WO2014151925A1 - Re-wearable wireless device - Google Patents

Re-wearable wireless device Download PDF

Info

Publication number
WO2014151925A1
WO2014151925A1 PCT/US2014/026684 US2014026684W WO2014151925A1 WO 2014151925 A1 WO2014151925 A1 WO 2014151925A1 US 2014026684 W US2014026684 W US 2014026684W WO 2014151925 A1 WO2014151925 A1 WO 2014151925A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
wireless device
wearable
adhesive layer
insignia
Prior art date
Application number
PCT/US2014/026684
Other languages
French (fr)
Inventor
Lawrence Arne
Todd Thompson
Timothy Robertson
Original Assignee
Proteus Digital Health, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/841,797 external-priority patent/US9439566B2/en
Application filed by Proteus Digital Health, Inc. filed Critical Proteus Digital Health, Inc.
Priority to JP2016502214A priority Critical patent/JP2016517317A/en
Publication of WO2014151925A1 publication Critical patent/WO2014151925A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • A61B2560/045Modular apparatus with a separable interface unit, e.g. for communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • A61B5/0533Measuring galvanic skin response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1112Global tracking of patients, e.g. by using GPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • A61B5/259Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes using conductive adhesive means, e.g. gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes

Definitions

  • the present disclosure is related generally to a re-wearable wireless device. More
  • the present disclosure is related to a re-wearable wireless device configured to monitor at least one parameter and to wirelessly communicate the at least one monitored parameter to a communication network.
  • the communication network communicates the at least one monitored parameter to a remote device, such as a back end server, over the communication network or other wide area network.
  • the at least one monitored parameter may include, without limitation, skin impedance, electro cardiogram signals, conductively transmitted current signal, position of wearer, temperature, heart rate, perspiration rate, humidity, altitude/pressure, global positioning system (GPS), proximity, bacteria levels, glucose level, chemical markers, blood oxygen levels, among other physiological and physical parameters.
  • GPS global positioning system
  • a re-wearable wireless device is provided.
  • the re-wearable wireless device is provided.
  • the device comprises a reusable component configured to be secured to a disposable component.
  • the reusable component comprises a sensor interface configured to receive signals from at least one electrode configured to be secured to a living subject and monitors one or more physiological and physical parameters associated with the living subject and a cellular wireless communication circuit.
  • an adhesive base for a re-wearable wireless device comprises a first adhesive layer and a second adhesive layer partially covering the first adhesive layer around a perimeter of the first adhesive layer.
  • the first adhesive layer includes a first adhesive and the second adhesive layer comprises a second adhesive.
  • a method of establishing a link between two wireless devices is provided.
  • a first wireless device is provided with an insignia representing a communication channel address identification.
  • An image of the insignia is captured with a mobile telephone computing device comprising an image sensor.
  • the captured image is processed to extract the communication channel address identification represented by the insignia.
  • the disclosure comprises a reusable component and a disposable component.
  • the reusable component may comprise a mobile chipset, energy source, sensors, and the like.
  • the disposable component may comprise electrodes and/or adhesive for adhering the disposable component the skin of a living subject, be it human or animal.
  • the disposable component may comprise at least two-forms of adhesive.
  • FIG. 1 illustrates one aspect of a wireless communication system comprising a re- wearable wireless device with a mobile chipset.
  • FIG. 2 is a system diagram of one aspect of the re-wearable wireless device.
  • FIG. 3 is a block functional diagram of one aspect of an integrated circuit component of the electronics module of the reusable component re-wearable wireless device shown in FIGS. 1 and 2.
  • FIG. 4 shows one aspect of an event marker system.
  • FIG. 5 illustrates one aspect of a disposable component comprising an adhesive base, electrodes (shown in phantom), electrical contacts, and a mechanical snap-in connect mechanism.
  • FIG. 6 is a perspective top view of one aspect a reusable component comprising an
  • FIG. 7 is a perspective bottom view of one aspect of a reusable component.
  • FIG. 8 illustrates one aspect of a reusable component.
  • FIG. 9 illustrates one aspect of an adhesive overlay.
  • FIG. 10 illustrates one aspect of a re-wearable wireless device comprising a reusable component and a disposable component.
  • FIG. 1 1 illustrates one aspect of an adhesive base to be secured to the subject.
  • FIG. 12 A and B illustrate one aspect of a process of capturing an image of the
  • I/O Input/Output
  • PIN personal identification number
  • FIG. 13 is a three-dimensional view of an external signal receiver, according to one
  • FIG. 14 provides an exploded view of the signal receiver shown in FIG. 10, according to one aspect.
  • FIG. 15 provides an exploded view of the adhesive patch component of the signal receiver shown in FIGS. 13 and 14, according to one aspect.
  • FIGS. 16A to 16E provide various views of a two-electrode external signal receiver
  • embodiments are may be positioned or incorporated in other embodiments, variations and modifications thereof, and may be practiced or carried out in various ways. Accordingly, embodiments of the wireless wearable apparatus, system, and method disclosed herein are illustrative in nature and are not meant to limit the scope or application thereof.
  • the present disclosure is directed generally to various aspects of a wireless wearable apparatus, system, and method for monitoring at least one physiological and/or physical parameter associated with the wearer of the re-wearable wireless device and for communicating the monitored parameter to a communication device.
  • the communication device is configured to communicate the monitored parameter remotely over a network.
  • medication or "dose form” as used throughout this disclosure includes various forms of ingestible, inhalable, injectable, absorbable, or otherwise consumable medicaments and/or carriers therefor such as, for example, pills, capsules, gel caps, placebos, over capsulation carriers or vehicles, herbal, over-the-counter (OTC) substances, supplements, prescription-only medication, ingestible event markers (IEM), and the like.
  • OTC over-the-counter
  • IEM ingestible event markers
  • FIG. 1 illustrates one aspect of a wireless system 100 comprising a re-wearable wireless device 102 comprising a mobile chipset, e.g., single- or multi- chip cellular radio modem.
  • the re-wearable wireless device 102 is removably attachable to a living subject 104, such as a person or other biological life form.
  • the re-wearable wireless device 102 is configured to monitor at least one parameter.
  • the at least one monitored parameter may include, for example, a physiological and/or physical parameter associated with the subject.
  • the re-wearable wireless device 102 may be configured to monitor parameters, such as, without limitation, skin impedance, electro cardiogram signals, conductively transmitted current signal, position of wearer, temperature, heart rate, perspiration rate, humidity, altitude/pressure, global positioning system (GPS), proximity, bacteria levels, glucose level, chemical markers, blood oxygen levels, among other physiological and physical parameters.
  • parameters such as, without limitation, skin impedance, electro cardiogram signals, conductively transmitted current signal, position of wearer, temperature, heart rate, perspiration rate, humidity, altitude/pressure, global positioning system (GPS), proximity, bacteria levels, glucose level, chemical markers, blood oxygen levels, among other physiological and physical parameters.
  • the mobile phone is configured to wirelessly communicate the at least one monitored parameter over a communication network to a back-end or remote server or remote node 106 over the communication network.
  • the communication network is a cellular network or a cellular communication network 108.
  • the mobile chipset enables the re-wearable wireless device 102 to make and receive data over a radio link while moving around a wide geographic area. It does so by connecting to the cellular communication network 108 provided by a mobile phone operator and allowing access to the public telephone network.
  • the communication network communicates with other networks 1 10 or the Internet 1 12 to access the back-end server 106.
  • the amount of data transmitted by re-wearable wireless device 102 may be about 10 kilobytes per day to about 100-150 kilobytes per day, for example.
  • the information associated with the monitored parameter(s) may include, for example, raw measurement data, processed data, and/or any combination thereof.
  • the information also may include an identification number, patient identification information (e.g., name, address, phone number, email, social network web address), dosing unit
  • ingestible event marker system identification when a dose form package is opened, time and date stamp when the ingestible event marker system was ingested by the patient and activated, among other information.
  • the re-wearable wireless device 102 When the re-wearable wireless device 102 is activated the re-wearable wireless device 102 communicates with a cell tower 1 14 and base station (BS) 1 16 and can access the Internet 1 12 via the cellular communication network 108. Accordingly, information received by the re-wearable wireless device 102 from the subject 104 can be communicated to the remote node 106 via the Internet 1 12 or other networks 1 10.
  • a processing system 120 at the remote node 106 receives the information and stores it for processing by the database 1 18.
  • the remote node 106 comprises a processing system 120 communicatively coupled to a database 1 18.
  • Information associated with all subjects 104 e.g., patients, including identity and medication types and doses, may be stored in the database 1 18.
  • the processing system 120 receives information from the re-wearable wireless device 102 and accesses the information in the database 1 18 associated with the remote node 106 to provide information to the care provider through the re-wearable wireless device 102.
  • the remote node 106 can communicate information including a photo of the patient for identification, the type of medication available to the care provider, as well as confirmation of the type and dose of medication that the care provider selects and delivers to the patient.
  • the re-wearable wireless device 102 can communicate with the remote node 106 using any mode and frequency of communication that is available in at the site, such as wireless, G2, G3, G4, real-time, periodically based on predetermined time delays, as well as store and forward at later time.
  • any mode and frequency of communication that is available in at the site, such as wireless, G2, G3, G4, real-time, periodically based on predetermined time delays, as well as store and forward at later time.
  • Vehicles of communication between the re-wearable wireless device 102 and the remote node 106 include one or more networks.
  • the network comprises local area networks (LAN) as well as wide area networks (WAN) including without limitation Internet, wired channels, wireless channels, communication devices including telephones, computers, wire, radio, optical or other electromagnetic channels, and combinations thereof, including other devices and/or components capable of / associated with communicating data.
  • LAN local area networks
  • WAN wide area networks
  • the communication environments include in-body communications, various devices, various modes of communications such as wireless communications, wired communications, and combinations of the same.
  • the processing system 120 at the remote node 106 may comprise servers configured as desired, e.g., to provide for subject directed permissions.
  • the servers may be configured to allow a family caregiver to participate in the subject's therapeutic regimen, e.g., via an interface (such as a web interface) that allows the family caregiver to monitor alerts and trends generated by the server, and provide support back to the patient.
  • the servers also may be configured to provide responses directly to the subject, e.g., in the form of subject alerts, subject incentives, which are relayed to the subject via the communication device.
  • the servers also may interact with a health care professional, e.g., RN, physician, which can use data processing algorithms to obtain measures of health and compliance of the subject, e.g., wellness index summaries, alerts, cross-patient benchmarks, and provide informed clinical communication and support back to the patient.
  • RN health care professional
  • the servers also may interact with pharmacies, nutrition centers, and drug manufactures.
  • the remote node 106 may store in the database 1 18 the time and date when a dose form was taken by the subject 104.
  • the time and date stamp of when the event marker system was ingested by the patient also may be stored in the database 1 18.
  • an identification number such as a serial number, for example, identifying the single- or multi- dose packages, the type of package (single, multiple, morning, afternoon, evening, daily, weekly, monthly dosing event, and so on) the individual patient identification, the date of pre-packaging, the source, and the contents of the package, for example, may be stored in the database 1 18.
  • the expiration date or shelf life of one or all of the medication(s) or dose forms also may be stored in the database 1 18.
  • the mobile chipset in the re-wearable wireless device 102 provides two-way data
  • the event indicator system communicates with the re-wearable wireless device 102, which includes various electronic modules for receiving a unique signature from the event indicator system and
  • the re-wearable wireless device 102 may be configured to communicate with an access point as well as other mobile device(s). Thus the re-wearable wireless device 102 can effectively communicate with the remote node 106 via the Internet 1 12 through a local area network (LAN) or the cellular communication network 1 14.
  • LAN local area network
  • the re-wearable wireless device 102 can be triggered to initiate a data transmission to the cellular communication network 108 based on a variety of triggers. These triggers include, without limitation, a timer, real time clock, an event, detection of ingestion of an event marker system, detection of a particular code received from the event marker system, receipt of a particular monitored parameter or value of such monitored parameter, receipt of trigger data from the cellular communication network 108, among others.
  • FIG. 2 is a system diagram of one aspect of the re-wearable wireless device 102.
  • the re-wearable wireless device 100 is a two-piece device comprising a disposable component 202 and a reusable component 204.
  • the reusable component 204 comprises an electronics module.
  • the electronics module of the reusable component 204 comprises a wireless communication circuit 206, such as a mobile chipset RF wireless circuit or simply cellular radio.
  • the electronics module of the reusable component 204 comprises an ASIC- based sensor platform 208 that includes a hardware architecture and software framework to implement various aspects of the re-wearable wireless device 102.
  • the ASIC-based sensor platform 208 may be disposed on and interfaced with a printed circuit board assembly (PCBA).
  • the wireless communication circuit 206 may be a low power mobile chipset and is configured to connect to the cellular network 108 as well as other wireless devices (cell-phones, smart phones, tablet computers, laptop computers, gateway devices, among others).
  • the disposable component 202 interfaces with the PCBA and the first electronic module 204.
  • the electronic module 204 and the disposable component 202 each may comprises additional modules that reside on or off the PCBA or, in another aspect may be disposed on the PCBA.
  • the reusable electronic module 204 provides a sensor platform and
  • the reusable electronic module 204 ASIC-based sensor platform provides a combination of analog front-end, vector/digital signal processing, microprocessor and memory in a single low-power
  • ASIC/chip that comprises an "ASIC-based sensor platform" 208 with multiple functions: software-defined radio for detection of ingestible event markers, sensing and decoding of ECG, AC skin impedance measurements, temperature measurements, DC skin impedance (e.g., GSR) measurements and other biological/medical data sensors.
  • software-defined radio for detection of ingestible event markers, sensing and decoding of ECG, AC skin impedance measurements, temperature measurements, DC skin impedance (e.g., GSR) measurements and other biological/medical data sensors.
  • the reusable electronic module 204 comprises an ASIC sensor platform 208, a controller or processor 210, e.g., a microcontroller unit (MCU), a radio frequency (RF) wireless comm circuit 206, among other components described hereinbelow.
  • a controller or processor 210 e.g., a microcontroller unit (MCU), a radio frequency (RF) wireless comm circuit 206, among other components described hereinbelow.
  • MCU microcontroller unit
  • RF radio frequency
  • the ASIC portion 208 of the reusable electronic module 204 may comprise a core processor 210 such as, for example, an ARM CortexTM M3 processor, for real-time applications, a signal processing accelerator such as, for example, a Vector Math
  • the reusable electronic module 204 also comprises a connection port to external memory, a connection port to external sensors, and a hardware accelerator.
  • the processor 210 receives a signal from each of the sensors by operating the analog front end for analog sensors and by receiving digital data from sensors with the ADC digitizer. The processor 210 then processes the data and stores the results into the memory 212 in form of data records.
  • the processor 210 may have a very long instruction word (VLIW) processor architecture.
  • VLIW very long instruction word
  • the reusable electronic module 204 also comprises a universal serial bus 234 (USB), an accelerometer 222, memory 212, one or more LEDs 236, test interface 238 (l/F), a 32 KHz crystal 226, a user button 240 that may be used to initiate a communication connection with an external device, sensor interfaces 216, 218, and a battery 214 (e.g., coin cell, primary battery cell).
  • the battery 214 may a rechargeable cell rather than a primary battery cell.
  • the reusable electronic module 204 may comprise a gyroscope, and circuits for processing ECG, temperature, and accelerometer signals.
  • the reusable electronic module 204 also may comprise body composition and Sp0 2 pulse oximetry circuits that monitor functional oxygen saturation of arterial blood by calculating the ratio of oxygenated hemoglobin to hemoglobin that is capable of transporting oxygen.
  • An Sp02 pulse oximetry circuit may be configured to provide continuous, noninvasive measurements of Sp02 and, in one aspect, can display a plethysmographic waveform. Heart rate values are may be derived from the pulse oximetry signal.
  • the reusable electronic module 204 comprises an RF wireless
  • the RF wireless communication circuit 206 comprises an antenna for receive and transmit wireless signals, a transmitter circuit, a receiver circuit, and a link master controller that includes a mechanism to connect (establish a link) to another, external, wireless device and transfer data, as described in more detail hereinbelow.
  • the link master controller establishes connection to an external device.
  • the link master controller performs control of data transmission over the link to the external device, including timing control and radio frequency control (channel hopping).
  • the link master controller sends a signal to the external device with an instruction that gives number of data records stored in memory (a total number of all data records and a total number of records of each data type).
  • the RF wireless communication circuit 206 may be implemented using a mobile chipset available from a variety of vendors including, without limitation Tegra by Nvidia, Qualcomm, OMAP by Texas Instruments, Exynos by Samsung, Ax by Apple, NovaThor by ST-Ericsson, Atom by Intel, i.MX by Freescale Semiconductor, RK3xxx by Rockchip, A31 by AHWinner, among others.
  • mobile chipsets are employed by mobile telephones, otherwise known in the art as "mobile,” “wireless,” “cellular phone,” “cell phone,” “hand phone (HP),””smart phone,” among others.
  • the processor 210 continues to receive all sensor signals,
  • link master controller processes the data and stores new data records into the memory 212.
  • link master controller sends a signal to an external device with new data records since last connection and confirms that records were transmitted successfully.
  • the link master controller receives a signal from the external device that establishes if the external device is ready to receive data records and also receives a signal from the external device that establishes which data records were not transferred successfully.
  • the link master controller avoids repeating the transmission of the data records that already have been transmitted, which improves battery 214 power use for a longer operation and resends all data records that were not transferred successfully.
  • the link master controller may delete from the memory all or some successfully transferred data records at a later time (for example, when the memory 212 gets full).
  • the reusable electronic module 204 comprises a sensor interfaces 216, 218 between electrodes 220a, 220b (E1 , E2) and one or more band pass filters or channels.
  • the sensor interfaces 216, 218 provide an analog front end and may include programmable gain or fixed gain amplifiers, programmable low-pass filter, programmable high-pass filter.
  • the sensor interfaces 216, 218 may comprise active signal conditioning circuits including strain gauge measurement circuits, for example.
  • One channel receives low frequency information associated with the physiological data of the subject (e.g., user) and the other channel receives high frequency information associated with an electronic device within the subject.
  • an additional channel is provided for receiving DC data of the subject.
  • the high frequency information is passed to a digital signal processor (DSP) implemented in the ASIC portion 208 and then to a processor 210 (e.g., a control processor) portion of the re-wearable wireless device 102 for decompression and decoding.
  • DSP digital signal processor
  • the low frequency information is either passed to the DSP portion of the ASIC portion 208 and then to processor 210, or passed directly to the processor 210.
  • the DC information is passed directly to the processor 210.
  • the DSP portion of the ASIC portion 208 and the processor 210 decode the high frequency, low frequency and DC information or data. This information is then processed and prepared for transmission.
  • signal processing may or may not be applied to the raw data collected.
  • Signal processing may occur in the real space, complex number space, or in the polar coordinates space.
  • Functions include filters, e.g., finite impulse response (FIR) and infinite impulse response (MR), mixers, fats Fourier transforms (FFTs), cordics, and others.
  • Raw data may simply be stored and processed downstream.
  • the signal processing may occur in the processor (e.g., ARM CortexTM M3) or may occur in the signal processing accelerator which is incorporated into the ASIC portion 208.
  • the reusable electronic module 204 comprises an accelerometer 222 and one or more temperature sensors 224.
  • two temperature sensors are provided that are identical but placed in different locations - one close to the skin, another close to the ambient for measuring additional data.
  • the temperature sensors 224 may be configured to measure and record, skin, ambient, and circuit board temperature.
  • the temperature sensors 224 may be used to measure heat flux between the skin and the ambient temperature sensor.
  • the temperature sensor 224 or sensors are thermistor devices with negative temperature coefficient (NTC) or positive temperature coefficient (PTC), and in another aspect temperature sensor 224 or sensors are using integrated semiconductor devices.
  • This information is provided to the processor 210 and can be processed by the processor 210 and prepared for transmission by a transmitter portion of the RF wireless communication circuit 206.
  • the physiological information measured is processed by the processor 210 and may be transmitted as real-time or raw data, or derived quantities or parameters may be transmitted.
  • the accelerometer 222 may be a 3-axis accelerometer with a resampling frequency correction processor.
  • Digital accelerometer 222 sensors usually include a MEMS-based acceleration sensor element, a digitizer, and digital interface control logic. Typically these accelerometers use resistor-capacitor (RC) oscillator with low accuracy to strobe the digitizer sampling input. In order to employ signals from such accelerometer 222 in signal processing algorithms the accuracy of RC oscillators is not sufficient.
  • the reusable electronic module 204 comprises an accelerometer sampling frequency correction processor that takes signals from the accelerometer 222 and performs re-sampling to compensate for the RC oscillator error.
  • the accelerometer 222 sampling frequency correction processor comprises a reference clock (high accuracy oscillator), a fixed up-sample block, a digital filter, a programmable down-sample block, and a control circuit that selects down-sample coefficient based on comparison of timing of the signal from accelerometer and the reference clock.
  • the resampling function keeps alignment to a reference clock in a sliding window to generate a precise sampling rate.
  • An algorithm calibrates the real time 32 kHz clock (X-Tal) 226.
  • the accelerometer 222 sampling frequency correction processor sets the down- sampling coefficient for each frame of data from the accelerometer signal.
  • the present approach provides tracking the timing of the accelerometer signal continuously and selecting the down-sampling coefficient to minimize the accumulated timing error. That allows continuous accelerometer 222 digital data to align to the accurate clock with high precision.
  • the reusable electronic module 204 employs a low-power low-memory data storage and transfer scheme.
  • storage and transfer of data in the re-wearable wireless device 102 memory 212 is optimized for low-power and low memory usage.
  • Sensor data is stored as records in the memory 212, each with a type identifier. Records are transferred in a packet payload to an external device by the RF wireless communication circuit 206 in the same format as stored on the wireless wearable sensor 100. Records are stored sequentially with variable length to optimize space usage.
  • a data directory is included which allows fast record read access from the memory 212.
  • a data directory is included which allows fast counting of the data records by type.
  • the reusable electronic module 204 employs a high-assurance integrity data storage and transfer scheme.
  • the re-wearable wireless device 102 memory storage and transfer scheme is designed for high-assurance data integrity.
  • the error-detecting code is checked.
  • an error signal is sent to an external device by the RF wireless communication circuit 206.
  • Each packet transferred from the re- wearable wireless device 102 to the external device contains an error-detecting code which can be used by the external device to detect packet corruption.
  • the signal processing accelerator portion of the ASIC portion 208 includes a computational engine optimized for implementing high efficiency signal processing tasks.
  • signal processing functions are hard coded in logic.
  • Such implementations may be 10x or more efficient compared to software-based algorithms implemented in software running on a processor 210 or microcontroller unit.
  • the efficiency may be in chip sized, power consumption, or clock speed or some combination of all three.
  • Another implementation maintains some level of programmability, but utilizes execution unit(s) that are optimized calculations.
  • One example is an FFT-butterfly engine. The engine may enable FFT calculations for various size data sets, but maintain significant efficiency improvement over software running on a processor 210.
  • the execution units also may be multiply accumulate units (MAC), which are a common DSP function block or could be a floating point calculation unit(s) or FIR filter primitives, etc. In these cases the efficiency for a given integrated circuit process is greater than that of software on a processor 210, but less than that of dedicated hardware, however they are much more flexible.
  • MAC multiply accumulate units
  • the signal processing accelerator maintains an interface between the processor 210.
  • This interface may include first-in-first-out (FIFO) registers, dual port memories, the direct memory access (DMA) engine of the processor 210, and/or registers.
  • the interface typically includes some form of contention recognition or avoidance which may be handled at the register-level or at the memory block level.
  • Mechanisms involved may include register flags set, which can be polled by the processor 210 and signal processing accelerator, interrupts to signal either block or delay functions that hold a read or write request until the higher priority device has completed their activity.
  • the disposable component 202 is coupled to the reusable electronic
  • the disposable component 202 may comprise a flex circuit 228, battery holder or housing (covering) and one or more sensors, including but not limited to ambient and body temperature (temp) 230 (living or not), ECG, GSR / electro-dermal activation (EDA) 232, body composition (50Hz), Sp02 / pulse oximetry, strain gauge, among others.
  • Various algorithms executed by the ASIC portion 208 or the processor 210 provide heat flux, HR, HRV, respiration, stress, ECG, steps, body angle, fall detection, among others.
  • the flex circuit 228 comprises interface components that electrically interfaces with the electrical circuits on the PCBA.
  • the flex circuit 228 provides a platform for configurability and enables interfacing of multiple sensor configurations to a single physical PCBA and electrically to the reusable electronic module 204.
  • stainless steel domed electrodes 220a, 220b of the GSR / EDA sensor 232 are electrically coupled to the PCBA via the flex circuit 228.
  • the re-wearable wireless device 102 collects data from various sensors, applies signal processing algorithms to the data collected, stores the resulting information in memory, and forwards data/information to another device using either a wireless or wired connection.
  • the user interface consists of one or two LEDs 214 and a push-button 234.
  • Power is provided from a primary battery 214, but could also be sourced from a secondary battery.
  • the battery(s) 214 portion of the electronics module of the reusable component 204 may be selected to source peak currents that are adequate to support the cellular radio with rechargeable Li+ or LiPO (lithium polymer or lithium prismatic cells) being the preferred types, but other primary and secondary battery types are contemplated.
  • the disposable component may include a battery, if a primary cell is used.
  • the reusable component may contain the electronics and the battery 214, assuming a secondary cell is used.
  • the re-wearable wireless device 102 may include a re-charger to recharge the re-useable module.
  • the subject 104 may be supplied with multiple re-useable components to ensure continuity of use while the reusable component is being recharged.
  • Device size may be in the 25 cc range for near-term implementations, with the form factor of the re-wearable wireless device 102 shrinking as semiconductor devices and battery technology improves.
  • Battery size may typically be limited by the peak current draw of the mobile chipset, not by capacity. In most use cases, the current draw of the mobile chipset will be limited by disabling/powering off the chip and periodically (a few times per day) powering the chip and transmitting the data.
  • the cellular radio cellular wireless communication device 206 will draw from about 700 to about 800 milliamps peaked current may be a challenge to accomplish with the battery 214.
  • Rechargeable batteries 214 such as lithium polymer or lithium prismatic cell as the power source can source adequate current under peak loads.
  • Another key feature is having the re-wearable wireless device 102 last for a week or two weeks where typically a cellular phone battery lasts only a couple of days or a few days. To extend the battery life of the re-wearable wireless device 102 from about one week to about three weeks, connection to the Internet 1 12 (FIG.
  • the re-wearable wireless device 102 may be limited to few times per day.
  • the re-wearable wireless device 102 can store the data in the memory 212 and buffer data on board. Therefore, it would be possible to connect to Internet 1 12 a few times a day, or even up to ten times a day. In between connections to the Internet, the re-wearable wireless device 102 can turn off the wireless communication device 206.
  • the re-wearable wireless device 102 can be placed in a deep sleep state or a sleep state, which consumes only a few micro amps of current instead of hundreds of micro amps or milliamps of current while it is in the idle state.
  • a capacitor may be employed across the battery 214.
  • a large enough capacitor can effectively reduce what the peak load seen by the battery 214.
  • the capacitor may be a super capacitor, for example. Using this technique, for example, a 300 milliamp hour battery may be adequate to source 800 milliamps.
  • the re-wearable wireless device 102 can come out of the sleep states either on a timing basis or on an event basis.
  • the re-wearable wireless device 102 has its own low power microcontroller which runs on a continuous basis.
  • the event marker detection algorithm, ECG sensing, heart rate sensing, and other physiologic sensing functions run continuously and when the timer expires, it wakes up the wireless communication circuit 206 to connect to the cellular network 108 (FIG. 1 ) and the Internet 1 12 (FIG. 1 ).
  • the wireless communication circuit 206 can come out of the sleep state based on events such as activity data determined by the accelerometer 222, for example.
  • Events or activity such as the detection of an arrhythmia, would require an immediate down load.
  • Events may include the subject 104 (FIG. 1 ) pushing the user button 234.
  • the event may be lack of activity. Or it may be that the subject 104 has fallen or the data shows an unusual gait via the accelerometer 222.
  • the re- wearable wireless device 102 may comprise microphone device. Accordingly, the wireless communication circuit 206 can be activated based on wheezing events caused by asthma or rapid breathing. Lack of medication could also trigger the wireless communication circuit 206 to come out of sleep mode.
  • the mobile chipset also may be used as a telephone for voice communication by utilizing a user interface (Ul) provided on the re-wearable wireless device 102 to activate/power it and utilizing voice recognition to cause it to dial.
  • the Ul may include a push button 234, an accelerometer 222 with pattern recognition capabilities, a speaker, and a microphone.
  • the disposable component 202 may include electrodes 220a, 220b and one or more types of adhesives for adhering the re-wearable wireless device 102 to the skin of the subject 104 (FIG. 1 ), which has a typical life of about 3 to about 10 days on most people.
  • the sensor data may include ECG data (via hydrogel electrodes) 220a, 220b,
  • accelerometer data in up to 3 axis temperature data, adjacent to skin (thermistor), ambient (or case temperature away from body) (thermistor), temperature on the PCBA (silicon device incorporated into the ASIC portion 208), GSR, EDA (discrete stainless-steel electrodes), high-frequency, in-body electric signals - 10 KHz and higher, sampled via conduction through the hydrogel skin electrodes (same as ECG).
  • the re-wearable wireless device 102 may comprise a memory 212.
  • the memory 212 may comprise any machine-readable or computer-readable media capable of storing data, including both volatile and non-volatile memory.
  • memory may include read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDR-RAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory (e.g., NOR or NAND flash memory), content addressable memory (CAM), polymer memory (e.g., ferroelectric polymer memory), phase-change memory (e.g., ovonic memory), ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, disk memory (e.g., floppy disk, hard drive, optical disk, magnetic disk),
  • ROM read-only memory
  • the re-wearable wireless device 102 may comprise a processor 210 such as a central processing unit (CPU).
  • the processor 210 may be implemented as a general purpose processor, a chip multiprocessor (CMP), a dedicated processor, an embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a co-processor, a microprocessor such as a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC)
  • microprocessor and/or a very long instruction word (VLIW) microprocessor, or other processing device.
  • the processor also may be implemented by a controller, a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the processor 210 may be arranged to run an operating system (OS) and various mobile applications.
  • OS operating system
  • mobile applications include, for example, a telephone application, a camera (e.g., digital camera, video camera) application, a browser application, a multimedia player application, a gaming application, a messaging application (e.g., e-mail, short message, multimedia), a viewer application, and so forth.
  • the processor 210 may be arranged to receive information through a communications interface.
  • the communications interface may comprises any suitable hardware, software, or combination of hardware and software that is capable of coupling the re-wearable wireless device 102 to one or more networks and/or devices.
  • Wireless communication modes include any mode of communication between points that utilizes, at least in part, wireless technology including various protocols and combinations of protocols associated with wireless transmission, data, and devices.
  • the points include, for example, wireless devices such as wireless headsets, audio and multimedia devices and equipment, such as audio players and multimedia players, telephones, including mobile telephones and cordless telephones, and computers and computer-related devices and components, such as printers.
  • Wired communication modes include any mode of communication between points that utilizes wired technology including various protocols and combinations of protocols associated with wired transmission, data, and devices.
  • the points include, for example, devices such as audio and multimedia devices and equipment, such as audio players and multimedia players, telephones, including mobile telephones and cordless telephones, and computers and computer-related devices and components, such as printers.
  • the communications interface may comprise one or more interfaces such as, for example, a wireless communications interface, a wired communications interface, a network interface, a transmit interface, a receive interface, a media interface, a system interface, a component interface, a switching interface, a chip interface, a controller, and so forth.
  • the local node 106 may include a wireless interface comprising one or more antennas, transmitters, receivers, transceivers, amplifiers, filters, control logic, and so forth.
  • the re-wearable wireless device 102 may provide voice and/or data communications functionality in accordance with different types of cellular radiotelephone systems.
  • the described aspects may communicate over wireless shared media in accordance with a number of wireless protocols.
  • wireless protocols may include various wireless local area network (WLAN) protocols, including the Institute of Electrical and Electronics Engineers (IEEE) 802. xx series of protocols, such as IEEE 802.1 1 a/b/g/n, IEEE 802.16, IEEE 802.20, and so forth.
  • WLAN wireless local area network
  • IEEE 802. xx series of protocols such as IEEE 802.1 1 a/b/g/n, IEEE 802.16, IEEE 802.20, and so forth.
  • wireless protocols may include various wireless wide area network (WWAN) protocols, such as GSM cellular radiotelephone system protocols with GPRS, CDMA cellular radiotelephone communication systems with 1xRTT, EDGE systems, EV-DO systems, EV- DV systems, HSDPA systems, and so forth.
  • WWAN wireless wide area network
  • Further examples of wireless protocols may include wireless personal area network (PAN) protocols, such as an Infrared protocol, a protocol from the Bluetooth Special Interest Group (SIG) series of protocols, including Bluetooth Specification versions v1.0, v1.1 , v1.2, v2.0, v2.0 with Enhanced Data Rate (EDR), as well as one or more Bluetooth Profiles, and so forth.
  • wireless protocols may include near-field communication techniques and protocols, such as electro-magnetic induction (EMI) techniques.
  • EMI techniques may include passive or active radio-frequency identification (RFID) protocols and devices.
  • RFID radio-frequency identification
  • Other suitable protocols may include Ultra Wide Band (UWB), Digital Office (DO), Digital Home, Trusted Platform Module (TPM), ZigBee, and so forth.
  • the described aspects may comprise part of a cellular
  • Examples of cellular communication systems may include CDMA cellular radiotelephone communication systems, GSM cellular radiotelephone systems, North American Digital Cellular (NADC) cellular radiotelephone systems, Time Division Multiple Access (TDMA) cellular radiotelephone systems, Extended-TDMA (E-TDMA) cellular radiotelephone systems, Narrowband Advanced Mobile Phone Service (NAMPS) cellular radiotelephone systems, third generation (3G) wireless standards systems such as WCDMA, CDMA-2000, UMTS cellular radiotelephone systems compliant with the Third- Generation Partnership Project (3GPP), fourth generation (4G) wireless standards, and so forth.
  • 3G Third generation
  • the re-wearable wireless device 102 may incorporate and/or be associated with, e.g., communicate with, various devices.
  • Such devices may generate, receive, and/or communicate data, e.g., physiologic data.
  • the devices include, for example, "intelligent" devices such as gaming devices, e.g., electronic slot machines, handheld electronic games, electronic components associated with games and recreational activities.
  • SMS short message service
  • MMS multimedia messaging system
  • Some aspects of mobile telephones connect to a cellular network of base stations (cell sites), which is, in turn, interconnected to the public switched telephone network (PSTN) or satellite communications in the case of satellite phones.
  • PSTN public switched telephone network
  • Various aspects of mobile telephones can connect to the Internet, at least a portion of which can be navigated using the mobile telephones.
  • Some embodiments may be implemented, for example, using a machine-readable medium
  • Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software.
  • the machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like.
  • memory removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic
  • the instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, and the like.
  • the instructions may be implemented using any suitable high-level, low-level, object- oriented, visual, compiled and/or interpreted programming language, such as C, C++, Java, BASIC, Perl, Matlab, Pascal, Visual BASIC, assembly language, machine code, and so forth.
  • the re-wearable wireless device 102 also functions to communicate, e.g., receive and transmit, non-physiologic data.
  • non-physiologic data include, for example, gaming rules and data generated by a separate cardiac-related device such as an implanted pacemaker and communicated to the hub directly or indirectly.
  • the re-wearable wireless device 102 may include additional functionality typically found in other mobile device such as, for example, personal communication devices, handheld devices, and mobile telephones.
  • the re-wearable wireless device 102 may comprise functionality found in a handheld portable device, computer, mobile telephone, sometimes referred to as a smartphone, tablet personal computer (PC), kiosk, desktop computer, or laptop computer, or any combination thereof.
  • smartphones include, for example, products generally known under the following trade designations Blackberry, iPhone, Android, Windows Phone, among others.
  • a mobile computing device may comprise, or be implemented as, any type of wireless device, mobile station, or portable computing device with a self- contained power source, e.g., battery, such as the laptop computer, ultra-laptop computer, personal digital assistant (PDA), cellular telephone, combination of cellular telephone/PDA, mobile unit, subscriber station, user terminal, portable computer, handheld computer, palmtop computer, wearable computer, media player, pager, messaging device, data communication device, and so forth.
  • PDA personal digital assistant
  • a fixed computing device for example, may be implemented as a desk top computer, workstation, client/server computer, and so forth.
  • FIG. 3 is a block functional diagram 300 of one aspect of an integrated circuit component of the electronics module of the reusable component 204 re-wearable wireless device 102 shown in FIGS. 1 and 2.
  • the electronics module of the reusable component 204 of the re-wearable wireless device 102 comprises an electrode input 310. Electrically coupled to the electrode input 310 are a transbody conductive communication module 320 and a physiological sensing module 330.
  • the transbody conductive communication module 320 is implemented as a first, e.g., high, frequency (HF) signal chain and the physiological sensing module 330 is implemented as a second, e.g., low, frequency (LF) signal chain.
  • HF high, frequency
  • LF low, frequency
  • CMOS temperature sensing module 340 for detecting ambient temperature
  • a 3-axis accelerometer 350 Also shown are CMOS temperature sensing module 340 (for detecting ambient temperature) and a 3-axis accelerometer 350.
  • the re-wearable wireless device 102 also comprises a processing engine 360 (for example, a microcontroller and digital signal processor), a non-volatile memory 670 (for data storage), and a wireless
  • the communication module 380 comprising a mobile chipset to receive and/or transmit data to and from a cellular communication network.
  • the communication modules 320, 380 may comprise one or more transmitters/receivers ("transceiver") modules.
  • the term "transceiver” may be used in a very general sense to include a transmitter, a receiver, or a combination of both, without limitation.
  • the transbody conductive communication module 320 is configured to communicate with an event marker system 420 (FIG. 4).
  • the sensors 316 typically contact the subject 104 (FIG. 1 ), e.g., are removably attached to the torso.
  • the sensors 616 may be removably or permanently attached to the re-wearable wireless device 102.
  • the sensors 316 may be removably connected to the re-wearable wireless device 102 by snapping metal studs.
  • the sensors 316 may comprise, for example, various devices capable of sensing or receiving the physiologic data.
  • the types of sensors 316 include, for example, electrodes such as biocompatible electrodes.
  • the sensors 316 may be configured, for example, as a pressure sensor, a motion sensor, an accelerometer, an electromyography (EMG) sensor, an event marker system, a biopotential sensor, an electrocardiogram sensor, a temperature sensor, a tactile event marker sensor, and an impedance sensor.
  • EMG electromyography
  • the feedback module 318 may be implemented with software, hardware, circuitry, various devices, and combinations thereof.
  • the function of the feedback module 318 is to provide communication with the subject 104 (FIG. 1 ) in a discreet, tactful, circumspect manner as described above.
  • the feedback module 318 may be implemented to communicate with the subject 104 using techniques that employ visual, audio,
  • FIG. 4 shows one aspect of an event marker system 420.
  • the event marker system 420 can be used in association with any medication product, as mentioned above, to determine the origin of the medication and to confirm that at least one of the right type and the right dosage of medication was delivered to the patient and in some aspects to determine when a patient takes the medication product.
  • the scope of the present disclosure is not limited by the environment and the medication product that may be used with the system 420.
  • the system 420 may be activated either in wireless mode, in galvanic mode by placing the system 420 within a capsule and then placing the capsule within a conducting fluid, or a combination thereof, or exposing the system 420 to air.
  • the capsule Once placed in a conducting fluid, for example, the capsule would dissolve over a period of time and release the system 420 into the conducting fluid. Thus, in one aspect, the capsule would contain the system 420 and no product. Such a capsule may then be used in any environment where a conducting fluid is present and with any product. For example, the capsule may be dropped into a container filled with jet fuel, salt water, tomato sauce, motor oil, or any similar product. Additionally, the capsule containing the system 420 may be ingested at the same time that any pharmaceutical product is ingested in order to record the occurrence of the event, such as when the product was taken.
  • the system 420 is activated in galvanic mode.
  • the system 420 controls conductance to produce a unique current signature that is detected by the re-wearable wireless device 102, for example, thereby signifying that the pharmaceutical product has been taken.
  • the system controls modulation of capacitive plates to produce a unique voltage signature associated with the system 420 that is detected.
  • the system 420 includes a framework 422.
  • the framework 422 is a chassis for the system 420 and multiple components are attached to, deposited upon, or secured to the framework 422.
  • a digestible material 424 is physically associated with the framework 422.
  • the material 424 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework all of which may be referred to herein as "deposit" with respect to the framework 422.
  • the material 424 is deposited on one side of the framework 422.
  • the materials of interest that can be used as material 424 include, but are not limited to: Cu, CuCI, or Cul.
  • the material 424 is deposited by physical vapor deposition, electrodeposition, or plasma deposition, among other protocols.
  • the material 424 may be from about 0.05 to about 500 ⁇ thick, such as from about 5 to about 100 ⁇ thick.
  • the shape is controlled by shadow mask deposition, or photolithography and etching. Additionally, even though only one region is shown for depositing the material, each system 420 may contain two or more electrically unique regions where the material 424 may be deposited, as desired.
  • a different side which is the opposite side as shown in Fig. 7, another digestible material 426 is deposited, such that the materials 424, 426 are dissimilar and insulated from each other. Although not shown, the different side selected may be the side next to the side selected for the material 424.
  • the scope of the present disclosure is not limited by the side selected and the term "different side" can mean any of the multiple sides that are different from the first selected side.
  • the dissimilar material may be located at different positions on a same side.
  • the shape of the system is shown as a square, the shape may be any geometrically suitable shape.
  • the materials 424, 426 are selected such that they produce a voltage potential difference when the system 420 is in contact with conducting liquid, such as body fluids.
  • the materials of interest for material 426 include, but are not limited to: Mg, Zn, or other electronegative metals.
  • the material 426 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework.
  • an adhesion layer may be necessary to help the material 426 (as well as material 724 when needed) to adhere to the framework 722.
  • Typical adhesion layers for the material 426 are Ti, TiW, Cr or similar material.
  • Anode material and the adhesion layer may be deposited by physical vapor deposition, electrodeposition or plasma deposition.
  • the material 426 may be from about 0.05 to about 500 ⁇ thick, such as from about 5 to about 100 ⁇ thick.
  • the scope of the present disclosure is not limited by the thickness of any of the materials nor by the type of process used to deposit or secure the materials to the framework 422.
  • the materials 424, 426 can be any pair of materials with different electrochemical potentials. Additionally, in the embodiments wherein the system 420 is used in-vivo, the materials 424, 426 may be vitamins that can be absorbed. More specifically, the materials 424, 426 can be made of any two materials appropriate for the environment in which the system 420 will be operating. For example, when used with an ingestible product, the materials 424, 426 are any pair of materials with different
  • electrochemical potentials that are ingestible.
  • An illustrative example includes the instance when the system 420 is in contact with an ionic solution, such as stomach acids.
  • Suitable materials are not restricted to metals, and in certain embodiments the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuCI or Cul).
  • a metal such as Mg
  • a salt such as CuCI or Cul
  • any pairing of substances-metals, salts, or intercalation compounds-with suitably different
  • Electrochemical potentials (voltage) and low interfacial resistance are suitable.
  • Materials and pairings of interest include, but are not limited to, those reported in TABLE 1 below.
  • one or both of the metals may be doped with a non-metal, e.g., to enhance the voltage potential created between the materials as they come into contact with a conducting liquid.
  • Non-metals that may be used as doping agents in certain embodiments include, but are not limited to: sulfur, iodine, and the like.
  • the materials are copper iodine (Cul) as the anode and magnesium (Mg) as the cathode. Aspects of the present disclosure use electrode materials that are not harmful to the human body.
  • a control device 428 is secured to the framework 422 and electrically coupled to the materials 424, 426.
  • the control device 428 includes electronic circuitry, for example control logic that is capable of controlling and altering the conductance between the materials 424, 426.
  • the voltage potential created between the dissimilar materials 424, 426 provides the power for operating the system as well as produces the current flow through the conducting fluid and the system 420.
  • the system 420 operates in direct current mode.
  • the system 420 controls the direction of the current so that the direction of current is reversed in a cyclic manner, similar to alternating current.
  • the control device 428 controls the path for current flow between the dissimilar materials 424, 426 to the system 420; the current path through the system 420 is controlled by the control device 428. Completion of the current path allows for the current to flow and in turn a receiver, not shown, can detect the presence of the current and recognize that the system 420 has been activate and the desired event is occurring or has occurred.
  • the two dissimilar materials 424, 426 are similar in function to the two electrodes needed for a direct current power source, such as a battery.
  • the conducting liquid acts as the electrolyte needed to complete the power source.
  • the completed power source described is defined by the physical chemical reaction between the dissimilar materials 424, 426 of the system 420 and the surrounding fluids of the body.
  • the completed power source may be viewed as a power source that exploits reverse electrolysis in an ionic or a conduction solution such as gastric fluid, blood, or other bodily fluids and some tissues.
  • the environment may be something other than a body and the liquid may be any conducting liquid.
  • the conducting fluid may be salt water or a metallic based paint.
  • the two dissimilar materials 424, 426 are shielded from the surrounding environment by an additional layer of material. Accordingly, when the shield is dissolved and the two dissimilar materials 424, 426 are exposed to the target site, a voltage potential is generated.
  • the complete power source or supply is one that is made up of active electrode materials, electrolytes, and inactive materials, such as current collectors, packaging.
  • the active materials are any pair of materials with different electrochemical potentials. Suitable materials are not restricted to metals, and in certain embodiments the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as Cul).
  • a metal such as Mg
  • a salt such as Cul
  • any pairing of substances-metals, salts, or intercalation compounds— with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.
  • electrode materials are chosen to provide for a voltage upon contact with the target physiological site, e.g., the stomach, sufficient to drive the system of the identifier.
  • the voltage provided by the electrode materials upon contact of the metals of the power source with the target physiological site is 0.001 V or higher, including 0.01 V or higher, such as 0.1 V or higher, e.g., 0.3 V or higher, including 0.5 volts or higher, and including 1.0 volts or higher, where in certain embodiments, the voltage ranges from about 0.001 to about 10 volts, such as from about 0.01 to about 10 V.
  • the dissimilar materials 424, 426 provide the voltage potential to activate the control device 428.
  • control device 428 can alter conductance between the first and second materials 424, 426 in a unique manner.
  • the control device 428 is capable of controlling the magnitude of the current through the conducting liquid that surrounds the system 420. This produces a unique current signature that can be detected and measured by a receiver (not shown), which can be positioned internal or external to the body.
  • the receiver is disclosed in greater detail in US Patent Application Serial No. 12/673,326 entitled "BODY-ASSOCIATED RECEIVER AND
  • skirt shown in portion at 425, 427, respectively, may be associated with, e.g., secured to, the framework 422.
  • Various shapes and configurations for the skirt are contemplated as within the scope of the various aspects of the present invention.
  • the system 420 may be surrounded entirely or partially by the skirt and the skirt maybe positioned along a central axis of the system 120 or off-center relative to a central axis.
  • the scope of the present invention as claimed herein is not limited by the shape or size of the skirt.
  • the dissimilar materials 424, 426 may be separated by one skirt that is positioned in any defined region between the dissimilar materials 424, 426.
  • the system 420 may be grounded through a ground contact.
  • the system 420 also may include a sensor module. In operation, ion or current paths are established between the first material 424 to the second material 426 and through a conducting fluid in contact with the system 420.
  • the voltage potential created between the first and second materials 424, 426 is created through chemical reactions between the first and second materials 424, 426 and the conducting fluid.
  • the surface of the first material 424 is not planar, but rather an irregular surface. The irregular surface increases the surface area of the material and, hence, the area that comes in contact with the conducting fluid.
  • the material 424 there is chemical reaction between the material 424 and the surrounding conducting fluid such that mass is released into the conducting fluid.
  • mass refers to protons and neutrons that form a substance.
  • One example includes the instant where the material is CuCI and when in contact with the conducting fluid, CuCI becomes Cu (solid) and CI- in solution. The flow of ions into the conduction fluid is via ion paths.
  • the rate of ionic exchange and, hence the ionic emission rate or flow is controlled by the control device 428.
  • the control device 428 can increase or decrease the rate of ion flow by altering the conductance, which alters the impedance, between the first and second materials 424, 426.
  • the system 420 can encode information in the ionic exchange process.
  • the system 420 uses ionic emission to encode information in the ionic exchange.
  • the control device 428 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, the control device 428 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, the control device 428 encodes information in the current flow or the ionic exchange. For example, the control device 428 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency Modulation (FM), Amplitude Modulation (AM), On-Off Keying, and PSK with On-Off Keying.
  • PSK Binary Phase-Shift Keying
  • FM Frequency Modulation
  • AM Amplitude Modulation
  • On-Off Keying On-Off Keying
  • Various aspects of the system 420 may comprise electronic components as part of the control device 428.
  • Components that may be present include but are not limited to: logic and/or memory elements, an integrated circuit, an inductor, a resistor, and sensors for measuring various parameters.
  • Each component may be secured to the framework and/or to another component.
  • the components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided.
  • the system 420 controls the conductance between the dissimilar materials and, hence, the rate of ionic exchange or the current flow. Through altering the conductance in a specific manner the system is capable of encoding information in the ionic exchange and the current signature. The ionic exchange or the current signature is used to uniquely identify the specific system. Additionally, the system 420 is capable of producing various different unique exchanges or signatures and, thus, provides additional information. For example, a second current signature based on a second conductance alteration pattern may be used to provide additional information, which information may be related to the physical
  • a first current signature may be a very low current state that maintains an oscillator on the chip and a second current signature may be a current state at least a factor of ten higher than the current state associated with the first current signature.
  • FIGS. 5-10 illustrate various aspects of re-wearable wireless devices.
  • the re-wearable wireless device comprises a reusable component and a disposable component.
  • the reusable component generally comprises an electronics module and a power source.
  • the disposable component generally comprises skin electrodes and skin adhesive.
  • the electronics module is a durable component, meaning its lifetime exceeds that of some or all of the remaining components.
  • the electronics module lifetime may range up to several years.
  • the skin adhesive is a consumable component with a lifetime less than its useable lifetime is less than that for the durable components. Typical lifetimes for the skin adhesive may range from less than 24 hours to 14 days or more.
  • the skin electrodes and power source may be either durable or consumable components depending on the technology selected to implement those components.
  • the lifetime for skin electrodes may range from less than 24 hours to years, depending on the type.
  • the power source may have a lifetime of less than 24 hours to years depending on type.
  • the electronics, electrodes and power source are all considered electrical or electronic components.
  • the re- wearable wireless device also includes one other feature, means to interconnect the electronic components.
  • the re-wearable wireless device permits user replacement of the consumable
  • FIGS. 5-10 illustrate three aspects of re-wearable wireless devices: a snap-in module, an overlay module, and a wire module.
  • FIGS. 5-7 illustrate one aspect of a snap-in module type re-wearable wireless device comprising a reusable component and a disposable component configured to be secured to a user via an adhesive layer.
  • FIG. 5 illustrates one aspect of a disposable component 500 comprising an adhesive base 502, electrodes 504a, 504b (shown in phantom), electrical contacts 506a, 506b, and a mechanical snap-in connect mechanism 508.
  • the electrodes 504a, 504b are electrically coupled to the electrical contacts 506a, 506b.
  • the mechanical snap-in connect mechanism 508 comprises projecting elements 510a, 510b projecting at right angles toward a center portion of the mechanical snap-in connect mechanism 508.
  • FIG. 6 is a perspective top view of one aspect a reusable component 600 comprising an electronics module located within a housing 602 configured to mate with the mechanical snap-in connect mechanism 508 of the disposable component 500 shown in FIG. 5.
  • the housing 602 of the reusable component 600 comprises depressions 604a, 604b (not shown) formed in the housing 602 to engage the respective projecting elements 510a, 510b such that the reusable component 600 snaps into the mechanical snap-in connect mechanism 508 and is retained thereby.
  • FIG. 7 is a perspective bottom view of one aspect of a reusable component 600.
  • bottom portion 606 of the reusable component 600 comprises electrical contacts 702a, 702b, which are configured to electrically couple to the electrical contacts 506a, 506b in the mechanical snap-in connect mechanism 508. Accordingly, electrical signals detected by the electrodes 504a, 504b are coupled to the electronics module of the reusable component through the electrical contacts 702a, 702b.
  • the electronics module is located within the housing 602 of the reusable component 600. The electronics module is functionally equivalent to the electronics modules shown in FIGS. 2-3.
  • the bottom portion 606 of the reusable component 600 may further comprises a communication channel I/O Address 704a and PIN 704b that uniquely identifies the electronics module of the reusable component 600. Modern wireless communications between two devices requires exchange of an address and a PIN to establish a link.
  • the I/O Address and PIN 608 may be provided on a label, directly printed on the bottom portion 606 or other part of the housing 602, or any other suitable means.
  • the reusable component 600 comprising the electronics module is a durable device and the adhesive base 502 and electrodes 504a, 504b are consumable.
  • the power source - battery - may be either consumable or durable. If the battery is packaged in the skin adhesive base 502 envelope, then it is a consumable. A LiMn coin cell would typically be used with capacity matched to ensure battery lifetime comparable to the skin adhesive base 502. Alternatively, the battery may be a durable component packaged with the electronics module. A rechargeable battery could be used and means to recharge the battery must be provided - either through a connector or via inductive coil. A primary battery could also be used since the electronics module is otherwise low power, and primary batteries provide significantly greater energy density than a secondary battery. Electrical means to connect the disposable component 500 and the reusable component 600 are provided by electrical spring contacts 506a, 506b, 702a, 702b integrated into the respective components.
  • the disposable component 500 may be constructed of a flex circuit for interconnection and to form the electrodes 504a, 504b in conjunction with one or more hydrogel.
  • the housing 602 of the reusable component 600 comprises a plastic component and provides means to latch the electronics module onto the adhesive base 502 and the entire reusable component 600 is housed by closed-cell foam.
  • the skin adhesive base 502 is likely a composite type with a hydro-colloid as the primary adhesive with an acrylic type provided to hold the re-wearable wireless device on while the hydro-colloid activates and to also avoid having the hydro-colloid ooze out of the side of the re-wearable wireless device.
  • FIGS. 8 and 9 illustrate one aspect of a re-wearable wireless device comprising a
  • FIG. 8 illustrates one aspect of a reusable component 800
  • FIG. 9 illustrates one aspect of an adhesive overlay 902.
  • the re-wearable wireless device shown in FIGS. 8 and 9, the durable reusable component 800 comprises the electronics module, skin electrodes 802a, 802b, and power source form the and the disposable component 900 only the skin adhesive overlay 902. There is no electrical interconnect outside the reusable component 800.
  • the power source may be implemented as described in connection with FIGS. 5-7 for the snap-in module.
  • Electrodes 802a, 02b may be dry or capacitive type.
  • the skin adhesive overlay 902 may comprise a 3- piece composite with a center section 904 configured to hold the reusable component 800 comprising the electronics module in place, but not create a sticky build up on the module, an hydrocolloid for primary skin adhesion and an acrylic with function as described above.
  • FIG. 10 illustrates one aspect of a re-wearable wireless device comprising a reusable component 1000 and a disposable component 1002. Electrodes 1004a, 1004b are attached to a subject. The electrodes 1004a, 1004b are attached to an electronics module of the reusable component 1000 via corresponding electrode terminals 1006a, 1006b.
  • common ECG electrodes 1004a, 1004b may be employed in combination with the electronics module to form the re-wearable wireless device.
  • the electrodes 1004a, 1004b could be integrated into a single unit which ensures proper spacing of the electrodes 1004a, 1004b.
  • Interconnection between the electrodes 1004a, 1004b and the electronics module is provided by a 2-conductor cable 1010a, 1010b coupled to corresponding electrode terminals 1006a, 1006b.
  • a connector 1012 is coupled to a plug receptacle in the electronics module, or the connection may be fixed. The connector 1012 may be provided on either end of the cable.
  • FIG. 1 1 illustrates one aspect of an adhesive base 1 100 to be secured to the subject.
  • the adhesive base 1 100 may be used in conjunction with any of the re-wearable wireless devices disclosed herein. Adhesion and length of adhesion of any adhesive based wearable device can be affected by different level of sensitivity, different skin types, activity levels, and body shape of the subject. Accordingly, in one aspect, the adhesive base 1 100 comprises an adhesive system that at the same time does not irritate the skin of the user, is comfortable to wear, is not too large, remains attached for the design lifetime, regardless of user variability, and is simple to apply to the user by the user.
  • the adhesive base 1 100 for a reusable wearable device is configured with an adhesive system that uses two different adhesive layers 1 102, 1 104 to accomplish these functionalities.
  • a primary adhesive layer 1 102 is a hydrocolloid adhesive which is known to be very mild to the skin of users and can be easily tolerated my most users for periods of time extending beyond about 7 days. The primary adhesive layer 1 102 does not, however, have the most durable attachment to the skin and is susceptible to excessive water absorption.
  • a secondary adhesive layer 1 104 is used to partially cover the primary adhesive layer 1 102 to create a perimeter around the hydrocolloid based primary adhesive layer 1 102.
  • the secondary adhesive layer 1 104 is configured to have a stronger adhesive force to the skin and serves to keep the edges 1 106 of the adhesive base 1 100 from peeling away from the skin.
  • the primary adhesive layer 1 102 is distributed over a surface area that is greater than the surface area over which the secondary adhesive layer 1 104 is distributed over.
  • the outer secondary adhesive 1 104 is the key to long wear times. If this outer perimeter remains intact, the patch can remain attached for about 7 to about 14 days.
  • the adhesive base 1 100 may be employed as a disposable component of a reusable wearable device that includes a base hydrocolloid primary adhesive layer 1 102 component and a secondary adhesive layer 1 104 component that is added to the reusable wearable device to create an edge seal and attach the adhesive base 1 100 to the user.
  • the secondary adhesive layer 1 104 may be acrylic based or cyanoacrylate based if a more permanent bond is used. Other secondary adhesive layers 1 104 may be employed without limitation.
  • the secondary adhesive 1 104 may be provided to the subject as an accessory.
  • Each reusable wearable device can be supplied with multiple secondary adhesive layer 1 104 strips to allow for easy replacement and reattaching of the reusable wearable device.
  • the secondary adhesive layer 1 104 also can be supplied in different versions with different levels of adhesive and different amounts of adhesive surface area to accommodate different use requirements. This will enable the reusable wearable device to be worn and used for as long as the battery will allow based on programming.
  • the adhesive base 1 100 may be adapted and configured to be employed with the reusable wearable device shown in FIGS. 5-7.
  • the adhesive base 1 100 may be adapted and configured to be employed with the reusable wearable device shown in FIGS. 8-9.
  • the disposable component and the reusable component may be interconnected in a variety of suitable techniques.
  • the disposable component and the reusable component may be interconnected by way of a Zebra connector, surface mount technology (SMT) battery connectors, cellular/mobile phone battery connector concept, flexing battery connects on EM, non- directional seal connections with conductive rubber, hook-and-loop connectors commonly referred to in commerce as Velcro connections and Velcro pins, and a stabbing connector comprising simple electrode surface traces on the disposable component, wherein a thumbtack is stabbed through the trace, wherein the tip of the thumbtack enters the module, and wherein the head of the thumbtack acts as an electrode.
  • SMT surface mount technology
  • FIG. 12 A is a diagram illustrating a process of capturing an image of the communication channel I/O Address 1204a and PIN 1204b located on a bottom portion 1202 of a reusable component 1200.
  • a reusable wearable wireless device such as the reusable component 1200, may not include a cellular phone chipset, as previously discussed, and may contain only a short range radio to provide wireless communication.
  • the short range radio in the electronics module of the reusable component 1200 is configured to exchange information with a local cellular phone, or other local wireless communication device, in order to access wide area networks such as the cellular network 108, the Internet 1 12, other networks 1 10 in order to access the remote server 106, as described in connection with FIG. 1 .
  • the short range radio in the electronics module of the reusable component 1200 must be paired with the local cell phone in order for the two devices to communicate without interference.
  • the communications between two devices requires exchange of an I/O address 1204a and a PIN 1204b to establish an authenticated encrypted link.
  • An example of this is Bluetooth, where the address uniquely identifies the device in an environment where many similar devices might be operating. That is how multiple people while in the same room can simultaneously use different Bluetooth headsets without interference.
  • the PIN 1204b adds a level of security to prevent fraudulent use of the hardware device, e.g., headset, to dial clandestine telephone calls.
  • the reusable component 1200 of the wearable wireless device includes the I/O Address 1204a and PIN 1204b associated wit the short range radio.
  • a reusable component 1200 equipped with a short range radio can use a wireless link to download data from the cellular network 108 and from there connect to other networks 1 10 or the Internet 1 12, as discussed in detail in connection with FIG. 1.
  • Bluetooth is a common and widely available short range radio wireless standard available in cellular telephones, it is contemplated that in the future standards such as BLE may be common. Accordingly, the present disclosure should not be limited in this context.
  • the electronics module of the reusable component 1200 may be paired to a cellular telephone in order for the electronics module to access external networks 108, 1 10, 1 12 or the remote server 106.
  • This communication may be a weekly exercise, assuming the reusable component 1200 has at least one week of lifetime.
  • the subject is charged wit the task of activating the wireless wearable device to a cellular telephone by pressing an external button switch, making the wireless wearable device discoverable. Once the button is pressed, the short range radio broadcasts its I/O Address 1204a and PIN 1204b to whatever devices are in range.
  • the subject manually selects the I/O Address from a list of devices discovered in the area and copies the PIN 1204b from a label 1214 on the wearable electronics module (or from its package) and enters it into the cellular phone using the keypad/keyboard on the phone and an encrypted link is created between the devices on that basis.
  • the manual technique of entering the I/O Address 1204a and PIN 1204b is inherently prone to error and frustration when the I/O Address 1204a and PIN 1204b are misentered and the pairing fails.
  • an unencrypted link may be created between the two devices and used to exchange the PIN 1204b.
  • the PIN 1204b is used to create an encrypted link which is used for further communications. The risk is the exchange on PIN 1204b can be intercepted and the secure link may be compromised.
  • FIG. 12 B a new technique is provided as shown in FIG. 12 B, where a camera phone 1210 is employed to capture an image 1212 of the I/O Address 1204 and, optionally, the PIN 1204.
  • the I/O Address 1204 and, optionally, the PIN 1204 are located on the reusable component 1200 as an insignia in a form that is recognizable by machine, human, or combinations thereof.
  • the I/O Address and PIN are provided on a label, which is attached to a bottom portion 1202 of the reusable component 1200.
  • a smartphone 1210 (or suitable cellular telephone) equipped with a built-in camera and, thus, may be employed to capture an image 1212 of the I/O Address and PIN 1204.
  • the subject 104 uses the smartphone 1210 camera to capture an image 1212 of the label 1214 on the reusable component 1200.
  • the label 1214 may have both the device I/O Address 1204a and PIN 1204b or just the PIN 1204b printed on it.
  • the printing may be human readable characters or may be machine readable characters such as bar codes or quick response (QR) codes.
  • a pairing software application running on the smartphone 1210 uses an optical character recognition (OCR) algorithm to convert the captured image 1212 into data - the device I/O Address 1204a and/or the PIN 1204b, thus extracting the pin from the captured image 1212 by the OCR software.
  • OCR optical character recognition
  • the application might also use pattern recognition algorithms to aid the operator in diagnosing errors in the pairing process. For example, if the label or device outline is too small in the image field, then the camera is too far away from the device. If no label or device outline is recognized, then the reusable component 1200 is not located in front of the smartphone 1210 camera or is too close to the smartphone 1210 camera. Once the smartphone 1210 obtains the I/O Address 1204a and PIN 1204b for the reusable component 1200, pairing can be completed securely without further manual intervention from the subject 104.
  • OCR optical character recognition
  • Receivers may include a signal receiver element which serves to receive the
  • the signal receiver may include a variety of different types of signal receiver elements, where the nature of the receiver element necessarily varies depending on the nature of the signal produced by the signal generation element.
  • the signal receiver element may include one or more electrodes for detecting signal emitted by the signal generation element, such as two or more electrodes, three or more electrodes, etc.
  • the receiver device will be provided with two or three electrodes that are dispersed at some distance from each other. This distance allows the electrodes to detect a differential voltage. The distance may vary, and in certain aspects ranges from 0.1 cm to 1.0 m, such as 0.1 to 5 cm, such as 0.5 to 2.5 cm, where the distance 1 cm in some instances.
  • FIG. 13 shows receiver 1001 that is configured to be placed on an external topical location of a subject, such as a chest area.
  • the receiver includes an upper housing plate 1 1 10 (such as may be fabricated from a suitable polymeric material), and includes a manually depressible operation button 1020 and a status identifier LED 1030, which may be used to relay to an observer that the receiver is operating.
  • Manually depressible operation button 1020 can be manually manipulated to transition the receiver from a storage mode to a non-storage mode.
  • a micro-controller of the receiver may remain in a low duty cycle active state at all times to process input from the on/off button, and the digital signal processor (DSP) of the receiver powered off.
  • DSP digital signal processor
  • the micro-controller de-bounces the input and powers the DSP into its idle state.
  • the device may draw less than 10 ⁇ , including 5 ⁇ of current or less, such as 1 ⁇ or less and including 0.1 ⁇ or less. This configuration enables the device to remain at greater than 90% useful battery life if stored for one month (assuming the presence of a 250 mAH battery).
  • Such a button may also be employed for other functions. For example, such a button may be employed to instruct the receiver to obtain certain types of data. In addition or alternatively, such a button may be employed to manually instruct the receiver to transfer data to another device.
  • FIG. 14 provides an exploded view of the receiver shown in FIG. 13. As shown in FIG. 13,
  • receiver 1001 includes upper housing plate 1 1 10, rechargeable battery 1 101 , integrated circuit component 1 120, and bottom housing plate 1 130.
  • Bottom housing plate 1 130 snap fits into upper housing plate 1 1 10 to seal the battery and integrated circuit components, 1 101 and 1 120, in a fluid tight housing. While a snap-fit interaction is illustrated, any convenient mating scheme may be employed, such that the top and bottom housing plates may interact via inter-locking grooves, may be held together via a suitable adhesive, may be welded together, etc. In some instances, the electrical components may be molded into the top and/or bottom housing plates. Also shown is adhesive patch 1 140 which snaps into upper housing plate 1 1 10 and includes conductive studs 1 141 to 1 143, which studs serve as electrode contacts with the body during receiver use.
  • studs 1 141 to 1 143 are in electrical contact with integrated circuit component 1 120, e.g. via wires or other conductive members associated with the upper housing 1 150.
  • upper housing plate 1 1 10 includes conductive members configured to receive studs 1 141 to 1 143 coupled to wires (not shown) which in turn provide electrical connection to the integrated circuit component 1 120.
  • FIG. 15 provides an exploded view of adhesive patch 1 140.
  • Adhesive patch 1 140
  • each stud 1 141 , 1 142 and 1 143 includes upper studs 1 141 , 1 142 and 1 143, as described above. These studs are in electrical contact with skin contact studs 1 151 , 1 152 and 1 153.
  • a conductive hydrogel layer 1 154 On the skin side surface of skin contact studs 1 151 , 1 152 and 1 153 is a conductive hydrogel layer 1 154.
  • non-conductive hydrogel 1 155 and pressure sensitive adhesive 1 156 components are around each stud 1 151 , 1 152 and 1 153 . In this portion, any convenient physiologically acceptable adhesive may be employed. In some instances, adhesive that chance their adhesive properties in response to an applied stimulus are employed.
  • each skin contact stud On the non-skin side of each skin contact stud is a layer of dry electrode material, such as Ag/AgCI. On the upper surface of this layer of dry electrode material is a porous layer, such as a carbon vinyl layer. Also shown are upper backing layers 1 180. Though not shown, upper studs 1 141 to 1 143 are in electrical contact through the backing layers 1 180 (for example urethane and polyethylene) with the dry electrode and skin contact studs which are positioned beneath each upper stud.
  • dry electrode material such as Ag/AgCI.
  • a porous layer such as a carbon vinyl layer.
  • upper backing layers 1 180 also shown. Though not shown, upper studs 1 141 to 1 143 are in electrical contact through the backing layers 1 180 (for example urethane and polyethylene) with the dry electrode and skin contact studs which are positioned beneath each upper stud.
  • the studs are off center with respect to their dry electrode layer in the direction of the outer edge of the patch in a manner sufficient to increase dipole size between any two given studs.
  • a conductivity gradient may be associated with each stud, e.g., by altering the pattern of the porous layer 1 170 and/or modifying the composition of the dry electrode layer.
  • a conductivity gradient increases in conductivity in the direction of the outer edge of the patch.
  • FIGS. 16A to 16E provide various views of an alternative external patch configuration 1300 which includes two electrodes 1310 and 1320 in a flexible structure having an adhesive bandage configuration.
  • Patch 1300 includes upper flexible outer support 1330 and bottom flexible support 1350 which fit together as shown in FIG. 16E to enclose an integrated circuit/battery component 1360 and electrodes 1310 and 1320.
  • FIG. 16D the bottom surfaces of electrodes 1310 and 1320 are exposed.
  • electrodes 1310 and 1320 include lead elements 1375 and 1370 which provide for electrical contact between the electrodes and the integrated circuit/battery component 1360.
  • Any convenient adhesive component may be employed, such as those described above.
  • Coupled and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.

Abstract

A re-wearable wireless device includes a reusable component to be secured to a disposable component. The reusable component includes a sensor interface to receive signals from an electrode secured to a living subject and monitors physiological and physical parameters associated with the living subject and a cellular wireless communication circuit. An adhesive base the device includes a first adhesive layer and a second adhesive layer partially covering the first adhesive layer around a perimeter thereof, where the first and second adhesive layers include different adhesives. A method of establishing a link between two wireless devices is also disclosed, where a first wireless device with an insignia representing a communication channel address identification is provided. An image of the insignia is captured with a mobile telephone computing device comprising an image sensor. The captured image is processed to extract the communication channel address identification represented by the insignia.

Description

RE-WEARABLE WIRELESS DEVICE
CROSS-REFERENCE TO RELATED APPLICATIONS
[001] This application is a Continuation-in-part of Application 13/336,956, filed December 23, 201 1 , which is a Divisional Application of 12/673,326, filed February 12, 2010, which application claims benefit of U.S. 371 National Phase of PCT/US09/68128, filed December 15, 2009, which application claims the benefit of Provisional Application 61/122,723, filed December 15, 2008, which application claims the benefit of Provisional Application
61/160,289, filed March 13, 2009, which application claims the benefit of Provisional Application 61/240,571 , filed September 8, 2009, which application claims the benefit of Provisional Application 61/251 ,088, filed October 13, 2009, the disclosures of which applications are herein incorporated by reference.
INTRODUCTION
[002] The present disclosure is related generally to a re-wearable wireless device. More
particularly, the present disclosure is related to a re-wearable wireless device configured to monitor at least one parameter and to wirelessly communicate the at least one monitored parameter to a communication network. The communication network communicates the at least one monitored parameter to a remote device, such as a back end server, over the communication network or other wide area network. The at least one monitored parameter may include, without limitation, skin impedance, electro cardiogram signals, conductively transmitted current signal, position of wearer, temperature, heart rate, perspiration rate, humidity, altitude/pressure, global positioning system (GPS), proximity, bacteria levels, glucose level, chemical markers, blood oxygen levels, among other physiological and physical parameters.
[003] Current wearable wireless device architectures communicate to a hub, basestation, telephone using low power wireless protocols such as Bluetooth, Bluetooth low energy (BLE) ZigBee, ANT, proprietary, and the like, which then passes the data collected onto remote servers via wired connection, plain old telephone service (POTS), cellular data, etc. New mobile chipsets permit the incorporation of a cellular data modem / phone into a personal wireless wearable thereby simplifying the overall system design / improving usability while reducing the cost of the service. [004] Additional issues concerning current wearable wireless devices include high cost to manufacturer electronics portion, user discomfort associated with extended wear of the adhesive portions or portions that come in contact with the skin, etc.
SUMMARY
[005] In one aspect, a re-wearable wireless device is provided. The re-wearable wireless
device comprises a reusable component configured to be secured to a disposable component. The reusable component comprises a sensor interface configured to receive signals from at least one electrode configured to be secured to a living subject and monitors one or more physiological and physical parameters associated with the living subject and a cellular wireless communication circuit.
[006] In another aspect, an adhesive base for a re-wearable wireless device is provided. The re-wearable adhesive base comprises a first adhesive layer and a second adhesive layer partially covering the first adhesive layer around a perimeter of the first adhesive layer. The first adhesive layer includes a first adhesive and the second adhesive layer comprises a second adhesive.
[007] In yet another aspect, a method of establishing a link between two wireless devices is provided. According to the method, a first wireless device is provided with an insignia representing a communication channel address identification. An image of the insignia is captured with a mobile telephone computing device comprising an image sensor. The captured image is processed to extract the communication channel address identification represented by the insignia.
[008] Still in other aspects, a re-wearable wireless device in accordance with the present
disclosure comprises a reusable component and a disposable component. The reusable component may comprise a mobile chipset, energy source, sensors, and the like. The disposable component may comprise electrodes and/or adhesive for adhering the disposable component the skin of a living subject, be it human or animal. The disposable component may comprise at least two-forms of adhesive.
FIGURES
[009] FIG. 1 illustrates one aspect of a wireless communication system comprising a re- wearable wireless device with a mobile chipset.
[010] FIG. 2 is a system diagram of one aspect of the re-wearable wireless device. [011] FIG. 3 is a block functional diagram of one aspect of an integrated circuit component of the electronics module of the reusable component re-wearable wireless device shown in FIGS. 1 and 2.
[012] FIG. 4 shows one aspect of an event marker system.
[013] FIG. 5 illustrates one aspect of a disposable component comprising an adhesive base, electrodes (shown in phantom), electrical contacts, and a mechanical snap-in connect mechanism.
[014] FIG. 6 is a perspective top view of one aspect a reusable component comprising an
electronics module located within a housing configured to mate with the mechanical snap-in connect mechanism of the disposable component shown in FIG. 5.
[015] FIG. 7 is a perspective bottom view of one aspect of a reusable component.
[016] FIG. 8 illustrates one aspect of a reusable component.
[017] FIG. 9 illustrates one aspect of an adhesive overlay.
[018] FIG. 10 illustrates one aspect of a re-wearable wireless device comprising a reusable component and a disposable component.
[019] FIG. 1 1 illustrates one aspect of an adhesive base to be secured to the subject.
[020] FIG. 12 A and B illustrate one aspect of a process of capturing an image of the
Input/Output (I/O) Address and personal identification number (PIN) located on a bottom portion of a reusable component.
[021] FIG. 13 is a three-dimensional view of an external signal receiver, according to one
aspect.
[022] FIG. 14 provides an exploded view of the signal receiver shown in FIG. 10, according to one aspect.
[023] FIG. 15 provides an exploded view of the adhesive patch component of the signal receiver shown in FIGS. 13 and 14, according to one aspect.
[024] FIGS. 16A to 16E provide various views of a two-electrode external signal receiver,
according to one aspect.
DESCRIPTION
[025] Before explaining the various embodiments of the wireless wearable apparatus, system, and method in detail, it should be noted that the various embodiments disclosed herein are not limited in their application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. Rather, the disclosed
embodiments are may be positioned or incorporated in other embodiments, variations and modifications thereof, and may be practiced or carried out in various ways. Accordingly, embodiments of the wireless wearable apparatus, system, and method disclosed herein are illustrative in nature and are not meant to limit the scope or application thereof.
Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the embodiments for the convenience of the reader and are not to limit the scope thereof. In addition, it should be understood that any one or more of the disclosed embodiments, expressions of embodiments, and/or examples thereof, can be combined with any one or more of the other disclosed embodiments, expressions of embodiments, and/or examples thereof, without limitation.
[026] In the following description, like reference characters designate like or corresponding parts throughout the several views. Also, in the following description, it is to be understood that terms such as front, back, inside, outside, top, bottom and the like are words of convenience and are not to be construed as limiting terms. Terminology used herein is not meant to be limiting insofar as devices described herein, or portions thereof, may be attached or utilized in other orientations. The various embodiments will be described in more detail with reference to the drawings.
[027] The present disclosure is directed generally to various aspects of a wireless wearable apparatus, system, and method for monitoring at least one physiological and/or physical parameter associated with the wearer of the re-wearable wireless device and for communicating the monitored parameter to a communication device. The communication device is configured to communicate the monitored parameter remotely over a network.
[028] It will be appreciated that the term "medication" or "dose form" as used throughout this disclosure includes various forms of ingestible, inhalable, injectable, absorbable, or otherwise consumable medicaments and/or carriers therefor such as, for example, pills, capsules, gel caps, placebos, over capsulation carriers or vehicles, herbal, over-the-counter (OTC) substances, supplements, prescription-only medication, ingestible event markers (IEM), and the like.
[029] FIG. 1 illustrates one aspect of a wireless system 100 comprising a re-wearable wireless device 102 comprising a mobile chipset, e.g., single- or multi- chip cellular radio modem. In one aspect, the re-wearable wireless device 102 is removably attachable to a living subject 104, such as a person or other biological life form. In one aspect, the re-wearable wireless device 102 is configured to monitor at least one parameter. The at least one monitored parameter may include, for example, a physiological and/or physical parameter associated with the subject. For example, the re-wearable wireless device 102 may be configured to monitor parameters, such as, without limitation, skin impedance, electro cardiogram signals, conductively transmitted current signal, position of wearer, temperature, heart rate, perspiration rate, humidity, altitude/pressure, global positioning system (GPS), proximity, bacteria levels, glucose level, chemical markers, blood oxygen levels, among other physiological and physical parameters.
[030] In one aspect, the mobile phone is configured to wirelessly communicate the at least one monitored parameter over a communication network to a back-end or remote server or remote node 106 over the communication network. In one aspect, the communication network is a cellular network or a cellular communication network 108. The mobile chipset enables the re-wearable wireless device 102 to make and receive data over a radio link while moving around a wide geographic area. It does so by connecting to the cellular communication network 108 provided by a mobile phone operator and allowing access to the public telephone network. The communication network communicates with other networks 1 10 or the Internet 1 12 to access the back-end server 106. The amount of data transmitted by re-wearable wireless device 102 may be about 10 kilobytes per day to about 100-150 kilobytes per day, for example.
[031] In one aspect, when the re-wearable wireless device 102 is activated and initiates a
wireless transmission of information associated with the monitored parameter(s) using the mobile chipset. The information associated with the monitored parameter(s) may include, for example, raw measurement data, processed data, and/or any combination thereof. The information also may include an identification number, patient identification information (e.g., name, address, phone number, email, social network web address), dosing unit
identification, ingestible event marker system identification, time and date stamp when a dose form package is opened, time and date stamp when the ingestible event marker system was ingested by the patient and activated, among other information.
[032] When the re-wearable wireless device 102 is activated the re-wearable wireless device 102 communicates with a cell tower 1 14 and base station (BS) 1 16 and can access the Internet 1 12 via the cellular communication network 108. Accordingly, information received by the re-wearable wireless device 102 from the subject 104 can be communicated to the remote node 106 via the Internet 1 12 or other networks 1 10. A processing system 120 at the remote node 106 receives the information and stores it for processing by the database 1 18.
[033] Still with reference to FIG. 1 , the remote node 106 comprises a processing system 120 communicatively coupled to a database 1 18. Information associated with all subjects 104, e.g., patients, including identity and medication types and doses, may be stored in the database 1 18. The processing system 120 receives information from the re-wearable wireless device 102 and accesses the information in the database 1 18 associated with the remote node 106 to provide information to the care provider through the re-wearable wireless device 102. The remote node 106 can communicate information including a photo of the patient for identification, the type of medication available to the care provider, as well as confirmation of the type and dose of medication that the care provider selects and delivers to the patient. The re-wearable wireless device 102 can communicate with the remote node 106 using any mode and frequency of communication that is available in at the site, such as wireless, G2, G3, G4, real-time, periodically based on predetermined time delays, as well as store and forward at later time.
[034] Vehicles of communication between the re-wearable wireless device 102 and the remote node 106 include one or more networks. In various aspects, the network comprises local area networks (LAN) as well as wide area networks (WAN) including without limitation Internet, wired channels, wireless channels, communication devices including telephones, computers, wire, radio, optical or other electromagnetic channels, and combinations thereof, including other devices and/or components capable of / associated with communicating data. For example, the communication environments include in-body communications, various devices, various modes of communications such as wireless communications, wired communications, and combinations of the same.
[035] The processing system 120 at the remote node 106 may comprise servers configured as desired, e.g., to provide for subject directed permissions. For example, the servers may be configured to allow a family caregiver to participate in the subject's therapeutic regimen, e.g., via an interface (such as a web interface) that allows the family caregiver to monitor alerts and trends generated by the server, and provide support back to the patient. The servers also may be configured to provide responses directly to the subject, e.g., in the form of subject alerts, subject incentives, which are relayed to the subject via the communication device. The servers also may interact with a health care professional, e.g., RN, physician, which can use data processing algorithms to obtain measures of health and compliance of the subject, e.g., wellness index summaries, alerts, cross-patient benchmarks, and provide informed clinical communication and support back to the patient. The servers also may interact with pharmacies, nutrition centers, and drug manufactures.
[036] In one aspect, the remote node 106 may store in the database 1 18 the time and date when a dose form was taken by the subject 104. In addition, when an event marker system is provided in the dosing unit, the time and date stamp of when the event marker system was ingested by the patient also may be stored in the database 1 18. In addition, an identification number such as a serial number, for example, identifying the single- or multi- dose packages, the type of package (single, multiple, morning, afternoon, evening, daily, weekly, monthly dosing event, and so on) the individual patient identification, the date of pre-packaging, the source, and the contents of the package, for example, may be stored in the database 1 18. In some aspects, the expiration date or shelf life of one or all of the medication(s) or dose forms also may be stored in the database 1 18.
[037] The mobile chipset in the re-wearable wireless device 102 provides two-way data
communication between the re-wearable wireless device 102 and the cellular
communication network 108 via the cell tower 1 14. In one aspect, when the subject 104 ingests a dose form comprising an event indicator system, the event indicator system communicates with the re-wearable wireless device 102, which includes various electronic modules for receiving a unique signature from the event indicator system and
communicating with the cellular communication network 108. It will be appreciated, that in various aspects, the re-wearable wireless device 102 may be configured to communicate with an access point as well as other mobile device(s). Thus the re-wearable wireless device 102 can effectively communicate with the remote node 106 via the Internet 1 12 through a local area network (LAN) or the cellular communication network 1 14.
[038] In other aspects, the re-wearable wireless device 102 can be triggered to initiate a data transmission to the cellular communication network 108 based on a variety of triggers. These triggers include, without limitation, a timer, real time clock, an event, detection of ingestion of an event marker system, detection of a particular code received from the event marker system, receipt of a particular monitored parameter or value of such monitored parameter, receipt of trigger data from the cellular communication network 108, among others. [039] FIG. 2 is a system diagram of one aspect of the re-wearable wireless device 102. In one aspect, the re-wearable wireless device 100 is a two-piece device comprising a disposable component 202 and a reusable component 204. The reusable component 204 comprises an electronics module. The electronics module of the reusable component 204 comprises a wireless communication circuit 206, such as a mobile chipset RF wireless circuit or simply cellular radio. The electronics module of the reusable component 204 comprises an ASIC- based sensor platform 208 that includes a hardware architecture and software framework to implement various aspects of the re-wearable wireless device 102. In one aspect, the ASIC-based sensor platform 208 may be disposed on and interfaced with a printed circuit board assembly (PCBA). The wireless communication circuit 206 may be a low power mobile chipset and is configured to connect to the cellular network 108 as well as other wireless devices (cell-phones, smart phones, tablet computers, laptop computers, gateway devices, among others). The disposable component 202 interfaces with the PCBA and the first electronic module 204. In one aspect, the electronic module 204 and the disposable component 202, each may comprises additional modules that reside on or off the PCBA or, in another aspect may be disposed on the PCBA.
[040] In one aspect, the reusable electronic module 204 provides a sensor platform and
comprises circuits designed to interface with different sensors and comprises various combinations of the following components. In various aspects, the reusable electronic module 204 ASIC-based sensor platform provides a combination of analog front-end, vector/digital signal processing, microprocessor and memory in a single low-power
ASIC/chip that comprises an "ASIC-based sensor platform" 208 with multiple functions: software-defined radio for detection of ingestible event markers, sensing and decoding of ECG, AC skin impedance measurements, temperature measurements, DC skin impedance (e.g., GSR) measurements and other biological/medical data sensors.
[041] In one aspect, the reusable electronic module 204 comprises an ASIC sensor platform 208, a controller or processor 210, e.g., a microcontroller unit (MCU), a radio frequency (RF) wireless comm circuit 206, among other components described hereinbelow.
[042] In one aspect, the ASIC portion 208 of the reusable electronic module 204 may comprise a core processor 210 such as, for example, an ARM Cortex™ M3 processor, for real-time applications, a signal processing accelerator such as, for example, a Vector Math
Accelerator, program memory, data memory, serial interfaces such as, for example, SPI, universal asynchronous receiver transmitter (UART), two-wire multi-master serial single ended bus interface (I2C), general purpose input / output (GPIO), a real-time clock, an analog-to-digital converter (ADC), gain and conditioning circuits for bio-potential signals, light emitting diode (LED) drivers, among other components. The reusable electronic module 204 also comprises a connection port to external memory, a connection port to external sensors, and a hardware accelerator. The processor 210 receives a signal from each of the sensors by operating the analog front end for analog sensors and by receiving digital data from sensors with the ADC digitizer. The processor 210 then processes the data and stores the results into the memory 212 in form of data records. In one aspect, the processor 210 may have a very long instruction word (VLIW) processor architecture.
[043] In one aspect, the reusable electronic module 204 also comprises a universal serial bus 234 (USB), an accelerometer 222, memory 212, one or more LEDs 236, test interface 238 (l/F), a 32 KHz crystal 226, a user button 240 that may be used to initiate a communication connection with an external device, sensor interfaces 216, 218, and a battery 214 (e.g., coin cell, primary battery cell). In one aspect, the battery 214 may a rechargeable cell rather than a primary battery cell. In other aspects, the reusable electronic module 204 may comprise a gyroscope, and circuits for processing ECG, temperature, and accelerometer signals. In other aspects, the reusable electronic module 204 also may comprise body composition and Sp02 pulse oximetry circuits that monitor functional oxygen saturation of arterial blood by calculating the ratio of oxygenated hemoglobin to hemoglobin that is capable of transporting oxygen. An Sp02 pulse oximetry circuit may be configured to provide continuous, noninvasive measurements of Sp02 and, in one aspect, can display a plethysmographic waveform. Heart rate values are may be derived from the pulse oximetry signal.
[044] In one aspect, the reusable electronic module 204 comprises an RF wireless
communication circuit 206. The RF wireless communication circuit 206 comprises an antenna for receive and transmit wireless signals, a transmitter circuit, a receiver circuit, and a link master controller that includes a mechanism to connect (establish a link) to another, external, wireless device and transfer data, as described in more detail hereinbelow. In one aspect, the link master controller establishes connection to an external device. As a master of the link, the link master controller performs control of data transmission over the link to the external device, including timing control and radio frequency control (channel hopping). The link master controller sends a signal to the external device with an instruction that gives number of data records stored in memory (a total number of all data records and a total number of records of each data type). In various aspects, the RF wireless communication circuit 206 may be implemented using a mobile chipset available from a variety of vendors including, without limitation Tegra by Nvidia, Snapdragon by Qualcomm, OMAP by Texas Instruments, Exynos by Samsung, Ax by Apple, NovaThor by ST-Ericsson, Atom by Intel, i.MX by Freescale Semiconductor, RK3xxx by Rockchip, A31 by AHWinner, among others. Such mobile chipsets are employed by mobile telephones, otherwise known in the art as "mobile," "wireless," "cellular phone," "cell phone," "hand phone (HP),""smart phone," among others.
[045] After each connection, the processor 210 continues to receive all sensor signals,
processes the data and stores new data records into the memory 212. Upon each subsequent connection link master controller sends a signal to an external device with new data records since last connection and confirms that records were transmitted successfully. The link master controller receives a signal from the external device that establishes if the external device is ready to receive data records and also receives a signal from the external device that establishes which data records were not transferred successfully. The link master controller avoids repeating the transmission of the data records that already have been transmitted, which improves battery 214 power use for a longer operation and resends all data records that were not transferred successfully. The link master controller may delete from the memory all or some successfully transferred data records at a later time (for example, when the memory 212 gets full).
[046] In one aspect, the reusable electronic module 204 comprises a sensor interfaces 216, 218 between electrodes 220a, 220b (E1 , E2) and one or more band pass filters or channels. The sensor interfaces 216, 218 provide an analog front end and may include programmable gain or fixed gain amplifiers, programmable low-pass filter, programmable high-pass filter. The sensor interfaces 216, 218 may comprise active signal conditioning circuits including strain gauge measurement circuits, for example. One channel receives low frequency information associated with the physiological data of the subject (e.g., user) and the other channel receives high frequency information associated with an electronic device within the subject. In one alternative aspect, an additional channel is provided for receiving DC data of the subject. The high frequency information is passed to a digital signal processor (DSP) implemented in the ASIC portion 208 and then to a processor 210 (e.g., a control processor) portion of the re-wearable wireless device 102 for decompression and decoding. The low frequency information is either passed to the DSP portion of the ASIC portion 208 and then to processor 210, or passed directly to the processor 210. The DC information is passed directly to the processor 210. The DSP portion of the ASIC portion 208 and the processor 210 decode the high frequency, low frequency and DC information or data. This information is then processed and prepared for transmission.
[047] In one aspect, signal processing may or may not be applied to the raw data collected.
Signal processing may occur in the real space, complex number space, or in the polar coordinates space. Functions include filters, e.g., finite impulse response (FIR) and infinite impulse response (MR), mixers, fats Fourier transforms (FFTs), cordics, and others. Raw data may simply be stored and processed downstream. The signal processing may occur in the processor (e.g., ARM Cortex™ M3) or may occur in the signal processing accelerator which is incorporated into the ASIC portion 208.
[048] In one aspect, the reusable electronic module 204 comprises an accelerometer 222 and one or more temperature sensors 224. In one aspect, two temperature sensors are provided that are identical but placed in different locations - one close to the skin, another close to the ambient for measuring additional data. The temperature sensors 224 may be configured to measure and record, skin, ambient, and circuit board temperature. The temperature sensors 224 may be used to measure heat flux between the skin and the ambient temperature sensor. In one aspect, the temperature sensor 224 or sensors are thermistor devices with negative temperature coefficient (NTC) or positive temperature coefficient (PTC), and in another aspect temperature sensor 224 or sensors are using integrated semiconductor devices. This information is provided to the processor 210 and can be processed by the processor 210 and prepared for transmission by a transmitter portion of the RF wireless communication circuit 206. The physiological information measured is processed by the processor 210 and may be transmitted as real-time or raw data, or derived quantities or parameters may be transmitted.
[049] In one aspect, the accelerometer 222 may be a 3-axis accelerometer with a resampling frequency correction processor. Digital accelerometer 222 sensors usually include a MEMS-based acceleration sensor element, a digitizer, and digital interface control logic. Typically these accelerometers use resistor-capacitor (RC) oscillator with low accuracy to strobe the digitizer sampling input. In order to employ signals from such accelerometer 222 in signal processing algorithms the accuracy of RC oscillators is not sufficient. Accordingly, in one aspect, the reusable electronic module 204 comprises an accelerometer sampling frequency correction processor that takes signals from the accelerometer 222 and performs re-sampling to compensate for the RC oscillator error.
[050] In one aspect, the accelerometer 222 sampling frequency correction processor comprises a reference clock (high accuracy oscillator), a fixed up-sample block, a digital filter, a programmable down-sample block, and a control circuit that selects down-sample coefficient based on comparison of timing of the signal from accelerometer and the reference clock. The resampling function keeps alignment to a reference clock in a sliding window to generate a precise sampling rate. An algorithm calibrates the real time 32 kHz clock (X-Tal) 226. The accelerometer 222 sampling frequency correction processor sets the down- sampling coefficient for each frame of data from the accelerometer signal. The present approach provides tracking the timing of the accelerometer signal continuously and selecting the down-sampling coefficient to minimize the accumulated timing error. That allows continuous accelerometer 222 digital data to align to the accurate clock with high precision.
[051] In one aspect, the reusable electronic module 204 employs a low-power low-memory data storage and transfer scheme. In one aspect, storage and transfer of data in the re-wearable wireless device 102 memory 212 is optimized for low-power and low memory usage.
Sensor data is stored as records in the memory 212, each with a type identifier. Records are transferred in a packet payload to an external device by the RF wireless communication circuit 206 in the same format as stored on the wireless wearable sensor 100. Records are stored sequentially with variable length to optimize space usage. A data directory is included which allows fast record read access from the memory 212. A data directory is included which allows fast counting of the data records by type.
[052] In one aspect, the reusable electronic module 204 employs a high-assurance integrity data storage and transfer scheme. The re-wearable wireless device 102 memory storage and transfer scheme is designed for high-assurance data integrity. For each data record stored in the memory 212 of the re-wearable wireless device 102, there is an error-detecting code that can be used to detect data record corruption. When the re-wearable wireless device 102 reads a data record from the memory 212 prior to data packet transfer to the external device, the error-detecting code is checked. When the re-wearable wireless device 102 detects corruption of the stored data record, an error signal is sent to an external device by the RF wireless communication circuit 206. Each packet transferred from the re- wearable wireless device 102 to the external device contains an error-detecting code which can be used by the external device to detect packet corruption.
[053] In one aspect, the signal processing accelerator portion of the ASIC portion 208 includes a computational engine optimized for implementing high efficiency signal processing tasks. In one implementation, signal processing functions are hard coded in logic. Such implementations may be 10x or more efficient compared to software-based algorithms implemented in software running on a processor 210 or microcontroller unit. The efficiency may be in chip sized, power consumption, or clock speed or some combination of all three. Another implementation maintains some level of programmability, but utilizes execution unit(s) that are optimized calculations. One example is an FFT-butterfly engine. The engine may enable FFT calculations for various size data sets, but maintain significant efficiency improvement over software running on a processor 210. The execution units also may be multiply accumulate units (MAC), which are a common DSP function block or could be a floating point calculation unit(s) or FIR filter primitives, etc. In these cases the efficiency for a given integrated circuit process is greater than that of software on a processor 210, but less than that of dedicated hardware, however they are much more flexible.
[054] The signal processing accelerator maintains an interface between the processor 210.
This interface may include first-in-first-out (FIFO) registers, dual port memories, the direct memory access (DMA) engine of the processor 210, and/or registers. The interface typically includes some form of contention recognition or avoidance which may be handled at the register-level or at the memory block level. Mechanisms involved may include register flags set, which can be polled by the processor 210 and signal processing accelerator, interrupts to signal either block or delay functions that hold a read or write request until the higher priority device has completed their activity.
[055] In one aspect, the disposable component 202 is coupled to the reusable electronic
module 204 on the PCBA with one or more sensors attached for interface to the item to be monitored (person, animal, machine, building, etc.). In one aspect, the disposable component 202 may comprise a flex circuit 228, battery holder or housing (covering) and one or more sensors, including but not limited to ambient and body temperature (temp) 230 (living or not), ECG, GSR / electro-dermal activation (EDA) 232, body composition (50Hz), Sp02 / pulse oximetry, strain gauge, among others. Various algorithms executed by the ASIC portion 208 or the processor 210 provide heat flux, HR, HRV, respiration, stress, ECG, steps, body angle, fall detection, among others. [056] In one aspect, the flex circuit 228 comprises interface components that electrically interfaces with the electrical circuits on the PCBA. The flex circuit 228 provides a platform for configurability and enables interfacing of multiple sensor configurations to a single physical PCBA and electrically to the reusable electronic module 204. In one aspect, stainless steel domed electrodes 220a, 220b of the GSR / EDA sensor 232 are electrically coupled to the PCBA via the flex circuit 228.
[057] The re-wearable wireless device 102 collects data from various sensors, applies signal processing algorithms to the data collected, stores the resulting information in memory, and forwards data/information to another device using either a wireless or wired connection. The user interface consists of one or two LEDs 214 and a push-button 234.
[058] Power is provided from a primary battery 214, but could also be sourced from a secondary battery. The battery(s) 214 portion of the electronics module of the reusable component 204 may be selected to source peak currents that are adequate to support the cellular radio with rechargeable Li+ or LiPO (lithium polymer or lithium prismatic cells) being the preferred types, but other primary and secondary battery types are contemplated. In some aspects, the disposable component may include a battery, if a primary cell is used. In some aspects, the reusable component may contain the electronics and the battery 214, assuming a secondary cell is used. The re-wearable wireless device 102 may include a re-charger to recharge the re-useable module. The subject 104 may be supplied with multiple re-useable components to ensure continuity of use while the reusable component is being recharged. Device size may be in the 25 cc range for near-term implementations, with the form factor of the re-wearable wireless device 102 shrinking as semiconductor devices and battery technology improves. Battery size may typically be limited by the peak current draw of the mobile chipset, not by capacity. In most use cases, the current draw of the mobile chipset will be limited by disabling/powering off the chip and periodically (a few times per day) powering the chip and transmitting the data.
[059] One of the challenges in putting a cellular radio in re-wearable wireless device 102 is the power source, the battery 214. The cellular radio cellular wireless communication device 206 will draw from about 700 to about 800 milliamps peaked current may be a challenge to accomplish with the battery 214. Rechargeable batteries 214 such as lithium polymer or lithium prismatic cell as the power source can source adequate current under peak loads. Another key feature is having the re-wearable wireless device 102 last for a week or two weeks where typically a cellular phone battery lasts only a couple of days or a few days. To extend the battery life of the re-wearable wireless device 102 from about one week to about three weeks, connection to the Internet 1 12 (FIG. 1 ) may be limited to few times per day. The re-wearable wireless device 102 can store the data in the memory 212 and buffer data on board. Therefore, it would be possible to connect to Internet 1 12 a few times a day, or even up to ten times a day. In between connections to the Internet, the re-wearable wireless device 102 can turn off the wireless communication device 206. In one aspect, the re-wearable wireless device 102 can be placed in a deep sleep state or a sleep state, which consumes only a few micro amps of current instead of hundreds of micro amps or milliamps of current while it is in the idle state.
[060] To smooth out an 800 milliamps peak from a baseline current draw of 100 to 200
milliamps a capacitor may be employed across the battery 214. A large enough capacitor can effectively reduce what the peak load seen by the battery 214. The capacitor may be a super capacitor, for example. Using this technique, for example, a 300 milliamp hour battery may be adequate to source 800 milliamps.
[061] The re-wearable wireless device 102 can come out of the sleep states either on a timing basis or on an event basis. In one aspect, the re-wearable wireless device 102 has its own low power microcontroller which runs on a continuous basis. The event marker detection algorithm, ECG sensing, heart rate sensing, and other physiologic sensing functions run continuously and when the timer expires, it wakes up the wireless communication circuit 206 to connect to the cellular network 108 (FIG. 1 ) and the Internet 1 12 (FIG. 1 ). In another aspect, the wireless communication circuit 206 can come out of the sleep state based on events such as activity data determined by the accelerometer 222, for example. Events or activity, such as the detection of an arrhythmia, would require an immediate down load. Events may include the subject 104 (FIG. 1 ) pushing the user button 234. In certain circumstances, the event may be lack of activity. Or it may be that the subject 104 has fallen or the data shows an unusual gait via the accelerometer 222. In one aspect, the re- wearable wireless device 102 may comprise microphone device. Accordingly, the wireless communication circuit 206 can be activated based on wheezing events caused by asthma or rapid breathing. Lack of medication could also trigger the wireless communication circuit 206 to come out of sleep mode.
[062] The mobile chipset also may be used as a telephone for voice communication by utilizing a user interface (Ul) provided on the re-wearable wireless device 102 to activate/power it and utilizing voice recognition to cause it to dial. The Ul may include a push button 234, an accelerometer 222 with pattern recognition capabilities, a speaker, and a microphone.
[063] The disposable component 202 may include electrodes 220a, 220b and one or more types of adhesives for adhering the re-wearable wireless device 102 to the skin of the subject 104 (FIG. 1 ), which has a typical life of about 3 to about 10 days on most people. The sensor data may include ECG data (via hydrogel electrodes) 220a, 220b,
accelerometer data in up to 3 axis, temperature data, adjacent to skin (thermistor), ambient (or case temperature away from body) (thermistor), temperature on the PCBA (silicon device incorporated into the ASIC portion 208), GSR, EDA (discrete stainless-steel electrodes), high-frequency, in-body electric signals - 10 KHz and higher, sampled via conduction through the hydrogel skin electrodes (same as ECG).
[064] As shown, the re-wearable wireless device 102 may comprise a memory 212. In various aspects, the memory 212 may comprise any machine-readable or computer-readable media capable of storing data, including both volatile and non-volatile memory. For example, memory may include read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDR-RAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory (e.g., NOR or NAND flash memory), content addressable memory (CAM), polymer memory (e.g., ferroelectric polymer memory), phase-change memory (e.g., ovonic memory), ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, disk memory (e.g., floppy disk, hard drive, optical disk, magnetic disk), or card (e.g., magnetic card, optical card), or any other type of media suitable for storing information.
[065] The re-wearable wireless device 102 may comprise a processor 210 such as a central processing unit (CPU). In various aspects, the processor 210 may be implemented as a general purpose processor, a chip multiprocessor (CMP), a dedicated processor, an embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a co-processor, a microprocessor such as a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC)
microprocessor, and/or a very long instruction word (VLIW) microprocessor, or other processing device. The processor also may be implemented by a controller, a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth.
[066] In various aspects, the processor 210 may be arranged to run an operating system (OS) and various mobile applications. Examples of an OS include, for example, operating systems generally known under the trade name of Microsoft Windows OS, and any other proprietary or open source OS. Examples of mobile applications include, for example, a telephone application, a camera (e.g., digital camera, video camera) application, a browser application, a multimedia player application, a gaming application, a messaging application (e.g., e-mail, short message, multimedia), a viewer application, and so forth.
[067] In various aspects, the processor 210 may be arranged to receive information through a communications interface. The communications interface may comprises any suitable hardware, software, or combination of hardware and software that is capable of coupling the re-wearable wireless device 102 to one or more networks and/or devices.
[068] Wireless communication modes include any mode of communication between points that utilizes, at least in part, wireless technology including various protocols and combinations of protocols associated with wireless transmission, data, and devices. The points include, for example, wireless devices such as wireless headsets, audio and multimedia devices and equipment, such as audio players and multimedia players, telephones, including mobile telephones and cordless telephones, and computers and computer-related devices and components, such as printers.
[069] Wired communication modes include any mode of communication between points that utilizes wired technology including various protocols and combinations of protocols associated with wired transmission, data, and devices. The points include, for example, devices such as audio and multimedia devices and equipment, such as audio players and multimedia players, telephones, including mobile telephones and cordless telephones, and computers and computer-related devices and components, such as printers.
[070] In various aspects, the communications interface may comprise one or more interfaces such as, for example, a wireless communications interface, a wired communications interface, a network interface, a transmit interface, a receive interface, a media interface, a system interface, a component interface, a switching interface, a chip interface, a controller, and so forth. When implemented by a wireless device or within wireless system, for example, the local node 106 may include a wireless interface comprising one or more antennas, transmitters, receivers, transceivers, amplifiers, filters, control logic, and so forth.
[071] In various aspects, the re-wearable wireless device 102 may provide voice and/or data communications functionality in accordance with different types of cellular radiotelephone systems. In various implementations, the described aspects may communicate over wireless shared media in accordance with a number of wireless protocols. Examples of wireless protocols may include various wireless local area network (WLAN) protocols, including the Institute of Electrical and Electronics Engineers (IEEE) 802. xx series of protocols, such as IEEE 802.1 1 a/b/g/n, IEEE 802.16, IEEE 802.20, and so forth. Other examples of wireless protocols may include various wireless wide area network (WWAN) protocols, such as GSM cellular radiotelephone system protocols with GPRS, CDMA cellular radiotelephone communication systems with 1xRTT, EDGE systems, EV-DO systems, EV- DV systems, HSDPA systems, and so forth. Further examples of wireless protocols may include wireless personal area network (PAN) protocols, such as an Infrared protocol, a protocol from the Bluetooth Special Interest Group (SIG) series of protocols, including Bluetooth Specification versions v1.0, v1.1 , v1.2, v2.0, v2.0 with Enhanced Data Rate (EDR), as well as one or more Bluetooth Profiles, and so forth. Yet another example of wireless protocols may include near-field communication techniques and protocols, such as electro-magnetic induction (EMI) techniques. An example of EMI techniques may include passive or active radio-frequency identification (RFID) protocols and devices. Other suitable protocols may include Ultra Wide Band (UWB), Digital Office (DO), Digital Home, Trusted Platform Module (TPM), ZigBee, and so forth.
[072] In various implementations, the described aspects may comprise part of a cellular
communication system. Examples of cellular communication systems may include CDMA cellular radiotelephone communication systems, GSM cellular radiotelephone systems, North American Digital Cellular (NADC) cellular radiotelephone systems, Time Division Multiple Access (TDMA) cellular radiotelephone systems, Extended-TDMA (E-TDMA) cellular radiotelephone systems, Narrowband Advanced Mobile Phone Service (NAMPS) cellular radiotelephone systems, third generation (3G) wireless standards systems such as WCDMA, CDMA-2000, UMTS cellular radiotelephone systems compliant with the Third- Generation Partnership Project (3GPP), fourth generation (4G) wireless standards, and so forth. [073] Further, in various aspects, the re-wearable wireless device 102 may incorporate and/or be associated with, e.g., communicate with, various devices. Such devices may generate, receive, and/or communicate data, e.g., physiologic data. The devices include, for example, "intelligent" devices such as gaming devices, e.g., electronic slot machines, handheld electronic games, electronic components associated with games and recreational activities.
[074] In addition to the standard voice function of a telephone, various aspects of mobile
telephones may support many additional services and accessories such as short message service (SMS) for text messaging, email, packet switching for access to the Internet, java gaming, wireless, e.g., short range data / voice communications, infrared, camera with video recorder, and multimedia messaging system (MMS) for sending and receiving photos and video. Some aspects of mobile telephones connect to a cellular network of base stations (cell sites), which is, in turn, interconnected to the public switched telephone network (PSTN) or satellite communications in the case of satellite phones. Various aspects of mobile telephones can connect to the Internet, at least a portion of which can be navigated using the mobile telephones.
[075] Some embodiments may be implemented, for example, using a machine-readable
medium or article which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with the embodiments. Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, and the like. The instructions may be implemented using any suitable high-level, low-level, object- oriented, visual, compiled and/or interpreted programming language, such as C, C++, Java, BASIC, Perl, Matlab, Pascal, Visual BASIC, assembly language, machine code, and so forth.
[076] In various aspects, the re-wearable wireless device 102 also functions to communicate, e.g., receive and transmit, non-physiologic data. Example of non-physiologic data include, for example, gaming rules and data generated by a separate cardiac-related device such as an implanted pacemaker and communicated to the hub directly or indirectly.
[077] The re-wearable wireless device 102 may include additional functionality typically found in other mobile device such as, for example, personal communication devices, handheld devices, and mobile telephones. In various aspects, the re-wearable wireless device 102 may comprise functionality found in a handheld portable device, computer, mobile telephone, sometimes referred to as a smartphone, tablet personal computer (PC), kiosk, desktop computer, or laptop computer, or any combination thereof. Examples of smartphones include, for example, products generally known under the following trade designations Blackberry, iPhone, Android, Windows Phone, among others. Although some aspects of the re-wearable wireless device 102 may be described with a mobile or fixed computing device implemented as a smartphone, personal digital assistant, laptop, desktop computer by way of example, it may be appreciated that the various aspects are not limited in this context. For example, a mobile computing device may comprise, or be implemented as, any type of wireless device, mobile station, or portable computing device with a self- contained power source, e.g., battery, such as the laptop computer, ultra-laptop computer, personal digital assistant (PDA), cellular telephone, combination of cellular telephone/PDA, mobile unit, subscriber station, user terminal, portable computer, handheld computer, palmtop computer, wearable computer, media player, pager, messaging device, data communication device, and so forth. A fixed computing device, for example, may be implemented as a desk top computer, workstation, client/server computer, and so forth.
[078] FIG. 3 is a block functional diagram 300 of one aspect of an integrated circuit component of the electronics module of the reusable component 204 re-wearable wireless device 102 shown in FIGS. 1 and 2. In FIG. 3, the electronics module of the reusable component 204 of the re-wearable wireless device 102 comprises an electrode input 310. Electrically coupled to the electrode input 310 are a transbody conductive communication module 320 and a physiological sensing module 330. In one aspect, the transbody conductive communication module 320 is implemented as a first, e.g., high, frequency (HF) signal chain and the physiological sensing module 330 is implemented as a second, e.g., low, frequency (LF) signal chain. Also shown are CMOS temperature sensing module 340 (for detecting ambient temperature) and a 3-axis accelerometer 350. The re-wearable wireless device 102 also comprises a processing engine 360 (for example, a microcontroller and digital signal processor), a non-volatile memory 670 (for data storage), and a wireless
communication module 380 comprising a mobile chipset to receive and/or transmit data to and from a cellular communication network. In various aspects, the communication modules 320, 380 may comprise one or more transmitters/receivers ("transceiver") modules. As used herein, the term "transceiver" may be used in a very general sense to include a transmitter, a receiver, or a combination of both, without limitation. In one aspect, the transbody conductive communication module 320 is configured to communicate with an event marker system 420 (FIG. 4).
[079] The sensors 316 typically contact the subject 104 (FIG. 1 ), e.g., are removably attached to the torso. In various aspects, the sensors 616 may be removably or permanently attached to the re-wearable wireless device 102. For example, the sensors 316 may be removably connected to the re-wearable wireless device 102 by snapping metal studs. The sensors 316 may comprise, for example, various devices capable of sensing or receiving the physiologic data. The types of sensors 316 include, for example, electrodes such as biocompatible electrodes. The sensors 316 may be configured, for example, as a pressure sensor, a motion sensor, an accelerometer, an electromyography (EMG) sensor, an event marker system, a biopotential sensor, an electrocardiogram sensor, a temperature sensor, a tactile event marker sensor, and an impedance sensor.
[080] The feedback module 318 may be implemented with software, hardware, circuitry, various devices, and combinations thereof. The function of the feedback module 318 is to provide communication with the subject 104 (FIG. 1 ) in a discreet, tactful, circumspect manner as described above. In various aspects the feedback module 318 may be implemented to communicate with the subject 104 using techniques that employ visual, audio,
vibratory/tactile, olfactory, and taste.
[081] FIG. 4 shows one aspect of an event marker system 420. In various aspects the event marker system 420 can be used in association with any medication product, as mentioned above, to determine the origin of the medication and to confirm that at least one of the right type and the right dosage of medication was delivered to the patient and in some aspects to determine when a patient takes the medication product. The scope of the present disclosure, however, is not limited by the environment and the medication product that may be used with the system 420. For example, the system 420 may be activated either in wireless mode, in galvanic mode by placing the system 420 within a capsule and then placing the capsule within a conducting fluid, or a combination thereof, or exposing the system 420 to air. Once placed in a conducting fluid, for example, the capsule would dissolve over a period of time and release the system 420 into the conducting fluid. Thus, in one aspect, the capsule would contain the system 420 and no product. Such a capsule may then be used in any environment where a conducting fluid is present and with any product. For example, the capsule may be dropped into a container filled with jet fuel, salt water, tomato sauce, motor oil, or any similar product. Additionally, the capsule containing the system 420 may be ingested at the same time that any pharmaceutical product is ingested in order to record the occurrence of the event, such as when the product was taken.
[082] In the specific example of the system 420 combined with a medication or pharmaceutical product, as the product or pill is ingested, or exposed to air, the system 420 is activated in galvanic mode. The system 420 controls conductance to produce a unique current signature that is detected by the re-wearable wireless device 102, for example, thereby signifying that the pharmaceutical product has been taken. When activated in wireless mode, the system controls modulation of capacitive plates to produce a unique voltage signature associated with the system 420 that is detected.
[083] In one aspect, the system 420 includes a framework 422. The framework 422 is a chassis for the system 420 and multiple components are attached to, deposited upon, or secured to the framework 422. In this aspect of the system 420, a digestible material 424 is physically associated with the framework 422. The material 424 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework all of which may be referred to herein as "deposit" with respect to the framework 422. The material 424 is deposited on one side of the framework 422. The materials of interest that can be used as material 424 include, but are not limited to: Cu, CuCI, or Cul. The material 424 is deposited by physical vapor deposition, electrodeposition, or plasma deposition, among other protocols. The material 424 may be from about 0.05 to about 500 μηη thick, such as from about 5 to about 100 μηη thick. The shape is controlled by shadow mask deposition, or photolithography and etching. Additionally, even though only one region is shown for depositing the material, each system 420 may contain two or more electrically unique regions where the material 424 may be deposited, as desired. [084] At a different side, which is the opposite side as shown in Fig. 7, another digestible material 426 is deposited, such that the materials 424, 426 are dissimilar and insulated from each other. Although not shown, the different side selected may be the side next to the side selected for the material 424. The scope of the present disclosure is not limited by the side selected and the term "different side" can mean any of the multiple sides that are different from the first selected side. In various aspects, the dissimilar material may be located at different positions on a same side. Furthermore, although the shape of the system is shown as a square, the shape may be any geometrically suitable shape. The materials 424, 426 are selected such that they produce a voltage potential difference when the system 420 is in contact with conducting liquid, such as body fluids. The materials of interest for material 426 include, but are not limited to: Mg, Zn, or other electronegative metals. As indicated above with respect to the material 424, the material 426 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework. Also, an adhesion layer may be necessary to help the material 426 (as well as material 724 when needed) to adhere to the framework 722. Typical adhesion layers for the material 426 are Ti, TiW, Cr or similar material. Anode material and the adhesion layer may be deposited by physical vapor deposition, electrodeposition or plasma deposition. The material 426 may be from about 0.05 to about 500 μηη thick, such as from about 5 to about 100 μηη thick. However, the scope of the present disclosure is not limited by the thickness of any of the materials nor by the type of process used to deposit or secure the materials to the framework 422.
[085] According to the disclosure set forth, the materials 424, 426 can be any pair of materials with different electrochemical potentials. Additionally, in the embodiments wherein the system 420 is used in-vivo, the materials 424, 426 may be vitamins that can be absorbed. More specifically, the materials 424, 426 can be made of any two materials appropriate for the environment in which the system 420 will be operating. For example, when used with an ingestible product, the materials 424, 426 are any pair of materials with different
electrochemical potentials that are ingestible. An illustrative example includes the instance when the system 420 is in contact with an ionic solution, such as stomach acids. Suitable materials are not restricted to metals, and in certain embodiments the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuCI or Cul). With respect to the active electrode materials, any pairing of substances-metals, salts, or intercalation compounds-with suitably different
electrochemical potentials (voltage) and low interfacial resistance are suitable. [086] Materials and pairings of interest include, but are not limited to, those reported in TABLE 1 below. In one embodiment, one or both of the metals may be doped with a non-metal, e.g., to enhance the voltage potential created between the materials as they come into contact with a conducting liquid. Non-metals that may be used as doping agents in certain embodiments include, but are not limited to: sulfur, iodine, and the like. In another embodiment, the materials are copper iodine (Cul) as the anode and magnesium (Mg) as the cathode. Aspects of the present disclosure use electrode materials that are not harmful to the human body.
[087]
Figure imgf000025_0001
[088] Thus, when the system 420 is in contact with the conducting fluid, a current path is formed through the conducting fluid between the dissimilar materials 424, 426. A control device 428 is secured to the framework 422 and electrically coupled to the materials 424, 426. The control device 428 includes electronic circuitry, for example control logic that is capable of controlling and altering the conductance between the materials 424, 426.
[089] The voltage potential created between the dissimilar materials 424, 426 provides the power for operating the system as well as produces the current flow through the conducting fluid and the system 420. In one aspect, the system 420 operates in direct current mode. In an alternative aspect, the system 420 controls the direction of the current so that the direction of current is reversed in a cyclic manner, similar to alternating current. As the system reaches the conducting fluid or the electrolyte, where the fluid or electrolyte component is provided by a physiological fluid, e.g., stomach acid, the path for current flow between the dissimilar materials 424, 426 is completed external to the system 420; the current path through the system 420 is controlled by the control device 428. Completion of the current path allows for the current to flow and in turn a receiver, not shown, can detect the presence of the current and recognize that the system 420 has been activate and the desired event is occurring or has occurred.
[090] In one embodiment, the two dissimilar materials 424, 426 are similar in function to the two electrodes needed for a direct current power source, such as a battery. The conducting liquid acts as the electrolyte needed to complete the power source. The completed power source described is defined by the physical chemical reaction between the dissimilar materials 424, 426 of the system 420 and the surrounding fluids of the body. The completed power source may be viewed as a power source that exploits reverse electrolysis in an ionic or a conduction solution such as gastric fluid, blood, or other bodily fluids and some tissues. Additionally, the environment may be something other than a body and the liquid may be any conducting liquid. For example, the conducting fluid may be salt water or a metallic based paint.
[091] In certain aspects, the two dissimilar materials 424, 426 are shielded from the surrounding environment by an additional layer of material. Accordingly, when the shield is dissolved and the two dissimilar materials 424, 426 are exposed to the target site, a voltage potential is generated.
[092] In certain aspects, the complete power source or supply is one that is made up of active electrode materials, electrolytes, and inactive materials, such as current collectors, packaging. The active materials are any pair of materials with different electrochemical potentials. Suitable materials are not restricted to metals, and in certain embodiments the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as Cul). With respect to the active electrode materials, any pairing of substances-metals, salts, or intercalation compounds— with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.
[093] A variety of different materials may be employed as the materials that form the electrodes.
In certain embodiments, electrode materials are chosen to provide for a voltage upon contact with the target physiological site, e.g., the stomach, sufficient to drive the system of the identifier. In certain embodiments, the voltage provided by the electrode materials upon contact of the metals of the power source with the target physiological site is 0.001 V or higher, including 0.01 V or higher, such as 0.1 V or higher, e.g., 0.3 V or higher, including 0.5 volts or higher, and including 1.0 volts or higher, where in certain embodiments, the voltage ranges from about 0.001 to about 10 volts, such as from about 0.01 to about 10 V. ] Referring still to Fig. 4, the dissimilar materials 424, 426 provide the voltage potential to activate the control device 428. Once the control device 428 is activated or powered up, the control device 428 can alter conductance between the first and second materials 424, 426 in a unique manner. By altering the conductance between the first and second materials 424, 426, the control device 428 is capable of controlling the magnitude of the current through the conducting liquid that surrounds the system 420. This produces a unique current signature that can be detected and measured by a receiver (not shown), which can be positioned internal or external to the body. The receiver is disclosed in greater detail in US Patent Application Serial No. 12/673,326 entitled "BODY-ASSOCIATED RECEIVER AND
METHOD" filed on December 15, 2009, and published as 2010-0312188 A1 dated
December 09, 2010 which is incorporated herein by reference in its entirety. In addition to controlling the magnitude of the current path between the materials, non-conducting materials, membrane, or "skirt" are used to increase the "length" of the current path and, hence, act to boost the conductance path, as disclosed in the U.S. patent application Ser. No. 12/238,345 entitled, "IN-BODY DEVICE WITH VIRTUAL DIPOLE SIGNAL
AMPLIFICATION" filed Sep. 25, 2008, the entire content of which is incorporated herein by reference. Alternatively, throughout the disclosure herein, the terms "non-conducting material," "membrane," and "skirt" are interchangeably used with the term "current path extender" without impacting the scope or the present embodiments and the claims herein. The skirt, shown in portion at 425, 427, respectively, may be associated with, e.g., secured to, the framework 422. Various shapes and configurations for the skirt are contemplated as within the scope of the various aspects of the present invention. For example, the system 420 may be surrounded entirely or partially by the skirt and the skirt maybe positioned along a central axis of the system 120 or off-center relative to a central axis. Thus, the scope of the present invention as claimed herein is not limited by the shape or size of the skirt.
Furthermore, in other embodiments, the dissimilar materials 424, 426 may be separated by one skirt that is positioned in any defined region between the dissimilar materials 424, 426. [095] The system 420 may be grounded through a ground contact. The system 420 also may include a sensor module. In operation, ion or current paths are established between the first material 424 to the second material 426 and through a conducting fluid in contact with the system 420. The voltage potential created between the first and second materials 424, 426 is created through chemical reactions between the first and second materials 424, 426 and the conducting fluid. In one aspect, the surface of the first material 424 is not planar, but rather an irregular surface. The irregular surface increases the surface area of the material and, hence, the area that comes in contact with the conducting fluid.
[096] In one aspect, at the surface of the first material 424, there is chemical reaction between the material 424 and the surrounding conducting fluid such that mass is released into the conducting fluid. The term mass as used herein refers to protons and neutrons that form a substance. One example includes the instant where the material is CuCI and when in contact with the conducting fluid, CuCI becomes Cu (solid) and CI- in solution. The flow of ions into the conduction fluid is via ion paths. In a similar manner, there is a chemical reaction between the second material 426 and the surrounding conducting fluid and ions are captured by the second material 426. The release of ions at the first material 424 and capture of ion by the second material 426 is collectively referred to as the ionic exchange. The rate of ionic exchange and, hence the ionic emission rate or flow, is controlled by the control device 428. The control device 428 can increase or decrease the rate of ion flow by altering the conductance, which alters the impedance, between the first and second materials 424, 426. Through controlling the ion exchange, the system 420 can encode information in the ionic exchange process. Thus, the system 420 uses ionic emission to encode information in the ionic exchange.
[097] The control device 428 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, the control device 428 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, the control device 428 encodes information in the current flow or the ionic exchange. For example, the control device 428 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency Modulation (FM), Amplitude Modulation (AM), On-Off Keying, and PSK with On-Off Keying. [098] Various aspects of the system 420 may comprise electronic components as part of the control device 428. Components that may be present include but are not limited to: logic and/or memory elements, an integrated circuit, an inductor, a resistor, and sensors for measuring various parameters. Each component may be secured to the framework and/or to another component. The components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided.
[099] The system 420 controls the conductance between the dissimilar materials and, hence, the rate of ionic exchange or the current flow. Through altering the conductance in a specific manner the system is capable of encoding information in the ionic exchange and the current signature. The ionic exchange or the current signature is used to uniquely identify the specific system. Additionally, the system 420 is capable of producing various different unique exchanges or signatures and, thus, provides additional information. For example, a second current signature based on a second conductance alteration pattern may be used to provide additional information, which information may be related to the physical
environment. To further illustrate, a first current signature may be a very low current state that maintains an oscillator on the chip and a second current signature may be a current state at least a factor of ten higher than the current state associated with the first current signature.
[0100] FIGS. 5-10 illustrate various aspects of re-wearable wireless devices. The re-wearable wireless device comprises a reusable component and a disposable component. The reusable component generally comprises an electronics module and a power source. The disposable component generally comprises skin electrodes and skin adhesive.
[0101] The electronics module is a durable component, meaning its lifetime exceeds that of some or all of the remaining components. The electronics module lifetime may range up to several years. The skin adhesive is a consumable component with a lifetime less than its useable lifetime is less than that for the durable components. Typical lifetimes for the skin adhesive may range from less than 24 hours to 14 days or more. The skin electrodes and power source may be either durable or consumable components depending on the technology selected to implement those components. The lifetime for skin electrodes may range from less than 24 hours to years, depending on the type. The power source may have a lifetime of less than 24 hours to years depending on type. The electronics, electrodes and power source are all considered electrical or electronic components. The re- wearable wireless device also includes one other feature, means to interconnect the electronic components.
[0102] The re-wearable wireless device permits user replacement of the consumable
components, permitting the high cost components, the durable component(s) to be used repeatedly, lowering the overall cost of use for the system. FIGS. 5-10 illustrate three aspects of re-wearable wireless devices: a snap-in module, an overlay module, and a wire module.
[0103] FIGS. 5-7 illustrate one aspect of a snap-in module type re-wearable wireless device comprising a reusable component and a disposable component configured to be secured to a user via an adhesive layer. FIG. 5 illustrates one aspect of a disposable component 500 comprising an adhesive base 502, electrodes 504a, 504b (shown in phantom), electrical contacts 506a, 506b, and a mechanical snap-in connect mechanism 508. The electrodes 504a, 504b are electrically coupled to the electrical contacts 506a, 506b. The mechanical snap-in connect mechanism 508 comprises projecting elements 510a, 510b projecting at right angles toward a center portion of the mechanical snap-in connect mechanism 508.
[0104] FIG. 6 is a perspective top view of one aspect a reusable component 600 comprising an electronics module located within a housing 602 configured to mate with the mechanical snap-in connect mechanism 508 of the disposable component 500 shown in FIG. 5. The housing 602 of the reusable component 600 comprises depressions 604a, 604b (not shown) formed in the housing 602 to engage the respective projecting elements 510a, 510b such that the reusable component 600 snaps into the mechanical snap-in connect mechanism 508 and is retained thereby.
[0105] FIG. 7 is a perspective bottom view of one aspect of a reusable component 600. A
bottom portion 606 of the reusable component 600 comprises electrical contacts 702a, 702b, which are configured to electrically couple to the electrical contacts 506a, 506b in the mechanical snap-in connect mechanism 508. Accordingly, electrical signals detected by the electrodes 504a, 504b are coupled to the electronics module of the reusable component through the electrical contacts 702a, 702b. The electronics module is located within the housing 602 of the reusable component 600. The electronics module is functionally equivalent to the electronics modules shown in FIGS. 2-3. In addition, the bottom portion 606 of the reusable component 600 may further comprises a communication channel I/O Address 704a and PIN 704b that uniquely identifies the electronics module of the reusable component 600. Modern wireless communications between two devices requires exchange of an address and a PIN to establish a link. The I/O Address and PIN 608 may be provided on a label, directly printed on the bottom portion 606 or other part of the housing 602, or any other suitable means.
[0106] The reusable component 600 comprising the electronics module is a durable device and the adhesive base 502 and electrodes 504a, 504b are consumable. The power source - battery - may be either consumable or durable. If the battery is packaged in the skin adhesive base 502 envelope, then it is a consumable. A LiMn coin cell would typically be used with capacity matched to ensure battery lifetime comparable to the skin adhesive base 502. Alternatively, the battery may be a durable component packaged with the electronics module. A rechargeable battery could be used and means to recharge the battery must be provided - either through a connector or via inductive coil. A primary battery could also be used since the electronics module is otherwise low power, and primary batteries provide significantly greater energy density than a secondary battery. Electrical means to connect the disposable component 500 and the reusable component 600 are provided by electrical spring contacts 506a, 506b, 702a, 702b integrated into the respective components.
[0107] The disposable component 500 may be constructed of a flex circuit for interconnection and to form the electrodes 504a, 504b in conjunction with one or more hydrogel. The housing 602 of the reusable component 600 comprises a plastic component and provides means to latch the electronics module onto the adhesive base 502 and the entire reusable component 600 is housed by closed-cell foam. The skin adhesive base 502 is likely a composite type with a hydro-colloid as the primary adhesive with an acrylic type provided to hold the re-wearable wireless device on while the hydro-colloid activates and to also avoid having the hydro-colloid ooze out of the side of the re-wearable wireless device.
[0108] FIGS. 8 and 9 illustrate one aspect of a re-wearable wireless device comprising a
reusable component 800 and a disposable component 900 configured to be secured to a user via an adhesive overlay 902. FIG. 8 illustrates one aspect of a reusable component 800 and FIG. 9 illustrates one aspect of an adhesive overlay 902. The re-wearable wireless device shown in FIGS. 8 and 9, the durable reusable component 800 comprises the electronics module, skin electrodes 802a, 802b, and power source form the and the disposable component 900 only the skin adhesive overlay 902. There is no electrical interconnect outside the reusable component 800. The power source may be implemented as described in connection with FIGS. 5-7 for the snap-in module. Electrodes 802a, 02b may be dry or capacitive type. In this case the skin adhesive overlay 902 may comprise a 3- piece composite with a center section 904 configured to hold the reusable component 800 comprising the electronics module in place, but not create a sticky build up on the module, an hydrocolloid for primary skin adhesion and an acrylic with function as described above.
[0109] FIG. 10 illustrates one aspect of a re-wearable wireless device comprising a reusable component 1000 and a disposable component 1002. Electrodes 1004a, 1004b are attached to a subject. The electrodes 1004a, 1004b are attached to an electronics module of the reusable component 1000 via corresponding electrode terminals 1006a, 1006b. The re- wearable wireless device shown in FIG. 10, In this case the electronics and power source are durable. The skin electrodes and adhesive are consumable. The electronics and power source are packaged in the reusable component 1000 housing 1008 such that it adheres to clothing the subject is otherwise wearing instead of to the skin via adhesive. Most commonly this will be done via a spring clip, but other means such as Velcro or adhesive could be used. As illustrated in FIG. 10, common ECG electrodes 1004a, 1004b may be employed in combination with the electronics module to form the re-wearable wireless device. Alternatively, the electrodes 1004a, 1004b could be integrated into a single unit which ensures proper spacing of the electrodes 1004a, 1004b. Interconnection between the electrodes 1004a, 1004b and the electronics module is provided by a 2-conductor cable 1010a, 1010b coupled to corresponding electrode terminals 1006a, 1006b. A connector 1012 is coupled to a plug receptacle in the electronics module, or the connection may be fixed. The connector 1012 may be provided on either end of the cable.
[0110] FIG. 1 1 illustrates one aspect of an adhesive base 1 100 to be secured to the subject.
The adhesive base 1 100 may be used in conjunction with any of the re-wearable wireless devices disclosed herein. Adhesion and length of adhesion of any adhesive based wearable device can be affected by different level of sensitivity, different skin types, activity levels, and body shape of the subject. Accordingly, in one aspect, the adhesive base 1 100 comprises an adhesive system that at the same time does not irritate the skin of the user, is comfortable to wear, is not too large, remains attached for the design lifetime, regardless of user variability, and is simple to apply to the user by the user.
[0111] In one aspect, the adhesive base 1 100 for a reusable wearable device is configured with an adhesive system that uses two different adhesive layers 1 102, 1 104 to accomplish these functionalities. A primary adhesive layer 1 102 is a hydrocolloid adhesive which is known to be very mild to the skin of users and can be easily tolerated my most users for periods of time extending beyond about 7 days. The primary adhesive layer 1 102 does not, however, have the most durable attachment to the skin and is susceptible to excessive water absorption. A secondary adhesive layer 1 104 is used to partially cover the primary adhesive layer 1 102 to create a perimeter around the hydrocolloid based primary adhesive layer 1 102. The secondary adhesive layer 1 104 is configured to have a stronger adhesive force to the skin and serves to keep the edges 1 106 of the adhesive base 1 100 from peeling away from the skin. In one aspect, the primary adhesive layer 1 102 is distributed over a surface area that is greater than the surface area over which the secondary adhesive layer 1 104 is distributed over. The outer secondary adhesive 1 104 is the key to long wear times. If this outer perimeter remains intact, the patch can remain attached for about 7 to about 14 days.
[0112] As described above, each user and their activities can affect the adhesion of the
perimeter 1 106 of adhesive. Therefore, the adhesive base 1 100 may be employed as a disposable component of a reusable wearable device that includes a base hydrocolloid primary adhesive layer 1 102 component and a secondary adhesive layer 1 104 component that is added to the reusable wearable device to create an edge seal and attach the adhesive base 1 100 to the user. The secondary adhesive layer 1 104 may be acrylic based or cyanoacrylate based if a more permanent bond is used. Other secondary adhesive layers 1 104 may be employed without limitation. The secondary adhesive 1 104 may be provided to the subject as an accessory. Each reusable wearable device can be supplied with multiple secondary adhesive layer 1 104 strips to allow for easy replacement and reattaching of the reusable wearable device. The secondary adhesive layer 1 104 also can be supplied in different versions with different levels of adhesive and different amounts of adhesive surface area to accommodate different use requirements. This will enable the reusable wearable device to be worn and used for as long as the battery will allow based on programming. In one aspect, the adhesive base 1 100 may be adapted and configured to be employed with the reusable wearable device shown in FIGS. 5-7. In another aspect, with the addition of the overlay portion 1 108, shown in phantom to indicate that it is optional, the adhesive base 1 100 may be adapted and configured to be employed with the reusable wearable device shown in FIGS. 8-9.
[0113] In various aspects, the reusable wearable devices described in connection with FIGS. 1 , 2, and 6-12 the described throughout this disclosure, the disposable component and the reusable component may be interconnected in a variety of suitable techniques. For example, the disposable component and the reusable component may be interconnected by way of a Zebra connector, surface mount technology (SMT) battery connectors, cellular/mobile phone battery connector concept, flexing battery connects on EM, non- directional seal connections with conductive rubber, hook-and-loop connectors commonly referred to in commerce as Velcro connections and Velcro pins, and a stabbing connector comprising simple electrode surface traces on the disposable component, wherein a thumbtack is stabbed through the trace, wherein the tip of the thumbtack enters the module, and wherein the head of the thumbtack acts as an electrode.
[0114] FIG. 12 Ais a diagram illustrating a process of capturing an image of the communication channel I/O Address 1204a and PIN 1204b located on a bottom portion 1202 of a reusable component 1200. In certain aspects, a reusable wearable wireless device such as the reusable component 1200, may not include a cellular phone chipset, as previously discussed, and may contain only a short range radio to provide wireless communication. In such implementations, the short range radio in the electronics module of the reusable component 1200 is configured to exchange information with a local cellular phone, or other local wireless communication device, in order to access wide area networks such as the cellular network 108, the Internet 1 12, other networks 1 10 in order to access the remote server 106, as described in connection with FIG. 1 . The short range radio in the electronics module of the reusable component 1200 must be paired with the local cell phone in order for the two devices to communicate without interference. Most modern wireless
communications between two devices requires exchange of an I/O address 1204a and a PIN 1204b to establish an authenticated encrypted link. An example of this is Bluetooth, where the address uniquely identifies the device in an environment where many similar devices might be operating. That is how multiple people while in the same room can simultaneously use different Bluetooth headsets without interference. The PIN 1204b adds a level of security to prevent fraudulent use of the hardware device, e.g., headset, to dial clandestine telephone calls. Accordingly, the reusable component 1200 of the wearable wireless device includes the I/O Address 1204a and PIN 1204b associated wit the short range radio.
[0115] In accordance with various aspects of the present disclosure, a reusable component 1200 equipped with a short range radio can use a wireless link to download data from the cellular network 108 and from there connect to other networks 1 10 or the Internet 1 12, as discussed in detail in connection with FIG. 1. Although currently Bluetooth is a common and widely available short range radio wireless standard available in cellular telephones, it is contemplated that in the future standards such as BLE may be common. Accordingly, the present disclosure should not be limited in this context.
[0116] In one aspect, the electronics module of the reusable component 1200 may be paired to a cellular telephone in order for the electronics module to access external networks 108, 1 10, 1 12 or the remote server 106. This communication may be a weekly exercise, assuming the reusable component 1200 has at least one week of lifetime. Currently, to make a wireless wearable device discoverable, the subject is charged wit the task of activating the wireless wearable device to a cellular telephone by pressing an external button switch, making the wireless wearable device discoverable. Once the button is pressed, the short range radio broadcasts its I/O Address 1204a and PIN 1204b to whatever devices are in range. Then the subject manually selects the I/O Address from a list of devices discovered in the area and copies the PIN 1204b from a label 1214 on the wearable electronics module (or from its package) and enters it into the cellular phone using the keypad/keyboard on the phone and an encrypted link is created between the devices on that basis. Because the manual technique of entering the I/O Address 1204a and PIN 1204b is inherently prone to error and frustration when the I/O Address 1204a and PIN 1204b are misentered and the pairing fails. Alternatively, based only on a broadcasted I/O Address 1204a an unencrypted link may be created between the two devices and used to exchange the PIN 1204b. The PIN 1204b is used to create an encrypted link which is used for further communications. The risk is the exchange on PIN 1204b can be intercepted and the secure link may be compromised.
[0117] To overcome certain limitations inherent with this manual process, in one aspect, a new technique is provided as shown in FIG. 12 B, where a camera phone 1210 is employed to capture an image 1212 of the I/O Address 1204 and, optionally, the PIN 1204. The I/O Address 1204 and, optionally, the PIN 1204 are located on the reusable component 1200 as an insignia in a form that is recognizable by machine, human, or combinations thereof. As shown in FIG. 12, the I/O Address and PIN are provided on a label, which is attached to a bottom portion 1202 of the reusable component 1200. It will be appreciated that most modern cellular telephones (smartphones) include fairly high resolution built-in image sensors/cameras and are fairly powerful computing devices, a smartphone 1210 (or suitable cellular telephone) equipped with a built-in camera and, thus, may be employed to capture an image 1212 of the I/O Address and PIN 1204. [0118] In one aspect of the proposed pairing scheme, the subject 104 uses the smartphone 1210 camera to capture an image 1212 of the label 1214 on the reusable component 1200. The label 1214 may have both the device I/O Address 1204a and PIN 1204b or just the PIN 1204b printed on it. The printing may be human readable characters or may be machine readable characters such as bar codes or quick response (QR) codes. A pairing software application running on the smartphone 1210 uses an optical character recognition (OCR) algorithm to convert the captured image 1212 into data - the device I/O Address 1204a and/or the PIN 1204b, thus extracting the pin from the captured image 1212 by the OCR software. The application might also use pattern recognition algorithms to aid the operator in diagnosing errors in the pairing process. For example, if the label or device outline is too small in the image field, then the camera is too far away from the device. If no label or device outline is recognized, then the reusable component 1200 is not located in front of the smartphone 1210 camera or is too close to the smartphone 1210 camera. Once the smartphone 1210 obtains the I/O Address 1204a and PIN 1204b for the reusable component 1200, pairing can be completed securely without further manual intervention from the subject 104.
[0119] Receivers may include a signal receiver element which serves to receive the
conductively transmitted signal, such as a signal emitted by an identifier of an ingestible event marker. The signal receiver may include a variety of different types of signal receiver elements, where the nature of the receiver element necessarily varies depending on the nature of the signal produced by the signal generation element. In certain aspects, the signal receiver element may include one or more electrodes for detecting signal emitted by the signal generation element, such as two or more electrodes, three or more electrodes, etc. In certain aspects, the receiver device will be provided with two or three electrodes that are dispersed at some distance from each other. This distance allows the electrodes to detect a differential voltage. The distance may vary, and in certain aspects ranges from 0.1 cm to 1.0 m, such as 0.1 to 5 cm, such as 0.5 to 2.5 cm, where the distance 1 cm in some instances.
[0120] An example of an external signal receiver aspect of a receiver of interest is shown in FIG. 13. FIG. 13 shows receiver 1001 that is configured to be placed on an external topical location of a subject, such as a chest area. The receiver includes an upper housing plate 1 1 10 (such as may be fabricated from a suitable polymeric material), and includes a manually depressible operation button 1020 and a status identifier LED 1030, which may be used to relay to an observer that the receiver is operating. Manually depressible operation button 1020 can be manually manipulated to transition the receiver from a storage mode to a non-storage mode. When the receiver is in the storage mode, a micro-controller of the receiver may remain in a low duty cycle active state at all times to process input from the on/off button, and the digital signal processor (DSP) of the receiver powered off. When the on/off button is depressed to turn on the receiver, the micro-controller de-bounces the input and powers the DSP into its idle state. While in storage mode, the device may draw less than 10 μΑ, including 5 μΑ of current or less, such as 1 μΑ or less and including 0.1 μΑ or less. This configuration enables the device to remain at greater than 90% useful battery life if stored for one month (assuming the presence of a 250 mAH battery). Such a button may also be employed for other functions. For example, such a button may be employed to instruct the receiver to obtain certain types of data. In addition or alternatively, such a button may be employed to manually instruct the receiver to transfer data to another device.
[0121] FIG. 14 provides an exploded view of the receiver shown in FIG. 13. As shown in FIG.
14, receiver 1001 includes upper housing plate 1 1 10, rechargeable battery 1 101 , integrated circuit component 1 120, and bottom housing plate 1 130. Bottom housing plate 1 130 snap fits into upper housing plate 1 1 10 to seal the battery and integrated circuit components, 1 101 and 1 120, in a fluid tight housing. While a snap-fit interaction is illustrated, any convenient mating scheme may be employed, such that the top and bottom housing plates may interact via inter-locking grooves, may be held together via a suitable adhesive, may be welded together, etc. In some instances, the electrical components may be molded into the top and/or bottom housing plates. Also shown is adhesive patch 1 140 which snaps into upper housing plate 1 1 10 and includes conductive studs 1 141 to 1 143, which studs serve as electrode contacts with the body during receiver use. In the receiver, studs 1 141 to 1 143 are in electrical contact with integrated circuit component 1 120, e.g. via wires or other conductive members associated with the upper housing 1 150. In one instance, upper housing plate 1 1 10 includes conductive members configured to receive studs 1 141 to 1 143 coupled to wires (not shown) which in turn provide electrical connection to the integrated circuit component 1 120.
[0122] FIG. 15 provides an exploded view of adhesive patch 1 140. Adhesive patch 1 140
includes upper studs 1 141 , 1 142 and 1 143, as described above. These studs are in electrical contact with skin contact studs 1 151 , 1 152 and 1 153. On the skin side surface of skin contact studs 1 151 , 1 152 and 1 153 is a conductive hydrogel layer 1 154. Around each stud 1 151 , 1 152 and 1 153 are non-conductive hydrogel 1 155 and pressure sensitive adhesive 1 156 components. In this portion, any convenient physiologically acceptable adhesive may be employed. In some instances, adhesive that chance their adhesive properties in response to an applied stimulus are employed. For example, adhesives that become less adhesive upon application of light, e.g., UV light, or a chemical, may be employed, so that the adhesive remains strong while it is desired for the receiver to remain associated with the body but is readily weakened to facilitate removal of the receiver from the body when desired. On the non-skin side of each skin contact stud is a layer of dry electrode material, such as Ag/AgCI. On the upper surface of this layer of dry electrode material is a porous layer, such as a carbon vinyl layer. Also shown are upper backing layers 1 180. Though not shown, upper studs 1 141 to 1 143 are in electrical contact through the backing layers 1 180 (for example urethane and polyethylene) with the dry electrode and skin contact studs which are positioned beneath each upper stud. As illustrated, the studs are off center with respect to their dry electrode layer in the direction of the outer edge of the patch in a manner sufficient to increase dipole size between any two given studs. In addition, where desired a conductivity gradient may be associated with each stud, e.g., by altering the pattern of the porous layer 1 170 and/or modifying the composition of the dry electrode layer. Of interest in such aspects is where a conductivity gradient increases in conductivity in the direction of the outer edge of the patch.
[0123] FIGS. 16A to 16E provide various views of an alternative external patch configuration 1300 which includes two electrodes 1310 and 1320 in a flexible structure having an adhesive bandage configuration. Patch 1300 includes upper flexible outer support 1330 and bottom flexible support 1350 which fit together as shown in FIG. 16E to enclose an integrated circuit/battery component 1360 and electrodes 1310 and 1320. As shown in FIG. 16D, the bottom surfaces of electrodes 1310 and 1320 are exposed. As shown in FIG. 16E, electrodes 1310 and 1320 include lead elements 1375 and 1370 which provide for electrical contact between the electrodes and the integrated circuit/battery component 1360. Any convenient adhesive component may be employed, such as those described above.
[0124] It is worthy to note that any reference to "one aspect" or "an aspect" means that a
particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases "in one aspect" or "in an aspect" in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
[0125] Some aspects may be described using the expression "coupled" and "connected" along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term "connected" to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term "coupled" to indicate that two or more elements are in direct physical or electrical contact. The term "coupled," however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
[0126] While certain features of the aspects have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is therefore to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the aspects.

Claims

1. A device, comprising:
a reusable component configured to be secured to a disposable component, the reusable component comprising:
a sensor interface configured to receive signals from at least one electrode configured to be secured to a living subject and monitor one or more physiological and physical parameters associated with the living subject; and
a cellular wireless communication circuit.
2. The re-wearable wireless device of claim 1 , further comprising the disposable component.
3. The re-wearable wireless device of claim 2, wherein the disposable component comprises the at least one electrode.
4. The re-wearable wireless device of claim 3, wherein the disposable component comprises mechanical snap-in connect mechanism to receive therein the reusable component.
5. The re-wearable wireless device of claim 4, wherein the reusable component comprises a housing and a depression formed in the housing to couple to the mechanical snap-in connect mechanism.
6. The re-wearable wireless device of claim 4, wherein the mechanical snap-in connect mechanism comprises first and second projecting elements.
7. The re-wearable wireless device of claim 4, wherein the mechanical snap-in connect mechanism comprises at least one electrical contact to electrically couple to the at least one electrode.
8. The re-wearable wireless device of claim 2, wherein the disposable device comprises an adhesive layer to adhere to a living subject.
9. The re-wearable wireless device of claim 1 , wherein the reusable component comprises at least one electrical contact to electrically couple to the at least one electrode.
10. The re-wearable wireless device of claim 1 , wherein the reusable component comprises the at least one electrode.
1 1 . The re-wearable wireless device of claim 10, further comprising a disposable component, wherein the disposable component comprises an overlay layer comprising:
a non-adhesive portion configured to cover the reusable component; and an adhesive portion configured to adhere to a living subject.
12. The re-wearable wireless device of claim 2, wherein the reusable component comprises an electrical plug receptacle to electrically couple the at least one electrode to the reusable component.
13. The re-wearable device of claim 2, wherein the disposable component comprises:
a first adhesive layer; and
a second adhesive layer partially covering the first adhesive layer around a perimeter of the first adhesive layer,
wherein the first adhesive layer comprises a first adhesive and the second adhesive layer comprises a second adhesive.
14. A re-wearable adhesive base for a wireless device, comprising:
a first adhesive layer; and
a second adhesive layer partially covering the first adhesive layer around a perimeter of the first adhesive layer,
wherein the first adhesive layer comprises a first adhesive and the second adhesive layer comprises a second adhesive.
15. The re-wearable adhesive base for a wireless device of claim 14, wherein the first adhesive layer is a mild skin adhesive and the second adhesive layer is a more durable adhesive than the first adhesive.
16. The re-wearable adhesive base for a wireless device of claim 15, wherein the first adhesive comprises a hydrocolloid based adhesive and the second adhesive comprises an acrylic based adhesive.
17. The re-wearable adhesive base for a wireless device of claim 16, wherein the second adhesive comprises a cyanoacrylate based adhesive.
18. The re-wearable adhesive base for a wireless device of claim 15, wherein the first adhesive covers a larger surface area than is covered by the second adhesive.
19. A method comprising:
providing a first wireless device with an insignia representing a communication channel address identification;
capturing an image of the insignia with a mobile telephone computing device comprising an image sensor; and
processing the captured image to extract the communication channel address identification represented by the insignia.
20. The method of claim 19, comprising:
providing the first wireless device with an insignia representing a personal identification number communication channel address identification; and
processing the captured image to extract the personal identification number represented by the insignia.
21 . The method of claim 20, wherein the insignia representing the personal identification number is in human readable form and processing comprises executing optical character recognition machine readable code by a processor of the mobile telephone computing device and extracting the textual information representing the personal identification number.
22. The method of claim 20, wherein the insignia representing the personal identification number is in machine readable form and processing comprises executing a bar code recognition machine readable code by a processor of the mobile telephone computing device and extracting the textual information representing the personal identification number.
23. The method of claim 20, wherein the insignia representing the personal identification number is in machine readable form and processing comprises executing a quick response (QR) code recognition machine readable code by a processor of the mobile telephone computing device and extracting information representing the personal identification number.
24. The method of claim 20, comprising pairing the first and second wireless communication devices using the extracted communication channel address identification and the extracted personal identification number represented by the insignia over a secure encrypted link.
25. The method of claim 19, wherein the insignia representing the communication channel address identification is in human readable form and processing comprises executing optical character recognition machine readable code by a processor of the mobile telephone computing device and extracting the textual information representing the communication channel address identification.
26. The method of claim 19, wherein the insignia representing the communication channel address identification is in machine readable form and processing comprises executing a bar code recognition machine readable code by a processor of the mobile telephone computing device and extracting the textual information representing the communication channel address identification.
27. The method of claim 19, wherein the insignia representing the communication channel address identification is in machine readable form and processing comprises executing a quick response (QR) code recognition machine readable code by a processor of the mobile telephone computing device and extracting the textual information representing the communication channel address identification.
28. The method of claim 19, comprising pairing the first and second wireless communication devices using the extracted communication channel address identification represented by the insignia.
PCT/US2014/026684 2013-03-15 2014-03-13 Re-wearable wireless device WO2014151925A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016502214A JP2016517317A (en) 2013-03-15 2014-03-13 Removable wireless device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/841,797 US9439566B2 (en) 2008-12-15 2013-03-15 Re-wearable wireless device
US13/841,797 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014151925A1 true WO2014151925A1 (en) 2014-09-25

Family

ID=51581070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/026684 WO2014151925A1 (en) 2013-03-15 2014-03-13 Re-wearable wireless device

Country Status (3)

Country Link
JP (3) JP2016517317A (en)
TW (2) TWI708590B (en)
WO (1) WO2014151925A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105193408A (en) * 2015-11-04 2015-12-30 恩识医疗科技(上海)有限公司 Attached dynamic electrocardiogram recorder and system thereof
WO2016057091A1 (en) * 2014-10-06 2016-04-14 Fasetto, Llc Systems and methods for portable storage devices
US9495881B2 (en) 2012-11-29 2016-11-15 Edsense, L.L.C. System and method for displaying multiple applications
US9584402B2 (en) 2014-01-27 2017-02-28 Fasetto, Llc Systems and methods for peer to peer communication
JP2017093800A (en) * 2015-11-24 2017-06-01 ユニオンツール株式会社 Portable electrocardiographic device
US9886229B2 (en) 2013-07-18 2018-02-06 Fasetto, L.L.C. System and method for multi-angle videos
EP3267414A4 (en) * 2015-04-08 2018-05-30 Huawei Technologies Co. Ltd. Monitoring method for intelligent monitoring system and relevant device therefor
CN108348185A (en) * 2015-09-11 2018-07-31 福田电子株式会社 Vital information measurement device
US10075502B2 (en) 2015-03-11 2018-09-11 Fasetto, Inc. Systems and methods for web API communication
US10095873B2 (en) 2013-09-30 2018-10-09 Fasetto, Inc. Paperless application
US10437288B2 (en) 2014-10-06 2019-10-08 Fasetto, Inc. Portable storage device with modular power and housing system
WO2020077113A1 (en) * 2018-10-10 2020-04-16 Element Science, Inc. Wearable medical device with disposable and reusable components
CN111373345A (en) * 2017-06-15 2020-07-03 法斯埃托股份有限公司 Portable storage device with modular power supply and housing system
US10712898B2 (en) 2013-03-05 2020-07-14 Fasetto, Inc. System and method for cubic graphical user interfaces
CN111565790A (en) * 2017-11-15 2020-08-21 Lg电子株式会社 Skin care device
US10763630B2 (en) 2017-10-19 2020-09-01 Fasetto, Inc. Portable electronic device connection systems
US10904717B2 (en) 2014-07-10 2021-01-26 Fasetto, Inc. Systems and methods for message editing
US10929071B2 (en) 2015-12-03 2021-02-23 Fasetto, Inc. Systems and methods for memory card emulation
US10953234B2 (en) 2015-08-26 2021-03-23 Element Science, Inc. Wearable devices
US10956589B2 (en) 2016-11-23 2021-03-23 Fasetto, Inc. Systems and methods for streaming media
US10979466B2 (en) 2018-04-17 2021-04-13 Fasetto, Inc. Device presentation with real-time feedback
US11185709B2 (en) 2014-02-24 2021-11-30 Element Science, Inc. External defibrillator
WO2022135091A1 (en) * 2020-12-21 2022-06-30 深圳市越疆科技有限公司 Electronic skin master module, sub-module, system, robotic arm, and robot
USD970017S1 (en) 2020-08-25 2022-11-15 Coloplast A/S Ostomy appliance monitor
US11708051B2 (en) 2017-02-03 2023-07-25 Fasetto, Inc. Systems and methods for data storage in keyed devices
EP4056119A4 (en) * 2019-11-06 2023-07-26 Nippon Telegraph And Telephone Corporation Wearable sensor device
US11741771B2 (en) 2013-03-15 2023-08-29 Otsuka Pharmaceutical Co., Ltd. Personal authentication apparatus system and method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151925A1 (en) * 2013-03-15 2014-09-25 Proteus Digital Health, Inc. Re-wearable wireless device
CN104644158A (en) * 2015-03-03 2015-05-27 成都易诺威讯科技有限责任公司 General electrocardiograph signal acquisition chip and wireless electrocardiograph signal acquisition device
JP6165794B2 (en) * 2015-03-05 2017-07-19 日本精密測器株式会社 Slave device and connection establishment method
TWI572328B (en) * 2015-03-24 2017-03-01 Wearable Compound Vessel Flow Detector
US10285627B2 (en) 2015-04-15 2019-05-14 Pixart Imaging Inc. Action recognition system and method thereof
US9805298B2 (en) 2015-10-02 2017-10-31 Mitac Computing Technology Corporation Wrist worn RFID device with security protection and method thereof
TWI555502B (en) * 2015-11-06 2016-11-01 佳世達科技股份有限公司 Electronic device for disposing on surface of organic body
CN105455821B (en) * 2015-11-17 2018-01-05 苏州佳世达电通有限公司 Electronic installation
TWI612941B (en) * 2016-11-03 2018-02-01 Patch detection device for detecting muscle fatigue by myoelectric signal
CN106781277B (en) * 2017-01-17 2023-10-27 刘海超 Self-help calling warning lamp
TWI647594B (en) * 2017-11-03 2019-01-11 大陸商光寶電子(廣州)有限公司 Wearable system for children, wearable device for children and cloud server and operating method thereof
CN109744999A (en) * 2017-11-03 2019-05-14 光宝电子(广州)有限公司 Wearable system, wearable device and its cloud server and operating method
TWI663549B (en) * 2018-04-18 2019-06-21 臺中榮民總醫院 Electronic label display management system
TWI667569B (en) * 2018-07-20 2019-08-01 技嘉科技股份有限公司 Computer wake-up method and computer power saving method
KR102260779B1 (en) 2019-07-18 2021-06-07 주식회사 아이센스 Near communication connecting method of continuous glucose monitoring system
JP7320798B2 (en) * 2019-10-02 2023-08-04 ナブテスコ株式会社 Sensor device, reducer, structure, method of performing sensor device, sensor system and nameplate
WO2021147022A1 (en) * 2020-01-22 2021-07-29 焦旭 Cardiopulmonary resuscitation operation measurement system, calibration apparatus, measurement terminal, and measurement method
JP7258367B2 (en) * 2021-02-05 2023-04-17 原田電子工業株式会社 Biometric information output device
TWI804293B (en) * 2022-04-28 2023-06-01 國立臺北科技大學 Handheld physiological monitoring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080306362A1 (en) * 2007-06-05 2008-12-11 Owen Davis Device and system for monitoring contents of perspiration
US20110004079A1 (en) * 2006-11-29 2011-01-06 Masimo Laboratories, Inc. Optical sensor including disposable and reusable elements
US20110081860A1 (en) * 2009-10-02 2011-04-07 Research In Motion Limited Methods and devices for facilitating bluetooth pairing using a camera as a barcode scanner
US20110237924A1 (en) * 2003-10-30 2011-09-29 Halthion Medical Technologies, Inc. Physiological data collection system
KR20120099995A (en) * 2011-03-02 2012-09-12 삼성전자주식회사 Apparatus and method for performing network connection in portable terminal

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459992A (en) * 1982-11-15 1984-07-17 Gwyn Marion V Arterial pulse rate monitor and stress warning device
US5232383A (en) * 1992-10-21 1993-08-03 Barnick Robert C Medical snap connector
US5506059A (en) * 1993-05-14 1996-04-09 Minnesota Mining And Manufacturing Company Metallic films and articles using same
JP2807650B2 (en) * 1994-12-24 1998-10-08 ベーリンガー・マンハイム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Equipment for tissue characterization
US6102856A (en) * 1997-02-12 2000-08-15 Groff; Clarence P Wearable vital sign monitoring system
JP3697628B2 (en) * 1999-09-09 2005-09-21 日本光電工業株式会社 Biological signal detection device and Holter electrocardiograph
US6385473B1 (en) * 1999-04-15 2002-05-07 Nexan Limited Physiological sensor device
JP4639416B2 (en) * 2000-01-19 2011-02-23 日本光電工業株式会社 ECG recording apparatus and electrocardiograph system
US7117169B2 (en) * 2001-05-10 2006-10-03 Hewlett-Packard Development Company, Lp. Method for coupling an ordering system to a management system in a data center environment
EP1720446B1 (en) * 2004-02-27 2010-07-14 Koninklijke Philips Electronics N.V. Wearable wireless device for monitoring, analyzing and communicating physiological status
US20090076360A1 (en) * 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
EP3827747A1 (en) * 2005-04-28 2021-06-02 Otsuka Pharmaceutical Co., Ltd. Pharma-informatics system
JP2009517160A (en) * 2005-11-30 2009-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electromechanical connector for thin medical monitoring patch
EP2540215B1 (en) * 2006-03-03 2015-11-25 Physiowave Inc. Physiologic monitoring systems and methods
US8214007B2 (en) * 2006-11-01 2012-07-03 Welch Allyn, Inc. Body worn physiological sensor device having a disposable electrode module
WO2008068695A1 (en) * 2006-12-07 2008-06-12 Koninklijke Philips Electronics N.V. Handheld, repositionable ecg detector
ES2930588T3 (en) * 2007-02-01 2022-12-19 Otsuka Pharma Co Ltd Ingestible Event Marker Systems
JP5106886B2 (en) * 2007-03-06 2012-12-26 フクダ電子株式会社 Biological information measurement electrode
US8460189B2 (en) * 2007-09-14 2013-06-11 Corventis, Inc. Adherent cardiac monitor with advanced sensing capabilities
WO2010104952A2 (en) * 2009-03-10 2010-09-16 Corventis, Inc. Display systems for body-worn health monitoring devices
WO2011076886A2 (en) * 2009-12-23 2011-06-30 Delta, Dansk Elektronik, Lys Og Akustik A monitoring device
US9439599B2 (en) * 2011-03-11 2016-09-13 Proteus Digital Health, Inc. Wearable personal body associated device with various physical configurations
WO2014151925A1 (en) * 2013-03-15 2014-09-25 Proteus Digital Health, Inc. Re-wearable wireless device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110237924A1 (en) * 2003-10-30 2011-09-29 Halthion Medical Technologies, Inc. Physiological data collection system
US20110004079A1 (en) * 2006-11-29 2011-01-06 Masimo Laboratories, Inc. Optical sensor including disposable and reusable elements
US20080306362A1 (en) * 2007-06-05 2008-12-11 Owen Davis Device and system for monitoring contents of perspiration
US20110081860A1 (en) * 2009-10-02 2011-04-07 Research In Motion Limited Methods and devices for facilitating bluetooth pairing using a camera as a barcode scanner
KR20120099995A (en) * 2011-03-02 2012-09-12 삼성전자주식회사 Apparatus and method for performing network connection in portable terminal

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9495881B2 (en) 2012-11-29 2016-11-15 Edsense, L.L.C. System and method for displaying multiple applications
US10712898B2 (en) 2013-03-05 2020-07-14 Fasetto, Inc. System and method for cubic graphical user interfaces
US11741771B2 (en) 2013-03-15 2023-08-29 Otsuka Pharmaceutical Co., Ltd. Personal authentication apparatus system and method
US9886229B2 (en) 2013-07-18 2018-02-06 Fasetto, L.L.C. System and method for multi-angle videos
US10614234B2 (en) 2013-09-30 2020-04-07 Fasetto, Inc. Paperless application
US10095873B2 (en) 2013-09-30 2018-10-09 Fasetto, Inc. Paperless application
US10812375B2 (en) 2014-01-27 2020-10-20 Fasetto, Inc. Systems and methods for peer-to-peer communication
US9584402B2 (en) 2014-01-27 2017-02-28 Fasetto, Llc Systems and methods for peer to peer communication
US11374854B2 (en) 2014-01-27 2022-06-28 Fasetto, Inc. Systems and methods for peer-to-peer communication
US10084688B2 (en) 2014-01-27 2018-09-25 Fasetto, Inc. Systems and methods for peer-to-peer communication
US11185709B2 (en) 2014-02-24 2021-11-30 Element Science, Inc. External defibrillator
US10904717B2 (en) 2014-07-10 2021-01-26 Fasetto, Inc. Systems and methods for message editing
US11089460B2 (en) 2014-10-06 2021-08-10 Fasetto, Inc. Systems and methods for portable storage devices
US10123153B2 (en) 2014-10-06 2018-11-06 Fasetto, Inc. Systems and methods for portable storage devices
US10437288B2 (en) 2014-10-06 2019-10-08 Fasetto, Inc. Portable storage device with modular power and housing system
US10983565B2 (en) 2014-10-06 2021-04-20 Fasetto, Inc. Portable storage device with modular power and housing system
WO2016057091A1 (en) * 2014-10-06 2016-04-14 Fasetto, Llc Systems and methods for portable storage devices
US10075502B2 (en) 2015-03-11 2018-09-11 Fasetto, Inc. Systems and methods for web API communication
US10848542B2 (en) 2015-03-11 2020-11-24 Fasetto, Inc. Systems and methods for web API communication
EP3267414A4 (en) * 2015-04-08 2018-05-30 Huawei Technologies Co. Ltd. Monitoring method for intelligent monitoring system and relevant device therefor
US10210736B2 (en) 2015-04-08 2019-02-19 Huawei Technologies Co., Ltd. Monitoring method and related device for intelligent monitoring system
US10953234B2 (en) 2015-08-26 2021-03-23 Element Science, Inc. Wearable devices
US11701521B2 (en) 2015-08-26 2023-07-18 Element Science, Inc. Wearable devices
CN108348185A (en) * 2015-09-11 2018-07-31 福田电子株式会社 Vital information measurement device
CN105193408A (en) * 2015-11-04 2015-12-30 恩识医疗科技(上海)有限公司 Attached dynamic electrocardiogram recorder and system thereof
CN105193408B (en) * 2015-11-04 2018-06-19 恩识医疗科技(上海)有限公司 A kind of sticking type dynamic electrocardiogram recording instrument and its system
JP2017093800A (en) * 2015-11-24 2017-06-01 ユニオンツール株式会社 Portable electrocardiographic device
US10929071B2 (en) 2015-12-03 2021-02-23 Fasetto, Inc. Systems and methods for memory card emulation
US10956589B2 (en) 2016-11-23 2021-03-23 Fasetto, Inc. Systems and methods for streaming media
US11708051B2 (en) 2017-02-03 2023-07-25 Fasetto, Inc. Systems and methods for data storage in keyed devices
CN111373345A (en) * 2017-06-15 2020-07-03 法斯埃托股份有限公司 Portable storage device with modular power supply and housing system
US10763630B2 (en) 2017-10-19 2020-09-01 Fasetto, Inc. Portable electronic device connection systems
CN111565790A (en) * 2017-11-15 2020-08-21 Lg电子株式会社 Skin care device
US10979466B2 (en) 2018-04-17 2021-04-13 Fasetto, Inc. Device presentation with real-time feedback
US11253715B2 (en) 2018-10-10 2022-02-22 Element Science, Inc. Wearable medical device with disposable and reusable components
WO2020077113A1 (en) * 2018-10-10 2020-04-16 Element Science, Inc. Wearable medical device with disposable and reusable components
EP4056119A4 (en) * 2019-11-06 2023-07-26 Nippon Telegraph And Telephone Corporation Wearable sensor device
USD970017S1 (en) 2020-08-25 2022-11-15 Coloplast A/S Ostomy appliance monitor
WO2022135091A1 (en) * 2020-12-21 2022-06-30 深圳市越疆科技有限公司 Electronic skin master module, sub-module, system, robotic arm, and robot

Also Published As

Publication number Publication date
JP2019069266A (en) 2019-05-09
TW201919539A (en) 2019-06-01
JP2016517317A (en) 2016-06-16
TW201501692A (en) 2015-01-16
JP2021072907A (en) 2021-05-13
TWI708590B (en) 2020-11-01
TWI651073B (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US9439566B2 (en) Re-wearable wireless device
JP2019069266A (en) Re-wearable wireless device
US20210259634A1 (en) Re-wearable physiological monitoring device
US9149577B2 (en) Body-associated receiver and method
US10223905B2 (en) Mobile device and system for detection and communication of information received from an ingestible device
US20190261888A1 (en) Re-wearable wireless device
IL237834A (en) Wireless wearable apparatus, system and method
WO2013009786A2 (en) Polypharmacy co-packaged medication dosing unit including communication system therefor
WO2012125424A2 (en) Biological sample collection device and system
AU2012216694B2 (en) Body-associated receiver and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016502214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770656

Country of ref document: EP

Kind code of ref document: A1