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Abstract: Ransomware attacks have emerged as a significant threat to critical data and systems, ex-
tending beyond traditional computers to mobile and IoT/Cyber–Physical Systems. This study ad-
dresses the need to detect early ransomware behavior when only limited data are available. A major 
step for training such a detection model is choosing a set of relevant and non-redundant features, 
which is challenging when data are scarce. Therefore, this paper proposes an incremental mutual 
information-selection technique as a method for selecting the relevant features at the early stages of 
ransomware attacks. It introduces an adaptive feature-selection technique that processes data in 
smaller, manageable batches. This approach lessens the computational load and enhances the sys-
tem’s ability to quickly adapt to new data arrival, making it particularly suitable for ongoing attacks 
during the initial phases of the attack. The experimental results emphasize the importance of the 
proposed technique in estimating feature significance in limited data scenarios. Such results under-
score the significance of the incremental approach as a proactive measure in addressing the escalat-
ing challenges posed by ransomware. 
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1. Introduction 
Ransomware attacks have become a major threat to essential data and systems, as 

evidenced by the challenges they pose [1–3]. Their reach extends beyond traditional com-
puters to mobile and IoT/Cyber–Physical Systems, necessitating a deep dive into ransom-
ware behavior and the evaluation of defense strategies across different platforms [4]. The 
substantial impact of such attacks is evident from the global damages inflicted on various 
systems around the world [5–8]. Given the complexity of ransomware, showcased by var-
iants like LockBit 2.0, it is clear that advanced preventative and remediation strategies are 
needed [9,10]. Research is being directed toward developing detection systems that lever-
age behavioral, network traffic, and machine learning techniques for real-time detection 
and categorization of ransomware threats [11–13]. Efforts are also increasing in the area 
of recovery solutions to restore data access following ransomware disruptions [14,15]. Ad-
dressing ransomware comprehensively requires an understanding of its attack vectors, 
patterns, and behaviors, alongside the establishment of resilient defense infrastructures 
[16,17]. As these threats evolve, proactive steps, such as predicting and swiftly detecting 
attacks, become crucial, particularly in critical infrastructure sectors like healthcare and 
industrial systems [18,19]. The vulnerabilities ransomware introduces are also affecting 
diverse sectors such as IoT and AI-dependent equipment, which underscores the exten-
sive impact of this cyber threat [20,21]. Therefore, a thorough understanding of ransom-
ware’s evolution, taxonomy, and effective countermeasures is essential [22–25]. 
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The present strategies used for identifying ransomware utilize a variety of methods, 
including those based on detecting known signatures and observing behaviors, in addi-
tion to more progressive techniques like machine learning and smart systems. These strat-
egies employ regular pattern detection for tracking threats and gathering intelligence, uti-
lize in-depth systems for ransomware threat tracking, and implement adaptable preven-
tion methods for the Internet of Medical Things (IoMT) [26–28]. Detection techniques that 
make use of fuzzy hashing, analysis of file entropy, and machine learning classifiers have 
been examined in numerous studies to reduce ransomware risks [29–31]. Additionally, 
there has been an exploration into employing dynamic analysis, decoy-based security, and 
process monitoring to improve ransomware detection [32–34]. The creation of smart and 
adaptable detection systems, alongside the use of performance counters and detectors that 
focus on file-based ransomware, is indicative of the complex nature of these detection so-
lutions [35–37]. Furthermore, the adoption of AI-driven hybrid methods and layered pro-
filing with machine learning has been pivotal in enhancing ransomware-detection pro-
cesses [38]. Altogether, these varied methods are designed to tackle the changing dynam-
ics of ransomware threats and boost system robustness against these malicious incursions. 

The emphasis on recognizing ransomware attacks before they begin the encryption 
process is a key focus in cybersecurity research [39,40]. The early detection of ransomware 
behavior is particularly challenging due to the stealthy nature of ransomware attacks, 
which often do not leave clear indicators or generate significant anomalies that can be 
easily detected by traditional security measures. Ransomware attacks are designed to en-
crypt files quietly without alerting users or security systems until the attack is fully de-
ployed and a ransom demand is made. This makes it difficult for detection systems to 
identify and mitigate these attacks in their early stages before significant damage. 

Innovative methods have been suggested to improve early detection. For instance, 
Ref. [26] highlighted the crucial role of analyzing system logs for early signs, which facil-
itates rapid response to preempt ransomware threats. Furthermore, Ref. [8] introduced 
strategies aimed at the pre-encryption activities of crypto-ransomware, showing the ben-
efits of early, proactive detection. The study by [41] also underlined the effectiveness of 
estimating file entropy for early detection in cloud services, pointing out the importance 
of file analysis in these strategies. In addition, research on employing machine learning 
for the classification of Bitcoin transactions related to ransomware provides a significant 
boost to early detection methods, underscoring the importance of early interventions in 
the fight against ransomware [42]. Collectively, these initiatives highlight the progressive 
nature of early detection techniques, which aim to strengthen cybersecurity defenses by 
stopping ransomware before it can encrypt and compromise data, thus preventing poten-
tial harm and data loss. 

The current challenges in the early detection of ransomware are primarily linked to 
the lack of sufficient data during the attack’s pre-encryption stage. This scarcity of data 
hampers the ability to effectively identify and counter ransomware threats before they 
fully execute. The study by [43] pointed out the difficulties in gathering behavioral data 
in the brief window before the ransomware deploys its payload, which often results in 
ineffective detection, as the harmful activity has usually commenced by then. Addition-
ally, Ref. [44] brought attention to the shortcomings of existing early detection mecha-
nisms, noting the struggle to acquire and process the necessary data in the pivotal mo-
ments before encryption by ransomware. These identified limitations highlight the urgent 
necessity for more advanced and all-encompassing early detection systems capable of 
overcoming the data-gathering obstacles present in the initial stages of ransomware at-
tacks. 

Deep learning techniques like Deep Belief Networks (DBN), Convolutional Neural 
Networks (CNN), and Generative Adversarial Networks (GAN) have been used for de-
tecting malware. The GAN, for instance, can be used for creating synthetic data to boost 
the effectiveness of detection systems [40]. These synthetic instances are particularly use-
ful in countering the adaptive techniques that malware uses to evade detection. The 
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application of GANs in identifying malware has been validated through numerous stud-
ies, which demonstrate their capacity to refine detection processes. For example, Ref. [45] 
employed GANs to produce adversarial examples, thereby improving the system’s ability 
to identify malicious network traffic. In addition, Ref. [46] showed how GANs could ex-
pand an original dataset by generating variations of malicious code, highlighting the ben-
efits of enhancing dataset variability for better detection outcomes. Further, Ref. [47] 
showcased the integration of GANs with various node attributes, illustrating how GANs 
can outperform traditional detection models. The deployment of GANs in the realm of 
malware detection holds significant promise in managing the increasing complexity of 
malware challenges and bolstering the ability of detection models to adapt to new mal-
ware types, ultimately aiding in the development of more resilient and effective malware 
detection frameworks. 

The process of selecting features is pivotal in simplifying the complexity of data for 
models that detect malware by minimizing the number of data attributes that need to be 
processed. This was made clear by [48], who underlined the deep importance of choosing 
the right features for tasks like visual recognition to ensure precise detection. Javaheri, et 
al. [49] showed that careful feature selection can significantly boost the rate of correctly 
identified threats in deep learning systems, proving its value in elevating the performance 
of such systems. Moreover, Ref. [50] integrated both comprehensive and detailed imagery 
of disguised and non-disguised malware, illustrating how selecting the right features is 
essential when preparing data for GAN-based models. In addition, Ref. [51] applied fea-
ture selection to sharpen the accuracy of malware detection systems, reinforcing the ne-
cessity of efficient feature-selection methods to improve the overall capabilities of these 
systems. Taken together, these pieces of research highlight the indispensable nature of 
feature selection in cutting down data dimensionality and refining the data used for GAN-
based malware detection, thereby aiding in the creation of more effective and sophisti-
cated malware detection infrastructures. 

Data dimensionality plays a vital role in the precision of early ransomware detection, 
and its management is key to crafting accurate detection models. The reduction in features 
has led to higher accuracy in various studies, showcasing the influence of data dimension-
ality on the accuracy of these models [52]. Yet, Al-Rimy and colleagues cautioned against 
the negative impact that a lack of data in the pre-encryption stage can have on the effec-
tiveness of feature selection, which in turn can reduce the accuracy of detection [12]. These 
insights reveal a complex interplay between data dimensionality and the accuracy of early 
ransomware-detection systems. They suggest that while reducing dimensionality can 
make models more efficient, the availability and integrity of data during the critical pre-
encryption phase remain essential to ensure the selection of high-quality features. 

The integration of feature selection with malware-detection models has faced scru-
tiny due to the inflexibility of these selection methods, which often overlook the dynamic 
progression of malware traits. Lall, et al. [53] pointed out the difficulties in managing data 
that is both high-dimensional and limited in sample size, a scenario that complicates the 
process of classification. Similarly, Ref. [54] employed feature extraction and selection on 
time-series data to streamline the training of monitors, which revealed the shortcomings 
of conventional feature-selection methods in keeping pace with the changing attributes of 
malware. Furthermore, Ref. [55] discussed the interpretability issues of GAN models, 
stressing the necessity for feature-selection techniques that are capable of adapting to the 
fluidity of malware features. Collectively, these studies draw attention to the limitations 
of standard feature-selection approaches when combined with GAN frameworks, accen-
tuating the demand for more flexible and evolving feature-selection methods in the realm 
of malware detection. 

To address the rigidity issue that existing feature selection suffers from when applied 
to malware attack detection, this paper proposes an adaptive feature-selection technique 
based on mutual information. It leverages a batch-based approach to process data in 
smaller, manageable segments. This strategy not only reduces the computational burden 
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but also allows the system to adapt to new data trends and anomalies more efficiently. 
The methodology is underpinned by the principle of processing data incrementally and 
updating feature relevance dynamically, making it highly suited for resource-constrained 
environments where real-time data processing is critical. The primary focus of this study 
is on the early detection of ransomware attacks, specifically addressing the challenge of 
selecting relevant and non-redundant features for detection models when only limited 
data are available. This study proposes an incremental mutual information-selection tech-
nique aimed at selecting the most relevant features at the early stages of ransomware at-
tacks. This technique is designed to process data in smaller batches, which reduces com-
putational load and enhances the system’s adaptability to new data, making it suitable for 
early detection of ongoing attacks. To this end, the contribution of the paper is three-fold. 
• An incremental mutual information-selection (IMIS) technique was developed to 

adaptively reassess the relevancy of selected features dynamically when new data 
arrives. 

• The IMIS was integrated into a DBN-based ransomware-detection model for better 
detection accuracy. 

• An extensive experimental evaluation of the IMIS was conducted and compared with 
the existing methods to measure the improvement achieved. 
The rest of this paper is organized as follows. Section 2 details the related works. 

Section 3 describes the methodology adopted to implement the model. Section 4 presents 
and discusses the results obtained. The paper ends with the conclusion section that sum-
marizes the contribution. 

2. Related Works 
Ransomware represents a serious challenge to cybersecurity, demanding advanced 

detection strategies. The process of selecting pertinent features is key to refining the pre-
cision and operational efficiency of these models. Bijitha, et al. [56] provided a thorough 
review of the various techniques used for detecting ransomware, shedding light on dif-
ferent feature-selection methods. Scalas, et al. [39] examined the use of system API data 
for detecting Android ransomware, pointing out the crucial impact of feature selection on 
enhancing detection capabilities. Additionally, Ref. [57] discussed the advantages and the 
constraints of using automated dynamic analysis in ransomware detection, indicating the 
importance of feature selection in such active detection frameworks. Lee, et al. [30] looked 
into the use of machine learning to analyze file entropy for detecting ransomware in 
backup systems, stressing the necessity of careful feature selection for effective detection 
across various settings. Moreover, Ref. [26] stressed the urgency for innovative ap-
proaches in the prevention, detection, and elimination of ransomware, highlighting the 
vital role of feature selection in crafting strong detection systems. Within the scope of ran-
somware detection, the implementation of feature-selection methods has proven to be ef-
fective in increasing the accuracy and efficiency of the detection models, as demonstrated 
by Almashhadani, et al. [11], who proposed a multi-classifier system for detecting crypto 
ransomware on networks, underlining the enhancement of ransomware activity classifi-
cation through the use of feature selection. 

Maimó, et al. [35] concentrated on the detection of ransomware spread in integrated 
clinical environments, underscoring the importance of selecting the right features for 
identifying ransomware activities in these complex systems. Similarly, Song, et al. [34] 
investigated effective ransomware-prevention methods on the Android platform through 
process monitoring, emphasizing the significance of feature selection in proactive detec-
tion. Additionally, Ref. [44] provided a comprehensive review of ransomware attack-de-
tection methods, offering insights into the challenges and limitations inherent in current 
feature-selection approaches used in ransomware detection. The crucial role of feature se-
lection in ransomware detection was further highlighted by [25], who introduced a 
weighted minimum redundancy maximum relevance technique for the early detection of 
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ransomware in industrial environments, focusing on the need to reduce data complexity 
and extract succinct representations of attack patterns. Furthermore, Ref. [58] developed 
an intrusion detection system using the Social Leopard algorithm to identify ransomware 
attacks, pointing out the intricacies and shortcomings of existing security models in the 
context of ransomware detection. Collectively, these studies underline the vital contribu-
tion of feature-selection methods in improving the precision, efficiency, and adaptability 
of ransomware-detection models across various sectors and settings. 

Abbasi [59] introduced a wrapper feature-selection approach to tackle the challenge 
of high data complexity in ransomware behavior analysis, employing evolutionary algo-
rithms and deep neural networks for this purpose. Alqahtani and Sheldon [44] empha-
sized the crucial role of effective feature extraction and selection in the early stages of 
ransomware-detection models. Additionally, Ref. [60] created a system for ransomware 
detection that monitors API calls, underlining the value of feature selection in addressing 
the shortcomings of traditional signature-based and static detection approaches. Chen, et 
al. [61] showcased the utility of TF-IDF in pinpointing distinctive features for automated 
analysis of ransomware behavior. Al-Rimy, et al. [12] devised a Dynamic Pre-encryption 
Boundary Delineation and Feature Extraction (DPBD-FE) strategy for precise feature ex-
traction and selection during the critical pre-encryption phase. Furthermore, Ref. [26] ap-
plied Sequential Pattern Mining to detect maximal frequent patterns in ransomware activ-
ities, using these as key features for classification. Taken together, these studies highlight 
the indispensable role of feature selection in boosting the precision and efficiency of mod-
els designed to detect ransomware. 

3. Methodology 
The idea behind Incremental Mutual Information (IMI) lies in its ability to dynami-

cally update the relevance of features as new data are acquired. In traditional MI, feature 
relevance is typically evaluated once against the entire dataset, which can become quickly 
outdated in the rapidly evolving ransomware landscape. IMI addresses this limitation by 
iteratively reassessing the mutual information of features as new batches of data are pro-
cessed. This continual update ensures that the feature selection remains current with re-
spect to data characteristics. Furthermore, IMI incorporates a weighting mechanism to 
balance the contribution of historical data against new data when estimating the feature 
significance. Therefore, a more nuanced feature selection can be guaranteed. The 
weighting coefficient is adjusted based on the correlation between historical and new data, 
ensuring that the most relevant and current features are prioritized for ransomware de-
tection. Implementing IMI in the ransomware-detection model involves several key steps. 
Using a small set of data, the initial mutual information score is calculated for all features 
concerning the class variable. Subsequent batches are then incrementally added, and the 
MI scores are recalculated and updated. This incremental approach ensures a quick adap-
tation to new attack patterns. 

3.1. Incremental Mutual Information Selection (IMIS) 
The Incremental Mutual Information (IMI) technique dynamically updates feature 

relevance by processing new batches of data and recalculating the mutual information 
between features and the target class. As new data arrive, the IMI technique evaluates the 
relevance of each feature in the context of the newly arrived data, allowing for the detec-
tion model to adapt to new patterns or behaviors associated with ransomware attacks. 
This dynamic update mechanism ensures that the feature-selection process remains rele-
vant and effective over time, enhancing the model’s ability to detect ransomware attacks 
at their early stages. 

To mathematically formulate how feature relevance in IMI is updated, we start with 
defining features as an input matrix 𝑋 and the class label as an output vector 𝑌 as fol-
lows. Let 𝑋 = {𝑥 , 𝑥 , . . . , 𝑥 } be the set of 𝑛 features in the dataset, and 𝑌 be the target 
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variable. The mutual information between a feature 𝑥  and the target 𝑌 is denoted as 𝐼(𝑥 ; 𝑌). 
The dynamic updating process can be outlined as follows: 
Initially, the mutual information is calculated for each feature 𝑥  with respect to the 

target 𝑌 using the following equation: 𝐼(𝑥 ; 𝑌) for 𝑖 = 1,2, . . . , 𝑛. 
When new data arrive, mutual information for each feature is recalculated and up-

dated as follows. 
Let 𝑋  represent the new data. The updated mutual information is 𝐼 (𝑥 ; 𝑌) = 𝛼 ⋅ 𝐼 (𝑥 ; 𝑌) + (1 − 𝛼) ⋅ 𝐼(𝑥 ; 𝑌 ∣ 𝑋 ) 

where 𝐼 (𝑥 ; 𝑌) is the previous mutual information value, and 𝛼 is a weighting factor (0 ≤  𝛼 ≤  1) that balances the impact of new data versus historical data. If new features 𝑥 + 1, 𝑥 + 2, . . . , 𝑥 + 𝑚 are added, calculate 𝐼(𝑥 + 𝑗; 𝑌) for 𝑗 = 1,2, . . . , 𝑚. 
Periodically reassess the relevance of each feature based on the updated mutual in-

formation. Features with significantly lower updated mutual information are depriori-
tized and removed (based on number of desired features). 

The Feedback Loop for Model Adjustment relies on the performance metric (𝑃𝑒𝑟𝑓) of 
the model (e.g., accuracy and precision). If 𝑃𝑒𝑟𝑓 decreases below a threshold, the reeval-
uation of the feature set is triggered. Calculating the weighting factor (𝛼), in the context of 
dynamic updating in feature selection, involves balancing the influence of historical data 
against new data. This factor determines how much weight is given to previous MI values 
compared to the MI calculated from the new data. The value of 𝛼 is adjusted using cor-
relation analysis, which involves assessing the relationship between historical and new 
data. The idea is to adjust 𝛼 based on the correlation between new data and historical 
data. The mathematical formulation is as follows. 

3.1.1. Correlation Coefficient Calculation 
Let 𝑋  represent the historical data and 𝑋  represent the new data for a certain 

feature. Calculate the Pearson correlation coefficient, denoted as 𝑟 , between 𝑋   and 𝑋 . The formula for Pearson correlation coefficient is 𝑟 =  ∑(𝑋 − 𝑋¯ )(𝑋 − 𝑋¯ )∑(𝑋 − 𝑋¯ ) (𝑋 − 𝑋¯ ) . 
Here, 𝑋¯  and 𝑋¯  are the means of the historical and new data, respectively. 

3.1.2. Adjusting the Weighting Factor 
The correlation coefficient 𝑟 ranges from −1 to 1, where 1 indicates a perfect positive 

linear relationship, −1 indicates a perfect negative linear relationship, and 0 indicates no 
linear relationship. 

The value of 𝑟 can be used to adjust 𝛼. For example: 
If ∣r∣ is high (close to 1), it implies that the new data are highly correlated with the 

historical data. In this case, a higher α may be appropriate, as it suggests that historical 
data are still very relevant. 

If ∣r∣ is low (close to 0), it indicates that the new data are not well-correlated with the 
historical data. A lower α might be more suitable in this scenario to give more weight to 
the new data. 

3.1.3. Formulating the Adjustment Function 
To avoid drastic changes in α due to minor fluctuations in r, a threshold value can be 

set. If the change in r is below this threshold, α remains unchanged. This approach allows 
the weighting factor 𝛼 to adapt dynamically based on the changing relationship between 
historical and new data. It ensures that the feature-selection process remains relevant and 
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responsive to the most current data trends, which is particularly important in ransomware 
attacks. 

3.2. Integration of Incremental Mutual Information Selection (IMIS) into a DBN-Based 
Ransomware-Detection Model 

The integration of Incremental Mutual Information Selection (IMIS) into a Deep Be-
lief Network (DBN)-based ransomware-detection model improves accuracy. Deep Belief 
Networks, with their robust feature learning capabilities, are well-suited for the complex 
and high-dimensional data characteristic of ransomware behavior. However, the effec-
tiveness of a DBN in detecting ransomware relies on the quality and relevance of the input 
features. The proposed IMIS can select the important features based on the attack patterns, 
hence ensuring that the DBN is trained with a compact set of relevant features. Such an 
integration enhances the detection accuracy and ensures that the computational overhead 
remains within the feasible limits of the user device. 

The integration of IMIS within a DBN-based ransomware-detection model involves 
two steps. In the first step, IMIS is used to continually assess and update the feature set as 
new data arrive. This process begins with the initial selection of features based on their 
MI score given the target class. As the system receives new data, IMIS dynamically up-
dates this feature set, which allows the DBN to work with the most current and relevant 
information. The incremental nature of IMIS makes this process efficient and scalable, 
which is crucial for resource-constrained systems. 

In the second step, the selected features are fed into the DBN for deep learning-based 
ransomware detection. Here, the DBN utilizes its layered structure to extract high-level 
representations and patterns from the input data, which are essential for identifying com-
plex and sophisticated cyber threats. The adaptability of IMIS ensures that the DBN is not 
overwhelmed by the volume of data or misled by outdated or irrelevant features. This is 
particularly important in evasive attacks, where the nature of data and patterns of mali-
cious activities can change rapidly. By providing a continually optimized set of features, 
IMIS improves the DBN’s ability to learn and adapt, resulting in a more accurate and ro-
bust ransomware-detection model. 

The dynamic feature-selection capability of IMIS enables the system to not only de-
tect known types of attacks but also to identify new, previously unseen attacks. This pro-
active detection is crucial for fighting malware with an evolving nature. 

Figure 1 shows the pseudocode for the IMIS. It presents a methodical approach for 
selecting and updating ransomware features necessary for malware detection. It begins 
by initializing an empty set for selected features and a list to store previous mutual infor-
mation values. As it processes each batch of data, the algorithm calculates the current mu-
tual information for each feature with respect to the target class. If historical data exist, it 
updates this information using a weighting factor to balance the influence of both new 
and historical data. Features are then selected based on their relevance score, which is 
calculated based on a predefined threshold. The selected features are continuously up-
dated with each new batch of data. This process makes IMIS particularly effective for dy-
namic ransomware behavior, as it efficiently adapts to new data patterns while maintain-
ing computational efficiency. Algorithm 1 shows the Psudocode of the proposed IMIS. 
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Figure 1. IMIS-DBN design. 

Algorithm 1: Incremental Mutual Information Selection (IMIS) 
Input: 
    Data_Batches: Stream of data batches from devices 
    Target_Class: The class variable for intrusion detection (e.g., normal or attack) 
    Alpha: Weighting factor for balancing historical and new data (initially set) 
    Threshold: Threshold for significant change in mutual information 
Output: 
    Selected_Features: Set of features selected for intrusion detection 
Procedure IMIS(Data_Batches, Target_Class, Alpha, Threshold): 
    Initialize Historical_MI as an empty dictionary 
    Initialize Selected_Features as an empty set 
    for each Batch in Data_Batches: 
        Current_MI = CalculateMutualInformation(Batch, Target_Class) 
        Historical_MI = UpdateFeatureRelevance(Historical_MI, Current_MI, Alpha) 
        Selected_Features = SelectAndUpdateFeatures(Historical_MI, Selected_Features, Threshold) 
        Yield Selected_Features 
Procedure CalculateMutualInformation(Batch, Target_Class): 
    return {Feature: ComputeMutualInformation(Feature, Target_Class) for Feature in Batch} 
Procedure UpdateFeatureRelevance(Historical_MI, Current_MI, Alpha): 
    return {Feature: Alpha × Historical_MI.get(Feature, 0) + (1 - Alpha) × MI for Feature, MI in Current_MI.items()} 
Procedure SelectAndUpdateFeatures(Historical_MI, Selected_Features, Threshold): 
    return {Feature for Feature, MI in Historical_MI.items() if MI > Threshold or Feature in Selected_Features} 

3.3. Training the IMIS-DBN Ransomware-Detection Model 
Here, we detail the model’s design, layer structure, and the training/testing process. 

As pointed out above, the proposed IMIS-DBN model is designed to provide effective 
ransomware detection. It combines the dynamic feature-selection capabilities of IMIS with 
the deep learning strength of DBNs to detect both known and novel attack patterns. The 
IMIS component serves as the initial layer of the model and is responsible for selecting 
and updating the feature set from the ransomware data streams. The DBN parameters 
were set as follows. The number of epochs was 100, the batch size was 64, the L2 regulation 
was 0.0002, the Momentum was 0.7, and the learning rate was 0.05. Those parameters were 
selected following the standard setup. It starts with an initial selection of features based 
on their MI score. This selection is aimed at reducing dimensionality while retaining 
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critical information. As new data batches arrive, IMIS updates the feature set by recalcu-
lating MI values and adjusting the feature relevance. Figure 1 shows the diagram repre-
senting the IMIS-DBN design. The model comprises two main components: feature selec-
tion and detection. The dataset is used as input to the feature selection (IMIS), in which 
several procedures like initial relevance estimation, weight adjustment, update relevance 
score, and top 𝑛 features selection take place. Then, the selected features are used as input 
to train a DBN classifier for the detection model. 

The DBN is structured as a stack of Restricted Boltzmann Machines (RBMs), each 
comprising a layer of visible and hidden units. The number of layers and the number of 
units in each layer are normally determined based on the complexity of the task and the 
computational constraints of the environment. In this study, we used five hidden layers 
with several units reduced by 30% from the previous layer. The first layer receives the 
processed input from the IMIS feature selection, and each subsequent layer receives input 
from the hidden units of the preceding layer, which enables the extraction of abstract rep-
resentations of the data. 

Each RBM in the DBN is trained in an unsupervised manner, starting from the bottom 
layer and moving upwards. During this phase, the RBMs learn to reconstruct their inputs 
and capture the underlying distributions and correlations within the data. This pre-train-
ing helps in initializing the weights of the network, which is crucial for the subsequent 
supervised fine-tuning. After pre-training, the entire DBN undergoes supervised fine-tun-
ing using labeled data to adjust the weights of the entire network. This helps to minimize 
classification error, which consequently improves the model’s ability to distinguish be-
tween normal and malicious activities. The trained IMIS-DBN model is evaluated using a 
test dataset that contains samples that have not been used for training. The accuracy, pre-
cision, recall, and F1 score were used as performance metrics to assess the model’s perfor-
mance. 

4. Results and Discussion 
In this section, the experimental evaluation of the proposed Incremental Mutual In-

formation Select (IMIS) technique against existing feature-selection methods, namely, 
RCGU [15], EMRMR [62], MIFS [63], and JMI [64], is performed within the context of ran-
somware detection. These related works were implemented based on the available repos-
itory on the SKFeature Python library and the details of implementation provided by the 
respective papers. The Python version that was used was 3.11.7. We also used several Py-
thon-based packages, such as Sklearn (1.3.1), Pandas (2.1.0), Numpy (1.25.0), SkFeature 
(1.0.0), and TensorFlow (2.3). The effectiveness of each technique is quantitatively assessed 
through a series of metrics, including accuracy, false positive rate, detection rate, and the 
F1 score across varying sizes of feature sets. The incremental nature of the IMIS approach, 
which dynamically updates feature relevance in response to new data, is posited as a sig-
nificant advancement over traditional methods that often become outdated against the 
rapidly evolving ransomware threats. This section delves into the empirical data gathered 
from our experiments, highlighting the impact of IMIS’s iterative reassessment and 
weighting mechanisms on maintaining the currency and precision of feature selection 
and, ultimately, on enhancing the performance of ransomware-detection systems. The 
model was trained in an Intel Core i5 machine with a 4.3 GHz CPU, 8 GB of RAM, and 
Windows 10 Professional. 

Figure 2 compares the accuracy of the proposed Incremental Mutual Information Se-
lect (IMIS) technique with RCGU, EMRMR, and MIFS across a range of features between 
5 and 50. It shows that IMIS consistently outperforms the existing techniques. The accu-
racy of the proposed IMIS is 0.949 with 5 features and maintains its lead throughout. It 
can also be noticed that IMIS peaks at 25 features with 0.979 accuracy. While there are 
slight decreases in its performance at higher feature counts, IMIS remains competitive, 
particularly against RCGU, its closest rival in most cases. This consistent performance 
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across different feature numbers shows IMIS’s robustness and effectiveness in comparison 
to the related techniques. 

 
Figure 2. Comparison of the accuracy of the proposed IMIS technique with RCGU, EMRMR, MIFS, 
and JMI across a range of features between 5 and 50. 

The accuracy comparison in Figure 2 illustrates the effectiveness of the incremental 
mechanism employed by IMIS, which substantially impacts maintaining feature rele-
vance. The core advantage of IMI lies in its capability for a dynamic update that allows 
for a continual reassessment of feature relevance when new data arrive. This is important 
due to the changing nature of ransomware behavior. The accuracy improvement achieved 
by IMIS is evident in the incremental improvements in accuracy from 5 to 25 features, 
where IMIS not only starts strong but also exhibits a growing advantage as the number of 
features increases. This is attributed to the ability of IMI to weigh the historical against 
new data effectively, allowing for a more adaptive and nuanced feature-selection process. 
Such adaptability explains the superior performance of IMIS, as it consistently adapts to 
the latest data trends and maintains high accuracy across all feature set sizes. 

For the False Positive Rate (FPR), Figure 3 shows a comparison between the proposed 
IMIS and related techniques, i.e., RCGU, EMRMR, and MIFS, across various feature set 
sizes. In general, it can be observed that IMIS consistently demonstrates a lower FPR com-
pared to the other techniques. With five features, IMIS shows a lower FPR of 0.175, mar-
ginally better than RCGU (0.180), EMRMR (0.178), and MIFS (0.176). This trend continues 
for 10, 15, and 20 features, showing a gradual decrease in FPR, reaching its lowest at 25 
features with a rate of 0.104, which is also better than the other techniques. At 30 features, 
IMIS and RCGU achieved the same FPR (0.123), which is still outperforming EMRMR and 
MIFS. Beyond 30 features, although the FPR for IMIS slightly increases, it remains com-
petitive, particularly at 40 and 45 features, where it is lower than those of other techniques. 
At 50 features, IMIS maintains an FPR of 0.150, which is lower than RCGU and MIFS and 
slightly lower than EMRMR. 
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Figure 3. Comparison of the false positive rate (FPR) of the proposed IMIS technique with RCGU, 
EMRMR, MIFS, and JMI across a range of features between 5 and 50. 

The false positive rate (FPR) comparison in Figure 3 shows the efficacy of the pro-
posed IMIS compared to RCGU, EMRMR, and MIFS. The IMIS consistently records lower 
FPRs, which can be attributed to the incremental MI calculation approach of IMI. Unlike 
traditional MI, which evaluates feature relevance statically, the proposed IMIS dynami-
cally updates the relevance of features as new data arrive. Such continuous reassessment 
allows IMIS to adapt to the changing patterns in ransomware, which consequently re-
duces the likelihood of falsely identifying benign activities as ransomware. The weighting 
mechanism within IMI balances the old and new data, which allows the model to re-eval-
uate the feature to ensure that the selected features remain relevant to the new behavior 
of ransomware. This results in a more accurate and current model that shows consistent 
FPR improvements across all feature sets for IMIS compared to the other techniques, un-
derlining the impact of the iterative update strategy in maintaining relevancy and reduc-
ing false positives in ransomware detection. 

Figure 4 compares the detection rates of the proposed IMIS against RCGU, EMRMR, 
and MIFS across various numbers of features ranging between 5 and 50. It can be seen that 
IMIS consistently achieves a high detection rate, beginning at 0.913 for 5 features and 
showing an improvement as the number of features increases, peaking at 0.942 for 25 fea-
tures. This trend outperforms all other techniques, with RCGU being the closest at 0.934 
when using 25 features. In most instances, IMIS’s detection rates maintained the highest 
score, especially at 15, 25, 35, and 40 feature counts where it outperforms other methods 
by a significant margin. Even at 50 features, where many techniques show a reduced de-
tection rate, IMIS maintains a good detection rate at 0.927. These data suggest that IMIS 
not only starts strongly but also scales effectively with increasing feature set sizes, often 
maintaining a lead over the other techniques in detection performance. 
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Figure 4. Comparison of the detection rates (DR) of the proposed IMIS technique with RCGU, 
EMRMR, MIFS, and JMI across a range of features between 5 and 50. 

The detection rate comparison shown in Figure 4 indicates that the proposed IMIS 
achieves higher detection rates across various feature set sizes compared to RCGU, 
EMRMR, and MIFS. This is attributed to the incremental nature of the MI calculation in 
the proposed technique, which, unlike traditional MI-based methods, employs a dynamic 
update mechanism that iteratively reassesses feature relevance as new data arrive. This 
ensures that the detection model remains current and more responsive to emerging ran-
somware behavior. The weighting mechanism in IMIS further refines this process by bal-
ancing historical data against new data, leading to select features that are more relevant 
to ransomware, thereby improving detection rates. 

Figure 5 shows the F1 score comparison of the proposed IMIS with RCGU, EMRMR, 
and MIFS across different feature set sizes ranging between 5 and 50 features. It can be 
observed that IMIS consistently exhibits higher F1 values, starting at 0.935 for five features, 
and outperforms the related techniques. The IMIS maintains its lead with a peak value of 
0.950 at 20 features, outperforming all other methods. Although there is a slight conver-
gence of scores among the techniques as the number of features increases, IMIS continues 
to demonstrate competitive or superior performance. At 40 features, IMIS almost reaches 
its peak again with a value of 0.949, showing its robustness. The trend indicates that IMIS 
is quite effective, maintaining F1 values higher than RCGU, EMRMR, and MIFS across all 
feature set sizes. 
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Figure 5. F1 score comparison of the proposed IMIS with RCGU, EMRMR, and MIFS across different 
feature set sizes ranging between 5 and 50 features. 

The F1 score comparison shown in Figure 5 across various feature set sizes ranging 
between 5 and 50 reveals that the proposed IMIS consistently achieves high F1 scores, 
which outperforms the related techniques, i.e., RCGU, EMRMR, and MIFS. This perfor-
mance indicates that the proposed IMIS achieved a good balance between precision and 
recall in its detection capability. These results can be attributed to the underlying incre-
mental MI calculation mechanism employed in IMIS. Unlike traditional MI approaches 
that assess feature relevance in a static context, IMIS dynamically updates this relevance 
with the arrival of new data. This mechanism ensures that the feature selection is contin-
uously optimized to reflect the latest attack behavior manifested by ransomware. The 
weighting mechanism used in IMIS re-assesses the influence of historical data while con-
sidering new attack patterns, thereby maintaining a relevant feature set for ransomware 
detection. The consistently superior F1 scores of IMIS compared to its counterparts un-
derscore the advantage of this incremental approach, providing a more relevant and cur-
rent feature set that helps in improving the detection performance. 

In Table 1, The performance evaluation using Python profiler demonstrates the pro-
posed IMI technique’s computational efficiency compared to related techniques (RCGU, 
EMRMR, MIFS, and JMI). IMIS shows the lowest per-call execution time (0.01 s) and total 
time (Tottime) (3.5 min), significantly outperforming others in training time as well (19 
min). This improvement can be attributed to the incremental nature of IMIS, which selec-
tively updates feature relevance with incoming data, reducing unnecessary computations 
and enhancing adaptability. 

Table 1. The performance evaluation between the proposed IMIS and related techniques. 

 Proposed RCGU EMRMR MIFS JMI 
Percall (s) 0.01 0.054 0.063 0.03 0.07 

Tottime (min) 3.5 10.8 12.6 6 14 
Training time (min) 19 33 37 28 24 

Table 2 shows the top 10 API call features identified by IMIS. It can be observed that 
these features are directly linked to the actions ransomware typically performs, which 
makes them crucial to understanding ransomware behavior. Crypto APIs like CryptEn-
crypt and CryptGenKey are vital for encrypting files, a hallmark of ransomware attacks. 
File access APIs, including CreateFile and DeleteFile, are used for accessing and 
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potentially altering or deleting files, indicating unauthorized file manipulation. Network 
APIs such as WinHttpConnect and WinHttpOpenRequest are essential for establishing 
network connections, possibly for data exfiltration or command-and-control communica-
tion. The high relevance and ranking of these APIs underscore the ability of the proposed 
IMIS technique to identify the crucial features necessary for detecting ransomware activ-
ities. 

Table 2. The top 10 features (API calls) commonly used by ransomware. 

Type Features Rank 

Crypto APIs 

CryptEncrypt 1 
CryptGenKey 3 

CryptDestroyKey 6 
BCryptGenRandom 9 

File access APIs 

CreateFile 2 
FindFirstFileEXA 5 

FindNextFileA 8 
DeleteFile 10 

Network APIs 
WinHttpConnect 4 

WinHttpOpenRequest 7 

The limitations of this research are represented by the reliance on the incremental 
mutual information technique, which may not fully capture the diversity of ransomware 
behaviors, potentially limiting its adaptability to new threats. Additionally, the effective-
ness of the feature-selection and early detection capabilities could be challenged by the 
variability and volume of incoming data. Scaling the solution for large-scale deployments 
and integrating it into existing frameworks might also present performance challenges. A 
broader validation across various environments and ransomware types is suggested to 
enhance the robustness and generalizability of the findings. During the incremental fea-
ture selection, the incoming data needs to be processed and prepared to be used as input 
for the feature-selection technique. While this processing step can be easily performed 
during offline training, it adds extra overhead when switching to incremental (online) fea-
ture processing. 

5. Conclusions 
This study developed incremental mutual information and integrated it into feature 

selection for ransomware detection. This incremental approach helps to estimate feature 
significance in limited data scenarios during the initial phase of the attack. It gives the 
model the ability to select the best features even if data are scarce, which improves the 
detection accuracy. This research highlights the significance of early detection in combat-
ing ransomware attacks and emphasizes the need for proactive defense strategies. By lev-
eraging this technique, this study underscores the importance of early detection capabili-
ties to strengthen defense strategies against ransomware. The findings of this study em-
phasize the effectiveness of the incremental approach integrated into the mutual infor-
mation for early detection, thereby contributing to improved defense mechanisms against 
ransomware. Overall, this study sheds light on the importance of incremental learning for 
estimating feature significance in addressing the issue of data insufficiency during the in-
itial stages of ransomware attacks. 
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