Environment Mapping

CSE 781

Han-Wei Shen

Environment Mapping

- Also called reflection mapping
- First proposed by Blinn and Newell 1976
- A cheap way to create reflections on curved surfaces - can be implemented using texture mapping supported by graphics hardware

Basic Idea

- Assuming the environment is far away and the object does not reflect itself - the reflection at a point can be solely decided by the reflection vector

Basic Steps

- Create a 2D environment map
- For each pixel on a reflective object, compute the normal
- Compute the reflection vector based on the eye position and surface normal
- Use the reflection vector to compute an index into the environment texture
- Use the corresponding texel to color the pixel

Finding the reflection vector

- $r=2$ (n.e) $n-e$

Assuming e and n are all normalized

Blinn and Newell's

- Blinn and Newell's Method (the first EM algorithm)
- Convert the reflection vector into spherical coordinates (ρ, ϕ), which in turn will be normalized to $[0,1]$ and used as (u, v) texture coordinates

Issues

- Seams at $\phi=0$ when the triangle vertices span over
- Distortion at the poles, and when the triangle vertices span over
- Not really been used much in practice

Cubic Environment Mapping

- Introduced by Nate Green 1986 (also known as environment cube map)
- Place the camera in the center of the environment and project it to 6 sides of a cube

Cubic Environment Mapping (2)

- Texture mapping process
- Given the reflection vector (x, y, z), first find the major component and get the corresponding plane. (-3.2, 5.1 , -8.4) -> -z plane
- Then use the remaining two components to access the texture from that plane.
- Normalize them to $(0,1)$ $(-3.2,5.1)->((-3.2 / 8.4) / 2+0.5,(5.1 / 8.4) / 2+0.5)$
- Then perform the texture lookup
- No distortion or seam problems, although when two vertices of the same polygon pointing to different planes need to be taken care of.

Environment Cube Map

- Rendering Examples

Sphere Mapping

- The image texture is taken from a perfectly reflective sphere, which is viewed from the eye orthographically.
- Synthetic scene can be generated using ray tracing

Sphere Mapping (2)

- To access the sphere map texture
- The surface normal (n) and eye (e) vectors need to be first transformed to the eye space
- Then compute the reflection vector as usual ($\left.r=(r x, r y, r z)=e^{\prime}-2\left(n^{\prime} . e^{\prime}\right) n^{\prime}\right)$
- Now, compute the sphere normal in the local space $\mathrm{n}=$ $(r x, r y, r z)+(0,0,1) \underbrace{}_{\text {reflection vector }}$
- Normalize it and use x and y to access the sphere texture map: $u=r x / M+1 / 2 ; v=r y / M+1 / 2$; where $M=2 \operatorname{sqrt}\left(r x^{\wedge} 2+r y^{\wedge} 2+(r z+1)^{\wedge} 2\right)$

