 and the circuit holder 122 holding the circuit unit 123 inside. More specifically, the housing 120 holds the semiconductor light emitting module 140 such that the main emission direction of the semiconductor light emitting device 142 described later faces the globe 110.
  • the main body 120a has a frusto-conical shape whose diameter gradually increases from the base end 120b toward the globe 110, and one end (small diameter side) is connected to the base end 120b, and the other end (large diameter side) ) Is open. Then, the glove 110 is pressed into the opening of the main body portion 120a.
  • the base end 120b is a truncated cone whose diameter gradually increases from the base 130 toward the main body 120a, and one end (small diameter side) is open and the other end (large diameter side) is the main body 120a. It is connected to the.
  • the circuit holder 122 is connected to the opening of the base end 120b as described later with reference to FIG.
  • the housing 120 is preferably made of a metal material.
  • the housing 120 functions as a heat sink that efficiently dissipates the heat generated from the semiconductor light emitting module 140 and the circuit unit 123 to the outside of the light bulb shaped lamp 100.
  • the metal material which constitutes case 120 for example, Al, Ag, Au, Ni, Rh, Pd, an alloy of two or more of them, an alloy of Cu and Ag, etc. can be considered. . Since such a metal material has good thermal conductivity, the heat transmitted to the housing 120 can be efficiently transmitted to the base 130 side. Therefore, the heat generated from the semiconductor light emitting module 140 and the circuit unit 123 can be dissipated to the lighting apparatus side through the base 130.
  • the housing 120 is made of an aluminum alloy material. Further, in order to improve the thermal emissivity of the housing 120, the surface of the housing 120 may be subjected to an alumite treatment.
  • the material of the housing 120 is not limited to metal, and may be resin.
  • the housing 120 can be made of a resin or the like having a high thermal conductivity.
  • the base 121 has, for example, a substantially annular shape having a through hole penetrating in the thickness direction at the central portion, and in the present embodiment, the cylinder axis thereof coincides with (parallel to) the lamp axis J (axial center of the base 130) ) To be arranged.
  • the upper surface of the base 121 is a plane orthogonal to the lamp axis J, and is a mounting surface of the semiconductor light emitting module 140.
  • the “cylindrical axis” refers to an axis passing through the center of the base 121 and orthogonal to the mounting surface, and generally coincides with the main emission direction of the semiconductor light emitting element 142.
  • the cylinder axis of the base 121 does not necessarily have to be parallel to the lamp axis J, and may be inclined in a predetermined direction with respect to the lamp axis J. That is, the cylinder axis can be set to an arbitrary direction in which the light output from the semiconductor light emitting element 142 is desired to be irradiated.
  • the base 121 is made of, for example, a metal material having high thermal conductivity.
  • a metal material having high thermal conductivity for example, Al, Ag, Au, Ni, Rh, Pd, an alloy of two or more of them, an alloy of Cu and Ag, and the like can be considered.
  • the heat generated in the semiconductor light emitting module 140 can be efficiently conducted to the housing 120.
  • the base 121 can be a substantially disk-shaped metal substrate molded by aluminum die casting.
  • the base 121 can be functioned as a heat dissipation body for conducting the heat generated from the semiconductor light emitting module 140 to the casing 120 by forming the base 121 with a metal material.
  • the base 121 is not limited to a substantially annular shape, and may have any shape.
  • the upper surface of the base 121 does not necessarily have to be a plane as a whole as long as the semiconductor light emitting module 140 can be disposed in a plane.
  • the lamp axis J and the mounting surface do not necessarily have to be orthogonal to each other, and it is sufficient that they intersect at a predetermined angle.
  • the circuit holder 122 is composed of a substantially cylindrical main body portion 122 a having one end opened, and a connecting portion 122 b having a screw groove formed on the outer peripheral surface. Then, the open end of the main body portion 122 a of the circuit holder 122 is connected to the cap member 125, and the connection portion 122 b is connected to the base 130.
  • the material which comprises the circuit holder 122 is not specifically limited, For example, what is necessary is just to form with insulating materials, such as resin.
  • the base 121 is positioned on the globe 110 side of the circuit holder 122, the circuit holder 122 and the base 121 are not in direct contact with each other, and a gap is provided between them. Further, the outer wall surface of the circuit holder 122 and the inner wall surface of the housing 120 are not in direct contact with each other, and a gap is provided between the two.
  • the heat generated in the semiconductor light emitting module 140 is transmitted to the circuit holder 122 via the base 121 and the housing 120. Propagation can be suppressed. Thereby, since the temperature rise of the circuit holder 122 can be suppressed, it can prevent that the circuit unit 123 is thermally destroyed.
  • the circuit unit 123 is for lighting the semiconductor light emitting element 142, and is configured of various electronic components (not shown) mounted on the circuit board 124.
  • the circuit unit 123 is housed in the circuit holder 122 and the cap member 125.
  • As a method of fixing the circuit unit 123 to the circuit holder 122 and the cap member 125 for example, screwing, bonding, engagement and the like can be considered.
  • the circuit board 124 is disposed such that its main surface is parallel to the lamp axis J. In this way, the circuit unit 123 can be stored more compactly in the circuit holder 122. Then, among the electronic components constituting the circuit unit 123, the electronic component that is relatively weak to heat is disposed on the lower side of the circuit board 124 far from the semiconductor light emitting module 140. On the other hand, the relatively heat-resistant electronic component is disposed on the upper side of the circuit board 124 near the semiconductor light emitting module 140. Thereby, the heat generated in the semiconductor light emitting module 140 can effectively prevent the electronic component from being thermally destroyed.
  • Cap member 125 has a hollow, generally frusto-conical shape, and the open large end is connected to the circuit holder 122. In addition, the cap member 125 holds the sensor 150 on the outer wall surface of the end on the small diameter side.
  • the cap member 125 can be formed of, for example, the same material as the circuit holder 122.
  • the base 130 is a power receiving unit for receiving AC power by two contacts, and is mounted on a socket (not shown) of the lighting apparatus.
  • the base 130 according to the present embodiment conforms to the standard of the E17 base defined in JIS (Japanese Industrial Standard), but the present invention is not limited to this. That is, the base 130 may be configured to conform to another standard (E26 base or the like) defined in JIS so as to be attached to a socket of another lighting fixture.
  • the base 130 includes a cylindrical shell 131 having a thread groove formed on the outer peripheral surface and the inner peripheral surface, and an eyelet 132 attached to the tip of the shell 131.
  • the screw groove on the outer peripheral surface of the shell 131 is screwed into the socket of the lighting apparatus. Thereby, the light bulb shaped lamp 100 is fixed to the lighting fixture. Further, the screw groove on the inner peripheral surface of the shell 131 is screwed into the screw groove of the connecting portion 122 b of the circuit holder 122. Thereby, the circuit holder 122 and the base 130 are fixed.
  • circuit unit 123 and the base 130 are electrically connected by the stranded wire 160 including the first and second feeders 161 and 162. More specifically, the first feeder line 161 electrically connects the circuit unit 123 and the shell 131. The second feeder line 162 electrically connects the circuit unit 123 and the eyelet 132.
  • the stopper ring 171 is fitted into the connection portion 122b of the circuit holder 122 and fixed by an adhesive or the like.
  • the connecting portion 122 b into which the stopper ring 171 is fitted is inserted into the opening of the proximal end portion 120 b of the housing 120.
  • the washer 172 and the insulating ring 173 are fitted in this order in the connecting portion 122b inserted into the opening of the proximal end portion 120b.
  • the connecting portion 122 b in this state is screwed into a screw groove formed on the inner peripheral surface of the eyelet 132 of the mouthpiece 130 and fixed.
  • the circuit holder 122 and the base 130 always rotate integrally.
  • the housing 120 since the housing 120 is sandwiched by the stopper ring 171 and the washer 172, the housing 120 normally rotates integrally with the circuit holder 122 and the cap 130.
  • a force larger than the frictional force between the housing 120 and the stopper ring 171 and the washer 172 is applied between the housing 120 and the base 130, the housing 120 and the base 130 rotate relative to each other.
  • a stopper 171 a protruding toward the housing 120 is formed on the surface of the stopper ring 171 facing the housing 120. Further, on the inner peripheral surface that constitutes the opening of the proximal end portion 120b of the housing 120, an engaging portion 120c that protrudes toward the center of the opening is formed. Then, when the housing 120, the circuit holder 122, and the base 130 are relatively rotated, the stopper 171a and the engaging portion 120c are engaged to restrict further rotation. That is, the stopper 171 a and the engaging portion 120 c function as a restricting member that restricts relative rotation between the housing 120 and the circuit holder 122 and the cap 130.
  • FIG. 4 is a plan view showing the semiconductor light emitting module 140 according to the first embodiment.
  • the semiconductor light emitting module 140 shown in FIG. 4 is provided on the mounting substrate 141 so as to cover the mounting substrate 141, a plurality of semiconductor light emitting devices 142 as light sources mounted on the mounting substrate 141, and the semiconductor light emitting devices 142. And the sealed body 143.
  • the semiconductor light emitting device 142 is a light emitting diode (LED). That is, the semiconductor light emitting module 140 is an LED module. However, for example, a semiconductor laser may be used as the semiconductor light emitting device 142. In addition, instead of the semiconductor light emitting element 142, a light emitting element such as an organic EL element or an inorganic EL element may be used.
  • LED light emitting diode
  • a semiconductor laser may be used as the semiconductor light emitting device 142.
  • a light emitting element such as an organic EL element or an inorganic EL element may be used.
  • the mounting substrate 141 has a substantially annular shape having a substantially circular hole at the center, and the semiconductor light emitting element 142 is mounted on one surface (upper surface in FIG. 2).
  • the material which comprises the mounted substrate 141 is not specifically limited, For example, the ceramic substrate which consists of alumina etc. can be used.
  • a tongue piece portion 144 extending toward the center of the hole portion is formed.
  • the tongue piece 144 is provided with a connector 146 to which the wire 145 of the circuit unit 123 is connected. Then, as shown in FIG. 2, the semiconductor light emitting module 140 and the circuit unit 123 are electrically connected by connecting the wiring 145 to the connector 146. Then, when the DC power is supplied from the circuit unit 123 through the wiring 145, the semiconductor light emitting element 142 emits light.
  • the semiconductor light emitting elements 142 are sealed, for example, in pairs as a pair by a substantially rectangular parallelepiped sealing body 143. Then, in the example of FIG. 4, 16 sets of sealing bodies 143 (that is, 32 semiconductor light emitting elements 142) are annularly arranged on the surface of the mounting substrate 141 so as to be point symmetrical with respect to the lamp axis J It is done. In other words, the longitudinal direction of each sealing body 143 coincides with the radial direction of the mounting substrate 141, and is arranged radially about the lamp axis J.
  • the number of semiconductor light emitting elements 142 is not limited to a plurality, and may be one. Further, the arrangement of the semiconductor light emitting devices 142 is not limited to an annular shape, and may be, for example, a matrix.
  • the sealing body 143 is mainly made of a translucent material. Further, when it is necessary to convert the wavelength of light emitted from the semiconductor light emitting element 142 into a predetermined wavelength, a wavelength conversion material for converting the wavelength of light is mixed into the translucent material.
  • a translucent material silicone resin can be utilized, for example.
  • fluorescent substance particle can be utilized, for example.
  • a semiconductor light emitting element 142 for emitting blue light and a sealing body 143 formed of a translucent material mixed with phosphor particles for wavelength converting blue light to yellow light are employed. That is, part of the blue light emitted from the semiconductor light emitting element 142 is wavelength-converted to yellow light by the sealing body 143, and white light generated by mixing the unconverted blue light and the converted yellow light is semiconductor The light is emitted from the light emitting module 140.
  • the semiconductor light emitting module 140 may be, for example, a combination of a semiconductor light emitting element emitting ultraviolet light and each color phosphor particle emitting light in three primary colors (red, green, blue).
  • a material including a semiconductor, a metal complex, an organic dye, a pigment, or the like, which absorbs light of a certain wavelength and emits light of a wavelength different from the absorbed light may be used.
  • the semiconductor light emitting element 142 is disposed with its main emission direction directed upward along the lamp axis J direction.
  • the sensor 150 is typically a so-called human sensor that detects the presence or absence of a person in the vicinity (within the illumination range) of the light bulb shaped lamp 100. As illustrated in FIG. 2, the sensor 150 includes a detection element 151, a lens 152, a control circuit 153, and a mounting substrate 154. The sensor 150 according to the present embodiment is held by the small diameter end of the cap member 125 so as to be located on the lamp axis J.
  • the detection element 151 is an element that detects a detection target (in this example, a person), and detects far infrared rays emitted by a human body.
  • the lens 152 has a translucent hemispherical shape, and is disposed to cover the detection element 151.
  • the lens 152 condenses outside light (in this example, far infrared rays emitted from the outside toward the sensor 150) on the detection element 151. That is, the lens 152 determines the detection range (detection angle) of the sensor 150.
  • the control circuit 153 is connected to the circuit unit 123 by the wiring 155, and notifies the circuit unit 123 of the detection result of the detection element 151 through the wiring 155.
  • the mounting substrate 154 holds the detection element 151 and the control circuit 153. Specifically, the mounting substrate 154 holds the detection element 151 on one main surface and the control circuit 153 on the other main surface, and the detection element 151 and the control circuit 153 through a through hole (not shown). It may be electrically connected. Then, the mounting substrate 154 is fitted in the opening of the lens 152 with the detection element 151 directed toward the lens 152.
  • the light bulb shaped lamp 100 provided with the sensor 150 configured as described above operates, for example, as follows.
  • the control circuit 153 notifies the circuit unit 123 that the detection element 151 has detected far-infrared radiation (ie, a person).
  • the circuit unit 123 that has received the notification from the control circuit 153 supplies power to the semiconductor light emitting module 140. Thereby, the semiconductor light emitting element 142 emits light (the bulb-shaped lamp 100 is turned on).
  • the circuit unit 123 stops the supply of power to the semiconductor light emitting module 140 if the state in which the detecting element 151 does not detect far infrared rays continues for a predetermined time. Thereby, the light bulb shaped lamp 100 is turned off.
  • the light bulb-shaped lamp 100 employs an LED having a very long life as a light emitting element, even if the sensor 150 is mounted on the light bulb-shaped lamp 100 itself, it does not lead to a significant cost increase.
  • the detection range of the sensor 150 can be adaptively changed according to the use environment of the light bulb shaped lamp 100 (that is, the place where the light bulb shaped lamp 100 is installed). Specifically, it is desirable to be able to selectively widen or selectively narrow the detection range in a predetermined direction.
  • the sensor 150 is installed at an angle with respect to the lamp axis J. That is, the sensor 150 is installed on the bulb-shaped lamp 100 so that the mounting substrate 154 is not orthogonal to the lamp axis J.
  • FIG. 5 is a view showing an example of a detection range of the sensor 150 mounted on the light bulb shaped lamp 100 according to the present embodiment.
  • a sensor 150 is attached to the light bulb shaped lamp 100 according to the present embodiment so that the detection range is asymmetrical with respect to the lamp axis J. Specifically, the detection range on the side where the sensor 150 is inclined is widened, and the detection range on the opposite side is narrowed.
  • the globe 110, the housing 120, and the sensor 150 rotate integrally, and the housing 120 and the cap 130 are relative to each other. Rotate. That is, the orientation of the sensor 150 can be changed by rotating the housing 120 with respect to the base 130 in a state where the bulb-shaped lamp 100 is attached to the lighting fixture, so the detection range in a desired direction can be broadened or It is possible to narrow the detection range in the desired direction.
  • the method of making the detection range of the sensor 150 asymmetric with respect to the lamp axis J is not limited to the example of FIG. 6 and 7 are diagrams showing examples of detection ranges of the sensors 250 and 350 mounted on the light bulb shaped lamp 200 and 300 according to a modification of the present embodiment.
  • the detection range of the sensor 250 is asymmetric with respect to the lamp axis J by making the focusing range (focus angle) of the lens 252 of the sensor 250 asymmetric with respect to the lamp axis J. I have to.
  • This can be realized, for example, by designing the lens 252 so that the light distribution is asymmetric with respect to the lamp axis J.
  • it can also be realized by shielding the side (the right side in the example of FIG. 6) on which the focusing range of the lens 252 is desired to be narrowed with a seal or the like.
  • the first modification it is possible to widen the detection range of the desired direction or narrow the detection range of the desired direction by rotating the casing 220 with respect to the base 230.
  • the first modification shown in FIG. 6 unlike the example of FIG. 5, it is not necessary to incline the sensor 250 with respect to the lamp axis J.
  • the sensor 350 is disposed at a position deviated from the lamp axis J in the second modification shown in FIG. . Specifically, the portion of the housing 320 to which the glove 310 is attached is enlarged, and the glove 310 and the sensor 350 are arranged side by side.
  • the senor 150, 250 was arrange
  • the attachment position of the sensor is not limited to the glove, and may be attached to the housing 320 as shown in FIG. 7, for example. That is, the sensor can be attached to any position of the lamp body.
  • the casings 120, 220, and 320 and the caps 130, 230, and 330 are described as relative rotation, but the present invention is not limited to this.
  • the housings 120, 220, 320 and the caps 130, 230, 330 may be integrally rotated, and the gloves 110, 210, 310 and the housings 120, 220, 320 may be relatively rotated. That is, any configuration may be used as long as any part of the lamp body rotates with respect to the base.
  • the senor may be an active sensor that detects an object to be detected (typically, a person) by outputting an electromagnetic wave and detecting its reflected wave.
  • FIG. 8 is a schematic cross-sectional view of a lighting device 400 according to an embodiment of the present invention.
  • a lighting device 400 according to an embodiment of the present invention is mounted on a ceiling 500 in a room and used, as shown in FIG. 8, and includes a light bulb shaped lamp 100 according to an embodiment of the present invention, and a lighting fixture 420. .
  • the lighting fixture 420 is for turning off and lighting the bulb-shaped lamp 100, and includes a fixture body 421 attached to the ceiling 500, and a lamp cover 422 covering the bulb-shaped lamp 100.
  • the instrument body 421 has a socket 421a.
  • the base 130 of the light bulb shaped lamp 100 is screwed into the socket 421 a. Power is supplied to the light bulb shaped lamp 100 through the socket 421a.
  • the illuminating device 400 shown here is an example, Comprising: This invention is not limited to this. That is, the lighting apparatus according to an embodiment of the present invention may have any form as long as it has at least a socket for holding the bulb-shaped lamp 100 and supplying power to the bulb-shaped lamp 100. . Moreover, although the illuminating device 400 shown in FIG. 8 was equipped with one bulb-shaped lamp 100, you may be equipped with several bulb-shaped lamps 100. FIG. Furthermore, not only the bulb-shaped lamp 100 but also bulb-shaped lamps 200 and 300 can be attached to the lighting device 400 shown in FIG.
  • the invention is advantageously used for light bulb shaped lamps.

Abstract

A bulb type lamp (100) is provided with: a base (130) that is mounted in a socket of illumination equipment; a lamp body (110, 120) that is mounted in the base (130) so as to be rotatable about the axis of this base (130); a sensor (150) that detects an object to be detected; and a semiconductor light emitting element (142) that is held in the lamp body (110, 120) and that is lit in response to detection of the object to be detected by the sensor (150). The sensor (150) is mounted on the lamp body (110, 120) so that the detection range of the sensor (150) is asymmetric with respect to the axis of the base (130).

Description

電球形ランプ及び照明装置Light bulb shaped lamp and lighting device
 本発明は、人等を検知して点灯する電球形ランプ及び照明装置に関するものである。 The present invention relates to a light bulb shaped lamp and a lighting device which detect and light a person or the like.
 従来から、いわゆる人感センサを備える照明器具が知られている(例えば、特許文献1参照)。特許文献1には、略直管状ランプを装着するソケットと、ソケットの下部に点灯制御用のセンサとを備える照明器具が開示されている。 Conventionally, a luminaire including a so-called human sensor is known (see, for example, Patent Document 1). Patent Document 1 discloses a luminaire including a socket for mounting a substantially straight tubular lamp, and a sensor for lighting control at a lower portion of the socket.
 そして、特許文献1に記載の照明器具は、センサで人を感知した場合に略直管状ランプを点灯させ、人を感知しない状態が所定の期間継続したことによって略直管状ランプを消灯させる。これにより、消灯し忘れを防止すると同時に、消費電力の削減を図ることができる。 And the lighting fixture of patent document 1 makes a substantially straight tubular lamp light, when a person is detected with a sensor, and turns off a substantially straight tubular lamp by the state which does not detect a person continuing for a predetermined period. As a result, it is possible to reduce power consumption while preventing the light from turning off.
特開2001-291418号公報JP 2001-291418 A
 しかしながら、特許文献1では、照明器具側にセンサが取り付けられている。そのため、既存の施設で人感センサによる点灯制御を行おうとすると、既存の照明器具を取り外して、特許文献1に記載の照明器具を取り付ける工事が必要となる。また、特許文献1には、略直管状ランプについて開示されているに留まり、電球形ランプについては何らの開示もない。 However, in patent document 1, the sensor is attached to the lighting fixture side. Therefore, if it is going to perform lighting control by a human detection sensor in existing facilities, construction which removes an existing lighting fixture and attaches a lighting fixture of patent document 1 is needed. Further, Patent Document 1 only discloses a substantially straight tubular lamp, and there is no disclosure of a light bulb-shaped lamp.
 本発明は、上記の課題に鑑みてなされたものであり、簡単に設置可能な点灯制御機能付の電球形ランプを提供することを目的とする。 This invention is made in view of said subject, and it aims at providing a lightbulb-shaped lamp with a lighting control function which can be installed easily.
 本発明の一形態に係る電球形ランプは、照明器具のソケットに装着される口金と、前記口金に、当該口金の軸心回りに回転可能に取り付けられるランプ本体と、検出対象を検出するセンサと、前記ランプ本体に保持され、前記センサで前記検出対象が検出されたことに応じて点灯する発光素子とを備える。そして、前記センサは、当該センサの検出範囲が前記口金の軸心に対して非対称となるように、前記ランプ本体に取り付けられる。 A bulb-shaped lamp according to an aspect of the present invention includes a base mounted on a socket of a lighting fixture, a lamp body rotatably mounted on the base, around an axial center of the base, and a sensor for detecting a detection target And a light emitting element held by the lamp body and lit in response to detection of the detection target by the sensor. And the said sensor is attached to the said lamp main body so that the detection range of the said sensor may become asymmetrical with respect to the axial center of the said nozzle | cap | die.
 一例として、前記ランプ本体は、透光性を有するグローブと、主出射方向が前記グローブの方向を向くように前記発光素子を保持し、前記グローブと前記口金との間に配置される筐体とで構成される。そして、前記筐体は、前記口金に、当該口金の軸心回りに回転可能に取り付けられてもよい。 As one example, the lamp body holds the light emitting element such that the light transmitting glove has a light emitting direction and the main emission direction faces the direction of the glove, and a housing disposed between the glove and the mouthpiece It consists of The housing may be attached to the base so as to be rotatable about an axis of the base.
 他の例として、前記ランプ本体は、透光性を有するグローブと、主出射方向が前記グローブの方向を向くように前記発光素子を保持し、前記グローブと前記口金との間に配置される筐体とで構成されてもよい。そして、前記筐体は、前記口金に固定され、前記グローブは、前記筐体に、前記口金の軸心回りに回転可能に取り付けられてもよい。 As another example, the lamp body holds the light emitting element such that the light transmitting glove has a light emitting direction and the main emission direction faces the direction of the glove, and the case is disposed between the glove and the mouthpiece. It may be composed of the body. The housing may be fixed to the base, and the globe may be rotatably attached to the housing about an axial center of the base.
 一例として、前記センサは、前記口金の軸心上で、且つ検出範囲の中心軸が前記口金の軸心に対して傾くように、前記グローブに取り付けられてもよい。 As an example, the sensor may be attached to the glove such that the sensor is on the axis of the base and the central axis of the detection range is inclined with respect to the axis of the base.
 他の例として、前記センサは、検出素子と外光を前記検出素子に集光させるレンズとで構成され、且つ前記口金の軸心上で前記グローブに取り付けられてもよい。そして、前記レンズは、外光の集光範囲が前記口金の軸心に対して非対称となるように構成されてもよい。 As another example, the sensor may be configured of a detection element and a lens for condensing external light on the detection element, and may be attached to the globe on the axis of the base. And the said lens may be comprised so that the condensing range of external light may become asymmetrical with respect to the axial center of the said nozzle | cap | die.
 さらに他の例として、前記センサは、前記口金の軸心上を外れた位置で、前記ランプ本体に取り付けられてもよい。 As still another example, the sensor may be attached to the lamp body at a position off the axial center of the base.
 例えば、前記発光素子は、LED(Light Emitting Diode)であってもよい。 For example, the light emitting element may be a light emitting diode (LED).
 本発明の一形態に係る照明装置は、上記記載の電球形ランプを備える。 A lighting device according to an aspect of the present invention includes the light bulb shaped lamp described above.
 本発明によれば、設置が簡単な点灯制御機能付の電球形ランプを得ることができる。 According to the present invention, it is possible to obtain a bulb-shaped lamp with a lighting control function that is easy to install.
図1は、本発明の一実施の形態に係る電球形ランプの斜視図である。FIG. 1 is a perspective view of a light bulb shaped lamp according to an embodiment of the present invention. 図2は、図1の電球形ランプの一部破断側面図である。FIG. 2 is a partially broken side view of the light bulb shaped lamp of FIG. 図3は、筐体、回路ホルダ、及び口金の分解斜視図である。FIG. 3 is an exploded perspective view of a housing, a circuit holder, and a base. 図4は、半導体発光モジュールの平面図である。FIG. 4 is a plan view of the semiconductor light emitting module. 図5は、電球形ランプに搭載されるセンサの検出範囲の例を示す図である。FIG. 5 is a view showing an example of a detection range of a sensor mounted on a light bulb shaped lamp. 図6は、変形例1に係る電球形ランプの例を示す図である。FIG. 6 is a view showing an example of the light bulb shaped lamp according to the first modification. 図7は、変形例2に係る電球形ランプの例を示す図である。FIG. 7 is a view showing an example of a light bulb shaped lamp according to the second modification. 図8は、本発明の一形態に係る照明装置の概略断面図である。FIG. 8 is a schematic cross-sectional view of a lighting device according to an embodiment of the present invention.
 (本発明の基礎となった知見)
 上記従来の課題を解決する方法としては、電球形ランプそのものにセンサを取り付けることが考えられる。しかしながら、電球形ランプにセンサを固定してしまうと、電球形ランプの使用環境に応じて、センサの検出範囲を適応的に調整することができないという新たな課題を生じる。
(Findings that formed the basis of the present invention)
As a method of solving the said conventional subject, it is possible to attach a sensor to a light bulb shaped lamp itself. However, fixing the sensor to the light bulb shaped lamp causes a new problem that the detection range of the sensor can not be adaptively adjusted according to the usage environment of the light bulb shaped lamp.
 そこで、このような課題を解決するために、本発明の一形態に係る電球形ランプは、照明器具のソケットに装着される口金と、前記口金に、当該口金の軸心回りに回転可能に取り付けられるランプ本体と、検出対象を検出するセンサと、前記ランプ本体に保持され、前記センサで前記検出対象が検出されたことに応じて点灯する発光素子とを備える。そして、前記センサは、当該センサの検出範囲が前記口金の軸心に対して非対称となるように、前記ランプ本体に取り付けられる。 Then, in order to solve such a subject, the lightbulb-shaped lamp which concerns on one form of this invention is rotatably attached to the base | base mounted | worn with the socket of a lighting fixture, and the said base so that the axial center of the said base can be rotated A lamp body, a sensor for detecting a detection target, and a light emitting element held by the lamp body and lit in response to detection of the detection target by the sensor. And the said sensor is attached to the said lamp main body so that the detection range of the said sensor may become asymmetrical with respect to the axial center of the said nozzle | cap | die.
 以下、本発明の一形態に係る電球形ランプを、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a light bulb shaped lamp according to an embodiment of the present invention will be specifically described with reference to the drawings. Note that all the embodiments described below show general or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of the components, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Further, among the components in the following embodiments, components not described in the independent claim indicating the highest concept are described as arbitrary components.
 図1は、本発明の一実施の形態に係る電球形ランプ100の斜視図である。図2は、図1の電球形ランプ100の一部破断側面図である。図3は、筐体120、回路ホルダ122、及び口金130の分解斜視図である。図4は、半導体発光モジュール140の平面図である。 FIG. 1 is a perspective view of a light bulb shaped lamp 100 according to an embodiment of the present invention. FIG. 2 is a partially cutaway side view of the light bulb shaped lamp 100 of FIG. FIG. 3 is an exploded perspective view of the housing 120, the circuit holder 122, and the base 130. FIG. 4 is a plan view of the semiconductor light emitting module 140.
 電球形ランプ100は、図1に示されるように、グローブ110と、筐体120と、口金130と、半導体発光モジュール140と、センサ150とを主に備える。なお、本明細書では、グローブ110及び筐体120を総称して、「ランプ本体」と表記することがある。 The bulb-shaped lamp 100 mainly includes a glove 110, a housing 120, a base 130, a semiconductor light emitting module 140, and a sensor 150, as shown in FIG. In the present specification, the glove 110 and the housing 120 may be collectively referred to as a “lamp main body”.
 (グローブ110)
 グローブ110は、半導体発光モジュール140から放出される光をランプ外部に放射させるための半球形状の透光性カバーである。すなわち、発光モジュールから発せられた光は、グローブ110を透過して外部へと取り出される。
(The glove 110)
The globe 110 is a hemispherical-shaped translucent cover for emitting the light emitted from the semiconductor light emitting module 140 to the outside of the lamp. That is, the light emitted from the light emitting module passes through the globe 110 and is extracted to the outside.
 このグローブ110は、一般電球形状であるA型の電球のバルブを模した形状であり、グローブ110の開口側端部を筐体120の上方側端部内に圧入して取り付けられる。なお、グローブ110の形状は、A型の電球のバルブを模した形状に限定されず、どのような形状であってもよい。また、グローブ110は、接着剤などにより、筐体120に固定されてもよい。 The globe 110 has a shape that simulates a bulb of an A-shaped bulb that is a general bulb shape, and is attached by pressing the opening side end of the globe 110 into the upper side end of the housing 120. In addition, the shape of the glove | globe 110 is not limited to the shape which imitated the bulb | bulb of a A-type light bulb, Any shape may be sufficient. The glove 110 may be fixed to the housing 120 by an adhesive or the like.
 さらに、グローブ110には、半導体発光モジュール140から放出される光を拡散させるための拡散処理が施されていることが好ましい。例えば、グローブ110の内面又は外面に光拡散膜(光拡散層)を形成することでグローブ110に光拡散機能を持たせることができる。具体的には、シリカや炭酸カルシウム等の光拡散材を含有する樹脂や白色顔料等をグローブ110の内面又は外面の全面に塗布することによって光拡散膜を形成することができる。あるいは、グローブ110に光拡散ドットを形成することによって、グローブ110に光拡散機能を持たせることもできる。例えば、樹脂製のグローブ110の表面を加工することによって、複数のドットを形成したり、微小な窪み(ディンプル)を形成したりすることで、グローブ110に光拡散機能を持たせることができる。また、グローブ110にシボ加工を施すことによっても光拡散機能を持たせることができる。 Furthermore, it is preferable that the globe 110 be subjected to a diffusion process for diffusing the light emitted from the semiconductor light emitting module 140. For example, by forming a light diffusion film (light diffusion layer) on the inner surface or the outer surface of the globe 110, the globe 110 can have a light diffusion function. Specifically, the light diffusion film can be formed by applying a resin containing a light diffusion material such as silica or calcium carbonate, a white pigment, or the like on the entire inner surface or outer surface of the glove 110. Alternatively, the light diffusion function can be given to the globe 110 by forming light diffusion dots on the globe 110. For example, by processing the surface of the resin-made globe 110, the globe 110 can have a light diffusing function by forming a plurality of dots or forming minute dimples. In addition, the light diffusion function can be provided by embossing the globe 110 as well.
 なお、本実施の形態に係るグローブ110は半球形状であるが、本発明はこれに限定されない。グローブ110の形状は、例えば、回転楕円体又は偏球体であっても構わない。また、グローブ110の材質は特に限定さらないが、例えば、ガラス材、又は合成樹脂等の樹脂材を採用することができる。 Although glove 110 concerning this embodiment is hemispherical shape, the present invention is not limited to this. The shape of the globe 110 may be, for example, a spheroid or a spheroid. Although the material of the glove 110 is not particularly limited, for example, a glass material or a resin material such as a synthetic resin can be adopted.
 (筐体120)
 筐体120は、グローブ110側に位置する本体部120aと、口金130側に位置する基端部120bとで構成される。また、筐体120は、半導体発光モジュール140を保持する基台121と、回路ユニット123を保持する回路ホルダ122とを、その内部に保持する。より具体的には、筐体120は、後述する半導体発光素子142の主出射方向がグローブ110を向くように、半導体発光モジュール140を保持する。
(Case 120)
The housing 120 is configured of a main body portion 120 a located on the glove 110 side and a base end portion 120 b located on the cap 130 side. In addition, the housing 120 holds the base 121 holding the semiconductor light emitting module 140 and the circuit holder 122 holding the circuit unit 123 inside. More specifically, the housing 120 holds the semiconductor light emitting module 140 such that the main emission direction of the semiconductor light emitting device 142 described later faces the globe 110.
 本体部120aは、基端部120b側からグローブ110側に向かって徐々に直径が大きくなる円錐台形状であって、一端(小径側)が基端部120bに接続され、他端(大径側)が開口している。そして、本体部120aの開口部には、グローブ110が圧入される。基端部120bは、口金130側から本体部120a側に向かって徐々に直径が大きくなる円錐台形状であって、一端(小径側)が開口し、他端(大径側)が本体部120aに接続されている。そして、基端部120bの開口部には、図3を用いて後述するように、回路ホルダ122が接続される。 The main body 120a has a frusto-conical shape whose diameter gradually increases from the base end 120b toward the globe 110, and one end (small diameter side) is connected to the base end 120b, and the other end (large diameter side) ) Is open. Then, the glove 110 is pressed into the opening of the main body portion 120a. The base end 120b is a truncated cone whose diameter gradually increases from the base 130 toward the main body 120a, and one end (small diameter side) is open and the other end (large diameter side) is the main body 120a. It is connected to the. The circuit holder 122 is connected to the opening of the base end 120b as described later with reference to FIG.
 筐体120は、金属材料によって構成されるのが望ましい。これにより、筐体120は、半導体発光モジュール140及び回路ユニット123から発生する熱を、電球形ランプ100の外部に効率的に放熱させるヒートシンクとして機能する。 The housing 120 is preferably made of a metal material. Thus, the housing 120 functions as a heat sink that efficiently dissipates the heat generated from the semiconductor light emitting module 140 and the circuit unit 123 to the outside of the light bulb shaped lamp 100.
 筐体120を構成する金属材料の具体例としては、例えばAl、Ag、Au、Ni、Rh、Pd、あるいは、これらのうちの2以上からなる合金、又はCuとAgとの合金などが考えられる。このような金属材料は、熱伝導性が良好であるため、筐体120に伝搬した熱を効率良く口金130側に伝搬させることができる。したがって、半導体発光モジュール140及び回路ユニット123から発生する熱を、口金130を介して照明器具側にも放熱させることができる。 As a specific example of the metal material which constitutes case 120, for example, Al, Ag, Au, Ni, Rh, Pd, an alloy of two or more of them, an alloy of Cu and Ag, etc. can be considered. . Since such a metal material has good thermal conductivity, the heat transmitted to the housing 120 can be efficiently transmitted to the base 130 side. Therefore, the heat generated from the semiconductor light emitting module 140 and the circuit unit 123 can be dissipated to the lighting apparatus side through the base 130.
 なお、本実施の形態に係る筐体120は、アルミニウム合金材料で構成されている。また、筐体120の熱放射率を向上させるために、筐体120の表面にアルマイト処理を施してもよい。なお、筐体120の材料は、金属に限定されず、樹脂であってもよい。例えば、熱伝導率の高い樹脂などで筐体120を構成することができる。 The housing 120 according to the present embodiment is made of an aluminum alloy material. Further, in order to improve the thermal emissivity of the housing 120, the surface of the housing 120 may be subjected to an alumite treatment. The material of the housing 120 is not limited to metal, and may be resin. For example, the housing 120 can be made of a resin or the like having a high thermal conductivity.
 (基台121)
 基台121は、例えば、厚み方向に貫通する貫通孔を中央部に有する略円環形状であり、本実施の形態では、その筒軸がランプ軸J(口金130の軸心)と一致(平行)するように配置されている。基台121の上面は、ランプ軸Jと直交する平面であって、半導体発光モジュール140の載置面となる。
(Base 121)
The base 121 has, for example, a substantially annular shape having a through hole penetrating in the thickness direction at the central portion, and in the present embodiment, the cylinder axis thereof coincides with (parallel to) the lamp axis J (axial center of the base 130) ) To be arranged. The upper surface of the base 121 is a plane orthogonal to the lamp axis J, and is a mounting surface of the semiconductor light emitting module 140.
 なお、「筒軸」とは、基台121の中心を通り、且つ載置面に直交する軸を指し、一般的には半導体発光素子142の主出射方向に一致する。但し、基台121の筒軸は必ずしもランプ軸Jと平行である必要はなく、ランプ軸Jに対して所定の方向に傾いていてもよい。すなわち、筒軸は、半導体発光素子142から出力される光を照射したい任意の方向に設定することができる。 The “cylindrical axis” refers to an axis passing through the center of the base 121 and orthogonal to the mounting surface, and generally coincides with the main emission direction of the semiconductor light emitting element 142. However, the cylinder axis of the base 121 does not necessarily have to be parallel to the lamp axis J, and may be inclined in a predetermined direction with respect to the lamp axis J. That is, the cylinder axis can be set to an arbitrary direction in which the light output from the semiconductor light emitting element 142 is desired to be irradiated.
 なお、基台121は、例えば、熱伝導性の高い金属材料からなる。金属材料の具体例としては、例えば、Al、Ag、Au、Ni、Rh、Pd、またはそれらの内の2以上からなる合金、またはCuとAgの合金などが考えられる。これにより、半導体発光モジュール140で発生した熱を、筐体120に効率良く伝導させることができる。 The base 121 is made of, for example, a metal material having high thermal conductivity. As a specific example of the metal material, for example, Al, Ag, Au, Ni, Rh, Pd, an alloy of two or more of them, an alloy of Cu and Ag, and the like can be considered. Thus, the heat generated in the semiconductor light emitting module 140 can be efficiently conducted to the housing 120.
 一例として、基台121は、アルミダイキャストによって成型された略円板状の金属基板とすることができる。このように、基台121を金属材料によって構成することにより、基台121を、半導体発光モジュール140から発生する熱を筐体120に伝導させるための放熱体として機能させることもできる。 As an example, the base 121 can be a substantially disk-shaped metal substrate molded by aluminum die casting. Thus, the base 121 can be functioned as a heat dissipation body for conducting the heat generated from the semiconductor light emitting module 140 to the casing 120 by forming the base 121 with a metal material.
 また、半導体発光モジュール140を基台121の上面に固定する方法としては、例えば、ねじ止め、接着または係合などが考えられる。また、基台121は、略円環形状に限定されず、どのような形状でもよい。また、基台121の上面は、半導体発光モジュール140を平面配置できれば、必ずしも全体が平面である必要はない。さらに、ランプ軸Jと載置面とは、必ずしも直交している必要は無く、所定の角度で交差していればよいものとする。 In addition, as a method of fixing the semiconductor light emitting module 140 to the upper surface of the base 121, for example, screwing, bonding, or engagement can be considered. Further, the base 121 is not limited to a substantially annular shape, and may have any shape. Moreover, the upper surface of the base 121 does not necessarily have to be a plane as a whole as long as the semiconductor light emitting module 140 can be disposed in a plane. Furthermore, the lamp axis J and the mounting surface do not necessarily have to be orthogonal to each other, and it is sufficient that they intersect at a predetermined angle.
 (回路ホルダ122)
 回路ホルダ122は、一端が開口した略円筒形状の本体部122aと、外周面にネジ溝が形成されている連結部122bとで構成される。そして、回路ホルダ122は、本体部122aの開口端がキャップ部材125に連結され、連結部122bが口金130に連結される。回路ホルダ122を構成する材料は特に限定されないが、例えば、樹脂などの絶縁性材料で形成すればよい。
(Circuit holder 122)
The circuit holder 122 is composed of a substantially cylindrical main body portion 122 a having one end opened, and a connecting portion 122 b having a screw groove formed on the outer peripheral surface. Then, the open end of the main body portion 122 a of the circuit holder 122 is connected to the cap member 125, and the connection portion 122 b is connected to the base 130. Although the material which comprises the circuit holder 122 is not specifically limited, For example, what is necessary is just to form with insulating materials, such as resin.
 なお、回路ホルダ122のグローブ110側には基台121が位置しているが、回路ホルダ122と基台121とは直接接触しておらず、両者の間には隙間が設けられている。また、回路ホルダ122の外壁面と筐体120の内壁面とは直接接触しておらず、両者の間には隙間が設けられている。 Although the base 121 is positioned on the globe 110 side of the circuit holder 122, the circuit holder 122 and the base 121 are not in direct contact with each other, and a gap is provided between them. Further, the outer wall surface of the circuit holder 122 and the inner wall surface of the housing 120 are not in direct contact with each other, and a gap is provided between the two.
 このように、回路ホルダ122と基台121(又は筐体120)との間に隙間を設けることにより、半導体発光モジュール140で発生した熱が、基台121や筐体120を介して回路ホルダ122に伝搬することを抑制することができる。これにより、回路ホルダ122の温度上昇を抑制することができるので、回路ユニット123が熱破壊されることを防止することができる。 As described above, by providing a gap between the circuit holder 122 and the base 121 (or the housing 120), the heat generated in the semiconductor light emitting module 140 is transmitted to the circuit holder 122 via the base 121 and the housing 120. Propagation can be suppressed. Thereby, since the temperature rise of the circuit holder 122 can be suppressed, it can prevent that the circuit unit 123 is thermally destroyed.
 (回路ユニット123)
 回路ユニット123は、半導体発光素子142を点灯させるためのものであって、回路基板124上に実装される各種の電子部品(図示省略)で構成される。この回路ユニット123は、回路ホルダ122及びキャップ部材125内に収納される。回路ユニット123を回路ホルダ122及びキャップ部材125に固定する方法としては、例えば、ネジ止め、接着、係合などが考えられる。
(Circuit unit 123)
The circuit unit 123 is for lighting the semiconductor light emitting element 142, and is configured of various electronic components (not shown) mounted on the circuit board 124. The circuit unit 123 is housed in the circuit holder 122 and the cap member 125. As a method of fixing the circuit unit 123 to the circuit holder 122 and the cap member 125, for example, screwing, bonding, engagement and the like can be considered.
 回路基板124は、その主面がランプ軸Jと平行になるように配置される。このようにすれば、回路ホルダ122内に回路ユニット123をよりコンパクトに格納することができる。そして、回路ユニット123を構成する電子部品のうち、比較的熱に弱い電子部品は、半導体発光モジュール140から遠い回路基板124の下方側に配置される。一方、比較的熱に強い電子部品は、半導体発光モジュール140に近い回路基板124の上方側に配置される。これにより、半導体発光モジュール140で発生する熱によって、電子部品が熱破壊されるのを、有効に防止できる。 The circuit board 124 is disposed such that its main surface is parallel to the lamp axis J. In this way, the circuit unit 123 can be stored more compactly in the circuit holder 122. Then, among the electronic components constituting the circuit unit 123, the electronic component that is relatively weak to heat is disposed on the lower side of the circuit board 124 far from the semiconductor light emitting module 140. On the other hand, the relatively heat-resistant electronic component is disposed on the upper side of the circuit board 124 near the semiconductor light emitting module 140. Thereby, the heat generated in the semiconductor light emitting module 140 can effectively prevent the electronic component from being thermally destroyed.
 (キャップ部材125)
 キャップ部材125は、中空の略円錐台形状であって、開口する大径側の端部が回路ホルダ122に接続される。また、キャップ部材125は、小径側の端部の外壁面でセンサ150を保持している。キャップ部材125は、例えば、回路ホルダ122と同一の材料で形成することができる。
(Cap member 125)
The cap member 125 has a hollow, generally frusto-conical shape, and the open large end is connected to the circuit holder 122. In addition, the cap member 125 holds the sensor 150 on the outer wall surface of the end on the small diameter side. The cap member 125 can be formed of, for example, the same material as the circuit holder 122.
 (口金130)
 口金130は、二接点によって交流電力を受電するための受電部であり、照明器具のソケット(図示省略)に装着される。本実施の形態に係る口金130は、JIS(日本工業規格)に規定するE17口金の規格に適合しているが、本発明はこれに限定されない。すなわち、口金130は、他の照明器具のソケットに装着されるように、JISにて規定される他の規格(E26口金等)に適合する構成であってもよい。
(Cap 130)
The base 130 is a power receiving unit for receiving AC power by two contacts, and is mounted on a socket (not shown) of the lighting apparatus. The base 130 according to the present embodiment conforms to the standard of the E17 base defined in JIS (Japanese Industrial Standard), but the present invention is not limited to this. That is, the base 130 may be configured to conform to another standard (E26 base or the like) defined in JIS so as to be attached to a socket of another lighting fixture.
 口金130は、外周面及び内周面にネジ溝が形成された円筒形状のシェル131と、シェル131の先端に取り付けられたアイレット132とで構成される。シェル131の外周面のネジ溝は、照明器具のソケットに螺合される。これにより、電球形ランプ100が照明器具に固定される。また、シェル131の内周面のネジ溝は、回路ホルダ122の連結部122bのネジ溝に螺合される。これにより、回路ホルダ122と口金130とが固定される。 The base 130 includes a cylindrical shell 131 having a thread groove formed on the outer peripheral surface and the inner peripheral surface, and an eyelet 132 attached to the tip of the shell 131. The screw groove on the outer peripheral surface of the shell 131 is screwed into the socket of the lighting apparatus. Thereby, the light bulb shaped lamp 100 is fixed to the lighting fixture. Further, the screw groove on the inner peripheral surface of the shell 131 is screwed into the screw groove of the connecting portion 122 b of the circuit holder 122. Thereby, the circuit holder 122 and the base 130 are fixed.
 また、回路ユニット123と口金130とは、第1及び第2給電線161、162を含む撚り線160で電気的に接続される。より具体的には、第1給電線161は、回路ユニット123とシェル131とを電気的に接続する。第2給電線162は、回路ユニット123とアイレット132とを電気的に接続する。 Further, the circuit unit 123 and the base 130 are electrically connected by the stranded wire 160 including the first and second feeders 161 and 162. More specifically, the first feeder line 161 electrically connects the circuit unit 123 and the shell 131. The second feeder line 162 electrically connects the circuit unit 123 and the eyelet 132.
 次に、図3を参照して、筐体120、回路ホルダ122、及び口金130の取り付け方を詳細に説明する。まず、回路ホルダ122の連結部122bには、ストッパリング171が嵌め込まれ、接着剤等によって固定される。次に、ストッパリング171が嵌め込まれた連結部122bは、筐体120の基端部120bの開口に挿通される。また、基端部120bの開口に挿通された連結部122bには、ワッシャ172及び絶縁リング173がこの順に嵌め込まれる。そして、この状態の連結部122bは、口金130のアイレット132の内周面に形成されたネジ溝に螺合されて、固定される。 Next, with reference to FIG. 3, how to attach the housing 120, the circuit holder 122, and the base 130 will be described in detail. First, the stopper ring 171 is fitted into the connection portion 122b of the circuit holder 122 and fixed by an adhesive or the like. Next, the connecting portion 122 b into which the stopper ring 171 is fitted is inserted into the opening of the proximal end portion 120 b of the housing 120. Further, the washer 172 and the insulating ring 173 are fitted in this order in the connecting portion 122b inserted into the opening of the proximal end portion 120b. Then, the connecting portion 122 b in this state is screwed into a screw groove formed on the inner peripheral surface of the eyelet 132 of the mouthpiece 130 and fixed.
 すなわち、回路ホルダ122と口金130とは、常に一体として回転する。一方、筐体120は、ストッパリング171及びワッシャ172で挟持されているので、通常は回路ホルダ122及び口金130と一体回転する。しかしながら、筐体120とストッパリング171及びワッシャ172との間の摩擦力よりも大きな力が筐体120と口金130との間に加わると、筐体120と口金130とは相対回転する。 That is, the circuit holder 122 and the base 130 always rotate integrally. On the other hand, since the housing 120 is sandwiched by the stopper ring 171 and the washer 172, the housing 120 normally rotates integrally with the circuit holder 122 and the cap 130. However, when a force larger than the frictional force between the housing 120 and the stopper ring 171 and the washer 172 is applied between the housing 120 and the base 130, the housing 120 and the base 130 rotate relative to each other.
 ここで、ストッパリング171の筐体120に対面する側の面には、筐体120に向かって突出するストッパ171aが形成されている。また、筐体120の基端部120bの開口を構成する内周面には、開口中心に向かって突出する係合部120cが形成されている。そして、筐体120と回路ホルダ122及び口金130とを相対回転させると、ストッパ171aと係合部120cとが係合して、それ以上の回転を規制する。すなわち、ストッパ171a及び係合部120cは、筐体120と回路ホルダ122及び口金130との相対回転を規制する規制部材として機能する。 Here, a stopper 171 a protruding toward the housing 120 is formed on the surface of the stopper ring 171 facing the housing 120. Further, on the inner peripheral surface that constitutes the opening of the proximal end portion 120b of the housing 120, an engaging portion 120c that protrudes toward the center of the opening is formed. Then, when the housing 120, the circuit holder 122, and the base 130 are relatively rotated, the stopper 171a and the engaging portion 120c are engaged to restrict further rotation. That is, the stopper 171 a and the engaging portion 120 c function as a restricting member that restricts relative rotation between the housing 120 and the circuit holder 122 and the cap 130.
 (半導体発光モジュール140)
 図4は、第1の実施形態に係る半導体発光モジュール140を示す平面図である。図4に示される半導体発光モジュール140は、実装基板141と、実装基板141に実装された光源としての複数の半導体発光素子142と、それら半導体発光素子142を被覆するように実装基板141上に設けられた封止体143とを備える。
(Semiconductor light emitting module 140)
FIG. 4 is a plan view showing the semiconductor light emitting module 140 according to the first embodiment. The semiconductor light emitting module 140 shown in FIG. 4 is provided on the mounting substrate 141 so as to cover the mounting substrate 141, a plurality of semiconductor light emitting devices 142 as light sources mounted on the mounting substrate 141, and the semiconductor light emitting devices 142. And the sealed body 143.
 なお、本実施の形態に係る半導体発光素子142は、LED(Light Emitting Diode)である。すなわち、半導体発光モジュール140は、LEDモジュールである。しかしながら、半導体発光素子142には、例えば、半導体レーザなどが用いられてもよい。また、半導体発光素子142の代わりに有機EL素子又は無機EL素子などの発光素子が用いられてもよい。 The semiconductor light emitting device 142 according to the present embodiment is a light emitting diode (LED). That is, the semiconductor light emitting module 140 is an LED module. However, for example, a semiconductor laser may be used as the semiconductor light emitting device 142. In addition, instead of the semiconductor light emitting element 142, a light emitting element such as an organic EL element or an inorganic EL element may be used.
 実装基板141は、中央に略円形の孔部を有する略円環状であって、一方側の面(図2の上面)に半導体発光素子142が実装される。実装基板141を構成する材料は特に限定されないが、例えば、アルミナ等からなるセラミックス基板を用いることができる。 The mounting substrate 141 has a substantially annular shape having a substantially circular hole at the center, and the semiconductor light emitting element 142 is mounted on one surface (upper surface in FIG. 2). Although the material which comprises the mounted substrate 141 is not specifically limited, For example, the ceramic substrate which consists of alumina etc. can be used.
 また、実装基板141の内周縁の一箇所には、孔部の中心へ向けて延出した舌片部144が形成されている。舌片部144には、回路ユニット123の配線145が接続されるコネクタ146が設けられている。そして、図2に示されるように、配線145をコネクタ146に接続することによって半導体発光モジュール140と回路ユニット123とが電気的に接続される。そして、配線145を通じて回路ユニット123から直流電力が供給されることによって、半導体発光素子142が発光する。 Further, at one portion of the inner peripheral edge of the mounting substrate 141, a tongue piece portion 144 extending toward the center of the hole portion is formed. The tongue piece 144 is provided with a connector 146 to which the wire 145 of the circuit unit 123 is connected. Then, as shown in FIG. 2, the semiconductor light emitting module 140 and the circuit unit 123 are electrically connected by connecting the wiring 145 to the connector 146. Then, when the DC power is supplied from the circuit unit 123 through the wiring 145, the semiconductor light emitting element 142 emits light.
 半導体発光素子142は、例えば、2個1組として、略直方体形状の封止体143で封止される。そして、図4の例では、16組の封止体143(すなわち、32個の半導体発光素子142)が、実装基板141の表面にランプ軸Jに対して点対称となるように円環状に配置されている。言い換えれば、各封止体143の長手方向は、実装基板141の径方向と一致しており、且つランプ軸Jを中心として放射状に配置されている。なお、半導体発光素子142の数は複数に限らず1個であってもよい。また、半導体発光素子142の配置は円環状に限定されず、例えば、マトリクス状であってもよい。 The semiconductor light emitting elements 142 are sealed, for example, in pairs as a pair by a substantially rectangular parallelepiped sealing body 143. Then, in the example of FIG. 4, 16 sets of sealing bodies 143 (that is, 32 semiconductor light emitting elements 142) are annularly arranged on the surface of the mounting substrate 141 so as to be point symmetrical with respect to the lamp axis J It is done. In other words, the longitudinal direction of each sealing body 143 coincides with the radial direction of the mounting substrate 141, and is arranged radially about the lamp axis J. The number of semiconductor light emitting elements 142 is not limited to a plurality, and may be one. Further, the arrangement of the semiconductor light emitting devices 142 is not limited to an annular shape, and may be, for example, a matrix.
 封止体143は、主として透光性材料からなる。また、半導体発光素子142から発せられた光の波長を所定の波長へと変換する必要がある場合には、透光性材料に光の波長を変換する波長変換材料が混入される。透光性材料としては、例えば、シリコーン樹脂を利用することができる。また、波長変換材料としては、例えば、蛍光体粒子を利用することができる。 The sealing body 143 is mainly made of a translucent material. Further, when it is necessary to convert the wavelength of light emitted from the semiconductor light emitting element 142 into a predetermined wavelength, a wavelength conversion material for converting the wavelength of light is mixed into the translucent material. As a translucent material, silicone resin can be utilized, for example. Moreover, as a wavelength conversion material, fluorescent substance particle can be utilized, for example.
 本実施の形態では、青色光を出射する半導体発光素子142と、青色光を黄色光に波長変換する蛍光体粒子が混入された透光性材料で形成された封止体143とが採用される。すなわち、半導体発光素子142から出射された青色光の一部が封止体143によって黄色光に波長変換され、未変換の青色光と変換後の黄色光との混色により生成される白色光が半導体発光モジュール140から出射される。 In the present embodiment, a semiconductor light emitting element 142 for emitting blue light and a sealing body 143 formed of a translucent material mixed with phosphor particles for wavelength converting blue light to yellow light are employed. . That is, part of the blue light emitted from the semiconductor light emitting element 142 is wavelength-converted to yellow light by the sealing body 143, and white light generated by mixing the unconverted blue light and the converted yellow light is semiconductor The light is emitted from the light emitting module 140.
 さらに、半導体発光モジュール140は、例えば、紫外線発光の半導体発光素子と、三原色(赤色、緑色、青色)に発光する各色蛍光体粒子とを組み合わせたものでもよい。さらに、波長変換材料として、半導体、金属錯体、有機染料、顔料など、ある波長の光を吸収し、吸収した光とは異なる波長の光を発する物質を含んでいる材料を利用してもよい。半導体発光素子142は、その主出射方向をランプ軸J方向に沿った上方に向けて配置されている。 Furthermore, the semiconductor light emitting module 140 may be, for example, a combination of a semiconductor light emitting element emitting ultraviolet light and each color phosphor particle emitting light in three primary colors (red, green, blue). Furthermore, as the wavelength conversion material, a material including a semiconductor, a metal complex, an organic dye, a pigment, or the like, which absorbs light of a certain wavelength and emits light of a wavelength different from the absorbed light may be used. The semiconductor light emitting element 142 is disposed with its main emission direction directed upward along the lamp axis J direction.
 (センサ150)
 センサ150は、典型的には、電球形ランプ100の近傍(照射範囲内)における人の有無を検出する、いわゆる人感センサである。このセンサ150は、図2に示されるように、検出素子151と、レンズ152と、制御回路153と、実装基板154とを備える。本実施の形態に係るセンサ150は、ランプ軸J上に位置するように、キャップ部材125の小径側の端部に保持される。
(Sensor 150)
The sensor 150 is typically a so-called human sensor that detects the presence or absence of a person in the vicinity (within the illumination range) of the light bulb shaped lamp 100. As illustrated in FIG. 2, the sensor 150 includes a detection element 151, a lens 152, a control circuit 153, and a mounting substrate 154. The sensor 150 according to the present embodiment is held by the small diameter end of the cap member 125 so as to be located on the lamp axis J.
 検出素子151は、検出対象(この例では、人)を検出する素子であって、人体が発する遠赤外線を検出する。レンズ152は、透光性を有する半球形状であって、検出素子151を覆うように配置される。このレンズ152は、外光(この例では、外部からセンサ150に向かって発せられる遠赤外線)を検出素子151に集光させる。すなわち、このレンズ152がセンサ150の検出範囲(検出角度)を決定する。 The detection element 151 is an element that detects a detection target (in this example, a person), and detects far infrared rays emitted by a human body. The lens 152 has a translucent hemispherical shape, and is disposed to cover the detection element 151. The lens 152 condenses outside light (in this example, far infrared rays emitted from the outside toward the sensor 150) on the detection element 151. That is, the lens 152 determines the detection range (detection angle) of the sensor 150.
 制御回路153は、配線155で回路ユニット123に接続され、配線155を通じて検出素子151の検出結果を回路ユニット123に通知する。実装基板154は、検出素子151及び制御回路153を保持する。具体的には、実装基板154は、一方側の主面に検出素子151を、他方側の主面に制御回路153を保持し、貫通孔(図示省略)を通じて検出素子151と制御回路153とを電気的に接続すればよい。そして、実装基板154は、検出素子151をレンズ152の方に向けて、レンズ152の開口部に嵌め込まれる。 The control circuit 153 is connected to the circuit unit 123 by the wiring 155, and notifies the circuit unit 123 of the detection result of the detection element 151 through the wiring 155. The mounting substrate 154 holds the detection element 151 and the control circuit 153. Specifically, the mounting substrate 154 holds the detection element 151 on one main surface and the control circuit 153 on the other main surface, and the detection element 151 and the control circuit 153 through a through hole (not shown). It may be electrically connected. Then, the mounting substrate 154 is fitted in the opening of the lens 152 with the detection element 151 directed toward the lens 152.
 上記構成のセンサ150を備える電球形ランプ100は、例えば、下記のように動作する。 The light bulb shaped lamp 100 provided with the sensor 150 configured as described above operates, for example, as follows.
 まず、電球形ランプ100が消灯している場合において、センサ150の検出範囲内に人が入ると、検出素子151がその人から発せられた遠赤外線を検出する。次に、制御回路153は、検出素子151で遠赤外線(すなわち、人)が検出されたことを、回路ユニット123に通知する。制御回路153からの通知を取得した回路ユニット123は、半導体発光モジュール140に電力を供給する。これにより、半導体発光素子142が発光する(電球形ランプ100が点灯する)。 First, when the bulb-shaped lamp 100 is turned off, when a person enters the detection range of the sensor 150, the detection element 151 detects far-infrared rays emitted from the person. Next, the control circuit 153 notifies the circuit unit 123 that the detection element 151 has detected far-infrared radiation (ie, a person). The circuit unit 123 that has received the notification from the control circuit 153 supplies power to the semiconductor light emitting module 140. Thereby, the semiconductor light emitting element 142 emits light (the bulb-shaped lamp 100 is turned on).
 一方、電球形ランプ100が点灯している場合において、検出素子151が遠赤外線を検出しない状態が所定時間継続すると、回路ユニット123は、半導体発光モジュール140への電力の供給を停止する。これにより、電球形ランプ100が消灯する。 On the other hand, when the light bulb-shaped lamp 100 is lit, the circuit unit 123 stops the supply of power to the semiconductor light emitting module 140 if the state in which the detecting element 151 does not detect far infrared rays continues for a predetermined time. Thereby, the light bulb shaped lamp 100 is turned off.
 このように、人を検知したときだけ点灯し、人がいないときには消灯することによって、消灯し忘れを防止すると同時に、消費電力を削減可能な電球形ランプ100を得ることができる。また、センサ150を、照明器具ではなく、電球形ランプ100そのものに搭載したので、既存(センサなし)の照明器具でも人感センサによる点灯制御を簡単に実現できる。 As described above, by turning on only when a person is detected and turning off when there is no person, it is possible to obtain a light bulb shaped lamp 100 capable of reducing power consumption while preventing forgetting to turn off. Further, since the sensor 150 is mounted on the light bulb shaped lamp 100 itself instead of the lighting fixture, lighting control by the human sensor can be easily realized even with the existing (without sensor) lighting fixture.
 また、この電球形ランプ100は、寿命の極めて長いLEDを発光素子として採用しているので、電球形ランプ100そのものにセンサ150を搭載したとしても、大幅なコストアップには繋がらない。 Further, since the light bulb-shaped lamp 100 employs an LED having a very long life as a light emitting element, even if the sensor 150 is mounted on the light bulb-shaped lamp 100 itself, it does not lead to a significant cost increase.
 ここで、センサ150の検出範囲は、電球形ランプ100の使用環境(すなわち、電球形ランプ100の設置される場所)によって、適応的に変更できることが望ましい。具体的には、所定の方向の検出範囲を、選択的に広くしたり、選択的に狭くしたりできることが望ましい。 Here, it is desirable that the detection range of the sensor 150 can be adaptively changed according to the use environment of the light bulb shaped lamp 100 (that is, the place where the light bulb shaped lamp 100 is installed). Specifically, it is desirable to be able to selectively widen or selectively narrow the detection range in a predetermined direction.
 そこで、本実施の形態に係る電球形ランプ100においては、センサ150をランプ軸Jに対して傾けて設置する。すなわち、実装基板154がランプ軸Jと直交しないように、センサ150を電球形ランプ100に設置する。図5は、本実施の形態に係る電球形ランプ100に搭載されるセンサ150の検出範囲の例を示す図である。 Therefore, in the light bulb shaped lamp 100 according to the present embodiment, the sensor 150 is installed at an angle with respect to the lamp axis J. That is, the sensor 150 is installed on the bulb-shaped lamp 100 so that the mounting substrate 154 is not orthogonal to the lamp axis J. FIG. 5 is a view showing an example of a detection range of the sensor 150 mounted on the light bulb shaped lamp 100 according to the present embodiment.
 図5に示されるように、本実施の形態に係る電球形ランプ100には、検出範囲がランプ軸Jに対して非対称となるように、センサ150が取り付けられている。具体的には、センサ150を傾けた側の検出範囲を広くし、その反対側の検出範囲を狭くしている。 As shown in FIG. 5, a sensor 150 is attached to the light bulb shaped lamp 100 according to the present embodiment so that the detection range is asymmetrical with respect to the lamp axis J. Specifically, the detection range on the side where the sensor 150 is inclined is widened, and the detection range on the opposite side is narrowed.
 そして、図3を用いて説明したように、本実施の形態に係る電球形ランプ100においては、グローブ110、筐体120、及びセンサ150が一体回転し、且つ筐体120と口金130とが相対回転する。すなわち、電球形ランプ100を照明器具に取り付けた状態で、筐体120を口金130に対して回転させることにより、センサ150の向きを変えることができるので、所望の方向の検出範囲を広く、又は所望の方向の検出範囲を狭くすることが可能となる。 Then, as described with reference to FIG. 3, in the light bulb shaped lamp 100 according to the present embodiment, the globe 110, the housing 120, and the sensor 150 rotate integrally, and the housing 120 and the cap 130 are relative to each other. Rotate. That is, the orientation of the sensor 150 can be changed by rotating the housing 120 with respect to the base 130 in a state where the bulb-shaped lamp 100 is attached to the lighting fixture, so the detection range in a desired direction can be broadened or It is possible to narrow the detection range in the desired direction.
 但し、センサ150の検出範囲をランプ軸Jに対して非対称とする方法は、図5の例に限定されない。図6及び図7は、本実施の形態の変形例に係る電球形ランプ200、300に搭載されるセンサ250、350の検出範囲の例を示す図である。 However, the method of making the detection range of the sensor 150 asymmetric with respect to the lamp axis J is not limited to the example of FIG. 6 and 7 are diagrams showing examples of detection ranges of the sensors 250 and 350 mounted on the light bulb shaped lamp 200 and 300 according to a modification of the present embodiment.
 図6に示される変形例1は、センサ250のレンズ252の集光範囲(集光角度)をランプ軸Jに対して非対称にすることによって、センサ250の検出範囲をランプ軸Jに対して非対称にしている。これは、例えば、ランプ軸Jに対して配光が非対称となるようにレンズ252を設計することにより実現できる。または、レンズ252の集光範囲を狭くしたい側(図6の例では右側)を、シール等で遮光することによっても実現できる。 In the first modification shown in FIG. 6, the detection range of the sensor 250 is asymmetric with respect to the lamp axis J by making the focusing range (focus angle) of the lens 252 of the sensor 250 asymmetric with respect to the lamp axis J. I have to. This can be realized, for example, by designing the lens 252 so that the light distribution is asymmetric with respect to the lamp axis J. Alternatively, it can also be realized by shielding the side (the right side in the example of FIG. 6) on which the focusing range of the lens 252 is desired to be narrowed with a seal or the like.
 そして、変形例1においても、筐体220を口金230に対して回転させることにより、所望の方向の検出範囲を広く、又は所望の方向の検出範囲を狭くすることが可能となる。なお、図6に示される変形例1では、図5の例と異なり、センサ250をランプ軸Jに対して傾けて設置する必要はない。 Also in the first modification, it is possible to widen the detection range of the desired direction or narrow the detection range of the desired direction by rotating the casing 220 with respect to the base 230. In the first modification shown in FIG. 6, unlike the example of FIG. 5, it is not necessary to incline the sensor 250 with respect to the lamp axis J.
 また、上記の例ではセンサ150、250をランプ軸J上に配置していたのに対して、図7に示される変形例2では、センサ350をランプ軸Jから外れた位置に配置している。具体的には、筐体320のグローブ310を取り付ける部分を拡大し、グローブ310とセンサ350とを並べて配置している。 Further, while the sensors 150 and 250 are disposed on the lamp axis J in the above example, the sensor 350 is disposed at a position deviated from the lamp axis J in the second modification shown in FIG. . Specifically, the portion of the housing 320 to which the glove 310 is attached is enlarged, and the glove 310 and the sensor 350 are arranged side by side.
 これによっても、センサ350の検出範囲を、ランプ軸Jに対して非対称とすることができる。また、筐体320を口金330に対して回転させることにより、所望の方向の検出範囲を広く、又は所望の方向の検出範囲を狭くすることが可能となる。 This also allows the detection range of the sensor 350 to be asymmetric with respect to the lamp axis J. Further, by rotating the housing 320 with respect to the base 330, it is possible to widen the detection range of the desired direction or narrow the detection range of the desired direction.
 なお、電球形ランプ100、200では、センサ150、250をランプ軸J上に配置したが、本発明はこれに限定されない。すなわち、センサは、グローブの任意の位置に取り付けることができる。例えば、基台がランプ軸Jに対して傾けて取り付けられている場合は、センサ150、250も同じように傾けて取り付けてもよい。すなわち、センサ150、250は、基台の筒軸の延長線上(半導体発光素子の主出射方向)に取り付けられるのが望ましい。 In addition, although the sensor 150, 250 was arrange | positioned on the lamp | ramp axis | shaft J in the lightbulb-shaped lamp 100, 200, this invention is not limited to this. That is, the sensor can be attached to any position of the glove. For example, if the base is mounted at an angle to the lamp axis J, the sensors 150, 250 may be mounted at an angle as well. That is, it is desirable that the sensors 150 and 250 be attached on the extension of the cylinder axis of the base (the main emission direction of the semiconductor light emitting element).
 また、センサの取り付け位置はグローブに限定されず、例えば図7に示されるように、筐体320に取り付けてもよい。すなわち、センサは、ランプ本体の任意の位置に取り付けることができるものとする。 Also, the attachment position of the sensor is not limited to the glove, and may be attached to the housing 320 as shown in FIG. 7, for example. That is, the sensor can be attached to any position of the lamp body.
 また、上記の各例では、筐体120、220、320と口金130、230、330とが相対回転すると説明したが、本発明はこれに限定されない。例えば、筐体120、220、320と口金130、230、330とが一体回転し、且つグローブ110、210、310と筐体120、220、320とが相対回転するようにしてもよい。すなわち、ランプ本体の任意の部分が口金に対して回転するような構成であればよい。 In each of the above examples, the casings 120, 220, and 320 and the caps 130, 230, and 330 are described as relative rotation, but the present invention is not limited to this. For example, the housings 120, 220, 320 and the caps 130, 230, 330 may be integrally rotated, and the gloves 110, 210, 310 and the housings 120, 220, 320 may be relatively rotated. That is, any configuration may be used as long as any part of the lamp body rotates with respect to the base.
 さらに、上記の各例では、遠赤外線を検出するパッシブ型のセンサ150、250、350を説明したが、本発明はこれに限定されない。例えば、電磁波を出力し、その反射波を検出することによって検出対象(典型的には、人)を検出するアクティブ型のセンサであってもよい。 Furthermore, in each of the above examples, passive sensors 150, 250, 350 for detecting far-infrared rays are described, but the present invention is not limited thereto. For example, the sensor may be an active sensor that detects an object to be detected (typically, a person) by outputting an electromagnetic wave and detecting its reflected wave.
 本発明は、このような電球形ランプ100、200、300として実現することができるだけでなく、このような電球形ランプ100、200、300を備える照明装置としても実現することができる。以下、図8を参照して、本発明の一形態に係る照明装置を説明する。図8は、本発明の一形態に係る照明装置400の概略断面図である。 The present invention can be realized not only as such a bulb-shaped lamp 100, 200, 300 but also as a lighting device equipped with such a bulb-shaped lamp 100, 200, 300. Hereinafter, with reference to FIG. 8, the illuminating device which concerns on one form of this invention is demonstrated. FIG. 8 is a schematic cross-sectional view of a lighting device 400 according to an embodiment of the present invention.
 本発明の一形態に係る照明装置400は、図8に示されるように、室内の天井500に装着されて使用され、本発明の一形態に係る電球形ランプ100と、点灯器具420とを備える。 A lighting device 400 according to an embodiment of the present invention is mounted on a ceiling 500 in a room and used, as shown in FIG. 8, and includes a light bulb shaped lamp 100 according to an embodiment of the present invention, and a lighting fixture 420. .
 点灯器具420は、電球形ランプ100を消灯及び点灯させるものであり、天井500に取り付けられる器具本体421と、電球形ランプ100を覆うランプカバー422とを備える。器具本体421は、ソケット421aを有する。ソケット421aには、電球形ランプ100の口金130が螺合される。このソケット421aを介して電球形ランプ100に電力が供給される。 The lighting fixture 420 is for turning off and lighting the bulb-shaped lamp 100, and includes a fixture body 421 attached to the ceiling 500, and a lamp cover 422 covering the bulb-shaped lamp 100. The instrument body 421 has a socket 421a. The base 130 of the light bulb shaped lamp 100 is screwed into the socket 421 a. Power is supplied to the light bulb shaped lamp 100 through the socket 421a.
 なお、ここで示した照明装置400は一例であって、本発明はこれに限定されない。すなわち、本発明の一形態に係る照明装置は、電球形ランプ100を保持するとともに、電球形ランプ100に電力を供給するためのソケットを少なくとも備えていれば、どのような形態であってもよい。また、図8に示す照明装置400は、1つの電球形ランプ100を備えていたが、複数の電球形ランプ100を備えてもよい。さらに、図8に示す照明装置400には、電球形ランプ100のみならず、電球形ランプ200、300を取り付けることもできる。 In addition, the illuminating device 400 shown here is an example, Comprising: This invention is not limited to this. That is, the lighting apparatus according to an embodiment of the present invention may have any form as long as it has at least a socket for holding the bulb-shaped lamp 100 and supplying power to the bulb-shaped lamp 100. . Moreover, although the illuminating device 400 shown in FIG. 8 was equipped with one bulb-shaped lamp 100, you may be equipped with several bulb-shaped lamps 100. FIG. Furthermore, not only the bulb-shaped lamp 100 but also bulb-shaped lamps 200 and 300 can be attached to the lighting device 400 shown in FIG.
 上記実施の形態及び上記変形例は、任意に組み合わせることができる。 The above embodiment and the above modification can be arbitrarily combined.
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications and variations can be made to the illustrated embodiment within the same or equivalent scope of the present invention.
 本発明は、電球形ランプに有利に利用される。 The invention is advantageously used for light bulb shaped lamps.
 100,200,300 電球形ランプ
 110,210,310 グローブ
 120,220,320 筐体
 120a,122a 本体部
 120b 基端部
 121 基台
 122 回路ホルダ
 122b 連結部
 123 回路ユニット
 124 回路基板
 125 キャップ部材
 130,230,330 口金
 131 シェル
 132 アイレット
 140 半導体発光モジュール
 141 実装基板
 142 半導体発光素子
 143 封止体
 144 舌片部
 145,155 配線
 146 コネクタ
 150,250,350 センサ
 151 検出素子
 152,252 レンズ
 153 制御回路
 154 実装基板
 160 撚り線
 161 第1給電線
 162 第2給電線
 171 ストッパリング
 172 ワッシャ
 173 絶縁リング
 400 照明装置
 420 点灯器具
 421 器具本体
 421a ソケット
 422 ランプカバー
 500 天井
DESCRIPTION OF SYMBOLS 100, 200, 300 Light bulb shaped lamp 110, 210, 310 Globe 120, 220, 320 Casing 120a, 122a Body part 120b Base end part 121 Base 122 Circuit holder 122b Connection part 123 Circuit unit 124 Circuit board 125 Cap member 130, 230, 330 cap 131 shell 132 eyelet 140 semiconductor light emitting module 141 mounting substrate 142 semiconductor light emitting element 143 sealing body 144 tongue piece 145, 155 wiring 146 connector 150, 250, 350 sensor 151 detection element 152, 252 lens 153 control circuit 154 Mounting substrate 160 Stranded wire 161 1st feed wire 162 2nd feed wire 171 stopper ring 172 washer 173 insulation ring 400 lighting device 420 lighting fixture 421 fixture body 421 a Socket 422 lamp cover 500 ceiling

Claims (8)

  1.  電球形ランプであって、
     照明器具のソケットに装着される口金と、
     前記口金に、当該口金の軸心回りに回転可能に取り付けられるランプ本体と、
     検出対象を検出するセンサと、
     前記ランプ本体に保持され、前記センサで前記検出対象が検出されたことに応じて点灯する発光素子とを備え、
     前記センサは、当該センサの検出範囲が前記口金の軸心に対して非対称となるように、前記ランプ本体に取り付けられる
     電球形ランプ。
    A bulb-shaped lamp,
    A cap attached to a socket of a lighting fixture,
    A lamp body rotatably attached to the base around an axis of the base;
    A sensor for detecting a detection target;
    And a light emitting element held by the lamp body and lit in response to detection of the detection target by the sensor.
    The sensor is attached to the lamp body such that the detection range of the sensor is asymmetric with respect to the axis of the base.
  2.  前記ランプ本体は、
     透光性を有するグローブと、
     主出射方向が前記グローブの方向を向くように前記発光素子を保持し、前記グローブと前記口金との間に配置される筐体とで構成され、
     前記筐体は、前記口金に、当該口金の軸心回りに回転可能に取り付けられる
     請求項1に記載の電球形ランプ。
    The lamp body is
    A translucent glove,
    The light emitting element is held so that the main emission direction is directed to the direction of the globe, and a housing disposed between the globe and the base is provided.
    The light bulb shaped lamp according to claim 1, wherein the housing is attached to the base so as to be rotatable about an axis of the base.
  3.  前記ランプ本体は、
     透光性を有するグローブと、
     主出射方向が前記グローブの方向を向くように前記発光素子を保持し、前記グローブと前記口金との間に配置される筐体とで構成され、
     前記筐体は、前記口金に固定され、
     前記グローブは、前記筐体に、前記口金の軸心回りに回転可能に取り付けられる
     請求項1に記載の電球形ランプ。
    The lamp body is
    A translucent glove,
    The light emitting element is held so that the main emission direction is directed to the direction of the globe, and a housing disposed between the globe and the base is provided.
    The housing is fixed to the base,
    The light bulb shaped lamp according to claim 1, wherein the glove is rotatably attached to the housing about an axial center of the base.
  4.  前記センサは、前記口金の軸心上で、且つ検出範囲の中心軸が前記口金の軸心に対して傾くように、前記グローブに取り付けられる
     請求項2又は3に記載の電球形ランプ。
    The light bulb shaped lamp according to claim 2 or 3, wherein the sensor is attached to the glove such that the central axis of the detection range is inclined with respect to the axis of the base on the axis of the base and the detection range.
  5.  前記センサは、検出素子と外光を前記検出素子に集光させるレンズとで構成され、且つ前記口金の軸心上で前記グローブに取り付けられ、
     前記レンズは、外光の集光範囲が前記口金の軸心に対して非対称となるように構成される
     請求項2又は3に記載の電球形ランプ。
    The sensor is composed of a detection element and a lens for condensing external light onto the detection element, and is attached to the globe on the axis of the base.
    The light bulb shaped lamp according to claim 2 or 3, wherein the lens is configured such that a condensing range of external light is asymmetric with respect to an axial center of the base.
  6.  前記センサは、前記口金の軸心上を外れた位置で、前記ランプ本体に取り付けられる
     請求項1~3のいずれか1項に記載の電球形ランプ。
    The light bulb shaped lamp according to any one of claims 1 to 3, wherein the sensor is attached to the lamp body at a position off the axial center of the base.
  7.  前記発光素子は、LED(Light Emitting Diode)である
     請求項1~6のいずれか1項に記載の電球形ランプ。
    The light bulb shaped lamp according to any one of claims 1 to 6, wherein the light emitting element is a light emitting diode (LED).
  8.  請求項1~7のいずれか1項に記載の電球形ランプを備える
     照明装置。
    A lighting device comprising the light bulb shaped lamp according to any one of claims 1 to 7.
PCT/JP2013/000842 2012-04-12 2013-02-15 Bulb type lamp and illumination device WO2013153723A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013535982A JP5583288B2 (en) 2012-04-12 2013-02-15 Light bulb shaped lamp and lighting device
CN201390000388.4U CN204437732U (en) 2012-04-12 2013-02-15 Bulb-shaped lamp and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-091122 2012-04-12
JP2012091122 2012-04-12

Publications (1)

Publication Number Publication Date
WO2013153723A1 true WO2013153723A1 (en) 2013-10-17

Family

ID=49327320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000842 WO2013153723A1 (en) 2012-04-12 2013-02-15 Bulb type lamp and illumination device

Country Status (3)

Country Link
JP (1) JP5583288B2 (en)
CN (1) CN204437732U (en)
WO (1) WO2013153723A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010873A (en) * 2014-03-21 2018-01-18 フィリップス ライティング ホールディング ビー ヴィ Optical structure, lighting unit and method of manufacture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030117803A1 (en) * 2001-12-25 2003-06-26 Hsing Chen Energy saving type of light emitting diode lamp
JP2005037296A (en) * 2003-07-17 2005-02-10 Asahi Matsushita Electric Works Ltd Infrared sensor device and lighting apparatus
JP2009152156A (en) * 2007-12-22 2009-07-09 Dx Antenna Co Ltd Sensor light
JP4764961B2 (en) * 2009-12-22 2011-09-07 パナソニック株式会社 Light bulb shaped lamp
JP2011204637A (en) * 2010-03-26 2011-10-13 Panasonic Corp Lamp unit with sensor, and lamp system with sensor
JP2012009278A (en) * 2010-06-24 2012-01-12 Maxled Co Ltd Led bulb

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113861A (en) * 2009-11-27 2011-06-09 Toshiba Lighting & Technology Corp Lamp with base and lighting fixture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030117803A1 (en) * 2001-12-25 2003-06-26 Hsing Chen Energy saving type of light emitting diode lamp
JP2005037296A (en) * 2003-07-17 2005-02-10 Asahi Matsushita Electric Works Ltd Infrared sensor device and lighting apparatus
JP2009152156A (en) * 2007-12-22 2009-07-09 Dx Antenna Co Ltd Sensor light
JP4764961B2 (en) * 2009-12-22 2011-09-07 パナソニック株式会社 Light bulb shaped lamp
JP2011204637A (en) * 2010-03-26 2011-10-13 Panasonic Corp Lamp unit with sensor, and lamp system with sensor
JP2012009278A (en) * 2010-06-24 2012-01-12 Maxled Co Ltd Led bulb

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010873A (en) * 2014-03-21 2018-01-18 フィリップス ライティング ホールディング ビー ヴィ Optical structure, lighting unit and method of manufacture

Also Published As

Publication number Publication date
CN204437732U (en) 2015-07-01
JP5583288B2 (en) 2014-09-03
JPWO2013153723A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5246402B2 (en) Light bulb shaped lamp
USRE48790E1 (en) Illuminating apparatus
JP5328466B2 (en) Light bulb type lighting device
WO2013024557A1 (en) Led lamp and lighting device
WO2012095905A1 (en) Illumination light source
US20100327751A1 (en) Self-ballasted lamp and lighting equipment
JP2010073337A5 (en)
JP6206805B2 (en) Light emitting module, illumination light source, and illumination device
JP2016170912A (en) Luminaire
JP2011054340A (en) Lighting device
WO2013153738A1 (en) Illuminating light source and illuminating apparatus
WO2013145054A1 (en) Light source for illumination, and lighting device
JP5129411B1 (en) lamp
JP2009009870A (en) Light source unit and compact self-ballasted lamp
WO2013175682A1 (en) Light source for lighting, and lighting apparatus
JP2011204444A (en) Light emitting device and lighting equipment
JP2010267482A (en) Light emitting module, lamp with base, and lighting apparatus
WO2013153723A1 (en) Bulb type lamp and illumination device
US20150241033A1 (en) Lamp Apparatus and Luminaire
JP2015185367A (en) Illuminating device
JP5524799B2 (en) lamp
JP5576989B2 (en) Light source for illumination
JP6516148B2 (en) Lighting light source and lighting device
WO2012153443A1 (en) Illumination light source
JP2014222627A (en) Lamp

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000388.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013535982

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775739

Country of ref document: EP

Kind code of ref document: A1