
CS 418: Interactive Computer Graphics

Environment Mapping

Eric Shaffer

Some slides adapted from Angel
and Shreiner: Interactive Computer

Graphics 7E © Addison-Wesley 2015

Environment Mapping

 How can we render reflections with a rasterization engine?

 When shading a fragment, usually don’t know other scene geometry

 Answer: use texture mapping….

 Create a texture of the environment

 Map it onto mirror object surface

 Any suggestions how generate (u,v)?

Types of Environment Maps

Sphere Mapping

 Classic technique…

 Not supported by WebGL

 OpenGL supports sphere mapping

which requires a circular texture map

equivalent to an image taken with a

fisheye lens

5

Sphere Mapping Example

Sphere Mapping Limitations

 Visual artifacts are common

 Sphere mapping is view dependent

 Acquisition of images non-trivial

 Need fisheye lens

 Or render from fisheye lens

 Cube maps are easier to acquire

 Or render

Acquiring a Sphere Map….

 Take a picture of a shiny sphere in a real environment

 Or render the environment into a texture (see next slide)

Why View Dependent?

 Conceptually a sphere map

is generated like ray-tracing

 Records reflection under

orthographic projection

 From a given view point

 What is a drawback of this?

9

Cube Map

Cube mapping takes a different approach….

Imagine an object is in a box

…and you can see the environment through that box

Forming a Cube Map

Reflection Mapping

1

2

How Does WebGL Index into Cube Map?

V
R

•To access the cube map you compute

R = 2(N·V)N-V

•Then, in your shader

•How does WebGL compute the index?

•Assume object at origin

•Largest magnitude component of R

determines face of cube

•Other two components give texture coordinates

vec4 texColor = textureCube(texMap, R);

Indexing into a Cube Map
void convert_xyz_to_cube_uv(float x, float y, float z, int *index, float *u, float *v)
{

float absX = fabs(x);
float absY = fabs(y);
float absZ = fabs(z);

int isXPositive = x > 0 ? 1 : 0;
…
float maxAxis, uc, vc;

// POSITIVE X
if (isXPositive && absX >= absY && absX >= absZ) {

// u (0 to 1) goes from +z to -z
// v (0 to 1) goes from -y to +y
maxAxis = absX;
uc = -z;
vc = y;
*index = 0;

}

…

// Convert range from -1 to 1 to 0 to 1
*u = 0.5f * (uc / maxAxis + 1.0f);
*v = 0.5f * (vc / maxAxis + 1.0f);

}

Example

 R= (-4,3,-1)

 Normalize so max value has magnitude of 1

R=(-1, ¾ , - ¼)

 Remap texture coordinates…x,y,z are in [-1,1]

 Need them on [0,1]

 v = ½ + ½ x ¾ = 0.875

 u = ½ + ½ x -¼ = 0.375

 Use face x = -1

 Texture coordinates of (u,v) = (0.375, 0.875)

1

5

WebGL Implementation

 WebGL supports only cube maps

 vec4 texColor = textureCube(mycube, texcoord);

 desktop OpenGL also supports sphere maps

 First must form map

 Use images from a real camera

 Form images with WebGL

 Texture map it to object

Vertex Shader

1

6

varying vec3 R;

attribute vec4 vPosition;

attribute vec4 vNormal;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

void main(){

//…other code

gl_Position = projectionMatrix*ModelViewMatrix*vPosition;

vec4 eyePos = ModelViewMatrix*vPosition;
vec4 N = ModelViewMatrix*vNormal;

R = reflect(eyePos.xyz, N.xyz); }

Fragment Shader

1

7

precision mediump float;

varying vec3 R;

uniform samplerCube texMap;

void main()

{

vec4 texColor = textureCube(texMap, R);

gl_FragColor = texColor;

}

Limitations

 What do you not see here that you should?

1

9

Issues

 Assumes environment is very far from object

 (equivalent to the difference between near and distant lights)

 Object cannot be concave (no self reflections possible)

 No reflections between objects

Refraction

Refraction

Need to Compute Refraction Vector

Snell’s Law

Medium is Important

In GLSL, the refract

function expects the

index of refraction to

be specified as

c1/c2 where:

C1 is the outside

medium

C2 is the inside

medium

So to go from air to

glass you would use

99.97/52.2

Refraction Vertex Shader

T is a varying….

Also eyePos.xyz needs to be the normalized view direction

Refraction Fragment Shader

T is a varying….

RefMap is a uniform

What’s Wrong with this Code?

 From an actual published book…which has some good stuff in it:

