WO2017130729A1 - Laser radar device - Google Patents

Laser radar device Download PDF

Info

Publication number
WO2017130729A1
WO2017130729A1 PCT/JP2017/000931 JP2017000931W WO2017130729A1 WO 2017130729 A1 WO2017130729 A1 WO 2017130729A1 JP 2017000931 W JP2017000931 W JP 2017000931W WO 2017130729 A1 WO2017130729 A1 WO 2017130729A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
light receiving
laser
mirror
Prior art date
Application number
PCT/JP2017/000931
Other languages
French (fr)
Japanese (ja)
Inventor
磯野 雅史
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016237837A external-priority patent/JP2017138301A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/072,338 priority Critical patent/US11119194B2/en
Priority to DE112017000570.1T priority patent/DE112017000570T5/en
Publication of WO2017130729A1 publication Critical patent/WO2017130729A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present disclosure relates to a laser radar device.
  • This type of laser radar device includes an irradiation unit that irradiates laser light, a scanning device that changes the irradiation direction of the laser light to the outside of the housing, and a reflection in which the irradiated laser light is reflected by an object and returned.
  • a light receiving unit that receives light
  • a distance measuring calculation unit that calculates a distance to an object (hereinafter referred to as a target) that reflects the laser light based on the time from irradiation of the laser light to reception of the reflected light
  • a housing for housing the container.
  • the irradiation unit includes a light source substrate on which a laser diode as a laser light source and an IC that controls driving of the laser diode are mounted, and an emission lens that shapes the laser light output from the laser diode.
  • the light receiving unit includes a light receiving lens that shapes reflected light from the target and collects it on the light receiving surface of the light receiving element, and a light receiving element that outputs an electrical signal corresponding to the intensity of light emitted from the light receiving lens.
  • the ranging calculation unit is realized using a CPU or an IC.
  • the housing is provided with an exit window for emitting the irradiated light to the outside of the housing and a light receiving window for guiding the reflected light from the target to the light receiving lens.
  • Various configurations have also been proposed in which the exit window is also used as the light receiving window.
  • the components of the light receiving system mainly indicate a light receiving lens and a light receiving substrate.
  • the depth direction of the laser radar device corresponds to a direction that is directly opposite to the direction in which the center (that is, the optical axis) of the angle range where the laser beam is irradiated.
  • This disclosure is intended to provide a laser radar device that suppresses the length in the depth direction in the laser radar device.
  • the laser radar device acquires distance information with respect to a target existing in a detection area determined according to the angular range by sweeping and irradiating laser light within a predetermined angular range.
  • the laser radar device includes a light source substrate on which a laser light source that outputs laser light is arranged.
  • the laser radar device further includes an emission lens that shapes and outputs the laser light output from the laser light source.
  • the laser radar device is a mirror for reflecting the laser beam output from the emission lens and emitting the laser beam to the outside of the housing, and a scanning mirror configured to change the attitude with respect to the laser light source, In addition.
  • the laser radar device further includes a scanning substrate that controls an attitude of the scanning mirror with respect to the laser light source.
  • the laser radar device further includes a light receiving substrate provided with a light receiving element that receives reflected light, which is laser light reflected by the target, and outputs an electrical signal corresponding to the intensity of the received reflected light.
  • the laser radar device further includes a light receiving lens that condenses the reflected light on the light receiving element.
  • the laser radar device further includes a housing that houses the light source substrate, the exit lens, the scanning mirror, the scanning substrate, the light receiving substrate, and the light receiving lens. Of the exit lens, the scanning mirror, and the light receiving lens, a position that does not overlap in the depth direction of the casing with the innermost member that has an end portion on the innermost side in the depth direction of the casing In addition, the light source substrate, the scanning substrate, and the light receiving substrate are disposed.
  • the drawing 1 is an external perspective view of a laser radar device 1; It is a front view of the laser radar apparatus 1, It is a side view of the laser radar apparatus 1, It is a top view of the laser radar apparatus 1, It is a figure for demonstrating the structure of the light reception light guide mirror 50, It is a functional block diagram showing an example of a schematic configuration of the main control board 80, It is a front view of the laser radar apparatus 1 in the modification 1, It is a side view of the laser radar apparatus 1 in the modification 1, It is a front view of the laser radar apparatus 1 in the modification 2, It is a side view of the laser radar apparatus 1 in the modification 2, It is a front view of the laser radar apparatus 1 in the modification 3, It is a side view of the laser radar apparatus 1 in the modification 3.
  • FIG. 1 is a schematic perspective view of an appearance of a laser radar device 1 according to the present disclosure.
  • the laser radar device 1 includes a rectangular parallelepiped casing 100 having a height of H [mm], a width of W [mm], and a depth of D [mm].
  • the side surface 110 (hereinafter referred to as the front portion) is provided with a radiation receiving window 111 for emitting and receiving laser light.
  • the shape of the housing 100 is a rectangular parallelepiped is illustrated as an example, but the present invention is not limited thereto.
  • the front part 110 may be formed in an arc shape having a predetermined radius of curvature when viewed from above.
  • the rectangular parallelepiped shape includes a substantially rectangular parallelepiped shape.
  • the substantially rectangular parallelepiped shape refers to a shape based on a rectangular parallelepiped in which corners of the rectangular parallelepiped are chamfered or partially deformed.
  • the shape itself of the housing 100 is a design matter.
  • the height direction and the width direction correspond to a vertical direction and a horizontal direction in a posture assumed in advance as a posture when the laser radar device 1 is used.
  • the depth direction is a direction from the front side toward the surface on the side facing the front part 110 (that is, the back surface).
  • the depth direction corresponds to a direction parallel to the center (so-called optical axis) of the angle range in which the laser radar device 1 irradiates laser light.
  • Specific values of the height H, width W, and depth D of the housing 100 may be appropriately designed so that various members described later can be accommodated.
  • the laser radar apparatus 1 discontinuously sweeps and irradiates a laser beam in a predetermined angle range from ⁇ a to + ⁇ a in the width direction (so-called scanning), so that the distance from the target existing in the direction of irradiating the laser beam.
  • ⁇ a is a value designed as appropriate, and may be 60 degrees, for example.
  • a mode in which laser light is swept in the width direction is illustrated as an example, but a mode in which sweep irradiation is performed in the height direction may be employed.
  • the range in which the laser beam is swept is equivalent to the detection area.
  • the left side surface portion (hereinafter, left side surface portion) of the housing 100 communicates with an electronic control device (ECU: Electronic Control Unit) provided outside the laser radar device 1.
  • ECU Electronic Control Unit
  • a connector hereinafter referred to as a relay connector
  • the relay connector is preferably provided at a position as close as possible to a position where a cable for connecting to the laser radar device 1 in the vehicle is drawn (hereinafter referred to as a cable drawing position).
  • FIG. 2 is a front view of the laser radar device 1 seen through the front portion 110
  • FIG. 3 is a side view of the housing 100 viewed from the right side
  • FIG. 4 is a top view of the laser radar device 1.
  • the right side surface portion (hereinafter, right side portion) 120 of the housing 100 is transmitted
  • the upper portion (hereinafter, upper surface portion) 130 is transmitted.
  • the laser radar device 1 includes a light source substrate 10, an emission lens 20, an emission light guide mirror 30, a scanner 40, a light reception light guide mirror 50, a light reception lens 60, a light reception substrate 70, and a main control.
  • a substrate 80 is provided.
  • the light source substrate 10 is provided with a laser diode 11 that emits laser light
  • the light receiving substrate 70 is provided with a light receiving element 71.
  • the scanner 40 includes a polygon mirror 41, a pedestal portion 42, a motor 43, and a scanning substrate 44. Each of the light source substrate 10, the scanning substrate 44, and the light receiving substrate 70 is connected to the main control substrate 80 so as to be able to communicate with each other using, for example, a flexible cable.
  • the light source substrate 10 causes the laser diode 11 to output pulsed laser light based on the light emission instruction signal input from the main control substrate 80.
  • the pulse width of the emitted laser light may be set to 20 nanoseconds, for example.
  • the laser diode 11 corresponds to a laser light source.
  • the emission lens 20 is a lens for shaping laser light.
  • the exit lens 20 shapes the pulsed laser light output from the laser diode 11 and outputs it in the direction in which the exit light guide mirror 30 exists.
  • the exit light guide mirror 30 is a planar mirror (that is, a planar mirror) that reflects the laser light output from the exit lens 20 in the direction in which the polygon mirror 41 exists.
  • the laser beam output from the laser diode is shaped by the exit lens 20, further reflected by the exit light guide mirror 30 and incident on the polygon mirror 41.
  • the solid line arrow shown in the figure conceptually represents the path of the laser beam output from the laser diode 11.
  • the exit light guide mirror 30 corresponds to an exit path bending member.
  • the scanner 40 is a unit for controlling the direction in which laser light is emitted outside the housing.
  • the scanner 40 includes a polygon mirror 41 as a reflector, a pedestal portion 42 that supports the polygon mirror 41, a motor 43 that rotates the polygon mirror 41 around an axis parallel to the height direction (hereinafter, a rotation axis), a motor And a scanning substrate 44 that controls the driving of 43.
  • the polygon mirror 41 is provided on the pedestal portion 42 so as to be rotatable around a rotation axis.
  • a motor drive circuit for driving the motor 43 is mounted on the scanning board 44 based on a drive signal input from the main control board 80.
  • the scanning substrate 44 drives the motor 43 based on the drive signal from the main control substrate 80 to rotate the polygon mirror 41.
  • the rotation angle of the motor 43 (in other words, the polygon mirror 41) with respect to the initial position is detected by the motor rotation position sensor and output to the main control board 80.
  • the motor rotation position sensor may be realized by adopting a well-known configuration. For example, a magnet or the like is provided for each of the rotating member and the non-rotating member, and the rotation angle is detected from a change in magnetic force acting between the magnets. What is necessary is just composition.
  • the rotation direction of the polygon mirror 41 may be designed as appropriate. For example, the polygon mirror 41 is rotated clockwise around the vertical rotation axis.
  • the polygon mirror 41 has four reflecting surfaces on the side surfaces around the rotation axis. Each reflecting surface is formed so as to make a predetermined inclination angle (here, 45 degrees) with respect to the rotation axis.
  • the polygon mirror 41 has the same shape as the solid on the side including the bottom surface of the original quadrangular pyramid among two solid bodies generated by cutting out a square pyramid having a square bottom surface in a plane parallel to the bottom surface ( That is, it is configured in a frustum shape.
  • the surface having the larger area is referred to as the first surface
  • the surface having the smaller area is referred to as the second surface.
  • the polygon mirror 41 is arranged such that the first surface is on the upper side in the housing than the second surface.
  • the laser light incident from the emission light guide mirror 30 is reflected by one of the four reflecting surfaces of the polygon mirror 41 and emitted outside the casing. While the incident light from the emission light guide mirror 30 is reflected by the same reflection surface, the emission direction of the laser light changes in the horizontal direction by rotation about the rotation axis. Therefore, the main control board 80 sweeps and irradiates laser light in a range of a predetermined angle in the horizontal direction by intermittently emitting laser light from the laser diode while rotating the polygon mirror 41 at a predetermined speed (that is, Scanning).
  • the polygon mirror 41 reflects the laser light (that is, the reflected light) that is returned after the emitted laser light is reflected by the target existing outside the housing in the direction in which the light receiving light guide mirror 50 exists.
  • the polygon mirror 41 not only emits the laser light incident from the emission light guide mirror 30 to the outside of the housing, but also reflects the reflected light to the inside of the housing, so that a light receiving light guide mirror 50 and a light receiving lens described later. It plays a role of guiding to the light receiving element 71 via 60.
  • the two-dot chain line arrow shown in the figure conceptually represents the path of the reflected light.
  • the broken line shown around the polygon mirror 41 represents the outline of a rotating body (hereinafter, polygon mirror rotating body) formed by rotating the polygon mirror 41. Since the polygon mirror 41 has a frustum shape, the polygon mirror rotating body has a truncated cone shape. In the polygon mirror rotating body, the diameter (hereinafter referred to as rotating body diameter) Dmt of the circular surface corresponding to the first surface of the polygon mirror 41 corresponds to the diagonal length of the first surface of the polygon mirror 41.
  • rotating body diameter Dmt of the circular surface corresponding to the first surface of the polygon mirror 41 corresponds to the diagonal length of the first surface of the polygon mirror 41.
  • reference numeral 411 denotes the innermost position where the vertex of the first surface of the polygon mirror 41 can be located when the polygon mirror 41 is rotated about the rotation axis (hereinafter, the mirror innermost position). ).
  • the mirror innermost position 411 corresponds to the position of the end portion on the innermost side in the polygon mirror rotating body.
  • the pedestal portion 42 is a plate-like member that supports the polygon mirror 41, and the shape thereof is substantially the same as the surface corresponding to the first surface of the polygon mirror 41 of the polygon mirror rotating body. Yes.
  • the pedestal portion 42 is an optional element.
  • the broken line shown in FIG. 4 indicates the position of the polygon mirror 41 arranged below the pedestal portion 42.
  • the light receiving / guiding mirror 50 is provided at a position where the reflected light reflected by the polygon mirror 41 arrives, and reflects the reflected light reflected by the polygon mirror 41 in the direction in which the light receiving lens 60 exists.
  • the light receiving / light guiding mirror 50 corresponds to a light receiving path bending member.
  • the light receiving / guiding mirror 50 may be realized by using a member that reflects laser light.
  • the light receiving / guiding mirror 50 guides as much reflected light from the target that has entered the housing 100 through the polygon mirror 41 to the light receiving lens 60 as much as possible.
  • the light receiving / guiding mirror 50 includes a notch 51 so as not to obstruct the passage of laser light from the exiting light guiding mirror 30 to the polygon mirror 41.
  • FIG. 5 is a top view of the vicinity of the light receiving / guiding mirror 50. Further, in FIG. 3, the light receiving and guiding mirror 50 is not shown.
  • the light receiving lens 60 is a translucent convex lens realized by using synthetic resin, glass, or the like, and shapes laser light (that is, reflected light from the target) coming from the direction in which the light receiving light guide mirror 50 exists. Then, the light is condensed on the light receiving surface of the light receiving element 71.
  • a portion of the light receiving lens 60 that is on the rear side of the casing with respect to the rotation axis of the polygon mirror 41 is cut off as shown in FIGS. This is because the reflected light from the polygon mirror 41 does not arrive at the portion on the rear side of the casing with respect to the rotation axis of the polygon mirror 41. Thereby, the space required for the arrangement of the light receiving lens 60 is reduced.
  • the shape of the light receiving lens 60 may be designed as appropriate.
  • the light receiving element 71 is an element that converts light into an electric signal.
  • the light receiving element 71 outputs a voltage having a magnitude corresponding to the intensity of the reflected light as a light receiving signal.
  • As the light receiving element 71 for example, an avalanche photodiode or the like can be employed.
  • the light receiving substrate 70 is provided with an amplifier for amplifying the light receiving signal output from the light receiving element 71.
  • the light receiving signal output from the light receiving element 71 is amplified at a predetermined amplification factor.
  • the amplifier may be realized by a known circuit configuration using, for example, an operational amplifier.
  • the ratio for amplifying the received light signal (that is, the amplification factor) is adjusted based on the amplification factor control signal input from the main control board 80. That is, the amplifier amplifies the received light signal at an amplification factor according to the amplification factor control signal input from the main control board 80.
  • the light reception signal amplified by the amplifier is output to the light reception processing unit 82 included in the main control board 80.
  • the main control board 80 is a board on which a function for controlling the operation of the entire laser radar apparatus 1 is mounted. As shown in FIG. 6, the main control board 80 includes an emission control unit 81, a light reception processing unit 82, and a distance measurement calculation unit 83 as functional blocks. The main control board 80 is provided with a connector 84 for communication connection with the ECU 2 via a relay connector (not shown). In addition to the configuration described above, the main control board 80 may be mounted with a power supply circuit module that controls power supply to each part of the laser radar device 1.
  • Each functional block may be realized by the CPU executing a predetermined program, or may be realized as a circuit module using one or a plurality of ICs or various circuit elements. Of course, it may be realized by combining execution of predetermined software by the CPU and hardware. Further, it may be mounted on a substrate as firmware.
  • a program for causing a normal computer to function as the distance measuring unit 83 or the like only needs to be stored in a non-transitory tangible storage medium.
  • Executing the main control program by the CPU corresponds to executing a method corresponding to the main control program.
  • the emission control unit 81 is a functional block for controlling the timing of emitting pulsed laser light in cooperation with the light source substrate 10 and the scanning substrate 44. Specifically, the injection control unit 81 outputs a drive signal to the scanning substrate 44 to rotate the motor 43. Further, a light emission instruction signal is output to the light source substrate 10 at a timing corresponding to the rotation angle of the polygon mirror 41 input from the scanning substrate 44. That is, the pulse laser beam is emitted at a predetermined interval at a timing synchronized with the rotation of the polygon mirror 41. Thus, the pulsed laser beam is swept and irradiated in a predetermined angle range so as to form a desired detection area.
  • the emission control unit 81 provides information indicating the timing at which the pulse laser beam is emitted to the distance measurement calculation unit 83.
  • the emission control unit 81 outputs a light emission instruction signal, and at the same time outputs an emission notification signal indicating that the distance calculation unit 83 has instructed emission of pulsed laser light.
  • the distance measurement calculation unit 83 recognizes the timing at which the emission notification signal is input as the timing at which the pulse laser beam is emitted.
  • the emission control unit 81 may output an output level instruction signal for instructing the output level to the light source substrate 10. . According to such an aspect, the emission control unit 81 can cause the laser diode 11 to emit laser light having an arbitrary intensity.
  • the light reception processing unit 82 detects that the reflected light has been received based on the time change of the light reception signal. For example, the light reception processing unit 82 determines that the reflected light has been received when the magnitude of the light reception signal exceeds a predetermined light reception determination threshold.
  • the light reception determination threshold is a threshold for determining that the reflected light is received from the magnitude of the light reception signal, and a specific value may be designed as appropriate. Moreover, what is necessary is just to implement the determination whether the light reception determination threshold was exceeded using a comparator.
  • the light reception processing unit 82 When the light reception processing unit 82 detects the reception of the reflected light, the light reception processing unit 82 outputs a signal indicating that fact (hereinafter, a light reception notification signal) to the distance measurement calculation unit 83.
  • the light reception processing unit 82 converts the light reception signal input from the light receiving substrate 70 into a digital signal or prepares a noise from the light reception signal using a known high-pass filter or the like as a preparation process for determining whether or not the reflected light is received. You may provide the function to remove a component.
  • the light receiving processing unit 82 is equipped with a function for performing signal processing for extracting information necessary for distance measurement processing from the light receiving signal input from the light receiving substrate 70.
  • the light receiving processing unit 82 outputs an amplification factor control signal to the amplifier provided on the light receiving substrate 70 to adjust the amplification factor.
  • the distance measurement calculation unit 83 specifies the injection timing based on the input of the injection notification signal from the injection control unit 81. Further, the timing at which the reflected light is received is specified based on the input of the light reception notification signal from the light reception processing unit 82. Thus, the flight time from when the pulse laser beam is emitted until the reflected light is received is specified. The flight time may be measured using a timer (not shown).
  • the distance to the target in the direction of irradiation with the laser light is calculated.
  • a known method may be applied as a method for calculating the distance to the target based on the flight time. For example, a value obtained by multiplying the flight time by the light propagation speed and dividing by 2 may be adopted as the distance to the target.
  • the process for calculating the distance to the target corresponds to the distance measurement calculation process.
  • the calculation result of the distance measurement calculation unit 83 is provided to the ECU 2 existing outside the laser radar device 1 via the connector 84.
  • the distance information with respect to the target detected by the laser radar device 1 is, for example, maintaining the inter-vehicle distance from the preceding vehicle. It can be used for running control. Of course, the distance information with respect to the target detected by the laser radar device 1 can also be used for other purposes such as automatic driving, automatic brake control for avoiding a collision, identification of a target type, and the like.
  • the ECU 2 may be a device that executes the vehicle control described above based on the detection result of the laser radar device 1.
  • the mounting mode of the laser radar device 1 in the vehicle is not limited to the above-described example. It may be mounted so as to sweep and irradiate the laser beam in the rear of the vehicle or in other directions.
  • the mounting position of the laser radar device 1 in the vehicle may be an appropriately selected position in the periphery of the vehicle body, such as a front bumper, a front grille, a vehicle door, or a rear bumper.
  • the laser beam reaches the outside of the vehicle and forms a desired detection area.
  • the laser radar device 1 may be mounted other than the vehicle.
  • the surface of the light source substrate 10 on the side where the laser diode 11 is not disposed (hereinafter, the light source solder surface) is the case 100.
  • the light source substrate 10 is disposed so that the end on the back side of the light source substrate 10 is located on the front surface 110 side (in other words, on the near side) with respect to the rearmost mirror position 411 so as to face the right side surface portion 120. It is assumed that the light source substrate 10 is formed so that the length in the depth direction is shorter than the rotating body warp Dmt.
  • the center of the irradiation angle range of the laser diode 11 faces the left side of the housing.
  • the center of the irradiation angle range of the laser diode 11 corresponds to the optical axis of the laser diode 11.
  • the left and right are the left and right when the casing 100 is viewed in the direction of the white arrow shown in FIG. 1 (in other words, in front view).
  • the term “upper and lower” here refers to the upper and lower when the laser radar device 1 is viewed from the front.
  • Up, down, left, and right are directions orthogonal to the depth direction.
  • the lower right corner of the housing 100 refers to a space that becomes the lower half of the space that becomes the right half of the housing 100.
  • the back side edge part of a certain member refers to the edge part which becomes the back
  • the emission lens 20 has a posture in which the optical axis of the laser diode 11 coincides with the optical axis of the emission lens 20 on the optical axis of the laser diode 11, and the distance from the laser diode 11 to the emission lens 20 is the emission lens 20. It arrange
  • the exit lens 20 and the light source substrate 10 are arranged so that the position of the exit lens 20 in the width direction is on the right side of the rotation axis of the polygon mirror 41.
  • the exit light guide mirror 30 is arranged so as to reflect the laser light incident from the exit lens 20 directly on the half line from the laser diode 11 to the exit lens 20.
  • the position of the exit light guide mirror 30 in the width direction is made to coincide with the position in the width direction where the rotation axis of the polygon mirror 41 is arranged.
  • the rotation axis of the polygon mirror 41 coincides with the vertical direction of the casing and the laser light incident from the exit light guide mirror 30 is reflected in a region positioned relatively upward in the casing 100. It arrange
  • the scanning substrate 44 is disposed above the polygon mirror 41 so as to face the upper surface portion 130.
  • the scanning substrate 44 is formed such that the length in the depth direction is shorter than the rotating body warp Dmt, and the rear side end of the scanning substrate 44 in the depth direction is positioned on the near side of the mirror innermost position 411. To place.
  • the light receiving / guiding mirror 50 is disposed so as to reflect the reflected light incident from the polygon mirror 41 to the left side of the casing on the path along which the reflected light reflected by the polygon mirror 41 travels.
  • the arrangement position of the light receiving / guiding mirror 50 in the width direction is a position where the center position of the light receiving / guiding mirror 50 in the width direction coincides with the position of the rotation axis of the polygon mirror 41 in the width direction.
  • Such a configuration corresponds to a configuration in which the exit light guide mirror 30 and the light receiving light guide mirror 50 are arranged on a straight line (hereinafter referred to as a central optical path) reflected by the polygon mirror 41 and on which reflected light from the target travels. To do.
  • the central optical path corresponds to a straight line through which the laser light reflected by the exit light guide mirror 30 passes.
  • the light receiving lens 60 is disposed at a position where most of the laser light reflected by the light receiving / guiding mirror 50 is incident, with the optical axis thereof being aligned with the direction in which the light receiving / guiding mirror 50 reflects the reflected light. . That is, the light receiving lens 60 is disposed so that the optical axis coincides with the width direction of the housing 100 in the region on the left side of the housing, and the optical axis passes through the center of the light receiving light guide mirror 50.
  • the light receiving substrate 70 is disposed so that the light receiving element 71 is positioned at the left focal point of the light receiving lens 60 in a posture facing the left side surface portion of the housing 100.
  • the light receiving substrate 70 is formed so that the length in the depth direction is shorter than the rotating body length Dmt, and the rear side end portion of the scanning substrate 44 in the depth direction is positioned on the near side of the mirror innermost position 411. To place.
  • the main control board 80 is located in the upper left corner of the housing 100, specifically, in the space on the left side of the scanner 40 and the upper side of the light receiving lens 60. It arrange
  • the above configuration corresponds to a configuration in which the main control board 80 is provided at a position relatively close to the relay connector provided in the housing 100 in the internal space of the housing 100. According to such a configuration, the length of the cable connecting the relay connector and the connector 84 can be reduced. Further, in the present embodiment, as an example, the connector 84 is assumed to be disposed on an edge portion of the edge portion of the main control board 80 that faces the left side surface portion of the housing 100. According to such a configuration, the distance from the relay connector provided in the housing 100 is shortened, and the length of the cable accommodated in the housing 100 can be further shortened.
  • the polygon mirror 41 behaves as an innermost member that is an optical member having an end on the innermost side in the depth direction of the housing 100 among various optical members, It also behaves as an optical system member having a maximum length in the depth direction (hereinafter referred to as a maximum depth length member) during housing.
  • the optical system member refers to a member that reflects / refracts the laser beam, such as the exit lens 20, the exit light guide mirror 30, the light receiving light guide mirror 50, and the light receiving lens 60, in addition to the polygon mirror 41.
  • the shaping of the laser light by the emission lens 20 and the collection of the reflected light by the light receiving lens 60 are also realized by light refraction. Therefore, the emission lens 20 and the light receiving lens 60 are also included in the above-described optical system members.
  • the light source substrate 10, the scanning substrate 44, the light receiving substrate 70, and the main control substrate 80 are arranged at positions that do not overlap the polygon mirror 41 in the depth direction. Further, optical members other than the polygon mirror 41 are also arranged so as not to overlap the polygon mirror 41 in the depth direction.
  • the length (that is, the thickness) in the depth direction of the laser radar device 1 is arranged on the back side of the polygon mirror 41 due to the arrangement of the substrate or the like on the back side of the polygon mirror 41. It is possible to suppress an increase in the thickness of the substrate or the like. That is, the depth D of the laser radar device 1 can be suppressed.
  • the depth D of the laser radar device 1 depends on the size of the polygon mirror 41, the thickness of the members constituting the casing 100, and the separation between the polygon mirror 41 and the casing in the depth direction. Determined. Therefore, according to the above configuration, the depth D of the laser radar device 1 can be brought close to a limit value determined according to the depth length of the polygon mirror 41 as the maximum depth length member.
  • substrate means the direction perpendicular
  • the main control board 80 only needs to be connected to the light source board 10 and the scanning board 44, and is not limited by the positional relationship with the optical system member such as the light receiving lens 60. Therefore, the main control board 80 can be placed in an empty space remaining in the housing 100 after the optical system member, the light source board 10, the scanner 40, the light receiving board 70, and the like are arranged. Therefore, according to the said structure, the space in the housing
  • the laser diode 11 and the light receiving element 71 are mounted on separate substrates, the alignment of the laser diode 11 with respect to the optical system member of the emission system and the light receiving element with respect to the optical system member of the light receiving system 71 alignments can be performed independently. Moreover, the arrangement
  • the emission light guide mirror 30 is used to bend the laser light path from the laser diode 11 to the polygon mirror 41 so as to be L-shaped when viewed from the front, and the light receiving light guide mirror 50 is used to make a polygon.
  • the path from the mirror 41 to the light receiving element 71 is bent in an inverted L shape.
  • the arrangement is such that the central optical path extending in the vertical direction through the polygon mirror 41 is opposed to each other (in other words, divided into left and right). According to such a configuration, the light source substrate 10 and the light receiving substrate 70 do not line up and down, so that the height H of the housing 100 can be suppressed.
  • a light receiving / guiding mirror 50 that is a relatively large optical system member is disposed between the light source substrate 10 and the light receiving substrate 70.
  • the light receiving / guiding mirror 50 also functions as a shielding member that separates the optical system and the light receiving system. As a result, it is possible to suppress erroneous detection of an object due to the laser light emitted from the laser diode 11 being received by the light receiving element 71.
  • the emission light guide mirror 30 and the light receiving light guide mirror 50 are used, and the laser light path from the laser diode 11 to the polygon mirror 41 (hereinafter referred to as the emission optical path), and the polygon mirror 41 to the light receiving element 71.
  • the above-described path (hereinafter referred to as the light receiving optical path) is illustrated as being bent so as to be L-shaped (that is, a right angle) in a front view, the present invention is not limited thereto.
  • FIG. 7 is a diagram corresponding to FIG. 2 of the embodiment, and is a front view through which the front part 110 of the laser radar device 1 according to the first modification is transmitted.
  • FIG. 8 is a diagram corresponding to FIG. 4 of the embodiment, and is a right side view through which the right side portion 120 of the laser radar device 1 in Modification 1 is transmitted.
  • the reflected light incident on the light receiving lens 60 is condensed on the light receiving element 71 disposed below the light receiving lens 60.
  • the exit optical path is bent in the width direction from the rotation axis direction of the polygon mirror 41 using the exit light guide mirror 30. This is to provide a certain distance between the light receiving element 71 and the laser diode 11.
  • the light receiving and guiding mirror 50 provided in the above-described embodiment can be omitted.
  • the light receiving / guiding mirror 50 is a member having a relatively large area as described above. According to the configuration of Modification 1, since a member having a large area can be omitted, the volume of the laser radar device 1 can be reduced as compared with the above-described embodiment.
  • the light receiving light guide mirror 50 may be used, but the exit light guide mirror 30 may not be used, so that the exit optical path is linear and the light receiving optical path is bent.
  • a member hereinafter referred to as a bending member
  • an optical path a member that bends the laser light path (hereinafter referred to as an optical path), such as the emission light guide mirror 30 or the light receiving light guide mirror 50. It suffices to be able to bend in the width direction.
  • the angle at which the optical path is bent by the bending member is 90 degrees ( That is, it is not limited to a right angle). Other angles such as 60 degrees and 45 degrees may be used. Further, making the optical path L-shaped corresponds to bending at a right angle, but the right angle here includes a substantially right angle.
  • a substantially right angle indicates, for example, a range from 80 degrees to 100 degrees and a range from 260 degrees to 280 degrees.
  • the emission optical path and the light receiving optical path formed by using the bending member do not necessarily have to be formed so that the entire process is parallel to the front part 110.
  • the light source substrate 10 is disposed so as to face the back surface, the optical path from the laser diode 11 to the exit light guide mirror 30 is parallel to the depth direction, and You may arrange
  • the emission light guide mirror 30 is arranged in a posture to reflect the laser light traveling forward from the rear side of the casing to the upper side of the casing.
  • the light source substrate 10 is arranged so as to be closer to the front side than the mirror innermost position 411.
  • FIG. 9 is a diagram corresponding to FIG. 2 of the embodiment, and is a front view through the front portion 110 of the laser radar device 1 according to the second modification.
  • 10 is a diagram corresponding to FIG. 3 of the embodiment, and is a right side view through which the right side surface 120 of the laser radar device 1 in Modification 2 is transmitted.
  • the emission optical path in such a configuration is formed to be L-shaped in a side view through the right side surface 120 of the housing 100 as shown in FIG. Even with such a configuration, the same effects as those of the above-described embodiment can be obtained. Further, according to the configuration disclosed as the second modification, the length W in the width direction can be reduced as compared with the configurations of the above-described embodiment and the first modification.
  • FIG. 11 is a view corresponding to FIG. 2 of the embodiment, and is a front view through which the front portion 110 of the laser radar device 1 according to Modification 3 is transmitted.
  • FIG. 12 is a diagram corresponding to FIG. 3 of the embodiment, and is a right side view through which the right side portion 120 of the laser radar device 1 in Modification 3 is transmitted.
  • the laser radar device 1 includes a substrate (hereinafter, integrated substrate) 90 on which the functions of the light source substrate 10 and the light receiving substrate 70 described above are mounted. That is, the integrated substrate 90 is provided with a laser diode 11, a light receiving element 71, an amplifier for amplifying a light receiving signal output from the light receiving element 71, and the like.
  • a mode is disclosed in which the integrated substrate 90 is disposed on the left side of the inner space of the housing 100 in a posture facing the left side surface portion of the housing 100.
  • the arrangement of the integrated substrate 90 is not limited thereto.
  • the integrated substrate 90 may be arranged on the right side of the internal space of the housing 100 in a posture facing the right side surface portion of the housing 100.
  • the exit light guide mirror 30 may be disposed at a position and an angle at which the laser light emitted from the laser diode 11 is reflected directly toward the reflection surface of the polygon mirror 41.
  • the light receiving / guiding mirror 50 may be disposed at a position and an angle at which the reflected light reflected by the polygon mirror 41 is reflected in the direction in which the light receiving lens 60 exists.
  • the exit light guide mirror 30 and the light receiving light guide mirror 50 are arranged in a posture inclined at a predetermined 45 degrees on the central optical path.
  • the number of substrates accommodated in the housing 100 can be reduced as compared with the above-described embodiment and the like. Therefore, the number of wirings (for example, flexible cables) that connect the substrates can be reduced.
  • the housing 100 can be downsized as a result. Furthermore, since the number of substrates attached to the housing 100 is reduced, the number of assembling steps of the laser radar apparatus 1 can be reduced, and the manufacturing cost can be suppressed.
  • the configuration of the above-described embodiment and the like has an advantage that the degree of freedom of arrangement of each member is high with respect to the third modification.
  • Modification 3 the configuration in which the light receiving element 71 and the laser diode 11 are arranged on the same substrate tends to increase the difficulty of alignment with the optical system member. For example, if the integrated substrate 90 is moved so that the light receiving element 71 is positioned at the focal point on the left side of the light receiving lens 60, the position of the laser diode 11 may be shifted from the focal point of the emission lens 20.
  • the configuration in which the light receiving element 71 and the laser diode 11 are provided on separate substrates as in the above-described embodiment is more aligned with the optical system member than the configuration of the third modification. There is an advantage that difficulty can be suppressed.
  • the substrate on which a circuit (hereinafter referred to as a main control circuit unit) that provides a function for controlling the operation of the entire laser radar device 1 is mounted as the main control substrate 80, and the light source substrate 10 and the light receiving substrate 70.
  • the main control circuit unit may be provided on any of the light source substrate 10, the scanning substrate 44, and the light receiving substrate 70.
  • any one of the light source substrate 10, the scanning substrate 44, and the light receiving substrate 70 may be formed integrally with the main control substrate 80. Even with such a configuration, since the number of substrates accommodated in the housing 100 can be reduced, the number of wirings connecting the substrates can be reduced, and the number of assembling steps can be reduced.
  • a plane mirror that is, a bending member
  • the bending member may be a parabolic mirror.
  • the optical path may be bent not by reflection but by refraction.
  • the bending member using the refraction of light may be realized by using a transparent material such as synthetic resin or glass.
  • the shape may be designed to provide a desired bending angle.
  • the mechanism for sweeping and irradiating the laser beam is not limited to the configuration in which the polygon mirror 41 is rotated.
  • laser light may be swept and irradiated using a MEMS (Micro Electro Mechanical Systems) mirror.
  • the irradiation direction of the laser beam can be changed by using a known configuration.
  • a polygon mirror 41, a MEMS mirror, a plane mirror for emitting laser light to the outside of the housing, and the like correspond to the scanning mirror.
  • the configuration using the plane mirror tends to be larger than the configuration using the polygon mirror.
  • the present invention is not limited to this.
  • the light receiving lens 60 may be the innermost member.
  • various substrates are arranged at positions that do not overlap the light receiving lens 60 in the depth direction.
  • the various substrates are arranged so as to be positioned on the front side of the innermost end portion of the light receiving lens 60.
  • the configuration on the premise that the laser radar device 1 and the ECU 2 are connected by wire is disclosed, but the configuration is not limited thereto.
  • the laser radar device 1 and the ECU 2 may be wirelessly connected.
  • the connector 84 provided in the main control board 80 can be omitted.
  • a communication module for wirelessly communicating with the ECU 2 is accommodated in the housing 100.
  • the above-described laser radar device obtains distance information with respect to a target existing in a detection area determined according to the angle range by sweeping and irradiating laser light in a predetermined angle range.
  • the laser radar apparatus includes a light source substrate 10, an emission lens 20, a scanning mirror 41, a scanning substrate 44, a light receiving substrate 70, a light receiving lens 60, and a housing 100.
  • a laser light source that outputs laser light is arranged on the light source substrate 10.
  • the emission lens 20 shapes and outputs the laser beam output from the laser light source.
  • the scanning mirror 41 is a mirror for reflecting the laser beam output from the emission lens and emitting it to the outside of the housing, and is configured to be able to change the attitude with respect to the laser light source.
  • the scanning substrate 44 controls the posture of the scanning mirror with respect to the laser light source.
  • the light receiving substrate 70 is provided with a light receiving element that receives reflected light, which is laser light reflected by the target, and outputs an electrical signal corresponding to the intensity of the received reflected light.
  • the light receiving lens 60 condenses the reflected light on the light receiving element.
  • the housing 100 accommodates the light source substrate 10, the emission lens 20, the scanning mirror 41, the scanning substrate 44, the light receiving substrate 70, and the light receiving lens 60.
  • the innermost member which is a member having an end portion on the innermost side in the depth direction of the housing, and the light source substrate at a position that does not overlap in the depth direction of the housing, A scanning substrate and a light receiving substrate are disposed.
  • the light source substrate, the scanning substrate, and the light receiving substrate are the depth-side member that is an optical system member having an end portion on the farthest side in the depth direction of the housing among various optical system members, and the depth. Place in a position that does not overlap in the direction.
  • the optical system member refers to a member that reflects or refracts laser light, such as an emission lens, a scanning mirror, or a light receiving lens.
  • the depth direction of the housing corresponds to a direction that is opposite to the direction in which the center of the angle range in which the laser beam is irradiated (that is, the optical axis for the laser radar device) is directed.
  • the length (that is, the thickness) in the depth direction of the laser radar apparatus is prevented from increasing due to the substrate due to the substrate being disposed on the back side of the optical system member. be able to. That is, the thickness of the laser radar device can be suppressed.

Abstract

A laser light source that outputs laser light is arranged in a light source substrate (10). An emission lens (20) smooths and outputs laser light output by the laser light source. A scanning mirror (41) reflects laser light output from the emission lens, emits said laser light to outside a case, and can change orientation relative to the laser light source. A scanning substrate (44) controls the orientation of the scanning mirror relative to the laser light source. A light-receiving substrate (70) has a light-receiving element provided therein that receives reflected light being laser light that has been reflected by a target. A light-receiving lens (60) condenses the reflected light on to the light-receiving element. The case houses the light source substrate, the emission lens, the scanning mirror, the scanning substrate, the light-receiving substrate, and the light-receiving lens. The light-source substrate, the scanning substrate, and the light-receiving substrate are arranged at positions that do not overlap in the depth direction of the case and an innermost member is also arranged in the case, said innermost member being the member among the emission lens, the scanning mirror, and the light-receiving lens that has an end section thereof on the innermost side of the case in the depth direction.

Description

レーザレーダ装置Laser radar equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年1月28日に出願された日本出願番号2016-14853号と、2016年12月7日に出願された日本出願番号2016-237837号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-144853 filed on January 28, 2016 and Japanese Application No. 2016-237837 filed on December 7, 2016. Is used.
 本開示は、レーザレーダ装置に関する。 The present disclosure relates to a laser radar device.
 従来、所定の検知エリアを形成するように、所定の角度範囲で不連続にパルスレーザ光を掃引照射するレーザレーダ装置が知られている。この種のレーザレーダ装置は、レーザ光を照射する照射ユニットと、レーザ光の筐体外部への照射方向を変更するための走査装置と、照射したレーザ光が物体で反射されて返ってくる反射光を受光する受光ユニットと、レーザ光を照射してから反射光を受光するまでの時間に基づいてレーザ光を反射した物体(以降、ターゲット)までの距離を演算する測距演算部と、それらを収容する筐体を備える。 Conventionally, there has been known a laser radar apparatus that sweeps and emits pulsed laser light within a predetermined angular range so as to form a predetermined detection area. This type of laser radar device includes an irradiation unit that irradiates laser light, a scanning device that changes the irradiation direction of the laser light to the outside of the housing, and a reflection in which the irradiated laser light is reflected by an object and returned. A light receiving unit that receives light, a distance measuring calculation unit that calculates a distance to an object (hereinafter referred to as a target) that reflects the laser light based on the time from irradiation of the laser light to reception of the reflected light, and A housing for housing the container.
 照射ユニットは、レーザ光源としてのレーザダイオード及び当該レーザダイオードの駆動を制御するICなどが搭載された光源基板と、レーザダイオードが出力するレーザ光を整形する射出レンズと、を備える。また、受光ユニットは、ターゲットからの反射光を整形し受光素子の受光面へ集光する受光レンズと、受光レンズから照射される光の強度に応じた電気信号を出力する受光素子が配置された受光基板と、を備える。測距演算部は、CPUやICを用いて実現される。 The irradiation unit includes a light source substrate on which a laser diode as a laser light source and an IC that controls driving of the laser diode are mounted, and an emission lens that shapes the laser light output from the laser diode. In addition, the light receiving unit includes a light receiving lens that shapes reflected light from the target and collects it on the light receiving surface of the light receiving element, and a light receiving element that outputs an electrical signal corresponding to the intensity of light emitted from the light receiving lens. A light receiving substrate. The ranging calculation unit is realized using a CPU or an IC.
 筐体には、照射光を筐体外部に射出するための射出窓や、ターゲットからの反射光を受光レンズに導くための受光窓が設けられている。なお、射出窓を受光窓としても兼用する構成も種々提案されている。 The housing is provided with an exit window for emitting the irradiated light to the outside of the housing and a light receiving window for guiding the reflected light from the target to the light receiving lens. Various configurations have also been proposed in which the exit window is also used as the light receiving window.
 筐体内に各種部品を配置する際のレイアウトとしては、例えば特許文献1に開示されているように、受光系の部品を、レーザレーダ装置の奥行き方向に直線状に一列に並べて配置する構成が開示されている。ここでの受光系の部品とは、主として、受光レンズ及び受光基板を指す。レーザレーダ装置の奥行き方向とは、レーザ光を照射する角度範囲の中心(つまり光軸)が向く方向に対して正反対となる方向に相当する。 As a layout when arranging various components in the housing, for example, as disclosed in Patent Document 1, a configuration in which the components of the light receiving system are arranged in a straight line in the depth direction of the laser radar device is disclosed. Has been. Here, the components of the light receiving system mainly indicate a light receiving lens and a light receiving substrate. The depth direction of the laser radar device corresponds to a direction that is directly opposite to the direction in which the center (that is, the optical axis) of the angle range where the laser beam is irradiated.
 ここでレーザレーダ装置の薄型化が望まれている。特に、レーザレーダ装置を車両に搭載する場合には、ボディ周りの搭載スペースは有限であることから、より一層の薄型化が求められている。しかしながら、特許文献1の構成では、受光系の部品が奥行き方向に一列に配置されているため、その分だけレーザレーダ装置の奥行き方向の長さ(つまり厚み)が大きくなってしまう。 Here, it is desired to make the laser radar device thinner. In particular, when a laser radar device is mounted on a vehicle, the mounting space around the body is limited, and therefore further reduction in thickness is required. However, in the configuration of Patent Document 1, since the components of the light receiving system are arranged in a line in the depth direction, the length (that is, the thickness) of the laser radar device in the depth direction is increased accordingly.
特開2015-206590号公報Japanese Patent Laying-Open No. 2015-206590
 本開示は、レーザレーダ装置において奥行き方向の長さを抑制するレーザレーダ装置を提供することを目的とする。 This disclosure is intended to provide a laser radar device that suppresses the length in the depth direction in the laser radar device.
 本開示の第一の態様におけるレーザレーダ装置は、レーザ光を所定の角度範囲で掃引照射することで、前記角度範囲に応じて定まる検知エリア内に存在するターゲットとの距離情報を取得する。前記レーザレーダ装置は、レーザ光を出力するレーザ光源が配置された光源基板を、備える。前記レーザレーダ装置は、前記レーザ光源が出力するレーザ光を整形して出力する射出レンズを、更に備える。前記レーザレーダ装置は、前記射出レンズから出力されるレーザ光を反射して筐体外部に射出するためのミラーであって、前記レーザ光源に対する姿勢を変更可能に構成されている走査用ミラーを、更に備える。前記レーザレーダ装置は、前記走査用ミラーの前記レーザ光源に対する姿勢を制御する走査基板を、更に備える。前記レーザレーダ装置は、前記ターゲットで反射されたレーザ光である反射光を受光し、その受光した反射光の強度に応じた電気信号を出力する受光素子が設けられた受光基板を、更に備える。前記レーザレーダ装置は、前記反射光を前記受光素子に集光する受光レンズを、更に備える。前記レーザレーダ装置は、前記光源基板、前記射出レンズ、前記走査用ミラー、前記走査基板、前記受光基板、及び前記受光レンズを収容する筐体を、更に備える。前記射出レンズ、前記走査用ミラー、及び前記受光レンズのうち、前記筐体の奥行き方向において最も奥側に端部を有する部材である最奥側部材と、前記筐体の奥行き方向において重ならない位置に、前記光源基板、前記走査基板、及び前記受光基板が配置されている。 The laser radar device according to the first aspect of the present disclosure acquires distance information with respect to a target existing in a detection area determined according to the angular range by sweeping and irradiating laser light within a predetermined angular range. The laser radar device includes a light source substrate on which a laser light source that outputs laser light is arranged. The laser radar device further includes an emission lens that shapes and outputs the laser light output from the laser light source. The laser radar device is a mirror for reflecting the laser beam output from the emission lens and emitting the laser beam to the outside of the housing, and a scanning mirror configured to change the attitude with respect to the laser light source, In addition. The laser radar device further includes a scanning substrate that controls an attitude of the scanning mirror with respect to the laser light source. The laser radar device further includes a light receiving substrate provided with a light receiving element that receives reflected light, which is laser light reflected by the target, and outputs an electrical signal corresponding to the intensity of the received reflected light. The laser radar device further includes a light receiving lens that condenses the reflected light on the light receiving element. The laser radar device further includes a housing that houses the light source substrate, the exit lens, the scanning mirror, the scanning substrate, the light receiving substrate, and the light receiving lens. Of the exit lens, the scanning mirror, and the light receiving lens, a position that does not overlap in the depth direction of the casing with the innermost member that has an end portion on the innermost side in the depth direction of the casing In addition, the light source substrate, the scanning substrate, and the light receiving substrate are disposed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
レーザレーダ装置1の外観斜視図であり、 レーザレーダ装置1の正面図であり、 レーザレーダ装置1の側面図であり、 レーザレーダ装置1の上面図であり、 受光導光ミラー50の構成について説明するための図であり、 主制御基板80の概略的な構成の一例を示す機能ブロック図であり、 変形例1におけるレーザレーダ装置1の正面図であり、 変形例1におけるレーザレーダ装置1の側面図であり、 変形例2におけるレーザレーダ装置1の正面図であり、 変形例2におけるレーザレーダ装置1の側面図であり、 変形例3におけるレーザレーダ装置1の正面図であり、また 変形例3におけるレーザレーダ装置1の側面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
1 is an external perspective view of a laser radar device 1; It is a front view of the laser radar apparatus 1, It is a side view of the laser radar apparatus 1, It is a top view of the laser radar apparatus 1, It is a figure for demonstrating the structure of the light reception light guide mirror 50, It is a functional block diagram showing an example of a schematic configuration of the main control board 80, It is a front view of the laser radar apparatus 1 in the modification 1, It is a side view of the laser radar apparatus 1 in the modification 1, It is a front view of the laser radar apparatus 1 in the modification 2, It is a side view of the laser radar apparatus 1 in the modification 2, It is a front view of the laser radar apparatus 1 in the modification 3, It is a side view of the laser radar apparatus 1 in the modification 3.
 以下、本開示の実施形態について図を用いて説明する。図1は、本開示に係るレーザレーダ装置1の外観の概略的な斜視図である。図1に示すようにレーザレーダ装置1は、高さがH[mm]、横幅がW[mm]、奥行きがD[mm]の直方体形状の筐体100を備えており、筐体100の正面側の面(以降、正面部)110には、レーザ光を射出及び受光するための射受光窓111が設けられている。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic perspective view of an appearance of a laser radar device 1 according to the present disclosure. As shown in FIG. 1, the laser radar device 1 includes a rectangular parallelepiped casing 100 having a height of H [mm], a width of W [mm], and a depth of D [mm]. The side surface 110 (hereinafter referred to as the front portion) is provided with a radiation receiving window 111 for emitting and receiving laser light.
 なお、本実施形態では一例として筐体100の形状を直方体とする態様を例示するが、これに限らない。例えば、上面視において正面部110が所定の曲率半径を有する円弧状となるように形成されていてもよい。また、直方体形状には、略直方体形状も含まれる。略直方体形状とは、直方体の角部を面取りしたり部分的に変形させたりした、直方体をベースとした形状を指す。筐体100の形状自体は設計事項である。 In the present embodiment, an example in which the shape of the housing 100 is a rectangular parallelepiped is illustrated as an example, but the present invention is not limited thereto. For example, the front part 110 may be formed in an arc shape having a predetermined radius of curvature when viewed from above. The rectangular parallelepiped shape includes a substantially rectangular parallelepiped shape. The substantially rectangular parallelepiped shape refers to a shape based on a rectangular parallelepiped in which corners of the rectangular parallelepiped are chamfered or partially deformed. The shape itself of the housing 100 is a design matter.
 高さ方向、幅方向は、レーザレーダ装置1を使用時の姿勢として予め想定された姿勢における上下方向、左右方向に相当する。奥行き方向は、正面側から、正面部110と対向する側の面(つまり背面)に向かう方向である。なお、奥行き方向は、レーザレーダ装置1がレーザ光を照射する角度範囲の中心(いわゆる光軸)と平行な方向に相当する。筐体100の高さH、幅W、奥行きDの具体的な値は、後述する種々の部材を収容できるように適宜設計されればよい。 The height direction and the width direction correspond to a vertical direction and a horizontal direction in a posture assumed in advance as a posture when the laser radar device 1 is used. The depth direction is a direction from the front side toward the surface on the side facing the front part 110 (that is, the back surface). The depth direction corresponds to a direction parallel to the center (so-called optical axis) of the angle range in which the laser radar device 1 irradiates laser light. Specific values of the height H, width W, and depth D of the housing 100 may be appropriately designed so that various members described later can be accommodated.
 このレーザレーダ装置1は、幅方向において-θaから+θaまでの所定の角度範囲でレーザ光を不連続に掃引照射(いわゆるスキャン)することで、レーザ光を照射する方向に存在するターゲットとの距離情報を取得する。θaは適宜設計される値であって、例えば60度などとすればよい。なお、本実施形態では一例としてレーザ光を幅方向に掃引照射する態様を例示するが、高さ方向に掃引照射する態様としてもよい。また、幅方向と高さ方向のそれぞれにおいて所定の角度範囲で掃引照射する態様としても良い。レーザ光を掃引照射する範囲が検知エリアに相当する。 The laser radar apparatus 1 discontinuously sweeps and irradiates a laser beam in a predetermined angle range from −θa to + θa in the width direction (so-called scanning), so that the distance from the target existing in the direction of irradiating the laser beam. Get information. θa is a value designed as appropriate, and may be 60 degrees, for example. In the present embodiment, a mode in which laser light is swept in the width direction is illustrated as an example, but a mode in which sweep irradiation is performed in the height direction may be employed. Moreover, it is good also as an aspect which carries out sweep irradiation in the predetermined angle range in each of the width direction and the height direction. The range in which the laser beam is swept is equivalent to the detection area.
 本実施形態では一例として、筐体100の左側の側面部分(以降、左側面部)には、レーザレーダ装置1の外部に設けられている電子制御装置(ECU:Electronic Control Unit)と通信するためのケーブルと接続するためのコネクタ(以降、中継コネクタ)が設けられているものとする。中継コネクタは、車両において当該レーザレーダ装置1と接続するためのケーブルが引き出される位置(以降、ケーブル引出位置)からできるだけ近い位置に設けられていることが好ましい。 In this embodiment, as an example, the left side surface portion (hereinafter, left side surface portion) of the housing 100 communicates with an electronic control device (ECU: Electronic Control Unit) provided outside the laser radar device 1. Assume that a connector (hereinafter referred to as a relay connector) for connection with a cable is provided. The relay connector is preferably provided at a position as close as possible to a position where a cable for connecting to the laser radar device 1 in the vehicle is drawn (hereinafter referred to as a cable drawing position).
 以下、筐体100の内側に収容されているレーザレーダ装置1の主要な構成部材について説明する。図2は正面部110を透視したレーザレーダ装置1の正面図であり、図3は、筐体100を右側から見た側面図であり、図4は、レーザレーダ装置1の上面図である。なお、図3では筐体100の右側の側面部分(以降、右側面部)120を透過させており、図4では、上面となる部分(以降、上面部)130を透過させている。 Hereinafter, main components of the laser radar device 1 housed inside the housing 100 will be described. 2 is a front view of the laser radar device 1 seen through the front portion 110, FIG. 3 is a side view of the housing 100 viewed from the right side, and FIG. 4 is a top view of the laser radar device 1. In FIG. 3, the right side surface portion (hereinafter, right side portion) 120 of the housing 100 is transmitted, and in FIG. 4, the upper portion (hereinafter, upper surface portion) 130 is transmitted.
 図2~図4に示すように、レーザレーダ装置1は、光源基板10、射出レンズ20、射出導光ミラー30、スキャナ40、受光導光ミラー50、受光レンズ60、受光基板70、及び主制御基板80を備える。光源基板10には、レーザ光を発光するレーザダイオード11が設けられており、受光基板70には受光素子71が設けられている。スキャナ40は、ポリゴンミラー41、台座部42、モータ43、及び走査基板44を備える。光源基板10、走査基板44、及び受光基板70のそれぞれは、例えばフレキシブルケーブル等を用いて、主制御基板80と相互通信可能に接続されている。 As shown in FIGS. 2 to 4, the laser radar device 1 includes a light source substrate 10, an emission lens 20, an emission light guide mirror 30, a scanner 40, a light reception light guide mirror 50, a light reception lens 60, a light reception substrate 70, and a main control. A substrate 80 is provided. The light source substrate 10 is provided with a laser diode 11 that emits laser light, and the light receiving substrate 70 is provided with a light receiving element 71. The scanner 40 includes a polygon mirror 41, a pedestal portion 42, a motor 43, and a scanning substrate 44. Each of the light source substrate 10, the scanning substrate 44, and the light receiving substrate 70 is connected to the main control substrate 80 so as to be able to communicate with each other using, for example, a flexible cable.
 光源基板10は、主制御基板80から入力される発光指示信号に基づいて、レーザダイオード11にパルス状のレーザ光を出力させる。射出させるレーザ光のパルス幅は例えば20ナノ秒等とすればよい。レーザダイオード11がレーザ光源に相当する。 The light source substrate 10 causes the laser diode 11 to output pulsed laser light based on the light emission instruction signal input from the main control substrate 80. The pulse width of the emitted laser light may be set to 20 nanoseconds, for example. The laser diode 11 corresponds to a laser light source.
 射出レンズ20は、レーザ光を整形するためのレンズである。射出レンズ20は、レーザダイオード11が出力するパルスレーザ光を整形して射出導光ミラー30が存在する方向に出力する。 The emission lens 20 is a lens for shaping laser light. The exit lens 20 shapes the pulsed laser light output from the laser diode 11 and outputs it in the direction in which the exit light guide mirror 30 exists.
 射出導光ミラー30は、射出レンズ20から出力されるレーザ光を、ポリゴンミラー41が存在する方向に反射する平面状のミラー(つまり、平面ミラー)である。レーザダイオードが出力したレーザ光は、射出レンズ20で整形され、さらに、射出導光ミラー30で反射されてポリゴンミラー41へと入射する。なお、図中に示す実線の矢印は、レーザダイオード11が出力したレーザ光の経路を概念的に表している。射出導光ミラー30が射出経路折曲部材に相当する。 The exit light guide mirror 30 is a planar mirror (that is, a planar mirror) that reflects the laser light output from the exit lens 20 in the direction in which the polygon mirror 41 exists. The laser beam output from the laser diode is shaped by the exit lens 20, further reflected by the exit light guide mirror 30 and incident on the polygon mirror 41. In addition, the solid line arrow shown in the figure conceptually represents the path of the laser beam output from the laser diode 11. The exit light guide mirror 30 corresponds to an exit path bending member.
 スキャナ40は、筐体外部にレーザ光を射出する方向を制御するためのユニットである。スキャナ40は、反射体としてのポリゴンミラー41と、ポリゴンミラー41を支持する台座部42と、ポリゴンミラー41を高さ方向に平行な軸(以降、回転軸)周りに回転させるモータ43と、モータ43の駆動を制御する走査基板44とを備える。ポリゴンミラー41は回転軸周りに回動可能に台座部42に設けられている。 The scanner 40 is a unit for controlling the direction in which laser light is emitted outside the housing. The scanner 40 includes a polygon mirror 41 as a reflector, a pedestal portion 42 that supports the polygon mirror 41, a motor 43 that rotates the polygon mirror 41 around an axis parallel to the height direction (hereinafter, a rotation axis), a motor And a scanning substrate 44 that controls the driving of 43. The polygon mirror 41 is provided on the pedestal portion 42 so as to be rotatable around a rotation axis.
 走査基板44には、主制御基板80から入力される駆動信号に基づいて、モータ43を駆動させるモータ駆動回路が実装されている。走査基板44は、主制御基板80からの駆動信号に基づいてモータ43を駆動させ、ポリゴンミラー41を回転させる。 A motor drive circuit for driving the motor 43 is mounted on the scanning board 44 based on a drive signal input from the main control board 80. The scanning substrate 44 drives the motor 43 based on the drive signal from the main control substrate 80 to rotate the polygon mirror 41.
 モータ43(換言すればポリゴンミラー41)の初期位置に対する回転角度は、モータ回転位置センサによって検出され、主制御基板80に出力される。なお、モータ回転位置センサは、周知の構成を採用して実現すればよく、例えば回転部材と非回転部材のそれぞれに磁石等を設け、磁石間に作用する磁力の時間変化から回転角度を検出する構成とすればよい。ポリゴンミラー41の回転方向は適宜設計されればよく、例えば鉛直方向の回転軸を中心として右回りに回転させるものとする。 The rotation angle of the motor 43 (in other words, the polygon mirror 41) with respect to the initial position is detected by the motor rotation position sensor and output to the main control board 80. The motor rotation position sensor may be realized by adopting a well-known configuration. For example, a magnet or the like is provided for each of the rotating member and the non-rotating member, and the rotation angle is detected from a change in magnetic force acting between the magnets. What is necessary is just composition. The rotation direction of the polygon mirror 41 may be designed as appropriate. For example, the polygon mirror 41 is rotated clockwise around the vertical rotation axis.
 ポリゴンミラー41は、回転軸周りの側面に4個の反射面が形成されている。各反射面は回転軸に対して所定の傾斜角(ここでは45度)を為すように形成されている。換言すればポリゴンミラー41は、底面を正方形とする四角錐を、底面と平行な面で切り取って生成される2つの立体のうち、元の四角錐における底面を含む側の立体と同様の形状(つまり、錐台状)に構成されている。 The polygon mirror 41 has four reflecting surfaces on the side surfaces around the rotation axis. Each reflecting surface is formed so as to make a predetermined inclination angle (here, 45 degrees) with respect to the rotation axis. In other words, the polygon mirror 41 has the same shape as the solid on the side including the bottom surface of the original quadrangular pyramid among two solid bodies generated by cutting out a square pyramid having a square bottom surface in a plane parallel to the bottom surface ( That is, it is configured in a frustum shape.
 便宜上、ポリゴンミラー41が高さ方向において互いに対向するように備える正方形状の2つの面のうち、面積の大きい方の面を第一面、面積が小さい方の面を第二面、とそれぞれ称する。ポリゴンミラー41は、第一面が第二面よりも筐体内において上側となるように配置されている。 For convenience, of the two square-shaped surfaces provided so that the polygon mirror 41 faces each other in the height direction, the surface having the larger area is referred to as the first surface, and the surface having the smaller area is referred to as the second surface. . The polygon mirror 41 is arranged such that the first surface is on the upper side in the housing than the second surface.
 射出導光ミラー30から入射したレーザ光は、ポリゴンミラー41が備える4つの反射面の何れかで反射されて筐体外部に射出される。射出導光ミラー30からの入射光が同一の反射面で反射されている間は、回転軸を中心とした回転によって、レーザ光の射出方向が水平方向に変化する。そのため、主制御基板80は、ポリゴンミラー41を所定の速度で回転させつつ、レーザダイオードからレーザ光を間欠的に放射させることにより、水平方向において所定角度の範囲でレーザ光を掃引照射(つまり、スキャン)することが可能になる。 The laser light incident from the emission light guide mirror 30 is reflected by one of the four reflecting surfaces of the polygon mirror 41 and emitted outside the casing. While the incident light from the emission light guide mirror 30 is reflected by the same reflection surface, the emission direction of the laser light changes in the horizontal direction by rotation about the rotation axis. Therefore, the main control board 80 sweeps and irradiates laser light in a range of a predetermined angle in the horizontal direction by intermittently emitting laser light from the laser diode while rotating the polygon mirror 41 at a predetermined speed (that is, Scanning).
 また、ポリゴンミラー41は、射出したレーザ光が筐体外部に存在するターゲットで反射されて返ってくるレーザ光(つまり反射光)を受光導光ミラー50が存在する方向に反射する。つまり、ポリゴンミラー41は、射出導光ミラー30から入射したレーザ光を筐体外部に射出するだけでなく、反射光を筐体内部へと反射して、後述する受光導光ミラー50及び受光レンズ60を介して受光素子71に導く役割を担う。図中に示す二点鎖線の矢印は、反射光の経路を概念的に表している。 Further, the polygon mirror 41 reflects the laser light (that is, the reflected light) that is returned after the emitted laser light is reflected by the target existing outside the housing in the direction in which the light receiving light guide mirror 50 exists. In other words, the polygon mirror 41 not only emits the laser light incident from the emission light guide mirror 30 to the outside of the housing, but also reflects the reflected light to the inside of the housing, so that a light receiving light guide mirror 50 and a light receiving lens described later. It plays a role of guiding to the light receiving element 71 via 60. The two-dot chain line arrow shown in the figure conceptually represents the path of the reflected light.
 なお、図2及び図3においてポリゴンミラー41の周囲に示す破線は、ポリゴンミラー41を回動させることで形成される回転体(以降、ポリゴンミラー回転体)の輪郭を表している。ポリゴンミラー41が錐台形であるため、ポリゴンミラー回転体は円錐台状となる。ポリゴンミラー回転体において、ポリゴンミラー41の第一面に対応する円状の面の直径(以降、回転体径)Dmtは、ポリゴンミラー41の第一面の対角線の長さに相当する。 2 and 3, the broken line shown around the polygon mirror 41 represents the outline of a rotating body (hereinafter, polygon mirror rotating body) formed by rotating the polygon mirror 41. Since the polygon mirror 41 has a frustum shape, the polygon mirror rotating body has a truncated cone shape. In the polygon mirror rotating body, the diameter (hereinafter referred to as rotating body diameter) Dmt of the circular surface corresponding to the first surface of the polygon mirror 41 corresponds to the diagonal length of the first surface of the polygon mirror 41.
 図3及び図4中の411は、ポリゴンミラー41を回転軸周りに回動させた時に、ポリゴンミラー41の第一面が備える頂点が位置しうる最も奥側の位置(以降、ミラー最奥位置)を表している。ミラー最奥位置411は、ポリゴンミラー回転体において最も奥側となる端部の位置に相当する。 3 and 4, reference numeral 411 denotes the innermost position where the vertex of the first surface of the polygon mirror 41 can be located when the polygon mirror 41 is rotated about the rotation axis (hereinafter, the mirror innermost position). ). The mirror innermost position 411 corresponds to the position of the end portion on the innermost side in the polygon mirror rotating body.
 台座部42は、前述の通り、ポリゴンミラー41を支持する板状部材であって、その形状は、ポリゴンミラー回転体のポリゴンミラー41の第一面に対応する面と略同一な形状となっている。なお、台座部42は任意の要素である。図4に示す破線は、台座部42の下方に配置されているポリゴンミラー41の位置を示している。 As described above, the pedestal portion 42 is a plate-like member that supports the polygon mirror 41, and the shape thereof is substantially the same as the surface corresponding to the first surface of the polygon mirror 41 of the polygon mirror rotating body. Yes. The pedestal portion 42 is an optional element. The broken line shown in FIG. 4 indicates the position of the polygon mirror 41 arranged below the pedestal portion 42.
 受光導光ミラー50は、ポリゴンミラー41で反射された反射光が到来する位置に設けられており、ポリゴンミラー41で反射された反射光を受光レンズ60が存在する方向に反射する。受光導光ミラー50が受光経路折曲部材に相当する。 The light receiving / guiding mirror 50 is provided at a position where the reflected light reflected by the polygon mirror 41 arrives, and reflects the reflected light reflected by the polygon mirror 41 in the direction in which the light receiving lens 60 exists. The light receiving / light guiding mirror 50 corresponds to a light receiving path bending member.
 受光導光ミラー50は、レーザ光を反射する部材を用いて実現されれば良い。受光導光ミラー50は、ポリゴンミラー41を介して筐体100内に入射したターゲットからの反射光をできるだけ多く受光レンズ60に導くため、射出導光ミラー30に比べると面積は相対的に大きい。受光導光ミラー50は、射出導光ミラー30からポリゴンミラー41までのレーザ光の通り道を阻害しないように、例えば図5に示すように、切り欠き部51を備えているものとする。なお、図5は、受光導光ミラー50付近の上面図である。また、図3では受光導光ミラー50の図示を省略している。 The light receiving / guiding mirror 50 may be realized by using a member that reflects laser light. The light receiving / guiding mirror 50 guides as much reflected light from the target that has entered the housing 100 through the polygon mirror 41 to the light receiving lens 60 as much as possible. For example, as shown in FIG. 5, the light receiving / guiding mirror 50 includes a notch 51 so as not to obstruct the passage of laser light from the exiting light guiding mirror 30 to the polygon mirror 41. FIG. 5 is a top view of the vicinity of the light receiving / guiding mirror 50. Further, in FIG. 3, the light receiving and guiding mirror 50 is not shown.
 受光レンズ60は、合成樹脂又はガラス等などを用いて実現される透光性の凸レンズであって、受光導光ミラー50が存在する方向から到来するレーザ光(つまりターゲットからの反射光)を整形して受光素子71の受光面へ集光する。本実施形態では一例として、受光レンズ60においてポリゴンミラー41の回転軸よりも筐体奥側となる部分は、図3及び図4に示すように切り落としているものとする。ポリゴンミラー41の回転軸よりも筐体奥側となる部分には、ポリゴンミラー41からの反射光が到来しないためである。これにより、受光レンズ60の配置に必要なスペースを低減する。なお、受光レンズ60の形状は適宜設計されれば良い。 The light receiving lens 60 is a translucent convex lens realized by using synthetic resin, glass, or the like, and shapes laser light (that is, reflected light from the target) coming from the direction in which the light receiving light guide mirror 50 exists. Then, the light is condensed on the light receiving surface of the light receiving element 71. In the present embodiment, as an example, it is assumed that a portion of the light receiving lens 60 that is on the rear side of the casing with respect to the rotation axis of the polygon mirror 41 is cut off as shown in FIGS. This is because the reflected light from the polygon mirror 41 does not arrive at the portion on the rear side of the casing with respect to the rotation axis of the polygon mirror 41. Thereby, the space required for the arrangement of the light receiving lens 60 is reduced. The shape of the light receiving lens 60 may be designed as appropriate.
 受光素子71は、光を電気信号に変換する素子である。受光素子71は、反射光の強度に対応する大きさの電圧を受光信号として出力する。受光素子71としては、例えばアバランシェフォトダイオード等を採用することができる。 The light receiving element 71 is an element that converts light into an electric signal. The light receiving element 71 outputs a voltage having a magnitude corresponding to the intensity of the reflected light as a light receiving signal. As the light receiving element 71, for example, an avalanche photodiode or the like can be employed.
 受光基板70には、受光素子71のほか、受光素子71から出力される受光信号を増幅するための増幅器が設けられており、受光素子71から出力される受光信号を所定の増幅率で増幅して主制御基板80に出力する。増幅器は、例えばオペアンプ等を用いた周知の回路構成によって実現されれば良い。受光信号を増幅する比率(つまり増幅率)は、主制御基板80から入力される増幅率制御信号に基づいて調整される。すなわち、増幅器は、主制御基板80から入力される増幅率制御信号に応じた増幅率で受光信号を増幅する。増幅器によって増幅された受光信号は、主制御基板80が備える受光処理部82に出力される。 In addition to the light receiving element 71, the light receiving substrate 70 is provided with an amplifier for amplifying the light receiving signal output from the light receiving element 71. The light receiving signal output from the light receiving element 71 is amplified at a predetermined amplification factor. To the main control board 80. The amplifier may be realized by a known circuit configuration using, for example, an operational amplifier. The ratio for amplifying the received light signal (that is, the amplification factor) is adjusted based on the amplification factor control signal input from the main control board 80. That is, the amplifier amplifies the received light signal at an amplification factor according to the amplification factor control signal input from the main control board 80. The light reception signal amplified by the amplifier is output to the light reception processing unit 82 included in the main control board 80.
 主制御基板80は、レーザレーダ装置1全体の動作を制御するための機能が実装された基板である。主制御基板80は、機能ブロックとして図6に示すように、射出制御部81、受光処理部82、及び測距演算部83を備える。また、主制御基板80には、図示しない中継コネクタを介してECU2と通信接続するためのコネクタ84が配置されている。なお、主制御基板80には、上述した構成以外にも、レーザレーダ装置1の各部への電力供給を制御する電源回路モジュールが実装されていてもよい。 The main control board 80 is a board on which a function for controlling the operation of the entire laser radar apparatus 1 is mounted. As shown in FIG. 6, the main control board 80 includes an emission control unit 81, a light reception processing unit 82, and a distance measurement calculation unit 83 as functional blocks. The main control board 80 is provided with a connector 84 for communication connection with the ECU 2 via a relay connector (not shown). In addition to the configuration described above, the main control board 80 may be mounted with a power supply circuit module that controls power supply to each part of the laser radar device 1.
 各機能ブロックは、CPUが所定のプログラムを実行することで実現されて良いし、1つ又は複数のICや種々の回路素子を用いた回路モジュールとして実現されても良い。もちろん、所定のソフトウェアのCPUによる実行と、ハードウェアとを組み合わせて実現されてもよい。また、ファームウェアとして基板に実装されていてもよい。 Each functional block may be realized by the CPU executing a predetermined program, or may be realized as a circuit module using one or a plurality of ICs or various circuit elements. Of course, it may be realized by combining execution of predetermined software by the CPU and hardware. Further, it may be mounted on a substrate as firmware.
 ここでは一例として、各種機能ブロックは、CPUが不揮発性の記憶媒体(例えばROM)に格納されているプログラムを実行することによって、実現されるものとする。なお、通常のコンピュータを測距演算部83等として機能させるためのプログラム(以降、主制御プログラム)等は、非遷移的実体的記録媒体(non- transitory tangible storage medium)に格納されていればよい。CPUが主制御プログラムを実行することは、主制御プログラムに対応する方法が実行されることに相当する。 Here, as an example, it is assumed that the various functional blocks are realized by the CPU executing a program stored in a nonvolatile storage medium (for example, ROM). It should be noted that a program (hereinafter referred to as a main control program) for causing a normal computer to function as the distance measuring unit 83 or the like only needs to be stored in a non-transitory tangible storage medium. . Executing the main control program by the CPU corresponds to executing a method corresponding to the main control program.
 射出制御部81は、光源基板10及び走査基板44と協働してパルス状のレーザ光を射出するタイミング等を制御するための機能ブロックである。具体的には、射出制御部81は、走査基板44に対して駆動信号を出力してモータ43を回転させる。また、走査基板44から入力されるポリゴンミラー41の回転角度に応じたタイミングで光源基板10に発光指示信号を出力する。すなわち、ポリゴンミラー41の回転に同期したタイミングで、所定の間隔でパルスレーザ光を射出させる。これにより、所望の検知エリアを形成するように所定の角度範囲でパルスレーザ光が掃引照射される。 The emission control unit 81 is a functional block for controlling the timing of emitting pulsed laser light in cooperation with the light source substrate 10 and the scanning substrate 44. Specifically, the injection control unit 81 outputs a drive signal to the scanning substrate 44 to rotate the motor 43. Further, a light emission instruction signal is output to the light source substrate 10 at a timing corresponding to the rotation angle of the polygon mirror 41 input from the scanning substrate 44. That is, the pulse laser beam is emitted at a predetermined interval at a timing synchronized with the rotation of the polygon mirror 41. Thus, the pulsed laser beam is swept and irradiated in a predetermined angle range so as to form a desired detection area.
 また、射出制御部81は、パルスレーザ光が射出されたタイミングを示す情報を、測距演算部83に提供する。ここでは一例として射出制御部81は、発光指示信号を出力すると同時に、測距演算部83に対してパルスレーザ光の射出を指示したことを示す射出通知信号を出力するものとする。このような構成によれば、測距演算部83は、射出通知信号が入力されたタイミングを、パルスレーザ光が射出されたタイミングとして認識する。 Further, the emission control unit 81 provides information indicating the timing at which the pulse laser beam is emitted to the distance measurement calculation unit 83. Here, as an example, the emission control unit 81 outputs a light emission instruction signal, and at the same time outputs an emission notification signal indicating that the distance calculation unit 83 has instructed emission of pulsed laser light. According to such a configuration, the distance measurement calculation unit 83 recognizes the timing at which the emission notification signal is input as the timing at which the pulse laser beam is emitted.
 なお、光源基板10が、レーザダイオード11の出力レベルを調整可能に構成されている場合には、射出制御部81は出力レベルを指示する出力レベル指示信号を光源基板10に出力する態様としてもよい。このような態様によれば射出制御部81は、レーザダイオード11に任意の強度のレーザ光を射出させることができる。 When the light source substrate 10 is configured so that the output level of the laser diode 11 can be adjusted, the emission control unit 81 may output an output level instruction signal for instructing the output level to the light source substrate 10. . According to such an aspect, the emission control unit 81 can cause the laser diode 11 to emit laser light having an arbitrary intensity.
 受光処理部82は、受光信号の時間変化に基づいて、反射光を受光したことを検出する。例えば受光処理部82は、受光信号の大きさが所定の受光判定閾値を超過した場合に、反射光を受光したと判定する。受光判定閾値は、受光信号の大きさから反射光を受光した判定するための閾値であって、具体的な値は適宜設計されれば良い。また、受光判定閾値を超過したか否かの判定は、コンパレータ等を用いて実施すればよい。 The light reception processing unit 82 detects that the reflected light has been received based on the time change of the light reception signal. For example, the light reception processing unit 82 determines that the reflected light has been received when the magnitude of the light reception signal exceeds a predetermined light reception determination threshold. The light reception determination threshold is a threshold for determining that the reflected light is received from the magnitude of the light reception signal, and a specific value may be designed as appropriate. Moreover, what is necessary is just to implement the determination whether the light reception determination threshold was exceeded using a comparator.
 受光処理部82は、反射光の受光を検出すると、その旨を示す信号(以降、受光通知信号)を測距演算部83に出力する。なお、受光処理部82は、反射光の受光の是非を判定する準備処理として、受光基板70から入力される受光信号をデジタル信号に変換したり、周知のハイパスフィルタ等を用いて受光信号からノイズ成分を除去したりする機能を備えていても良い。受光処理部82には、受光基板70から入力される受光信号から測距演算処理に必要な情報を抽出するための信号処理を実施する機能が実装されている。その他、受光処理部82は、受光基板70に設けられた増幅器に対して増幅率制御信号を出力し、増幅率を調整する。 When the light reception processing unit 82 detects the reception of the reflected light, the light reception processing unit 82 outputs a signal indicating that fact (hereinafter, a light reception notification signal) to the distance measurement calculation unit 83. The light reception processing unit 82 converts the light reception signal input from the light receiving substrate 70 into a digital signal or prepares a noise from the light reception signal using a known high-pass filter or the like as a preparation process for determining whether or not the reflected light is received. You may provide the function to remove a component. The light receiving processing unit 82 is equipped with a function for performing signal processing for extracting information necessary for distance measurement processing from the light receiving signal input from the light receiving substrate 70. In addition, the light receiving processing unit 82 outputs an amplification factor control signal to the amplifier provided on the light receiving substrate 70 to adjust the amplification factor.
 測距演算部83は、射出制御部81から射出通知信号が入力されたことに基づいて射出タイミングを特定する。また、受光処理部82から受光通知信号が入力されたことに基づいて、反射光を受光したタイミングを特定する。これにより、パルスレーザ光を射出してから反射光を受光するまでの飛行時間を特定する。飛行時間の計測は図示しないタイマーを用いて実施すれば良い。 The distance measurement calculation unit 83 specifies the injection timing based on the input of the injection notification signal from the injection control unit 81. Further, the timing at which the reflected light is received is specified based on the input of the light reception notification signal from the light reception processing unit 82. Thus, the flight time from when the pulse laser beam is emitted until the reflected light is received is specified. The flight time may be measured using a timer (not shown).
 そして、飛行時間に基づいて、当該レーザ光を照射した方向におけるターゲットとの距離を算出する。飛行時間に基づいてターゲットとの距離を算出する方法は周知の方法を適用すれば良い。例えば、飛行時間に光の伝搬速度を乗じた値を、2で除算した値を、ターゲットとの距離として採用すれば良い。ターゲットとの距離を算出する処理が測距演算処理に相当する。測距演算部83の演算結果は、コネクタ84を介して、レーザレーダ装置1の外部に存在するECU2に提供される。 Then, based on the flight time, the distance to the target in the direction of irradiation with the laser light is calculated. A known method may be applied as a method for calculating the distance to the target based on the flight time. For example, a value obtained by multiplying the flight time by the light propagation speed and dividing by 2 may be adopted as the distance to the target. The process for calculating the distance to the target corresponds to the distance measurement calculation process. The calculation result of the distance measurement calculation unit 83 is provided to the ECU 2 existing outside the laser radar device 1 via the connector 84.
 なお、仮にレーザレーダ装置1が車両前方にレーザ光を掃引照射するように車両に搭載されている場合、レーザレーダ装置1が検出したターゲットとの距離情報は、例えば先行車両との車間距離の維持をする走行制御に利用することができる。もちろん、レーザレーダ装置1が検出したターゲットとの距離情報は、その他、例えば自動運転、衝突を回避するための自動ブレーキ制御、ターゲットの種別の特定等にも利用可能である。ECU2は、レーザレーダ装置1の検出結果に基づいて、上述した車両制御等を実行する装置とすればよい。 If the laser radar device 1 is mounted on the vehicle so as to sweep and radiate laser light forward of the vehicle, the distance information with respect to the target detected by the laser radar device 1 is, for example, maintaining the inter-vehicle distance from the preceding vehicle. It can be used for running control. Of course, the distance information with respect to the target detected by the laser radar device 1 can also be used for other purposes such as automatic driving, automatic brake control for avoiding a collision, identification of a target type, and the like. The ECU 2 may be a device that executes the vehicle control described above based on the detection result of the laser radar device 1.
 もちろん、レーザレーダ装置1の車両における搭載態様は上述した例に限らない。車両後方や、その他の方向にレーザ光を掃引照射するように搭載されていても良い。なお、車両におけるレーザレーダ装置1の搭載位置は、例えばフロントバンパやフロントグリル、車両ドア、リアバンパなどといった車両ボディの周縁部において、適宜選定された位置とすればよい。ただし、レーザ光が車両外部に到達し、所望の検知エリアを形成するように配置されるものとする。レーザレーダ装置1は車両以外に搭載されていてもよい。 Of course, the mounting mode of the laser radar device 1 in the vehicle is not limited to the above-described example. It may be mounted so as to sweep and irradiate the laser beam in the rear of the vehicle or in other directions. Note that the mounting position of the laser radar device 1 in the vehicle may be an appropriately selected position in the periphery of the vehicle body, such as a front bumper, a front grille, a vehicle door, or a rear bumper. However, it is assumed that the laser beam reaches the outside of the vehicle and forms a desired detection area. The laser radar device 1 may be mounted other than the vehicle.
 <筐体100内における各部材の位置関係の詳細について>
 ここでは、以上で述べた筐体100に収容される各構成部材の形状、及び、筐体100内部における配置について、より詳細に述べる。なお、ここでは一例として、各部材を筐体100に収容した時における奥行き方向の長さが最大となる部材はポリゴンミラー41である場合を想定し、各部材の構成及び配置について述べる。
<Details of Positional Relationship of Each Member in Case 100>
Here, the shape of each component member accommodated in the casing 100 described above and the arrangement inside the casing 100 will be described in more detail. Here, as an example, assuming that the member having the maximum length in the depth direction when each member is accommodated in the housing 100 is the polygon mirror 41, the configuration and arrangement of each member will be described.
 まず、図2に示すように光源基板10は、筐体100内部の右下隅部において、光源基板10のレーザダイオード11が配置されていない側の面(以降、光源ハンダ面)が筐体100の右側面部120と対向するように、且つ、光源基板10の奥側の端部がミラー最奥位置411よりも正面部110側(換言すれば手前側)に位置するように配置する。なお、前提として光源基板10は、その奥行き方向の長さが回転体経Dmtよりも短く形成されているものとする。光源ハンダ面が右側面部120と対向するように配置することで、レーザダイオード11の照射角度範囲の中心が筐体左側を向く。なお、レーザダイオード11の照射角度範囲の中心とは、レーザダイオード11の光軸に相当する。 First, as shown in FIG. 2, in the light source substrate 10, the surface of the light source substrate 10 on the side where the laser diode 11 is not disposed (hereinafter, the light source solder surface) is the case 100. The light source substrate 10 is disposed so that the end on the back side of the light source substrate 10 is located on the front surface 110 side (in other words, on the near side) with respect to the rearmost mirror position 411 so as to face the right side surface portion 120. It is assumed that the light source substrate 10 is formed so that the length in the depth direction is shorter than the rotating body warp Dmt. By disposing the light source solder surface so as to face the right side surface portion 120, the center of the irradiation angle range of the laser diode 11 faces the left side of the housing. The center of the irradiation angle range of the laser diode 11 corresponds to the optical axis of the laser diode 11.
 なお、ここでの左右とは、図1に示す白塗り矢印の方向で筐体100を見た時の(換言すれば正面視における)左右である。また、ここでの上下とは、レーザレーダ装置1を正面から見た時の上下である。上下左右は、何れも奥行き方向に対して直交する方向である。筐体100の右下隅部とは、筐体100の右半分となる空間のうち、さらに、下半分となる空間を指す。また、或る部材の奥側端部とは、その部材のうち、奥行き方向において最も奥側となる端部を指す。 Here, the left and right are the left and right when the casing 100 is viewed in the direction of the white arrow shown in FIG. 1 (in other words, in front view). Further, the term “upper and lower” here refers to the upper and lower when the laser radar device 1 is viewed from the front. Up, down, left, and right are directions orthogonal to the depth direction. The lower right corner of the housing 100 refers to a space that becomes the lower half of the space that becomes the right half of the housing 100. Moreover, the back side edge part of a certain member refers to the edge part which becomes the back | innermost side in the depth direction among the members.
 射出レンズ20は、レーザダイオード11の光軸上において、レーザダイオード11の光軸と射出レンズ20の光軸とが一致する姿勢で、且つ、レーザダイオード11から射出レンズ20までの距離が射出レンズ20の焦点距離となる位置に配置する。これにより、レーザダイオード11から射出されたレーザ光は、射出レンズ20を通って筐体右側から左側に、幅方向に平行に進むように配置する。射出レンズ20及び光源基板10は、幅方向における射出レンズ20の位置が、ポリゴンミラー41の回転軸よりも右側となるようにそれぞれ配置する。 The emission lens 20 has a posture in which the optical axis of the laser diode 11 coincides with the optical axis of the emission lens 20 on the optical axis of the laser diode 11, and the distance from the laser diode 11 to the emission lens 20 is the emission lens 20. It arrange | positions in the position used as the focal distance. As a result, the laser light emitted from the laser diode 11 passes through the emission lens 20 and is arranged from the right side of the housing to the left side so as to proceed in parallel in the width direction. The exit lens 20 and the light source substrate 10 are arranged so that the position of the exit lens 20 in the width direction is on the right side of the rotation axis of the polygon mirror 41.
 射出導光ミラー30は、レーザダイオード11から射出レンズ20へ向かう半直線上において、射出レンズ20から入射されるレーザ光を真上に反射するように配置されている。幅方向における射出導光ミラー30の位置は、ポリゴンミラー41の回転軸を配置する幅方向位置と一致させる。 The exit light guide mirror 30 is arranged so as to reflect the laser light incident from the exit lens 20 directly on the half line from the laser diode 11 to the exit lens 20. The position of the exit light guide mirror 30 in the width direction is made to coincide with the position in the width direction where the rotation axis of the polygon mirror 41 is arranged.
 スキャナ40は、筐体100内において相対的に上側に位置する領域に、ポリゴンミラー41の回転軸が筐体上下方向と一致し、かつ、射出導光ミラー30から入射されるレーザ光が反射面で反射されることで筐体外部に射出されるように配置する。 In the scanner 40, the rotation axis of the polygon mirror 41 coincides with the vertical direction of the casing and the laser light incident from the exit light guide mirror 30 is reflected in a region positioned relatively upward in the casing 100. It arrange | positions so that it may inject | emitted by the exterior of a housing | casing.
 走査基板44は、ポリゴンミラー41の上側に、上面部130と対向するように配置する。走査基板44は、その奥行き方向の長さが回転体経Dmtよりも短く形成されており、奥行き方向における走査基板44の奥側端部が、ミラー最奥位置411よりも手前側に位置するように配置する。 The scanning substrate 44 is disposed above the polygon mirror 41 so as to face the upper surface portion 130. The scanning substrate 44 is formed such that the length in the depth direction is shorter than the rotating body warp Dmt, and the rear side end of the scanning substrate 44 in the depth direction is positioned on the near side of the mirror innermost position 411. To place.
 受光導光ミラー50は、前述のとおり、ポリゴンミラー41で反射された反射光が進む経路上において、ポリゴンミラー41から入射される反射光を筐体左側に反射するように配置する。幅方向における受光導光ミラー50の配置位置は、幅方向における受光導光ミラー50の中心の位置が、幅方向におけるポリゴンミラー41の回転軸の位置と一致する位置である。なお、このような構成は、ポリゴンミラー41で反射された、ターゲットからの反射光が進む直線(以降、中心光路)上に、射出導光ミラー30と受光導光ミラー50を配置した構成に相当する。中心光路は、射出導光ミラー30で反射されたレーザ光が通る直線に相当する。 As described above, the light receiving / guiding mirror 50 is disposed so as to reflect the reflected light incident from the polygon mirror 41 to the left side of the casing on the path along which the reflected light reflected by the polygon mirror 41 travels. The arrangement position of the light receiving / guiding mirror 50 in the width direction is a position where the center position of the light receiving / guiding mirror 50 in the width direction coincides with the position of the rotation axis of the polygon mirror 41 in the width direction. Such a configuration corresponds to a configuration in which the exit light guide mirror 30 and the light receiving light guide mirror 50 are arranged on a straight line (hereinafter referred to as a central optical path) reflected by the polygon mirror 41 and on which reflected light from the target travels. To do. The central optical path corresponds to a straight line through which the laser light reflected by the exit light guide mirror 30 passes.
 受光レンズ60は、その光軸が、受光導光ミラー50が反射光を反射する方向と一致する姿勢で、受光導光ミラー50が反射するレーザ光の大半が入射される位置に配置されている。すなわち、受光レンズ60は、筐体左側となる領域において光軸が筐体100の幅方向と一致し、かつ、光軸が受光導光ミラー50の中心を通るように配置されている。 The light receiving lens 60 is disposed at a position where most of the laser light reflected by the light receiving / guiding mirror 50 is incident, with the optical axis thereof being aligned with the direction in which the light receiving / guiding mirror 50 reflects the reflected light. . That is, the light receiving lens 60 is disposed so that the optical axis coincides with the width direction of the housing 100 in the region on the left side of the housing, and the optical axis passes through the center of the light receiving light guide mirror 50.
 受光基板70は、その筐体100の左側面部と対向する姿勢で、受光素子71が受光レンズ60の左側の焦点に位置するように配置されている。受光基板70は、その奥行き方向の長さが回転体経Dmtよりも短く形成されており、奥行き方向における走査基板44の奥側端部が、ミラー最奥位置411よりも手前側に位置するように配置する。 The light receiving substrate 70 is disposed so that the light receiving element 71 is positioned at the left focal point of the light receiving lens 60 in a posture facing the left side surface portion of the housing 100. The light receiving substrate 70 is formed so that the length in the depth direction is shorter than the rotating body length Dmt, and the rear side end portion of the scanning substrate 44 in the depth direction is positioned on the near side of the mirror innermost position 411. To place.
 主制御基板80は、筐体100内部の左上隅部となる空間、具体的には、スキャナ40よりも左側であって且つ受光レンズ60よりも上側となる空間において、筐体100の背面側の側面部(以降、背面部)と対向するように配置する。換言すれば、主制御基板80は、正面方向からみた時に、スキャナ40及び受光レンズ60のそれぞれと重ならない位置に配置する。ただし、主制御基板80は、上記空間においてミラー最奥位置411よりも手前側に位置させる。 The main control board 80 is located in the upper left corner of the housing 100, specifically, in the space on the left side of the scanner 40 and the upper side of the light receiving lens 60. It arrange | positions so that a side part (henceforth a back part) may be opposed. In other words, the main control board 80 is disposed at a position that does not overlap with each of the scanner 40 and the light receiving lens 60 when viewed from the front. However, the main control board 80 is positioned in front of the rearmost mirror position 411 in the space.
 上記構成は、主制御基板80は、筐体100の内部空間において、筐体100に設けられた中継コネクタから相対的に近い位置に設けた構成に相当する。このような構成によれば、中継コネクタとコネクタ84とを接続するケーブルの長さを低減できる。また、本実施形態では一例としてコネクタ84は、主制御基板80が備える縁部のうち、筐体100の左側面部と対向する縁部にコネクタ84が配置されているものとする。そのような構成によれば、筐体100に設けられた中継コネクタからの距離が短くなり筐体100内に収容されるケーブルの長さをより一層短くすることができる。 The above configuration corresponds to a configuration in which the main control board 80 is provided at a position relatively close to the relay connector provided in the housing 100 in the internal space of the housing 100. According to such a configuration, the length of the cable connecting the relay connector and the connector 84 can be reduced. Further, in the present embodiment, as an example, the connector 84 is assumed to be disposed on an edge portion of the edge portion of the main control board 80 that faces the left side surface portion of the housing 100. According to such a configuration, the distance from the relay connector provided in the housing 100 is shortened, and the length of the cable accommodated in the housing 100 can be further shortened.
 <実施形態のまとめ>
 次に本実施形態の構成及び効果をまとめる。なお、上述の実施形態においては、ポリゴンミラー41が、種々の光学系部材のうち、筐体100の奥行き方向において最も奥側に端部を有する光学系部材である最奥側部材として振る舞うとともに、筐体収容時において奥行き方向の長さが最大となる光学系部材(以降、奥行き長最大部材)としても振る舞うものとしている。
<Summary of Embodiment>
Next, the configuration and effects of this embodiment will be summarized. In the above-described embodiment, the polygon mirror 41 behaves as an innermost member that is an optical member having an end on the innermost side in the depth direction of the housing 100 among various optical members, It also behaves as an optical system member having a maximum length in the depth direction (hereinafter referred to as a maximum depth length member) during housing.
 ここでの光学系部材とは、ポリゴンミラー41のほか、射出レンズ20や、射出導光ミラー30、受光導光ミラー50、受光レンズ60といった、レーザ光を反射/屈折する部材を指す。なお、射出レンズ20によるレーザ光の整形や、受光レンズ60による反射光の集光も、光の屈折によって実現されるものである。故に、射出レンズ20や受光レンズ60も前述の光学系部材に含まれる。 Here, the optical system member refers to a member that reflects / refracts the laser beam, such as the exit lens 20, the exit light guide mirror 30, the light receiving light guide mirror 50, and the light receiving lens 60, in addition to the polygon mirror 41. The shaping of the laser light by the emission lens 20 and the collection of the reflected light by the light receiving lens 60 are also realized by light refraction. Therefore, the emission lens 20 and the light receiving lens 60 are also included in the above-described optical system members.
 以上の構成では、光源基板10、走査基板44、受光基板70、及び主制御基板80を、ポリゴンミラー41と、奥行き方向において重ならない位置に配置する。また、ポリゴンミラー41以外の光学系部材も、ポリゴンミラー41と奥行き方向において重ならないように配置する。 In the above configuration, the light source substrate 10, the scanning substrate 44, the light receiving substrate 70, and the main control substrate 80 are arranged at positions that do not overlap the polygon mirror 41 in the depth direction. Further, optical members other than the polygon mirror 41 are also arranged so as not to overlap the polygon mirror 41 in the depth direction.
 以上の構成によれば、ポリゴンミラー41の奥側に基板等を配置することに起因して、レーザレーダ装置1の奥行き方向における長さ(つまり厚み)が、ポリゴンミラー41の奥側に配置される基板等の厚みだけ増大してしまうことを抑制できる。つまり、レーザレーダ装置1の奥行きDを抑制することができる。 According to the above configuration, the length (that is, the thickness) in the depth direction of the laser radar device 1 is arranged on the back side of the polygon mirror 41 due to the arrangement of the substrate or the like on the back side of the polygon mirror 41. It is possible to suppress an increase in the thickness of the substrate or the like. That is, the depth D of the laser radar device 1 can be suppressed.
 また、種々の基板及びポリゴンミラー41以外の光学系部材を、ミラー最奥位置411よりも手前に位置するように配置する。このような構成によれば、レーザレーダ装置1の奥行きDは、ポリゴンミラー41の大きさと、筐体100を構成する部材の肉厚、及び、ポリゴンミラー41と筐体との奥行き方向における離隔によって定まる。したがって以上の構成によれば、レーザレーダ装置1の奥行きDを、奥行き長最大部材としてのポリゴンミラー41の奥行き長さに応じて定まる限界値に近づけることができる。なお、基板の厚み方向とは、基板の平面に垂直な方向を意味するものである。 Also, various substrates and optical members other than the polygon mirror 41 are arranged so as to be positioned in front of the mirror innermost position 411. According to such a configuration, the depth D of the laser radar device 1 depends on the size of the polygon mirror 41, the thickness of the members constituting the casing 100, and the separation between the polygon mirror 41 and the casing in the depth direction. Determined. Therefore, according to the above configuration, the depth D of the laser radar device 1 can be brought close to a limit value determined according to the depth length of the polygon mirror 41 as the maximum depth length member. In addition, the thickness direction of a board | substrate means the direction perpendicular | vertical to the plane of a board | substrate.
 また、実施形態によれば、主制御基板80は、光源基板10や、走査基板44と接続されていればよく、受光レンズ60等の光学系部材との位置関係の制約を受けない。故に、主制御基板80は、光学系部材や、光源基板10、スキャナ40、受光基板70等を配置した後において筐体100内に残っている空きスペースに配置することができる。そのため、上記構成によれば筐体100内の空間を効率的に利用でき、全体としての体積を抑制することができる。また、主制御基板80の設置位置の自由度が高いため、例えば、主制御基板80を筐体100に設けられている中継コネクタの近くに配置することによって、筐体100内でのケーブルの引き回し距離を短くすることができる。 In addition, according to the embodiment, the main control board 80 only needs to be connected to the light source board 10 and the scanning board 44, and is not limited by the positional relationship with the optical system member such as the light receiving lens 60. Therefore, the main control board 80 can be placed in an empty space remaining in the housing 100 after the optical system member, the light source board 10, the scanner 40, the light receiving board 70, and the like are arranged. Therefore, according to the said structure, the space in the housing | casing 100 can be utilized efficiently and the volume as a whole can be suppressed. Further, since the degree of freedom of the installation position of the main control board 80 is high, for example, by arranging the main control board 80 near the relay connector provided in the casing 100, the cable is routed in the casing 100. The distance can be shortened.
 さらに、上記実施形態では、レーザダイオード11と受光素子71とを別々の基板に実装しているため、射出系の光学系部材に対するレーザダイオード11の位置合わせと、受光系の光学系部材に対する受光素子71の位置合わせを独立して実施することができる。また、射出光による受光系への干渉を抑制できる配置を採用したりすることができる。 Furthermore, in the above embodiment, since the laser diode 11 and the light receiving element 71 are mounted on separate substrates, the alignment of the laser diode 11 with respect to the optical system member of the emission system and the light receiving element with respect to the optical system member of the light receiving system 71 alignments can be performed independently. Moreover, the arrangement | positioning which can suppress the interference to the light-receiving system by emitted light can be employ | adopted.
 また、上記構成では、射出導光ミラー30を用いてレーザダイオード11からポリゴンミラー41までのレーザ光の経路を正面視においてL字型となるように折り曲げるとともに、受光導光ミラー50を用いてポリゴンミラー41から受光素子71までの経路を逆L字型に折り曲げる。その結果、ポリゴンミラー41を通って上下方向に伸びる中心光路を挟んで互いに対向するように(換言すれば左右に分けて)配置された構成となる。このような構成によれば、光源基板10と受光基板70とが上下方向に並ぶことがないので、筐体100の高さHを抑制できる。 In the above configuration, the emission light guide mirror 30 is used to bend the laser light path from the laser diode 11 to the polygon mirror 41 so as to be L-shaped when viewed from the front, and the light receiving light guide mirror 50 is used to make a polygon. The path from the mirror 41 to the light receiving element 71 is bent in an inverted L shape. As a result, the arrangement is such that the central optical path extending in the vertical direction through the polygon mirror 41 is opposed to each other (in other words, divided into left and right). According to such a configuration, the light source substrate 10 and the light receiving substrate 70 do not line up and down, so that the height H of the housing 100 can be suppressed.
 また、本実施形態では、光源基板10と受光基板70との間には、相対的に大きい光学系部材である受光導光ミラー50が配置されている。この受光導光ミラー50によって、光源基板10に設けられたレーザダイオード11から射出されたレーザ光が、受光素子71まで到達する恐れを抑制できる。つまり、受光導光ミラー50が光学系と受光系とを切り分ける遮蔽部材としても機能する。その結果、レーザダイオード11から射出されたレーザ光が受光素子71で受光されることによる物体の誤検出を抑制することができる。 In the present embodiment, a light receiving / guiding mirror 50 that is a relatively large optical system member is disposed between the light source substrate 10 and the light receiving substrate 70. With this light receiving / guiding mirror 50, the possibility that the laser light emitted from the laser diode 11 provided on the light source substrate 10 reaches the light receiving element 71 can be suppressed. That is, the light receiving / guiding mirror 50 also functions as a shielding member that separates the optical system and the light receiving system. As a result, it is possible to suppress erroneous detection of an object due to the laser light emitted from the laser diode 11 being received by the light receiving element 71.
 以上、本開示の実施形態を説明したが、本開示は上述の実施形態に限定されるものではなく、以降で述べる種々の変形例も本開示の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。また、上述した実施形態や、下記の種々の変形例は、矛盾が生じない範囲において適宜組み合わせて実施することができる。 The embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and various modifications described below are also included in the technical scope of the present disclosure. However, various modifications can be made without departing from the scope of the invention. In addition, the above-described embodiment and the following various modifications can be implemented in appropriate combination within a range where no contradiction occurs.
 なお、前述の実施形態で述べた部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。また、構成の一部のみに言及している場合、他の部分については先に説明した実施形態の構成を適用することができる。 In addition, about the member which has the same function as the member described in the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted. In addition, when only a part of the configuration is mentioned, the configuration of the above-described embodiment can be applied to the other portions.
 [変形例1]
 上述した実施形態では、射出導光ミラー30及び受光導光ミラー50を用いて、レーザダイオード11からポリゴンミラー41までのレーザ光の経路(以降、射出光学経路)と、ポリゴンミラー41から受光素子71までの経路(以降、受光光学経路)の両方を、正面視においてL字型(つまり直角)となるように折り曲げる態様を例示したが、これに限らない。
[Modification 1]
In the above-described embodiment, the emission light guide mirror 30 and the light receiving light guide mirror 50 are used, and the laser light path from the laser diode 11 to the polygon mirror 41 (hereinafter referred to as the emission optical path), and the polygon mirror 41 to the light receiving element 71. Although the above-described path (hereinafter referred to as the light receiving optical path) is illustrated as being bent so as to be L-shaped (that is, a right angle) in a front view, the present invention is not limited thereto.
 例えば、図7、図8に示すように、受光導光ミラー50を用いずに、ポリゴンミラー41の下方に受光レンズ60及び受光基板70を配置することで、ポリゴンミラー41で反射されて筐体内に導かれた反射光を受光レンズ60に直接入射させる態様としてもよい。なお、図7は、実施形態の図2に対応する図であって、変形例1におけるレーザレーダ装置1の正面部110を透過させた正面図である。また、図8は実施形態の図4に対応する図であって、変形例1におけるレーザレーダ装置1の右側面部120を透過させた右側面図である。 For example, as shown in FIG. 7 and FIG. 8, by disposing the light receiving lens 60 and the light receiving substrate 70 below the polygon mirror 41 without using the light receiving / guiding mirror 50, the light is reflected by the polygon mirror 41 and reflected in the casing. It is also possible to adopt a mode in which the reflected light guided to is directly incident on the light receiving lens 60. FIG. 7 is a diagram corresponding to FIG. 2 of the embodiment, and is a front view through which the front part 110 of the laser radar device 1 according to the first modification is transmitted. FIG. 8 is a diagram corresponding to FIG. 4 of the embodiment, and is a right side view through which the right side portion 120 of the laser radar device 1 in Modification 1 is transmitted.
 図7、図8に示す構成において受光レンズ60に入射された反射光は、その下方に配置された受光素子71に集光される。ただし、受光光学経路を直線状とする場合、射出光学経路については射出導光ミラー30を用いてポリゴンミラー41の回転軸方向から幅方向に折り曲げるものとする。受光素子71とレーザダイオード11との間に、ある程度の離隔を設けるためである。 7 and 8, the reflected light incident on the light receiving lens 60 is condensed on the light receiving element 71 disposed below the light receiving lens 60. However, when the light receiving optical path is linear, the exit optical path is bent in the width direction from the rotation axis direction of the polygon mirror 41 using the exit light guide mirror 30. This is to provide a certain distance between the light receiving element 71 and the laser diode 11.
 変形例1として図7、図8に開示する構成によれば、上述した実施形態が備える受光導光ミラー50を省略することができる。受光導光ミラー50は、前述の通り相対的に面積が大きい部材である。当該変形例1の構成によれば、面積が大きい部材を省略できるため、上述した実施形態よりも、レーザレーダ装置1の体積を低減することができる。 According to the configuration disclosed in FIGS. 7 and 8 as the modified example 1, the light receiving and guiding mirror 50 provided in the above-described embodiment can be omitted. The light receiving / guiding mirror 50 is a member having a relatively large area as described above. According to the configuration of Modification 1, since a member having a large area can be omitted, the volume of the laser radar device 1 can be reduced as compared with the above-described embodiment.
 なお、他の態様として、受光導光ミラー50は用いる一方、射出導光ミラー30は用いないことで、射出光学経路を直線状とし、かつ、受光光学経路を折り曲げる態様としてもよい。射出光学経路と受光光学経路の少なくとも何れか一方を、射出導光ミラー30や受光導光ミラー50といった、レーザ光の経路(以降、光学経路)を折り曲げる部材(以降、折曲部材)を用いて、幅方向に折り曲げる態様となっていれば良い。 As another embodiment, the light receiving light guide mirror 50 may be used, but the exit light guide mirror 30 may not be used, so that the exit optical path is linear and the light receiving optical path is bent. By using at least one of the emission optical path and the light receiving optical path, a member (hereinafter referred to as a bending member) that bends the laser light path (hereinafter referred to as an optical path), such as the emission light guide mirror 30 or the light receiving light guide mirror 50. It suffices to be able to bend in the width direction.
 また、以上では、射出光学経路や受光光学経路と行った種々の光学経路が正面視においてL字型となるように折り曲げる態様を例示したが、折曲部材によって光学経路を折り曲げる角度は90度(つまり直角)に限らない。60度や45度等、その他の角度であってもよい。また、光学経路がL字型にするということは、直角に折り曲げることに相当するが、ここでの直角とは略直角を含む。略直角は、例えば、80度から100度までの範囲と260度から280度までの範囲を指すものとする。 In the above, an example in which various optical paths performed with the emission optical path and the light receiving optical path are bent so as to be L-shaped when viewed from the front is illustrated, but the angle at which the optical path is bent by the bending member is 90 degrees ( That is, it is not limited to a right angle). Other angles such as 60 degrees and 45 degrees may be used. Further, making the optical path L-shaped corresponds to bending at a right angle, but the right angle here includes a substantially right angle. A substantially right angle indicates, for example, a range from 80 degrees to 100 degrees and a range from 260 degrees to 280 degrees.
 [変形例2]
 また、折曲部材を用いて形成される射出光学経路や受光光学経路は、必ずしも全行程が正面部110に平行となるように形成される必要はない。例えば、図9及び図10に示すように、光源基板10を背面部と対向するように配置し、レーザダイオード11から射出導光ミラー30までの光学経路が奥行き方向と平行であって、かつ、レーザ光が奥側から手前側へと進行するように配置してもよい。この場合、射出導光ミラー30は、筐体奥側から手前に進行してくるレーザ光を筐体上側に反射する姿勢で配置する。光源基板10はミラー最奥位置411よりも手前側となるように配置する。
[Modification 2]
Further, the emission optical path and the light receiving optical path formed by using the bending member do not necessarily have to be formed so that the entire process is parallel to the front part 110. For example, as shown in FIGS. 9 and 10, the light source substrate 10 is disposed so as to face the back surface, the optical path from the laser diode 11 to the exit light guide mirror 30 is parallel to the depth direction, and You may arrange | position so that a laser beam may progress from the back side to this side. In this case, the emission light guide mirror 30 is arranged in a posture to reflect the laser light traveling forward from the rear side of the casing to the upper side of the casing. The light source substrate 10 is arranged so as to be closer to the front side than the mirror innermost position 411.
 なお、図9は、実施形態の図2に対応する図であって、変形例2におけるレーザレーダ装置1の正面部110を透過させた正面図である。また、図10は実施形態の図3に対応する図であって、変形例2におけるレーザレーダ装置1の右側面部120を透過させた右側面図である。 FIG. 9 is a diagram corresponding to FIG. 2 of the embodiment, and is a front view through the front portion 110 of the laser radar device 1 according to the second modification. 10 is a diagram corresponding to FIG. 3 of the embodiment, and is a right side view through which the right side surface 120 of the laser radar device 1 in Modification 2 is transmitted.
 そのような構成における射出光学経路は、図10に示すように、筐体100の右側面部120を透過させた側面視においてL字型となるように形成される。このような構成によっても、上述の実施形態と同様の効果を奏する。また、この変形例2として開示する構成によれば、上述した実施形態や変形例1の構成に比べて、幅方向の長さWを低減することができる。 The emission optical path in such a configuration is formed to be L-shaped in a side view through the right side surface 120 of the housing 100 as shown in FIG. Even with such a configuration, the same effects as those of the above-described embodiment can be obtained. Further, according to the configuration disclosed as the second modification, the length W in the width direction can be reduced as compared with the configurations of the above-described embodiment and the first modification.
 図9及び図10では、光源基板10をレーザ光が奥側から手前側へと向かうように配置する態様を例示したが、これに限らない。レーザ光が手前側から奥側へと進行するように配置してもよい。また、以上では射出光学経路を奥行き方向又はその逆方向に折り曲げるように各部材を配置する態様を例示したが、これに限らない。受光光学経路を奥行き方向又はその逆方向に折り曲げるように各部材を配置してもよい。 9 and 10 exemplify a mode in which the light source substrate 10 is arranged so that the laser light is directed from the back side toward the near side, but the present invention is not limited thereto. You may arrange | position so that a laser beam may progress from the near side to the back side. Moreover, although the aspect which arrange | positions each member so that an injection | emission optical path may be bent in the depth direction or the reverse direction was illustrated above, it does not restrict to this. Each member may be arranged so that the light receiving optical path is bent in the depth direction or the opposite direction.
 [変形例3]
 前述の実施形態や変形例1~2(以降、実施形態等と記載する)では、光源基板10と受光基板70とを別々の基板とする構成を開示したが、これに限らない。光源基板10と受光基板70は、1つの基板として一体的に形成されていても良い。以下、そのような構成を変形例3として図11及び図12を用いて説明する。
[Modification 3]
In the above-described embodiment and modification examples 1 and 2 (hereinafter referred to as embodiments and the like), the configuration in which the light source substrate 10 and the light receiving substrate 70 are separate substrates is disclosed, but the present invention is not limited thereto. The light source substrate 10 and the light receiving substrate 70 may be integrally formed as one substrate. Hereinafter, such a configuration will be described as a third modification with reference to FIGS. 11 and 12.
 図11は、実施形態の図2に対応する図であって、変形例3におけるレーザレーダ装置1の正面部110を透過させた正面図である。また、図12は実施形態の図3に対応する図であって、変形例3におけるレーザレーダ装置1の右側面部120を透過させた右側面図である。 FIG. 11 is a view corresponding to FIG. 2 of the embodiment, and is a front view through which the front portion 110 of the laser radar device 1 according to Modification 3 is transmitted. FIG. 12 is a diagram corresponding to FIG. 3 of the embodiment, and is a right side view through which the right side portion 120 of the laser radar device 1 in Modification 3 is transmitted.
 この変形例3におけるレーザレーダ装置1は、上述した光源基板10と受光基板70が備える機能が実装された基板(以降、統合基板)90を備える。すなわち、統合基板90には、レーザダイオード11や、受光素子71、受光素子71から出力される受光信号を増幅するための増幅器等が配置されている。 The laser radar device 1 according to the third modification includes a substrate (hereinafter, integrated substrate) 90 on which the functions of the light source substrate 10 and the light receiving substrate 70 described above are mounted. That is, the integrated substrate 90 is provided with a laser diode 11, a light receiving element 71, an amplifier for amplifying a light receiving signal output from the light receiving element 71, and the like.
 ここでは一例として、統合基板90を筐体100の内部空間左側において、筐体100の左側面部と対向する姿勢で配置した態様を開示しているが、統合基板90の配置態様はこれに限らない。統合基板90を筐体100の内部空間右側において、筐体100の右側面部と対向する姿勢で配置しても良い。射出導光ミラー30は、レーザダイオード11から射出されたレーザ光がポリゴンミラー41の反射面に向かって真上に反射する位置及び角度で配置されればよい。また、受光導光ミラー50は、ポリゴンミラー41で反射された反射光を受光レンズ60が存在する方向に反射する位置及び角度で配置されれば良い。図11及び図12に示す例では、射出導光ミラー30及び受光導光ミラー50は、中心光路上に所定の45度傾いた姿勢で配置されている。 Here, as an example, a mode is disclosed in which the integrated substrate 90 is disposed on the left side of the inner space of the housing 100 in a posture facing the left side surface portion of the housing 100. However, the arrangement of the integrated substrate 90 is not limited thereto. . The integrated substrate 90 may be arranged on the right side of the internal space of the housing 100 in a posture facing the right side surface portion of the housing 100. The exit light guide mirror 30 may be disposed at a position and an angle at which the laser light emitted from the laser diode 11 is reflected directly toward the reflection surface of the polygon mirror 41. The light receiving / guiding mirror 50 may be disposed at a position and an angle at which the reflected light reflected by the polygon mirror 41 is reflected in the direction in which the light receiving lens 60 exists. In the example shown in FIGS. 11 and 12, the exit light guide mirror 30 and the light receiving light guide mirror 50 are arranged in a posture inclined at a predetermined 45 degrees on the central optical path.
 変形例3として開示する上記構成によれば、上述した実施形態等に比べて筐体100に収容される基板の数を低減できる。そのため、基板間を接続する配線(例えばフレキシブルケーブル)の数を削減することができる。また、基板を保持する機構も低減できるため、結果として筐体100の小型化が可能となる。さらに、筐体100に取り付ける基板の数が減るため、レーザレーダ装置1の組立工数が低減し、製造コストを抑制することができる。 According to the configuration disclosed as the third modification, the number of substrates accommodated in the housing 100 can be reduced as compared with the above-described embodiment and the like. Therefore, the number of wirings (for example, flexible cables) that connect the substrates can be reduced. In addition, since the mechanism for holding the substrate can be reduced, the housing 100 can be downsized as a result. Furthermore, since the number of substrates attached to the housing 100 is reduced, the number of assembling steps of the laser radar apparatus 1 can be reduced, and the manufacturing cost can be suppressed.
 なお、上述した実施形態等の構成は、この変形例3に対して各部材の配置の自由度が高いといった利点を有する。また、変形例3として開示するように、受光素子71とレーザダイオード11とが同一基板に配置した構成では、光学系部材との位置合わせの困難性が増加する傾向がある。例えば、受光素子71が受光レンズ60の左側の焦点に位置するように統合基板90を動かすと、レーザダイオード11の位置が射出レンズ20の焦点からずれてしまう恐れが生じるためである。そのような事情を鑑みると、上述した実施形態等のように、受光素子71とレーザダイオード11とを別々の基板に設ける構成は、変形例3の構成に比べて光学系部材との位置合わせの困難性を抑制できるといった利点を有する。 The configuration of the above-described embodiment and the like has an advantage that the degree of freedom of arrangement of each member is high with respect to the third modification. In addition, as disclosed as Modification 3, the configuration in which the light receiving element 71 and the laser diode 11 are arranged on the same substrate tends to increase the difficulty of alignment with the optical system member. For example, if the integrated substrate 90 is moved so that the light receiving element 71 is positioned at the focal point on the left side of the light receiving lens 60, the position of the laser diode 11 may be shifted from the focal point of the emission lens 20. In view of such circumstances, the configuration in which the light receiving element 71 and the laser diode 11 are provided on separate substrates as in the above-described embodiment is more aligned with the optical system member than the configuration of the third modification. There is an advantage that difficulty can be suppressed.
 [変形例4]
 上述した実施形態では、レーザレーダ装置1全体の動作を制御する機能を提供する回路(以降、主制御回路部)が実装された基板を、主制御基板80として、光源基板10や受光基板70と別に設けた構成を開示したがこれに限らない。主制御回路部は、光源基板10、走査基板44、及び受光基板70の何れかに設けられていてもよい。換言すれば、光源基板10、走査基板44、及び受光基板70の何れかを主制御基板80と一体的に形成しても良い。そのような構成によっても、筐体100に収容される基板の数を低減できるため、基板間を接続する配線の数を低減したり、組立工数を低減したりすることができる。
[Modification 4]
In the embodiment described above, the substrate on which a circuit (hereinafter referred to as a main control circuit unit) that provides a function for controlling the operation of the entire laser radar device 1 is mounted as the main control substrate 80, and the light source substrate 10 and the light receiving substrate 70. Although the structure provided separately was disclosed, it is not restricted to this. The main control circuit unit may be provided on any of the light source substrate 10, the scanning substrate 44, and the light receiving substrate 70. In other words, any one of the light source substrate 10, the scanning substrate 44, and the light receiving substrate 70 may be formed integrally with the main control substrate 80. Even with such a configuration, since the number of substrates accommodated in the housing 100 can be reduced, the number of wirings connecting the substrates can be reduced, and the number of assembling steps can be reduced.
 [変形例5]
 以上では、レーザ光の進行方向を所定角度変更させる部材(つまり、折曲部材)として平面ミラーを用いる態様を例示したが、これに限らない。折曲部材は、パラボラミラーであってもよい。また、反射ではなく、屈折によって光学経路を折り曲げても良い。
[Modification 5]
In the above, an example in which a plane mirror is used as a member (that is, a bending member) that changes the traveling direction of the laser light by a predetermined angle is illustrated, but the present invention is not limited thereto. The bending member may be a parabolic mirror. Further, the optical path may be bent not by reflection but by refraction.
 光の屈折を利用する折曲部材は、例えば、合成樹脂又はガラス等などといった透明な材料を用いて実現されればよい。その形状は、所望の折り曲げ角度が提供されるように設計されれば良い。 The bending member using the refraction of light may be realized by using a transparent material such as synthetic resin or glass. The shape may be designed to provide a desired bending angle.
 [変形例6]
 レーザ光を掃引照射するための機構は、ポリゴンミラー41を回動させる構成に限らない。例えば、MEMS(Micro Electro Mechanical Systems)ミラーを用いてレーザ光を掃引照射させてもよい。また、平面ミラーを、モータを用いて回動させることで掃引照射させてもよい。その他、周知の構成を援用してレーザ光の照射方向を変更させることができる。ポリゴンミラー41や、MEMSミラー、レーザ光を筐体外部に射出するための平面ミラーなどが走査用ミラーに相当する。
[Modification 6]
The mechanism for sweeping and irradiating the laser beam is not limited to the configuration in which the polygon mirror 41 is rotated. For example, laser light may be swept and irradiated using a MEMS (Micro Electro Mechanical Systems) mirror. Moreover, you may perform sweep irradiation by rotating a plane mirror using a motor. In addition, the irradiation direction of the laser beam can be changed by using a known configuration. A polygon mirror 41, a MEMS mirror, a plane mirror for emitting laser light to the outside of the housing, and the like correspond to the scanning mirror.
 なお、相対的に大きい検知エリアを形成しようとした場合、平面ミラーを用いた構成は、ポリゴンミラーを用いた構成よりも大型化する傾向がある。換言すれば、上述した実施形態等のようにポリゴンミラーを用いることによって、相対的に広い検知エリアの形成と、筐体100の小型化を両立することができる。 When a relatively large detection area is to be formed, the configuration using the plane mirror tends to be larger than the configuration using the polygon mirror. In other words, by using a polygon mirror as in the above-described embodiment, it is possible to achieve both the formation of a relatively wide detection area and the miniaturization of the housing 100.
 [その他の変形例]
 以上では、ポリゴンミラー41が、最奥側部材となる場合を例示したがこれに限らない。例えば、受光レンズ60が最奥側部材となる場合もある。そのような場合には、種々の基板を、受光レンズ60と奥行き方向において重ならない位置に配置する。また、種々の基板は、受光レンズ60の最も奥側の端部よりも手前側に位置するように配置することが好ましい。
[Other variations]
Although the case where the polygon mirror 41 is the innermost member has been illustrated above, the present invention is not limited to this. For example, the light receiving lens 60 may be the innermost member. In such a case, various substrates are arranged at positions that do not overlap the light receiving lens 60 in the depth direction. In addition, it is preferable that the various substrates are arranged so as to be positioned on the front side of the innermost end portion of the light receiving lens 60.
 また、上述した実施形態ではレーザレーダ装置1とECU2とが有線接続されることを前提とした構成を開示したがこれに限らない。レーザレーダ装置1とECU2とは無線接続されてもよい。その場合、主制御基板80が備えるコネクタ84は省略できる。その代わり、筐体100内には、ECU2と無線通信するための通信モジュールが収容されるものとする。 In the above-described embodiment, the configuration on the premise that the laser radar device 1 and the ECU 2 are connected by wire is disclosed, but the configuration is not limited thereto. The laser radar device 1 and the ECU 2 may be wirelessly connected. In that case, the connector 84 provided in the main control board 80 can be omitted. Instead, a communication module for wirelessly communicating with the ECU 2 is accommodated in the housing 100.
 上述のレーザレーダ装置は、レーザ光を所定の角度範囲で掃引照射することで、角度範囲に応じて定まる検知エリア内に存在するターゲットとの距離情報を取得する。レーザレーダ装置は、光源基板10と、射出レンズ20と、走査用ミラー41と、走査基板44と、受光基板70と、受光レンズ60と、筐体100と、を備える。光源基板10には、レーザ光を出力するレーザ光源が配置される。射出レンズ20は、レーザ光源が出力するレーザ光を整形して出力する。走査用ミラー41は、射出レンズから出力されるレーザ光を反射して筐体外部に射出するためのミラーであって、レーザ光源に対する姿勢を変更可能に構成されている。走査基板44は、走査用ミラーのレーザ光源に対する姿勢を制御する。受光基板70には、ターゲットで反射されたレーザ光である反射光を受光し、その受光した反射光の強度に応じた電気信号を出力する受光素子が設けられる。受光レンズ60は、反射光を受光素子に集光する。筐体100は、光源基板10と、射出レンズ20と、走査用ミラー41と、走査基板44と、受光基板70と、受光レンズ60と、を収容する。射出レンズ、走査用ミラー、及び受光レンズのうち、筐体の奥行き方向において最も奥側に端部を有する部材である最奥側部材と、筐体の奥行き方向において重ならない位置に、光源基板、走査基板、及び受光基板を配置する。 The above-described laser radar device obtains distance information with respect to a target existing in a detection area determined according to the angle range by sweeping and irradiating laser light in a predetermined angle range. The laser radar apparatus includes a light source substrate 10, an emission lens 20, a scanning mirror 41, a scanning substrate 44, a light receiving substrate 70, a light receiving lens 60, and a housing 100. A laser light source that outputs laser light is arranged on the light source substrate 10. The emission lens 20 shapes and outputs the laser beam output from the laser light source. The scanning mirror 41 is a mirror for reflecting the laser beam output from the emission lens and emitting it to the outside of the housing, and is configured to be able to change the attitude with respect to the laser light source. The scanning substrate 44 controls the posture of the scanning mirror with respect to the laser light source. The light receiving substrate 70 is provided with a light receiving element that receives reflected light, which is laser light reflected by the target, and outputs an electrical signal corresponding to the intensity of the received reflected light. The light receiving lens 60 condenses the reflected light on the light receiving element. The housing 100 accommodates the light source substrate 10, the emission lens 20, the scanning mirror 41, the scanning substrate 44, the light receiving substrate 70, and the light receiving lens 60. Of the emission lens, the scanning mirror, and the light receiving lens, the innermost member, which is a member having an end portion on the innermost side in the depth direction of the housing, and the light source substrate at a position that does not overlap in the depth direction of the housing, A scanning substrate and a light receiving substrate are disposed.
 以上の構成では、光源基板、走査基板、及び受光基板を、種々の光学系部材のうち、筐体の奥行き方向において最も奥側に端部を有する光学系部材である最奥側部材と、奥行き方向において重ならない位置に配置する。なお、ここでの光学系部材とは、射出レンズ、走査用ミラー、受光レンズといった、レーザ光を反射したり屈折させたりする部材を指す。また、筐体の奥行き方向とは、レーザ光を照射する角度範囲の中心(つまりレーザレーダ装置にとっての光軸)が向く方向に対して正反対となる方向に相当する。 In the above configuration, the light source substrate, the scanning substrate, and the light receiving substrate are the depth-side member that is an optical system member having an end portion on the farthest side in the depth direction of the housing among various optical system members, and the depth. Place in a position that does not overlap in the direction. Here, the optical system member refers to a member that reflects or refracts laser light, such as an emission lens, a scanning mirror, or a light receiving lens. Further, the depth direction of the housing corresponds to a direction that is opposite to the direction in which the center of the angle range in which the laser beam is irradiated (that is, the optical axis for the laser radar device) is directed.
 このような構成によれば、光学系部材の奥側に基板を配置することに起因して、レーザレーダ装置の奥行き方向における長さ(つまり厚み)が、基板によって増大してしまうことを抑制することができる。つまり、レーザレーダ装置の厚みを抑制することができる。 According to such a configuration, the length (that is, the thickness) in the depth direction of the laser radar apparatus is prevented from increasing due to the substrate due to the substrate being disposed on the back side of the optical system member. be able to. That is, the thickness of the laser radar device can be suppressed.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (13)

  1.  レーザ光を所定の角度範囲で掃引照射することで、前記角度範囲に応じて定まる検知エリア内に存在するターゲットとの距離情報を取得するレーザレーダ装置であって、
     レーザ光を出力するレーザ光源が配置された光源基板(10)と、
     前記レーザ光源が出力するレーザ光を整形して出力する射出レンズ(20)と、
     前記射出レンズ(20)から出力されるレーザ光を反射して筐体外部に射出するためのミラーであって、前記レーザ光源に対する姿勢を変更可能に構成されている走査用ミラー(41)と、
     前記走査用ミラー(41)の前記レーザ光源に対する姿勢を制御する走査基板(44)と、
     前記ターゲットで反射されたレーザ光である反射光を受光し、その受光した反射光の強度に応じた電気信号を出力する受光素子が設けられた受光基板(70)と、
     前記反射光を前記受光素子に集光する受光レンズ(60)と、
     前記光源基板(10)、前記射出レンズ(20)、前記走査用ミラー(41)、前記走査基板(44)、前記受光基板(70)、及び前記受光レンズ(60)を収容する筐体(100)と、を備え、
     前記射出レンズ(20)、前記走査用ミラー(41)、及び前記受光レンズ(60)のうち、前記筐体(100)の奥行き方向において最も奥側に端部を有する部材である最奥側部材と、前記筐体(100)の奥行き方向において重ならない位置に、前記光源基板(10)、前記走査基板(44)、及び前記受光基板(70)が配置されているレーザレーダ装置。
    A laser radar device that obtains distance information with a target existing in a detection area determined according to the angular range by sweeping and irradiating laser light in a predetermined angular range,
    A light source substrate (10) on which a laser light source for outputting laser light is disposed;
    An injection lens (20) for shaping and outputting laser light output from the laser light source;
    A mirror for reflecting the laser beam output from the emission lens (20) and emitting the laser beam to the outside of the housing, the scanning mirror (41) configured to change the attitude with respect to the laser light source;
    A scanning substrate (44) for controlling the posture of the scanning mirror (41) relative to the laser light source;
    A light receiving substrate (70) provided with a light receiving element that receives reflected light, which is laser light reflected by the target, and outputs an electrical signal according to the intensity of the received reflected light;
    A light receiving lens (60) for condensing the reflected light on the light receiving element;
    A housing (100) for housing the light source substrate (10), the exit lens (20), the scanning mirror (41), the scanning substrate (44), the light receiving substrate (70), and the light receiving lens (60). ) And
    Of the exit lens (20), the scanning mirror (41), and the light receiving lens (60), a rearmost member that is a member having an end on the innermost side in the depth direction of the housing (100) And the light source substrate (10), the scanning substrate (44), and the light receiving substrate (70) at positions that do not overlap in the depth direction of the housing (100).
  2.  請求項1において、
     前記走査用ミラー(41)は、奥行き方向と直交する方向に前記反射光を反射するように構成されており、
     前記走査用ミラー(41)で反射された前記反射光を反射又は屈折することで前記反射光の進行方向を変更させる受光経路折曲部材(50)を備え、
     前記受光経路折曲部材(50)は、前記走査用ミラー(41)から入射される前記反射光を、奥行き方向と直交する方向であって、かつ、前記走査用ミラー(41)が存在しない方向に反射する姿勢で配置されており、
     前記受光レンズ(60)及び前記受光基板(70)は、前記受光経路折曲部材(50)が前記走査用ミラー(41)から入射される前記反射光を反射する方向に配置されているレーザレーダ装置。
    In claim 1,
    The scanning mirror (41) is configured to reflect the reflected light in a direction orthogonal to the depth direction,
    A light receiving path bending member (50) for changing the traveling direction of the reflected light by reflecting or refracting the reflected light reflected by the scanning mirror (41);
    The light receiving path bending member (50) is a direction in which the reflected light incident from the scanning mirror (41) is perpendicular to the depth direction and the scanning mirror (41) is not present. It is arranged in a posture that reflects on the
    The light receiving lens (60) and the light receiving substrate (70) are arranged in a direction in which the light receiving path bending member (50) reflects the reflected light incident from the scanning mirror (41). apparatus.
  3.  請求項1において、
     前記レーザ光源から出力されたレーザ光を反射又は屈折することでレーザ光の進行方向を変更させる射出経路折曲部材(30)を備え、
     前記光源基板(10)は、前記レーザ光源から射出されたレーザ光が前記筐体(100)の奥行き方向と直交する方向にレーザ光を出力し、その出力されたレーザ光が前記射出経路折曲部材(30)を介して前記走査用ミラー(41)に入射するように配置されており、
     前記走査用ミラー(41)は前記射出経路折曲部材(30)から入射されたレーザ光を前記角度範囲で掃引照射するように構成されているレーザレーダ装置。
    In claim 1,
    An emission path bending member (30) that changes the traveling direction of the laser light by reflecting or refracting the laser light output from the laser light source;
    The light source substrate (10) outputs laser light in a direction orthogonal to the depth direction of the casing (100), and the output laser light is bent in the emission path. Arranged to enter the scanning mirror (41) via a member (30),
    The scanning radar (41) is a laser radar device configured to sweep and irradiate laser light incident from the exit path bending member (30) in the angular range.
  4.  請求項3において、
     前記走査用ミラー(41)は、奥行き方向と直交する方向に前記反射光を反射するように構成されており、
     前記走査用ミラー(41)で反射された前記反射光を反射又は屈折することで前記反射光の進行方向を変更させる受光経路折曲部材(50)を備え、
     前記受光経路折曲部材(50)は、前記走査用ミラー(41)から入射される前記反射光を奥行き方向と直交する方向であって、かつ、前記走査用ミラー(41)が存在しない方向に反射する姿勢で配置されており、
     前記受光レンズ(60)及び前記受光基板(70)は、前記受光経路折曲部材(50)が前記走査用ミラー(41)から入射される前記反射光を出力する方向に配置されているレーザレーダ装置。
    In claim 3,
    The scanning mirror (41) is configured to reflect the reflected light in a direction orthogonal to the depth direction,
    A light receiving path bending member (50) for changing the traveling direction of the reflected light by reflecting or refracting the reflected light reflected by the scanning mirror (41);
    The light receiving path bending member (50) is configured so that the reflected light incident from the scanning mirror (41) is in a direction perpendicular to the depth direction and the scanning mirror (41) is not present. It is arranged in a reflective posture,
    The light receiving lens (60) and the light receiving substrate (70) are arranged in a direction in which the light receiving path bending member (50) outputs the reflected light incident from the scanning mirror (41). apparatus.
  5.  請求項3又は4において、
     前記射出経路折曲部材(30)は、前記レーザ光源から出力されたレーザ光の進行方向を直角に変更させるように配置されているレーザレーダ装置。
    In claim 3 or 4,
    The emission path bending member (30) is a laser radar device arranged to change the traveling direction of the laser beam output from the laser light source to a right angle.
  6.  請求項2又は4において、
     前記受光経路折曲部材(50)は、前記反射光の進行方向を直角に変更させるように配置されているレーザレーダ装置。
    In claim 2 or 4,
    The light receiving path bending member (50) is a laser radar device arranged so as to change the traveling direction of the reflected light to a right angle.
  7.  請求項1から6の何れか1項において、
     前記筐体(100)内には、前記光源基板(10)、前記走査基板(44)、及び前記受光基板(70)のそれぞれと通信可能に接続された、前記レーザ光源による前記レーザ光の射出を制御するとともに前記レーザ光を射出させてから前記受光素子が前記反射光を受光するまでの時間に基づいて前記距離情報を生成する主制御基板(80)が配置されており、
     前記光源基板(10)、前記受光基板(70)、前記走査基板(44)、及び前記主制御基板(80)のそれぞれは、レーザ光を反射又は屈折する光学系部材と、奥行き方向において重ならない位置に配置されているレーザレーダ装置。
    In any one of Claim 1 to 6,
    In the housing (100), the laser light is emitted by the laser light source connected to the light source substrate (10), the scanning substrate (44), and the light receiving substrate (70) in a communicable manner. And a main control board (80) for generating the distance information based on the time from when the laser light is emitted until the light receiving element receives the reflected light,
    Each of the light source substrate (10), the light receiving substrate (70), the scanning substrate (44), and the main control substrate (80) does not overlap with an optical member that reflects or refracts laser light in the depth direction. Laser radar device placed at a position.
  8.  請求項7において、
     前記主制御基板(80)は、基板の厚み方向が前記奥行き方向と平行となる姿勢で配置されているレーザレーダ装置。
    In claim 7,
    The main radar control board (80) is a laser radar device arranged such that the thickness direction of the board is parallel to the depth direction.
  9.  請求項1から6の何れか1項において、
     前記光源基板(10)、前記受光基板(70)、前記走査基板(44)の何れかに、前記レーザ光源による前記レーザ光の射出を制御するとともに前記レーザ光を射出させてから前記受光素子が前記反射光を受光するまでの時間に基づいて前記距離情報を生成する主制御回路部が設けられているレーザレーダ装置。
    In any one of Claim 1 to 6,
    The light receiving element controls the emission of the laser light from the laser light source and emits the laser light to any of the light source substrate (10), the light receiving substrate (70), and the scanning substrate (44). A laser radar apparatus provided with a main control circuit unit that generates the distance information based on a time until the reflected light is received.
  10.  請求項1から9の何れか1項において、
     前記光源基板(10)及び前記受光基板(70)は、1つの基板として一体的に形成されているレーザレーダ装置。
    In any one of Claim 1 to 9,
    The laser radar device, wherein the light source substrate (10) and the light receiving substrate (70) are integrally formed as one substrate.
  11.  請求項4において、
     前記射出経路折曲部材(30)及び前記受光経路折曲部材(50)は、前記走査用ミラー(41)で反射された前記反射光が通る直線上に所定の順に並んで配置されており、
     前記受光基板(70)は、前記筐体(100)内において前記直線を挟んで前記光源基板(10)と反対側に配置されているレーザレーダ装置。
    In claim 4,
    The emission path bending member (30) and the light receiving path bending member (50) are arranged in a predetermined order on a straight line through which the reflected light reflected by the scanning mirror (41) passes,
    The light receiving substrate (70) is a laser radar device arranged on the opposite side of the light source substrate (10) across the straight line in the housing (100).
  12.  請求項1から11までの何れか1項において、
     前記走査用ミラー(41)は、回転軸に対して傾いた複数の反射面を備えるポリゴンミラーであって、
     前記走査基板(44)には前記ポリゴンミラーを前記回転軸まわりに回動させるモータが配置されており、
     前記走査用ミラー(41)としての前記ポリゴンミラーは、前記ターゲットからの前記反射光を前記回転軸に平行な方向に反射するように構成されているレーザレーダ装置。
    In any one of Claims 1-11,
    The scanning mirror (41) is a polygon mirror having a plurality of reflecting surfaces inclined with respect to the rotation axis,
    The scanning substrate (44) is provided with a motor for rotating the polygon mirror around the rotation axis,
    The laser mirror device, wherein the polygon mirror as the scanning mirror (41) is configured to reflect the reflected light from the target in a direction parallel to the rotation axis.
  13.  請求項1から8の何れか1項において、
     車両の外部に前記検知エリアを形成するように前記車両に搭載されるレーザレーダ装置。
    In any one of Claim 1 to 8,
    A laser radar device mounted on the vehicle so as to form the detection area outside the vehicle.
PCT/JP2017/000931 2016-01-28 2017-01-13 Laser radar device WO2017130729A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/072,338 US11119194B2 (en) 2016-01-28 2017-01-13 Laser radar device
DE112017000570.1T DE112017000570T5 (en) 2016-01-28 2017-01-13 LASER RADAR DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016014853 2016-01-28
JP2016-014853 2016-01-28
JP2016-237837 2016-12-07
JP2016237837A JP2017138301A (en) 2016-01-28 2016-12-07 Laser rader device

Publications (1)

Publication Number Publication Date
WO2017130729A1 true WO2017130729A1 (en) 2017-08-03

Family

ID=59399014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000931 WO2017130729A1 (en) 2016-01-28 2017-01-13 Laser radar device

Country Status (1)

Country Link
WO (1) WO2017130729A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018484A (en) * 2018-01-08 2019-07-16 Sos实验株式会社 Laser radar apparatus
WO2021169714A1 (en) * 2020-02-28 2021-09-02 上海禾赛科技有限公司 Laser radar and anti-interference method applied thereto

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229603B2 (en) * 1971-08-10 1977-08-03
US4627734A (en) * 1983-06-30 1986-12-09 Canadian Patents And Development Limited Three dimensional imaging method and device
JPS6462613A (en) * 1987-09-03 1989-03-09 Fujitsu Ltd Image pickup device
JPH11326499A (en) * 1998-05-20 1999-11-26 Mitsubishi Electric Corp Distance measuring device and vehicle controller using the device
JP2000162533A (en) * 1998-11-30 2000-06-16 Aisin Seiki Co Ltd Optical scanner
JP2002031685A (en) * 2000-07-17 2002-01-31 Denso Corp Reflection measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229603B2 (en) * 1971-08-10 1977-08-03
US4627734A (en) * 1983-06-30 1986-12-09 Canadian Patents And Development Limited Three dimensional imaging method and device
JPS6462613A (en) * 1987-09-03 1989-03-09 Fujitsu Ltd Image pickup device
JPH11326499A (en) * 1998-05-20 1999-11-26 Mitsubishi Electric Corp Distance measuring device and vehicle controller using the device
JP2000162533A (en) * 1998-11-30 2000-06-16 Aisin Seiki Co Ltd Optical scanner
JP2002031685A (en) * 2000-07-17 2002-01-31 Denso Corp Reflection measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018484A (en) * 2018-01-08 2019-07-16 Sos实验株式会社 Laser radar apparatus
CN110018481A (en) * 2018-01-08 2019-07-16 Sos实验株式会社 Laser radar apparatus
CN110018481B (en) * 2018-01-08 2023-08-01 Sos实验株式会社 Laser radar device
CN110018484B (en) * 2018-01-08 2023-12-29 Sos实验株式会社 Laser radar device
WO2021169714A1 (en) * 2020-02-28 2021-09-02 上海禾赛科技有限公司 Laser radar and anti-interference method applied thereto

Similar Documents

Publication Publication Date Title
US11119194B2 (en) Laser radar device
KR102096676B1 (en) 2-dimensioal lidar scanner and control device using for vehicle
CN107918118B (en) Laser radar
KR101665938B1 (en) Optical system of multi lidar scanner using mirror rotation
KR101965012B1 (en) Optical measurement device for a vehicle, driver-assistance device comprising such a measurement device, and a vehicle which comprises a corresponding measurement device
KR102210101B1 (en) Optical structure and scanning LiDAR having the same
JP6737296B2 (en) Object detection device
CN111656215A (en) Laser radar device, driving assistance system, and vehicle
JP6575596B2 (en) Light emitting / receiving device and laser radar device provided with the same
JP6679472B2 (en) Object detection device
JP2018005183A (en) Optical scanning device, object detection device and distance detection device
JP2018077088A (en) Distance measuring device and method for distance measurement
JPWO2017110574A1 (en) Light emitting / receiving unit and radar
WO2017130729A1 (en) Laser radar device
JP6594282B2 (en) Laser radar equipment
JP6587599B2 (en) Object detection device
KR102068849B1 (en) Optical measuring device of a vehicle, passenger assistance device comprising said type of measuring device and vehicle comprising a corresponding measuring device
JP6584370B2 (en) Optical radar device for vehicles
JP2023159092A (en) Optical scanner, object detection device and sensing device
JP2015184037A (en) laser radar device
EP3364229B1 (en) Optical-scanning-type object detection device
JP7143800B2 (en) lidar device
JP6036116B2 (en) Laser radar equipment
JP2017125765A (en) Object detection device
JP6663156B2 (en) Object detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000570

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743960

Country of ref document: EP

Kind code of ref document: A1