WO2015072301A1 - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus Download PDF

Info

Publication number
WO2015072301A1
WO2015072301A1 PCT/JP2014/078184 JP2014078184W WO2015072301A1 WO 2015072301 A1 WO2015072301 A1 WO 2015072301A1 JP 2014078184 W JP2014078184 W JP 2014078184W WO 2015072301 A1 WO2015072301 A1 WO 2015072301A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
frequency
magnetic resonance
imaging apparatus
signal
Prior art date
Application number
PCT/JP2014/078184
Other languages
French (fr)
Japanese (ja)
Inventor
津田 宗孝
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2015547712A priority Critical patent/JPWO2015072301A1/en
Publication of WO2015072301A1 publication Critical patent/WO2015072301A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/389Field stabilisation, e.g. by field measurements and control means or indirectly by current stabilisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus (Magnetic-Resonance-Imaging apparatus, hereinafter referred to as an MRI apparatus), and in particular, an MRI apparatus using a driven-mode superconducting magnet that is operated by connecting a power source for applying a current to a superconducting coil. Relates to stabilization of magnetic field strength.
  • MRI apparatus Magnetic-Resonance-Imaging apparatus
  • MRI apparatus using a driven-mode superconducting magnet that is operated by connecting a power source for applying a current to a superconducting coil. Relates to stabilization of magnetic field strength.
  • MRI devices there are two types of MRI devices in medical facilities: a device with a magnetic field strength of 0.5 Tesla or less using a permanent magnet and a device with a magnetic field strength of 1.0 Tesla or more using a superconducting magnet.
  • Permanent magnet MRI systems have the advantages of low installation costs and low operating costs.
  • the superconducting magnet cooling the superconducting wire such as NbTi and Nb 3 Sn below the critical temperature, etc. have to be installed in the service area of the liquid helium to be cryogen, but many restrictions on its installation, the magnetic field strength Since the detection sensitivity of the nuclear magnetic resonance (hereinafter referred to as NMR) signal increases in proportion, it has a high diagnostic ability.
  • NMR nuclear magnetic resonance
  • a superconducting magnet is generally operated in a mode in which a superconducting coil is connected in a loop and a permanent current flows.
  • Patent Document 2 in order to obtain a higher magnetic field strength and to use a high-temperature superconducting wire that does not use liquid helium, the superconductivity of a driven mode NMR apparatus or MRI apparatus in which a current is constantly supplied from a power source. Magnets have also been developed.
  • the stability of the magnetic field strength of the driven mode superconducting magnet is about 5 ppm per hour due to the temperature drift of the power source. Therefore, in the technique disclosed in Patent Document 2, the magnetic field measuring instrument probe is arranged in the magnetic field space, and the main magnetic field is induced so as to induce a magnetic field in the opposite direction to the fluctuation of the magnetic field of the main coil measured by the magnetic field measuring instrument probe. The coil current is adjusted to achieve a stable magnetic field strength of 0.01 ppm per hour.
  • the subject In the MRI system, the subject is placed in a uniform magnetic field generated by a superconducting magnet.
  • the uniform magnetic field space is manufactured so as to substantially match the size of the subject.
  • the uniform magnetic field space of 3 ppm or less required for MRI examination is a spherical space with a diameter of about 40 centimeters. Outside this space, the magnetic field uniformity rapidly deteriorates, that is, has a magnetic field strength gradient in which the magnetic flux density changes.
  • the magnetic field strength is adjusted along the three axes orthogonal to each other, that is, the x, y, and z axes of the magnetic field space.
  • a gradient magnetic field is applied so as to intentionally generate a gradient. That is, since a gradient magnetic field is applied during the MRI examination, the magnetic field strength of the uniform magnetic field space generated by the superconducting magnet changes along the x, y, and z axes.
  • Patent Document 2 that compensates for the drift of the power source with the signal measured by the magnetic field measuring instrument probe is adopted for the superconducting magnet of the MRI apparatus. In doing so, the following problems arise.
  • Patent Document 2 there is no description regarding the positional relationship between the subject and the magnetic field measuring probe, the interference of the detection signal, and the like, and it is assumed that the magnetic field is measured in a state where the subject is not arranged. For this reason, the above problem cannot be solved by the technique of Patent Document 2.
  • the present invention has been made in view of the above problems, and an object thereof is to stabilize the magnetic field strength of the superconducting magnet in the driven mode operation and achieve the improvement of the image quality of the MRI image.
  • the MRI apparatus of the present invention includes a superconducting coil that forms a static magnetic field in an imaging space, a magnet power supply that continuously supplies current to the superconducting coil while the superconducting coil forms a static magnetic field, A gradient magnetic field generator for generating a gradient magnetic field in the imaging space; a high-frequency magnetic field generator for irradiating a subject placed in the imaging space with a high-frequency magnetic field; a measurement unit for detecting a nuclear magnetic resonance signal (A) of the subject; A sample for magnetic lock and a magnetic lock part are provided.
  • the sample for magnetic lock is disposed at a position where the magnetic field generated by the superconducting coil 105 is applied and does not physically interfere with the subject.
  • the magnetic field locking unit irradiates the magnetic field locking sample with a high frequency magnetic field, detects the nuclear magnetic resonance signal (B) generated by the magnetic field locking sample, adjusts the strength of the static magnetic field according to the detection result, Keep it constant.
  • the present invention it is possible to stabilize the magnetic field strength of the driven mode superconducting magnet and to improve the image quality of the MRI image.
  • the block diagram which shows the whole structure of the MRI apparatus of this embodiment 1 is a block diagram showing the circuit configuration of the measurement system high-frequency unit 112 and the magnetic field lock system high-frequency unit 123 of the apparatus of FIG.
  • Sectional drawing of the superconducting magnet which comprises the MRI apparatus of this embodiment Sectional drawing which shows the structure which has arrange
  • Sectional drawing which shows the structure which has arrange
  • Side view of sample for magnetic field lock 2A is an explanatory diagram showing input / output signals
  • FIG. 2B is an explanatory diagram showing waveforms of input / output signals. Timing chart showing operation of imaging pulse sequence and magnetic field lock of embodiment Flow chart showing the operation of the MRI apparatus of the first embodiment Flow chart showing the operation of the MRI apparatus of the second embodiment
  • the MRI apparatus of the present invention continues the current to the superconducting coil 105 while the superconducting coil 105 forms a static magnetic field in the imaging space 102 and the superconducting coil 105 forms a static magnetic field.
  • Magnet power supply 106 a gradient magnetic field generator (109, 110) that generates a gradient magnetic field in the imaging space 102, and a high-frequency magnetic field generator (111, 110) that irradiates the subject 101 disposed in the imaging space 102 with a high-frequency magnetic field 112) and measuring units (112, 113) for detecting a nuclear magnetic resonance (NMR) signal (A) of the subject 101.
  • the MRI apparatus of the present invention includes a magnetic lock sample 122 and a magnetic lock portion (123).
  • the magnetic locking sample 122 is disposed at a position where the magnetic field generated by the superconducting coil 105 is applied and does not physically interfere with the subject 101.
  • the magnetic field locking unit (123) irradiates the magnetic field locking sample 122 with a high frequency magnetic field, detects the NMR signal (B) generated by the magnetic field locking sample 122, adjusts the strength of the static magnetic field according to the detection result, Make the static magnetic field constant.
  • the magnetic field locking sample 122 is arranged at a position not interfering with the subject 101, and the magnetic field locking unit (123) adjusts the static magnetic field intensity based on the NMR signal (B) of the magnetic field locking sample 122.
  • the magnetic field locking unit (123) adjusts the static magnetic field intensity based on the NMR signal (B) of the magnetic field locking sample 122.
  • the magnetic field locking sample 122 it is desirable to use a sample containing an atomic species that generates an NMR signal (B) having a magnetic resonance frequency different from the magnetic resonance frequency of the NMR signal (A) detected by the measurement unit (112). Thereby, electrical mutual interference between the NMR signal (A) and the NMR signal (B) can be prevented and simultaneously detected.
  • the NMR signal (A) detected by the measurement unit (112) is an NMR signal of a hydrogen nucleus (proton) 1 H
  • the magnetic field locking sample 122 includes a fluorine nucleus 19 F, a deuterium nucleus 2 H, and A material containing any of the phosphorus nuclei 15 P can be used.
  • the magnetic field lock unit (123) temporarily stops adjusting the strength of the static magnetic field according to the detection result of the NMR signal (B) while the gradient magnetic field generation unit (109, 110) is generating the gradient magnetic field. It is desirable to do. This prevents the magnetic field lock unit (123) from detecting the static magnetic field in which the gradient magnetic field is superimposed and adjusting the static magnetic field, thereby preventing the static magnetic field from being balanced without being affected by the gradient magnetic field. Can be improved once. For example, the magnetic field lock unit (123) maintains the adjustment amount immediately before the stop while the gradient magnetic field generation unit (109, 110) generates the gradient magnetic field.
  • the high-frequency magnetic field generator (111, 112) includes, for example, a high-frequency transmitter coil 111 and a high-frequency signal generator (112) that supplies a high-frequency signal for causing the high-frequency transmitter coil 111 to generate a high-frequency magnetic field.
  • the magnetic field lock unit (123) supplies a high-frequency signal for generating a high-frequency magnetic field to the high-frequency transmitter coil (703) for magnetic field locking that irradiates the magnetic field locking sample 122 with high frequency, and the high-frequency transmitter coil (703) for magnetic field locking.
  • a magnetic field locking high-frequency signal generator (123) It is desirable that a reference frequency generator 201 for supplying a common reference frequency signal is connected to the high-frequency signal generation unit (112) and the magnetic field locking high-frequency signal generation unit (123).
  • the correlation between the high-frequency magnetic field of the high-frequency transmitter coil 111 and the high-frequency magnetic field of the high-frequency transmitter coil for magnetic field locking (703) can be maintained. (123) can accurately detect the fluctuation of the static magnetic field.
  • the magnetic field locking sample 122 is always arranged outside the imaging space 102 and at a position where it does not physically interfere with the measurement units (112, 113) and the table 118 on which the subject 101 is mounted. Can be configured.
  • the magnetic field locking sample 122 is arranged at one or more places in the top plate 119 on which the subject 101 of the table 118 is mounted, and is inserted into the imaging space 102 together with the subject 101. It may be.
  • the magnetic field locking unit (123) selects any one of the plurality of magnetic field locking samples 122. , And can be used for detection of NMR signal (B).
  • the magnetic field locking sample 122 can be arranged in the holding unit (801) that holds the high-frequency receiver coil 113 of the measurement unit (112, 113).
  • the magnetic field locking sample 122 is disposed in a container (701) (see, for example, FIG. 6) having a size that is not affected by the intensity gradient of the magnetic field generated by the superconducting coil 105 at the position where the magnetic field locking sample 122 is disposed. desirable.
  • the magnetic field lock unit (123) uses the signal having the same frequency as the magnetic resonance frequency of the magnetic field locking sample 122 as a reference signal 302, and outputs the NMR signal (B) (301).
  • a configuration including a phase detection unit (213) for phase detection may be employed.
  • the magnetic field lock unit (123) adjusts the magnetic field strength of the imaging space 102 so that the phase detection output (303) becomes zero (phase lock state).
  • the magnetic field lock unit (123) preferably has a display unit (217) that notifies the operator that the output of the phase detection unit (213) has become zero (phase lock state).
  • the measurement unit (112) preferably measures the NMR signal (A) of the subject 101 in a state where the output of the phase detection unit (213) becomes zero (phase lock state).
  • the magnetic field lock unit (123) can be configured to adjust the strength of the static magnetic field by changing the output current of the magnet power source 106 in accordance with the detection result of the NMR signal (B).
  • the magnetic field lock unit (123) adjusts the strength of the static magnetic field by changing the current supplied to the correction coil 215 that generates the correction magnetic field in the imaging space 102 according to the detection result of the NMR signal (B). May be.
  • FIG. 1 is a block diagram showing the overall configuration of the MRI apparatus of the present embodiment
  • FIG. 2 is a block diagram showing the circuit configuration
  • FIG. 3 is a cross-sectional view of the superconducting magnet 104.
  • FIGS. 1 to 3 all illustrate an MRI apparatus installed in a medical facility and taking a medical diagnostic image of a patient's head, which is a subject 101.
  • a superconducting magnet 103 that generates a uniform static magnetic field in the imaging space 102 includes an iron yoke 104 having two magnetic poles serving as NS poles, a pair of superconducting coils 105, and a magnet power source 106. Further, a correction coil 215 that generates a correction magnetic field that corrects the static magnetic field generated by the superconducting magnet 103 is disposed between the superconducting magnet 103 and the imaging space 102. The examination region of the subject 101 is disposed at the center of the imaging space 102 where a uniform static magnetic field is generated.
  • the superconducting magnet 103 is further provided with a vacuum vessel 107 containing the superconducting coil 105 and a refrigerator 108 for keeping the superconducting coil 105 at a low temperature, in addition to the iron yoke 104.
  • the iron yoke 104 weighs 14 tons and has a C-shaped cross-sectional shape with a part being an opening. For example, the shape is determined so as to secure a magnetic flux density that generates a magnetic field strength of 0.5 Tesla at an opening of 55 centimeters and to minimize the magnetic flux leaking out of the iron yoke 104.
  • the opening of the iron yoke 104 has a pair of magnetic poles 601 processed into a concave surface in order to generate a uniform magnetic field.
  • a doughnut-shaped vacuum vessel 107 in which a pair of superconducting coils 105 is incorporated is incorporated.
  • the iron yoke 104 has a function of supporting the vacuum vessel 107.
  • the front (y-axis) and the left and right sides (x-axis) of the imaging space 102 have nothing to obstruct the field of view and can provide an open inspection environment.
  • the superconducting coil 105 is thermally connected to the refrigerator 108 by a heat conducting member and is cooled to a temperature of 20 Kelvin to maintain a stable superconducting state.
  • a current of 160 amperes is applied to the superconducting coil 105 from the magnet power source 106, and the imaging space 102 has, for example, a z-axis (for example, 0.5 z Tesla intensity).
  • the imaging space 102 is a spherical space with a diameter of 40 cm, for example, and is also called FOV (FieldFOof View).
  • the magnetic field uniformity of the imaging space is 3 ppm or less when the magnetic field lock unit (123) is not operating.
  • the magnet power supply 106 also incorporates a compressor that supplies high-pressure helium gas to the refrigerator 108 and a sensor circuit that monitors the operating state of the superconducting magnet 103.
  • the gradient magnetic field coil assembly 109 is attached to the two magnetic poles 601, and a gradient magnetic field having a gradient in magnetic field strength is generated in three axial directions orthogonal to each other in the imaging space 102. Although not distinguished in FIGS. 1 and 3, the gradient coil assembly 109 has three types of coils, x, y, and z, laminated thereon.
  • the z gradient magnetic field coil attached to the upper magnetic pole when a positive current flows through the z gradient magnetic field coil, the z gradient magnetic field coil attached to the upper magnetic pole generates a magnetic flux in the same + z axis direction as the magnetic flux generated by the superconducting coil 105, and superimposes its density. Increase.
  • the z gradient magnetic field coil attached to the lower magnetic pole generates a magnetic flux along the ⁇ z axis in the direction opposite to the magnetic flux generated by the superconducting coil 105, and reduces its density.
  • a gradient magnetic field in which the magnetic flux density increases from bottom to top along the z-axis of the imaging space 102 can be created.
  • the x gradient magnetic field coil changes the magnetic flux density generated by the superconducting coil 105 along the x axis of the imaging space 102
  • the y gradient magnetic field coil changes along the y axis of the imaging space 102.
  • Gradient magnetic field power supply 110 that operates independently is connected to each of the gradient magnetic field coils of x, y, and z. For example, by supplying a current of 500 amperes to each, the magnetic field strength of 25 millitesla changes in 1 meter. A gradient magnetic field of 25 mT / m can be generated.
  • a pair of high-frequency transmitter coils 111 are incorporated on the imaging space 102 side of the gradient coil assembly 109.
  • the high-frequency transmitter coil 111 has a flat plate structure so as not to hinder an open inspection environment, and a coil conductor is printed and wired so that a magnetic flux parallel to the xy plane of the imaging space 102 is generated.
  • a plurality of capacitive elements are incorporated in the high-frequency transmitter coil 111 (not shown in the figure), and here is a 21.28 MHz LC resonance circuit.
  • a high frequency magnetic field is generated in the imaging space 102 by flowing a high frequency current of 21.28 MHz from a high frequency power source incorporated in the measurement system high frequency unit 112.
  • an NMR phenomenon occurs in the hydrogen nucleus (proton) at a specific part of the subject 101, and x, y in the process of Larmor precession of the hydrogen nucleus (proton)
  • the spatial information is given by the z gradient magnetic field pulse.
  • a high-frequency receiver coil 113 is attached to the examination site of the subject 101.
  • the high-frequency receiver coil 113 is an LC resonance circuit in which a capacitive element is incorporated (not shown in the figure) and resonates at 21.28 MHz.
  • the difference from the high-frequency transmitter coil 111 is that it has a shape that fits the body shape of the examination site so as to detect the Larmor precession of the nuclear spin as an electrical signal by electromagnetic induction with high efficiency.
  • FIGS. 1 to 3 show a high-frequency receiver coil 113 that detects the head of the subject 101.
  • the NMR signal (A) detected by the high-frequency receiver coil 113 is amplified, detected, and converted from analog to digital by an amplifier in the measurement system high-frequency unit 112, and passes through an interface circuit called a sequencer 114 to the computer. Recorded at 115.
  • the high-frequency receiver coil 113 and the measurement system high-frequency unit 112 constitute a measurement unit.
  • the NMR signal is subjected to arithmetic processing such as Fourier transform, and processed into a tomographic image and a spectrum distribution map effective for medical diagnosis.
  • arithmetic processing such as Fourier transform
  • These data are stored in a storage device (not shown) of the computer 115 and displayed on the display 116.
  • the computer 115 is operated via the sequencer 114 to operate the gradient magnetic field power source 110 and the measurement system high-frequency unit 112 in accordance with various pulse sequences so that a tomographic image or the like for diagnosis can be obtained from the examination site of the subject 101. Control function. For this reason, an input device 117 for selecting the type of pulse sequence and the like by the operator of the MRI apparatus is connected to the computer 115.
  • a subject 101 is mounted in front of the superconducting magnet 103, and a table 119 for loading and unloading the inspection site to the center of the imaging space 102, and a table for moving the table 119 in the loading and unloading direction, etc. 118 is arranged.
  • the superconducting magnet 103 and the table 118 are installed in an examination room 120 that is shielded from electromagnetic waves.
  • a gradient magnetic field power supply 110 there are a gradient magnetic field power supply 110, a measurement system high frequency unit 112, a magnetic field lock system high frequency unit 123, a magnet power supply 106, a sequencer 114, a computer 115, an input device 117, and a display device 116.
  • the gradient magnetic field power source 110, the measurement system high frequency unit 112, the magnetic field lock system high frequency unit 123, and the magnet power source 106 are connected to the gradient magnetic field coil assembly 109, the high frequency transmitter coil 111 / It is connected to the receiver coil 113, the magnetic field locking high-frequency transmitter coil (703), and the superconducting coil 105. This prevents electromagnetic waves generated by the computer 115 and other devices from entering the high frequency receiver coil 113 as noise.
  • the magnetic field locking sample 122 is disposed at a position where the magnetic field generated by the superconducting coil 105 is applied and does not physically interfere with the subject 101, and the NMR signal (B) is converted into the magnetic field. It is detected by the lock unit (123).
  • a fluorine compound for example, CFCl 3 solution or liquefied CFC
  • fluorine nuclei 19 F is used as the magnetic field locking sample 122.
  • the magnetic field locking sample 122 is enclosed in a spherical microcapillary 701 having an inner diameter of 5 mm, for example, and the microcapillary 701 is sealed.
  • the size of the microcapillary 701 is designed such that the magnetic field locking sample 122 is not affected by the strength gradient of the magnetic field generated by the superconducting coil 105 (the magnetic field strength distribution can be ignored).
  • a magnetic lock sample 122 is disposed on the outer peripheral side surface of the high-frequency transmitter coil 111 under the top plate 119.
  • the microcapillary 701 is about 5 mm in diameter. With this size, the magnetic field strength distribution of the superconducting coil 105 in the space below the top plate 119 can be ignored.
  • a solenoid coil 703 that generates a high-frequency magnetic field that excites the NMR phenomenon of the magnetic field locking sample and detects the generated NMR signal (B) is wound. That is, the solenoid coil 703 serves both as a magnetic field locking high-frequency transmitter coil and a magnetic field locking high-frequency receiver coil.
  • the shaft of the solenoid coil 703 is incorporated and held in a holder 704 formed of Teflon (registered trademark) resin so that the axis of the solenoid coil 703 is orthogonal to the z-axis of the imaging space 102.
  • the holder 704 is fixed to the lower part of the top plate 119 as shown in FIG. 3, for example.
  • the position of the magnetic field locking sample 122 shown in FIG. 3 shows a magnetic field strength higher than the magnetic field strength of the imaging space 102 due to the influence of the magnetic pole 601.
  • the magnetic field strength of the imaging space 102 is 0.5 Tesla
  • the position of the magnetic field locking sample 122 under the top plate 119 is 0.51 Tesla.
  • a high frequency magnetic field of 20.42 MHz which is the magnetic resonance frequency of the magnetic field locking sample (fluorine nucleus 19 F) 122 to which a static magnetic field of 0.51 Tesla is applied, is irradiated from the solenoid coil 703.
  • a solenoid coil 703 having a resonance frequency of 20.42 MHz is used, a high-frequency current having a frequency of 20.42 MHz is supplied to the solenoid coil 703 from a magnetic field lock transmitter 209 described later, and a high-frequency magnetic field having a magnetic resonance frequency of the magnetic-field locking sample 122 is solenoidally supplied. Irradiate from coil 703. Since the static magnetic field strength of the superconducting coil 105 differs depending on the position where the magnetic field locking sample 122 is disposed, the high frequency magnetic field having a magnetic resonance frequency corresponding to the position is irradiated from the solenoid coil 703 to the magnetic field locking sample 122.
  • the MRI apparatus of the present embodiment includes a measurement unit (measurement system high frequency unit) 112 for generating a high frequency magnetic field from the high frequency transmitter coil 111 toward the subject 101 and measuring the NMR signal (A), and a solenoid coil 703.
  • a magnetic field lock unit (magnetic field lock system high frequency unit) 123 for generating a high frequency magnetic field from the magnetic field to the magnetic field locking sample 122, detecting the NMR signal (B), and adjusting the static magnetic field is provided.
  • the measurement system high-frequency unit 112 includes a measurement system transmitter 202, a high-frequency power amplifier 203 with a gate function, a high-frequency amplifier 204, a detector 205, an audio amplifier 206, and an A / D conversion circuit 207.
  • the magnetic field lock system high frequency unit 123 includes a magnetic field lock system transmitter 209, a high frequency switch 210, a high frequency power amplifier 211, a preamplifier 212, a phase detector (PSD) 213, and an integral type DC amplifier 214. And a voltage comparison amplifier 216.
  • a reference frequency generator 201 is commonly connected to the measurement system transmitter 202 of the measurement system high frequency unit 112 and the magnetic field lock system transmitter 209 of the magnetic field lock system high frequency unit 123.
  • the reference frequency transmitter 201 generates a 10 MHz reference frequency signal by a crystal resonator.
  • the crystal resonator used is subjected to a long-term aging treatment, and the change with time can be ignored. It is housed in a temperature-compensated container and has a stability of the order of 10-8 .
  • the measurement system transmitter 202 generates a frequency of 21.28 MHz at which a hydrogen nucleus (proton) 1 H causes an NMR phenomenon with a magnetic field intensity of 0.5 Tesla from a reference frequency signal of 10 megahertz.
  • the high frequency signal of 21.28 MHz is amplified by a high frequency power amplifier 203 with a gate function, modulated into a high frequency pulse, and applied to the high frequency transmitter coil 111.
  • the high-frequency transmitter coil 111 irradiates the subject 101 with a high-frequency magnetic field having a frequency of 21.28 MHz. Thereby, an NMR signal (A) of the hydrogen nucleus (proton) of the subject 101 is generated.
  • the NMR signal (A) is detected by the high frequency receiver coil 113 and amplified to about 60 dB by the high frequency amplifier 204.
  • the amplified NMR signal is detected by the detector 205 using the 21.28 MHz high frequency signal synthesized by the measurement system transmitter 202 as a reference signal, and changed to an audible frequency band.
  • the NMR signal (A) converted to the audible frequency is amplified by the audio amplifier 206, converted into a digital signal by the A / D conversion circuit 207, and delivered to the computer 115 via the sequencer 114.
  • the sequencer 114 controls the irradiation timing of the high-frequency magnetic field from the high-frequency transmitter coil 111 and the measurement timing and intensity of the NMR signal (A) by the high-frequency receiver coil 113 according to the imaging pulse sequence selected by the operator.
  • the sequencer 114 inputs the gradient signal of the analog signal to the gradient magnetic field power supply 110 of x, y, z via the D / A conversion circuit 208 in accordance with the imaging pulse sequence, so that the gradient coil assembly 109 Gradient magnetic fields in the x, y, and z directions are applied to the subject 101 at a predetermined timing and intensity.
  • the sequencer 114 executes a desired imaging pulse sequence, and the obtained NMR signal (A) is reconstructed by the computer 115 to generate a tomographic image or the like.
  • the magnetic field lock system transmitter 209 generates a high frequency signal of 20.42 MHz in which the fluorine nucleus 19 F undergoes nuclear magnetic resonance with a magnetic field of 0.51 Tesla from the 10 MHz reference frequency signal of the reference frequency generator 201.
  • the high frequency signal 21.28 MHz of the hydrogen nucleus (proton) 1 H and the high frequency signal 20.42 MHz of the fluorine nucleus 19 F drifts due to temperature or the like. Even in this case, a complete correlation is maintained.
  • the high frequency signal of 20.42 MHz generated by the magnetic field lock system transmitter 209 is amplified by the high frequency power amplifier 211 via the high frequency switch 210 (the function of the circuit 210 of this high frequency switch will be described later), and the top plate 119 This is applied to the solenoid coil 703 wound around the magnetic field locking sample 122 arranged below.
  • the solenoid coil 703 irradiates the magnetic field locking sample (fluorine nucleus 19 F) 122 with a high frequency magnetic field of 20.42 MHz.
  • the magnetic field locking sample 122 generates a 20.42 MHz NMR signal (B) when the magnetic field is 0.51 Tesla.
  • the NMR signal (B) generated by the magnetic field locking sample 122 is received by the solenoid coil 703 and amplified by the preamplifier 212.
  • a method in which the solenoid coil 703 that generates a high-frequency magnetic field that excites nuclear spins is also used as a solenoid coil that detects an NMR signal is called a single coil method.
  • This method is a widely known technique (see, for example, Pulse and Fourier Transform NMR published by Academic Press by Farrar & Becker).
  • the NMR signal (B) amplified by the preamplifier 212 is phase-detected by a phase detector (PSD) 213 using a 20.42 MHz high-frequency signal generated by the magnetic field lock system transmitter 209 as a reference signal 302.
  • PSD phase detector
  • the phase detector 213 will be described in more detail with reference to FIGS. 7 (a) and 7 (b).
  • FIG. 7 (a) when the NMR signal (B) 301 and the reference signal 302 are input to the phase detector 213 and these phases are the same (referred to as being synchronized), FIG. ), The output signal 303 becomes zero.
  • the output signal 303 swings to the plus side, and when the phase difference is 180 °, the output signal 303 reaches the maximum value. Show.
  • the output signal 303 swings to the negative side, and when the phase is delayed by 180 °, the output signal 303 shows a negative maximum value.
  • the static magnetic field strength of the imaging space 102 is a desired 0.5 Tesla
  • the magnetic field locking sample (fluorine nucleus 19 F) 122 outputs an NMR signal (B) having a resonance frequency of 20.42 MHz, and therefore is synchronized with the frequency of the reference signal 302, and the phase detector 213 The output will be zero.
  • the static magnetic field formed by the superconducting coil 105 in the imaging space 102 is greater than 0.5 Tesla, and the static magnetic field strength at the position where the magnetic field locking sample 122 is disposed.
  • the frequency of the NMR signal (B) of the magnetic field locking sample (fluorine nucleus 19 F) 122 also increases.
  • the phase of the NMR signal (B) 301 advances from the reference signal 302, and the output signal 303 of the phase detector (PSD) 213 generates a positive value.
  • the positive output signal 303 of the phase detector (PSD) 213 is integrated with the polarity inverted by the integrating DC amplifier 214, amplified to a desired value, and applied to the magnetic field correction coil 215.
  • the correction coil 215 generates a magnetic field in a direction that reduces the static magnetic field strength generated by the superconducting coil 105. Therefore, the magnetic field intensity in the imaging space 102 returns to the value of 0.5 Tesla again after the magnetic field generated by the magnetic field correction coil 215 is reduced.
  • the magnetic field intensity at the position where the magnetic field locking sample 122 is disposed also returns to 0.51 Tesla again, so that the NMR signal (B) 301 and the reference signal 301 are synchronized again, and the output signal of the phase detector 213 is zero.
  • the output value of the integral type DC amplifier 214 does not change.
  • the magnetic field locking sample (B) of the fluorine nucleus 19 F) 122 is also lowered.
  • the phase of the NMR signal (B) 301 is delayed from the reference signal 302, and the output signal 303 of the phase detector 213 generates a negative value.
  • the negative output signal 303 of the phase detector 213 is integrated with the polarity inverted by the integrating DC amplifier 214, amplified to a desired value, and applied to the magnetic field correction coil 215.
  • the correction coil 215 generates a magnetic field in a direction that increases the static magnetic field strength generated by the superconducting coil 105.
  • the magnetic field intensity of the imaging space 102 returns to the value of 0.5 Tesla again, and the magnetic field intensity at the position where the magnetic field locking sample 122 is arranged also returns to 0.51 Tesla again, so the NMR signal (B) 301 and the reference signal 301 is synchronized again, and the output signal of the phase detection circuit 213 becomes zero.
  • the magnetic field lock unit (magnetic field lock system high frequency unit) 123 determines the correction magnetic field generated by the correction coil 215 in accordance with the frequency of the NMR signal (B) of the magnetic field lock sample 122. Since feedback control is performed, the magnetic field strength of the imaging space 105 can be stabilized to an order (0.01 ppm) equivalent to the stability 10 ⁇ 8 of the reference frequency of the reference frequency generator 201.
  • the magnetic field locking sample 122 is disposed at a position where it does not physically interfere with the subject 101, and the NMR signal (B) has a different frequency from the NMR signal (A) of the subject 101 and is electrically interfered. Therefore, even when the imaging pulse sequence is being executed, feedback control can be performed to stabilize the static magnetic field strength.
  • a state where the magnetic field intensity matches the reference frequency, that is, a state where the output signal of the phase detector 213 is zero is called magnetic field lock-on.
  • the voltage comparison amplifier 216 receives the output signal of the phase detector 213 and causes the display device 217 to display the magnetic field lock-on state.
  • Display device 217 may be a pilot lamp or an image display device. As a result, the operator can grasp that the magnetic field is in a stable state and can instruct a desired operation (such as starting an imaging pulse sequence).
  • the voltage comparison amplifier 216 passes a signal 218 indicating the magnetic field lock / on state to the computer 115 via the sequencer 114.
  • the computer 115 can execute an imaging pulse sequence in a magnetic field lock-on state.
  • the same reference frequency generator 201 is connected to the measurement system transmitter 202 of the measurement system high frequency unit 112 and the magnetic field lock system transmitter 209 of the magnetic field lock system high frequency unit 123, and a common reference frequency signal is transmitted. Supply. This correlates the Larmor frequency of the fluorine nucleus 19 F in the magnetic field lock system and the Larmor frequency of the hydrogen atom 1 H in the measurement system. This effect will be described in more detail.
  • the Larmor precession of nuclear magnetic resonance of nuclear spins is determined by the nuclide-specific gyromagnetic ratio ⁇ and the magnetic field strength B 0 , and the frequency f is expressed by the following equation (1).
  • the Larmor frequency f H of the hydrogen nucleus (proton) 1 H is 21.28 MHz.
  • the frequency of the reference frequency generator 201 is slightly displaced due to temperature drift or the like, the Larmor frequency of the fluorine nucleus 19 F of the magnetic field locking sample 122 is displaced, and the output of the phase detector 213 is not zero, and the magnetic field strength feedback loop As a result of this control, the magnetic field strength B 0 in the imaging space 102 is slightly displaced.
  • the Larmor frequency of the hydrogen nucleus (proton) 1 H slightly changes with a slight displacement of the magnetic field strength B 0 , but the high-frequency signal generated by the measurement system transmitter 202 and the reference input to the detector 205 frequency of the signal is also because it is generated from the output signal of the same reference frequency generator 201, in correlation with the displacement of the magnetic field strength B 0, by the same percentage slightly displaced. Therefore, the resonance condition (1) of the hydrogen nucleus (proton) 1 H is maintained corresponding to the change in the magnetic field strength B 0 , and the detection accuracy of the NMR signal (A) does not change.
  • the magnetic field strength of the superconducting magnet 103 can be set to 10 ⁇ 8 order (0.01 ppm) equivalent to the stability of the reference frequency generator 201 by the magnetic field lock-on, and the measurement system high frequency
  • the resonance condition is maintained even when the reference frequency fluctuates due to temperature drift or the like.
  • the NMR signal (A) can be detected with high accuracy and stability.
  • the operation of the magnetic field lock high-frequency unit 121 is stopped during the period when the gradient magnetic field is applied. It is desirable that the correction state (feedback control amount) immediately before application of the gradient magnetic field is maintained.
  • the correction state feedback control amount
  • the application time of the gradient magnetic field is usually a pulse operation of several milliseconds
  • the magnetic field change due to the temperature drift of the magnet power supply 106 or disturbance magnetic field disturbance is a change over a long time of several seconds or more, so the gradient magnetic field is applied. Even if the magnetic field feedback control (magnetic field lock operation) is stopped for a certain period, the magnetic field strength of the imaging space 102 can be stabilized with high accuracy.
  • FIG. 8 shows an imaging pulse sequence (timing magnetic field pulse application timing of the gradient magnetic field power supply 110, high frequency magnetic field irradiation timing and NMR signal (A) detection timing of the measurement system high frequency unit 112), and magnetic field lock high frequency unit 123. It is the figure which showed the relationship with this operation
  • the imaging pulse sequence in FIG. 8 is a sequence for imaging the cross-section of the patient's head (the x-z plane perpendicular to the y-axis that is the body axis) by the spin echo method.
  • the gradient magnetic field power supply 110 supplies a drive current to the gradient coil assembly 109, and a y gradient magnetic field pulse (slice selection gradient magnetic field pulse) 401 for determining a cross section to be photographed is an imaging space. Applied to the object 101 of 102. At the same time, a high frequency current of 21.28 MHz is supplied from the high frequency power amplifier 203 to the high frequency transmitter coil 111, and the high frequency magnetic field 402 is irradiated. The hydrogen nuclei (protons) 1 H of the selected cross section transition from the thermal equilibrium state to the resonance excited state.
  • Process (3) Wait for a waiting time according to the time parameter selected in the spin echo method.
  • steps (1), (2) and (3) If the waiting time has elapsed, repeat steps (1), (2) and (3).
  • the number of repetitions is, for example, 256 times and matches the number of pixels of the MRI image.
  • the phase encoding gradient magnetic field is applied by changing the z gradient magnetic field pulses 403-1, 403-2,... 403-256 and their intensities in 256 steps.
  • the 256 repetition periods from the process (1) to the process (3) become an imaging examination period 406.
  • the magnetic field lock unit (magnetic field lock system high-frequency unit) 123 applies the gradient magnetic field pulses 401, 403, and 404 for the time of the process (1) and the process (2).
  • a rest period 407 in which 122 NMR signals (B) are not detected is set.
  • the time of the process (3) is an operation period 408 in which the NMR signal (B) of the magnetic field locking sample 122 is detected and the magnetic field correction current is updated.
  • the magnetic field lock is also in the operation period 408 during the imaging examination pause period 409, which is the patient loading / unloading time and waiting time before and after the imaging examination period 406.
  • the high frequency switch 210 of FIG. Switching between the operation period 408 and the rest period 409 of the magnetic field lock unit (magnetic field lock type high frequency unit) 123 is performed by the high frequency switch 210 of FIG. That is, the high frequency switch 210 is controlled to be turned on / off by the control signal 219 from the sequencer 114.
  • the control signal 219 is linked to the control signal 220 of the D / A conversion circuit 208 that is an input signal of the gradient magnetic field power supply 110.
  • the high frequency switch 210 is turned off by the control signal 219, and the 20.02 MHz high frequency signal output from the magnetic field lock system transmitter 209 is input to both the high frequency power amplifier 211 and the phase detector 213. It will not be done.
  • the phase detector 213 has no reference signal 302, so its output signal becomes zero. Since the input signal of the integrating DC amplifier 214 is zero, the output of the integrating DC amplifier 214 is maintained at the previous value. Since the applied current of the magnetic field correction coil 215 does not change, the value of the correction magnetic field so far is held. On the other hand, in the operation period 408 in which no gradient magnetic field is applied, the high frequency switch 210 is turned on, and the magnetic field lock unit (magnetic field lock system high frequency unit) 123 performs feedback control of the magnetic field correction coil 215 according to the detected NMR signal (B). And stabilize the static magnetic field.
  • the magnetic field lock unit magnetic field lock system high frequency unit
  • FIG. 9 is a flowchart showing daily operations of the MRI apparatus of this embodiment.
  • a static current of 160 amperes is supplied from the magnet power source 106 to the superconducting coil 105 of the superconducting magnet 103 to generate a static magnetic field (step 501).
  • This operation may be performed by an operation of the input device 117 by the operator, or may be performed using an automatic startup function programmed in advance in the computer 115.
  • the magnetic field lock system high-frequency unit 123 operates, and the magnetic signal from the integrating DC amplifier 214 is obtained using the NMR signal (B) of the fluorine nucleus 19 F obtained from the magnetic field locking sample 122.
  • the current supplied to the correction coil 215 is feedback-controlled. Thereby, the magnetic field strength of the imaging space 102 becomes, for example, 0.5 Tesla (magnetic field locked / on state) and is maintained (step 502).
  • An output signal of the voltage comparison amplifier 216 is input to the computer 115.
  • the display device 217 displays that the magnetic field is locked / on.
  • the operator confirms that the magnetic field is locked on by the display device 217, and then carries the first subject 101 into the imaging space 102 (step 503).
  • the normal human body does not affect the magnetic field, it may have magnetism depending on the wearing of the magnetic body or some medical implants.
  • the distribution is once changed, the magnetic field intensity of the imaging space 102 is maintained in the magnetic field lock-on state of 0.5 Tesla by the feedback control of the magnetic field lock system high-frequency unit 123.
  • the change in magnetic field due to the influence of the subject 101 is slight, and the change speed (operation of loading and unloading the subject 101) is sufficiently covered by the response speed of the magnetic field lock high-frequency unit 123.
  • the magnetic field lock will never be locked out.
  • an imaging examination (imaging) of the examination region of the subject 101 is performed by executing an imaging pulse sequence suitable for the examination purpose.
  • the magnetic field lock high-frequency unit 123 detects the NMR signal of the magnetic field locking sample 122 and feedback-controls the magnetic field strength of the imaging space 102.
  • the feedback control is stopped and the previous correction amount is maintained.
  • the magnetic field strength of the imaging space 102 can be maintained at 0.5 Tesla even during execution of the imaging pulse sequence (step 504).
  • the magnetic field strength is maintained in a lock-on state of 0.5 Tesla (step 505).
  • step 506 it is determined whether or not the next subject 101 is inspected. If the next subject 101 is inspected, the process returns to step 503 and steps 503 to 505 are repeated. During this time, the magnetic field lock-on function is maintained, and the operator only has to confirm the display device 217 for magnetic field lock-on. Of course, since the magnetic field lock-on signal 218 is constantly input to the computer 115, the imaging inspection in the magnetic field lock-out state is not performed.
  • the MRI apparatus determines whether to proceed to the end operation or to wait for the subject 101 that is not reserved, such as an urgent patient, based on a predetermined criterion. (Step 507). For example, when instructed to proceed to the end operation by the operator's instruction, or when the end time of the medical facility has elapsed, it is decided to shift to demagnetization work of the superconducting magnet 103, and otherwise wait Can do. In the case of standby, the process returns to step 506.
  • demagnetization work of superconducting magnet 103 is performed (step 508).
  • the degaussing operation is performed by executing an operation instructed by the operator via the input device 117, or by performing a predetermined automatic degaussing operation by the computer 115.
  • the magnetic field lock type high frequency unit 123 finishes its operation and enters a magnetic field lockout state (step 508).
  • the present invention is not limited to this method. It is also possible to directly correct the static magnetic field generated by the superconducting coil 105 by feedback-controlling the current supplied from the magnet power source 106 to the superconducting coil 105 according to the output signal 303 of the phase detector 213.
  • the inductance of the correction coil 215 can be several hundred millihenries, which is three orders of magnitude smaller than that of a general superconducting coil 105. Therefore, the correction coil 215 can be corrected more accurately than when the superconducting coil 105 is feedback controlled. It is feasible. Therefore, it is possible to adopt a hybrid method in which both corrections are combined. That is, a method in which the magnetic field intensity is roughly adjusted by feedback control of the magnet power supply 106 and then finely adjusted by the correction magnetic field coil 215 can be used. Alternatively, the magnetic field strength can be roughly adjusted by the magnet power source 106 only when the correction magnetic field coil 215 is usually used for adjustment and the magnetic field strength greatly changes.
  • the fluorine nucleus 19 F is used as the magnetic field locking sample, but deuterium nucleus 2 H heavy water (D 2 O, 2 H 2 O, or deuterated chloroform CDCl 3 ) is used. Also good.
  • the frequency synthesized by the magnetic field lock system transmitter 209 is 3.333 MHz. Since both are different from the magnetic resonance frequency of hydrogen nucleus (proton) 1 H, a high-frequency signal of the magnetic field lock system is not induced in the high-frequency receiver coil 113, and a stable MRI image of the subject 101 is obtained. can get.
  • the high-frequency receiver coil 113 has a structure in which a coil conductor is covered with a holding portion 801 having a desired shape made of an insulating material.
  • the coil conductor and the holding unit 801 have a shape corresponding to the examination site.
  • the high-frequency receiver coil 113 for the human head has a cylindrical holding unit 801 and includes a head receiving base. ing.
  • FIG. 5 an example in which the magnetic field locking sample 122 is disposed inside the head receiving base of the holding unit 8 is shown.
  • the magnetic field locking sample 122 when the magnetic field locking sample 122 is arranged inside the high frequency receiver coil 113, the magnetic field locking sample 122 is located in the imaging space 102 (imaging region (FOV)), but the magnetic field locking sample 122 Does not appear in the imaging image because it does not contain hydrogen nuclei (protons) 1 H in the imaging examination.
  • the magnetic field locking sample 122 can be arranged in the imaging space 102 and closest to the center thereof.
  • the fluorine nucleus 19 F of the magnetic field locking sample 122 exists in a static magnetic field with the same intensity and the same intensity as the hydrogen nucleus (proton) 1 H of the imaging examination, so the NMR signal (B) is converted into an NMR signal ( It can be detected with higher accuracy with higher correlation with A).
  • the magnetic field locking sample 122 can be arranged at an optimum position and size for each high-frequency receiver coil 113. Therefore, it is possible to stabilize the magnetic field in the imaging space 102 with high accuracy.
  • the start timing of the magnetic field locking operation is different from that in the first embodiment.
  • the operation flow of the superconducting magnet 103 of the second embodiment will be described with reference to FIG.
  • a predetermined current of 160 amperes is supplied to the superconducting magnet 103 prior to the inspection on the day, and a static magnetic field is generated in the superconducting coil 105 (step 501).
  • This operation is the same as step 501 in FIG.
  • the operator attaches the high-frequency receiver coil 113 suitable for the purpose of the imaging examination to the first subject 101 and carries it into the imaging space 102 (step 1001).
  • the magnetic field locking sample 122 provided in the high frequency receiver coil 113 is arranged in the imaging space 102, the magnetic field locking system high frequency unit 123 outputs the NMR signal (B) of the magnetic field locking sample 122.
  • step 1002 The output signal 218 of the voltage comparison amplifier 216 is input to the computer 115, and at the same time, the magnetic field lock-on state is displayed on the display device 217.
  • step 504 is performed in the same manner as in the first embodiment, and an imaging test of the test site of the subject 101 is performed.
  • the magnetic field locking sample 122 is also carried out from the magnetic field formed by the superconducting coil 105, so the magnetic field locking function is released (step 1003). .
  • step 506 for determining whether or not the next subject 101 is inspected if there is the next subject 101, the process returns to step 1001 to carry the subject 101 into the imaging space 102.
  • the magnetic field lock-on state is established (step 1002).
  • step 506 if there is no reservation for the next subject 101, the MRI apparatus proceeds to step 507 and determines whether to proceed to step 1004 of demagnetization of the superconducting magnet or return to step 506 and wait.
  • step 1004 the demagnetization work of the superconducting magnet 103 is performed as in step 508 of the first embodiment. Since the magnetic field lock has already been completed in step 1003, only demagnetization is performed in step 1004.
  • magnetic field locking samples 122-1, 122-2, and 122-3 are respectively placed in different positions (three locations in FIG. 4) along the body axis direction of the subject 101 in the top plate 119. It is arranged.
  • the position of the top 119 with respect to the imaging space 102 changes according to the examination site of the subject 101.
  • the magnetic field locking sample 122-1 is disposed closest to the center of the imaging space 102. Therefore, the magnetic field lock high-frequency unit 123 receives the position information of the top plate 119 from the computer 115 via the sequencer 114, and accordingly, the magnetic lock closest to the imaging space 102 among the plurality of magnetic field locking samples 122 is received.
  • Sample 122-1 is selected, and feedback control of the static magnetic field is performed using the NMR signal (B) of the sample 122-1 for magnetic lock.
  • the start and end timing of the magnetic field lock is the timing when the subject is carried in / out, and is the same as the flow of FIG. 10 of the second embodiment.
  • Other configurations and operations are the same as those in the first embodiment, and thus description thereof is omitted.

Abstract

The purpose of the present invention is to stabilize the magnetic field strength of the superconductive magnet in driven mode operation and achieve improvement of MRI image quality. A magnetism locking sample (122) is disposed at a position where a magnetic field generated by the superconductive coil (105) is applied and which does not physically interfere with the subject (101). A magnetic field locking unit (123) irradiates a high frequency magnetic field on the magnetic field locking sample (122), detects the NMR signal (B) generated by the magnetic field locking sample (122), and adjusts the strength of the static magnetic field according to the detection results to make the static magnetic field constant. Preferably the magnetic field locking sample comprises an atomic nuclide that generates a nuclear magnetic resonance signal (B) of a magnetic resonance frequency differing from the magnetic resonance frequency of the nuclear magnetic resonance signal (A) detected by the measurement unit.

Description

磁気共鳴イメージング装置Magnetic resonance imaging system
 本発明は、磁気共鳴イメージング装置(Magnetic Resonance Imaging装置、以下、MRI装置と称する)に係わり、特に、超電導コイルに電流を印加する電源を接続して運転するドリブンモードの超電導磁石を用いたMRI装置の磁場強度安定化に関する。 The present invention relates to a magnetic resonance imaging apparatus (Magnetic-Resonance-Imaging apparatus, hereinafter referred to as an MRI apparatus), and in particular, an MRI apparatus using a driven-mode superconducting magnet that is operated by connecting a power source for applying a current to a superconducting coil. Relates to stabilization of magnetic field strength.
 MRI装置は永久磁石を用いた0.5テスラ以下の磁場強度の装置と超電導磁石を用いた1.0テスラ以上の磁場強度の装置の二種類が広く医療施設に設置されている。永久磁石によるMRI装置は設置に関する制約が少ないことや運転コストが安いメリットがある。一方、超電導磁石はNbTiやNb3Snなどの超電導線を臨界温度以下に冷やすため、寒剤となる液体ヘリウムのサービスエリア内に設置する必要があるなど、その設置に関する制約が多いが、磁場強度に比例して核磁気共鳴(Nuclear Magnetic Resonance、以下、NMRと称する)信号の検出感度が高くなることから、高い診断能力を有する。 There are two types of MRI devices in medical facilities: a device with a magnetic field strength of 0.5 Tesla or less using a permanent magnet and a device with a magnetic field strength of 1.0 Tesla or more using a superconducting magnet. Permanent magnet MRI systems have the advantages of low installation costs and low operating costs. On the other hand, the superconducting magnet cooling the superconducting wire, such as NbTi and Nb 3 Sn below the critical temperature, etc. have to be installed in the service area of the liquid helium to be cryogen, but many restrictions on its installation, the magnetic field strength Since the detection sensitivity of the nuclear magnetic resonance (hereinafter referred to as NMR) signal increases in proportion, it has a high diagnostic ability.
 特許文献1に示すように、超電導磁石は超電導コイルをループ状に接続し、永久電流を流すモードで運転することが一般的であった。しかし、特許文献2に示すように、より高い磁場強度を得るため、ならびに、液体ヘリウムを使わない高温超電導線を用いるために、電源から常時電流を流し続けるドリブンモードのNMR装置やMRI装置の超電導磁石も開発されている。 As shown in Patent Document 1, a superconducting magnet is generally operated in a mode in which a superconducting coil is connected in a loop and a permanent current flows. However, as shown in Patent Document 2, in order to obtain a higher magnetic field strength and to use a high-temperature superconducting wire that does not use liquid helium, the superconductivity of a driven mode NMR apparatus or MRI apparatus in which a current is constantly supplied from a power source. Magnets have also been developed.
 しかし、ドリブンモードの超電導磁石は、特許文献2に示されているように、電源の温度ドリフトなどにより、その磁場強度の安定性は、1時間あたり5ppm程度であった。
そこで、特許文献2に開示されている技術では、磁場測定器プローブを磁場空間に配し、磁場測定器プローブによって測定されたメインコイルの磁場の変動とは逆方向の磁場を誘起するようにメインコイルの電流を調整し、1時間あたり0.01ppmの安定した磁場強度を達成しようとしている。
However, as shown in Patent Document 2, the stability of the magnetic field strength of the driven mode superconducting magnet is about 5 ppm per hour due to the temperature drift of the power source.
Therefore, in the technique disclosed in Patent Document 2, the magnetic field measuring instrument probe is arranged in the magnetic field space, and the main magnetic field is induced so as to induce a magnetic field in the opposite direction to the fluctuation of the magnetic field of the main coil measured by the magnetic field measuring instrument probe. The coil current is adjusted to achieve a stable magnetic field strength of 0.01 ppm per hour.
特開2005-124721号公報JP 2005-124721 JP 特開2008-020266号公報JP 2008-020266 A
 MRI装置では、超電導磁石の発生する均一な磁場空間に被検体を配設する。また、超電導磁石の大きさや製造コストの制約から、均一な磁場空間は、被検体の大きさとほぼ一致するように製造されている。即ち、MRI検査に必要とされる3ppm以下の均一磁場空間は直径が約40センチメートルの球空間となっている。この空間外では、磁場均一度は急激に劣化、即ち、磁束密度が変化する磁場強度勾配を有する。 In the MRI system, the subject is placed in a uniform magnetic field generated by a superconducting magnet. In addition, due to restrictions on the size of the superconducting magnet and the manufacturing cost, the uniform magnetic field space is manufactured so as to substantially match the size of the subject. In other words, the uniform magnetic field space of 3 ppm or less required for MRI examination is a spherical space with a diameter of about 40 centimeters. Outside this space, the magnetic field uniformity rapidly deteriorates, that is, has a magnetic field strength gradient in which the magnetic flux density changes.
 また、MRI装置では、被検体の検査部位を選択するためや、NMR信号に位置情報を与えるために、互いに直交する三軸、即ち、磁場空間のx、y、z軸に沿って磁場強度に意図的に勾配を生じるように傾斜磁場を印加する。即ち、MRIの検査中は傾斜磁場が印加されるので、超電導磁石の発生する均一な磁場空間は、x、y、z軸に沿ってその磁場強度が変化することになる。 In addition, in the MRI apparatus, in order to select the examination site of the subject and to give position information to the NMR signal, the magnetic field strength is adjusted along the three axes orthogonal to each other, that is, the x, y, and z axes of the magnetic field space. A gradient magnetic field is applied so as to intentionally generate a gradient. That is, since a gradient magnetic field is applied during the MRI examination, the magnetic field strength of the uniform magnetic field space generated by the superconducting magnet changes along the x, y, and z axes.
 このため、ドリブンモード運転の超電導磁石の磁場強度を安定化させるため、磁場測定器プローブで測定された信号で、電源のドリフト分を補償する特許文献2の技術をMRI装置の超電導磁石に採用するにあたっては、下記の問題が生じる。 For this reason, in order to stabilize the magnetic field strength of the superconducting magnet in the driven mode operation, the technique of Patent Document 2 that compensates for the drift of the power source with the signal measured by the magnetic field measuring instrument probe is adopted for the superconducting magnet of the MRI apparatus. In doing so, the following problems arise.
 (1)被検体を配設する均一磁場空間に、被検体と磁場測定器プローブを同時に配置することが難しい。このため、被検体のNMR信号を検出しながら磁場強度を磁場測定プローブで測定することは容易ではない。 (1) It is difficult to place the subject and the magnetic field measuring probe simultaneously in the uniform magnetic field space where the subject is placed. For this reason, it is not easy to measure the magnetic field intensity with the magnetic field measurement probe while detecting the NMR signal of the subject.
 (2)MRI検査時に動作させる傾斜磁場によって、均一磁場空間の磁場が変化するため、磁場測定プローブで正確な均一磁場強度を測定することが難しい。 (2) Since the magnetic field in the uniform magnetic field space is changed by the gradient magnetic field operated during the MRI examination, it is difficult to accurately measure the uniform magnetic field strength with the magnetic field measurement probe.
 (3)磁場測定プローブの検出した高周波信号が、MRI検査の被検体から検出した高周波信号と干渉する。 (3) The high-frequency signal detected by the magnetic field measurement probe interferes with the high-frequency signal detected from the subject of the MRI examination.
 (4)磁場補償が動作し、磁場強度が正確であるかどうかを、オペレータが把握することが難しい。 (4) It is difficult for the operator to grasp whether the magnetic field compensation operates and the magnetic field strength is accurate.
 特許文献2には、被検体と磁場測定器プローブとの位置関係や、検出信号の干渉等に関する記載が一切なく、被検体が配置されていない状態で磁場を測定していると推測される。このため、上記問題を特許文献2の技術で解決することはできない。 In Patent Document 2, there is no description regarding the positional relationship between the subject and the magnetic field measuring probe, the interference of the detection signal, and the like, and it is assumed that the magnetic field is measured in a state where the subject is not arranged. For this reason, the above problem cannot be solved by the technique of Patent Document 2.
 本発明は上記問題に鑑みて行なわれたもので、その目的は、ドリブンモード運転の超電導磁石の磁場強度を安定にし、MRI画像の画質向上を達成することにある。 The present invention has been made in view of the above problems, and an object thereof is to stabilize the magnetic field strength of the superconducting magnet in the driven mode operation and achieve the improvement of the image quality of the MRI image.
 上記課題を解決するため、本発明のMRI装置は、撮像空間に静磁場を形成する超電導コイルと、超電導コイルが静磁場を形成している間、超電導コイルに電流を継続供給する磁石電源と、撮像空間に傾斜磁場を生じさせる傾斜磁場発生部と、撮像空間に配置された被検体に高周波磁場を照射する高周波磁場発生部と、被検体の核磁共鳴信号(A)を検出する計測部と、磁気ロック用試料と、磁気ロック部とを備えている。磁気ロック用試料は、超電導コイル105が発生した磁場が印加される位置であって、被検体と物理的に干渉しない位置に配置される。磁場ロック部は、磁場ロック用試料に高周波磁場を照射し、磁場ロック用試料が発生した核磁気共鳴信号(B)を検出し、検出結果に応じて静磁場の強度を調整し、静磁場を一定にする。 In order to solve the above problems, the MRI apparatus of the present invention includes a superconducting coil that forms a static magnetic field in an imaging space, a magnet power supply that continuously supplies current to the superconducting coil while the superconducting coil forms a static magnetic field, A gradient magnetic field generator for generating a gradient magnetic field in the imaging space; a high-frequency magnetic field generator for irradiating a subject placed in the imaging space with a high-frequency magnetic field; a measurement unit for detecting a nuclear magnetic resonance signal (A) of the subject; A sample for magnetic lock and a magnetic lock part are provided. The sample for magnetic lock is disposed at a position where the magnetic field generated by the superconducting coil 105 is applied and does not physically interfere with the subject. The magnetic field locking unit irradiates the magnetic field locking sample with a high frequency magnetic field, detects the nuclear magnetic resonance signal (B) generated by the magnetic field locking sample, adjusts the strength of the static magnetic field according to the detection result, Keep it constant.
 本発明によれば、ドリブンモードの超電導磁石の磁場強度を安定にし、MRI画像の画質向上を達成することができる。 According to the present invention, it is possible to stabilize the magnetic field strength of the driven mode superconducting magnet and to improve the image quality of the MRI image.
本実施形態のMRI装置の全体構成を示すブロック図The block diagram which shows the whole structure of the MRI apparatus of this embodiment 図1の装置の計測系高周波ユニット112と磁場ロック系高周波ユニット123の回路構成を示すブロック図1 is a block diagram showing the circuit configuration of the measurement system high-frequency unit 112 and the magnetic field lock system high-frequency unit 123 of the apparatus of FIG. 本実施形態のMRI装置を構成する超電導磁石の断面図Sectional drawing of the superconducting magnet which comprises the MRI apparatus of this embodiment 天板内の複数個所に磁場ロック用試料を配置した構成を示す断面図Sectional drawing which shows the structure which has arrange | positioned the sample for a magnetic field lock in several places in a top plate 磁場ロック用試料を高周波レシーバーコイルの保持部内に配置した構成を示す断面図Sectional drawing which shows the structure which has arrange | positioned the sample for magnetic field lock | rock in the holding | maintenance part of a high frequency receiver coil 磁場ロック用試料の側面図Side view of sample for magnetic field lock 図2の位相検波器の(a)入出力信号を示す説明図、(b)入出力信号の波形を示す説明図2A is an explanatory diagram showing input / output signals, and FIG. 2B is an explanatory diagram showing waveforms of input / output signals. 実施形態の撮像パルスシーケンスと磁場ロックの動作を示すタイミングチャート図Timing chart showing operation of imaging pulse sequence and magnetic field lock of embodiment 第1の実施形態のMRI装置の動作を示すフロー図Flow chart showing the operation of the MRI apparatus of the first embodiment 第2の実施形態のMRI装置の動作を示すフロー図Flow chart showing the operation of the MRI apparatus of the second embodiment
 本発明のMRI装置は、図1~図3に示すように撮像空間102に静磁場を形成する超電導コイル105と、超電導コイル105が静磁場を形成している間、超電導コイル105に電流を継続供給する磁石電源106と、撮像空間102に傾斜磁場を生じさせる傾斜磁場発生部(109、110)と、撮像空間102に配置された被検体101に高周波磁場を照射する高周波磁場発生部(111、112)と、被検体101の核磁共鳴(NMR)信号(A)を検出する計測部(112、113)とを備えている。さらに本発明のMRI装置は、磁気ロック用試料122と、磁気ロック部(123)とを備えている。 The MRI apparatus of the present invention, as shown in FIGS. 1 to 3, continues the current to the superconducting coil 105 while the superconducting coil 105 forms a static magnetic field in the imaging space 102 and the superconducting coil 105 forms a static magnetic field. Magnet power supply 106, a gradient magnetic field generator (109, 110) that generates a gradient magnetic field in the imaging space 102, and a high-frequency magnetic field generator (111, 110) that irradiates the subject 101 disposed in the imaging space 102 with a high-frequency magnetic field 112) and measuring units (112, 113) for detecting a nuclear magnetic resonance (NMR) signal (A) of the subject 101. Furthermore, the MRI apparatus of the present invention includes a magnetic lock sample 122 and a magnetic lock portion (123).
 磁気ロック用試料122は、超電導コイル105が発生した磁場が印加される位置であって、被検体101と物理的に干渉しない位置に配置される。磁場ロック部(123)は、磁場ロック用試料122に高周波磁場を照射し、磁場ロック用試料122が発生したNMR信号(B)を検出し、検出結果に応じて静磁場の強度を調整し、静磁場を一定にする。 The magnetic locking sample 122 is disposed at a position where the magnetic field generated by the superconducting coil 105 is applied and does not physically interfere with the subject 101. The magnetic field locking unit (123) irradiates the magnetic field locking sample 122 with a high frequency magnetic field, detects the NMR signal (B) generated by the magnetic field locking sample 122, adjusts the strength of the static magnetic field according to the detection result, Make the static magnetic field constant.
 このように本発明では、被検体101と干渉しない位置に磁場ロック用試料122を配置し、磁場ロック用試料122のNMR信号(B)に基づいて静磁場強度を磁場ロック部(123)が調整することにより、被検体101のNMR信号(A)を計測しながら、静磁場均一度の調整を行うことが可能になる。これにより、磁場発生中に常に超電導コイルが磁石電源から電流供給を受けるドリブンモード運転の超電導磁石の撮像空間の磁場強度を、高精度に均一な状態に維持することができるため、MRI画像の画質を向上させることができる。 As described above, in the present invention, the magnetic field locking sample 122 is arranged at a position not interfering with the subject 101, and the magnetic field locking unit (123) adjusts the static magnetic field intensity based on the NMR signal (B) of the magnetic field locking sample 122. By doing so, it is possible to adjust the static magnetic field uniformity while measuring the NMR signal (A) of the subject 101. As a result, the magnetic field strength in the imaging space of the superconducting magnet in the driven mode operation where the superconducting coil is always supplied with current from the magnet power source during the generation of the magnetic field can be maintained in a uniform state with high accuracy. Can be improved.
 磁場ロック用試料122は、計測部(112)が検出するNMR信号(A)の磁気共鳴周波数とは異なる磁気共鳴周波数のNMR信号(B)を発生する原子核種を含むものを用いることが望ましい。これにより、NMR信号(A)とNMR信号(B)との電気的な相互干渉を防止でき、同時にそれぞれ検出することができる。例えば、計測部(112)が検出するNMR信号(A)が、水素原子核(プロトン)1HのNMR信号である場合、磁場ロック用試料122としては、フッ素原子核19F、重水素原子核2Hおよびリン原子核15Pのいずれかを含む材料を用いることができる。 As the magnetic field locking sample 122, it is desirable to use a sample containing an atomic species that generates an NMR signal (B) having a magnetic resonance frequency different from the magnetic resonance frequency of the NMR signal (A) detected by the measurement unit (112). Thereby, electrical mutual interference between the NMR signal (A) and the NMR signal (B) can be prevented and simultaneously detected. For example, when the NMR signal (A) detected by the measurement unit (112) is an NMR signal of a hydrogen nucleus (proton) 1 H, the magnetic field locking sample 122 includes a fluorine nucleus 19 F, a deuterium nucleus 2 H, and A material containing any of the phosphorus nuclei 15 P can be used.
 磁場ロック部(123)は、傾斜磁場発生部(109、110)が傾斜磁場を発生している間は、NMR信号(B)の検出結果に応じた静磁場の強度の調整を一時的に停止することが望ましい。これにより、磁場ロック部(123)が、傾斜磁場が重畳された状態の静磁場を検出して、静磁場を調整するのを防止できるため、傾斜磁場の影響を受けることなく、静磁場の均一度を向上させることができる。例えば、磁場ロック部(123)は、傾斜磁場発生部(109、110)が傾斜磁場を発生している間は、停止直前の調整量を保持するようにする。 The magnetic field lock unit (123) temporarily stops adjusting the strength of the static magnetic field according to the detection result of the NMR signal (B) while the gradient magnetic field generation unit (109, 110) is generating the gradient magnetic field. It is desirable to do. This prevents the magnetic field lock unit (123) from detecting the static magnetic field in which the gradient magnetic field is superimposed and adjusting the static magnetic field, thereby preventing the static magnetic field from being balanced without being affected by the gradient magnetic field. Can be improved once. For example, the magnetic field lock unit (123) maintains the adjustment amount immediately before the stop while the gradient magnetic field generation unit (109, 110) generates the gradient magnetic field.
 高周波磁場発生部(111,112)は、例えば、高周波トランスミッターコイル111と、高周波トランスミッターコイル111に高周波磁場を発生させるための高周波信号を供給する高周波信号生成部(112)とを含む。磁場ロック部(123)は、磁場ロック用試料122に高周波を照射する磁場ロック用高周波トランスミッターコイル(703)と、磁場ロック用高周波トランスミッターコイル(703)に高周波磁場を発生させるための高周波信号を供給する磁場ロック用高周波信号生成部(123)とを含む。高周波信号生成部(112)および磁場ロック用高周波信号生成部(123)には、共通の基準周波数信号を供給する基準周波数発生器201が接続されていることが望ましい。 The high-frequency magnetic field generator (111, 112) includes, for example, a high-frequency transmitter coil 111 and a high-frequency signal generator (112) that supplies a high-frequency signal for causing the high-frequency transmitter coil 111 to generate a high-frequency magnetic field. The magnetic field lock unit (123) supplies a high-frequency signal for generating a high-frequency magnetic field to the high-frequency transmitter coil (703) for magnetic field locking that irradiates the magnetic field locking sample 122 with high frequency, and the high-frequency transmitter coil (703) for magnetic field locking. And a magnetic field locking high-frequency signal generator (123). It is desirable that a reference frequency generator 201 for supplying a common reference frequency signal is connected to the high-frequency signal generation unit (112) and the magnetic field locking high-frequency signal generation unit (123).
 これにより、基準周波数信号の周波数が変動した場合であっても、高周波トランスミッターコイル111の高周波磁場と、磁場ロック用高周波トランスミッターコイル(703)の高周波磁場との相関関係が維持できるため、磁場ロック部(123)は、正確に静磁場の変動を検出することができる。 As a result, even when the frequency of the reference frequency signal fluctuates, the correlation between the high-frequency magnetic field of the high-frequency transmitter coil 111 and the high-frequency magnetic field of the high-frequency transmitter coil for magnetic field locking (703) can be maintained. (123) can accurately detect the fluctuation of the static magnetic field.
 磁場ロック用試料122は、例えば図3のように、撮像空間102の外側であって、計測部(112、113)および、被検体101を搭載するテーブル118と物理的に干渉しない位置に常時配置される構成にすることができる。もしくは、図4のように、磁場ロック用試料122は、テーブル118の被検体101を搭載する天板119内の1か所以上に配置され、被検体101とともに撮像空間102内に挿入される構成にしてもよい。 For example, as shown in FIG. 3, the magnetic field locking sample 122 is always arranged outside the imaging space 102 and at a position where it does not physically interfere with the measurement units (112, 113) and the table 118 on which the subject 101 is mounted. Can be configured. Alternatively, as shown in FIG. 4, the magnetic field locking sample 122 is arranged at one or more places in the top plate 119 on which the subject 101 of the table 118 is mounted, and is inserted into the imaging space 102 together with the subject 101. It may be.
 図4のように磁場ロック用試料122をテーブル118の天板119の複数個所にそれぞれ配置した場合、磁場ロック部(123)は、複数の磁場ロック用試料122のうちのいずれかを選択して、NMR信号(B)の検出に用いることができる。 As shown in FIG. 4, when the magnetic field locking samples 122 are arranged at a plurality of locations on the top plate 119 of the table 118, the magnetic field locking unit (123) selects any one of the plurality of magnetic field locking samples 122. , And can be used for detection of NMR signal (B).
 また、図5のように磁場ロック用試料122は、計測部(112、113)の高周波レシーバーコイル113を保持する保持部(801)に配置することができる。 Further, as shown in FIG. 5, the magnetic field locking sample 122 can be arranged in the holding unit (801) that holds the high-frequency receiver coil 113 of the measurement unit (112, 113).
 磁場ロック用試料122は、配置される位置における、超電導コイル105の発生する磁場の強度勾配の影響を受けない大きさの容器(701)(例えば、図6参照)内に配置されていることが望ましい。 The magnetic field locking sample 122 is disposed in a container (701) (see, for example, FIG. 6) having a size that is not affected by the intensity gradient of the magnetic field generated by the superconducting coil 105 at the position where the magnetic field locking sample 122 is disposed. desirable.
 また、磁場ロック部(123)は、例えば、図2および図7のように、磁場ロック用試料122の磁気共鳴周波数と同じ周波数の信号を参照信号302として、NMR信号(B)(301)を位相検波する位相検波部(213)を含む構成とすることが可能である。 The magnetic field lock unit (123), for example, as shown in FIGS. 2 and 7, uses the signal having the same frequency as the magnetic resonance frequency of the magnetic field locking sample 122 as a reference signal 302, and outputs the NMR signal (B) (301). A configuration including a phase detection unit (213) for phase detection may be employed.
 この場合、磁場ロック部(123)は、位相検波の出力(303)がゼロになるように(フェーズロック状態)、撮像空間102の磁場強度を調整する。この場合、磁場ロック部(123)は、位相検波部(213)の出力がゼロになったこと(フェーズロック状態)をオペレータに報知する表示部(217)を有することが好ましい。また、計測部(112)は、位相検波部(213)の出力がゼロになった状態(フェーズロック状態)で、被検体101のNMR信号(A)を計測することが好ましい。 In this case, the magnetic field lock unit (123) adjusts the magnetic field strength of the imaging space 102 so that the phase detection output (303) becomes zero (phase lock state). In this case, the magnetic field lock unit (123) preferably has a display unit (217) that notifies the operator that the output of the phase detection unit (213) has become zero (phase lock state). The measurement unit (112) preferably measures the NMR signal (A) of the subject 101 in a state where the output of the phase detection unit (213) becomes zero (phase lock state).
 磁場ロック部(123)は、NMR信号(B)の検出結果に応じて、磁石電源106の出力電流を変化させることにより静磁場の強度を調整する構成にすることが可能である。 The magnetic field lock unit (123) can be configured to adjust the strength of the static magnetic field by changing the output current of the magnet power source 106 in accordance with the detection result of the NMR signal (B).
 また、磁場ロック部(123)は、NMR信号(B)の検出結果に応じて、撮像空間102に補正磁場を発生する補正コイル215に電流を供給する電流を変化させ、静磁場の強度を調整してもよい。 In addition, the magnetic field lock unit (123) adjusts the strength of the static magnetic field by changing the current supplied to the correction coil 215 that generates the correction magnetic field in the imaging space 102 according to the detection result of the NMR signal (B). May be.
 以下、本発明の実施形態を添付図面に基づいて具体的に説明する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments of the invention, and the repetitive description thereof is omitted.
 (第1の実施形態)
 <MRI装置の全体構成>
 図1は、本実施形態のMRI装置の全体構成示すブロック図であり、図2は、回路構成を示すブロックであり、図3は、超電導磁石104の断面図である。図1~3はいずれも、医療施設に設置され、被検体101である患者頭部の医学診断画像を撮影している状態のMRI装置を図示している。
(First embodiment)
<Overall configuration of MRI system>
FIG. 1 is a block diagram showing the overall configuration of the MRI apparatus of the present embodiment, FIG. 2 is a block diagram showing the circuit configuration, and FIG. 3 is a cross-sectional view of the superconducting magnet 104. FIGS. 1 to 3 all illustrate an MRI apparatus installed in a medical facility and taking a medical diagnostic image of a patient's head, which is a subject 101.
 撮像空間102に均一な静磁場を発生する超電導磁石103は、NS極となる二つの磁極を有する鉄ヨーク104と、一対の超電導コイル105と、磁石電源106とを備えて構成されている。また、超電導磁石103が発生する静磁場を補正する補正磁場を発生する補正コイル215が、超電導磁石103と撮像空間102との間に配置されている。被検体101の検査部位は、均一な静磁場が発生している撮像空間102の中心に配設される。 A superconducting magnet 103 that generates a uniform static magnetic field in the imaging space 102 includes an iron yoke 104 having two magnetic poles serving as NS poles, a pair of superconducting coils 105, and a magnet power source 106. Further, a correction coil 215 that generates a correction magnetic field that corrects the static magnetic field generated by the superconducting magnet 103 is disposed between the superconducting magnet 103 and the imaging space 102. The examination region of the subject 101 is disposed at the center of the imaging space 102 where a uniform static magnetic field is generated.
 超電導磁石103は、図3のように、鉄ヨーク104の他に、超電導コイル105を収めた真空容器107と、超電導コイル105を低温に維持する冷凍機108とをさらに備えて構成されている。鉄ヨーク104の重量は14トンで、一部が開口部となるC型の断面形状をしている。例えば、55センチの開口部で0.5テスラの磁場強度を発生する磁束密度を確保するとともに、鉄ヨーク104外に漏れる磁束をできるだけ少なくするように、その形状が決められている。 As shown in FIG. 3, the superconducting magnet 103 is further provided with a vacuum vessel 107 containing the superconducting coil 105 and a refrigerator 108 for keeping the superconducting coil 105 at a low temperature, in addition to the iron yoke 104. The iron yoke 104 weighs 14 tons and has a C-shaped cross-sectional shape with a part being an opening. For example, the shape is determined so as to secure a magnetic flux density that generates a magnetic field strength of 0.5 Tesla at an opening of 55 centimeters and to minimize the magnetic flux leaking out of the iron yoke 104.
 また、鉄ヨーク104の開口部は、均一な磁場を発生させるため、凹面に加工された一対の磁極601を有する。磁極601の周囲には一対からなる超電導コイル105が組込まれているドーナツ状の真空容器107が組込まれている。鉄ヨーク104は、真空容器107を支える機能を有している。 Also, the opening of the iron yoke 104 has a pair of magnetic poles 601 processed into a concave surface in order to generate a uniform magnetic field. Around the magnetic pole 601, a doughnut-shaped vacuum vessel 107 in which a pair of superconducting coils 105 is incorporated is incorporated. The iron yoke 104 has a function of supporting the vacuum vessel 107.
 このような磁石構成により、撮像空間102の前方(y軸)と左右の両側(x軸)は視界を遮るものが無く、開放的な検査環境を提供することが可能となっている。 With such a magnet configuration, the front (y-axis) and the left and right sides (x-axis) of the imaging space 102 have nothing to obstruct the field of view and can provide an open inspection environment.
 超電導コイル105は、冷凍機108に熱伝導部材によって熱的に接続され、20ケルビン温度に冷却されて安定な超電導状態を維持している。超電導コイル105には、磁石電源106より、例えば160アンペアの電流が印加され、撮像空間102に、例えば0.5テスラ強度となるz軸(NMR装置やMRI装置では静磁場の方向をz軸にすることが慣用となっている)に沿った磁束を発生している。撮像空間102は、例えば直径40センチの球空間であり、FOV(Field of View)とも呼ばれる。撮像空間の磁場均一度は、磁場ロック部(123)が動作していない状態で、3ppm以下になっている。 The superconducting coil 105 is thermally connected to the refrigerator 108 by a heat conducting member and is cooled to a temperature of 20 Kelvin to maintain a stable superconducting state. For example, a current of 160 amperes is applied to the superconducting coil 105 from the magnet power source 106, and the imaging space 102 has, for example, a z-axis (for example, 0.5 z Tesla intensity). Has become a common practice). The imaging space 102 is a spherical space with a diameter of 40 cm, for example, and is also called FOV (FieldFOof View). The magnetic field uniformity of the imaging space is 3 ppm or less when the magnetic field lock unit (123) is not operating.
 なお、磁石電源106には、冷凍機108に高圧ヘリウムガスを供給する圧縮機や超電導磁石103の運転状態をモニターするセンサー回路も組込まれている。 The magnet power supply 106 also incorporates a compressor that supplies high-pressure helium gas to the refrigerator 108 and a sensor circuit that monitors the operating state of the superconducting magnet 103.
 二つの磁極601には、傾斜磁場コイル組立体109が取り付けられ、撮像空間102内で互いに直交する3軸方向に磁場強度に勾配を有する傾斜磁場を発生する。図1および図3では区別されていないが、傾斜磁場コイル組立体109には、x、y、zの三種類のコイルが積層されている。 The gradient magnetic field coil assembly 109 is attached to the two magnetic poles 601, and a gradient magnetic field having a gradient in magnetic field strength is generated in three axial directions orthogonal to each other in the imaging space 102. Although not distinguished in FIGS. 1 and 3, the gradient coil assembly 109 has three types of coils, x, y, and z, laminated thereon.
 例えば、z傾斜磁場コイルにプラスの電流が流れると、上磁極に取り付けられたz傾斜磁場コイルは、超電導コイル105が発生する磁束と同じ+z軸方向に磁束を発生し、重畳してその密度を増す。一方、下磁極に取付けられたz傾斜磁場コイルは、超電導コイル105の発生する磁束と反対方向の-z軸に沿った磁束を発生し、その密度を減ずる。この結果、撮像空間102のz軸に沿って下から上に向かって磁束密度が増加する傾斜磁場を作ることができる。x傾斜磁場コイルは、撮像空間102のx軸に沿って、y傾斜磁場コイルは撮像空間102のy軸に沿って、超電導コイル105の発生する磁束密度を変化させる。x、y、zの傾斜磁場コイルには、それぞれ独立して動作する傾斜磁場電源110が接続され、それぞれに例えば、500アンペアの電流を流すことで、1メートルで25ミリテスラの磁場強度が変化する25mT/mの傾斜磁場を発生することができる。 For example, when a positive current flows through the z gradient magnetic field coil, the z gradient magnetic field coil attached to the upper magnetic pole generates a magnetic flux in the same + z axis direction as the magnetic flux generated by the superconducting coil 105, and superimposes its density. Increase. On the other hand, the z gradient magnetic field coil attached to the lower magnetic pole generates a magnetic flux along the −z axis in the direction opposite to the magnetic flux generated by the superconducting coil 105, and reduces its density. As a result, a gradient magnetic field in which the magnetic flux density increases from bottom to top along the z-axis of the imaging space 102 can be created. The x gradient magnetic field coil changes the magnetic flux density generated by the superconducting coil 105 along the x axis of the imaging space 102, and the y gradient magnetic field coil changes along the y axis of the imaging space 102. Gradient magnetic field power supply 110 that operates independently is connected to each of the gradient magnetic field coils of x, y, and z. For example, by supplying a current of 500 amperes to each, the magnetic field strength of 25 millitesla changes in 1 meter. A gradient magnetic field of 25 mT / m can be generated.
 更に、傾斜磁場コイル組立体109の撮像空間102側には、一対の高周波トランスミッターコイル111が組み込まれている。高周波トランスミッターコイル111は、開放的な検査環境を阻害しないように、平板構造であって、撮像空間102のx‐y平面に平行な磁束が発生するようにコイル導体がプリント配線されている。高周波トランスミッターコイル111には、複数の容量素子が組込まれ(図では記載してない)、ここでは21.28MHzのLC共振回路となっている。計測系高周波ユニット112に組込まれている高周波電源より、21.28MHzの高周波電流を流すことによって、撮像空間102に高周波磁界が発生する。 Furthermore, a pair of high-frequency transmitter coils 111 are incorporated on the imaging space 102 side of the gradient coil assembly 109. The high-frequency transmitter coil 111 has a flat plate structure so as not to hinder an open inspection environment, and a coil conductor is printed and wired so that a magnetic flux parallel to the xy plane of the imaging space 102 is generated. A plurality of capacitive elements are incorporated in the high-frequency transmitter coil 111 (not shown in the figure), and here is a 21.28 MHz LC resonance circuit. A high frequency magnetic field is generated in the imaging space 102 by flowing a high frequency current of 21.28 MHz from a high frequency power source incorporated in the measurement system high frequency unit 112.
 以上説明した静磁場と傾斜磁場と高周波磁場を組み合わせることで、被検体101の特定部位の水素原子核(プロトン)にNMR現象を起こし、水素原子核(プロトン)のラーモア歳差運動の過程でx、y、z傾斜磁場パルスで空間情報を付与する。 By combining the static magnetic field, the gradient magnetic field, and the high-frequency magnetic field described above, an NMR phenomenon occurs in the hydrogen nucleus (proton) at a specific part of the subject 101, and x, y in the process of Larmor precession of the hydrogen nucleus (proton) The spatial information is given by the z gradient magnetic field pulse.
 このようにして空間情報が付与され水素原子核(プロトン)のラーモア歳差運動を、NMR信号(A)として検出するために、被検体101の検査部位には高周波レシーバーコイル113が装着されている。高周波レシーバーコイル113は高周波トランスミッターコイル111同様、容量素子が組込まれ(図では記載してない)、21.28MHzで共振するLC共振回路となっている。高周波トランスミッターコイル111と異なる点は、高効率で核スピンのラーモア歳差運動を電磁誘導にて電気信号として検出するように、検査部位の体形にフィットする形状となっている点である。図1~3では、被検体101の頭部を検出する高周波レシーバーコイル113が記載されている。 Thus, in order to detect the Larmor precession of the hydrogen nucleus (proton) to which the spatial information is given as the NMR signal (A), a high-frequency receiver coil 113 is attached to the examination site of the subject 101. Like the high-frequency transmitter coil 111, the high-frequency receiver coil 113 is an LC resonance circuit in which a capacitive element is incorporated (not shown in the figure) and resonates at 21.28 MHz. The difference from the high-frequency transmitter coil 111 is that it has a shape that fits the body shape of the examination site so as to detect the Larmor precession of the nuclear spin as an electrical signal by electromagnetic induction with high efficiency. FIGS. 1 to 3 show a high-frequency receiver coil 113 that detects the head of the subject 101.
 高周波レシーバーコイル113で検出されたNMR信号(A)は、計測系高周波ユニット112内の増幅器で増幅、検波処理、アナログ・デジタル変換処理が行われ、シーケンサー114と呼ばれるインターフェース回路を経由して、コンピュータ115に記録される。高周波レシーバーコイル113および計測系高周波ユニット112は、計測部を構成している。 The NMR signal (A) detected by the high-frequency receiver coil 113 is amplified, detected, and converted from analog to digital by an amplifier in the measurement system high-frequency unit 112, and passes through an interface circuit called a sequencer 114 to the computer. Recorded at 115. The high-frequency receiver coil 113 and the measurement system high-frequency unit 112 constitute a measurement unit.
 コンピュータ115では、NMR信号はフーリエ変換等の演算処理が施されて、医学診断に有効な断層画像やスペクトル分布図に信号処理される。これらのデータはコンピュータ115の記憶装置(図では記載していない)に保存されるとともに、ディスプレイ116に表示される。他方で、コンピュータ115は、被検体101の検査部位から診断目的の断層画像等が得られるように、傾斜磁場電源110と計測系高周波ユニット112を種々のパルスシーケンスに従って動作させるため、シーケンサー114を介して制御する機能も有する。このため、MRI装置のオペレータが、パルスシーケンスの種類等を選択する入力装置117がコンピュータ115に接続されている。 In the computer 115, the NMR signal is subjected to arithmetic processing such as Fourier transform, and processed into a tomographic image and a spectrum distribution map effective for medical diagnosis. These data are stored in a storage device (not shown) of the computer 115 and displayed on the display 116. On the other hand, the computer 115 is operated via the sequencer 114 to operate the gradient magnetic field power source 110 and the measurement system high-frequency unit 112 in accordance with various pulse sequences so that a tomographic image or the like for diagnosis can be obtained from the examination site of the subject 101. Control function. For this reason, an input device 117 for selecting the type of pulse sequence and the like by the operator of the MRI apparatus is connected to the computer 115.
 また、超電導磁石103の前方には、被検体101を搭載して、その検査部位を撮像空間102の中心に搬入搬出するための天板119と、天板119を搬入搬出方向等に移動させるテーブル118が配置されている。超電導磁石103とテーブル118は、電磁波遮蔽を施された検査室120に設置される。 In addition, a subject 101 is mounted in front of the superconducting magnet 103, and a table 119 for loading and unloading the inspection site to the center of the imaging space 102, and a table for moving the table 119 in the loading and unloading direction, etc. 118 is arranged. The superconducting magnet 103 and the table 118 are installed in an examination room 120 that is shielded from electromagnetic waves.
 検査室120の外側には、傾斜磁場電源110と、計測系高周波ユニット112と、磁場ロック系高周波ユニット123と、磁石電源106と、シーケンサー114と、コンピュータ115と、入力装置117と、表示装置116が配置されている。傾斜磁場電源110、計測系高周波ユニット112、磁場ロック系高周波ユニット123、および、磁石電源106は、フィルター回路121を介して、それぞれ検査室120内の傾斜磁場コイル組立体109、高周波トランスミッターコイル111/レシーバーコイル113、磁場ロック用高周波トランスミッターコイル(703)、および、超電導コイル105に接続されている。これにより、コンピュータ115やその他の機器が発する電磁波が、高周波レシーバーコイル113にノイズとして混入するのを防いでいる。 Outside the examination room 120, there are a gradient magnetic field power supply 110, a measurement system high frequency unit 112, a magnetic field lock system high frequency unit 123, a magnet power supply 106, a sequencer 114, a computer 115, an input device 117, and a display device 116. Is arranged. The gradient magnetic field power source 110, the measurement system high frequency unit 112, the magnetic field lock system high frequency unit 123, and the magnet power source 106 are connected to the gradient magnetic field coil assembly 109, the high frequency transmitter coil 111 / It is connected to the receiver coil 113, the magnetic field locking high-frequency transmitter coil (703), and the superconducting coil 105. This prevents electromagnetic waves generated by the computer 115 and other devices from entering the high frequency receiver coil 113 as noise.
 <磁場ロック用試料>
 本実施形態では、超電導コイル105が発生した磁場が印加される位置であって、被検体101と物理的に干渉しない位置に、磁場ロック用試料122を配置し、そのNMR信号(B)を磁場ロック部(123)によって検出する。
<Magnetic field lock sample>
In this embodiment, the magnetic field locking sample 122 is disposed at a position where the magnetic field generated by the superconducting coil 105 is applied and does not physically interfere with the subject 101, and the NMR signal (B) is converted into the magnetic field. It is detected by the lock unit (123).
 磁場ロック用試料122は、ここではフッ素原子核19Fを含むフッ素化合物(例えばCFCl3溶液や液化フロン)を用いる。磁場ロック用試料122は、図6に示すように、例えば内径5ミリメートルの球体のマイクロキャピラリー701に封入され、マイクロキャプラリー701は、封じ切られている。マイクロキャピラリー701の大きさは、磁場ロック用試料122が、超電導コイル105の発生する磁場の強度勾配の影響を受けない(磁場強度分布を無視できる)大きさに設計されている。 Here, a fluorine compound (for example, CFCl 3 solution or liquefied CFC) containing fluorine nuclei 19 F is used as the magnetic field locking sample 122. As shown in FIG. 6, the magnetic field locking sample 122 is enclosed in a spherical microcapillary 701 having an inner diameter of 5 mm, for example, and the microcapillary 701 is sealed. The size of the microcapillary 701 is designed such that the magnetic field locking sample 122 is not affected by the strength gradient of the magnetic field generated by the superconducting coil 105 (the magnetic field strength distribution can be ignored).
 例えば、図3のように、天板119の下部であって、高周波トランスミッターコイル111の外周側面に、磁気ロック用試料122を配置する。この場合、マイクロキャピラリー701は、直径5ミリメートル程度とする。このサイズであれば、天板119の下の空間での超電導コイル105の磁場強度分布は無視することができる。 For example, as shown in FIG. 3, a magnetic lock sample 122 is disposed on the outer peripheral side surface of the high-frequency transmitter coil 111 under the top plate 119. In this case, the microcapillary 701 is about 5 mm in diameter. With this size, the magnetic field strength distribution of the superconducting coil 105 in the space below the top plate 119 can be ignored.
 マイクロキャピラリー701の表面には、磁場ロック用試料のNMR現象を励起する高周波磁界を発生するとともに、生じたNMR信号(B)を検出するソレノイドコイル703が巻回されている。すなわち、ソレノイドコイル703は、磁場ロック用高周波トランスミッターコイルと磁場ロック用高周波レシーバーコイルとを兼用している。そして、ソレノイドコイル703の軸が、撮像空間102のz軸と直交するように、テフロン(登録商標)樹脂で形成されたホルダー704に組込まれて、保持されている。ホルダー704は、例えば、図3のように天板119の下部に固定される。 On the surface of the microcapillary 701, a solenoid coil 703 that generates a high-frequency magnetic field that excites the NMR phenomenon of the magnetic field locking sample and detects the generated NMR signal (B) is wound. That is, the solenoid coil 703 serves both as a magnetic field locking high-frequency transmitter coil and a magnetic field locking high-frequency receiver coil. The shaft of the solenoid coil 703 is incorporated and held in a holder 704 formed of Teflon (registered trademark) resin so that the axis of the solenoid coil 703 is orthogonal to the z-axis of the imaging space 102. The holder 704 is fixed to the lower part of the top plate 119 as shown in FIG. 3, for example.
 図3に示す磁場ロック用試料122の位置は、磁極601の影響で、撮像空間102の磁場強度より高い磁場強度を示す。例えば、撮像空間102の磁場強度が0.5テスラである場合、天板119の下の磁場ロック用試料122の位置は0.51テスラとなる。0.51テスラの静磁場を印加された磁場ロック用試料(フッ素原子核19F)122の磁気共鳴周波数である20.42MHzの高周波磁場が、ソレノイドコイル703から照射される。すなわち、共鳴周波数20.42MHzのソレノイドコイル703を用い、後述の磁場ロック系トランスミッター209から、周波数20.42MHzの高周波電流をソレノイドコイル703に供給し、磁場ロック用試料122の磁気共鳴周波数の高周波磁場をソレノイドコイル703から照射する。なお、磁場ロック用試料122を配置する位置によって、超電導コイル105の静磁場強度は異なるため、位置に応じた磁気共鳴周波数の高周波磁場をソレノイドコイル703から磁場ロック用試料122に照射する。 The position of the magnetic field locking sample 122 shown in FIG. 3 shows a magnetic field strength higher than the magnetic field strength of the imaging space 102 due to the influence of the magnetic pole 601. For example, when the magnetic field strength of the imaging space 102 is 0.5 Tesla, the position of the magnetic field locking sample 122 under the top plate 119 is 0.51 Tesla. A high frequency magnetic field of 20.42 MHz, which is the magnetic resonance frequency of the magnetic field locking sample (fluorine nucleus 19 F) 122 to which a static magnetic field of 0.51 Tesla is applied, is irradiated from the solenoid coil 703. That is, a solenoid coil 703 having a resonance frequency of 20.42 MHz is used, a high-frequency current having a frequency of 20.42 MHz is supplied to the solenoid coil 703 from a magnetic field lock transmitter 209 described later, and a high-frequency magnetic field having a magnetic resonance frequency of the magnetic-field locking sample 122 is solenoidally supplied. Irradiate from coil 703. Since the static magnetic field strength of the superconducting coil 105 differs depending on the position where the magnetic field locking sample 122 is disposed, the high frequency magnetic field having a magnetic resonance frequency corresponding to the position is irradiated from the solenoid coil 703 to the magnetic field locking sample 122.
 <計測部と磁場ロック部の回路構成>
 本実施形態のMRI装置には、高周波トランスミッターコイル111から被検体101に向かって高周波磁場を発生させ、NMR信号(A)を計測するための計測部(計測系高周波ユニット)112と、ソレノイドコイル703から磁場ロック用試料122に向かって高周波磁場を発生させ、NMR信号(B)を検出し、静磁場を調整する磁場ロック部(磁場ロック系高周波ユニット)123が備えられている。
<Circuit configuration of measurement unit and magnetic field lock unit>
The MRI apparatus of the present embodiment includes a measurement unit (measurement system high frequency unit) 112 for generating a high frequency magnetic field from the high frequency transmitter coil 111 toward the subject 101 and measuring the NMR signal (A), and a solenoid coil 703. A magnetic field lock unit (magnetic field lock system high frequency unit) 123 for generating a high frequency magnetic field from the magnetic field to the magnetic field locking sample 122, detecting the NMR signal (B), and adjusting the static magnetic field is provided.
 これらの回路構成と機能について、図2を用いてより詳細に説明する。 These circuit configurations and functions will be described in more detail with reference to FIG.
 図2のように、計測系高周波ユニット112は、計測系トランスミッター202と、ゲート機能付き高周波パワーアンプ203と、高周波増幅器204と、検波器205と、オーディオアンプ206と、A/D変換回路207とを含んでいる。一方、磁場ロック系高周波ユニット123は、磁場ロック系トランスミッター209と、高周波スイッチ210と、高周波電力アンプ211と、プリアンプ212と、位相検波器(PSD:Phase Sensitive Detector)213と、積分型直流アンプ214と、電圧比較アンプ216とを含んでいる。 As shown in FIG. 2, the measurement system high-frequency unit 112 includes a measurement system transmitter 202, a high-frequency power amplifier 203 with a gate function, a high-frequency amplifier 204, a detector 205, an audio amplifier 206, and an A / D conversion circuit 207. Is included. On the other hand, the magnetic field lock system high frequency unit 123 includes a magnetic field lock system transmitter 209, a high frequency switch 210, a high frequency power amplifier 211, a preamplifier 212, a phase detector (PSD) 213, and an integral type DC amplifier 214. And a voltage comparison amplifier 216.
 計測系高周波ユニット112の計測系トランスミッター202と、磁場ロック系高周波ユニット123の磁場ロック系トランスミッター209には、基準周波数発生器201が共通して接続されている。基準周波数発信器201は、クリスタル振動子による10メガヘルツの基準周波数信号を発生する。用いられているクリスタル振動子は長期間のエージング処理が施されており、経時変化が無視できるものである。かつ、温度補償された容器内に収められ、10-8オーダーの安定度を有している。 A reference frequency generator 201 is commonly connected to the measurement system transmitter 202 of the measurement system high frequency unit 112 and the magnetic field lock system transmitter 209 of the magnetic field lock system high frequency unit 123. The reference frequency transmitter 201 generates a 10 MHz reference frequency signal by a crystal resonator. The crystal resonator used is subjected to a long-term aging treatment, and the change with time can be ignored. It is housed in a temperature-compensated container and has a stability of the order of 10-8 .
 計測系高周波ユニット112の動作について説明する。計測系トランスミッター202は、10メガヘルツの基準周波数信号より0.5テスラの磁場強度で水素原子核(プロトン)1HがNMR現象を起こす21.28MHzの周波数を生成する。21.28MHzの高周波信号は、ゲート機能付きの高周波パワーアンプ203で増幅され、高周波パルスに変調され、高周波トランスミッターコイル111に印加される。高周波トランスミッターコイル111は、周波数21.28MHzの高周波磁場を被検体101に向かって照射する。これにより、被検体101の水素原子核(プロトン)のNMR信号(A)を発生する。 The operation of the measurement system high frequency unit 112 will be described. The measurement system transmitter 202 generates a frequency of 21.28 MHz at which a hydrogen nucleus (proton) 1 H causes an NMR phenomenon with a magnetic field intensity of 0.5 Tesla from a reference frequency signal of 10 megahertz. The high frequency signal of 21.28 MHz is amplified by a high frequency power amplifier 203 with a gate function, modulated into a high frequency pulse, and applied to the high frequency transmitter coil 111. The high-frequency transmitter coil 111 irradiates the subject 101 with a high-frequency magnetic field having a frequency of 21.28 MHz. Thereby, an NMR signal (A) of the hydrogen nucleus (proton) of the subject 101 is generated.
 NMR信号(A)は、高周波レシーバーコイル113で検出され、高周波増幅器204で約60dBに増幅処理される。増幅されたNMR信号は、計測系トランスミッター202で合成された21.28MHzの高周波信号を参照信号として、検波器205で検波され、可聴周波数帯に変化される。可聴周波数に変換されたNMR信号(A)は、オーディオアンプ206で増幅され、A/D変換回路207でディジタル信号に変換処理され、シーケンサー114を介して、コンピュータ115に受け渡される。 The NMR signal (A) is detected by the high frequency receiver coil 113 and amplified to about 60 dB by the high frequency amplifier 204. The amplified NMR signal is detected by the detector 205 using the 21.28 MHz high frequency signal synthesized by the measurement system transmitter 202 as a reference signal, and changed to an audible frequency band. The NMR signal (A) converted to the audible frequency is amplified by the audio amplifier 206, converted into a digital signal by the A / D conversion circuit 207, and delivered to the computer 115 via the sequencer 114.
 シーケンサー114は、上記高周波トランスミッターコイル111からの高周波磁場の照射、および、高周波レシーバーコイル113によるNMR信号(A)の計測のタイミングおよび強度を、オペレータの選択した撮影パルスシーケンスに従って制御する。 The sequencer 114 controls the irradiation timing of the high-frequency magnetic field from the high-frequency transmitter coil 111 and the measurement timing and intensity of the NMR signal (A) by the high-frequency receiver coil 113 according to the imaging pulse sequence selected by the operator.
 また、シーケンサー114は、撮影パルスシーケンスに従って、D/A変換回路208を介してアナログ信号の傾斜磁場信号をx、y、zの傾斜磁場電源110に入力することにより、傾斜磁場コイル組立体109からx、y、zのそれぞれの方向の傾斜磁場を被検体101に所定のタイミングおよび強度で印加する。これにより、シーケンサー114は、所望の撮影パルスシーケンスを実行させ、得られたNMR信号(A)は、コンピュータ115によって再構成処理され、断層像等が生成される。 Further, the sequencer 114 inputs the gradient signal of the analog signal to the gradient magnetic field power supply 110 of x, y, z via the D / A conversion circuit 208 in accordance with the imaging pulse sequence, so that the gradient coil assembly 109 Gradient magnetic fields in the x, y, and z directions are applied to the subject 101 at a predetermined timing and intensity. As a result, the sequencer 114 executes a desired imaging pulse sequence, and the obtained NMR signal (A) is reconstructed by the computer 115 to generate a tomographic image or the like.
 つぎに、磁場ロック部(磁場ロック系高周波ユニット)123の動作について説明する。磁場ロック系トランスミッター209は、基準周波数発生器201の10メガヘルツの基準周波数信号から、フッ素原子核19Fが0.51テスラの磁場で核磁気共鳴する20.42MHzの高周波信号を生成する。このように、同一の基準周波数信号から、上述の水素原子核(プロトン)1Hの高周波信号21.28MHzとフッ素原子核19Fの高周波信号20.42MHzを生成することにより、基準周波数信号が温度等によりドリフトした場合でも、完全に相関が保たれる。 Next, the operation of the magnetic field lock unit (magnetic field lock type high frequency unit) 123 will be described. The magnetic field lock system transmitter 209 generates a high frequency signal of 20.42 MHz in which the fluorine nucleus 19 F undergoes nuclear magnetic resonance with a magnetic field of 0.51 Tesla from the 10 MHz reference frequency signal of the reference frequency generator 201. Thus, by generating the high frequency signal 21.28 MHz of the hydrogen nucleus (proton) 1 H and the high frequency signal 20.42 MHz of the fluorine nucleus 19 F from the same reference frequency signal, the reference frequency signal drifts due to temperature or the like. Even in this case, a complete correlation is maintained.
 磁場ロック系トランスミッター209で生成された20.42MHzの高周波信号は、高周波スイッチ210(この高周波スイッチの回路210の機能については後述する)を経由して、高周波電力アンプ211で増幅され、天板119の下に配置された磁場ロック用試料122に巻回されたソレノイドコイル703に印加される。ソレノイドコイル703は、20.42MHzの高周波磁場を磁場ロック用試料(フッ素原子核19F)122に照射する。磁場ロック用試料122は、磁場が0.51テスラである場合、20.42MHzのNMR信号(B)を発生する。 The high frequency signal of 20.42 MHz generated by the magnetic field lock system transmitter 209 is amplified by the high frequency power amplifier 211 via the high frequency switch 210 (the function of the circuit 210 of this high frequency switch will be described later), and the top plate 119 This is applied to the solenoid coil 703 wound around the magnetic field locking sample 122 arranged below. The solenoid coil 703 irradiates the magnetic field locking sample (fluorine nucleus 19 F) 122 with a high frequency magnetic field of 20.42 MHz. The magnetic field locking sample 122 generates a 20.42 MHz NMR signal (B) when the magnetic field is 0.51 Tesla.
 磁場ロック用試料122の発生したNMR信号(B)は、ソレノイドコイル703で受信され、プリアンプ212で増幅される。このように、核スピンを励起する高周波磁界の発生するソレノイドコイル703に、NMR信号を検出するソレノイドコイルを兼用させる方式をシングルコイル法という。この方式は、広く知られた技術である(例えば、Farrar & Becker著 Academic Press社刊のPulse and Fourier Transform NMR等参照)。 The NMR signal (B) generated by the magnetic field locking sample 122 is received by the solenoid coil 703 and amplified by the preamplifier 212. In this way, a method in which the solenoid coil 703 that generates a high-frequency magnetic field that excites nuclear spins is also used as a solenoid coil that detects an NMR signal is called a single coil method. This method is a widely known technique (see, for example, Pulse and Fourier Transform NMR published by Academic Press by Farrar & Becker).
 プリアンプ212で増幅されたNMR信号(B)は、磁場ロック系トランスミッター209で生成された20.42MHzの高周波信号を参照信号302として位相検波器(PSD)213で位相検波される。 The NMR signal (B) amplified by the preamplifier 212 is phase-detected by a phase detector (PSD) 213 using a 20.42 MHz high-frequency signal generated by the magnetic field lock system transmitter 209 as a reference signal 302.
 ここで、位相検波器213について、図7(a)、(b)を用いてより詳細に説明する。図7(a)のように、位相検波器213には、NMR信号(B)301と、参照信号302が入力され、これらの位相が同じ(同期していると称する)場合、図7(b)のように出力信号303はゼロとなる。一方、入力信号301が参照信号302に対して位相が進んだ場合、図7(b)のように、出力信号303はプラス側に振れ、180°の位相差のとき出力信号303は最大値を示す。逆に、位相が遅れると出力信号303はマイナス側に振れ、180°の位相遅れのとき出力信号303はマイナスの最大値を示す。 Here, the phase detector 213 will be described in more detail with reference to FIGS. 7 (a) and 7 (b). As shown in FIG. 7 (a), when the NMR signal (B) 301 and the reference signal 302 are input to the phase detector 213 and these phases are the same (referred to as being synchronized), FIG. ), The output signal 303 becomes zero. On the other hand, when the phase of the input signal 301 advances with respect to the reference signal 302, as shown in FIG. 7B, the output signal 303 swings to the plus side, and when the phase difference is 180 °, the output signal 303 reaches the maximum value. Show. Conversely, when the phase is delayed, the output signal 303 swings to the negative side, and when the phase is delayed by 180 °, the output signal 303 shows a negative maximum value.
 上述したように撮像空間102の静磁場強度が所望の0.5テスラである場合、磁場ロック用試料122が配置されている天板119下の位置の静磁場強度0.51テスラの関係にある。磁場強度0.51テスラである場合、磁場ロック用試料(フッ素原子核19F)122は、共鳴周波数20.42MHzのNMR信号(B)を出力するため、参照信号302の周波数と同期し、位相検波器213の出力は、ゼロになる。 As described above, when the static magnetic field strength of the imaging space 102 is a desired 0.5 Tesla, there is a relationship of a static magnetic field strength of 0.51 Tesla at a position below the top plate 119 where the magnetic field locking sample 122 is disposed. When the magnetic field intensity is 0.51 Tesla, the magnetic field locking sample (fluorine nucleus 19 F) 122 outputs an NMR signal (B) having a resonance frequency of 20.42 MHz, and therefore is synchronized with the frequency of the reference signal 302, and the phase detector 213 The output will be zero.
 一方、超電導コイル105に供給される電流がドリフトする等し、超電導コイル105が撮像空間102に形成する静磁場が0.5テスラより大きくなり、磁場ロック用試料122が配置されている位置の静磁場強度が、0.51テスラより大きくなると、磁場ロック用試料(フッ素原子核19F)122のNMR信号(B)の周波数も高くなる。これにより、NMR信号(B)301の位相は、参照信号302より進むことになり、位相検波器(PSD)213の出力信号303は、プラスの値を発生することになる。 On the other hand, because the current supplied to the superconducting coil 105 drifts, the static magnetic field formed by the superconducting coil 105 in the imaging space 102 is greater than 0.5 Tesla, and the static magnetic field strength at the position where the magnetic field locking sample 122 is disposed. However, when it becomes larger than 0.51 Tesla, the frequency of the NMR signal (B) of the magnetic field locking sample (fluorine nucleus 19 F) 122 also increases. As a result, the phase of the NMR signal (B) 301 advances from the reference signal 302, and the output signal 303 of the phase detector (PSD) 213 generates a positive value.
 位相検波器(PSD)213のプラスの出力信号303は、積分型直流アンプ214で極性を反転して積分され、所望の値に増幅され、磁場補正コイル215に印加される。これにより、補正コイル215は、超電導コイル105の発生する静磁場強度を低減する向きの磁場を発生する。よって、撮像空間102の磁場強度は、磁場補正コイル215が発生する磁場分が減じられて、再び0.5テスラの値に戻る。これにより、磁場ロック用試料122の配置されている位置の磁場強度も再び0.51テスラに戻るため、NMR信号(B)301と参照信号301は、再び同期し、位相検波器213の出力信号はゼロに戻り、積分型直流アンプ214の出力値も変化しない。 The positive output signal 303 of the phase detector (PSD) 213 is integrated with the polarity inverted by the integrating DC amplifier 214, amplified to a desired value, and applied to the magnetic field correction coil 215. As a result, the correction coil 215 generates a magnetic field in a direction that reduces the static magnetic field strength generated by the superconducting coil 105. Therefore, the magnetic field intensity in the imaging space 102 returns to the value of 0.5 Tesla again after the magnetic field generated by the magnetic field correction coil 215 is reduced. As a result, the magnetic field intensity at the position where the magnetic field locking sample 122 is disposed also returns to 0.51 Tesla again, so that the NMR signal (B) 301 and the reference signal 301 are synchronized again, and the output signal of the phase detector 213 is zero. The output value of the integral type DC amplifier 214 does not change.
 逆に、超電導コイル105が撮像空間102に形成する静磁場が0.5テスラより小さくなり、磁場ロック用試料122が配置されている位置の静磁場強度が、0.51テスラより小さくなると、磁場ロック用試料(フッ素原子核19F)122のNMR信号(B)の周波数も低くなる。このため、NMR信号(B)301の位相は、参照信号302より遅れ、位相検波器213の出力信号303はマイナスの値を発生する。位相検波器213のマイナスの出力信号303は、積分型直流アンプ214で極性を反転して積分され、所望の値に増幅され、磁場補正コイル215に印加される。補正コイル215は、超電導コイル105の発生する静磁場強度を増加させる向きの磁場を発生する。これにより、撮像空間102の磁場強度は、再び0.5テスラの値に戻り、磁場ロック用試料122の配置されている位置の磁場強度も再び0.51テスラに戻るため、NMR信号(B)301と参照信号301は、再び同期し、位相検波回路213の出力信号はゼロなる。 Conversely, when the static magnetic field formed by the superconducting coil 105 in the imaging space 102 is smaller than 0.5 Tesla and the static magnetic field strength at the position where the magnetic field locking sample 122 is disposed is smaller than 0.51 Tesla, the magnetic field locking sample ( The frequency of the NMR signal (B) of the fluorine nucleus 19 F) 122 is also lowered. For this reason, the phase of the NMR signal (B) 301 is delayed from the reference signal 302, and the output signal 303 of the phase detector 213 generates a negative value. The negative output signal 303 of the phase detector 213 is integrated with the polarity inverted by the integrating DC amplifier 214, amplified to a desired value, and applied to the magnetic field correction coil 215. The correction coil 215 generates a magnetic field in a direction that increases the static magnetic field strength generated by the superconducting coil 105. As a result, the magnetic field intensity of the imaging space 102 returns to the value of 0.5 Tesla again, and the magnetic field intensity at the position where the magnetic field locking sample 122 is arranged also returns to 0.51 Tesla again, so the NMR signal (B) 301 and the reference signal 301 is synchronized again, and the output signal of the phase detection circuit 213 becomes zero.
 このように、本実施形態によれば、磁場ロック部(磁場ロック系高周波ユニット)123が、磁場ロック用試料122のNMR信号(B)の周波数に応じて、補正コイル215の発生する補正磁場をフィードバック制御するため、基準周波数発生器201の基準周波数の安定度10-8と同等のオーダー(0.01ppm)まで、撮像空間105の磁場強度を安定化させることができる。 Thus, according to the present embodiment, the magnetic field lock unit (magnetic field lock system high frequency unit) 123 determines the correction magnetic field generated by the correction coil 215 in accordance with the frequency of the NMR signal (B) of the magnetic field lock sample 122. Since feedback control is performed, the magnetic field strength of the imaging space 105 can be stabilized to an order (0.01 ppm) equivalent to the stability 10 −8 of the reference frequency of the reference frequency generator 201.
 また、磁場ロック用試料122は、被検体101と物理的に干渉しない位置に配置されるとともに、NMR信号(B)は、被検体101のNMR信号(A)とは周波数が異なり電気的に干渉しないため、撮像パルスシーケンスを実行している最中であっても、フィードバック制御を行って静磁場強度を安定化させることができる。 The magnetic field locking sample 122 is disposed at a position where it does not physically interfere with the subject 101, and the NMR signal (B) has a different frequency from the NMR signal (A) of the subject 101 and is electrically interfered. Therefore, even when the imaging pulse sequence is being executed, feedback control can be performed to stabilize the static magnetic field strength.
 磁場強度が基準周波数に一致している状態、すなわち位相検波器213の出力信号がゼロの状態を磁場ロック・オンと称する。 A state where the magnetic field intensity matches the reference frequency, that is, a state where the output signal of the phase detector 213 is zero is called magnetic field lock-on.
 電圧比較アンプ216は、位相検波器213の出力信号を受け取り、磁場ロック・オンの状態を表示装置217に表示させる。表示装置217は、パイロットランプであっても、画像表示装置であってもよい。これにより、オペレータは、磁場が安定化した状態になったことを把握することができ、所望の動作(撮像パルスシーケンスを開始等)を指示することができる。 The voltage comparison amplifier 216 receives the output signal of the phase detector 213 and causes the display device 217 to display the magnetic field lock-on state. Display device 217 may be a pilot lamp or an image display device. As a result, the operator can grasp that the magnetic field is in a stable state and can instruct a desired operation (such as starting an imaging pulse sequence).
 また、電圧比較アンプ216は、磁場ロック・オン状態を示す信号218をシーケンサー114を介してコンピュータ115に受け渡す。これにより、コンピュータ115は、磁場ロック・オンの状態で、撮像パルスシーケンスを実行させること等が可能になる。 The voltage comparison amplifier 216 passes a signal 218 indicating the magnetic field lock / on state to the computer 115 via the sequencer 114. As a result, the computer 115 can execute an imaging pulse sequence in a magnetic field lock-on state.
 また、本実施形態では、計測系高周波ユニット112の計測系トランスミッター202と、磁場ロック系高周波ユニット123の磁場ロック系トランスミッター209に、同一の基準周波数発生器201を接続し、共通の基準周波数信号を供給している。これにより、磁場ロック系のフッ素原子核19Fのラーモア周波数と、計測系の水素原子1Hのラーモア周波数の相関を取っている。この作用について、さらに詳しく説明する。 In the present embodiment, the same reference frequency generator 201 is connected to the measurement system transmitter 202 of the measurement system high frequency unit 112 and the magnetic field lock system transmitter 209 of the magnetic field lock system high frequency unit 123, and a common reference frequency signal is transmitted. Supply. This correlates the Larmor frequency of the fluorine nucleus 19 F in the magnetic field lock system and the Larmor frequency of the hydrogen atom 1 H in the measurement system. This effect will be described in more detail.
 核スピンの核磁気共鳴のラーモア歳差運動(Larmor precession)は、核種固有の磁気回転比γと磁場強度B0で決定され、その周波数fは次(1)式で示される。 The Larmor precession of nuclear magnetic resonance of nuclear spins is determined by the nuclide-specific gyromagnetic ratio γ and the magnetic field strength B 0 , and the frequency f is expressed by the following equation (1).
    2πf = γB0   ・・・(1)
 (1)式にフッ素原子核19Fスピンのラーモア周波数fF(=20.42MHz)、フッ素原子核19Fの磁気回転比γF(=25.18)代入すると、磁場強度B0は0.51テスラとなる。この磁場ロック・オン状態で、イメージングに用いられる水素原子核(プロトン)1Hの磁気共鳴条件を検証すると、即ち、水素原子核(プロトン)の磁気回転比γH(=26.75)と、磁場強度B0(=0.5テスラ)を(1)式に代入すると、水素原子核(プロトン)1Hのラーモア周波数fHは21.28MHzとなる。
2πf = γB 0 ... (1)
When the Larmor frequency f F (= 20.42 MHz) of the fluorine nucleus 19 F spin and the gyromagnetic ratio γ F (= 25.18) of the fluorine nucleus 19 F are substituted into the equation (1), the magnetic field strength B 0 becomes 0.51 Tesla. When the magnetic resonance condition of the hydrogen nucleus (proton) 1 H used for imaging is verified in this magnetic field lock-on state, that is, the magnetic rotation ratio γ H (= 26.75) of the hydrogen nucleus (proton) and the magnetic field intensity B 0 Substituting (= 0.5 Tesla) into equation (1), the Larmor frequency f H of the hydrogen nucleus (proton) 1 H is 21.28 MHz.
 温度ドリフト等で基準周波数発生器201の周波数がわずかに変位すると、磁場ロック用試料122のフッ素原子核19Fのラーモア周波数が変位して、位相検波器213の出力がゼロではなくなり、磁場強度フィードバックループの制御により、撮像空間102の磁場強度B0がわずかに変位する。この場合、磁場強度B0のわずかな変位に伴って、水素原子核(プロトン)1Hのラーモア周波数もわずかに変化するが、計測系トランスミッター202が生成する高周波信号および検波器205に入力される参照信号の周波数も、同じ基準周波数発生器201の出力信号から生成されているため、磁場強度B0の変位に相関して、同じ割合だけわずかに変位する。このため、磁場強度B0の変化に対応して水素原子核(プロトン)1Hの共鳴条件(1)式が維持され、NMR信号(A)の検出精度は変わらない。 When the frequency of the reference frequency generator 201 is slightly displaced due to temperature drift or the like, the Larmor frequency of the fluorine nucleus 19 F of the magnetic field locking sample 122 is displaced, and the output of the phase detector 213 is not zero, and the magnetic field strength feedback loop As a result of this control, the magnetic field strength B 0 in the imaging space 102 is slightly displaced. In this case, the Larmor frequency of the hydrogen nucleus (proton) 1 H slightly changes with a slight displacement of the magnetic field strength B 0 , but the high-frequency signal generated by the measurement system transmitter 202 and the reference input to the detector 205 frequency of the signal is also because it is generated from the output signal of the same reference frequency generator 201, in correlation with the displacement of the magnetic field strength B 0, by the same percentage slightly displaced. Therefore, the resonance condition (1) of the hydrogen nucleus (proton) 1 H is maintained corresponding to the change in the magnetic field strength B 0 , and the detection accuracy of the NMR signal (A) does not change.
 このように、本実施形態では、磁場ロック・オンにより、超電導磁石103の磁場強度を基準周波数発生器201の安定度と同等の10-8オーダー(0.01ppm)することができるとともに、計測系高周波ユニット112と磁場ロック系高周波ユニット123に、同一の基準周波数発生器201を接続して周波数の相関を取っていることにより、温度ドリフト等により基準周波数が変動した場合でも、共鳴条件を維持して、高精度かつ安定してNMR信号(A)を検出することができる。 As described above, in the present embodiment, the magnetic field strength of the superconducting magnet 103 can be set to 10 −8 order (0.01 ppm) equivalent to the stability of the reference frequency generator 201 by the magnetic field lock-on, and the measurement system high frequency By connecting the same reference frequency generator 201 to the unit 112 and the magnetic field lock system high frequency unit 123 to obtain the correlation of the frequencies, the resonance condition is maintained even when the reference frequency fluctuates due to temperature drift or the like. The NMR signal (A) can be detected with high accuracy and stability.
 <傾斜磁場動作と磁場ロック動作>
 NMR信号(A)とNMR信号(B)が干渉しないため、撮像シーケンス中であっても、磁場ロックが可能であることについて説明したが、実際の撮影パルスシーケンスでは、傾斜磁場パルスが印加され、静磁場に傾斜磁場が重畳される。このため、磁場ロック部(磁場ロック系高周波ユニット)123は、傾斜磁場パルスが重畳された静磁場をNMR信号(B)によってフィードバック制御を行うと、本来の静磁場を高精度に安定化させることができない。
<Gradient magnetic field operation and magnetic field lock operation>
Since the NMR signal (A) and the NMR signal (B) do not interfere with each other, it has been explained that the magnetic field can be locked even during the imaging sequence, but in the actual imaging pulse sequence, a gradient magnetic field pulse is applied, A gradient magnetic field is superimposed on the static magnetic field. For this reason, the magnetic field lock unit (magnetic field lock system high frequency unit) 123 stabilizes the original static magnetic field with high accuracy when feedback control is performed on the static magnetic field on which the gradient magnetic field pulse is superimposed by the NMR signal (B). I can't.
 そこで、傾斜磁場が印加されている期間中は、磁場ロック高周波ユニット121の動作を停止する。そして、傾斜磁場の印加の直前の補正状態(フィードバック制御量)を維持するように構成することが望ましい。このように構成することで、傾斜磁場による磁場変動に影響されず、超電導コイル105の発生する磁場強度やその他の外乱による磁場変化のみを補償して撮像空間102の磁場強度を安定化させることができる。傾斜磁場の印加時間が通常数ミリ秒のパルス動作であるのに対し、磁石電源106の温度ドリフトや外乱磁場妨害による磁場変化は数秒以上の長時間にわたる変化であるため、傾斜磁場が印加されている期間だけ磁場のフィードバック制御(磁場ロック動作)を停止させても、撮像空間102の磁場強度を高精度に安定させることができる。 Therefore, the operation of the magnetic field lock high-frequency unit 121 is stopped during the period when the gradient magnetic field is applied. It is desirable that the correction state (feedback control amount) immediately before application of the gradient magnetic field is maintained. With this configuration, it is possible to stabilize the magnetic field strength of the imaging space 102 by compensating only for the magnetic field strength generated by the superconducting coil 105 and other magnetic field changes due to other disturbances without being affected by the magnetic field variation due to the gradient magnetic field. it can. While the application time of the gradient magnetic field is usually a pulse operation of several milliseconds, the magnetic field change due to the temperature drift of the magnet power supply 106 or disturbance magnetic field disturbance is a change over a long time of several seconds or more, so the gradient magnetic field is applied. Even if the magnetic field feedback control (magnetic field lock operation) is stopped for a certain period, the magnetic field strength of the imaging space 102 can be stabilized with high accuracy.
 傾斜磁場が印加されている期間に磁場ロック動作を停止させる処理について図8を用いて説明する。図8は、撮影パルスシーケンス(傾斜磁場電源110の傾斜磁場パルスの印加タイミングと、計測系高周波ユニット112の高周波磁界の照射タイミングおよびNMR信号(A)の検出タイミング)と、磁場ロック系高周波ユニット123の動作との関係をタイミングチャートとして示した図である。 The process for stopping the magnetic field locking operation during the period when the gradient magnetic field is applied will be described with reference to FIG. FIG. 8 shows an imaging pulse sequence (timing magnetic field pulse application timing of the gradient magnetic field power supply 110, high frequency magnetic field irradiation timing and NMR signal (A) detection timing of the measurement system high frequency unit 112), and magnetic field lock high frequency unit 123. It is the figure which showed the relationship with this operation | movement as a timing chart.
 図8の撮像パルスシーケンスは、患者頭部の横断面(体軸となるy軸に直交するx-z面)をスピンエコー法で撮影するシーケンスである。 The imaging pulse sequence in FIG. 8 is a sequence for imaging the cross-section of the patient's head (the x-z plane perpendicular to the y-axis that is the body axis) by the spin echo method.
 過程(1):最初に、傾斜磁場電源110は傾斜磁場コイル組立体109に駆動電流を供給し、撮影する横断面を決定するためのy傾斜磁場パルス(スライス選択傾斜磁場パルス)401が撮像空間102の被検体101に印加される。同時に、高周波パワーアンプ203から21.28MHzの高周波電流が高周波トランスミッターコイル111に供給され、高周波磁界402が照射される。選択された横断面の水素核原子核(プロトン)1Hは熱平衡状態から共鳴励起状態に移行する。 Process (1): First, the gradient magnetic field power supply 110 supplies a drive current to the gradient coil assembly 109, and a y gradient magnetic field pulse (slice selection gradient magnetic field pulse) 401 for determining a cross section to be photographed is an imaging space. Applied to the object 101 of 102. At the same time, a high frequency current of 21.28 MHz is supplied from the high frequency power amplifier 203 to the high frequency transmitter coil 111, and the high frequency magnetic field 402 is irradiated. The hydrogen nuclei (protons) 1 H of the selected cross section transition from the thermal equilibrium state to the resonance excited state.
 過程(2):次に、共鳴励起された水素核原子核(プロトン)1Hは、ラーモア歳差運動を起しながら、緩和時定数(これを縦緩和時間T1と称する)に従って元の熱平衡状態に戻る。この緩和過程でx-z面の位置情報をラーモア歳差運動に付加するため、z傾斜磁場パルス(位相エンコード傾斜磁場パルス)403-1とx傾斜磁場パルス(周波数エンコード傾斜磁場パルス)404が印加される。x傾斜磁場パルス404の印加中に、NMR信号(A)405を高周波レシーバーコイル113によって検出する。 Process (2): Next, the resonance-excited hydrogen nucleus (proton) 1 H undergoes Larmor precession and returns to its original thermal equilibrium state according to the relaxation time constant (referred to as the longitudinal relaxation time T1). Return. In this relaxation process, z gradient magnetic field pulse (phase encoding gradient magnetic field pulse) 403-1 and x gradient magnetic field pulse (frequency encoded gradient magnetic field pulse) 404 are applied to add the position information of the xz plane to the Larmor precession. . During application of the x gradient magnetic field pulse 404, the NMR signal (A) 405 is detected by the high-frequency receiver coil 113.
 過程(3):スピンエコー法の撮影モードで選択された時間パラメータに従った待ち時間の間待機する。 Process (3): Wait for a waiting time according to the time parameter selected in the spin echo method.
 待ち時間が経過したならば、過程(1)と過程(2)と過程(3)を繰返す。繰返し数は、例えば256回であり、MRI画像の画素数と一致する。この繰返しで、位相エンコード傾斜磁場は、z傾斜磁場パルス403-1、403-2、……403-256とその強度を256ステップ状に変化させて印加する。この過程(1)から過程(3)の256回の繰り返し期間はイメージング検査の期間406となる。 If the waiting time has elapsed, repeat steps (1), (2) and (3). The number of repetitions is, for example, 256 times and matches the number of pixels of the MRI image. By repeating this, the phase encoding gradient magnetic field is applied by changing the z gradient magnetic field pulses 403-1, 403-2,... 403-256 and their intensities in 256 steps. The 256 repetition periods from the process (1) to the process (3) become an imaging examination period 406.
 この期間406中、磁場ロック部(磁場ロック系高周波ユニット)123は、過程(1)および過程(2)の時間は、傾斜磁場パルス401,403,404が印加されているので、磁場ロック用試料122のNMR信号(B)を検出しない休止期間407とする。 During this period 406, the magnetic field lock unit (magnetic field lock system high-frequency unit) 123 applies the gradient magnetic field pulses 401, 403, and 404 for the time of the process (1) and the process (2). A rest period 407 in which 122 NMR signals (B) are not detected is set.
 そして、積分型直流アンプ214の出力である磁場補正電流はその値を保持する。そして、過程(3)の時間は、磁場ロック用試料122のNMR信号(B)を検出して磁場補正電流を更新する動作期間408となる。 And, the magnetic field correction current which is the output of the integral type DC amplifier 214 holds the value. The time of the process (3) is an operation period 408 in which the NMR signal (B) of the magnetic field locking sample 122 is detected and the magnetic field correction current is updated.
 イメージング検査の期間406の前後の患者搬入搬出の時間や待ち時間であるイメージング検査の休止期間409も、磁場ロックは動作期間408となる。 The magnetic field lock is also in the operation period 408 during the imaging examination pause period 409, which is the patient loading / unloading time and waiting time before and after the imaging examination period 406.
 磁場ロック部(磁場ロック系高周波ユニット)123の動作期間408と休止期間409の切り替えは、図2の高周波スイッチ210が行う。即ち、高周波スイッチ210は、シーケンサー114から制御信号219によってオン・オフ制御される。制御信号219は傾斜磁場電源110の入力信号となるD/A変換回路208の制御信号220に連動している。 Switching between the operation period 408 and the rest period 409 of the magnetic field lock unit (magnetic field lock type high frequency unit) 123 is performed by the high frequency switch 210 of FIG. That is, the high frequency switch 210 is controlled to be turned on / off by the control signal 219 from the sequencer 114. The control signal 219 is linked to the control signal 220 of the D / A conversion circuit 208 that is an input signal of the gradient magnetic field power supply 110.
 傾斜磁場が印加される休止期間407は、制御信号219により高周波スイッチ210はオフとなり、磁場ロック系トランスミッター209の出力する20.02MHzの高周波信号は、高周波電力アンプ211および位相検波器213の双方に入力されなくなる。 During the rest period 407 in which the gradient magnetic field is applied, the high frequency switch 210 is turned off by the control signal 219, and the 20.02 MHz high frequency signal output from the magnetic field lock system transmitter 209 is input to both the high frequency power amplifier 211 and the phase detector 213. It will not be done.
 よって、フッ素原子核19Fが共鳴励起されないばかりか、位相検波器213は参照信号302が無いので、その出力信号はゼロとなる。積分型直流アンプ214は、入力信号がゼロなので、その出力はそれまでの値を維持した状態となる。そして、磁場補正コイル215の印加電流も変化しないのであるから、それまでの補正磁場の値が保持される。一方、傾斜磁場が印加されない動作期間408は、高周波スイッチ210はオンとなり、磁場ロック部(磁場ロック系高周波ユニット)123は、検出したNMR信号(B)に応じて、磁場補正コイル215をフィードバック制御し、静磁場を安定化させる。 Therefore, not only the fluorine nucleus 19F is not resonantly excited, but also the phase detector 213 has no reference signal 302, so its output signal becomes zero. Since the input signal of the integrating DC amplifier 214 is zero, the output of the integrating DC amplifier 214 is maintained at the previous value. Since the applied current of the magnetic field correction coil 215 does not change, the value of the correction magnetic field so far is held. On the other hand, in the operation period 408 in which no gradient magnetic field is applied, the high frequency switch 210 is turned on, and the magnetic field lock unit (magnetic field lock system high frequency unit) 123 performs feedback control of the magnetic field correction coil 215 according to the detected NMR signal (B). And stabilize the static magnetic field.
 <MRI装置の超電導磁石の動作のフロー>
 次に、MRI装置の超電導磁石の全体の動作を図9を用いて説明する。図9は本実施形態のMRI装置の日常のオペレーションを示すフローチャート図である。
<Flow of operation of superconducting magnet of MRI system>
Next, the overall operation of the superconducting magnet of the MRI apparatus will be described with reference to FIG. FIG. 9 is a flowchart showing daily operations of the MRI apparatus of this embodiment.
 当日の検査施行に先だって、磁石電源106より予め決められた電流160アンペアを超電導磁石103の超電導コイル105に流して静磁場を発生させる(ステップ501)。この操作は、オペレータによる入力装置117の操作で行ってもよいし、コンピュータ115に予めプログラムされた自動立ち上機能を使って行うことも可能である。 Prior to the inspection on that day, a static current of 160 amperes is supplied from the magnet power source 106 to the superconducting coil 105 of the superconducting magnet 103 to generate a static magnetic field (step 501). This operation may be performed by an operation of the input device 117 by the operator, or may be performed using an automatic startup function programmed in advance in the computer 115.
 超電導磁石103の励磁作業が完了すると、磁場ロック系高周波ユニット123が動作し、磁場ロック用試料122から得られたフッ素原子核19FのNMR信号(B)を用いて、積分型直流アンプ214より磁場補正コイル215に供給する電流をフィードバック制御する。これにより、撮像空間102の磁場強度は、例えば0.5テスラ(磁場ロック・オン状態)になり、維持される(ステップ502)。電圧比較増幅器216の出力信号が、コンピュータ115に入力される。同時に表示装置217に磁場ロック・オン状態であることが表示される。 When the excitation work of the superconducting magnet 103 is completed, the magnetic field lock system high-frequency unit 123 operates, and the magnetic signal from the integrating DC amplifier 214 is obtained using the NMR signal (B) of the fluorine nucleus 19 F obtained from the magnetic field locking sample 122. The current supplied to the correction coil 215 is feedback-controlled. Thereby, the magnetic field strength of the imaging space 102 becomes, for example, 0.5 Tesla (magnetic field locked / on state) and is maintained (step 502). An output signal of the voltage comparison amplifier 216 is input to the computer 115. At the same time, the display device 217 displays that the magnetic field is locked / on.
 オペレータは磁場ロック・オン状態であることを、表示装置217で確認後、最初の被検体101を撮像空間102に搬入する(ステップ503)。通常の人体では磁場に影響を与えることはないが、磁性体を装着している場合や、医療インプラントによっては磁性を有していることがあり、この場合、撮像空間102の磁場強度やその均一度分布を変化するが、磁場ロック系高周波ユニット123のフィードバック制御により、撮像空間102の磁場強度を0.5テスラの磁場ロック・オン状態で維持される。通常、被検体101の影響による磁場変化はわずかであるのと、その変化スピード(被検体101の搬入や搬出の操作)に対しては、磁場ロック系高周波ユニット123の応答スピードで充分にカバーすることが可能であるため、磁場ロックがロック・アウト状態になることはない。 The operator confirms that the magnetic field is locked on by the display device 217, and then carries the first subject 101 into the imaging space 102 (step 503). Although the normal human body does not affect the magnetic field, it may have magnetism depending on the wearing of the magnetic body or some medical implants. Although the distribution is once changed, the magnetic field intensity of the imaging space 102 is maintained in the magnetic field lock-on state of 0.5 Tesla by the feedback control of the magnetic field lock system high-frequency unit 123. Normally, the change in magnetic field due to the influence of the subject 101 is slight, and the change speed (operation of loading and unloading the subject 101) is sufficiently covered by the response speed of the magnetic field lock high-frequency unit 123. The magnetic field lock will never be locked out.
 次に、被検体101の検査部位のイメージング検査(撮像)が、検査目的に合わせた撮影パルスシーケンスを実行することにより行われる。このとき、傾斜磁場の動作していない期間は、磁場ロック系高周波ユニット123は磁場ロック用試料122のNMR信号を検出し、撮像空間102の磁場強度をフィードバック制御する。傾斜磁場の動作中は、フィードバック制御を停止し、直前の補正量を維持する。これにより、撮影パルスシーケンスの実行中も撮像空間102の磁場強度を0.5テスラに維持できる(ステップ504)。 Next, an imaging examination (imaging) of the examination region of the subject 101 is performed by executing an imaging pulse sequence suitable for the examination purpose. At this time, during a period when the gradient magnetic field is not operating, the magnetic field lock high-frequency unit 123 detects the NMR signal of the magnetic field locking sample 122 and feedback-controls the magnetic field strength of the imaging space 102. During the operation of the gradient magnetic field, the feedback control is stopped and the previous correction amount is maintained. Thus, the magnetic field strength of the imaging space 102 can be maintained at 0.5 Tesla even during execution of the imaging pulse sequence (step 504).
 最初の被検体101のイメージング検査が終了したならば、撮像空間102より搬出する。この搬出操作中も、磁場強度は0.5テスラのロック・オン状態に維持される(ステップ505)。 When the first imaging test of the subject 101 is completed, it is carried out from the imaging space 102. During this carry-out operation, the magnetic field strength is maintained in a lock-on state of 0.5 Tesla (step 505).
 そして、次の被検体101の検査の有無を判定し(ステップ506)、次の被検体101が検査が有る場合は、ステップ503に戻り、ステップ503~505を繰り返す。この間も磁場ロック・オン機能は維持されたままであり、オペレータは磁場ロック・オンの表示装置217を確認するだけでよい。もちろん、磁場ロック・オン状態の信号218はコンピュータ115に常時入力されているので、磁場ロック・アウト状態でのイメージング検査が施行されることはない。 Then, it is determined whether or not the next subject 101 is inspected (step 506). If the next subject 101 is inspected, the process returns to step 503 and steps 503 to 505 are repeated. During this time, the magnetic field lock-on function is maintained, and the operator only has to confirm the display device 217 for magnetic field lock-on. Of course, since the magnetic field lock-on signal 218 is constantly input to the computer 115, the imaging inspection in the magnetic field lock-out state is not performed.
 一方、ステップ506において、次の被検体101の検査がない場合は、MRI装置は、終了動作に進むか、急患など予約外の被検体101を待機するかを、予め定めた判定基準により判定する(ステップ507)。例えば、オペレータの指示により、終了動作に進むことを指示した場合や、医療施設の終業時刻を経過した場合は、超電導磁石103の消磁作業に移行し、それ以外の場合は、待機すると判定することができる。待機の場合は、ステップ506に戻る。 On the other hand, if there is no examination of the next subject 101 in step 506, the MRI apparatus determines whether to proceed to the end operation or to wait for the subject 101 that is not reserved, such as an urgent patient, based on a predetermined criterion. (Step 507). For example, when instructed to proceed to the end operation by the operator's instruction, or when the end time of the medical facility has elapsed, it is decided to shift to demagnetization work of the superconducting magnet 103, and otherwise wait Can do. In the case of standby, the process returns to step 506.
 終了する場合、超電導磁石103の消磁作業を行う(ステップ508)。消磁作業は、オペレータが入力装置117を介して指示した動作を実行することにより行うか、もしくは、コンピュータ115が予め定められた自動的な消磁動作を実行することにより行う。 If completed, demagnetization work of superconducting magnet 103 is performed (step 508). The degaussing operation is performed by executing an operation instructed by the operator via the input device 117, or by performing a predetermined automatic degaussing operation by the computer 115.
 この消磁作業に入ると、磁場ロック系高周波ユニット123は動作を終了し、磁場ロック・アウト状態となる(ステップ508)。 When entering the degaussing operation, the magnetic field lock type high frequency unit 123 finishes its operation and enters a magnetic field lockout state (step 508).
 以上で、一日のMRI装置の動作のフローを説明したが、上述のステップ503~507までの間、磁場ロック・オン状態が維持される。よって、超電導コイル105のわずかな抵抗成分による磁場減衰や、磁石電源106の温度ドリフトによる出力電流の変化や磁性体の移動等による外乱による磁場変動は補償され、安定に0.5テスラを維持される。 The flow of operation of the MRI apparatus for one day has been described above, but the magnetic field lock-on state is maintained during the above steps 503 to 507. Accordingly, the magnetic field attenuation due to the slight resistance component of the superconducting coil 105, the change in the output current due to the temperature drift of the magnet power source 106, the magnetic field fluctuation due to the disturbance due to the movement of the magnetic material, etc. are compensated, and 0.5 Tesla is stably maintained.
 なお、上述の実施形態では、撮像空間102の静磁場の補正を補正コイル215により行う例について説明したが、この方法に限られるものではない。磁石電源106が超電導コイル105に供給する電流を、位相検波器213の出力信号303に応じてフィードバック制御することにより、超電導コイル105が発生する静磁場を直接補正することも可能である。 In the above-described embodiment, the example in which the correction of the static magnetic field in the imaging space 102 is performed by the correction coil 215 has been described. However, the present invention is not limited to this method. It is also possible to directly correct the static magnetic field generated by the superconducting coil 105 by feedback-controlling the current supplied from the magnet power source 106 to the superconducting coil 105 according to the output signal 303 of the phase detector 213.
 なお、補正コイル215のインダクタンスは、一般的な超電導コイル105に比べ、三桁小さい数百ミリヘンリーにすることができるため、超電導コイル105をフィードバック制御する場合と比較して、高精度な補正が実現可能である。よって、両者の補正を組み合わせたハイブリッド法を採用することも可能である。即ち、磁石電源106のフィードバック制御によって磁場強度を粗調整した後に、補正磁場コイル215で微調整する方法を用いることができる。あるいは、普段は補正磁場コイル215を用いて調整し、磁場強度が大きく変わった場合にのみ、磁石電源106で磁場強度を粗調整することも可能である。 The inductance of the correction coil 215 can be several hundred millihenries, which is three orders of magnitude smaller than that of a general superconducting coil 105. Therefore, the correction coil 215 can be corrected more accurately than when the superconducting coil 105 is feedback controlled. It is feasible. Therefore, it is possible to adopt a hybrid method in which both corrections are combined. That is, a method in which the magnetic field intensity is roughly adjusted by feedback control of the magnet power supply 106 and then finely adjusted by the correction magnetic field coil 215 can be used. Alternatively, the magnetic field strength can be roughly adjusted by the magnet power source 106 only when the correction magnetic field coil 215 is usually used for adjustment and the magnetic field strength greatly changes.
 なお、上述の実施形態では、磁場ロック用の試料に、フッ素原子核19Fを用いたが、重水素原子核2Hの重水(D2O、あるいは2H2Oや重クロロホルムCDCl3)を用いてもよい。この場合は、磁場ロック系トランスミッター209で合成する周波数は3.333MHzとなる。どちらも、水素原子核(プロトン)1Hの磁気共鳴周波数とは異なっているので、磁場ロック系の高周波信号が高周波レシーバーコイル113に誘起したりすることが無く、被検体101の安定なMRI画像が得られる。 In the above-described embodiment, the fluorine nucleus 19 F is used as the magnetic field locking sample, but deuterium nucleus 2 H heavy water (D 2 O, 2 H 2 O, or deuterated chloroform CDCl 3 ) is used. Also good. In this case, the frequency synthesized by the magnetic field lock system transmitter 209 is 3.333 MHz. Since both are different from the magnetic resonance frequency of hydrogen nucleus (proton) 1 H, a high-frequency signal of the magnetic field lock system is not induced in the high-frequency receiver coil 113, and a stable MRI image of the subject 101 is obtained. can get.
 (第2の実施形態)
 第2の実施形態では、磁場ロック用試料122を高周波レシーバーコイル113を保持する保持部(801)に配置する例について説明する。
(Second embodiment)
In the second embodiment, an example in which the magnetic field locking sample 122 is disposed in the holding unit (801) that holds the high-frequency receiver coil 113 will be described.
 高周波レシーバーコイル113は、コイル導体を、絶縁性の材料で構成された所望形状の保持部801によって被覆した構造である。コイル導体および保持部801は、検査部位に応じた形状であり、例えば、図5のように、人体頭部用の高周波レシーバーコイル113は、保持部801は円筒状であり、頭受け台座を備えている。図5の例では、保持部8の頭受け台座の内部に、磁場ロック用試料122を配置している例を示す。 The high-frequency receiver coil 113 has a structure in which a coil conductor is covered with a holding portion 801 having a desired shape made of an insulating material. The coil conductor and the holding unit 801 have a shape corresponding to the examination site. For example, as shown in FIG. 5, the high-frequency receiver coil 113 for the human head has a cylindrical holding unit 801 and includes a head receiving base. ing. In the example of FIG. 5, an example in which the magnetic field locking sample 122 is disposed inside the head receiving base of the holding unit 8 is shown.
 このように、高周波レシーバーコイル113の内部に磁場ロック用試料122を配置した場合、磁場ロック用試料122は、撮像空間102(撮影領域(FOV))内に位置するが、磁場ロック用試料122にはイメージング検査の水素原子核(プロトン)1Hが含まれないので、イメージング画像には描出されない。 Thus, when the magnetic field locking sample 122 is arranged inside the high frequency receiver coil 113, the magnetic field locking sample 122 is located in the imaging space 102 (imaging region (FOV)), but the magnetic field locking sample 122 Does not appear in the imaging image because it does not contain hydrogen nuclei (protons) 1 H in the imaging examination.
 第2の実施形態の場合、磁場ロック用試料122を撮像空間102内に配置し、しかも、その中心に最も近づけることができる。このことにより、磁場ロック用試料122のフッ素原子核19Fはイメージング検査の水素原子核(プロトン)1Hと同じ強度で同じ均一度の静磁場中に存在するため、NMR信号(B)をNMR信号(A)とより高い相関性で高精度に検出することができる。また、磁場ロック用試料122を高周波レシーバーコイル113毎に、最適な位置や大きさで配置することができる。よって、撮像空間102の磁場を高い精度で安定化させることが可能になる。 In the case of the second embodiment, the magnetic field locking sample 122 can be arranged in the imaging space 102 and closest to the center thereof. As a result, the fluorine nucleus 19 F of the magnetic field locking sample 122 exists in a static magnetic field with the same intensity and the same intensity as the hydrogen nucleus (proton) 1 H of the imaging examination, so the NMR signal (B) is converted into an NMR signal ( It can be detected with higher accuracy with higher correlation with A). Further, the magnetic field locking sample 122 can be arranged at an optimum position and size for each high-frequency receiver coil 113. Therefore, it is possible to stabilize the magnetic field in the imaging space 102 with high accuracy.
 第2の実施形態では、高周波レシーバーコイル113に磁場ロック用試料122が配置されているため、磁場ロックの動作の開始タイミングが、第1の実施形態とは異なる。第2の実施形態の超電導磁石103の動作フローを図10を用いて説明する。 In the second embodiment, since the magnetic field locking sample 122 is disposed in the high-frequency receiver coil 113, the start timing of the magnetic field locking operation is different from that in the first embodiment. The operation flow of the superconducting magnet 103 of the second embodiment will be described with reference to FIG.
 まず、当日の検査施行に先だって超電導磁石103に所定の電流160アンペアを供給して例示し、超電導コイル105に静磁場を発生させる(ステップ501)。この動作は、図9のステップ501と同じである。超電導磁石103の励磁作業が完了すると、オペレータは、最初の被検体101にイメージング検査目的に適合した高周波レシーバーコイル113を装着して、撮像空間102に搬入する(ステップ1001)。このステップ1001によって、高周波レシーバーコイル113に備えられている磁場ロック用試料122が撮像空間102内に配置されるため、磁場ロック系高周波ユニット123は、磁場ロック用試料122のNMR信号(B)を検出可能になり、静磁場のフィードバック制御が開示され、磁場ロック・オン状態となる(ステップ1002)。電圧比較増幅器216の出力信号218がコンピュータ115に入力され、同時に表示装置217に磁場ロック・オン状態が表示される。 First, a predetermined current of 160 amperes is supplied to the superconducting magnet 103 prior to the inspection on the day, and a static magnetic field is generated in the superconducting coil 105 (step 501). This operation is the same as step 501 in FIG. When the excitation operation of the superconducting magnet 103 is completed, the operator attaches the high-frequency receiver coil 113 suitable for the purpose of the imaging examination to the first subject 101 and carries it into the imaging space 102 (step 1001). By this step 1001, since the magnetic field locking sample 122 provided in the high frequency receiver coil 113 is arranged in the imaging space 102, the magnetic field locking system high frequency unit 123 outputs the NMR signal (B) of the magnetic field locking sample 122. It becomes possible to detect, feedback control of the static magnetic field is disclosed, and the magnetic field lock-on state is entered (step 1002). The output signal 218 of the voltage comparison amplifier 216 is input to the computer 115, and at the same time, the magnetic field lock-on state is displayed on the display device 217.
 次に、ステップ504を第1の実施形態と同様に行って、被検体101の検査部位のイメージング検査が施行される。 Next, step 504 is performed in the same manner as in the first embodiment, and an imaging test of the test site of the subject 101 is performed.
 最初の被検体101のMRI検査が終了して、撮像空間102より搬出すると、超電導コイル105の形成する磁場から磁場ロック用試料122も搬出されるため、磁場ロック機能は解除される(ステップ1003)。 When the first MRI examination of the subject 101 is completed and taken out from the imaging space 102, the magnetic field locking sample 122 is also carried out from the magnetic field formed by the superconducting coil 105, so the magnetic field locking function is released (step 1003). .
 次の被検体101の検査の有無を判定するステップ506を経て、次の被検体101有りの場合は、ステップ1001に戻り、被検体101を撮像空間102に搬入する。ここで再び、磁場ロック・オン状態となる(ステップ1002)。 After step 506 for determining whether or not the next subject 101 is inspected, if there is the next subject 101, the process returns to step 1001 to carry the subject 101 into the imaging space 102. Here again, the magnetic field lock-on state is established (step 1002).
 ステップ506において、次の被検体101の予約がない場合は、MRI装置はステップ507に進み、超電導磁石の消磁のステップ1004に進むか、または、ステップ506に戻って待機するか判定する。ステップ1004では、第1の実施形態のステップ508と同様に、超電導磁石103の消磁作業を行う。なお、ステップ1003ですでに磁場ロックは終了しているので、ステップ1004は消磁のみを行う。 In step 506, if there is no reservation for the next subject 101, the MRI apparatus proceeds to step 507 and determines whether to proceed to step 1004 of demagnetization of the superconducting magnet or return to step 506 and wait. In step 1004, the demagnetization work of the superconducting magnet 103 is performed as in step 508 of the first embodiment. Since the magnetic field lock has already been completed in step 1003, only demagnetization is performed in step 1004.
 他の構成および動作は、第1の実施形態と同様であるので説明を省略する。 Other configurations and operations are the same as those in the first embodiment, and thus description thereof is omitted.
 (第3の実施形態)
 第3の実施形態として、磁場ロック用試料122を被検体101の搬入・搬出する天板119内の複数個所に配置する実施形態を図4を用いて説明する。
(Third embodiment)
As a third embodiment, an embodiment in which magnetic field locking samples 122 are arranged at a plurality of locations in a top board 119 where the subject 101 is carried in and out will be described with reference to FIG.
 図4のように、天板119内には、被検体101の体軸方向に沿って異なる位置(図4では3箇所)に磁場ロック用試料122-1、122-2、122-3をそれぞれ配置している。この構成の場合、被検体101の検査部位に応じて、撮像空間102に対する天板119の位置が変化する。例えば、被検体101の頭部の検査の場合は、磁場ロック用試料122-1が最も撮像空間102の中心近くに配設される。よって、磁場ロック系高周波ユニット123は、シーケンサー114を介してコンピュータ115から天板119の位置情報を受け取り、それに応じて、複数の磁場ロック用試料122の中から、撮像空間102に最も近い磁気ロック用試料122-1を選択し、磁気ロック用試料122-1のNMR信号(B)を用いて、静磁場のフィードバック制御を行う。 As shown in FIG. 4, magnetic field locking samples 122-1, 122-2, and 122-3 are respectively placed in different positions (three locations in FIG. 4) along the body axis direction of the subject 101 in the top plate 119. It is arranged. In the case of this configuration, the position of the top 119 with respect to the imaging space 102 changes according to the examination site of the subject 101. For example, in the case of the examination of the head of the subject 101, the magnetic field locking sample 122-1 is disposed closest to the center of the imaging space 102. Therefore, the magnetic field lock high-frequency unit 123 receives the position information of the top plate 119 from the computer 115 via the sequencer 114, and accordingly, the magnetic lock closest to the imaging space 102 among the plurality of magnetic field locking samples 122 is received. Sample 122-1 is selected, and feedback control of the static magnetic field is performed using the NMR signal (B) of the sample 122-1 for magnetic lock.
 第3の実施形態において、磁場ロックの開始および終了タイミングは、被検体が搬入・搬出されたタイミングであるので、第2の実施形態の図10のフローと同様である。他の構成および動作は、第1の実施形態と同様であるので説明を省略する。 In the third embodiment, the start and end timing of the magnetic field lock is the timing when the subject is carried in / out, and is the same as the flow of FIG. 10 of the second embodiment. Other configurations and operations are the same as those in the first embodiment, and thus description thereof is omitted.
 101 被検体、102 撮像空間、103 超電導磁石、105 超電導コイル、106 磁石電源、109 傾斜磁場コイル組立体、111 高周波トランスミッターコイル、112 計測系高周波ユニット、113 高周波レシーバーコイル、114 シーケンサー、115 コンピュータ、119 天板、122 磁場ロック用試料、123 磁場ロック系高周波ユニット、201 基準周波数発生器、209 磁場ロック系トランスミッター、210 高周波スイッチ、211 高周波パワーアンプ、213 位相検波器(PSD)、214 積分型直流アンプ、215 磁場補正コイル、217 ロック・オン表示装置、701 マイクロキャピラリー、702 フッ素化合物 101 subject, 102 imaging space, 103 superconducting magnet, 105 superconducting coil, 106 magnet power supply, 109 gradient magnetic field coil assembly, 111 high frequency transmitter coil, 112 measurement system high frequency unit, 113 high frequency receiver coil, 114 sequencer, 115 computer, 119 Top plate, 122 Magnetic field lock sample, 123 Magnetic field lock system high frequency unit, 201 Reference frequency generator, 209 Magnetic field lock system transmitter, 210 High frequency switch, 211 High frequency power amplifier, 213 Phase detector (PSD), 214 Integral DC amplifier 215 Magnetic field correction coil 217 Lock-on display device 701 Microcapillary 702 Fluorine compound

Claims (15)

  1.  撮像空間に静磁場を形成する超電導コイルと、前記超電導コイルが前記静磁場を形成している間、前記超電導コイルに電流を継続供給する磁石電源と、前記撮像空間に傾斜磁場を生じさせる傾斜磁場発生部と、前記撮像空間に配置された被検体に高周波磁場を照射する高周波磁場発生部と、前記被検体の核磁共鳴信号(A)を検出する計測部と、
     前記超電導コイルが発生した磁場が印加される位置であって、前記被検体と物理的に干渉しない位置に配置された磁場ロック用試料と、
     前記磁場ロック用試料に高周波磁場を照射し、前記磁場ロック用試料が発生した核磁気共鳴信号(B)を検出し、検出結果に応じて前記静磁場の強度を調整し、前記静磁場を一定にする磁場ロック部とを有する磁気共鳴イメージング装置。
    A superconducting coil that forms a static magnetic field in the imaging space, a magnet power supply that continuously supplies current to the superconducting coil while the superconducting coil forms the static magnetic field, and a gradient magnetic field that generates a gradient magnetic field in the imaging space A generator, a high-frequency magnetic field generator that irradiates a subject placed in the imaging space with a high-frequency magnetic field, a measurement unit that detects a nuclear magnetic resonance signal (A) of the subject,
    A magnetic field locking sample disposed at a position where a magnetic field generated by the superconducting coil is applied and does not physically interfere with the subject;
    Irradiating the magnetic field locking sample with a high frequency magnetic field, detecting a nuclear magnetic resonance signal (B) generated by the magnetic field locking sample, adjusting the intensity of the static magnetic field according to the detection result, and making the static magnetic field constant A magnetic resonance imaging apparatus having a magnetic field lock unit.
  2.  請求項1に記載の磁気共鳴イメージング装置において、前記磁場ロック用試料は、前記計測部が検出する前記核磁気共鳴信号(A)の磁気共鳴周波数とは異なる磁気共鳴周波数の核磁気共鳴信号(B)を発生する原子核種を含むことを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic field locking sample is a magnetic resonance signal (B) having a magnetic resonance frequency different from a magnetic resonance frequency of the nuclear magnetic resonance signal (A) detected by the measurement unit. A magnetic resonance imaging apparatus characterized by including a nuclear species that generates).
  3.  請求項1記載の磁気共鳴イメージング装置において、前記磁場ロック部は、前記傾斜磁場発生部が前記傾斜磁場を発生している間、前記核磁気共鳴信号(B)の検出結果に応じた前記静磁場の強度の調整を一時的に停止することを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic field lock unit includes the static magnetic field corresponding to a detection result of the nuclear magnetic resonance signal (B) while the gradient magnetic field generation unit generates the gradient magnetic field. A magnetic resonance imaging apparatus characterized by temporarily stopping the adjustment of the intensity of the magnetic resonance imaging apparatus.
  4.  請求項3に記載の磁気共鳴イメージング装置において、前記磁場ロック部は、前記傾斜磁場発生部が前記傾斜磁場を発生している間は、前記停止直前の調整量を保持することを特徴とする磁気共鳴イメージング装置。 4. The magnetic resonance imaging apparatus according to claim 3, wherein the magnetic field lock unit holds an adjustment amount immediately before the stop while the gradient magnetic field generation unit generates the gradient magnetic field. Resonance imaging device.
  5.  請求項1記載の磁気共鳴イメージング装置において、前記高周波磁場発生部は、高周波トランスミッターコイルと、前記高周波トランスミッターコイルに前記高周波磁場を発生させるための高周波信号を供給する高周波信号生成部とを含み、
     前記磁場ロック部は、前記磁場ロック用試料に高周波を照射する磁場ロック用高周波トランスミッターコイルと、前記磁場ロック用高周波トランスミッターコイルに前記高周波磁場を発生させるための高周波信号を供給する磁場ロック用高周波信号生成部とを含み、 前記高周波信号生成部および前記磁場ロック用高周波信号生成部には、共通の基準周波数信号を供給する基準周波数発生器が接続されていることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1, wherein the high-frequency magnetic field generation unit includes a high-frequency transmitter coil and a high-frequency signal generation unit that supplies a high-frequency signal for generating the high-frequency magnetic field to the high-frequency transmitter coil,
    The magnetic field lock unit includes a high frequency transmitter coil for magnetic field locking that irradiates the magnetic field locking sample with a high frequency, and a high frequency signal for magnetic field locking that supplies the high frequency signal for generating the high frequency magnetic field to the high frequency magnetic field transmitter coil for magnetic field locking. A reference frequency generator for supplying a common reference frequency signal is connected to the high-frequency signal generation unit and the magnetic field locking high-frequency signal generation unit.
  6.  請求項1記載の磁気共鳴イメージング装置において、前記被検体を搭載するテーブルをさらに有し、
     前記磁場ロック用試料は、前記撮像空間の外側であって、前記計測部および前記テーブルと物理的に干渉しない位置に配置されることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1, further comprising a table on which the subject is mounted,
    The magnetic resonance imaging apparatus, wherein the magnetic field locking sample is disposed outside the imaging space and at a position that does not physically interfere with the measurement unit and the table.
  7.  請求項1記載の磁気共鳴イメージング装置において、前記被検体を搭載して搬送するテーブルをさらに有し、
     前記磁場ロック用試料は、前記テーブルの被検体が搭載される天板内の1か所以上に配置され、前記被検体とともに前記撮像空間内に挿入されることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1, further comprising a table for carrying the subject mounted thereon,
    The magnetic resonance imaging apparatus, wherein the magnetic field locking sample is disposed at one or more locations in a top plate on which the subject of the table is mounted, and is inserted into the imaging space together with the subject.
  8.  請求項1記載の磁気共鳴イメージング装置において、前記計測部は、前記核磁気共鳴信号(A)を受信する高周波レシーバーコイルと、前記高周波レシーバーコイルを保持する保持部とを含み、
     前記磁場ロック用試料は、前記高周波レシーバーコイルの前記保持部に備えられていることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1, wherein the measurement unit includes a high-frequency receiver coil that receives the nuclear magnetic resonance signal (A), and a holding unit that holds the high-frequency receiver coil.
    The magnetic resonance imaging apparatus, wherein the magnetic field locking sample is provided in the holding unit of the high-frequency receiver coil.
  9.  請求項1記載の磁気共鳴イメージング装置において、前記磁場ロック用試料は、配置される位置における前記超電導コイルの発生する磁場の強度勾配の影響を受けない大きさの容器内に配置されていることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic field locking sample is disposed in a container having a size that is not affected by an intensity gradient of a magnetic field generated by the superconducting coil at a position where the magnetic field locking sample is disposed. A magnetic resonance imaging apparatus.
  10.  請求項1記載の磁気共鳴イメージング装置において、前記磁場ロック部は、前記磁場ロック用試料の磁気共鳴周波数と同じ周波数の信号を参照信号として、前記核磁気共鳴信号(B)を位相検波する位相検波部を含み、前記位相検波の出力がゼロになるように前記撮像空間の磁場強度を調整することを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic field lock unit performs phase detection of the nuclear magnetic resonance signal (B) using a signal having the same frequency as the magnetic resonance frequency of the magnetic field locking sample as a reference signal. And a magnetic resonance imaging apparatus, wherein the magnetic field intensity of the imaging space is adjusted so that the output of the phase detection becomes zero.
  11.  請求項10記載の磁気共鳴イメージング装置において、前記磁場ロック部は、前記位相検波部の出力がゼロになったことをオペレータに報知する表示部を有することを特徴とする磁気共鳴イメージング装置。 11. The magnetic resonance imaging apparatus according to claim 10, wherein the magnetic field locking unit includes a display unit that notifies an operator that the output of the phase detection unit has become zero.
  12.  請求項10記載の磁気共鳴イメージング装置において、前記計測部は、前記位相検波部の出力がゼロになった状態で、前記被検体の核磁気共鳴信号(A)を計測することを特徴とする磁気共鳴イメージング装置。 11. The magnetic resonance imaging apparatus according to claim 10, wherein the measurement unit measures a nuclear magnetic resonance signal (A) of the subject in a state where the output of the phase detection unit is zero. Resonance imaging device.
  13.  請求項1記載の磁気共鳴イメージング装置において、前記磁場ロック部は、前記核磁気共鳴信号(B)の検出結果に応じて、前記磁石電源の出力電流を変化させることにより前記静磁場の強度を調整することを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic field lock unit adjusts the intensity of the static magnetic field by changing an output current of the magnet power supply according to a detection result of the nuclear magnetic resonance signal (B). A magnetic resonance imaging apparatus.
  14.  請求項1記載の磁気共鳴イメージング装置において、前記撮像空間に補正磁場を発生する補正コイルをさらに有し、
     前記磁場ロック部は、前記核磁気共鳴信号(B)の検出結果に応じて、前記補正コイルに供給する電流を変化させることにより前記静磁場の強度を調整することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1, further comprising a correction coil that generates a correction magnetic field in the imaging space,
    The magnetic field locking unit adjusts the intensity of the static magnetic field by changing a current supplied to the correction coil in accordance with a detection result of the nuclear magnetic resonance signal (B). .
  15.  請求項7記載の磁気共鳴イメージング装置において、前記磁場ロック用試料は、前記テーブルの前記天板の複数個所にそれぞれ配置され、
     前記磁場ロック部は、複数の前記磁場ロック用試料のうちの少なくとも一つを選択して、前記核磁気共鳴信号(B)の検出に用いることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 7, wherein the magnetic field locking samples are respectively arranged at a plurality of locations on the top plate of the table,
    The magnetic resonance imaging apparatus, wherein the magnetic field locking unit selects at least one of the plurality of magnetic field locking samples and detects the nuclear magnetic resonance signal (B).
PCT/JP2014/078184 2013-11-12 2014-10-23 Magnetic resonance imaging apparatus WO2015072301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015547712A JPWO2015072301A1 (en) 2013-11-12 2014-10-23 Magnetic resonance imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-234135 2013-11-12
JP2013234135 2013-11-12

Publications (1)

Publication Number Publication Date
WO2015072301A1 true WO2015072301A1 (en) 2015-05-21

Family

ID=53057241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078184 WO2015072301A1 (en) 2013-11-12 2014-10-23 Magnetic resonance imaging apparatus

Country Status (2)

Country Link
JP (1) JPWO2015072301A1 (en)
WO (1) WO2015072301A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074063A (en) * 2019-11-06 2021-05-20 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417209A (en) * 1980-05-21 1983-11-22 Picker International Limited Nuclear magnetic resonance apparatus
JPS6050441A (en) * 1983-08-30 1985-03-20 Yokogawa Medical Syst Ltd Magnetic-field calibrating device in nuclear-magnetic- resonance imaging apparatus
JPS60111141A (en) * 1983-11-19 1985-06-17 Gijutsu Kenkyu Kumiai Iryo Fukushi Kiki Kenkyusho Nuclear magnetic resonance imaging device
US4623843A (en) * 1984-08-01 1986-11-18 Albert Macovski NMR imaging system using excited reference coils
JPS6263848A (en) * 1985-08-30 1987-03-20 Yokogawa Electric Corp Nmr imaging device
US5631561A (en) * 1994-05-31 1997-05-20 Siemens Aktiengesellschaft Arrangement for measuring and controlling the basic field of an NMR tomography apparatus
JP2001112736A (en) * 1999-08-27 2001-04-24 General Electric Co <Ge> Field frequency locking system for magnetic resonance system
JP2002143127A (en) * 2000-08-01 2002-05-21 Ge Medical Systems Global Technology Co Llc Compensation method and apparatus for magnetic resonance imaging
JP2005270327A (en) * 2004-03-24 2005-10-06 Toshiba Corp Magnetic resonance imaging apparatus
JP2008020266A (en) * 2006-07-11 2008-01-31 National Institute For Materials Science Superconducting magnet system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417209A (en) * 1980-05-21 1983-11-22 Picker International Limited Nuclear magnetic resonance apparatus
JPS6050441A (en) * 1983-08-30 1985-03-20 Yokogawa Medical Syst Ltd Magnetic-field calibrating device in nuclear-magnetic- resonance imaging apparatus
JPS60111141A (en) * 1983-11-19 1985-06-17 Gijutsu Kenkyu Kumiai Iryo Fukushi Kiki Kenkyusho Nuclear magnetic resonance imaging device
US4623843A (en) * 1984-08-01 1986-11-18 Albert Macovski NMR imaging system using excited reference coils
JPS6263848A (en) * 1985-08-30 1987-03-20 Yokogawa Electric Corp Nmr imaging device
US5631561A (en) * 1994-05-31 1997-05-20 Siemens Aktiengesellschaft Arrangement for measuring and controlling the basic field of an NMR tomography apparatus
JP2001112736A (en) * 1999-08-27 2001-04-24 General Electric Co <Ge> Field frequency locking system for magnetic resonance system
JP2002143127A (en) * 2000-08-01 2002-05-21 Ge Medical Systems Global Technology Co Llc Compensation method and apparatus for magnetic resonance imaging
JP2005270327A (en) * 2004-03-24 2005-10-06 Toshiba Corp Magnetic resonance imaging apparatus
JP2008020266A (en) * 2006-07-11 2008-01-31 National Institute For Materials Science Superconducting magnet system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074063A (en) * 2019-11-06 2021-05-20 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging device
JP7408351B2 (en) 2019-11-06 2024-01-05 キヤノンメディカルシステムズ株式会社 magnetic resonance imaging device

Also Published As

Publication number Publication date
JPWO2015072301A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
US7034537B2 (en) MRI apparatus correcting vibratory static magnetic field fluctuations, by utilizing the static magnetic fluctuation itself
US5731704A (en) Method and arrangement for measuring and controlling the basic field of a magnet of a nuclear magnetic tomography apparatus
US20080164878A1 (en) Minimum Energy Shim Coils For Magnetic Resonance
JP3781166B2 (en) Magnetic resonance imaging apparatus and static magnetic field uniformity maintaining method
US6504373B2 (en) Magnetic resonance imaging apparatus
US9389287B2 (en) Nuclear magnetic resonance spectrometer and method of magnetic field correction
CN108303661B (en) Correction of magnetic resonance emission signals
US5631561A (en) Arrangement for measuring and controlling the basic field of an NMR tomography apparatus
US10156619B2 (en) Magnetic resonance imaging system, static magnetic field homogeneity adjusting system, magnetic field homogeneity adjusting method, and magnetic field homogeneity adjusting program
Fan et al. Gaseous 3He nuclear magnetic resonance probe for cryogenic environments
JP2016168265A (en) Magnetic resonance imaging apparatus and operation method thereof
JP2014151207A (en) Mr system including pulsating compensation magnetic field gradient
WO2015072301A1 (en) Magnetic resonance imaging apparatus
US20140171329A1 (en) Mri apparatus, operation method thereof, and quenching prevention device
JP4890945B2 (en) Magnetic resonance imaging system
US9182465B2 (en) MRT gradient system with integrated main magnetic field generation
JPH0268038A (en) Superconducting magnet of magnetic resonance imaging device
JP3976479B2 (en) Method and apparatus for reducing magnetic field fluctuations in magnetic resonance imaging apparatus
JPH10262947A (en) Magnetic resonance examination system
JP3748657B2 (en) Magnetic resonance inspection equipment
JP2000333932A (en) Mri device
Schwerter et al. Advanced software and hardware control methods for improved static and dynamic B0 shimming in magnetic resonance imaging
JP4067546B2 (en) Magnetic resonance imaging apparatus and static magnetic field uniformity maintaining method
He et al. Design of biplanar shim coils for ultra-low field MRI
JPH0866380A (en) Magnetic resonance imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862831

Country of ref document: EP

Kind code of ref document: A1