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Revisiting the Transonic Similarity Rule: Critical Mach 
Number Prediction Using Potential Flow Solutions  

Jeffrey J. Kirkman1 and Timothy T. Takahashi2 
Arizona State University, Tempe, AZ, 85287-6106 

This paper revisits Von Kármán’s Transonic Similarity Rule as explained by Schlichting. 
This rule postulates that an equivalent incompressible geometry corresponds to any given 
subcritical, high speed aerodynamic shape. We utilize panel method as well as Navier-Stokes 
CFD tools to better understand the actual behavior of wings in wing sections in high speed 
flight. We provide evidence that the classical “stretching” explanations given by famous 
authors are mutually inconsistent with one another. We also show that for many, but not all 
cases, a better physical analogy has the engineer visualize the Transonic Similarity Rule as a 
non-linear transformation of the effective velocity or dynamic pressure. We also discovered 
notable discrepancies in the Critical Pressure Coefficient equation given by famous authors. 

 

 
 

Nomenclature 
 

 = Angle of attack (deg) 
 = Prandtl-Glauert Scaling Parameter 
a =   Speed of Sound 
AR = Aspect Ratio (wing tip-to-tip span divided by mean geometric chord) 
b = Wing Span 
c = Wing Chord  
CL = Lift Coefficient 
CDi = Drag Coefficient 
Cp =  pressure coefficient 
Cp* = Critical Pressure Coefficient (associated with the onset of locally sonic flow) 
M = Freestream Mach number 
Mcr = Critical Mach Number (associated with the onset of locally sonic flow) 
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I. Introduction 
 
RADITIONALLY designed transonic wings employ various techniques to meet drag divergence criteria, 
including the spanwise distribution of camber, incidence, and thickness. Because shock induced flow separation 

dramatically increases overall drag, wing designers take great care to control the formation of shock waves. 
 
One approach to delaying the onset of the shock formation is the use of leading edge sweep. However, work 
presented in the 2104 AIAA AVIATION conference, Takahashi, Dulin & Kady1 found inconsistencies with 
Busemann’s Simple Sweep Theory2,3 as applied to a sheared wing. In a continuation of this work, presented in 2015 
AIAA AVIATION conference, Takahashi & Kamat employed modern CFD to revisit the inconsistencies.4 They 
found evidence that the published methods to predicting the onset of shock waves were inadequate. The data 
provided from the CFD runs did not inspire confidence that the classical theoretical predictions were applicable to 
real world swept wings. 

 
In this current work, we seek to document the perils of applying many published transonic relationships to the 
design problem specifically the Transonic Similarity Rule. This theory holds that, for sub-critical flows, the high 
speed flow around any arbitrary body may be represented an incompressible, low speed flow around a body with a 
transformed geometry. Over the years, many authors have described this effect in terms of a geometrical 
“stretching” phenomenon. In our work, it became clear to us that common explanations are logically inconsistent. 
We raise question as to whether the mathematics of the Transonic Similarity Rule really means that a high speed 
aircraft can be modelled as a “stretched geometry” in incompressible flow. We suspect, and document in this paper, 
evidence that shows that the Transonic Similarity Rule results in equivalent flows which appear to have a Mach 
number dependent scaled velocity element. 
 
In order to determine the correct formula for the Critical Pressure Coefficient, and therefore predict the Mach 
number associated with incipient supersonic flow, we used a variety of computational tools including commercial 
CFD, public domain 3D vortex lattice, and web-based 2D airfoil codes. Although our end goal is to determine the 
corrections on sheared and/or swept wings, the current authors found many inconsistencies between various 
derivations of the Critical Pressure Coefficient (Cp*) for unswept wings. This paper will explore the works of 
Hermann Schlichting,5 Dietrich Küchemann,6 Eastman Jacobs and Theodore Von Kármán7  from a 2D perspective. 
In this work, we set forth to determine the correct derivation for the Critical Pressure Coefficient and found that 
various published derivations lead to very different answers; although they all imply the same general physical 
trends. The inconsistencies between the various formulas at the Mach numbers in which real aircraft fly at, are 
significant enough to explain at least some of the problems noted by Takahashi & Kamat.4 

II. Prior Art 
 

A. Transonic Similarity Rules 
 

In his NACA Technical Memorandum, Prandtl addressed the flow of compressible fluids, and presented his famous 
transformation to compare an incompressible flow, to a compressible flow.8 This work provided a conceptual path to 
design aircraft that operate in the transonic regime. It is also the basis of many general purpose potential flow 
aerodynamic flow solvers. Prandtl’s key equation comes in found in equation 10 in the original manuscript 
(reproduced here as equation 1): 
 

 
ఋ௨

ఋ௫
ቀ1 െ

௨బమ

௔మ
ቁ ൅

ఋ௩

ఋ௬
൅

ఋ௪

ఋ௭
ൌ 0                   (1) 

 
This equation provides a freestream velocity dependent correction on the flow in the x-direction. This is proven to be 
a powerful equation and the only assumptions are that the velocities derived are small compared to the flow, u0, and 
that the velocity in the v and w direction are small relative to the speed of sound, a.  We do not dispute the utility of 
this equation, merely the physical explanation of its action. 
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Four possible physical explanations can arise from this 
equation (see Figure 1). All invoke the famous, Prandtl-
Glauert scaling parameter: 
 

ߚ  ൌ ට1 െ
௨బ
మ

௖మ
ൌ ඥ1 െܯஶ

ଶ       (2) 

 
One interpretation (represented by Figure 1A) says that 
the scaling term acts upon the x axis dimension of the 
geometry terms, in other words, P-G scales the 
longitudinal geometry in the axis of on-coming flow by a 

factor proportional to the reciprocal of , 1/ඥ1 െܯஶ
ଶ. 

Here, the inflow velocity is exactly aligned with the x 
axis; thus a wing at angle-of-incidence must be 
represented by an inclined geometry. Thus, the x axis 
stretching results in the equivalent incompressible shape being longer in the x, or chordwise direction but no longer 
in the y, or thickness direction. Such a transformation implies that the equivalent incompressible shape has greater 
effective area, a lower effective thickness-to-chord ratio (t/c), and a lower incidence () than the actual high-speed 
shape. 
 
A second possible interpretation (represented by Figure 1B) says that the scaling term acts upon the x axis 
dimension of the geometry terms, in other words, P-G scales the longitudinal geometry in the axis of on-coming 

flow by a factor proportional to the reciprocal of , 1/ඥ1 െܯஶ
ଶ. In this view, the geometry is exactly aligned with 

the x axis; but the inflow velocities comprise a steady flow in both the x and y directions; u and v are non-zero. Thus, 
the x axis stretching results in the equivalent incompressible shape being longer in the x, or chordwise direction but 
no longer in the y, or thickness direction. Such a transformation implies that the equivalent incompressible shape has 
greater effective, a lower effective thickness-to-chord ratio (t/c), and the same incidence () than the actual high-
speed shape. 
 
The third interpretation (represented by Figure 1C) says that the scaling term acts upon the u dimension of the flow 

terms, in other words, P-G scales the effective flow speed by a factor proportional to simply ඥ1 െܯஶ
ଶ. In this 

view, the inflow perfectly aligns itself with the x axis. The geometry is inclined to represent incidence; however, no 
Mach number dependent “stretching” takes place. A velocity scaling viewpoint has the equivalent incompressible 
shape maintain the same area, incidence and thickness-to-chord ratio as the actual high-speed shape. However, the 
scaled effective velocity means that the actual pressure coefficients (along with lifting forces, pressure drag forces 

and pitching moments) increase in a manner proportional to 1/ඥ1 െܯஶ
ଶ.  

 
The final interpretation (represented by Figure 1D) says that the scaling term acts upon the y axis dimension of the 
geometry terms, in other words, P-G scales the transverse geometry in the axis of on-coming flow by a factor 

proportional to ., ඥ1 െܯஶ
ଶ. Thus, the y axis stretching results in the equivalent incompressible shape being 

shorter in the y, or spanwise direction but no longer in the x, chordwise or, z, thickness direction. Such a 
transformation implies that the equivalent incompressible shape has the same incidence and thickness-to-chord ratio 
(t/c) as the actual high-speed shape, but a smaller area and lower aspect ratio. 
 
Prandtl8 solves the modified form of this equation, an elliptic equation for subsonic velocities and hyperbolic for 
supersonic velocities, to explain the geometric transformation implied by high-speed, compressible (but subcritical) 
flows. Prandtl states that in order for a contour in a compressible fluid to maintain the same result as in an 
incompressible fluid, the “contour must be made thinner” and likewise, the angle of attack must decrease. This is, in 
essence interpretation 1A as stated above.  
 

 
Figure 1 – Possible Geometry Implications of the 
Prandtl-Glauert potential flow equation 
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It is interesting to note that Prandtl describes this work as being a geometrical change. He of course talks about 
comparing a compressible solution back to an incompressible one. Other authors view it in reverse; taking an 
incompressible solution and correcting it to a compressible one. His 
primary discussion is how it relates to a contour thickness as well 
as an angle of attack change, yet it appears to be an attempt to make 
sense of the work he laid out with only a slight comment on the 
correction factor being related to the velocities themselves. Prandtl 
“hand waves” the discussion to relate a mathematical model to 
some form of a physical relationship. 
 
Although less famous than Prandtl, Göthert made considerable 
contributions to the theory of three-dimensional flows at high 
subsonic speeds. In NACA TM-1105 from 1946, Göthert discussed 
the effects of “stretching” and incompressible solution in order to 
obtain the compressible flow solution.9 Reproduced below is 
Göthert’s version of the potential flow equation: 
 

 
డమథ೎
డ௫೎

మ ൅
డమథ೎

ሺඥଵି୑ஶమ	ൈ	డ௬೎ሻమ
൅

డమథ೎

ሺඥଵି୑ஶమ	ൈ	డ௭೎ሻమ
ൌ 0     (3) 

 
Göthert claims that the streamlines of a compressible flow are 
distortions of the streamlines of the incompressible by a “Prandtl 

Factor” of 	1/ඥ1 െ	ܯஶ
ଶ, but in the y and z directions (as opposed 

to a reciprocal transformation in the x direction). Göthert argues 
that the compressible flow is comparable to the incompressible 
flow by a decrease in the y and z contours. Therefore, his 
“stretching” of the incompressible profile is actually a contraction 
along the y and z coordinates (the x coordinate is defined in the free 
stream direction). 
 
R.T Jones approached Prandtl’s transformation in NACA TR-863,10 
as well as his later writings in Jones & Cohen’s High Speed Wing 
Theory.11 These works explain the transformation in two 
dimensions as a stretching in the x-direction by the factor of 

1/ඥ1 െ	ܯஶ
ଶ , therefore it is the chord of the airfoil that the 

stretching is applied to. This explanation is purely geometrical and 
only occurs in the x-direction. Jones & Cohen go on to argue the 
transformation in relation to a three-dimensional wing as well.11 
 
According to Jones & Cohen,11 the compressible flow relationships 
that govern a two-dimensional wing sections apply broadly to 
three-dimensional wings (see Figure 2). They state that, 
geometrically, the longitudinal stretching means that the equivalent 
area increases while the span remains the same. Thus both the 
effective sweep angle and the aspect ratio of the equivalent 
incompressible wing will vary due to the “stretching” in the chord. 
They hold that the aspect ratio of a compressible wing is 
comparable to a smaller aspect ratio wing in incompressible flow. 

Thus the effective incompressible area increases by the Prandtl-Glauert factor, 1/ඥ1 െ	ܯஶ
ଶ , while the effective 

incompressible aspect ratio declines by a factor of  ඥ1 െ	ܯஶ
ଶ . Jones does not expressly differentiate between the 

Figure 1A and Figure 1B physical analogies in either work.10,11 Because he does not discuss angle-of-attack effects 
directly, either explanation could fit his reasoning. 
 

 
Figure 4 – Schlichting / Jones & Cohen 
explanation of Prandtl-Glauert Stretching. 
– effects on sweep 

 
Figure 2 - Jones & Cohen explanation of 
Prandtl-Glauert Stretching.12 

Figure 3 – Schlichting / Jones & Cohen 
explanation of Prandtl-Glauert Stretching. 
– effects on AR 
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Hermann Schlichting also approaches the “stretching” transformation as a similarity rule.5 Unlike Prandtl,8 he 
transforms the wing at compressible flow speeds into an equivalent incompressible wing by transforming the y 
coordinate; he does not discuss the z coordinate in his transformations. Mathematically it is algebraic rearrangement 
of terms first shown by Prandtl8 that follows the method proposed by Göthert.9  
 
Schlichting holds that the following geometrical transformations apply to compare a wing in compressible flow to 
an equivalent wing in incompressible flow. First, he applies a “stretching” on in the spanwise, y, direction: 
 
௜௡௖ݔ  ൌ  (4a)                       ݔ

௜௡௖ݕ  ൌ ݕ ∙ ඥ1 െܯஶ
ଶ                    (4b) 

௜௡௖ݖ  ൌ  (4c)                       ݖ
 
Thus, he implies the following properties of a transformed wing: that the span, b, scales downwards with increasing 
Mach number but the chord remains constant. 
 

 ܾ௜௡௖ ൌ ܾ ∙ ඥ1 െܯஶ
ଶ                    (5a) 

 ܿ௜௡௖ ൌ ܿ                       (5b) 
 
This means that the aspect ratio, AR, declines with increasing Mach number, while the taper ratio, TR, thickness-to-
chord ratio, t/c, and effective angle of attack, , all remain constant: 
 

௜௡௖ܴܣ  ൌ ܴܣ ∙ ඥ1 െܯஶ
ଶ                  (6) 

 ܴܶ௜௡௖ ൌ ܴܶ                      (7) 

 ቀ
௧

௖
ቁ
௜௡௖

ൌ ሺ
௧

௖
ሻ                      (8) 

௜௡௖ߙ  ൌ  (9)                       ߙ
 
Similar to Jones & Cohen,11 Schlichting5 indicates that the effective sweep of the incompressible wing increases 
with increasing Mach number although for different reasons (stretching in the spanwise as opposed to chordwise 
direction): 
 

cot	ሺ߮௜௡௖ሻ ൌ cotሺ߮ሻ ∙ ඥ1 െܯஶ
ଶ         (10) 

 
The effects of these transformations may be seen in Figures 3, 4 and 
5. Figure 3 plots equation (6) and finds, at higher Mach numbers, that 
the equivalent incompressible wing has a lower Aspect Ratio than the 
physical wing.  Figure 4 demonstrates how equation (10) affects the 
effective sweep. As the Mach number increases, Schlichting’s rule 
finds that swept wings behave as if they were incompressible wings 
of greater sweep (and smaller span).   
 
Figure 5 shows the geometric transformations described by 
Schlichting. Thus we may interpret this Figure to illustrate how a 
“given” physical wing can be represented by a series of 
“transformed” or equivalent incompressible wings. Because 

Schlichting holds that  ݕ௜௡௖ ൌ ݕ ∙ ඥ1 െܯஶ
ଶ , his equivalent 

incompressible wing is of a smaller wingspan (and area) than that of 
the physical wing in compressible flow. This is a key point where 
Jones and Schlichting differ. Jones10,11 implies that an increase in 
Mach number leads to an equivalent incompressible wing of greater 
effective area. Schlichting5 states that an increase in Mach number 

Figure 5 – Schlichting graphical 
explanation of the Transonic Similarity 
Rule.5  
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leads to an equivalent incompressible wing of lesser effective area. Clearly, both analogies cannot be correct! 
 
Thus, this argument, presented by Schlichting, indicates that he basically follow the guidelines of Figure 1D; 
changes in Mach number impact the effective span and area of the wing, but not the incidence or thickness.  
 
In other areas, Schlichting’s5 transformations agree with the work of Jones & Cohen,10,11 as they both argue an 
equivalent incompressible wing has a lower aspect ratio compared to the compressible wing. The difference occurs 
is how the incompressible solution is “stretched”. Schlichting states that the stretching occurs along the y-axis, 
therefore changing the aspect ratio, the span, and even changing an equivalent sweep angle. However, one major 
point that Schlichting states is: for the unchanged profile (airfoil) between incompressible and compressible flow, 
the angle of attack will be the same.  
  
This is an interesting point that Schlichting continues to point out in his derivations of the transformation of the lift 
coefficient, pressure coefficient, and moment coefficient of the incompressible wing to those of the compressible 
wing. He does not give an explanation as to the reason for this, but he also does not consider a z-direction 
transformation in any of his work. Schlichting only concerns himself with the x-y plane in his transformations.  
 
Schlichting also holds the following transformation formulas to hold for an “inclined wing of finite span in subsonic 
flow” where ߙ ൌ  ௜௡௖ where the geometry at incompressible speeds is otherwise identical to that at compressibleߙ
speeds: 
 

݌ܥ  ൌ
ଵ

ටଵିெಮ
మ
∙  ௜௡௖                    (11)݌ܥ

ܮܥ  ൌ
ଵ

ටଵିெಮ
మ
∙  ௜௡௖                    (12)ܮܥ

 	
ௗ஼௅

ௗఈ
ൌ

ଵ

ටଵିெಮ
మ
∙ ቀ

ௗ஼௅

ௗఈ
ቁ
௜௡௖

          

         (13) 
଴ߙ  ൌ  ଴௜௡௖:           (14)ߙ

݉ܥ  ൌ
ଵ

ටଵିெಮ
మ
∙  ௜௡௖        (15)݉ܥ

௜ܦܥ  ൌ
ଵ

ටଵିெಮ
మ
∙  ௜௜௡௖        (16)ܦܥ

 
That is, the pressure coefficients at high speeds increase 
inversely proportional to the Prandtl-Glauert scaling 
parameter, ; the lift coefficient at any given angle-of-attack 
increase inversely proportional to ; the slope of the lift  
coefficient with respect to angle-of-attack increases inversely 
proportional to ; the zero-lift-angle of attack remains 
unchanged, and the induced drag coefficient increases 
inversely proportional to It therefore follows that the 
inviscid aerodynamic efficiency at a given angle of attack,  
CL/CDi should not change as a function of Mach number 
because both the lift and induced drag coefficient scale 
directly with the reciprocal of .  To our eye, Schlichting’s 
arguments are inconsistent with those shown earlier in his 
book; they more closely follow the transformation implied by 
Figure 1C. 
 
The work done by Doug McLean in his book Understanding 
Aerodynamics12 very briefly covers “stretching” as Jones and 

 
Figure 6 – Description of relationship between 
Shock Wave Formation and Cp* from 
McLean.12 
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Prandtl would call it. McLean states that the pressure disturbances produced by an airfoil will maintain the general 
characteristics, however they will gradually increase. He does not call this a “stretching”, but instead just points out 
the increase in the pressure distribution in a compressible flow, compared to an incompressible flow.  
 
Figure 6 from Mclean,12 shows the effect of the Mach number on the pressure distributions. The airfoil remains at a 
constant angle of attack, however the pressure distributions appear as though the airfoil is “thicker” as the Mach 
number increases. This is the perfect example to McLean’s discussion on the change in the pressure coefficient in 
compressible flow. These arguments also seem to imply the existence of an effective dynamic pressure 
transformation, more than any formal geometric morphing. Thus, McLean circumstantially implied flow that 
behaves along the lines of Figure 1C.  
 
Mark Drela’s work in Flight Vehicle Aerodynamics explains the Prandtl-Glauert Transformation in a modified 

form.13 Drela defines the scaling factor as ߚ ≡ ඥ1 െܯஶ
ଶ and uses this β to define the geometrical transformations, 

but instead of Prandtl’s transformation in the x-direction, or Schlichting’s transformation in the spanwise, y, 
direction, he applies transformations in both the y and z-directions. 

 
Drela13 applies these transformations are 
applied to the y and z-directions, because 
Drela performs the transformation of the 
compressible flow, back to the 
incompressible solution. Therefore, the 
argument is the y and z coordinates 
decrease in the incompressible flow, when 
compared to the compressible flow 
solution. The incompressible angle of 
attack is decreased as well as the aspect 
ratio has decreased. In the figure below, 
Drela shows the real flow transformed into 
a mathematically equivalent flow  

 
Drela13 sketches the geometric transformations in his writings, reproduced here in Figure 7. Drela shows that the real 
flow (compressible) can be transformed to an incompressible flow through a decrease in the angle of attack, a 
decrease in the z-direction (including airfoil thickness), and the x-direction remaining untouched.  
 
Each author above has a different explanation on the stretching and how it applies to the equivalent incompressible 
geometry. While some agree with one another wholeheartedly, others have some issues with some of the work. Even 
when the authors cite another as the source of their “stretching”, they come out as different interpretations! This 
starts to make one wonder, who is right on the transformation and what is the correct physical explanation? We will 
validate many of these proposed relationships using modern computation in Section IV of this paper. 

 
B. Critical Pressure Coefficient 

 
To properly design transonic wings, engineers must pay careful consideration to match the flight conditions where 
incipient shock wave occurs with the planned operating characteristics of the airplane. This is due to the large drag 
impact that a shock wave can produce when it induces flow separation. The point where a shock wave begins to 
form is Critical Mach Number of the wing, the Mach number in which sonic flow is first attained somewhere on the 
wing. Traditionally, we associate this phenomenon with the speed where the peak underpressure of the local airflow 
falls below the Critical Pressure Coefficient (Cp*). We need to precisely capture the speed and lift coefficient where 
this occurs because the overall design of a wing hangs in the balance of being able to properly meet design 
performance targets in terms of lift and drags well as the necessary volume for structure, fuel and other components. 

 
Theodore Von Kármán, in his famous paper on compressibility effects7, uses Glauert’s approximation14 in order to 
derive his equation for the Critical Pressure Coefficient. Glauert’s approximation allows the mathematician to 

 
Figure 7- Transformed Equivalent Incompressible Geometry 
showing an increase in area and decrease in angle-of-attack. After 
Drela.13 
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linearized the perturbation velocities under an argument that holds that while higher order perturbation terms exist, 
they are negligible. This leads Von Kármán, to derive his equation for the Critical Pressure Coefficient: 
 

∗݌ܥ  ൌ
ଶ൤൫ଵିெಮ

మ ൯
య
మൗ 	∙	൫ଵାெಮ

మ ൯
భ
మൗ ൨

ெಮ
                 (17) 

 
Kármán goes on to state that the equation above may not be exact due to the derivation from the linear theory. In 
order to improve upon this, he suggests that we consider Eastman Jacobs’ derivation from the thermodynamic 
relationship is a good starting point: 
 

∗݌ܥ  ൌ

ଶ቎ଵିቆ
మశሺംషభሻಾಮ

మ

ംశభ ቇ
ം ሺംషభሻ⁄

቏

ఊெಮ
మ                 (18) 

 
Kármán points out that the derivation from Jacobs includes some necessary corrections to errors introduced by the 
linearized theory.  Interestingly, we cannot find a direct source of this derivation on scholar.google.com. None of 
Eastman Jacobs’ authored papers seem to explain his rationale. While Jacobs worked for the NACA, the Critical 
Mach Number lines in the famous NACA TR-824 airfoil guide15 follow von Kármán’s equation (17) to infer the 
Critical Mach Number from the peak recorded underpressure found during low speed testing.  
 
John Anderson, in Introduction to Flight, approached the Critical Pressure Coefficient through thermodynamic 
relationships.16 Anderson derives equation 19 by the definition of the pressure coefficient and the isentropic 
relationships between the static pressure and total pressure.  

 

∗݌ܥ  ൌ
ଶ

ఊெಮ
మ ቊቂ

ଶାሺఊିଵሻெಮ
మ

ఊାଵ
ቃ
ఊ ሺఊିଵሻ⁄

െ 1ቋ              (19) 

 
Schlichting’s5 definition of the Critical Pressure Coefficient relies on the knowledge of the Critical Mach Number. 
Schlichting argues that if the Critical Mach Number is known, then the Critical Pressure Coefficient can be easily 
determined by the minimum pressure coefficient on the surface. He does make a correction to his equation as well 
into include the sweepback of the wing. Reproduced below is Schlichting’s derivation for the Critical Pressure 
Coefficient on the wing: 
 

∗݌ܥ  ൌ െ
ଶ

ఊାଵ

ଵିெ௔ಮ೎ೝ
మ ሺୡ୭ୱఝሻమ

ெ௔ಮ೎ೝ
మ                   (20a) 

 
For simple two-dimensional flow, Schlichting’s equation reduces to the following form: 
 

∗݌ܥ  ൌ െ
ଶ

ఊାଵ

ଵିெ௔ಮ೎ೝ
మ

ெ௔ಮ೎ೝ
మ                     (20b) 

 
This is a notably simpler equation than proposed by either von Kármán or Jacobs. 
 
Küchemann6 in his famous book, The Aerodynamic Design of Aircraft, describes the critical conditions through the 
use of isobars on a swept wing. He argues that on a swept wing the critical condition occurs where the flow normal 
to the isobars reaches the local speed of sound. Küchemann uses his swept wing example to derive through the 
thermodynamic relationships between pressure, velocity, and total head to reach the equation below. 
 

∗݌ܥ  ൌ
ଶ

ఊெಮ
మ ቊቀ

ଶ

ఊାଵ
ቁ

ം
ംషభ ቀ1 ൅

ఊିଵ

ଶ
ஶܯ

ଶ ሺcos߮ሻଶቁ
ം

ംషభ െ 1ቋ          (21a) 
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Which, when simplified for simple two-dimensional flow, reduces to: 
 

∗݌ܥ  ൌ
ଶ

ఊெಮ
మ ሼቀ

ଶ

ఊାଵ
ቁ

ം
ംషభ ቀ1 ൅

ఊିଵ

ଶ
ஶܯ

ଶ ቁ
ം

ംషభ െ 1ሽ             (21b) 

 
Although argued from a different 
perspective, and algebraically distinctive, 
Küchemann’s equation (21b) turns out to be 
numerically identical to the Eastman Jacobs 
equation (18) cited by Kármán.7  
 
The Critical Pressure Coefficient is crucial in 
understanding the incipient shock wave 
formation on a wing in transonic flight. 
Although many of the authors above apply 
similar, if not identical basic governing 
physics, each author follows a personal path 
to arrive at fundamentally different final 
equations which supposedly estimate Cp*. 
The inconsistencies between each derivation 
inspires no hope in the design process to 
accurately predict the shock wave formation.  
 
We plot each famous equation (Schlichting 
(20b), von Kármán (17), Küchemann (21b), 
E. Jacobs (18) and Anderson (19)) together 
as Figure 8. Although the equations vary, 
they each maintain the basic physical 
constraints. For example, each equation 
approaches zero as the Mach number 
approaches one. Therefore, as the freestream 
flow approaches sonic velocity, the pressure 
coefficient relating to the sonic flow point is 
zero. When the free stream flows at Mach 1, 
any disturbance that leads to increased 
velocities and reduced pressures triggers a 
shock wave. It is also interesting to note that 
for two dimensional flow, Küchemann, 
Eastman Jacobs, and Anderson’s Critical 
Pressure Coefficients are mathematically 
equivalent. This is expected since they are all derived through thermodynamic relationships. 
 
Although these equations approach zero as the Mach number approaches 1, these equations differ significantly at 
lower Mach numbers. Since real aircraft wings must carry lift in flight, incipient shock formation typically occurs in 
the Mach 0.6 to 0.7 range (for swept wings, this is in terms of Mach number normal to the leading edge). Figure 9 
shows the variation of the Critical Mach Number implied by the different formulas that occur in this range. A given 
pressure coefficient can imply a variation of Critical Mach Number as much as M~ 0.03 in this region. It is enough 
of discrepancy to cause performance figures to not be met; if a wing section ostensibly designed for Mcr=0.66 
actually has a Mcr=0.63, the speed corresponding to the onset of drag divergence will likely diminish 
proportionately.  
 
It is this discrepancy that the current authors have set out to investigate further in Section IV.  
  

 Figure 8- Comparison of Cp* equations (Schlichting, von 
Kármán, Küchemann, E. Jacobs and Anderson. Cp* as a function 
of Mach.  

 Figure 9- Detailed comparison of Cp* equations (Schlichting, 
von Kármán, Küchemann, E. Jacobs and Anderson. Cp* as a 
function of Mach at a typical airfoil design point. 
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III. Computational Methods Used in This Study 
 

In this study, the current authors employed various aerodynamic codes as well as commercial CFD in order to 
perform the necessary computations These computations included running various wings and airfoils at various 
Mach numbers and angles of attack. The purpose was to gather data to clarify the mysterious phenomena of 
“stretching” and to determine the “most correct” equation for the Critical Pressure Coefficient.  

 
VORLAX 
 
VORLAX is a compressibility-corrected subsonic/supersonic potential flow solver developed by Lockheed-
California (now Lockheed Martin) under contract from NASA.17 The code allows the user to input geometry 
in three forms: 1) simple, thin flat panels, 2) thin, cambered panels, or 3) a thickness simulating “sandwich 
panels.” VORLAX outputs a variety of flow solution data: 1) overall force and moment coefficients suitable 
to build an aerodynamic database (lift, drag, side force, pitching moment, rolling moment, and yawing 
moment), 2) surface panel net differential pressure coefficients (for thin flat and cambered panels), 3) 
surface panel actual pressure coefficients (for thickness simulated “sandwich panels), and 4) off-body wake 
survey velocity vectors. We used VORLAX to determine the correct forms of the various transformations 
proposed by Schlichting. We also use VORLAX alongside CFD to investigate Critical Mach Number 
predictive capabilities of the various equations. Because VORLAX is incapable of simulating a shock wave, 
we can identify regions of incipient sonic flow where the VORLAX solution diverges significantly from a 
CFD solution. 
 
JAVAFOIL 
 
JAVAFOIL is a simple program built upon a potential flow analysis and a boundary layer analysis. 
JAVAFOIL uses a higher order panel method to solve the potential flow equations and to obtain an inviscid 
flow velocity on the airfoil in question.18 It also implements the criteria set forth by Eppler, to solve the 
boundary layer differential equations.19 
  
JAVAFOIL does not handle supersonic velocities, and is able to handle mild transonic Mach numbers 
through the scaling of the basic potential flow solution through the Kármán-Tsien correction.7 Although 
JAVAFOIL includes Critical Mach Number predictive capability; the documentation does not identify the 
specific equation used to infer either Cp* or Mcr. 
 
We used the JAVAFOIL applet to verify some of the CFD results in low speed conditions, as well as to 
compare the transonic solutions to the potential flow model. 
 
ANSYS Fluent 
ANSYS Fluent software solves the Navier-Stokes equations through either a density-based or pressure-based 
solver. Due to the analysis of airfoils being in the transonic regime, the density-based solver was used.  
 
For the airfoil sections, we created a 2D C-grid, with the inlet and outlet placed a large distance from the 
airfoil, so that the boundaries did not interfere with the solution. A grid convergence was built on the base 
grid in order to verify the results of the computation. 

 
  

D
ow

nl
oa

de
d 

by
 T

im
ot

hy
 T

ak
ah

as
hi

 o
n 

Ja
nu

ar
y 

20
, 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
43

29
 



 
 

American Institute of Aeronautics and Astronautics 
 

© 2015 – J.J. Kirkman and T.T. Takahashi  
 

 
11 

IV. TRADE STUDIES TO IDENTIFY WHICH RELATIONSHIPS ARE EXACT VS APPROXIMATE 
 

We set forth to determine the correct transformation of 
incompressible flow solutions into compressible solutions 
starting with the Mach number dependent relationships proposed 
by Schlichting’s Aerodynamics of the Airplane.5 These were 
given earlier in the paper as equations (6) through (16). 
 

A. Prandtl-Glauert Effect on Pressure 
Distribution 

 
The first transformation we set to examine was the 
transformation on the pressure distribution. According to 
Schlichting the compressible pressure distribution is related to 
the incompressible pressure by the inverse of the Prandtl-Glauert 

parameter: ݌ܥ ൌ 	1/ඥ1 െܯஶ
ଶ ∙  .௜௡௖. (Equation 11 from above)݌ܥ

 
In Figure 10, we show the Mach number dependence of pressure 
coefficients as computed using a VORLAX sandwich panel 
model. Here, we model an aspect ratio 20 NACA 0006 section 
wing. We run VORLAX at three Mach numbers: 0.0, 0.6 and 0.8 
and at a variety of angles-of-attack. From the converged 
solutions, we extract centerline pressure profiles. In each case, 
we compare the pressure coefficients predicted at high speed 
against an application of equation 10 to the pressure coefficients 
predicted at M∞=0 (pure incompressible). In Figure 10a, we 
show the effects of M∞=0.8 flow on the non-lifting wing. The 
Schlichting approximation matches the VORLAX computation 
closely, but not exactly. In Figure 10b, we show the effects of 
M∞=0.6 oncoming flow to the wing at incidence. Here, the 
Schlichting approximation matches the VORLAX computation 
extremely closely, but not exactly.  
 
In the ANSYS Fluent 2-D inviscid compressible flow solution of 
a NACA 64-012 airfoil section, we find the Prandtl-Glauert 
correction is shown to be almost exact for the low transonic 
flows (around M∞=0.6) and a reasonable but imperfect 
approximation for flow at the higher Mach numbers. Here, we 
compared the high speed compressible flow solution compared 
with an M∞=0.1 solution as transformed by Equation 11. With 
the exception of the stagnation point at the leading edge, where 
Prandtl himself said the correction would be inconsistent,8 the 
simplified correction provides a good estimation for the 
compressible solution.  
 
Both VORLAX and ANSYS Fluent agree in many respects. Both 
solutions find that the induced pressures from thickness follow 
the Schlichting / Prandtl-Glauert rule; they are all stronger at 
high speeds than their incompressible equivalents (refer Figure 
10a and Figure 11a). Thus, as air speed increases, the actual wing 
feels “thicker” than it does at low speeds. For the lifting cases 
(refer to Figure 10b and Figure 11b), we see that the induced 
pressures due to incidence, camber and thickness follow the 

a  

b  
 
Figure 11 – ANSYS FLUENT 2D solutions. 
NACA 64-012 section. FLUENT run at 
M∞=0.59, M∞=0.73. Prandtl-Glauert 
predictions based upon FLUENT solutions at 
M∞=0.1. 

a  

b  
 
Figure 10 – VORLAX sandwich panel 
solutions. NACA 0006 section. VORLAX run 
at M∞=0.6, M∞=0.8. Prandtl-Glauert 
predictions based upon VORLAX solutions at 
M∞=0.0. 
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Prandtl-Glauert scaling rule. Thus, both upper and lower high-
speed pressure coefficients are noticeably greater than those 
predicted in incompressible flow; as speed increases the actual 
wing feels “thicker” than it does at low speeds; it also feels 
“larger” than it does at low speeds. However, the shape of the 
incidence dependent pressure profile does not change as we 
would expect if there were an effective change in incidence due 
to “stretching.” 
 
From this evidence, we confirm Schlichting’s transformation 
from Equation 11. At the same time, we refute “stretching” 
analogies 1A, 1B and 1D.  To explain the noted effects, we 
believe that analogy 1C must be true; the “stretching” effect 
manifests itself as a non-linear transformation of magnitude of 
the incoming flow. 
 

B.  Prandtl-Glauert Rule applied to 2D Lift 
Curve Slope 

 
According to Schlichting transformations equations (12) and 
(13), both the lift and the lift curve slope will also contain a 
Prandtl-Glauert correction. Schlichting argues, since the 
pressure distribution experiences a transformation in 
compressible flows, and since the lift is direct integration of the 
pressures, the lift and lift curve slope will receive the same 

transformation: 
డ஼ಽ
డఈ

ൌ
ଵ

ටଵିெಮ
మ

డ஼ಽ
డఈ ௜௡௖

.  

 
We see, in Figure 12, how well the lift curve slope of the VORLAX computed compressible solution is approximated 
by the Prandtl-Glauert correction. One distinction that is found in our finite wing data comes from the fact that 
neither the overall wing lift slope nor the centerline section lift slope of the AR=20 attains the theoretical 2D value.  
Thus, to make a fair assessment of Schlichting’s transformation we must “pivot” our transformations about the 
incompressible (M∞=0) centerline lift coefficient found in the numerical solution. Following such a procedure, we 
find that Schlichting’ s approximation is nearly exact for the low transonic speeds (around M∞=0.6) and slightly 
differs at higher transonic speeds. 
 
Figure 13 above shows the lift curve results from JAVAFOIL for a NACA 64-012 airfoil. Here we ran the code at 
M∞=0, and transformed the solution using Schlichting’s relationship and compared it against a solution found 
running this code at M∞=0.8. Because the solution of JAVAFOIL is not a pure inviscid solver, some inconsistencies 
form between the two solutions due to the Eppler boundary layer model used by this code. However, these results 
demonstrate that the Schlichting version of the Prandtl-Glauert correction factor on both lift and lift-slope is 
reasonable. 
 
From this evidence, we confirm Schlichting’s transformations predicted using Equations 12 and 13. At the same 
time, we refute “stretching” analogy 1A. Such a transformation would increase the effective area, but diminish the 
effective incidence of the wing. We see no such evidence here that analogy 1C is wrong; if we were to hold that the 
“stretching” effect manifests itself as a non-linear transformation of magnitude of the incoming flow, both the lift 
and lift-slope of the wing would scale in lockstep with the local pressure coefficients (as Figures 10, 11, 12 and 13 
all demonstrate). 
  

 
Figure 13 – JAVAFOIL solutions. NACA 64-
012 2-D model. Prandtl-Glauert predictions 
based upon JAVAFOIL solutions at M∞=0.0. 

 
Figure 12 – VORLAX solutions. Flat plate 
AR=20 model. Prandtl-Glauert predictions 
based upon VORLAX solutions at M∞=0.0. 
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C. Schlichting’ s rule for zero lift angle and pitching moment  
 
Schlichting’s Transonic Similarity rule includes a correction for the zero-lift angle of the compressible wing;  
଴ߙ ൌ  ଴௜௡௖  (equation 14). His transformation states that the angle of attack for the compressible wing does notߙ
change, and includes that the zero lift angle of the wing should be the same as well.  
 
Figure 14 shows the VORLAX solution of a thin cambered wing 
(NACA 23 camber form) at various Mach numbers and angles 
of attack with the moment reference point chosen at the wing 
quarter-chord area centroid.  These results, plotting lift as a 
function of incidence, demonstrate shows that the zero lift angle 
of the wing does not vary with Mach number. Schlichting’s 
transformation, or lack of transformation, appears to be correct 
regarding the zero lift angle.  
 
From this evidence, we believe that VORLAX continues to 
substantiate the Figure 1C physical analogy. When the 
“stretching” effect manifests itself as a non-linear transformation 
of magnitude of the incoming flow held at a prescribed 
incidence with respect to the body.  
 
Schlichting also states that the Transonic Similarity rule should 
apply the Prandtl-Glauert scaling term to the zero-lift pitching 

moment as well; that ݉ܥ ൌ
ଵ

ටଵିெಮ
మ
∙  ௜௡௖ (equation 15). In݉ܥ

Figure 15, we plot the quarter-chord reference pitching moment 
coefficient against the lift coefficient.  At a first glance the zero-
lift pitching moment appears to follow the Prandtl-Glauert 
correction factor. Under close scrutiny, we realize that the 
proposed correction is dreadfully wrong. The computational 
results show a Mach dependent effect that decreases the 
aerodynamic stability of the wing (moving the aerodynamic 
center forwards) as the incoming flow increases in speed. Since 
we saw in Figures 12 and 14 that dCL/d closely follows the 
Prandtl-Glauert scaling law, the change in the slope of dCm/dCL 
with Mach number implies that pitching moment cannot follow 
the same law. In Figure 16, we examine the high speed VORLAX 
solutions as opposed to incompressible results transformed by 
equation 15. Here we see a strong disagreement between the 
direct solution and Schlichting’s transformation; Schlichting’s 
method is clearly incorrect. 
 
From this new evidence, we find a situation where VORLAX 
does not substantiate any proposed physical analogy. If the 
“stretching” effect manifests itself as a non-linear transformation 
of magnitude of the incoming flow held at a prescribed 
incidence with respect to the body, both lift and pitching 
moment would scale by the same effect and no change in 
stability would occur. 
  

 
Figure 14 – VORLAX solutions. AR=6 thin 
cambered wing. NACA 23 camber form. Lift 
vs Angle of Attack. 

 
Figure 15 – VORLAX solutions. AR=6 thin 
cambered wing. NACA 23 camber form. 
Pitching Moment vs. Lift. 

 
Figure 16 – VORLAX solutions. AR=6 thin 
cambered wing. NACA 23 camber form. 
Pitching Moment vs. Angle of Attack. 
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D. Schlichting’s Rule for induced drag 

 
Schlichting’s transformation on the induced drag derives from 
the transformation on the lift as well as his purported spanwise 
scaling of the wing span; physical analogy 1D. Schlichting also 

claims that:  ܥ஽௜ ൌ
ଵ

ටଵିெಮ
మ
 ஽௜௜௡௖ (equation 16); thus both Liftܥ

and Induced Drag scale in lockstep. We show how computation 
does not support the veracity of this relationship. 
 
Figure 17 plots drag polars of an AR=6 flat-plate wing 
modelled with 100% analytical credit for leading edge suction. 
In Figure 17a, we examine an incompressible solution that 
builds a drag polar with dCDi/dCL2=0.555; pure lifting line 
theory would predict dCDi/dCL2 = 1/( AR) = 0.0530. Thus, 
the untwisted wing has a theoretical efficiency of 96%. In 
Figure 17b, we compare the M∞=0 incompressible solution 
corrected to M∞=0.9 using equation 16 against the direct 
M∞=0.9 solution. We see that the correction quickly deviates 
from the VORLAX solution. Something is dreadfully wrong. 
 
Indeed, in Figure 18 we plot dCDi/dCL2(M) as derived from a 
series of fully converged VORLAX solutions. Although the 
slope of dCL/d changes with Mach number, the value 
dCDi/dCL2 remains remarkably constant. In order to match this 
data, we propose an alternative relationship: 
 
஽௜ܥ  ൌ 1/ሺ1 െܯஶ

ଶ ሻ 	 ∙  ஽௜௜௡௖       (22)ܥ
 
This is because CDi is predominately a function of CL2; if CL 

follows a 
ଵ

ටଵିெಮ
మ

 relationship, CL2 must follow a 
ଵ

ଵିெಮ
మ  

relationship. 
 
From this evidence, we believe that VORLAX substantiates the 
Figure 1C physical analogy. When the “stretching” effect 
manifests itself as a non-linear transformation of magnitude of 
the incoming flow held at a prescribed incidence with respect to 
the body, lift increases proportionally to the square of enhanced 
velocity and drag increases proportionally to the square of the 
lift. 
 

E. Critical Mach / Critical CP* 
 

As discussed in Section II of this paper, famous authors have derived a multitude of equations to estimate the 
Critical Pressure Coefficient (refer back to Figures 8 and 9). Because the equations diverge from one another at 
lower Mach numbers; where they predict higher critical underpressures (more negative values of Cp*), we can 
“experimentally” and “computationally” determine which equations are clearly incorrect and which equations have 
positive predictive value.  
 
For the transonic 3D wing design problem, wing sweep is employed to reduce the Mach number normal to the 
leading edge to approximately M∞~0.6. It is precisely in this region that the classic equations differentiate 

a  

b
Figure 17 – VORLAX solutions. AR=6 thin flat 
plate wing with 100% credit for leading-edge 
suction. 

Figure 18 – VORLAX solutions. AR=6 thin flat 
plate wing with 100% credit for leading-edge 
suction. D
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themselves from one another. Since real wings carry lift and must contain structure, the designer is particularly 
interested in the interplay between underpressures created by lift generation (incidence and camber) and those 
created by thickness. For example, if an initial design relies upon an overly optimistic value of Cp*, drag divergence 
will onset early. The aircraft designer will either be forced to live with reduced performance or will need to accept a 
schedule slip to redesign a thinner (potentially structurally unfavorable) wing. 
 
Let us begin by examining wind tunnel pressure test data of a NACA 0012 section.20 C. D. Harris tested two 
dimensional flow on a NACA 0012 section in the NASA/LaRC 8-foot transonic pressure tunnel. These tests were 
performed holding flow velocity constant and changing the Mach number by lowering the static temperature, hence 
lowering the speed of sound of the flow. The 2D airfoil section was positioned at varying angles of attack to gather 
upper and lower surface pressure data 
 
In Figure 19, we examine experimental data collected at M∞=0.601 for two different incidences (=3.86o and 
=5.86o). The classic equations predict Cp* to be: 1) Schlichting: Cp*=-1.474, 2) Anderson: Cp*=-1.288; 3) Jacobs: 
Cp*=-1.288; 4) Küchemann: Cp*=-1.288; 5) Von Kármán, Cp*= -1.328.  Here we see that while the equations do 
differ slightly from one another, the test data cannot differentiate between them. Experiment finds no major shock 
wave at =3.86o and a noticeable shock at =5.86o. Among the analytical predictions, Schlichting’s Cp* equation 
predicts subcritical flow =3.86o while the others predict marginally supercritical flow at that condition. All five 
equations predict supercritical flow at =5.86o. Thus, high quality published test data confirms the broad utility of 
all of the analytical estimation formulas but cannot differentiate between them. 

 
Figure 19 – Wind tunnel test data of a NACA 0012 Airfoil (2D) at M∞=0.601. 
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In light of limited available test data, to use this basic 
procedure to find the best equation suitable to determine 
the Critical Mach Number, and therefore the Critical 
Pressure Coefficient, we turned to computation. 

 
In this work, we began by modelling a symmetric NACA 
64-012 airfoil in ANSYS FLUENT. We ran solutions 
varying Mach numbers at two angles of incidence: =0o 
and =4 o. We began with a low speed solution. We 
estimated the critical condition based upon the equations 
in Section II.  We then ran a fine sweep of high speed 
solutions varying the Mach number in 0.01 increments 
around the predicted critical point to determine the actual 
conditions associated with the onset of locally supersonic 
flow. 
 
Our process here was slow and methodical. It is crucial 
to take small increments in Mach number to truly capture 
the incipient shock formation. We also took into account 
the likelihood of shockless, supercritical flow developing 
right around the sonic point. Since the shock wave is 
sometimes difficult to track in the CFD solution, we took 
careful consideration to document the local Mach 
number of the near surface flow.  
 
The initial testing on zero degrees angle of attack showed 
Küchemann, Anderson and Eastman Jacobs were correct 
in the prediction of the shock wave, occurring at 
M∞=0.73. However, Schlichting and Kármán’s equations 
were off by a few hundredths, therefore we set to carry 
lift on the airfoils in order to force the Critical Mach to 
occur at lower Mach numbers, where the difference is 
more noticeable. 
 
Figure 20 plots computed upper and lower surface 
pressure coefficients of the NACA 64-012 airfoil at zero 
degrees angle of attack and M∞=0.73. At M∞=0.73 
(Figure 20a), the shock-wave is in the early stages of 
forming at the minimum pressure point. The flow has just 
reached its Critical Mach Number (Figure 21), which 
was predicted by Eastman Jacobs, Anderson and 
Küchemann, but not by Schlichting or Von Kármán 
(Figure 20b). This data here gives compelling evidence 
that Schlichting and Von Kármán were incorrect in their 
predictions of the Critical Pressure Coefficient. 
 
Figure 21 plots the Mach number of the M∞=0.73 flow 
over the airfoil at zero degrees angle of attack. We show 
in this figure that the local Mach number is exceeding 
one. Although the flow does not visually appear to form 
a shock wave, the airfoil has clearly reached its critical 
condition. As shown with the pressure coefficient plots 

a   

b  
Figure 20 – ANSYS/Fluent computation - 2D – 
NACA 64-012 solution: a) M∞=0.73; b) Peak 
underpressure of the M∞=0.73 solution. 

a  

b  
Figure 21. ANSYS/Fluent local Mach number over 
the NACA 64-012 airfoil: a) Mach number over the 
entire airfoil, b) Mach number at the location of the 
peak underpressure. 
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(Figure 20), Eastman Jacobs, Anderson, and Küchemann all correctly predict the critical condition. 
 
In order to verify the data from the CFD computations, we performed a grid density study. We performed this study 
by refining the grid step size by a factor of 1.5 two times over, in turn giving three total grids. From these grids the 
M∞=0.725 solution was run and the minimum pressure coefficient, and the Mach number at this location, was 
compared across each of the grids. Table 1 shows the results of the grid refinement. 
 
Table 1 shows confidence in the current calculations. The grid convergence shows that although the observed order 
is less than the order of the method, the data gathered is converging and the errors decreasing. Therefore, the current 
data is computed on a grid that has a sufficiently small step size. 
 
 

Table 1. CFD Validation Case Data. 
 

Step Size (h) Minimum Pressure (Cpmin) Maximum Mach 
1 -0.67989 0.9937 
1.5 -0.67863 0.9905 
2.25 -0.67606 0.9848 
Richardson Extrapolation -0.6811 0.9982 
   
Observed Order (p) 1.766 1.352 
GCI12 (Error band) 0.221% 0.559% 
GCI23 (Error band) 0.453% 0.970% 
Asymptote 0.99815 0.9967 

 

 
Figure 22 – ANSYS/FLUENT computation – 2D – NACA 64-012 solution. Comparison of high-speed vs P-G 
corrected low-speed data. 
 
 
Figure 22 demonstrates the utility and limitations of the simple Prandtl-Glauert transformation. We compare the 
low-speed, but Prandtl-Glauert corrected data (using Equation 11) against to the M∞=0.74 compressible flow 
solution from ANSYS. We can see how for high-speed, yet subcritical flow, Prandtl’s transformation on the low 
speed flow is approximate, but reasonably good. We also see a wider discrepancy around the location of peak 
underpressure, where local supersonic flow exists; and near the leading edge of the airfoil where Prandtl himself 
warned of the limitations of the correction. In these locations the approximation is poor.  
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a b  
Figure 23 – ANSYS/FLUENT computation – 2D – NACA 64-012 solution four degrees angle of attack: a) 
M∞=0.55; b) M∞=0.52 
 
The next testing was done on the NACA 64-012 airfoil at four degrees angle of attack. The data here shows that at 
M∞ = 0.55 a shock wave has formed near the leading edge of the airfoil, which is correctly predicted by each 
author. Figure 23a shows the pressure coefficient over the airfoil and shows that the Eastman Jacobs, Küchemann, 
Anderson, Schlichting, and Von Kármán are indeed correct in predicting this shock wave. However, in order to 
determine who predicts the critical point, we lowered the freestream Mach number to find the point in which the 
shock wave begins to form. 
 
Figure 23b shows the pressure coefficient for M∞=0.52. The data here shows a peak in the pressure coefficient near 
the leading edge, and a shock wave is in the early stages of forming. A check on the local Mach number does indeed 
indicate that the critical condition has been met on the airfoil. We found that Eastman Jacobs, Küchemann, 
Anderson, and Schlichting correctly predict this condition.  
 
From the data presented, we concluded that Eastman Jacobs, Küchemann, and Anderson are all correct in their 
derivation of the critical pressure coefficient for the two-dimensional unswept section. These three authors derived 
their results based upon thermodynamic relationships. Therefore, for an inviscid solution it makes sense that these 
three authors had the correct derivation for the Critical Pressure Coefficient. 
 

V. CONCLUSIONS 
 
As a first step in documenting the best formula to estimate the Critical Mach Number of a wing from a potential 
flow solution, we revisited the Transonic Similarity Rule. Close reading of the primary and secondary source 
literature revealed a multitude of differing interpretations and explanations of the physical transformation implied by 
the foundational mathematics. The famous authors5,6,7,8,9,10,11,12,13 all state that there is a geometrical transformation, 
causing a change in the wing area, aspect ratio, thickness and incidence. Some authors5,12 hand wave through the 
explanation to state there is only a difference in the results. These conflicting explanations do not give insight into 
the actual “stretching” that is applied to the compressible flow. Through the use of VORLAX, CFD (ANSYS 
FLUENT), and some JAVAFOIL solutions, we found that the geometrical “stretching” explanation does not properly 
describe code results. 
 
Schlichting5 summarized the Prandtl-Glauert transformations as part of his Transonic Similarity Rule. He provided a 
table of all of the transformations that should occur, including geometric “stretching”. In the work of this paper, we 
found Schlichting to have the correct transformation for the pressure distribution, the lift curve slope, zero lift angle, 
and the lift coefficient. These correlations imply that the “stretching” is not geometric, but instead a Mach dependent 
velocity “scaling” applied to the actual geometry (see the geometrical analogy described by Figure 1C).  
 
Schlichting’s transformation of the coefficient of pitching moment and the induced drag does not match our 
compressible solution. The pitching moment transformation cannot follow the Prandtl-Glauert transformation due to 
the coupling of the lift transformation, as well as a Mach transformation on the aerodynamic center. The 
transformation on the induced drag is defined by Schlichting as the transformation on the lift as well as the 
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transformation on the Aspect Ratio. This transformation is defined by a velocity “stretching” in the lift coefficient, 
and a geometric transformation through the decrease in the Aspect Ratio. Figure 17 shows that this transformation is 
not correct. Instead the current authors find that drag due to lift scales with the square of the high speed lift 

coefficient: an effective scaling transformation factor of a 
ଵ

ଵିெಮ
మ  as opposed to Schlichting’s 

ଵ

ටଵିெಮ
మ

 relationship. 

 
Our evidence shows that most of the manifestations of the Prandtl-Glauert rule that have previously been explained 
by some sort of “stretching” can be better explained by a velocity “scaling” analogy. Data presented here paper 
shows that various proposed transformations of high speed geometry into an altered, equivalent incompressible 
solution geometry introduce an effective angle of attack change, area change or aspect ratio change that has been 
contradicted by the computational results of accepted codes. 
 
We also found many different published equations that purport to estimate the Critical Mach and Critical Pressure 
Coefficient, and hence predict the onset of sonic flow. Here, we have shown that these equations vary significantly 
in the range of which real transonic aircraft experience incipient shock-wave formation.  
 
Using ANSYS Fluent to solve the Navier-Stokes equations, we set forth to determine which equation is correct in 
estimating the Critical Pressure Coefficient. By comparing the minimum pressure and the local Mach number on the 
airfoil, we found that the thermodynamic derivations of Eastman Jacobs, Küchemann, and Anderson correctly 
predicts the sonic point on the airfoil. 
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