WO2015155326A1 - Magnetic field transducer with quadrature excitation - Google Patents

Magnetic field transducer with quadrature excitation Download PDF

Info

Publication number
WO2015155326A1
WO2015155326A1 PCT/EP2015/057811 EP2015057811W WO2015155326A1 WO 2015155326 A1 WO2015155326 A1 WO 2015155326A1 EP 2015057811 W EP2015057811 W EP 2015057811W WO 2015155326 A1 WO2015155326 A1 WO 2015155326A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
magnetic field
phase
current
transducer
Prior art date
Application number
PCT/EP2015/057811
Other languages
French (fr)
Inventor
Catalin Stoichita
Original Assignee
Neelogy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neelogy filed Critical Neelogy
Publication of WO2015155326A1 publication Critical patent/WO2015155326A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle

Definitions

  • non-linear magnetic core coils connected to an alternating current generator at frequency f 0 , called excitation.
  • the non-linear magnetic core of such a coil acts as a mixer between the magnetic field to be measured (oriented along its axis) and the magnetic field created by the excitation current, which generates additional harmonics at the combined frequencies.
  • n.f0 ⁇ m.fp where fp is the frequency of the field to be measured and n and m are integers.
  • the present invention proposes a quadrature excitation magnetic field transducer comprising:
  • each coil being able to form part of a group of coils so that two groups of coils can be constituted
  • At least two alternating current generators for exciting said coils.
  • the excitation currents in the two groups of coils are out of phase so that the coil groups produce antiphase detection signals in the arrangements where the inductively-sensed (transformer effect) disturbance signals are in phase or produce in-phase detection signals in the arrangements where the induction-detected (transformer effect) disturbance signals are in antiphase.
  • the detection signals delivered by the two groups of coils are added or subtracted in order to reject the interference signals induced by the transformer effect in said coils.
  • the transducer according to the invention proposes an arrangement of the coils making it possible to eliminate the interference signals directly by measuring the detection signals.
  • the number of current generators is not limiting. Several or a single generator associated with a phase shift device can be envisaged on a power supply branch.
  • the electrical phase shift of the excitations between the groups of coils is ⁇ 90 °.
  • the invention also relates to a non-contact electrical current measuring device implementing a current transducer as described above.
  • This quadrature-excited magnetic field transducer is used to evaluate or determine the current to be measured through its magnetic field.
  • This quadrature excitation magnetic field transducer is used to evaluate or determine the difference between a feedback magnetic field and the magnetic field of the current to be measured to enable a negative feedback closed-loop regulator to maintain a near zero total magnetic field in the transducer detection region.
  • FIG. 1 describing two groups of two coils producing detection signals in accordance with FIG. antiphase.
  • the useful signal obtained by mixing in the core between the field to be measured and the field of excitation
  • two systems of coils of capture identical, placed in the same field to measure and oriented in the same way.
  • the two coil systems are excited at the same frequency f 0 but both excitations are shifted in time by a quarter of a period (it is said in quadrature).
  • the form of the excitation current may be arbitrary, sinusoidal, triangular or other.
  • the interference arrives in both direct induction coil systems (transformer effect) in the same way. It is therefore sufficient to subtract the two signals in antiphase to remove the interference signal that is the same because the coil systems are identical and capturing by transformer effect the same magnetic field.
  • the 90 ° electrical phase change on the excitation enables the continuous magnetic field to be captured with an electrical phase change of 180 ° of the signal at the harmonic frequency 2, as if the coil (s) had been rotated geometrically. ) capture 180 ° relative to the magnetic field to be measured without moving it and therefore without modifying the induction signal capture. It can also be said that the electrical phase change of 180 ° in the detected signal corresponds to a change of polarity of the detector of field.
  • the difference with respect to the rotation of the coil or the change of polarity of the field to be measured is that the polarity of the signals picked up by induction does not change. In this way one gains the freedom to combine two or more coils in order to eliminate or reduce the undesired signals picked up by induction.
  • FIG. 1 A non-limiting example of embodiment of the present invention is described in FIG. 1.
  • four essentially identical coils (2) and (4) with non-linear cores, for example ferromagnetic or superparamagnetic, are used. .
  • the coils have the same orientation in the magnetic field to be measured.
  • the two coils on the left (2) are excited by two alternating voltage generators (1) connected in antiphase.
  • This differential excitation arrangement is advantageous in the remote transport of the signals and in the common point (5) of the coils (1) the excitation signal is rejected relative to the ground.
  • the other two coils (4) on the right are excited similarly by the two generators (3) in antiphase.
  • the voltages of the generators are marked with sin (cot) and cos (cot) to explain that those on the right (3) are 90 ° out of phase with the generators (1) on the left.
  • each branch produces with respect to the mass the same signal of interference picked up by induction.
  • the difference between the scrambling voltage at the output (5) of the left coils and the scrambling voltage at the output (6) of the right coils is zero.
  • the rejection of interference picked up by induction is thus achieved.
  • the output component (5) of the coils (2) on the left is a signal Um * cos (2cot)
  • the output component (6) of the coils (4) on the right is a signal -Um * cos (2cot). So the difference is 2 * Um * cos (2cot). It can be said that the outputs (5) and (6) are in differential mode the detection signal and in common mode the disturbing signal by induction.

Abstract

The invention relates to a magnetic field transducer with quadrature excitation, including: at least two coils with non-linear cores, which are substantially identical; and at least two alternating current generators for exciting said coils. According to the invention: the excitation currents in the two groups of coils are out-of-phase such that the groups of coils produce detection signals in antiphase in the arrangements in which the interference signals picked up by induction are in-phase, or produce in-phase detection signals in the arrangements in which the interference signals picked up by induction are in antiphase; and the detection signals output by the two groups of coils are added or subtracted in order to reject the interference signals induced by transformer effect in said coils.

Description

Transducteur de champ magnétique à excitation en quadrature  Quadrature excitation magnetic field transducer
Dans le domaine de la mesure des champs magnétiques (magnétomètres) ou de la mesure de courants électriques par l'intermédiaire de leurs champs magnétiques (transducteur de courant sans contact), on utilise souvent une ou plusieurs bobines à noyaux magnétique non linéaire, connectées à un générateur de courant alternatif à fréquence f0, appelé excitation. Le noyau magnétique non linéaire d'une telle bobine, agit comme un mélangeur entre le champ magnétique à mesurer (orienté au long de son axe) et le champ magnétique créé par le courant d'excitation, ce qui génère des harmoniques supplémentaires aux fréquences combinées n.f0±m.fp où fp est la fréquence du champ à mesurer et n et m des nombres entiers. On s'intéresse souvent à la deuxième harmonique 2* f0 car son amplitude, obtenue, par exemple, par détection synchrone, représente la grandeur du champ magnétique à mesurer lorsque fp = 0 (cas d'un champ DC). Des exemples de telles applications seraient des magnétomètres fluxgate notamment décrits dans les documents US6278272, US3638074 et EP1730542B1, et des transducteurs de courant notamment décrits dans les documents FR2953028A1, WO2009153485A1 et WO2013045778A1. Pour tous ces magnétomètres et transducteurs de courant utilisant une fréquence d'excitation, se pose le problème des possibles interférences provoquées par un signal extérieur au système mais ayant la fréquence très proche de la fréquence de détection (par exemple 2*f0). En effet, il devient impossible au traitement du signal de discriminer entre le signal à mesurer et le signal d'interférence provoquant un phénomène de brouillage. Aussi des risques de perturbations avec des signaux externes existent à d'autres fréquences en fonction de l'architecture exacte du système. Comme contremesures on utilise classiquement des solutions de blindage pour les câbles et les boîtiers électroniques et même pour les bobines de capture du champ magnétique. Dans certaines situations les moyens de blindage sont trop contraignants en terme de coût ou de compacité et parfois ils ne sont pas suffisants face à la grandeur du brouillage. Dans le cas des capteurs de courant, les signaux de brouillage peuvent venir du courant primaire lui même par effet transformateur entre le conducteur primaire et les bobines. Afin de pallier les inconvénients de l'art antérieur, la présente invention propose un transducteur de champ magnétique à excitation en quadrature comportant : In the field of measuring magnetic fields (magnetometers) or measuring electric currents by means of their magnetic fields (non-contact current transducer), one or more non-linear magnetic core coils connected to an alternating current generator at frequency f 0 , called excitation. The non-linear magnetic core of such a coil acts as a mixer between the magnetic field to be measured (oriented along its axis) and the magnetic field created by the excitation current, which generates additional harmonics at the combined frequencies. n.f0 ± m.fp where fp is the frequency of the field to be measured and n and m are integers. We are often interested in the second harmonic 2 * f 0 because its amplitude, obtained for example by synchronous detection, represents the magnitude of the magnetic field to be measured when fp = 0 (case of a DC field). Examples of such applications would be fluxgate magnetometers described in particular in US6278272, US3638074 and EP1730542B1, and current transducers described in particular in documents FR2953028A1, WO2009153485A1 and WO2013045778A1. For all these magnetometers and current transducers using an excitation frequency, there arises the problem of possible interference caused by a signal external to the system but having the frequency very close to the detection frequency (for example 2 * f 0). Indeed, it becomes impossible for the signal processing to discriminate between the signal to be measured and the interference signal causing a scrambling phenomenon. Also risks of disturbances with external signals exist at other frequencies depending on the exact architecture of the system. As countermeasures, shielding solutions are conventionally used for the cables and the electronic boxes and even for the magnetic field capture coils. In some situations the shielding means are too restrictive in terms of cost or compactness and sometimes they are not sufficient in view of the size of the interference. In the case of current sensors, the interference signals can come from the primary current itself by a transformer effect between the primary conductor and the coils. In order to overcome the drawbacks of the prior art, the present invention proposes a quadrature excitation magnetic field transducer comprising:
- au moins deux bobines à noyau non-linéaire, sensiblement identiques, chaque bobine pouvant faire partie d'un groupe de bobines de telle sorte que l'on peut constituer deux groupes de bobines, et  at least two substantially identical non-linear core coils, each coil being able to form part of a group of coils so that two groups of coils can be constituted, and
- au moins deux générateurs de courant alternatif pour exciter lesdites bobines.  at least two alternating current generators for exciting said coils.
Selon l'invention :  According to the invention:
- les courants d'excitation dans les deux groupes de bobines sont déphasés de telle sorte que les groupes de bobines produisent des signaux de détection en antiphase dans les agencements où les signaux de perturbations captés par induction (par effet transformateur) sont en phase ou produisent des signaux de détection en phase dans les agencements où les signaux de perturbation captés par induction (par effet transformateur) sont en antiphase.  the excitation currents in the two groups of coils are out of phase so that the coil groups produce antiphase detection signals in the arrangements where the inductively-sensed (transformer effect) disturbance signals are in phase or produce in-phase detection signals in the arrangements where the induction-detected (transformer effect) disturbance signals are in antiphase.
- les signaux de détection délivrés par les deux groupes de bobines sont additionnés ou soustraits afin de rejeter les signaux de perturbations induites par effet transformateur dans lesdites bobines.  the detection signals delivered by the two groups of coils are added or subtracted in order to reject the interference signals induced by the transformer effect in said coils.
Le transducteur selon l'invention propose un un agencement des bobines permettant d'éliminer les signaux de brouillage directement par mesure des signaux de détection.  The transducer according to the invention proposes an arrangement of the coils making it possible to eliminate the interference signals directly by measuring the detection signals.
Le nombre de générateurs de courant n'est pas limitatif. On peut envisager plusieurs ou un seul générateur associé à un dispositif de déphasage sur une branche d'alimentation.  The number of current generators is not limiting. Several or a single generator associated with a phase shift device can be envisaged on a power supply branch.
Selon une caractéristique avantageuse de l'invention, le déphasage électrique des excitations entre les groupes de bobines est de ±90°. According to an advantageous characteristic of the invention, the electrical phase shift of the excitations between the groups of coils is ± 90 °.
L'invention concerne également un dispositif de mesure de courant électrique sans contact mettant en œuvre un transducteur de courant tel que décrit ci-dessus. Ce transducteur de champ magnétique à excitation en quadrature est utilisé pour évaluer ou déterminer le courant à mesurer par l'intermédiaire de son champ magnétique.  The invention also relates to a non-contact electrical current measuring device implementing a current transducer as described above. This quadrature-excited magnetic field transducer is used to evaluate or determine the current to be measured through its magnetic field.
On prévoit également un dispositif de mesure de courant électrique sans contact mettant en œuvre un transducteur de courant tel que décrit ci- dessus. Ce transducteur de champ magnétique à excitation en quadrature est utilisé pour évaluer ou déterminer la différence entre un champ magnétique de contre réaction et le champ magnétique du courant à mesurer afin de permettre à un régulateur à boucle fermée à réaction négative de maintenir un champ magnétique total quasi nul dans la région de détection du transducteur. There is also provided a non-contact electrical current measuring device implementing a current transducer as described above. This quadrature excitation magnetic field transducer is used to evaluate or determine the difference between a feedback magnetic field and the magnetic field of the current to be measured to enable a negative feedback closed-loop regulator to maintain a near zero total magnetic field in the transducer detection region.
D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en œuvre nullement limitatif, et de l'unique figure 1 annexée décrivant deux groupes de deux bobines produisant des signaux de détection en antiphase. Other advantages and characteristics of the invention will appear on examining the detailed description of a non-limiting embodiment, and the only appended FIG. 1 describing two groups of two coils producing detection signals in accordance with FIG. antiphase.
Bien que l'invention n'y soit pas limitée, on va maintenant décrire une topologie différentielle d'un transducteur à réjection d'induction. Although the invention is not limited thereto, a differential topology of an induction rejection transducer will now be described.
Selon la présente invention, pour discriminer le signal utile (obtenu par mélange dans le noyau entre le champ à mesurer et le champ d'excitation) par rapport aux signaux captés par induction dans les bobines de mesure, on peut utiliser deux systèmes de bobines de capture, identiques, placés dans le même champ à mesurer et orientés de la même façon. Les deux systèmes de bobines sont excités à la même fréquence f0 mais les deux excitations sont décalées dans le temps d'un quart de période (on dit en quadrature). La forme du courant d'excitation peut être quelconque, sinusoïdal, triangulaire ou autre. Dans ces conditions les signaux utiles d'harmonique 2 correspondant aux deux systèmes sont déphasées de 2*90° = 180° (on dit en antiphase). Le brouillage arrive dans les deux systèmes de bobines par induction directe (effet transformateur) de la même façon. Il suffit donc de soustraire les deux signaux en antiphase pour faire disparaître le signal de brouillage qui est le même car les systèmes de bobines sont identiques et captent par effet transformateur le même champ magnétique. According to the present invention, to discriminate the useful signal (obtained by mixing in the core between the field to be measured and the field of excitation) with respect to the signals sensed by induction in the measuring coils, two systems of coils of capture, identical, placed in the same field to measure and oriented in the same way. The two coil systems are excited at the same frequency f 0 but both excitations are shifted in time by a quarter of a period (it is said in quadrature). The form of the excitation current may be arbitrary, sinusoidal, triangular or other. Under these conditions the useful signals of harmonic 2 corresponding to the two systems are out of phase by 2 * 90 ° = 180 ° (we say in antiphase). The interference arrives in both direct induction coil systems (transformer effect) in the same way. It is therefore sufficient to subtract the two signals in antiphase to remove the interference signal that is the same because the coil systems are identical and capturing by transformer effect the same magnetic field.
Observons que le changement de phase électrique de 90° sur l'excitation permet de capter le champ magnétique continu avec un changement de phase électrique de 180° du signal à la fréquence harmonique 2, comme si on avait tourné géométriquement la ou les bobine(s) de capture de 180° par rapport au champ magnétique à mesurer sans pour autant la bouger et donc sans modifier la capture de signal par induction . On peut dire aussi que le changement de phase électrique de 180° dans le signal détecté correspond à un changement de polarité du détecteur de champ. Quand on opère un tel changement de phase du signal de mesure par l'intermédiaire de la phase de l'excitation, la différence par rapport à la rotation de la bobine ou au changement de polarité du champ à mesurer est que la polarité des signaux captés par induction ne change pas. De cette façon on gagne la liberté de combiner deux ou plusieurs bobines afin d'éliminer ou réduire les signaux indésirables captés par induction. Note that the 90 ° electrical phase change on the excitation enables the continuous magnetic field to be captured with an electrical phase change of 180 ° of the signal at the harmonic frequency 2, as if the coil (s) had been rotated geometrically. ) capture 180 ° relative to the magnetic field to be measured without moving it and therefore without modifying the induction signal capture. It can also be said that the electrical phase change of 180 ° in the detected signal corresponds to a change of polarity of the detector of field. When such a phase change of the measurement signal is effected by means of the excitation phase, the difference with respect to the rotation of the coil or the change of polarity of the field to be measured is that the polarity of the signals picked up by induction does not change. In this way one gains the freedom to combine two or more coils in order to eliminate or reduce the undesired signals picked up by induction.
Un exemple non-limitatif de réalisation de la présente invention est décrit dans la figure 1. Pour la mesure du champ magnétique on utilise quatre bobines (2) et (4), sensiblement identiques, à noyaux non-linéaire, par exemple ferromagnétique ou superparamagnétique. Les bobines ont la même orientation dans le champ magnétique à mesurer. Les deux bobines à gauche (2) sont excitées par deux générateurs de tension alternative (1) connectés en antiphase. Ce montage d'excitation différentielle est avantageux dans le transport à distance des signaux et dans le point commun (5) des bobines (1) le signal d'excitation est rejeté par rapport à la masse. Les deux autres bobines (4) à droite sont excitées de façon similaires, par les deux générateurs (3) en antiphase. Les tensions des générateurs sont marquées avec sin(cot) et cos(cot) pour expliquer que ceux à droite (3) sont déphasés de 90° par rapport aux générateurs (1) à gauche.  A non-limiting example of embodiment of the present invention is described in FIG. 1. For the measurement of the magnetic field four essentially identical coils (2) and (4) with non-linear cores, for example ferromagnetic or superparamagnetic, are used. . The coils have the same orientation in the magnetic field to be measured. The two coils on the left (2) are excited by two alternating voltage generators (1) connected in antiphase. This differential excitation arrangement is advantageous in the remote transport of the signals and in the common point (5) of the coils (1) the excitation signal is rejected relative to the ground. The other two coils (4) on the right are excited similarly by the two generators (3) in antiphase. The voltages of the generators are marked with sin (cot) and cos (cot) to explain that those on the right (3) are 90 ° out of phase with the generators (1) on the left.
Chaque branche produit par rapport à la masse le même signal de brouillage capté par induction. De ce fait la différence entre la tension de brouillage à la sortie (5) des bobines gauche et la tension de brouillage à la sortie (6) des bobines droite est nulle. La réjection du brouillage capté par induction est ainsi réalisée. En ce qui concerne le signal de mesure utile porté sur l'harmonique 2*f0, la composante en sortie (5) des bobine (2) à gauche est un signal Um*cos(2cot) et la composante en sortie (6) des bobines (4) à droite est un signal -Um*cos(2cot). Ainsi la différence est de 2*Um*cos(2cot). On peut dire qu'aux sorties (5) et (6) on a en mode différentiel le signal de détection et en mode commun le signal perturbateur par induction. On peut facilement imaginer un arrangement spatial des deux groupes de bobines (2) et (4) tel que la capture par induction des signaux de brouillage soit en antiphase aux sorties (5) et (6). Dans ce cas les composantes utiles sont en phase et donc il faut opérer leur addition afin d'obtenir la réjection du brouillage.  Each branch produces with respect to the mass the same signal of interference picked up by induction. As a result, the difference between the scrambling voltage at the output (5) of the left coils and the scrambling voltage at the output (6) of the right coils is zero. The rejection of interference picked up by induction is thus achieved. With regard to the useful measurement signal carried on the harmonic 2 * f0, the output component (5) of the coils (2) on the left is a signal Um * cos (2cot) and the output component (6) of the coils (4) on the right is a signal -Um * cos (2cot). So the difference is 2 * Um * cos (2cot). It can be said that the outputs (5) and (6) are in differential mode the detection signal and in common mode the disturbing signal by induction. One can easily imagine a spatial arrangement of the two groups of coils (2) and (4) such as the induction capture of the interference signals in antiphase at the outputs (5) and (6). In this case the useful components are in phase and therefore we must operate their addition in order to obtain the rejection of the interference.
Dans les cas où la détection n'est pas faite sur l'harmonique 2 comme d'habitude, mais, disons sur l'harmonique 4 par exemple, le déphasage des générateurs doit être différent. Dans cet exemple il serait de 45° car ainsi à l'harmonique utile il se traduira en : 4*45° = 180°. Ainsi à d'autres harmoniques de détection correspondent d'autres déphasages des générateurs d'excitation ayant la même finalité : déphaser le signal utile entre bobines de gauche et de droite de 180°. In cases where the detection is not made on the harmonic 2 as usual, but, say on the harmonic 4 for example, the phase shift of the generators must be different. In this example it would be 45 ° because thus to the useful harmonic it will translate in: 4 * 45 ° = 180 °. Thus, other detection harmonics correspond to other phase shifts of the excitation generators having the same purpose: to phase out the useful signal between coils of left and right of 180 °.
Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. Of course, the invention is not limited to the examples that have just been described and many adjustments can be made to these examples without departing from the scope of the invention.

Claims

REVENDICATIONS
1. Transducteur de champ magnétique à excitation en quadrature comportant : A quadrature excitation magnetic field transducer comprising:
- au moins deux bobines à noyau non-linéaire, sensiblement identiques at least two substantially identical non-linear core coils
- au moins deux générateurs de courant alternatif pour exciter lesdites bobines at least two alternating current generators for exciting said coils
caractérisé en ce que : characterized in that
- les courants d'excitation dans les deux groupes de bobines sont déphasés de telle sorte que les groupes de bobines produisent des signaux de détection en antiphase dans les agencements où les signaux de perturbations captés par induction sont en phase ou produisent des signaux de détection en phase dans les agencements où les signaux de perturbation captés par induction sont en antiphase, et  the excitation currents in the two groups of coils are out of phase so that the coil groups produce antiphase detection signals in the arrangements where the inductively sensed disturbance signals are in phase or produce detection signals by phase in the arrangements where the disturbance signals picked up by induction are in antiphase, and
- les signaux de détection délivrés par les deux groupes de bobines sont additionnés ou soustraits afin de rejeter les signaux de perturbations induites par effet transformateur dans lesdites bobines.  the detection signals delivered by the two groups of coils are added or subtracted in order to reject the interference signals induced by the transformer effect in said coils.
2. Transducteur de champ magnétique à excitation en quadrature conformément à la revendication 1, caractérisé en ce que le déphasage électrique des excitations entre les groupes de bobines est de ±90°. Quadrature excitation magnetic field transducer according to claim 1, characterized in that the electrical phase shift of the excitations between the coil groups is ± 90 °.
3. Dispositif de mesure de courant électrique sans contact mettant en œuvre un transducteur de courant conformément à la revendication 1, caractérisé en ce que le transducteur de champ magnétique à excitation en quadrature est utilisé pour évaluer le courant à mesurer par l'intermédiaire de son champ magnétique. Non-contact electrical current measuring device implementing a current transducer according to claim 1, characterized in that the quadrature excitation magnetic field transducer is used to evaluate the current to be measured by means of its magnetic field.
4. Dispositif de mesure de courant électrique sans contact mettant en œuvre un transducteur de courant conformément à la revendication 1, caractérisé en ce que le transducteur de champ magnétique à excitation en quadrature est utilisé pour évaluer la différence entre un champ magnétique de contre réaction et le champ magnétique du courant à mesurer afin de permettre à un régulateur à boucle fermée à réaction négative de maintenir un champ magnétique total quasi nul dans la région de détection du transducteur. Non-contact electrical current measuring device implementing a current transducer according to claim 1, characterized in that the quadrature excitation magnetic field transducer is used to evaluate the difference between a magnetic field of counter-reaction and the magnetic field of the current to be measured to enable a negative feedback closed-loop regulator to maintain a substantially zero total magnetic field in the transducer detection region.
PCT/EP2015/057811 2014-04-11 2015-04-10 Magnetic field transducer with quadrature excitation WO2015155326A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1453276 2014-04-11
FR1453276A FR3019903B1 (en) 2014-04-11 2014-04-11 MAGNETIC FIELD TRANSDUCER WITH EXCITATION IN QUADRATURE

Publications (1)

Publication Number Publication Date
WO2015155326A1 true WO2015155326A1 (en) 2015-10-15

Family

ID=51518878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/057811 WO2015155326A1 (en) 2014-04-11 2015-04-10 Magnetic field transducer with quadrature excitation

Country Status (2)

Country Link
FR (1) FR3019903B1 (en)
WO (1) WO2015155326A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2584538A (en) * 2019-03-26 2020-12-09 Energybox Ltd Measuring sensor, Measuring device, detection module, measuring method and calibration method
CN116735939A (en) * 2023-06-14 2023-09-12 上海盛位电子技术有限公司 Fluxgate current detection device and fluxgate current detection method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159785A (en) * 1962-03-14 1964-12-01 Bunker Ramo Second harmonic magnetometer having a plurality of transducers in combination with means responsive to flux amplitude and direction
US3638074A (en) 1970-04-27 1972-01-25 Trw Inc Fluxgate magnetometer drive circuit including a sensor demagnetizer
US5161311A (en) * 1990-08-29 1992-11-10 Alps Electric Inc. Calibration and compensation of an electronic compass system
US6278272B1 (en) 1999-03-05 2001-08-21 The United States Of America As Represented By The Secretary Of The Navy Integrating fluxgate magnetometer
US20070203666A1 (en) * 2006-02-27 2007-08-30 Denso Corporation Signal-processing unit for fluxgate magnetometers
WO2009153485A1 (en) 2008-05-22 2009-12-23 Billanco Permanent or variable alternating magnetic field circulation sensor, and current sensor implementing such a sensor
EP1730542B1 (en) 2004-03-12 2010-03-31 Bartington Instruments Limited Fluxgate magnetometer
US20100231222A1 (en) * 2009-03-13 2010-09-16 Quantec Geoscience Very low noise magnetometer
FR2953028A1 (en) 2009-11-26 2011-05-27 Billanco MAGNETIC FIELD CIRCULATION SENSOR EQUIPPED WITH A VERIFYING MEANS, AND METHOD OF VERIFYING SUCH A SENSOR.
WO2013045778A1 (en) 2011-09-26 2013-04-04 Neelogy Contactless current sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159785A (en) * 1962-03-14 1964-12-01 Bunker Ramo Second harmonic magnetometer having a plurality of transducers in combination with means responsive to flux amplitude and direction
US3638074A (en) 1970-04-27 1972-01-25 Trw Inc Fluxgate magnetometer drive circuit including a sensor demagnetizer
US5161311A (en) * 1990-08-29 1992-11-10 Alps Electric Inc. Calibration and compensation of an electronic compass system
US6278272B1 (en) 1999-03-05 2001-08-21 The United States Of America As Represented By The Secretary Of The Navy Integrating fluxgate magnetometer
EP1730542B1 (en) 2004-03-12 2010-03-31 Bartington Instruments Limited Fluxgate magnetometer
US20070203666A1 (en) * 2006-02-27 2007-08-30 Denso Corporation Signal-processing unit for fluxgate magnetometers
WO2009153485A1 (en) 2008-05-22 2009-12-23 Billanco Permanent or variable alternating magnetic field circulation sensor, and current sensor implementing such a sensor
US20100231222A1 (en) * 2009-03-13 2010-09-16 Quantec Geoscience Very low noise magnetometer
FR2953028A1 (en) 2009-11-26 2011-05-27 Billanco MAGNETIC FIELD CIRCULATION SENSOR EQUIPPED WITH A VERIFYING MEANS, AND METHOD OF VERIFYING SUCH A SENSOR.
WO2013045778A1 (en) 2011-09-26 2013-04-04 Neelogy Contactless current sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2584538A (en) * 2019-03-26 2020-12-09 Energybox Ltd Measuring sensor, Measuring device, detection module, measuring method and calibration method
US11035889B2 (en) 2019-03-26 2021-06-15 Energybox Ltd. Measuring sensor, measuring device, detection module, measuring method and calibration method
CN116735939A (en) * 2023-06-14 2023-09-12 上海盛位电子技术有限公司 Fluxgate current detection device and fluxgate current detection method

Also Published As

Publication number Publication date
FR3019903A1 (en) 2015-10-16
FR3019903B1 (en) 2016-05-06

Similar Documents

Publication Publication Date Title
CA2800551C (en) Method and apparatus for detecting a magnetic characteristic variable in a core
WO2012115117A1 (en) Wireless electric power supply device, wireless electricity-receiving device and system for wireless transmission of electric power
Poncelas et al. Motor fault detection using a Rogowski sensor without an integrator
EP3314248B1 (en) Apparatus for measuring a quantity of superparamagnetic material
EP3314281B1 (en) Device for measuring a magnetic field
FR3055962A1 (en) ROTATION ANGLE SENSOR
CN108732404B (en) Current sensor and multi-flux balance control circuit thereof
WO2015155326A1 (en) Magnetic field transducer with quadrature excitation
Salah et al. An improved spectral analysis of the stray flux component for the detection of air-gap irregularities in squirrel cage motors
WO2014136825A1 (en) Magnetism detection device
FR3060757A1 (en) FLOW VALVE CURRENT SENSOR
JP2007316042A (en) Direct current sensor and direct-current detector
US10345419B2 (en) On-line calibration and compensation of a current transformer
US6605936B1 (en) Current detecting apparatus and current detecting method
EP3438616A1 (en) Rotation angle detection device and electric motor with rotation angle detection device equipped with same
US20210381853A1 (en) Position Sensing Apparatus and Method
US20230392958A1 (en) Control device of rotation detector
Xu et al. Lorentz force induced magnetoelectric effect in cylindrical composites with PZT/magnetostrictive and nonmagnetic metal layers
US8963542B2 (en) Minimizing magnetic interference in a variable reluctance resolver excited by 180 degree differential signals
JP2004085479A (en) Diagnostic method for degradation of power cable, and diagnostic device for degradation of power cable
US8907828B2 (en) Method and device for testing the material of a test object in a nondestructive manner
EP2411825B1 (en) Device for detecting and/ord measuring a small magnetic field
Hernandez et al. Tuning of the Landé g-factor in AlxGa1− xAs/AlAs single and double quantum wells
US20220146593A1 (en) Short circuit detection device and short circuit detection method
JP5876736B2 (en) Modulator and frequency converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15719418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15719418

Country of ref document: EP

Kind code of ref document: A1