EP0714151A1 - Broadband monopole antenna in uniplanar printed circuit technology and transmit- and/or receive device with such an antenna - Google Patents

Broadband monopole antenna in uniplanar printed circuit technology and transmit- and/or receive device with such an antenna Download PDF

Info

Publication number
EP0714151A1
EP0714151A1 EP95460040A EP95460040A EP0714151A1 EP 0714151 A1 EP0714151 A1 EP 0714151A1 EP 95460040 A EP95460040 A EP 95460040A EP 95460040 A EP95460040 A EP 95460040A EP 0714151 A1 EP0714151 A1 EP 0714151A1
Authority
EP
European Patent Office
Prior art keywords
antenna
radiating
antenna according
main surface
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95460040A
Other languages
German (de)
French (fr)
Other versions
EP0714151B1 (en
Inventor
Patrice Brachat
Christian Sabatier
Roger Behe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP0714151A1 publication Critical patent/EP0714151A1/en
Application granted granted Critical
Publication of EP0714151B1 publication Critical patent/EP0714151B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the field of the invention is that of radio transmissions. More specifically, the invention relates to transmit and / or receive antennas, in particular for equipment of reduced size, such as portable devices.
  • the invention thus applies, in particular, to radio communication systems with mobiles.
  • the extension of radiocommunication networks with land mobiles requires the development of portable autonomous stations having the dual functionality of transmitting and receiving microwave signals. These stations must therefore include an integrated antenna.
  • These antennas are generally in the form of a radiating element located outside of a metal case, for example of rectangular shape, constituting the shielding of one or more electronic cards ensuring in particular modulation and demodulation functions. microwave signals, in transmission and reception respectively.
  • a first known type of antenna is the half-wave doublet, that is to say a doublet of length ⁇ / 2, with ⁇ the operating wavelength.
  • the half-wave doublet which generally consists of elements of two-wire lines (that is to say of conductive cylindrical rods) supplied by a supply line, has relatively broadband performance, which makes it usable in many applications.
  • balun is traditionally presented as a transformer involving localized or distributed impedances, and allowing, when placed between a symmetrical radiating element and an asymmetrical supply line, to make the currents symmetrical on the radiating structure.
  • balun has the major drawback of requiring always delicate focusing.
  • Half-wave doublets are also known which are self-symmetrized, so that they can be used without a balun.
  • conductive cylindrical rods due to the use of conductive cylindrical rods, such an autosymmetry characteristic can only be obtained at the cost of increased complexity of the antenna structure.
  • the half-wave doublets with cylindrical rods have difficult mechanical handling as well as a space which is still too large (although reduced), the minimum length of the antenna being imposed by the length of the main strands. , or about ⁇ / 2.
  • a second type of antenna even more compact than the half-wave doublet, was therefore designed.
  • This is the inverted F antenna, which consists of a horizontal rectangular conductive element and a vertical rectangular conductive element.
  • the vertical element performs a short-circuit function on the horizontal element, by connecting one of its ends to a ground plane.
  • this antenna has very frequency dispersive characteristics, and therefore, consequently, a very low bandwidth, and for example of the order of 2 to 3%. This is due to the fact that this antenna structure behaves substantially like a ⁇ / 4 resonator.
  • the bandwidth of an antenna is defined here as the frequency band over which the Standing Wave Ratio (ROS) is less than 2. This last parameter represents the ability of the antenna to transmit the active power which is which is most critical for small antennas.
  • ROS Standing Wave Ratio
  • This quantity is directly linked to the input impedance of the antenna, which must be adapted to the impedance of the transmission line carrying the microwave signal to be transmitted and / or received.
  • this impedance remains appreciably constant (that is to say that the ROS remains lower than 2, a ROS equal to 1 corresponding to a perfect adaptation) on a large band of frequency.
  • a bandwidth of 2 to 3% as obtained using an inverted F antenna is generally insufficient.
  • the invention particularly aims to overcome the drawbacks of the various known types of antenna, and in particular those of half-wave dipoles and antennas in inverted F.
  • an objective of the invention is to provide a compact antenna having a large pass.
  • the object of the invention is in particular to provide such an antenna, the bandwidth of which is at least of the order of 20 to 30% and having a reduced size, in particular compared to an antenna in inverted F.
  • the invention also aims to provide a self-symmetrized antenna, and therefore requiring no balun.
  • the invention also aims to provide such an antenna, which can operate over a wide range of input impedances, and in particular for input impedances between 10 and 200 Ohms.
  • the antenna of the invention is therefore produced in printed technology, which allows a considerable saving of space and a much easier mechanical maintenance.
  • the main surface of the conductive deposit by constituting a ground plane for the supply line, ensures that the supply is self-symmetrized.
  • the antenna according to the invention does not require the joint use of a balun.
  • the supply line feeds the radiating strand through the coupling slot.
  • the antenna according to the invention is notably based on a new and inventive adaptation of the inverted F antenna.
  • the two-dimensional configuration of the inverted F antenna was projected into a single plane containing the entire antenna.
  • the radiating strand and the ground plane are no longer in two separate parallel planes, but in the same plane.
  • the antenna of the invention is therefore much more compact since the height h is overcome between the radiating strand (or horizontal conductive element) and the ground plane.
  • the antenna of the invention has a much wider bandwidth than that of an inverted F antenna. This is explained in particular by the fact that for the inverted F antenna, the radiating strand is located just above the ground plane and forms with it a cavity which is very selective in frequency (generally 2 to 3% bandwidth). On the other hand, in the case of the invention, the ground plane and the strand radiant are located in the same plane, so that the cavity effect is much less marked. This makes it possible to reach bandwidths close to 25%, and to simultaneously cover the transmission band and the reception band.
  • said supply line and said coupling slot intersect at a point called cross point, said supply line having an end portion, or series stub, extending beyond said cross point of a first adaptable length, and said coupling slot having an end portion, or parallel stub, extending beyond said crossing point of a second adaptable length.
  • At least one of the elements belonging to the group comprising said radiating strand, said main surface, and said coupling slot is of substantially rectangular shape.
  • said conductive deposit comprises at least two radiating strands, the longitudinal space between each of said radiating strands and said main surface forming a separate coupling slot.
  • the antenna comprises at least two supply lines, each of said radiating strands cooperating with one of said supply lines.
  • said radiating strand has at least one bend, so that said radiating strand extends at least partially along at least two sides of said main surface.
  • the overall size of the antenna is limited since the minimum dimension of the antenna is no longer linked to the total length of the radiating strand but only to the length of the sides of the main surface of the conductive deposit.
  • said radiating strand has a variable width.
  • the bandwidth of the antenna is increased.
  • said radiating strand has at least one recess on at least one of the longitudinal edges and / or at least one lumen on its surface.
  • the light on the surface of the radiating strand is for example a slit.
  • the antenna also comprises a ground plane placed at a predetermined distance from said feed line.
  • ground plane is without radiating element, it makes it possible to remove the parasitic radiation from the supply line and to obtain radiation in a half-space only.
  • said ground plane is a conductive deposit of the same shape as that located on the second face of said substrate plate, comprising a main surface and at least one radiating strand.
  • the ground plane makes it possible to obtain symmetrical radiation on each side of the antenna.
  • said supply line has an impedance substantially between 10 Ohms and 200 Ohms.
  • the length of said radiating strand is substantially between ⁇ / 8 and ⁇ / 4, ⁇ being the wavelength of said microwave signals.
  • the invention also relates to a device for transmitting and / or receiving microwave signals, comprising at least one antenna as described above.
  • the invention therefore relates to a reduced-size antenna with wide bandwidth.
  • This antenna is in particular intended to equip portable devices, and for example transmitters / receivers of radiocommunication networks with land mobiles.
  • FIGS. 1A and 1B which are respectively a top view and a side view, illustrate a first embodiment of the invention.
  • the antenna comprises a substrate plate 1 (not shown in FIG. 1), a supply line 2 and a conductive deposit 3.
  • the supply line 2 is located on a first face (the lower face for example) of the substrate plate 1. It is for example a microstrip line.
  • the conductive deposit 3, for example of copper, is located on a second face (the upper face for example) of the substrate plate 1 and can decompose (fictitiously, since it is in practice made in one piece) into three parts: a main surface 4, an intermediate part 5 and a radiating strand 6.
  • the main surface 4 (rectangular in this example) of the conductive deposit 3 constitutes a ground plane for the supply line 2 situated on the other face of the substrate plate 1.
  • the antenna therefore generates symmetrical currents on the radiating strand 6.
  • the antenna of the The invention is self-symmetrized.
  • the radiating strand 6 is rectangular and has a first end connected to the main surface 4 of the conductive deposit 3 by the intermediate part 5, and a second free end extending partially along one side of the main surface. 4 from driver's depot 3.
  • the length of the radiating strand 6 is close to ⁇ / 4, with ⁇ the operating wavelength of the antenna.
  • the antenna of the invention which is planar and whose maximum length is ⁇ / 4, has a smaller footprint than that of a dipole of length ⁇ / 2 or even that of an antenna in inverted F of length ⁇ / 4 but whose radiating strand is spaced a height h from the ground plane.
  • the antenna of the invention has not only a very small footprint but also a large bandwidth. Indeed, the main surface 4 of the conductive deposit 3 behaves like a ground plane especially with respect to the supply line 2 and the coupling slot 7, and very little with respect to the radiating strand 6, which greatly reduces the selectivity of the antenna. In addition, the cavity effect (and therefore the selectivity of the antenna) is much less marked than for an inverted F antenna since the ground plane (that is to say the main surface 4 of the conductive deposit 3 ) and the radiating strand 6 are located in the same plane.
  • the antenna according to the invention has a bandwidth of 20 to 30% and can be easily incorporated inside an ultra-light portable handset.
  • the longitudinal space between the radiating strand 6 and the main surface 4 of the conductive deposit 3 forms a coupling slot 7 by means of which the supply line 2 supplies the radiating strand 6.
  • the coupling slot 7 is also rectangular.
  • FIG 2 is a partial detailed view of the antenna shown in Figure 1A.
  • the antenna of the invention comprises a serial stub and a parallel stub.
  • These series and parallel stubs allow the adaptation of the antenna according to the known principle of double stub adaptation, over a wide frequency band.
  • FIG. 3 shows a variation curve, as a function of frequency, of the standing wave ratio (or ROS) for an example of antenna according to the first embodiment of FIGS. 1A and 2.
  • This curve is used to calculate the passband [f1, f2], defined here as the frequency band for which the ROS remains below 2.
  • This passband can also expressed as a percentage, obtained by dividing the width (f2, f1) of the passband by the center frequency f3 of this band.
  • the antenna according to the invention therefore has a pass band wide enough to simultaneously cover the transmit band and the receive band.
  • Figure 4 shows a variation curve, in a Smith chart, of the input impedance for the previous antenna example. Note the presence of a loop around the center of the abacus (which is the perfect adaptation point compared to a 50 ⁇ supply line). This loop guarantees low frequency dispersion and translates the efficiency of the adaptation.
  • the antenna is not, in this example, perfectly optimized. Indeed, better centering of the loop relative to the center of the Smith chart would increase the performance of the antenna.
  • the impedance of the supply line carrying the HF signal to be transmitted was fixed at 50 ⁇ , but this value does not constitute a determining characteristic, because the input impedance of the antenna according to the invention can take any value between 10 and 200 ⁇ .
  • FIG. 5 shows a top view of a second embodiment of the antenna according to the invention.
  • This second embodiment differs from the first in that the radiating strand 6 has a bend 51 and extends along two sides of the main surface 4 of the conductive deposit 3.
  • the overall size of the antenna is further reduced. If the length of radiating strand 6 is equal to ⁇ / 4, it is possible, by creating a bend 51 at mid-length, to reach dimensions close to ⁇ / 8.
  • the elbow 51 is not necessarily in the center of the radiating strand 6, or that the radiating strand 6 may include more than one elbow, so as to extend along more than two sides of the surface. main 4.
  • FIG. 6 presents a top view of a third embodiment of the antenna according to the invention.
  • This third embodiment differs from the first in that the radiating strand 6 has a variable width over its length. This variable width, when chosen appropriately, makes it possible to increase the bandwidth of the antenna.
  • the radiating strand 6 has a recess 61, 62 on each of its longitudinal edges. It should be noted that in other embodiments, the radiating strand 6 may have a slit in the middle, or have several recesses on each of its longitudinal edges, or even have one or more recesses on only one of its longitudinal edges .
  • FIG. 7 shows a top view of a fourth embodiment of the antenna according to the invention.
  • the antenna comprises several radiating strands 6 A , 6 B , 6 C , 6 D (four in this example).
  • Each radiating strand 6 A , 6 B , 6 C , 6 D is connected to the main surface 4 by an intermediate part 5 A , 5 B , 5 C , 5 D , and each longitudinal space comprised between a radiating strand 6 A , 6 B , 6 C , 6 D and the main surface 4 forms a separate coupling slot 6 A , 6 B , 6 C , 6 D.
  • the radiating strands 6 A , 6 B , 6 C , 6 D may or may not be identical.
  • a single supply line can supply all the radiating strands 6 A , 6 B , 6 C , 6 D , or else several supply lines can be used.
  • a single supply line can supply all the radiating strands 6 A , 6 B , 6 C , 6 D , or else several supply lines can be used.
  • the antenna comprises means 71 for shaping the HF signals received from a main supply line (not shown) and to be transmitted on the various secondary supply lines 2 A , 2 B , 2 C , 2 D associated with the different radiating strands 6 A , 6 B , 6 C , 6 D.
  • the elements (dividers, phase shifters) constituting the means 71 for shaping the signals can be produced by different lengths of supply lines, by hybrid rings, or by any other solution known to those skilled in the art and realizing the desired function.
  • the antenna may for example comprise another ground plane, placed at a predetermined distance from the supply line and separated from the latter by air or by a dielectric.
  • the antenna comprises the following successive layers: a ground plane, a dielectric, a supply line, a substrate plate and a conductive deposit.
  • the role of the additional ground plane is for example to suppress stray radiation from the supply line and to obtain radiation in only half a space.
  • the additional ground plane is produced in the form of a conductive deposit also comprising a main surface and a radiating strand associated with a slot. In this case, symmetrical radiation is obtained on each side of the antenna.
  • a radiating strand may have a variable width and extend on two sides of the main surface of the conductive deposit.
  • the invention also relates to any device for transmitting and / or receiving microwave signals equipped with an antenna according to the invention.
  • a device can comprise several antennas, and in particular a transmitting antenna and a receiving antenna.

Abstract

The antenna includes a feed line (2) which is positioned on the first surface of a substrate. A conductor (3) is positioned on the second surface to form a ground plane (4) for the RF feed. A radiating stub (6) extends at least partially along the length of the side of the ground plate. A coupling slot (7) is formed between the stub and the plate. The coupling slot crosses the supply line at a crossing point beyond which the supply line has a series stub of a first adaptable length and the slot forms a parallel stub of a second adaptable length. The slot can be rectangular and the stub have variable width.

Description

Le domaine de l'invention est celui des transmissions hertziennes. Plus précisément, l'invention concerne les antennes d'émission et/ou de réception, notamment pour les équipements de taille réduite, tels que les appareils portables.The field of the invention is that of radio transmissions. More specifically, the invention relates to transmit and / or receive antennas, in particular for equipment of reduced size, such as portable devices.

L'invention s'applique ainsi, en particulier, aux systèmes de radiocommunication avec des mobiles. En effet, l'extension des réseaux de radiocommunication avec des mobiles terrestres impose la mise au point de stations autonomes portables possédant la double fonctionnalité d'émission et de réception de signaux hyperfréquences. Ces stations doivent donc comprendre une antenne intégrée.The invention thus applies, in particular, to radio communication systems with mobiles. In fact, the extension of radiocommunication networks with land mobiles requires the development of portable autonomous stations having the dual functionality of transmitting and receiving microwave signals. These stations must therefore include an integrated antenna.

Les fréquences actuellement mises en oeuvre pour ces applications (de l'ordre de 2 GHz), ainsi que différentes contraintes liées à l'ergonomie et à l'esthétisme des combinés (intégration de l'antenne dans le dessin de l'appareil, facilité de stockage et d'utilisation, fragilité des antennes de grande taille, ...) conduisent à l'utilisation d'antennes de dimensions très réduites. On connaît ainsi plusieurs types d'antennes, dont les dimensions sont inférieures à la longueur d'onde du signal hyperfréquence.The frequencies currently used for these applications (of the order of 2 GHz), as well as various constraints linked to the ergonomics and aesthetics of the handsets (integration of the antenna in the design of the device, ease storage and use, fragility of large antennas, ...) lead to the use of antennas of very small dimensions. Several types of antenna are thus known, the dimensions of which are less than the wavelength of the microwave signal.

Ces antennes se présentent en général sous la forme d'un élément rayonnant implanté à l'extérieur d'un boîtier métallique, par exemple de forme parallélépipédique, constituant le blindage d'une ou plusieurs cartes électroniques assurant notamment des fonctions de modulation et de démodulation des signaux hyperfréquences, en émission et en réception respectivement.These antennas are generally in the form of a radiating element located outside of a metal case, for example of rectangular shape, constituting the shielding of one or more electronic cards ensuring in particular modulation and demodulation functions. microwave signals, in transmission and reception respectively.

Un premier type d'antenne connu est le doublet demi-onde, c'est-à-dire un doublet de longueur λ/2, avec λ la longueur d'onde de fonctionnement.A first known type of antenna is the half-wave doublet, that is to say a doublet of length λ / 2, with λ the operating wavelength.

Le doublet demi-onde, qui est généralement constitué d'éléments de lignes bifilaires (c'est-à-dire de tiges cylindriques conductrices) alimentés par une ligne d'alimentation, présente des performances relativement large-bande, ce qui le rend utilisable dans de nombreuses applications.The half-wave doublet, which generally consists of elements of two-wire lines (that is to say of conductive cylindrical rods) supplied by a supply line, has relatively broadband performance, which makes it usable in many applications.

Toutefois, plusieurs inconvénients sont liés à son utilisation. En effet, les lignes d'alimentation (par exemple des lignes coaxiales) sont généralement dissymétriques, alors que les éléments rayonnants sont symétriques. Par conséquent, afin que le rayonnement du doublet demi-onde soit acceptable, il convient d'utiliser un symétriseur. Un symétriseur se présente traditionnellement comme un transformateur faisant intervenir des impédances localisées ou distribuées, et permettant, lorsqu'il est placé entre un élément rayonnant symétrique et une ligne d'alimentation dissymétrique, de rendre les courants symétriques sur la structure rayonnante. Un tel symétriseur présente l'inconvénient majeur de nécessiter une mise au point toujours délicate.However, several drawbacks are linked to its use. In fact, the supply lines (for example coaxial lines) are generally asymmetrical, while the radiating elements are symmetrical. Therefore, so that the radiation half-wave doublet is acceptable, a balun should be used. A balun is traditionally presented as a transformer involving localized or distributed impedances, and allowing, when placed between a symmetrical radiating element and an asymmetrical supply line, to make the currents symmetrical on the radiating structure. Such a balun has the major drawback of requiring always delicate focusing.

On connaît également des doublets demi-onde qui sont autosymétrisés, de façon à pouvoir être utilisés sans symétriseur. Toutefois, du fait de l'utilisation de tiges cylindriques conductrices, une telle caractéristique d'autosymétrie ne peut être obtenue qu'au prix d'une complexité accrue de la structure de l'antenne.Half-wave doublets are also known which are self-symmetrized, so that they can be used without a balun. However, due to the use of conductive cylindrical rods, such an autosymmetry characteristic can only be obtained at the cost of increased complexity of the antenna structure.

Enfin, d'une façon générale, les doublets demi-onde à tiges cylindriques présentent un maniement mécanique difficile ainsi qu'un encombrement encore trop important (bien que réduit), la longueur minimale de l'antenne étant imposée par la longueur des brins principaux, soit environ λ/2.Finally, in general, the half-wave doublets with cylindrical rods have difficult mechanical handling as well as a space which is still too large (although reduced), the minimum length of the antenna being imposed by the length of the main strands. , or about λ / 2.

Comme précisé auparavant, la réduction de l'encombrement est devenu un objectif essentiel pour les concepteurs d'antennes.As stated before, reducing clutter has become an essential goal for antenna designers.

Un second type d'antenne, encore plus compact que le doublet demi-onde, a donc été conçu. Il s'agit de l'antenne en F inversé, qui est constituée d'un élément conducteur rectangulaire horizontal et d'un élément conducteur rectangulaire vertical. L'élément vertical assure une fonction de court-circuit sur l'élément horizontal, en reliant l'une de ses extrémités à un plan de masse. La longueur de l'élément horizontal est généralement L = λ/4. En d'autres termes, l'élément horizontal est placé dans un plan parallèle au plan de masse et à une hauteur h de celui-ci.A second type of antenna, even more compact than the half-wave doublet, was therefore designed. This is the inverted F antenna, which consists of a horizontal rectangular conductive element and a vertical rectangular conductive element. The vertical element performs a short-circuit function on the horizontal element, by connecting one of its ends to a ground plane. The length of the horizontal element is generally L = λ / 4. In other words, the horizontal element is placed in a plane parallel to the ground plane and at a height h thereof.

Ainsi, pour des fréquences de l'ordre de 2 GHz, ces dimensions sont de l'ordre de quelques centimètres. L'antenne obtenue est donc d'encombrement très réduit (sa longueur minimale est λ/4 au lieu de λ/2 pour le doublet demi-onde).Thus, for frequencies of the order of 2 GHz, these dimensions are of the order of a few centimeters. The antenna obtained is therefore very compact (its minimum length is λ / 4 instead of λ / 2 for the half-wave doublet).

En revanche, cette antenne présente des caractéristiques très dispersives en fréquence, et donc, en conséquence, une bande passante très faible, et par exemple de l'ordre de 2 à 3 %. Cela est dû au fait que cette structure d'antenne se comporte sensiblement comme un résonateur λ/4.On the other hand, this antenna has very frequency dispersive characteristics, and therefore, consequently, a very low bandwidth, and for example of the order of 2 to 3%. This is due to the fact that this antenna structure behaves substantially like a λ / 4 resonator.

La bande passante d'une antenne est ici définie comme la bande de fréquence sur laquelle le Rapport d'Onde Stationnaire (R.O.S) est inférieur à 2. Ce dernier paramètre représente l'aptitude de l'antenne à transmettre la puissance active qui lui est fournie, ce qui est le plus critique pour les antennes de taille réduite.The bandwidth of an antenna is defined here as the frequency band over which the Standing Wave Ratio (ROS) is less than 2. This last parameter represents the ability of the antenna to transmit the active power which is which is most critical for small antennas.

Cette grandeur est directement liée à l'impédance d'entrée de l'antenne, qui doit être adaptée à l'impédance de la ligne de transmission véhiculant le signal hyperfréquence à émettre et/ou à recevoir. Pour un fonctionnement optimal de l'antenne, il est nécessaire que cette impédance reste sensiblement constante (c'est-à-dire que le R.O.S reste inférieur à 2, un R.O.S. égal à 1 correspondant à une adaptation parfaite) sur un grande bande de fréquence. Une bande passante de 2 à 3 % telle qu'obtenue à l'aide d'une antenne en F inversée est généralement insuffisante.This quantity is directly linked to the input impedance of the antenna, which must be adapted to the impedance of the transmission line carrying the microwave signal to be transmitted and / or received. For an optimal functioning of the antenna, it is necessary that this impedance remains appreciably constant (that is to say that the ROS remains lower than 2, a ROS equal to 1 corresponding to a perfect adaptation) on a large band of frequency. A bandwidth of 2 to 3% as obtained using an inverted F antenna is generally insufficient.

L'invention a notamment pour objectif de pallier les inconvénients des différents types connus d'antenne, et notamment ceux des doublets demi-onde et des antennes en F inversé.The invention particularly aims to overcome the drawbacks of the various known types of antenna, and in particular those of half-wave dipoles and antennas in inverted F.

Plus précisément, un objectif de l'invention est de fournir une antenne d'encombrement réduit présentant une large passante. Ainsi, l'invention a notamment pour objectif de fournir une telle antenne, dont la bande passante est au moins de l'ordre de 20 à 30 % et présentant un encombrement réduit notamment par rapport à une antenne en F inversé.More specifically, an objective of the invention is to provide a compact antenna having a large pass. Thus, the object of the invention is in particular to provide such an antenna, the bandwidth of which is at least of the order of 20 to 30% and having a reduced size, in particular compared to an antenna in inverted F.

L'invention a également pour objectif de fournir une antenne autosymétrisée, et ne nécessitant donc aucun symétriseur.The invention also aims to provide a self-symmetrized antenna, and therefore requiring no balun.

L'invention a encore pour objectif de fournir une telle antenne, qui puisse fonctionner sur une grande plage d'impédances d'entrée, et en particulier pour des impédances d'entrée comprises entre 10 et 200 Ohms.The invention also aims to provide such an antenna, which can operate over a wide range of input impedances, and in particular for input impedances between 10 and 200 Ohms.

Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints selon l'invention à l'aide d'une antenne d'émission et/ou de réception de signaux hyperfréquences, comprenant :

  • une plaque de substrat ;
  • au moins une ligne d'alimentation située sur une première face de ladite plaque de substrat ;
  • un dépôt conducteur situé sur une seconde face de ladite plaque de substrat de façon à définir :
    • une surface principale qui constitue un plan de masse pour ladite ligne d'alimentation ;
    • au moins un brin rayonnant possédant une première extrémité reliée à ladite surface principale et une seconde extrémité libre s'étendant au moins partiellement le long d'au moins un côté de ladite surface principale ;
    • au moins un espace longitudinal formant une fente de couplage entre chacun desdits brins rayonnants et ladite surface principale.
These objectives, as well as others which will appear subsequently, are achieved according to the invention using an antenna for transmitting and / or receiving microwave signals, comprising:
  • a substrate plate;
  • at least one supply line located on a first face of said substrate plate;
  • a conductive deposit located on a second face of said substrate plate so as to define:
    • a main surface which constitutes a ground plane for said supply line;
    • at least one radiating strand having a first end connected to said main surface and a second free end extending at least partially along at least one side of said main surface;
    • at least one longitudinal space forming a coupling slot between each of said radiating strands and said main surface.

L'antenne de l'invention est donc réalisée en technologie imprimée, ce qui permet un gain de place considérable et un maintien mécanique beaucoup plus aisé.The antenna of the invention is therefore produced in printed technology, which allows a considerable saving of space and a much easier mechanical maintenance.

Par ailleurs, la surface principale du dépôt conducteur, en constituant un plan de masse pour la ligne d'alimentation, assure que l'alimentation est autosymétrisée. En d'autres termes, l'antenne selon l'invention ne nécessite pas l'utilisation conjointe d'un symétriseur.Furthermore, the main surface of the conductive deposit, by constituting a ground plane for the supply line, ensures that the supply is self-symmetrized. In other words, the antenna according to the invention does not require the joint use of a balun.

La ligne d'alimentation alimente le brin rayonnant par l'intermédiaire de la fente de couplage.The supply line feeds the radiating strand through the coupling slot.

L'antenne selon l'invention repose notamment sur une adaptation nouvelle et inventive de l'antenne en F inversé. En effet, la configuration bidimensionnelle de l'antenne en F inversé a été projetée dans un plan unique contenant toute l'antenne. En d'autres termes, le brin rayonnant et le plan de masse ne sont plus dans deux plans parallèles distincts, mais dans un même plan. Par rapport à l'antenne en F inversé, l'antenne de l'invention est donc beaucoup plus compacte puisque l'on s'affranchit de la hauteur h entre le brin rayonnant (ou élément conducteur horizontal) et le plan de masse.The antenna according to the invention is notably based on a new and inventive adaptation of the inverted F antenna. In fact, the two-dimensional configuration of the inverted F antenna was projected into a single plane containing the entire antenna. In other words, the radiating strand and the ground plane are no longer in two separate parallel planes, but in the same plane. Compared with the inverted F antenna, the antenna of the invention is therefore much more compact since the height h is overcome between the radiating strand (or horizontal conductive element) and the ground plane.

De plus, l'antenne de l'invention possède une bande passante beaucoup plus large que celle d'une antenne en F inversé. Ceci s'explique en particulier par le fait que pour l'antenne en F inversé, le brin rayonnant est situé juste au dessus du plan de masse et forme avec celui-ci une cavité qui est très sélective en fréquence (généralement 2 à 3 % de bande passante). Par contre, dans le cas de l'invention, le plan de masse et le brin rayonnant sont situés dans un même plan, de sorte que l'effet de cavité est beaucoup moins marqué. Ceci permet d'atteindre des largeurs de bande proches de 25 %, et de couvrir simultanément la bande d'émission et la bande de réception.In addition, the antenna of the invention has a much wider bandwidth than that of an inverted F antenna. This is explained in particular by the fact that for the inverted F antenna, the radiating strand is located just above the ground plane and forms with it a cavity which is very selective in frequency (generally 2 to 3% bandwidth). On the other hand, in the case of the invention, the ground plane and the strand radiant are located in the same plane, so that the cavity effect is much less marked. This makes it possible to reach bandwidths close to 25%, and to simultaneously cover the transmission band and the reception band.

Avantageusement, ladite ligne d'alimentation et ladite fente de couplage se croisent en un point appelé point de croisement, ladite ligne d'alimentation présentant une portion d'extrémité, ou stub série, s'étendant au-delà dudit point de croisement d'une première longueur adaptable, et ladite fente de couplage présentant une portion d'extrémité, ou stub parallèle, s'étendant au-delà dudit point de croisement d'une seconde longueur adaptable.Advantageously, said supply line and said coupling slot intersect at a point called cross point, said supply line having an end portion, or series stub, extending beyond said cross point of a first adaptable length, and said coupling slot having an end portion, or parallel stub, extending beyond said crossing point of a second adaptable length.

Ainsi, il est possible de mettre en oeuvre le principe connu de l'adaptation double stubs (série et parallèle). Un choix convenable de ces stubs série et parallèle, et éventuellement d'autres paramètres (largeur du brin rayonnant, largeur de la fente de couplage, épaisseur de la partie de liaison de dépôt conducteur reliant le brin rayonnant à la surface principale, position de la ligne d'alimentation par rapport à la partie de liaison de dépôt conducteur) permet d'adapter l'antenne sur une large bande passante.Thus, it is possible to implement the known principle of the adaptation double stubs (series and parallel). A suitable choice of these series and parallel stubs, and possibly other parameters (width of the radiating strand, width of the coupling slot, thickness of the conductive deposition connecting part connecting the radiating strand to the main surface, position of the feed line relative to the conductive deposition link part) makes it possible to adapt the antenna over a wide bandwidth.

Préférentiellement, au moins un des éléments appartenant au groupe comprenant ledit brin rayonnant, ladite surface principale, et ladite fente de couplage, est de forme sensiblement rectangulaire.Preferably, at least one of the elements belonging to the group comprising said radiating strand, said main surface, and said coupling slot, is of substantially rectangular shape.

De façon avantageuse, ledit dépôt conducteur comprend au moins deux brins rayonnants, l'espace longitudinal compris entre chacun desdits brins rayonnants et ladite surface principale formant une fente de couplage distincte.Advantageously, said conductive deposit comprises at least two radiating strands, the longitudinal space between each of said radiating strands and said main surface forming a separate coupling slot.

Ainsi, on peut obtenir :

  • une diversité de polarisation, en associant la ligne d'alimentation à un diviseur ;
  • une polarisation circulaire, en associant la ligne d'alimentation à des diviseurs et des déphaseurs.
Thus, we can obtain:
  • a diversity of polarization, by associating the supply line with a divider;
  • circular polarization, by associating the supply line with dividers and phase shifters.

Avantageusement, l'antenne comprend au moins deux lignes d'alimentation, chacun desdits brins rayonnants coopérant avec une desdites lignes d'alimentation.Advantageously, the antenna comprises at least two supply lines, each of said radiating strands cooperating with one of said supply lines.

De cette façon, on peut obtenir une antenne multibande duplexée.In this way, a duplex multiband antenna can be obtained.

Préférentiellement, ledit brin rayonnant présente au moins un coude, de façon que ledit brin rayonnant s'étende au moins partiellement le long d'au moins deux côtés de ladite surface principale.Preferably, said radiating strand has at least one bend, so that said radiating strand extends at least partially along at least two sides of said main surface.

De cette façon, on limite l'encombrement global de l'antenne puisque la dimension minimale de l'antenne n'est plus liée à la longueur totale brin rayonnant mais seulement à la longueur des côtés de la surface principale du dépôt conducteur.In this way, the overall size of the antenna is limited since the minimum dimension of the antenna is no longer linked to the total length of the radiating strand but only to the length of the sides of the main surface of the conductive deposit.

De façon préférentielle, ledit brin rayonnant présente une largeur variable. Ainsi, on augmente la bande passante de l'antenne.Preferably, said radiating strand has a variable width. Thus, the bandwidth of the antenna is increased.

Avantageusement, ledit brin rayonnant présente au moins un décrochement sur au moins un des bords longitudinaux et/ou au moins une lumière sur sa surface. La lumière sur la surface du brin rayonnant est par exemple une fente.Advantageously, said radiating strand has at least one recess on at least one of the longitudinal edges and / or at least one lumen on its surface. The light on the surface of the radiating strand is for example a slit.

Dans un mode de réalisation avantageux de l'invention, l'antenne comprend également un plan de masse placé à une distance prédéterminée de ladite ligne d'alimentation.In an advantageous embodiment of the invention, the antenna also comprises a ground plane placed at a predetermined distance from said feed line.

Si le plan de masse est sans élément rayonnant, il permet de supprimer le rayonnement parasite de la ligne d'alimentation et d'obtenir un rayonnement dans un demi-espace uniquement.If the ground plane is without radiating element, it makes it possible to remove the parasitic radiation from the supply line and to obtain radiation in a half-space only.

Selon une variante avantageuse, ledit plan de masse est un dépôt conducteur de même forme que celui situé sur la seconde face de ladite plaque de substrat, comprenant une surface principale et au moins un brin rayonnant.According to an advantageous variant, said ground plane is a conductive deposit of the same shape as that located on the second face of said substrate plate, comprising a main surface and at least one radiating strand.

Dans ce cas, le plan de masse permet d'obtenir un rayonnement symétrique de chaque côté de l'antenne.In this case, the ground plane makes it possible to obtain symmetrical radiation on each side of the antenna.

Préférentiellement, ladite ligne d'alimentation présente une impédance sensiblement comprise entre 10 Ohms et 200 Ohms.Preferably, said supply line has an impedance substantially between 10 Ohms and 200 Ohms.

De façon avantageuse, la longueur dudit brin rayonnant est sensiblement comprise entre λ/8 et λ/4, λ étant la longueur d'onde desdits signaux hyperfréquences.Advantageously, the length of said radiating strand is substantially between λ / 8 and λ / 4, λ being the wavelength of said microwave signals.

L'invention concerne également un dispositif d'émission et/ou de réception de signaux hyperfréquences, comprenant au moins une antenne telle que décrite ci-dessus.The invention also relates to a device for transmitting and / or receiving microwave signals, comprising at least one antenna as described above.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante de plusieurs modes de réalisation préférentiels de l'invention, donnés à titre d'exemple indicatif et non limitatif, et des dessins annexés, dans lesquels :

  • les figures 1A et 1B présentent chacune une vue, respectivement de dessus et de côté, d'un premier mode de réalisation d'une antenne selon l'invention ;
  • la figure 2 est une vue détaillée partielle de l'antenne présentée sur la figure 1A ;
  • la figure 3 présente une courbe de variation, en fonction de la fréquence, du rapport d'onde stationnaire pour un exemple d'antenne selon l'invention ;
  • la figure 4 est un diagramme de Smith présentant la courbe d'impédance correspondant à un exemple d'antenne selon l'invention ;
  • les figures 5, 6 et 7 présentent chacune une vue de dessus d'un mode de réalisation distinct (second, troisième et quatrième respectivement) d'une antenne selon l'invention.
Other characteristics and advantages of the invention will appear on reading the following description of several preferred embodiments of the invention, given by way of non-limiting example, and the accompanying drawings, in which:
  • FIGS. 1A and 1B each show a view, respectively from above and from the side, of a first embodiment of an antenna according to the invention;
  • Figure 2 is a partial detailed view of the antenna shown in Figure 1A;
  • FIG. 3 presents a variation curve, as a function of frequency, of the standing wave ratio for an example of antenna according to the invention;
  • FIG. 4 is a Smith diagram showing the impedance curve corresponding to an example of an antenna according to the invention;
  • Figures 5, 6 and 7 each show a top view of a separate embodiment (second, third and fourth respectively) of an antenna according to the invention.

L'invention concerne donc une antenne de taille réduite à large bande passante. Cette antenne est notamment destinée à équiper des appareils portables, et par exemple des émetteurs/récepteurs de réseaux de radiocommunication avec des mobiles terrestres.The invention therefore relates to a reduced-size antenna with wide bandwidth. This antenna is in particular intended to equip portable devices, and for example transmitters / receivers of radiocommunication networks with land mobiles.

Les figures 1A et 1B, qui sont respectivement une vue de dessus et une vue de côté, illustrent un premier mode de réalisation de l'invention.FIGS. 1A and 1B, which are respectively a top view and a side view, illustrate a first embodiment of the invention.

Dans ce mode de réalisation, l'antenne comprend une plaque de substrat 1 (non représentée sur la figure 1), une ligne d'alimentation 2 et un dépôt conducteur 3.In this embodiment, the antenna comprises a substrate plate 1 (not shown in FIG. 1), a supply line 2 and a conductive deposit 3.

La plaque de substrat 1 est par exemple un substrat faible perte Duroïd du type verre téflon présentant une permittivité relative εr = 2,2 et une épaisseur réduite de 0,76 mm.The substrate plate 1 is for example a low loss Duroid substrate of the Teflon glass type having a relative permittivity ε r = 2.2 and a reduced thickness of 0.76 mm.

La ligne d'alimentation 2 est située sur une première face (la face inférieure par exemple) de la plaque de substrat 1. Il s'agit par exemple d'une ligne microruban.The supply line 2 is located on a first face (the lower face for example) of the substrate plate 1. It is for example a microstrip line.

Le dépôt conducteur 3, par exemple de cuivre, est situé sur une seconde face (la face supérieure par exemple) de la plaque de substrat 1 et peut se décomposer (fictivement, puisqu'il est en pratique réalisé d'une seule pièce) en trois parties : une surface principale 4, une partie intermédiaire 5 et un brin rayonnant 6.The conductive deposit 3, for example of copper, is located on a second face (the upper face for example) of the substrate plate 1 and can decompose (fictitiously, since it is in practice made in one piece) into three parts: a main surface 4, an intermediate part 5 and a radiating strand 6.

La surface principale 4 (rectangulaire dans cet exemple) du dépôt conducteur 3 constitue un plan de masse pour la ligne d'alimentation 2 située sur l'autre face de la plaque de substrat 1. L'antenne génère donc des courants symétriques sur le brin rayonnant 6. En d'autres termes, l'antenne de l'invention est autosymétrisée.The main surface 4 (rectangular in this example) of the conductive deposit 3 constitutes a ground plane for the supply line 2 situated on the other face of the substrate plate 1. The antenna therefore generates symmetrical currents on the radiating strand 6. In other words, the antenna of the The invention is self-symmetrized.

Dans cet exemple, le brin rayonnant 6 est rectangulaire et possède une première extrémité reliée à la surface principale 4 du dépôt conducteur 3 par la partie intermédiaire 5, et une seconde extrémité libre s'étendant partiellement le long d'un côté de la surface principale 4 du dépôt conducteur 3.In this example, the radiating strand 6 is rectangular and has a first end connected to the main surface 4 of the conductive deposit 3 by the intermediate part 5, and a second free end extending partially along one side of the main surface. 4 from driver's depot 3.

La longueur du brin rayonnant 6 est proche de λ/4, avec λ la longueur d'onde de fonctionnement de l'antenne.The length of the radiating strand 6 is close to λ / 4, with λ the operating wavelength of the antenna.

Ainsi, l'antenne de l'invention, qui est plane et dont la longueur maximale est λ/4, présente un encombrement plus faible que celui d'un dipôle de longueur λ/2 ou encore que celui d'une antenne en F inversé de longueur λ/4 mais dont le brin rayonnant est espacé d'une hauteur h du plan de masse.Thus, the antenna of the invention, which is planar and whose maximum length is λ / 4, has a smaller footprint than that of a dipole of length λ / 2 or even that of an antenna in inverted F of length λ / 4 but whose radiating strand is spaced a height h from the ground plane.

L'antenne de l'invention présente non seulement un très faible encombrement mais également une large bande passante. En effet, la surface principale 4 du dépôt conducteur 3 se comporte comme un plan de masse surtout vis-à-vis de la ligne d'alimentation 2 et de la fente de couplage 7, et très peu vis-à-vis du brin rayonnant 6, ce qui diminue fortement la sélectivité de l'antenne. De plus, l'effet de cavité (et donc la sélectivité de l'antenne) est beaucoup moins marqué que pour une antenne en F inversé puisque le plan de masse (c'est-à-dire la surface principale 4 du dépôt conducteur 3) et le brin rayonnant 6 sont situés dans un même plan.The antenna of the invention has not only a very small footprint but also a large bandwidth. Indeed, the main surface 4 of the conductive deposit 3 behaves like a ground plane especially with respect to the supply line 2 and the coupling slot 7, and very little with respect to the radiating strand 6, which greatly reduces the selectivity of the antenna. In addition, the cavity effect (and therefore the selectivity of the antenna) is much less marked than for an inverted F antenna since the ground plane (that is to say the main surface 4 of the conductive deposit 3 ) and the radiating strand 6 are located in the same plane.

D'une façon générale, l'antenne selon l'invention présente une bande passante de 20 à 30 % et peut être aisément incorporée à l'intérieur d'un combiné portable ultra-léger.In general, the antenna according to the invention has a bandwidth of 20 to 30% and can be easily incorporated inside an ultra-light portable handset.

L'espace longitudinal compris entre le brin rayonnant 6 et la surface principale 4 du dépôt conducteur 3 forme une fente de couplage 7 par l'intermédiaire de laquelle la ligne d'alimentation 2 alimente le brin rayonnant 6.The longitudinal space between the radiating strand 6 and the main surface 4 of the conductive deposit 3 forms a coupling slot 7 by means of which the supply line 2 supplies the radiating strand 6.

Dans l'exemple présenté sur la figure 1A, la fente de couplage 7 est également rectangulaire.In the example presented in FIG. 1A, the coupling slot 7 is also rectangular.

La figure 2 est une vue détaillée partielle de l'antenne présentée sur la figure 1A.Figure 2 is a partial detailed view of the antenna shown in Figure 1A.

Afin de mettre au point l'antenne et d'ajuster sa largeur de bande en particulier, plusieurs paramètres peuvent être modifiés, et notamment :

  • la longueur l₁ d'un stub série, le stub série étant la portion d'extrémité de la ligne d'alimentation 2 qui dépasse du point de croisement 9 entre la ligne d'alimentation 2 et la fente de couplage 7 ;
  • la longueur l₂ d'un stub parallèle, le stub parallèle étant la portion d'extrémité de la fente de couplage 7 qui dépasse du point de croisement 9 ;
  • la largeur e₁ du brin rayonnant 6 ;
  • la profondeur p de la fente de couplage 7 ;
  • la largeur g de la fente de couplage 7 ;
  • l'épaisseur e₂ de la partie intermédiaire 5 reliant le brin rayonnant 6 à la surface principale 4 ;
  • la distance ep entre la ligne d'alimentation 2 et la partie intermédiaire 5.
In order to fine-tune the antenna and adjust its bandwidth in particular, several parameters can be modified, and in particular:
  • the length l₁ of a series stub, the series stub being the end portion of the supply line 2 which protrudes from the crossing point 9 between the supply line 2 and the coupling slot 7;
  • the length l₂ of a parallel stub, the parallel stub being the end portion of the coupling slot 7 which protrudes from the crossing point 9;
  • the width e₁ of the radiating strand 6;
  • the depth p of the coupling slot 7;
  • the width g of the coupling slot 7;
  • the thickness e₂ of the intermediate part 5 connecting the radiating strand 6 to the main surface 4;
  • the distance e p between the supply line 2 and the intermediate part 5.

Ainsi, bien que réalisée en technologie imprimée, l'antenne de l'invention comprend un stub série et un stub parallèle. Ces stubs série et parallèle permettent l'adaptation de l'antenne selon le principe connu de l'adaptation double stub, sur une large bande de fréquences.Thus, although produced in printed technology, the antenna of the invention comprises a serial stub and a parallel stub. These series and parallel stubs allow the adaptation of the antenna according to the known principle of double stub adaptation, over a wide frequency band.

La figure 3 présente une courbe de variation, en fonction de la fréquence, du rapport d'onde stationnaire (ou ROS) pour un exemple d'antenne selon le premier mode de réalisation des figures 1A et 2.FIG. 3 shows a variation curve, as a function of frequency, of the standing wave ratio (or ROS) for an example of antenna according to the first embodiment of FIGS. 1A and 2.

Dans cet exemple, les paramètres de l'antenne possèdent les valeurs suivantes :

  • l₁=13mm ;
  • l₂ = 22,6 mm ;
  • e₁ = 5 mm ;
  • e₂ = 6 mm ;
  • g = 5 mm ;
  • ep = 1,65 mm ;
  • p = 24,25 mm.
In this example, the antenna parameters have the following values:
  • l₁ = 13mm;
  • l₂ = 22.6 mm;
  • e₁ = 5 mm;
  • e₂ = 6 mm;
  • g = 5 mm;
  • e p = 1.65 mm;
  • p = 24.25 mm.

Cette courbe permet de calculer la bande passante [f1, f2], définie ici comme la bande de fréquences pour laquelle le ROS reste inférieur à 2. Cette bande passante peut également s'exprimer en pourcentage, obtenu par division de la largeur (f2, f1) de la bande passante par la fréquence centrale f3 de cette bande.This curve is used to calculate the passband [f1, f2], defined here as the frequency band for which the ROS remains below 2. This passband can also expressed as a percentage, obtained by dividing the width (f2, f1) of the passband by the center frequency f3 of this band.

Dans l'exemple précité, la bande passante est sensiblement comprise entre f1 = 1,823 GHz et f2 = 2,333 GHz.In the above example, the bandwidth is substantially between f1 = 1.823 GHz and f2 = 2.333 GHz.

Avec une fréquence centrale f3 = 2,078 GHz, cette bande passante est environ égale à 25 %. L'antenne selon l'invention possède donc une bande passante suffisamment large pour couvrir simultanément la bande d'émission et la bande de réception.With a central frequency f3 = 2.078 GHz, this bandwidth is approximately equal to 25%. The antenna according to the invention therefore has a pass band wide enough to simultaneously cover the transmit band and the receive band.

La figure 4 présente une courbe de variation, dans un abaque de Smith, de l'impédance d'entrée pour l'exemple précédent d'antenne. On remarque la présence d'une boucle autour du centre de l'abaque (qui est le point d'adaptation parfaite par rapport à une ligne d'alimentation 50 Ω). Cette boucle garantie une faible dispersion en fréquence et traduit l'efficacité de l'adaptation.Figure 4 shows a variation curve, in a Smith chart, of the input impedance for the previous antenna example. Note the presence of a loop around the center of the abacus (which is the perfect adaptation point compared to a 50 Ω supply line). This loop guarantees low frequency dispersion and translates the efficiency of the adaptation.

Il est à noter toutefois que l'antenne n'est pas, dans cet exemple, parfaitement optimisée. En effet, un meilleur centrage de la boucle par rapport au centre de l'abaque de Smith permettrait d'accroître les performances de l'antenne.It should be noted however that the antenna is not, in this example, perfectly optimized. Indeed, better centering of the loop relative to the center of the Smith chart would increase the performance of the antenna.

Dans cet exemple, l'impédance de la ligne d'alimentation véhiculant le signal HF à émettre a été fixée à 50 Ω, mais cette valeur ne constitue pas une caractéristique déterminante, car l'impédance d'entrée de l'antenne selon l'invention peut prendre n'importe quelle valeur comprise entre 10 et 200 Ω.In this example, the impedance of the supply line carrying the HF signal to be transmitted was fixed at 50 Ω, but this value does not constitute a determining characteristic, because the input impedance of the antenna according to the invention can take any value between 10 and 200 Ω.

La figure 5 présente une vue de dessus d'un second mode de réalisation de l'antenne selon l'invention. Ce second mode de réalisation se différencie du premier en ce que le brin rayonnant 6 comporte un coude 51 et s'étend le long de deux côtés de la surface principale 4 du dépôt conducteur 3. Ainsi, l'encombrement global de l'antenne est encore réduit. Si la longueur de brin rayonnant 6 est égale à λ/4, on peut, en créant un coude 51 à mi-longueur, atteindre des dimensions proches de λ/8. Il est clair que le coude 51 n'est pas forcément au centre du brin rayonnant 6, ou encore que le brin rayonnant 6 peut comprendre plus d'un coude, de façon à s'étendre le long de plus de deux côtés de la surface principale 4.Figure 5 shows a top view of a second embodiment of the antenna according to the invention. This second embodiment differs from the first in that the radiating strand 6 has a bend 51 and extends along two sides of the main surface 4 of the conductive deposit 3. Thus, the overall size of the antenna is further reduced. If the length of radiating strand 6 is equal to λ / 4, it is possible, by creating a bend 51 at mid-length, to reach dimensions close to λ / 8. It is clear that the elbow 51 is not necessarily in the center of the radiating strand 6, or that the radiating strand 6 may include more than one elbow, so as to extend along more than two sides of the surface. main 4.

La figure 6 présente une vue de dessus d'un troisième mode de réalisation de l'antenne selon l'invention. Ce troisième mode de réalisation se différencie du premier en ce que le brin rayonnant 6 possède une largeur variable sur sa longueur. Cette largeur variable, lorsqu'elle est choisie convenablement, permet d'augmenter la bande passante de l'antenne. Dans l'exemple présenté sur la figure 6, le brin rayonnant 6 présente un décrochement 61, 62 sur chacun de ses bords longitudinaux. Il est à noter que dans d'autres modes de réalisation, le brin rayonnant 6 peut présenter une fente en son milieu, ou présenter plusieurs décrochements sur chacun de ses bords longitudinaux, ou encore présenter un ou plusieurs décrochements sur un seul de ses bords longitudinaux.FIG. 6 presents a top view of a third embodiment of the antenna according to the invention. This third embodiment differs from the first in that the radiating strand 6 has a variable width over its length. This variable width, when chosen appropriately, makes it possible to increase the bandwidth of the antenna. In the example shown in Figure 6, the radiating strand 6 has a recess 61, 62 on each of its longitudinal edges. It should be noted that in other embodiments, the radiating strand 6 may have a slit in the middle, or have several recesses on each of its longitudinal edges, or even have one or more recesses on only one of its longitudinal edges .

La figure 7 présente une vue de dessus d'un quatrième mode de réalisation de l'antenne selon l'invention. Dans ce quatrième mode de réalisation, l'antenne comporte plusieurs brins rayonnants 6A, 6B, 6C, 6D (quatre dans cet exemple). Chaque brin rayonnant 6A, 6B, 6C, 6D est relié à la surface principale 4 par une partie intermédiaire 5A, 5B, 5C, 5D, et chaque espace longitudinal compris entre un brin rayonnant 6A, 6B, 6C, 6D et la surface principale 4 forme une fente de couplage distincte 6A, 6B, 6C, 6D.Figure 7 shows a top view of a fourth embodiment of the antenna according to the invention. In this fourth embodiment, the antenna comprises several radiating strands 6 A , 6 B , 6 C , 6 D (four in this example). Each radiating strand 6 A , 6 B , 6 C , 6 D is connected to the main surface 4 by an intermediate part 5 A , 5 B , 5 C , 5 D , and each longitudinal space comprised between a radiating strand 6 A , 6 B , 6 C , 6 D and the main surface 4 forms a separate coupling slot 6 A , 6 B , 6 C , 6 D.

Selon les applications, les brins rayonnants 6A, 6B, 6C, 6D peuvent être identiques ou non.Depending on the applications, the radiating strands 6 A , 6 B , 6 C , 6 D may or may not be identical.

De même, une ligne d'alimentation unique peut alimenter tous les brins rayonnants 6A, 6B, 6C, 6D, ou bien plusieurs lignes d'alimentation peuvent être utilisées. Ainsi, en accroissant le nombre de lignes d'alimentation et en associant chacun des brins rayonnant à une ligne d'alimentation distincte, on peut obtenir une antenne multibande duplexée.Likewise, a single supply line can supply all the radiating strands 6 A , 6 B , 6 C , 6 D , or else several supply lines can be used. Thus, by increasing the number of feed lines and by associating each of the radiating strands with a separate feed line, it is possible to obtain a duplex multiband antenna.

Dans l'exemple présenté sur la figure 7,, l'antenne comprend des moyens 71 de mise en forme des signaux HF reçus d'une ligne d'alimentation principale (non représentée) et devant être transmis sur les différentes lignes d'alimentation secondaires 2A, 2B, 2C, 2D associées aux différents brins rayonnants 6A, 6B, 6C, 6D.In the example presented in FIG. 7, the antenna comprises means 71 for shaping the HF signals received from a main supply line (not shown) and to be transmitted on the various secondary supply lines 2 A , 2 B , 2 C , 2 D associated with the different radiating strands 6 A , 6 B , 6 C , 6 D.

Ces moyens 71 permettent d'obtenir :

  • soit de la diversité de polarisation linéaire, si les moyens 71 comprennent un diviseur ;
  • soit de la polarisation circulaire, si les moyens 71 comprennent des diviseurs et des déphaseurs.
These means 71 make it possible to obtain:
  • either of the linear polarization diversity, if the means 71 comprise a divider;
  • or circular polarization, if the means 71 comprise dividers and phase shifters.

Les éléments (diviseurs, déphaseurs) constituant les moyens 71 de mise en forme des signaux peuvent être réalisés par des longueurs de lignes d'alimentation différentes, par des anneaux hybrides, ou encore par toute autre solution connue de l'homme du métier et réalisant la fonction désirée.The elements (dividers, phase shifters) constituting the means 71 for shaping the signals can be produced by different lengths of supply lines, by hybrid rings, or by any other solution known to those skilled in the art and realizing the desired function.

Il est clair que de nombreux autres modes de réalisation de l'invention peuvent être envisagés. L'antenne peut par exemple comprendre un autre plan de masse, placé à une distance prédéterminée de la ligne d'alimentation et séparé de celle-ci par de l'air ou par un diélectrique. Dans ce dernier cas, l'antenne comprend les couches successives suivantes : un plan de masse, un diélectrique, une ligne d'alimentation, une plaque de substrat et un dépôt conducteur. Le rôle du plan de masse supplémentaire est par exemple de supprimer le rayonnement parasite de la ligne d'alimentation et d'obtenir un rayonnement dans un demi-espace uniquement.It is clear that many other embodiments of the invention can be envisaged. The antenna may for example comprise another ground plane, placed at a predetermined distance from the supply line and separated from the latter by air or by a dielectric. In the latter case, the antenna comprises the following successive layers: a ground plane, a dielectric, a supply line, a substrate plate and a conductive deposit. The role of the additional ground plane is for example to suppress stray radiation from the supply line and to obtain radiation in only half a space.

On peut également prévoir que le plan de masse supplémentaire soit réalisé sous forme d'un dépôt conducteur comprenant également une surface principale et un brin rayonnant associé à une fente. Dans ce cas, on obtient un rayonnement symétrique de chaque côté de l'antenne.It is also possible to provide that the additional ground plane is produced in the form of a conductive deposit also comprising a main surface and a radiating strand associated with a slot. In this case, symmetrical radiation is obtained on each side of the antenna.

Les caractéristiques des différents modes de réalisation présentés ci-dessus peuvent également être combinées de multiples façons, afin de fournir encore d'autres modes de réalisation de l'antenne de l'invention. Ainsi, à titre d'exemple, un brin rayonnant peut présenter une largeur variable et s'étendre sur deux côtés de la surface principale du dépôt conducteur.The characteristics of the various embodiments presented above can also be combined in multiple ways, in order to provide still other embodiments of the antenna of the invention. Thus, by way of example, a radiating strand may have a variable width and extend on two sides of the main surface of the conductive deposit.

L'invention concerne également tout dispositif d'émission et/ou de réception de signaux hyperfréquences équipé d'une antenne selon l'invention. Eventuellement, un tel dispositif peut comprendre plusieurs antennes, et en particulier une antenne d'émission et une antenne de réception.The invention also relates to any device for transmitting and / or receiving microwave signals equipped with an antenna according to the invention. Optionally, such a device can comprise several antennas, and in particular a transmitting antenna and a receiving antenna.

Claims (13)

Antenne d'émission et/ou de réception de signaux hyperfréquences, caractérisée en ce qu'elle comprend : - une plaque de substrat (1); - au moins une ligne d'alimentation (2 ; 2A à 2D) située sur une première face de ladite plaque de substrat ; - un dépôt conducteur (3) déposé sur une seconde face de ladite plaque de substrat (1) de façon à définir : - une surface principale (4) formant plan de masse pour ladite ligne d'alimentation (2 ; 2A à 2D) ; - au moins un brin rayonnant (6 ; 6A à 6D) comprenant une première extrémité reliée à ladite surface principale (4) et une seconde extrémité libre s'étendant au moins partiellement le long d'au moins un côté de ladite surface principale (4) ; - au moins un espace longitudinal formant fente de couplage (7 ; 7A à 7D) entre chacun desdits brins rayonnants (6 ; 6A à 6D) et ladite surface principale (4). Antenna for transmitting and / or receiving microwave signals, characterized in that it comprises: - a substrate plate (1); - at least one supply line (2; 2 A to 2 D ) located on a first face of said substrate plate; - a conductive deposit (3) deposited on a second face of said substrate plate (1) so as to define: - a main surface (4) forming a ground plane for said supply line (2; 2 A to 2 D ); - at least one radiating strand (6; 6 A to 6 D ) comprising a first end connected to said main surface (4) and a second free end extending at least partially along at least one side of said main surface (4); - At least one longitudinal space forming a coupling slot (7; 7 A to 7 D ) between each of said radiating strands (6; 6 A to 6 D ) and said main surface (4). Antenne selon la revendication 1, caractérisée en ce que ladite ligne d'alimentation (2 ; 2A à 2D) et ladite fente de couplage (7 ; 7A à 7D) se croisent en un point appelé point de croisement, en ce que ladite ligne d'alimentation (2 ; 2A à 2D) présente une portion d'extrémité, ou stub série, s'étendant au-delà dudit point de croisement d'une première longueur adaptable, et en ce que ladite fente de couplage (7 ; 7A à 7D) présente une portion d'extrémité, ou stub parallèle, s'étendant au-delà dudit point de croisement d'une seconde longueur adaptable. Antenna according to claim 1, characterized in that said feed line (2; 2 A to 2 D ) and said coupling slot (7; 7 A to 7 D ) intersect at a point called crossing point, in that said supply line (2; 2 A to 2 D ) has an end portion, or series stub, extending beyond said crossing point of a first adaptable length, and in that said coupling slot (7; 7 A to 7 D ) has an end portion, or parallel stub, extending beyond said crossing point of a second adaptable length. Antenne selon l'une quelconque des revendications 1 et 2, caractérisée en ce qu'au moins un des éléments appartenant au groupe comprenant ledit brin rayonnant (6 ; 6A à 6D), ladite surface principale (4), et ladite fente de couplage (7 ; 7A à 7D), est de forme sensiblement rectangulaire.An antenna according to any one of claims 1 and 2, characterized in that at least one of the elements belonging to the group comprising said radiating strand (6; 6 A to 6 D ), said main surface (4), and said slot coupling (7; 7 A to 7 D ), is of substantially rectangular shape. Antenne selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ledit dépôt conducteur (3) comprend au moins deux brins rayonnants (6A à 6D), l'espace longitudinal compris entre chacun desdits brins rayonnants et ladite surface principale formant une fente de couplage distincte (7A à 7D).Antenna according to any one of claims 1 to 3, characterized in that said conductive deposit (3) comprises at least two radiating strands (6 A to 6 D ), the longitudinal space comprised between each of said radiating strands and said main surface forming a separate coupling slot (7 A to 7 D ). Antenne selon la revendication 4, caractérisée en ce qu'elle comprend au moins deux lignes d'alimentation (2A à 2D), chacun desdits brins rayonnants (6A à 6D) coopérant avec une desdites lignes d'alimentation.Antenna according to claim 4, characterized in that it comprises at least two supply lines (2 A to 2 D ), each of said radiating strands (6 A to 6 D ) cooperating with one of said supply lines. Antenne selon l'une quelconque des revendications 1 à 5, caractérisée en ce que ledit brin rayonnant (6 ; 6A à 6D) présente au moins un coude (51), de façon que ledit brin rayonnant s'étende au moins partiellement le long d'au moins deux côtés de ladite surface principale (41).Antenna according to any one of claims 1 to 5, characterized in that said radiating strand (6; 6 A to 6 D ) has at least one bend (51), so that said radiating strand extends at least partially the along at least two sides of said main surface (41). Antenne selon l'une quelconque des revendications 1 à 6, caractérisée en ce que ledit brin rayonnant (6 ; 6A à 6D) présente une largeur variable.Antenna according to any one of claims 1 to 6, characterized in that said radiating strand (6; 6 A to 6 D ) has a variable width. Antenne selon la revendication 7, caractérisée en ce que ledit brin rayonnant (6 ; 6A à 6D) présente au moins un décrochement (61, 62) sur au moins un des bords longitudinaux et/ou au moins une lumière sur sa surface.Antenna according to claim 7, characterized in that said radiating strand (6; 6 A to 6 D ) has at least one recess (61, 62) on at least one of the longitudinal edges and / or at least one light on its surface. Antenne selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'elle comprend également un plan de masse placé à une distance prédéterminée de ladite ligne d'alimentation.Antenna according to any one of claims 1 to 8, characterized in that it also comprises a ground plane placed at a predetermined distance from said feed line. Antenne selon la revendication 9, caractérisée en ce que ledit plan de masse est un dépôt conducteur de même forme que celui situé sur la seconde face de ladite plaque de substrat, comprenant une surface principale et au moins un brin rayonnant.Antenna according to claim 9, characterized in that said ground plane is a conductive deposit of the same shape as that located on the second face of said substrate plate, comprising a main surface and at least one radiating strand. Antenne selon l'une quelconque des revendications 1 à 10, caractérisée en ce que ladite ligne d'alimentation (2 ; 2A à 2D) présente une impédance sensiblement comprise entre 10 Ohms et 200 Ohms.An antenna according to any one of claims 1 to 10, characterized in that said supply line (2; 2 A to 2 D ) has an impedance substantially between 10 Ohms and 200 Ohms. Antenne selon l'une quelconque des revendications 1 à 11, caractérisée en ce que la longueur dudit brin rayonnant (6 ; 6A à 6D) est sensiblement comprise entre λ/8 et λ/4, λ étant la longueur d'onde desdits signaux hyperfréquences.Antenna according to any one of claims 1 to 11, characterized in that the length of said radiating strand (6; 6 A to 6 D ) is substantially between λ / 8 and λ / 4, λ being the wavelength of said microwave signals. Dispositif d'émission et/ou de réception de signaux hyperfréquences, caractérisé en ce qu'il comprend au moins une antenne selon l'une quelconque des revendications 1 à 12.Device for transmitting and / or receiving microwave signals, characterized in that it comprises at least one antenna according to any one of claims 1 to 12.
EP95460040A 1994-11-22 1995-11-06 Broadband monopole antenna in uniplanar printed circuit technology and transmit- and/or receive device with such an antenna Expired - Lifetime EP0714151B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9414198A FR2727250A1 (en) 1994-11-22 1994-11-22 MONOPOLY BROADBAND ANTENNA IN UNIPLANAR PRINTED TECHNOLOGY AND TRANSMITTING AND / OR RECEIVING DEVICE INCORPORATING SUCH ANTENNA
FR9414198 1994-11-22

Publications (2)

Publication Number Publication Date
EP0714151A1 true EP0714151A1 (en) 1996-05-29
EP0714151B1 EP0714151B1 (en) 2003-09-03

Family

ID=9469188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95460040A Expired - Lifetime EP0714151B1 (en) 1994-11-22 1995-11-06 Broadband monopole antenna in uniplanar printed circuit technology and transmit- and/or receive device with such an antenna

Country Status (5)

Country Link
US (1) US5835063A (en)
EP (1) EP0714151B1 (en)
JP (1) JPH08256009A (en)
DE (1) DE69531655T2 (en)
FR (1) FR2727250A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014861A2 (en) * 1997-09-17 1999-03-25 Logitech, Inc. Antenna system and apparatus for radio-frequency wireless keyboard
EP0929115A1 (en) * 1998-01-09 1999-07-14 Nokia Mobile Phones Ltd. Antenna for mobile communications device
EP0929121A1 (en) * 1998-01-09 1999-07-14 Nokia Mobile Phones Ltd. Antenna for mobile communcations device
WO1999063616A1 (en) * 1998-05-29 1999-12-09 Ericsson, Inc. Non-protruding dual-band antenna for communications device
US6140970A (en) * 1999-04-30 2000-10-31 Nokia Mobile Phones Limited Radio antenna
FR2849964A1 (en) * 2003-01-13 2004-07-16 Uniwill Comp Corp STRUCTURE OF A SINGLE HOLDER INCLUDING AN ANTENNA AND A SHIELDING COVER AND ITS WIRELESS MODULE
EP2584647A3 (en) * 2011-10-20 2013-10-09 ACER Incorporated Communication device and antenna structure thereof
WO2013182844A1 (en) * 2012-06-08 2013-12-12 Ucl Business Plc Antenna configuration for use in a mobile communication device
CN104134857A (en) * 2014-08-01 2014-11-05 清华大学 Eight-frequency-band plane printing mobile phone antenna
WO2015124463A1 (en) * 2014-02-18 2015-08-27 Antennentechnik Bad Blankenburg Gmbh Multi-range antenna for a receiver and/or transmitter device for mobile use

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2979700A (en) * 1999-02-02 2000-08-25 Qualcomm Incorporated Wireless phone design for improving radiation performance
US6414640B1 (en) * 2000-04-18 2002-07-02 Nokia Corporation Antenna assembly, and associated method, which exhibits circular polarization
FR2811478A1 (en) * 2000-07-05 2002-01-11 Eaton Corp Planar antenna has gamma feed by plated through hole is all printed construction
JP3830358B2 (en) * 2001-03-23 2006-10-04 日立電線株式会社 Flat antenna and electric device having the same
US6456243B1 (en) 2001-06-26 2002-09-24 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
JP3622959B2 (en) * 2001-11-09 2005-02-23 日立電線株式会社 Manufacturing method of flat antenna
KR100454103B1 (en) * 2002-01-30 2004-10-26 주식회사 선우커뮤니케이션 The asymmetrical flat type dipole antenna with broadband characteristics and dipole antenna array structure using the same elements
US6573867B1 (en) 2002-02-15 2003-06-03 Ethertronics, Inc. Small embedded multi frequency antenna for portable wireless communications
JP3656610B2 (en) * 2002-03-27 2005-06-08 日立電線株式会社 Plate-like antenna and electric device having the same
US6744410B2 (en) * 2002-05-31 2004-06-01 Ethertronics, Inc. Multi-band, low-profile, capacitively loaded antennas with integrated filters
US6943730B2 (en) * 2002-04-25 2005-09-13 Ethertronics Inc. Low-profile, multi-frequency, multi-band, capacitively loaded magnetic dipole antenna
GB0210601D0 (en) * 2002-05-09 2002-06-19 Koninkl Philips Electronics Nv Antenna arrangement and module including the arrangement
JP3690375B2 (en) 2002-07-09 2005-08-31 日立電線株式会社 Plate-like multi-antenna and electric device provided with the same
US6911940B2 (en) * 2002-11-18 2005-06-28 Ethertronics, Inc. Multi-band reconfigurable capacitively loaded magnetic dipole
US6859175B2 (en) 2002-12-03 2005-02-22 Ethertronics, Inc. Multiple frequency antennas with reduced space and relative assembly
US7084813B2 (en) * 2002-12-17 2006-08-01 Ethertronics, Inc. Antennas with reduced space and improved performance
JP2004208223A (en) * 2002-12-26 2004-07-22 Alps Electric Co Ltd Two band patch antenna
US6919857B2 (en) * 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
US7123209B1 (en) 2003-02-26 2006-10-17 Ethertronics, Inc. Low-profile, multi-frequency, differential antenna structures
JP2004343402A (en) * 2003-05-15 2004-12-02 Nippon Antenna Co Ltd Antenna system
KR100544675B1 (en) * 2003-10-18 2006-01-23 한국전자통신연구원 Apparatus for Repeating Satellite Signal using Microstrip Patch Array Antenna
KR100594964B1 (en) * 2003-12-24 2006-06-30 한국전자통신연구원 Broadband Inverted L Antenna with Fixed Polarization
JP4213634B2 (en) 2004-06-24 2009-01-21 インターナショナル・ビジネス・マシーンズ・コーポレーション Mobile information terminal with communication function
US7432860B2 (en) * 2006-05-17 2008-10-07 Sony Ericsson Mobile Communications Ab Multi-band antenna for GSM, UMTS, and WiFi applications
US9317798B2 (en) * 2007-08-29 2016-04-19 Intelleflex Corporation Inverted F antenna system and RFID device having same
KR101472371B1 (en) 2007-09-21 2014-12-15 삼성전자주식회사 Antenna for a usage in multiple frequency bands, and, antenna system thereof
FR2925772A1 (en) * 2007-12-21 2009-06-26 Thomson Licensing Sas RADIANT MULTI-SECTOR DEVICE HAVING AN OMNIDIRECTIONAL MODE
KR100960961B1 (en) 2008-02-15 2010-06-03 경기대학교 산학협력단 Small dual band monopole antenna using metamaterial structure
TWI388086B (en) * 2008-10-28 2013-03-01 Wistron Neweb Corp Slot antenna
CN101740856B (en) * 2008-11-06 2013-09-18 启碁科技股份有限公司 Slot antenna
FR2942676A1 (en) * 2009-02-27 2010-09-03 Thomson Licensing COMPACT ANTENNA SYSTEM WITH DIVERSITY OF ORDER 2.
TWI393291B (en) * 2009-03-27 2013-04-11 Acer Inc A monopole slot antenna
TWI451631B (en) 2010-07-02 2014-09-01 Ind Tech Res Inst Multiband antenna and method for an antenna to be capable of multiband operation
US8610626B2 (en) 2010-12-09 2013-12-17 Industrial Technology Research Institute Antenna with slot
TWI508367B (en) 2012-09-27 2015-11-11 Ind Tech Res Inst Communication device and method for designing antenna element thereof
WO2014202118A1 (en) * 2013-06-18 2014-12-24 Telefonaktiebolaget L M Ericsson (Publ) Inverted f-antennas at a wireless communication node
US9742063B2 (en) 2014-06-13 2017-08-22 Arcadyan Technology Corporation External LTE multi-frequency band antenna
EP3367504B1 (en) 2017-02-27 2019-01-23 Sick AG Antenna for an rfid reading device and method for transferring and/or receiving rfid signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825220A (en) * 1986-11-26 1989-04-25 General Electric Company Microstrip fed printed dipole with an integral balun
EP0604338A1 (en) * 1992-12-23 1994-06-29 France Telecom Space-saving broadband antenna with corresponding transceiver
EP0642189A1 (en) * 1993-09-02 1995-03-08 SAT (Société Anonyme de Télécommunications),Société Anonyme Antenna for portable radio apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311422A1 (en) * 1975-05-15 1976-12-10 France Etat DOUBLET FOLDED IN PLATES
US4072951A (en) * 1976-11-10 1978-02-07 The United States Of America As Represented By The Secretary Of The Navy Notch fed twin electric micro-strip dipole antennas
FR2487588A1 (en) * 1980-07-23 1982-01-29 France Etat DOUBLE REPLIES IN PLATES FOR VERY HIGH FREQUENCY AND NETWORKS OF SUCH DOUBLETS
JP3239435B2 (en) * 1992-04-24 2001-12-17 ソニー株式会社 Planar antenna
US5539414A (en) * 1993-09-02 1996-07-23 Inmarsat Folded dipole microstrip antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825220A (en) * 1986-11-26 1989-04-25 General Electric Company Microstrip fed printed dipole with an integral balun
EP0604338A1 (en) * 1992-12-23 1994-06-29 France Telecom Space-saving broadband antenna with corresponding transceiver
EP0642189A1 (en) * 1993-09-02 1995-03-08 SAT (Société Anonyme de Télécommunications),Société Anonyme Antenna for portable radio apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380733C (en) * 1997-09-17 2008-04-09 罗杰泰克欧洲股份有限公司 Antenna system and appts. for radio-frequency wireless keyboard
WO1999014861A3 (en) * 1997-09-17 1999-08-05 Logitech Inc Antenna system and apparatus for radio-frequency wireless keyboard
GB2345581A (en) * 1997-09-17 2000-07-12 Logitech Inc Antenna system and apparatus for radio-frequency wirless keyboard
US6138050A (en) * 1997-09-17 2000-10-24 Logitech, Inc. Antenna system and apparatus for radio-frequency wireless keyboard
WO1999014861A2 (en) * 1997-09-17 1999-03-25 Logitech, Inc. Antenna system and apparatus for radio-frequency wireless keyboard
EP0929115A1 (en) * 1998-01-09 1999-07-14 Nokia Mobile Phones Ltd. Antenna for mobile communications device
EP0929121A1 (en) * 1998-01-09 1999-07-14 Nokia Mobile Phones Ltd. Antenna for mobile communcations device
US6025802A (en) * 1998-01-09 2000-02-15 Nokia Mobile Phones Limited Antenna for mobile communications device
WO1999063616A1 (en) * 1998-05-29 1999-12-09 Ericsson, Inc. Non-protruding dual-band antenna for communications device
US6016126A (en) * 1998-05-29 2000-01-18 Ericsson Inc. Non-protruding dual-band antenna for communications device
US6140970A (en) * 1999-04-30 2000-10-31 Nokia Mobile Phones Limited Radio antenna
FR2849964A1 (en) * 2003-01-13 2004-07-16 Uniwill Comp Corp STRUCTURE OF A SINGLE HOLDER INCLUDING AN ANTENNA AND A SHIELDING COVER AND ITS WIRELESS MODULE
US6937205B2 (en) 2003-01-13 2005-08-30 Uniwill Computer Corporation Integral structure including an antenna and a shielding cover and wireless module thereof
EP2584647A3 (en) * 2011-10-20 2013-10-09 ACER Incorporated Communication device and antenna structure thereof
US9325059B2 (en) 2011-10-20 2016-04-26 Acer Incorporated Communication device and antenna structure thereof
WO2013182844A1 (en) * 2012-06-08 2013-12-12 Ucl Business Plc Antenna configuration for use in a mobile communication device
US9559431B2 (en) 2012-06-08 2017-01-31 Ucl Business Plc Antenna configuration for use in a mobile communication device
WO2015124463A1 (en) * 2014-02-18 2015-08-27 Antennentechnik Bad Blankenburg Gmbh Multi-range antenna for a receiver and/or transmitter device for mobile use
CN104134857A (en) * 2014-08-01 2014-11-05 清华大学 Eight-frequency-band plane printing mobile phone antenna
CN104134857B (en) * 2014-08-01 2016-05-18 清华大学 A kind of eight frequency range planographic antenna for mobile phone

Also Published As

Publication number Publication date
US5835063A (en) 1998-11-10
DE69531655T2 (en) 2004-06-24
DE69531655D1 (en) 2003-10-09
EP0714151B1 (en) 2003-09-03
JPH08256009A (en) 1996-10-01
FR2727250B1 (en) 1997-02-07
FR2727250A1 (en) 1996-05-24

Similar Documents

Publication Publication Date Title
EP0714151B1 (en) Broadband monopole antenna in uniplanar printed circuit technology and transmit- and/or receive device with such an antenna
EP0604338B1 (en) Space-saving broadband antenna with corresponding transceiver
EP1073143B1 (en) Dual polarisation printed antenna and corresponding array
EP2345104B1 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
CA2314826A1 (en) Stacked antenna with resonant structures and multifrequency radiocommunication device including this antenna
EP0888647B1 (en) Helix antenna with a built-in broadband power supply, and manufacturing methods therefor
EP2184803B1 (en) Coplanar differential bi-strip delay line, higher-order differential filter and filtering antenna furnished with such a line
FR2817661A1 (en) DEVICE FOR RECEIVING AND / OR TRANSMITTING MULTI-BEAM SIGNALS
FR2752646A1 (en) PLANE PRINTED ANTENNA WITH OVERLAPPING ELEMENTS SHORT CIRCUITS
EP0542595A1 (en) Microstrip antenna device especially for satellite telephone transmissions
WO2019034760A1 (en) Patch antenna having two different radiation modes with two separate working frequencies, device using such an antenna
EP0954055A1 (en) Dual-frequency radiocommunication antenna realised according to microstrip technique
EP0098192B1 (en) Multiplexing device for combining two frequency bands
EP1466384B1 (en) Device for receiving and/or emitting electromagnetic waves with radiation diversity
EP3258543A1 (en) Compact wifi antenna with a metamaterial reflector
EP2178152A1 (en) Electronic switching device for high-frequency signals
EP0605338B1 (en) Patch antenna with dual polarisation and corresponding device for transmission/reception
FR2833764A1 (en) Domestic wire less transmission wide frequency band circular polarization transmitter/receiver having feed line annular slot antenna connected and feed line two points connected.
EP0377155A1 (en) Dual frequency radiating device
FR2831734A1 (en) DEVICE FOR RECEIVING AND / OR TRANSMITTING RADIATION DIVERSITY ELECTROMAGNETIC SIGNALS
EP2637254B1 (en) Planar antenna for terminal operating with dual circular polarisation, airborne terminal and satellite telecommunication system comprising at least one such antenna
EP0860894B1 (en) Miniature resonant antenna in the form of annular microstrips
EP2879234B1 (en) Electronic apparatus with radio antenna folded in a housing
EP0654845B1 (en) Adaptable dipole radiating element in printed circuit technology, method for adjustment of the adaptation and corresponding array
EP0991135A1 (en) Selective antenna with frequency switching

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19960903

17Q First examination report despatched

Effective date: 20000829

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69531655

Country of ref document: DE

Date of ref document: 20031009

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101025

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101026

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69531655

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601