
Section 8: Demand Paging and TLB

October 23-35, 2019

Contents

1 Vocabulary 2

2 Deadlock 3
2.1 Page Allocation . 3
2.2 Address Translation . 5
2.3 Demand Paging . 7
2.4 Cached Paging . 8
2.5 Inverted Page Tables . 9

1

CS 162 Fall 2019 Section 8: Demand Paging and TLB

1 Vocabulary

• Demand Paging The process where the operating system only stores pages that are ”in demand”
in the main memory and stores the rest in persistent storage (disk). Accesses to pages not currently
in memory page fault and the page fault handler will retrieve the request page from disk (paged
in). When main memory is full, then as new pages are paged in old pages must be paged out
through a process called eviction. Many cache eviction algorithms like least recently used can be
applied to demand paging, the main memory is acting as the cache for pages which all start on
disk.

• Working Set The subset of the address space that a process uses as it executes. Generally we
can say that as the cache hit rate increases, more of the working set is being added to the cache.

• Resident Set Size The portion of memory occupied by a process that is held in main memory
(RAM). The rest has been paged out onto disk through demand paging.

• Thrashing Phenomenon that occurs when a computer’s virtual memory subsystem is constantly
paging (exchanging data in memory for data on disk). This can lead to significant application
slowdown.

• Translation Lookaside Buffer (TLB) - A translation lookaside buffer (TLB) is a cache that
memory management hardware uses to improve virtual address translation speed. It stores virtual
address to physical address mappings, so that the MMU can store recently used address mappings
instead of having to retrieve them mutliple times through page table accesses.

• Inverted Page Table - The inverted page table scheme uses a page table that contains an entry
for each phiscial frame, not for each logical page. This ensures that the table occupies a fixed
fraction of memory. The size is proportional to physical memory, not the virtual address space.
The inverted page table is a global structure – there is only one in the entire system. It stores
reverse mappings for all processes. Each entry in the inverted table contains has a tag containing
the task id and the virtual address for each page. These mappings are usually stored in associative
memory (remember fully associative caches from 61C?). Associatively addressed memory compares
input search data (tag) against a table of stored data, and returns the address of matching data.
They can also use actual hash maps.

2

CS 162 Fall 2019 Section 8: Demand Paging and TLB

2 Deadlock

2.1 Page Allocation

Suppose that you have a system with 8-bit virtual memory addresses, 8 pages of virtual memory, and 4
pages of physical memory.

How large is each page? Assume memory is byte addressed.

32 bytes

Suppose that a program has the following memory allocation and page table.

Memory Segment Virtual Page Number Physical Page Number
N/A 000 NULL
Code Segment 001 10
Heap 010 11
N/A 011 NULL
N/A 100 NULL
N/A 101 NULL
N/A 110 NULL
Stack 111 01

What will the page table look like if the program runs the following function? Page out the least recently
used page of memory if a page needs to be allocated when physical memory is full. Assume that the
stack will never exceed one page of memory.

What happens when the system runs out of physical memory? What if the program tries to access
an address that isn’t in physical memory? Describe what happens in the user program, the operating
system, and the hardware in these situations.

#define PAGE_SIZE 1024; // replace with actual page size

void helper(void) {

char *args[5];

int i;

for (i = 0; i < 5; i++) {

// Assume malloc allocates an entire page every time

args[i] = (char*) malloc(PAGE_SIZE);

}

printf("%s", args[0]);

}

Memory Segment Virtual Page Number Physical Page Number
Heap 000 00
Code Segment 001 10
Heap 010 11
N/A 011 NULL
N/A 100 NULL
N/A 101 NULL
N/A 110 NULL
Stack 111 01

3

CS 162 Fall 2019 Section 8: Demand Paging and TLB

Memory Segment Virtual Page Number Physical Page Number
Heap 000 00
Code Segment 001 10
Heap 010 PAGEOUT
Heap 011 11
N/A 100 NULL
N/A 101 NULL
N/A 110 NULL
Stack 111 01

Memory Segment Virtual Page Number Physical Page Number
Heap 000 PAGEOUT
Code Segment 001 10
Heap 010 PAGEOUT
Heap 011 11
Heap 100 00
N/A 101 NULL
N/A 110 NULL
Stack 111 01

Memory Segment Virtual Page Number Physical Page Number
Heap 000 PAGEOUT
Code Segment 001 10
Heap 010 PAGEOUT
Heap 011 PAGEOUT
Heap 100 00
Heap 101 11
N/A 110 NULL
Stack 111 01

4

CS 162 Fall 2019 Section 8: Demand Paging and TLB

2.2 Address Translation

Consider a machine with a physical memory of 8 GB, a page size of 8 KB, and a page table entry size
of 4 bytes. How many levels of page tables would be required to map a 46-bit virtual address space if
every page table fits into a single page?

Since each PTE is 4 bytes and each page contains 8KB, then a one-page page table would point to
2048 or 211 pages, addressing a total of 211 * 213 = 224 bytes.

Depth 1 = 224 bytes
Depth 2 = 235 bytes
Depth 3 = 246 bytes
So in total, 3 levels of page tables are required.

List the fields of a Page Table Entry (PTE) in your scheme.

Each PTE will have a pointer to the proper page, PPN, plus several bits read, write, execute, and
valid. This information can all fit into 4 bytes, since if physical memory is 233 bytes, then 20 bits
will be needed to point to the proper page, leaving ample space (12 bits) for the information bits.

Without a cache or TLB, how many memory operations are required to read or write a single 32-bit
word?

Without extra hardware, performing a memory operation takes 4 actual memory operations: 3 page
table lookups in addition to the actual memory operation.

With a TLB, how many memory operations can this be reduced to? Best-case scenario? Worst-case
scenario?

Best-case scenario: 2 memory lookups. once in TLB, once for actual memory operation. Worst-case
scenario: 5 memory lookups. once in TLB + 3 page table lookups in addition to the actual memory
operation.

The pagemap is moved to main memory and accessed via a TLB. Each main memory access takes
50 ns and each TLB access takes 10 ns. Each virtual memory access involves:

- mapping VPN to PPN using TLB (10 ns)
- if TLB miss: mapping VPN to PPN using page map in main memory (50 ns)
- accessing main memory at appropriate physical address (50 ns)
Assuming no page faults (i.e. all virtual memory is resident) what TLB hit rate is required for an

average virtual memory access time of 61ns.

(10+50)*x+(1-x)*(50+10+50) = 61

solve for x gives x = .98 = 98% hit rate

Assuming a TLB hit rate of .50, how does the average virtual memory access time of this scenario
compare to no TLB?

With a TLB with a hit rate of 0.5:

x = 0.5

avg_time = (10+50)*x+(1-x)*(50+10+50)

avg_time = 85

Without a TLB:

5

CS 162 Fall 2019 Section 8: Demand Paging and TLB

time = 50 + 50

time = 100

6

CS 162 Fall 2019 Section 8: Demand Paging and TLB

2.3 Demand Paging

An up-and-coming big data startup has just hired you do help design their new memory system for a
byte-addressable system. Suppose the virtual and physical memory address space is 32 bits with a 4KB
page size.

Suppose you know that there will only be 4 processes running at the same time, each with a Resident
Set Size (RSS) of 512MB and a working set size of 256KB.W hat is the minimum amount of TLB entries
that your system would need to support to be able to map/cache the working set size for one process?
What happens if you have more entries? What about less?

A process has a working set size of 256KB which means that the working set fits in 64 pages. This
means our TLB should have 64 entries. If you have more entries, then performance will increase
since the process often has changing working sets, and it should be able to store more in the TLB.
If it has less, then it can’t easily translate the addresses in the working set and performance will
suffer.

Suppose you run some benchmarks on the system and you see that the system is utilizing over 99% of
its paging disk IO capacity, but only 10% of its CPU. What is a combination of the of disk space and
memory size that can cause this to occur? Assume you have TLB entries equal to the answer from the
previous part.

The CPU can’t run very often without having to wait for the disk, so it’s very likely that the system
is thrashing. There isn’t enough memory for the benchmark to run without the system page faulting
and having to page in new pages. Since there will be 4 processes that have a RSS of 512MB each,
swapping will occur as long as the physical memory size is under 2GB. This happens regardless of
the number of TLB entries and disk size. If the physical memory size is lower than the aggregate
working set sizes, thrashing is likely to occur.

Out of increasing the size of the TLB, adding more disk space, and adding more memory, which one
would lead to the largest performance increase and why?

We should add more memory so that we won’t need to page in new pages as often.

7

CS 162 Fall 2019 Section 8: Demand Paging and TLB

2.4 Cached Paging

Consider a machine with a page size of 1024 bytes. There are 8KB of physical memory and 8KB of
virtual memory. The TLB is a fully associative cache with space for 4 entries that is currently empty.
Assume that the physical page number is always one more than the virtual page number. This is a se-
quence of memory address accesses for a program we are writing: 0x294, 0xA76, 0x5A4, 0x923, 0xCFF,
0xA12, 0xF9F, 0x392, 0x341.

Here is the current state of the page table.

Valid Bit Physical Page Number
0 NULL
1 2
0 NULL
0 4
0 5
1 6
1 7
0 NULL

Explain what happens on a memory access.

First, we check the TLB. If the cached translation exists, we directly access the physical memory.
If we get a TLB miss, then we must do a page walk in the page table to find an entry if it exists. If
the entry is invalid or missing, we bring in the page, update our page table, and add the translation
to our cache for future accesses.

How many TLB hits and page faults are there? What are the contents of the cache at the end of the
sequence?

TLB hits: 5, Page Faults: 3
1. TLB miss (cold cache), PF 2. TLB miss (cold cache), PF 3. TLB miss (cold cache), hit 4. TLB
miss (cold cache), hit 5. TLB hit, PF 6. TLB hit, hit 7. TLB hit, hit 8. TLB hit, hit 9. TLB hit
hit

Valid Bit Physical Page Number
1 1
1 2
1 3
1 4
0 5
1 6
1 7
0 NULL

Tag Physical Page Number
0 1
2 3
1 2
3 4

8

CS 162 Fall 2019 Section 8: Demand Paging and TLB

2.5 Inverted Page Tables

Why IPTs? Consider the following case:
- 64-bit virtual address space
- 4 KB page size
- 512 MB physical memory
How much space (memory) needed for a single level page table? Hint: how many entries are there?

1 per virtual page. What is the size of a page table entry? access control bits + physical page #.

One entry per virtual page

- 2^64 addressable bytes / 2^12 bytes per page = 2^52 page table entries

Page table entry size

- 512 MB physical memory = 2^29 bytes

- 2^29 bytes of memory/2^12 bytes per page = 2^17 physical pages

- 17 bits needed for physical page number

Page table entry = ~4 bytes

- 17 bit physical page number = ~3 bytes

- Access control bits = ~1 byte

Page table size = page table entry size * # total entries

2^52 page table entries * 2^2 bytes = 2^54 bytes (16 petabytes)

i.e. A WHOLE LOT OF MEMORY

How about multi level page tables? Do they serve us any better here?
What is the number of levels needed to ensure that any page table requires only a single page (4

KB)?

Assume page table entry is 4 bytes

4 KB page / 4 bytes per page table entry =

1024 entries

10 bits of address space needed

ceiling(52/10) = 6 levels needed

7 memory accesses to do something? SLOW!!!

Linear Inverted Page Table
What is the size of of the hashtable? What is the runtime of finding a particular entry?
Assume the following:
- 16 bits for process ID
- 52 bit virtual page number (same as calculated above)
- 12 bits of access information

add up all bits = 80 bits = 10 bytes

- 10 bytes * # of physical pages = 10 * 2^17 = 2^3 * 2^17 = 1 MB

Iterate through all entries.

9

CS 162 Fall 2019 Section 8: Demand Paging and TLB

For each entry in the inverted page table,

compare process ID and virtual page

number in entry to the requested process

ID and virtual page number

Extremely slow. must iterate through 2^17 entries of the hash table

worst-case scenario.

Hashed Inverted Page Table
What is the size of of the hashtable? What is the runtime of finding a particular entry?
Assume the following:
- 16 bits for process ID
- 52 bit virtual page number (same as calculated above)
- 12 bits of access information

add up all bits = 80 bits = 10 bytes

- 10 bytes * # of physical pages = 10 * 2^17 = 2^3 * 2^17 = 1 MB

Linear inverted page tables require too many

memory accesses.

- Keep another level before actual inverted page

table (hash anchor table)

Contains a mapping of process ID and virtual page

number to page table entries

- Use separate chaining for collisions

- Lookup in hash anchor table for page table entry

Compare process ID and virtual page number

- if match, then found

- if not match, check the next pointer for another page table

entry and check again

So, with a good hashing scheme and a hashmap proportional to

the size of physical memory, O(1) time. Very efficient!

10

	Vocabulary
	Deadlock
	Page Allocation
	Address Translation
	Demand Paging
	Cached Paging
	Inverted Page Tables

