
- 1 -

Environment Mapping

Simone Kriglstein
Günter Wallner

Abstract

In this paper environment mapping is presented.
First we will discuss environment mapping in
general and the methods of parameterization li ke,
sphere -, cubic –and parabolic maps. For sphere,
parabolic and cubic maps the way of indexing is
shown. Then ways of prefiltering of environment
maps are shown. In detail we present how this can
be done with the Phong reflection model and how
the Fresnel term can be used. In addition
environment mapping with the help of BRDF´s is
presented. Also environment mapped bump
mapping (EMBM) will be discussed. In this chapter
we discuss mainly how the environment is mapped
on an object with a structured surface. In the last
chapter an introduction into environment mapping
with OpenGL is given.

1 Introduction

The aim of the game designer is to design games,
which get more and more realistic and that can not
be done without environment mapping. It has the
appearance for everybody that this method is not so
important. However, can you imagine a motor
racing game in which the surroundings are not
reflected on the car body (in Figure 1.1 you can see,
how the surrounding is reflected on a bonnet)
or a hero of an action game which does not have a
reflection on the water.
Modern 3D hardware accelerators are supporting a
lot of gadgets, such as texture mapping, bump
mapping, pixel shading, lighting effects, shadow
mapping, T&L, environment mapping and so on.
Games which are released know or in future are
using these techniques to provide a reali stic
environment as possible. To get attention, new
games have new and improved graphic effects.
Things on that we do not concentrate in real li fe,
are missed immediately in games or other
interactive applications.
Surfaces that are reflecting the environment,
correctly broken shadows and many other small
things are making the game experience perfect.

Figure 1.1
Car which reflects the environment

In our paper we will discuss mainly environment
mapping. But for what is environment mapping

good for ? With the help of environment mapping,
an object can reflect the environment. For that
texture mapping can be used. But some problems
are occurring. The problem how the textures are
saved must be solved (i.e. to save memory). The
second problem is that the calculation of mapping
the 2-dimensional to 3-dimensional coordinates
must be possible in a short time, so that these
techniques can be used in interactive applications.
For parameterization three different kinds are
existing. The most famous methods are spherical,
cube and parabolic maps. We wil l discuss each of
the methods mentioned above and enumerate the
advantages and disadvantages of those
parameterizations. Since there are different kinds of
surfaces (wood, plastic,...) with different kinds of
reflection properties (Figure 1.2 shows a very good
example of reflection), these properties should be
taken into account when generating an environment
map. The reflection properties can be divided into
three parameters: diffuse, glossy and mirror. For
metalli c surfaces a Fresnel term can be used. Those
properties are applied to the environment map in a
prefiltering step. For glossy surfaces we will
explain the widely used Phong model. This model
is physicall y not correct, because it makes some
simplifications. But, it is simple and the quality is
good enough for most graphic applications.

Figure 1.2
Reflection with environment mapping

We will also take a closer look on how to represent
BRDF´s with environment mapping. A BRDF
describes how much light is reflected when light
makes contact with the surface.
In chapter 10 of the paper we will discuss
environment mapped bump mapping. These
technique allows us to model surfaces with bumps.
Examples of use are bark, metal sheet, scratch and
so on.

- 2 -

Figure 1.3
Top: without bump mapping
Bottom: with bump mapping

Scenes can be represented more realistically by
environment mapped bump mapping (EMBM).
This method is particularly used for water effect.
Figure 1.3 shows how a scene looks better when
EMBM is used.
The wall looks much more realistic with reflections
and structures. The ground was also changed, it has
a structure at the lower picture.
In the last chapter environment mapping with
OpenGL is presented.

2 Environment Mapping

„ Projection of the whole environment on a texture
surface “

For us reflection effects are a normal thing and not
many people are thinking about this phenomena.
But games without reflections are boring or bad.
Reflections are making the games look realistic
and exciting.

Figure 2.1
Example of reflection with environment map

What exactly is environment mapping now?

Environment mapping [10] is used to reflect the
surroundings on an object. Thus, an object must be
covered with a texture of the real object surface as
well as with the environment texture. A good
example of environment mapping is shown in
Figure 2.1.

Environment mapping is a separate technique rather
than as a category of texture mapping. This method
was first developed by Blinn and Newell in 1976
[17].

Environment maps are particular textures that
describe for all directions the incoming or outgoing
light at one point in space.

Environment mapping [2] may be achieved through
texture mapping in different ways. One way
requires six texture images, each corresponding to a
face of a cube, that represent the surrounding
environment. At each vertex of a polygon to be
environment mapped, a reflection vector from eye
off of the surface is computed. This reflection
vector indexes one of the six texture images. As
long as all the vertices of the polygon generate
reflections into the same image, the image is
mapped onto the polygon using projective
texturing. If a polygon has reflections into more
than one face of the cube, then the polygon is
subdivided into pieces, each of which generates
reflections into only one face. Because a reflection
vector is not computed at each pixel, this method is
not exact, but the same results are quite convincing
when the polygons are small.
Another way is to generate a single texture image
of a perfectly reflecting sphere in the environment.
This image consists of a circle representing the
hemisphere of the environment behind the viewer,
surrounded by an annulus representing the
hemisphere in front of the viewer.
At each polygon vertex, a texture coordinate
generation function generates coordinates that
index this texture image, and these are interpolated

- 3 -

across the polygon. If the (normalized) reflection
vector at a vertex is

()zyxr = Equation 1

and
()12 += zm Equation 2

then the generated coordinates are x/m and y/m
when the texture image is indexed by coordinates
ranging from –1 to 1 (the calculation is diagrammed
in Figure 2.2).

Figure 2.2
Spherical reflection geometry

The distance between viewer and object is
important, because this is the reason for distortions.
Because there is a singularity in the viewing
direction, since all points where the viewing vector
is tangential to the sphere show the same point of
environment. Moreover, the object can not reflect
itself, because the calculations can not be
performed in real time. But, it is possible with ray
tracing algorithms [16].

There are many different techniques for
implementing environment mapping like cube
mapping [see Figure 2.3, see also chapter 5],
spherical mapping [for more information about this
method see chapter 4] and parabolic mapping [see
chapter 6].

Figure 2.3
Example for cube environment mapping

3 Parameterization

A parameterization is a mapping from directions to
texture coordinates. This mapping should meet
some properties in order to be useful in interactive
rendering:
• for walkthroughs of static environment, it

should not be necessary to create a new map
every frame

• it should be easy to create a new environment
map from perspective images of the scene

• calculating the texture coordinates should be
easy and simple to implement in hardware

Three methods which have gained some importance
in hardware accelerated and interactive rendering
are: spherical maps, cube maps and parabolic maps
which wil l be explained in the following.

3.1 Spherical Environment Maps

Spherical environment mapping (see [3,4,14]) is
based on the analogy of a infinitely small, perfectly
mirroring metal ball centered around the object.
The environment map is the image that a
orthographic camera sees when looking at the ball
from a certain viewing direction. A sample of a
spherical map is shown in Figure 3.1.1.
This kind of parameterization has two big
disadvantages. First, it is not suitable for viewing
directions other than the original one and second, it

Figure 3.1.1
Top: Spherical environment map
Bottom: Reflecting Teapot

- 4 -

does not reflect changes in the scene, as they
happen.
The major reason why spherical environment
mapping is still used is, that the lookup can be
calculated eff iciently with simple operations in
hardware. Also, they are good enough to create
cheap static reflections which are in most cases
good enough for game reflections. Now, how does
this lookup process works ?
In Figure 3.1.2 a image of the lookup process is
shown. A spherical environment map which has
been generated for a camera pointing in direction
vo, stores the corresponding radiance information at
the point where the reflective sphere has the normal
h. If vo is the negative z- Axis then the 2D texture
coordinates are the x –and y- axis of the normalized
halfway vector h. If the direction is close to the
viewing direction distortions are li kely to appear,
because these directions correspond to the
tangential areas of the ball.

Figure 3.1.2
Lookup process in a spherical environment map

The creation of a spherical map requires a texture
mapping step. In that step the perspective images of
the environment are warped into the spherical form.
Let‘s take a look, how that can be done.

Figure 3.1.3
Spherical environment map shape

Figure 3.1.4
Cross section of a sphere on which the environment is mapped

First the environment in which the reflective model
should be placed must be rendered as viewed from
the desired position of the model. This is done by
rendering six images in the directions front, back,
top, bottom, left and right. After the six images are
rendered they are sampled to generate a
environment map. Such an environment map is
shown in Figure 3.1.3.
Figure 3.1.4 shows the cross section of a sphere on
which the environment is mapped. In this example,
the eye point is placed at the right hand side of the
figure. The white points on the perimeter of the
circle are mapped to the green points in the 2D
environment map. Each point on the sphere's cross
section is connected to a point on the plane by a
white line.

3.2 Cube Maps

Cubic environment mapping [6] is the oldest of the
environment mapping techniques covered here.
This kind of mapping was invented by [1]. Cube
Maps or cubical environment maps consist of six
independent perspective images from the center of
a cube throw each of his faces. Thus, the generation
of such a map consists only of rendering the six
images. In comparison to spherical environment
maps no warping step is required. In Figure 3.2.1
the unfolded cube map is shown and in Figure 3.1.2
how that cube map surrounds an object. A second
benefit of cube environment maps is, that they are
viewpoint independent and do not need to be
recalculated in scenes within a static environment.

Figure 3.2.1
Unfolded cube environment map

- 5 -

Figure 3.1.2
Cube map surrounds object

Indexing of Cube Maps, in comparison with
spherical maps and parabolic maps is simple. As
mentioned by Zimmons [18] two different ways of
indexing are possibly. The first is based on
projected pyramids through pixels and the second is
implemented in cube mapping hardware. We wil l
discuss the second method.

Figure 3.2.3
Fragments of a polygon along with their reflected vectors (left).
The representation of those reflected vectors inside the cube map
(right)

First, the reflection vector relative to the eye is
calculated per vertex of a given polygon. This
reflection vector is in object- space and has three
components (rx,ry,rz). This handles the corners of
the polygon (dark blue vectors in Figure 3.2.3) but
leaves the middle undefined. The middle of the
polygon is fill ed by performing an interpolation of
the reflective vector across the polygon. Note, that
such a interpolation instead of recalculation
introduces errors. This interpolation can be
performed incrementally from one fragment to the
next. Those vectors are shown light blue in Figure
3.. Once a fragment has been assigned to a
reflective vector, the texel (defined through 3
coordinates) which gives the fragment it´s color
must be determined. How can that be done ? The
first step is to find out which component is the
largest; x, y or z. This component and the sign of
the component defines the cube face. The
coordinates for that faces can be calculated with the
following equations.

2

1

2

1 +
=

+
=

m

tc

t
m

sc

s

Equation 3

s and t are the texture coordinates. m is the
component with the largest value. The values for sc,
tc and m can be looked up in the Table 1

Major axis
direction

m sc tc

+rx rx -rz -ry

-rx rx +rz -ry

+ry ry +rx +rz

-ry ry +rx -rz

+rz rz +rx -ry

-rz rz -rx -ry

Table 1

For a better understanding a small example. We
want to calculate the (s,t) coordinates for the
reflection vector (0.2, 0.4, 0.3). In this example the
ry component is the largest (positi ve sign). In the
table we take a look at the +ry row. In that row sc
uses +rx (this is because the growth of positi ve x
agrees with the growth of positi ve u on the +ry face
[see Figure 3.2.4]) and tc uses +rz.

Cube environment mapping is already supported by
DirectX 7 and OpenGL.

Figure 3.2.4
Coordinate system for a cube map (Renderman standard)

3.3 Parabolic Maps

Dual paraboloid environment mapping was
invented by [3,4]. They are based on the same
analogy used to describe spherical environment
maps. But here the hole environment is stored in
two different textures. Each texture contains the
information of one hemisphere. The geometry
behind this, is shown in Figure 3.3.1. It can be
shown that it uses less than one third of the pixels
that cube maps do. However, about 25% of the
pixels are not used.

- 6 -

Another big advantage is that it can be used very
efficiently in hardware.
In comparison with spherical environment map the
problem of distortion is better solved. Nevertheless,
it does not reach the quality of cube maps in that
case. In Figure 3.3.2 you can see a typical parabolic
map. And in Figure 3.3.3 a torus rendered with the
help of this map is shown.

The indexing of such a map is a little bit
complicated. For an exact explanation see [3,4] and
[18]. We will now only give a short overview of the
indexing method. The indexing scheme is nearly
linear, so it allows a significant speed up with the
help of hardware support.
The map for dual paraboloid mapping is made from
the point of view of the object being environment
mapped and considers the object as the origin. The
paraboloid map assumes that the map is created
from a view looking down the positive z axis. The
„front“ map is on the positi ve z axis while the
„back“ map is facing negative z.
The generation of the (x,y) values for the parabola
corresponds to the following matrix equation:

=

−

1

1

1 ,

,

,

1

ze

ye

xe

r

r

r

MSP
y

x

Equation 4

Where M is a linear transformation mapping the
environment map into eye space. The inverse of M
thus maps the reflection vector re back into object
space. When the viewer views the object, a vector
ve is generated for the point being environment
mapped from the surface to the eye. Next the
normal ne at that point is calculated.
For a view vector and a normal, both in eye space,
the reflected vector can be computed in eye space
by calculating re = 2(ne.ve)ne - ve, the standard
mirror reflection equation.
S performs the addition of the object space reflected
vector from the viewing vector do. S is defined as
follows:

−
−

−
−

=

1000

100

010

001

,

,

,

zo

yo

xo

d

d

d

S

Equation 5

Note, that this definition of S is not the same as in
[3,4], because the reverse reflection vector equation
has been used. P is defined as

=

0100

0100

0010

0001

P

Equation 6

In order to generate appropriate texture coordinates,
a final matrix multipli cation must be performed.

=

1

1

1000

0100

00

00

1

1
2
1

2
1

2
1

2
1

y

x

t

s

Equation 7

Figure 3.3.1
The rays of an orthographic camera reflected of a paraboloid.

Figure 3.3.2
Parabolic map

Figure 3.3.3
Rendered torus that uses this environment map.

4 BRDF

We explain BRDFs because we need it for
prefiltering of environment maps. A BRDF (for
detailed information see [5,19]) describes how
much light is reflected, when the light makes

- 7 -

contact with a certain material. The degree to which
light is reflected depends on the viewer and the
light position (relative to the surface
normal). So, a BRDF must capture the view- and
light dependent nature of reflected light. Thus, a
BRDF is a function of incoming light direction and
outgoing view direction relative to a local
orientation at the light interacting point.

A BRDF can be written as addition of three
components BRDF = Diffuse + Glossy + Mirror (
see Figure 4.1)

Figure 4.1
BRDF Term

A general BRDF can be written as
),,,,,(vuBRDF ooii φθφθλ Equation 8

λ indicates that the BRDF depends on the
wavelength. θi,φi are representing the incoming
light direction in spherical coordinates and the
parameters θu,φu the outgoing light direction (also
in spherical coordinates). Last but not least the
parameters u and v represent the surface position in
texture space. Sometimes this two parameters are
not included, then the BRDF is called position
invariant. In that case the properties of reflection do
not vary on spatial positions. Thus, that is only
valid for homogenous materials. We wil l take a
closer look at position invariant BRDFs. For
simplicity the λ can be omitted. But keep in mind
that the BRDF must be calculated for each of the
three color channels (RGB).

Since a BRDF measures how light is reflected, we
must know how much light arrives at a surface
position. Irradiance is measured in energy per area
(Watts/m2). So, it is not reall y satisfactory to talk
about the light incoming from a single direction. It
is better to take the neighborhood into account.

With that knowledge we can come to the exact
definition of a BRDF. A BRDF is given by

i

o

E

L
BRDF = Equation 9

Lo is the radiance from the surface in direction wo

and the irradiance arriving from direction wi is
called Ei.
Taking some physical observations into account the
equation above is written as

iii

o

dwL

L
BRDF

)cos(θ
= Equation 10

BRDFs can be divided into two classes
• isotropic

• anisotropic
The term isotropic is used to describe BRDFs that
represent reflectance properties that are invariant
with respect to rotation of the surface around the
surface normal vector (i.e. smooth plastic).
Anisotropic is the same for rotational variant
reflectance properties (i.e. velvet).
These two classes have two important properties.
First, the property of reciprocity, which only means,
that if the incoming and outgoing direction is
changed the BRDF keeps the same. This property is
shown in Figure 4.2. The second property, the
conservation of energy, simple is: the quantity of
light reflected can´t be higher than the quantity of
incoming light, which is shown in Figure 4.3.

Figure 4.2
Reciprocity

Figure 4.3
Conservation of energy

That means the sum over all outgoing directions of
a BRDF must be less than one. When we consider a
continuous hemisphere, this is mathematicall y
written as

1cos),,,(≤∫
Ω

ooooii dwBRDF θφθφθλ
 Equation 11

Now, we will define a general lighting equation that
expresses how to use BRDFs for computing the
ill umination produced at a surface point. Suppose
we have a scene and we are trying to determine the
ill umination of a surface point as seen by the
observer . In the real world, the whole environment
surrounding an object in the scene has an effect on
the illumination of every surface point.
The quantity of light reflected into the direction of
the observer is a function of all the incoming light
and the BRDF at this point. The radiance of
outgoing light Lo is given by

∫
Ω

= ioiitodueoo dwwwLL),(Equation 12

where
),(oiitodueo wwL Equation 13

represents the irradiance reflected in direction wo

from direction wi. Ω represents the hemisphere of
incoming light directions. Often it is better to think
about things in a discrete space. In such a case the

- 8 -

equation above becomes a sum over a finite set of
incoming directions.
For each incoming direction wi the amount of
reflected light depends on the BRDF, which leads
us to

iooiiitodueo EBRDFL),,,(φθφθ= Equation 13a

where Ei is irradiance incoming from direction wi.
In order to make the amount of light relative to the
surface element the light must be “spread out”. If
we take this into account following replacement can
be made.

iiii dwLE θcos= Equation 14

The same replacing we have done the get Equation
10. For interactive computer graphics not the hole
hemisphere is taken into account because it can not
be computed fast enough. So interactive
applications are using only a small number of point
light sources to calculate the illumination of a
surface.

For example, suppose we have a scene with n light
sources. In this case, the local i llumination of a
surface is given by

∑
=

=
n

j

j
i

j
ioo

j
i

j
io GBRDFL

1

cos),,,(θφθφθ

Equation 15

Where G describes the radiant intensity for a light
source.
This is the general BRDF lighting equation for n
light sources and can be used for prefiltering of
environment maps.

5 Reflections with environment mapping

5.1 Prefiltered environment maps

The idea behind prefiltered environment maps is to
apply the reflection step to an environment map of
incident light, resulting in an map representing
exitant light (see [11]). That means, that an entry in
the environment map does not contain the incident
light from a certain direction, but the exitant light
that results from the incoming light in a global
ill umination simulation. This approach is useful for
non specular reflection. The Phong reflection
model, as example, wil l be described later [see
glossy prefiltering of environment maps, chapter
5.3].
The prefiltering process can be thought of applying
a (BDRF dependent) kernel filter to an unfiltered
source map.
The general kind of an environment map is five-
dimensional. Two dimensions are representing the
viewing direction v and three dimensions represent
the coordinate frame of the reflective surface
{ n,t,nxt} . Because five- dimensional textures have
enormous memory requirements some
dependencies are dropped.

As mentioned above a BRDF fr is needed to create
a prefiltered environment map which wil l be
applied to the original map. The incoming light
Li(x,l) from all directions l can be viewed as the
original map. To store the radiance of the reflected
light the incoming light must be weighted with the
BRDF fr. This considerations will lead us to the
following equation, where w(v,n,t) represents the
viewing direction and w(l,n,t) the light direction
relative to the frame. The reflected light towards all
viewing directions is captured by the prefiltered
environment map from a fixed position x.

∫
Ω

><= ldlnlxLtnlwtnvwftnvxL ir

��

�

�
�

�

�

�
�

���
�

��

,);()),,(),,,((),,;(

Equation 16

5.2 Diffuse prefiltering of environment maps

At a diffuse object, light has the same radiance into
all directions when the light meets the surface of
the object. This reflection is independent from the
view direction, but the angle of the lightbeam is
important.

One possible approach is image- based and uses a
prefiltered environment map. This approach was
mentioned by [1].
For such a map any parameterization (explained
before) can be used. The only difference is that
diffusely prefiltered maps are always referenced via
the normal of a vertex in environment map space,
instead of via the reflection vector.

5.3 Glossy prefiltering of environment maps

There are different methods to handle this, but here
we will take a closer look at the Phong reflection
model.
The Phong model [15], introduced by B.-T. Phong
in 1975, is a linear combination of three
components: diffuse, specular and ambient. The
ambient part models the reflection of light which
arrives at the surface from all directions, after being
bounced around the scene in multiple reflections.
The diffuse reflection models the reflection from
non- shiny surfaces. A perfectly diffuse reflecting
material reflects light equally in all directions. The
third component, and for glossy reflections the most
important, models the reflection from mirror like
surfaces.

Figure 5.3.1
Reflection of a perfect mirror

- 9 -

Figure 5.3.2
Reflection of a non perfect mirror

A perfect mirror [see Figure 5.3.1] will reflect light
arriving at the surface at an angle of incidence θ (to
the normal) at an angle of θ (to the normal) in the
same plane as the incident light. Thus, only a
viewer on the reflected ray can see the reflected
light. In practice no surface is a perfect mirror
which leads us to the picture shown in Figure 5.3.2.

The specular contribution is given by a function
depending on the angle between the viewing
direction and the mirror direction and from n, an
index that simulates the roughness of the surface.
Small integer values of n are simulating less glossy
surfaces and a large value for n simulates a glossy
surface. For a given n a reflection lobe is generated,
where the thickness of the lobe is a function of the
roughness [see Figure 5.3.3]
The specular reflection term produces a so- called
highlight. A highlight is a reflection of the
incoming light spread over an area of the surface.
The Phong- model is not a physically correct model
because it makes some simplifications, like all
geometry except the surface normal are ignored
(that means light sources and the viewer are located
in infinity). But, because of these simplification the
Phong model is a very-liked reflection model and
the realism provided by the model is sufficient for
many applications.
For a Phong prefiltered environment maps the
general Equation 16 becomes

∫
Ω

><
><
><= ldlnlxL

ln

lnr
ktnvxL i

N
v

sphong

��

�

�

�

�

�

��

�
��

,);(
,

),(
),,;(

Equation 17

The integral is an integral over a hemisphere of all
directions.
The BRDF fr has been replaced by the Phong
BRDF (shown by Lewis[12])

><
><=

ln

lnr
klvf

N
v

sr
�

�

�

��

�

�

,

),(
:),(

Equation 18

the rest is the same as in equation 16.
The two new parameters ks and N in the equation of
the Phong BRDF are used to control the shape and
size of the lobe. If we take a closer look at equation
17 we will see that we can make some
simplifications. The factor ks is independent from l,

so we can take ks in front of the integral. The term
<n,l> can be cut and the tangent t is not used and
can be discarded. Instead of indexing the
environment map with v and n it can be
reparameterized, so that it is directly indexed by rv,
the reflection vector. After all these simplifications
we get a 2- dimensional environment map.
Some samples of Phong environment maps are
shown in Figure 5.3.4.

Figure 5.3.3
(a) surface with a large n (b) surface with a small n

Figure 5.3.4
Phong environment maps with different N
from left to right: N=10, N=100, N=1000, N→∞

To avoid some of the inadequacies of the original
Phong model the Phong model can be extended
with a Fresnel term, which modulates the fraction
of reflected light depending on the incident angle of
light, and a weighted sum of a diffuse and a Phong
environment map.

In 1982 Cook and Torrance extended the Phong
model. The improved model still separates the

- 10 -

reflected light into a diffuse and specular
component, and the improvements only concentrate
on the specular component. The diffuse part is
calculated in the same way as before. The Cook,
Torrance model is most successful in rendering
shiny- metallic like surfaces.
But the simpler Phong model is today still as
popular as in previous days.

Figure 5.4
Top row: Fresnel weighted mirror term
Center row: Fresnel weighted mirror term plus diffuse
ill umination
Bottom row: Fresnel blending between mirror and diffuse term

6 Fresnel Term

The Fresnel term is a physical term which describes
the reflectivity of a material depending on it´s
optical density and the angle of the incoming light.

+−
−++

+
−=

2

2

2

2

)1)((
)1)((

1
)(2
)(

cgc

cgc

cg

cg
F

1,, 222 −+=>=< cngvnc
��

Equation 19

n is the index of refraction and describes the optical
density. For metallic surfaces the index of
refraction is very high, so that the Fresnel term is
almost one, independent of the angle between the

surface normal n and the light direction. Thus, for
metalli c surfaces the incoming illumination (stored
in the environment map) can be used directly as the
outgoing illumination. However, for non- metalli c
surfaces that approach can´t be used. Because for
such materials the reflection depends on the angle
of the incoming light. For such materials the mirror
reflection should be weighted by the Fresnel term
for the angle between the surface normal and the
reflected viewing direction rv. As we know the
angle of incidence equals the angle of reflection.

- 11 -

Thus, the angle, mentioned one sentence above, is
the same as the angle between the surface normal
and the viewing direction v.

Under the presupposition that the material of a
object does not change (that means that n is
constant) the Fresnel term for reflected viewing
direction can be stored in a 1- dimensional
environment map. The hole term now does only
depend on the viewing direction, so that this
assumption is possible. The mirror part (Lmirror) of
the given surface is than multiplied with the
appropriate Fresnel Term. Last but not least the
diffuse part (Ldiffuse) of the material is added. Thus,
the outgoing radiance is

DiffuseMirrorout LLFL +⋅= Equation 20

With the help of the Fresnel Term, materials with a
transparent coating can be simulated.

DiffuseMirrorout LFLFL)1(−+⋅= Equation 21

The term above only means that only the light
which is not reflected by the surface hits the surface
below and is there diffusely reflected.
In Figure 5.4 some images are shown which are
ill ustrating the theoretical stuff above.

7 Environment mapped bump mapping
(EMBM)

Bump mapping (developed by Blinn (1978) [17]) is
an elegant method that enables a surface to appear
wrinkled or dimpled without the need to model
complicated geometry. In Figure 7.1 you can see
the differences between a smooth and a bumpy
surface.

Figure 7.1
Reflections of a smooth surface (left) and of a bumpy surface
(right)

With environment mapped bump mapping
reflective surfaces can be created.
We need three different textures. A „normal“
texture, a so called bump map and an environment
map. See Figure 7.2
A bump map has a value for each texel, which
defines an appropriate value in the environment
map. A texel (short for texture element) is the
smallest element (pixel) of a texture on an object in
three dimensional space.

Figure 7.2
The three textures that are needed for EMBM

A very good example which shows the differences
between environment mapped bump mapping and
non EMBM can you see in Figure 8.1.

Example [9]:
An environment map is lied onto a sphere and a
light source should illuminate the sphere from the
right (see Figure 7.3). For that reason an
appropriate environment map is produced, which
handles the tasks of a light map.

Figure 7.3
Sphere with a light source placed on the right

Without bumps the sphere would be ill uminated
equally. But, if you lay a bump map over the object,
the texels are handled with the bumps on a different
place at the environment map to consider the bend
(see Figure 7.4).
One side of the object is closer to the light source,
so the environment map is brighter on the right
side. For each pixel, these information’s are located
in the bump map.

Figure 7.4
Indexing of environment map

EMBM can be used in two different ways, for
bump mapping with a light map (see Figure 7.5) or
for real environment mapped bump mapping (see
Figure 7.6). The second method can be used for
reflection- effects (i.e. water).

- 12 -

Figure 7.5
Water with the help of bump mapping (picture taken from the
game Expandable)

Figure 7.6
Example for real environmental bump mapping
Top: without EMBM
Bottom: with EMBM

More complicated and more hardware- intensive
are dynamically light sources, because the light
map must be recalculated every time when the
light- direction changes.

With cube environment maps the same effects are
possible, but it is more expensive.
Cube environment mapped bump mapping makes
environment mapping possible in all directions.
Non- cube environment mapped bump mapping is
limited to few directions (because of distortions).

8 OpenGL

8.1 Sphere Mapping
For a detailed OpenGL specification see [13].
Sphere Environment Mapping is a quick way to add
a reflection to a metallic or reflective object in your
scene. To use sphere mapping in OpenGL, the
following steps must be performed:

1. Bind the texture containing the sphere map.
2. Set sphere mapping texture coordinate
generation.
3. Enable texture coordinate generation.
4. Draw the object, providing correct normals on a
per-face or per-vertex basis.

We will explain the theoretical stuff above based on
an example [8].
For environment mapping we need a texture for the
object. We have to load an image file and transform
it to an OpenGL texture.
First we create some space to store intermediate
image data and load the image into that temporary
storage. Where texture_file identifies the file
of the image which is used for the texture. Note that
texture_file must be from type *FILE.

AUX_RGBImageRec *localTexture[1];
localTexture[0] =
auxDIBImageLoad(texture_file);

Now space for the texture must be generated. Also,
you must tell OpenGL that it is a 2-dimensional
texture. After this two steps are performed, the
texture can be generated.

glGenTextures(1,&textures[texID]);
glBindTexture(GL_TEXTURE_2D,
textures[texID]);
glTexImage2D(GL_TEXTURE_2D, 0, 3,
localTexture[0]->sizeX,
localTexture[0]->sizeY, 0, GL_RGB,
GL_UNSIGNED_BYTE,
localTexture[0]->data);

texID identifies the texture. Each texture must
have an seperate identifier.

With the aid of glTexEnvf the texture
environment parameters are set.
GL_TEXTURE_ENV and
GL_TEXTURE_ENV_MODE must not be altered.
Instead of GL_DECAL, GL_BLEND or
GL_MODULATE can be used.

- 13 -

Figure 8.1
Top: without EMBM
Bottom: with EMBM
(screenshots taken from Slave Zero)

glTexEnvf(GL_TEXTURE_ENV,GL_TEXTUR
E_ENV_MODE,GL_DECAL);
glTexGeni(GL_S,GL_TEXTURE_GEN_MODE
,GL_SPHERE_MAP);
glTexGeni(GL_T,GL_TEXTURE_GEN_MODE
,GL_SPHERE_MAP);

The two glTexGeni calls are setting the texture
generation mode for S and T to sphere mapping.
The texture coordinates S, T, R & Q relate in a way
to object coordinates x, y, z and w. If you are using
a one-dimensional texture (1D) you will use the S

coordinate. If your texture is two dimensional, you
will use the S & T coordinates.
The next two calls to glTexGen very important,
as they are the ones that create the Environmental
Mapping effect. This
function is responsible for automatically creating
texture coordinates, so instead of calling
glTexCoord to assign texture coordinates, they
are automatically assigned by OpenGL. The first
parameter specifies the axis that we want our
coordinates to be created for. GL_S is used for the
x-axis and GL_T is used for the y-axis. The R and
Q coordinates are usually ignored. The Q
coordinate can be used for advanced texture

- 14 -

mapping extensions, and the R coordinate may
become useful once 3D texture mapping has been
added to OpenGL, but for now the R & Q
coordinates can be ignored. The S coordinate runs
horizontally across the face of our polygon, the T
coordinate runs vertically across the face of our
polygon.
The combination of GL_TEXTURE_GEN_MODE
with GL_SPHERE_MAP creates the appropriate
texture coordinates for the environmental mapping
effect.

Before creating any of the objects a call to
glBindTexture is done in order to specify that
the following objects will use the specific texture.
A call to glEnable with a parameter of
GL_TEXTURE_2D is also done to enable 2D
texturing.

glBindTexture(GL_TEXTURE_2D,textur
es[0]) ;
glEnable(GL_TEXTURE_2D) ;
glEnable(GL_TEXTURE_GEN_S) ;
glEnable(GL_TEXTURE_GEN_T) ;

// create here an object
// this object will be environment
// mapped
// with the texture specified
// in glBindTexture

glDisable(GL_TEXTURE_GEN_S) ;
glDisable(GL_TEXTURE_GEN_T) ;

8.2 Cube Mapping

We will know describe how cube mapping is done
with OpenGL (see [7]). OpenGL V1.2 has a new
extension, called EXT_texture_cube_map
which provides a new texture generation scheme
for cube map textures. For cube mapping the
texture is a set of six 2D images representing the
faces of a cube. Cube map texturing requires the
ability to access these six images at once. Note that
the six images must be quadratic. This feature is
supported only be newest hardware, whereas sphere
mapping is supported by older hardware too.

We can divide cube maps into static and dynamic
cube maps. Dynamic means that the cube map
texture is rerendered every frame. Thus, we can
represent an environment which changes. A
dynamic cube map texture is generated the
following way. First, the six images from the point
of view of the reflective object are rendered. Each
image belongs to one of the faces. In OpenGL the
glCopySubTexImage2D command copies each
rendered cube face into the cube map. Now, the
scene can normally be rendered using the dynamic
cube map when rendering the reflective object.
Such dynamic cube maps are significantly more
expensive than static ones (means, that when the

view changes the texture is not updated), but it can
still be done at interactive rates.

The OpenGL cube map extension adds a new
target, called GL_TEXTURE_CUBE_MAP_EXT.
This enumerant is passed to glBindTexture,
glTexParameter, glEnable and
glDisable when using cube map textures. The
texture cube map extension makes a distinction
between the cube map "texture as a whole" and the
six texture images. So, the above target is not used
for glTexImage2D and related commands, which
are used for 2D textures. The six image targets are:

GL_TEXTURE_CUBE_MAP_POSITIVE_X_EXT
GL_TEXTURE_CUBE_MAP_NEGATIVE_X_EXT
GL_TEXTURE_CUBE_MAP_POSITIVE_Y_EXT
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT
GL_TEXTURE_CUBE_MAP_POSITIVE_Z_EXT
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT

Which of the six targets is used to render a point on
an object can be seen in Table 1 in the cube map
section.

These cube map "texture image" targets are passed
to commands such as glTexImage2D,
glCopyTexImage2D and so on. As mentioned
above, the cube map images must always have
square dimension to form a cube. That means, that
they must have the same dimension and the same
width and height. To check if the texturing will
work, there is a special target for cube map textures
called GL_PROXY_TEXTURE_CUBE_MAP_EXT.
Since every face must have the same size we do not
need such a target for every image.
GL_MAX_CUBE_MAP_TEXTURE_SIZE_EXT
indicates the maximum cube map texture size that
is supported by the OpenGL implementation.

How the images of a cube map texture are set is
shown in following code sequence.

GLubyte face[6][64][64][3];
for (i=0; i<6; i++)
{

glTexImage2D(GL_TEXTURE_CUBE
_MAP_POSITIVE_X_EXT + i,
0,
GL_RGB8,
64,
64,
0,
GL_RGB,
GL_UNSIGNED_BYTE,
&face[i][0][0][0]);

}

In the above example each of the faces is 64x64
RGB image. The six image targets have one
advantage. The "texture image" targets are ordered
in a sequential way, so the six images can be simply
set in a loop, by adding one to the target. This
example is realized without mipmaps. To establish

- 15 -

mipmaps instead of GL_TEXTURE_2D,
gluBuild2DMipmaps is used.

To use cube map textures in an application it must
be enabled. This is done as follows:
glEnable(GL_TEXTURE_CUBE_MAP_EXT)
And with following instruction the extension can be
disabled:
glDisable(GL_TEXTURE_CUBE_MAP_EXT)

Two new texture coordinate generation modes have
been added to OpenGL. The two modes are
generating the eye-space reflection vector or normal
vector in the (s,t,r) coordinates. Here an example
for a reflection map:

glTexGenfv(GL_S,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_EXT);

glTexGenfv(GL_T,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_EXT);

glTexGenfv(GL_R,
GL_TEXTURE_GEN_MODE,
GL_REFLECTION_MAP_EXT);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);

For a normal map the
GL_REFLECTION_MAP_EXT enumerant is simple
changed into GL_NORMAL_MAP_EXT. These two
modes work only correctly if per-vertex normals
are supplied.

9 Conclusion

We have presented how environment maps can be
parameterized. For each parameterization we
showed how the indexing is done. As shown in the
OpenGL chapter most of this parameterizations can
be practicall y used for 3D graphic programming.
Also, prefiltering of environment maps, like diffuse
and glossy prefiltering was shown. As example for
glossy prefiltering the widely used Phong model
was explained. Note, that there are many other
models which are more physically accurate, but are
not so often used because they are more
complicated.
In chapter 10 the fundamentals of environmental
mapped bump mapping was discussed. Based on
examples we have shown that this method is
preferred in games nowadays.

10 References

[1] Greene Ned. Applications of world
projections. IEEE Computer Graphics and
Applications, pages 21-29, August 1986

[2] Haeberli Paul, Segal Mark, Texture
Mapping as a Fundamental Drawing
Primitive. In Fourth Eurographics
Workshop on Rendering, pages 259-264,
1993

[3] Heidrich Wolfgang, Seidel Hans-Peter.
Realisic, Hardware-accelerated Shading
and Lighting. In Computer Graphics
(Proceedings Annual Conference Series),
pages 174-176, 1999.

[4] Heidrich, Wolfgang. Interactive Display of
global Illumination Solutions for Non-
Diffuse Environments, Eurographics,
pages 2-9, 2000.

[5] http://www.nvidia.com
/Marketing/Developer/DevRel.nsf/bookma
rk/B0C2609E737F9C278825698A0002B4
2F

[6] http://www.nvidia.com
/Marketing/Developer/DevRel.nsf/bookma
rk/EC702BA2A8D553048825686600832F
80

[7] http://www.nvidia.com
/Marketing/Developer/DevRel.nsf/bookma
rk/B4AFCEDB4AF0B84A8825681E0076
ADB6

[8] http://www.dev-gallery.com
/programming/opengl/env_mapping/env_
map1.htm

[9] http://www.3dconcept.ch
/artikel/bump/index.html

[10] http://www.3dconcept.ch
/artikel/environment/

[11] Kautz Jan, Vázquez Pere-Pau, Heidrich
Wolfgang, Seidel Hans-Peter. A Unified
Approach to Prefiltered Environment
Maps.

[12] Lewis Robert R. Making shaders more
physicall y plausible. In Computer
Graphics (Eurographics Conference
Issue), pages 1-13, June 1993.

[13] Mark Segal, Kurt Akeley, The OpenGL
Graphics System: A specification, 1999
http://trant.sgi.com/opengl/docs/Specs/glsp
ec1.1/glspec.html

[14] Mizutani Yoshihiro and Reindel Kurt.
Environment Mapping Algorithms
http://home.san.rr.com/thereindels/Mappin
g/Mapping.html

- 16 -

[15] Watt Alan, 3D Computer Graphics, second
edition, Addison-Wesley, page 96-100,
1993.

[16] Watt Alan, 3D Computer Graphics, second
edition, Addison-Wesley, page 267, 1993.

[17] Watt Alan, 3D Computer Graphics, second
edition, Addison-Wesley, page 225-262,
1993.

[18] Zimmons Paul. Spherical, Cubic, and
Parabolic Environment Mappings.
Dezember 1999

[19] Zimmons Paul. Exploring BRDF Mapping.
CS236 Project, Spring 1999
http://www.cs.unc.edu/~zimmons/cs236/B
RDFmap.html

