EP2692440A1 - Reagenzgefäß-Einsetzteil, Reagenzgefäße, Verfahren zum Zentrifugieren mindestens eines Materials und Verfahren zum Druckbehandeln mindestens eines Materials - Google Patents

Reagenzgefäß-Einsetzteil, Reagenzgefäße, Verfahren zum Zentrifugieren mindestens eines Materials und Verfahren zum Druckbehandeln mindestens eines Materials Download PDF

Info

Publication number
EP2692440A1
EP2692440A1 EP20130176845 EP13176845A EP2692440A1 EP 2692440 A1 EP2692440 A1 EP 2692440A1 EP 20130176845 EP20130176845 EP 20130176845 EP 13176845 A EP13176845 A EP 13176845A EP 2692440 A1 EP2692440 A1 EP 2692440A1
Authority
EP
European Patent Office
Prior art keywords
stirring element
reagent vessel
semi
stable position
centrifuge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20130176845
Other languages
English (en)
French (fr)
Other versions
EP2692440B1 (de
Inventor
Martina Daub
Guenter Roth
Arne Kloke
Felix Von Stetten
Nils Paust
Juergen Steigert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2692440A1 publication Critical patent/EP2692440A1/de
Application granted granted Critical
Publication of EP2692440B1 publication Critical patent/EP2692440B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5021Test tubes specially adapted for centrifugation purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/60Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers
    • B01F29/64Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers with stirring devices moving in relation to the receptacle, e.g. rotating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/42Mixers with shaking, oscillating, or vibrating mechanisms with pendulum stirrers, i.e. with stirrers suspended so as to oscillate about fixed points or axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/44Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement
    • B01F31/441Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement performing a rectilinear reciprocating movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/12Inserts, e.g. armouring plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]

Definitions

  • the invention relates to a reagent vessel insertion part for a reagent vessel for a centrifuge and / or a pressure-varying device. Likewise, the invention relates to reagent containers for a centrifuge and / or a Druckvariiervoriques. Furthermore, the invention relates to a method for centrifuging at least one material and to a method for pressure-treating at least one material.
  • a mixer for insertion into a rotor of a centrifuge comprises a mixing trough and an obstacle device, which are designed so that a distance between at least one wall section of the mixing trough and the obstacle device is variable.
  • a liquid located in the mixing trough should be pressable through at least one passage opening in the obstacle device for mixing the liquid.
  • the invention provides a reagent container inserting part for a reagent container for a centrifuge and / or a pressure-varying apparatus having the features of claim 1, a reagent container for a centrifuge and / or a pressure-varying apparatus having the features of claim 12, a reagent container for a centrifuge and / or a pressure varying device having the features of claim 13, a method of centrifuging at least one material having the features of claim 14 and a method of pressure treating at least one material having the features of claim 15.
  • the present invention allows for more efficient mixing of at least one material during centrifugation, applying a vacuum, and / or applying an overpressure.
  • higher energies can be coupled into the at least one material to be mixed by means of the at least one obstacle structure.
  • the increase in the energy applied to the at least one material to be mixed leads to an increase in the mixing efficiency when mixing the at least one material.
  • even highly viscous liquids, powders and / or easily clumping particle clusters can be successfully mixed by means of the present invention.
  • the devices and methods that can be realized by means of the present invention are compatible with centrifugal processing and / or with pressure-driven processing, in particular using at least one revolver component / revolver.
  • the present invention can be practiced using multiple turret components which are axially stacked and include cavities for performing fluidic unit operations. A switching of the cavities to each other can be carried out by means of at least one ballpoint pen mechanism or a ratchet mechanism. In this way, the turrets can be positioned axially as well as azimuthally to each other.
  • the present invention can thus be integrated into an advantageous technology for switching chemical reactions and / or biochemical / molecular biological processes.
  • a speed of a stirring element which is adjustable in a mixing chamber by means of a force applied thereto is generally dependent on a derivation of the respective force.
  • the speed of the deflection of the stirring element is dependent on the change in acceleration of the centrifugal force field. Therefore, in a mixing process carried out without a holding structure, only low energies can be exerted on the at least one material to be mixed by means of the at least one stirring element. In contrast, by means of the present invention, much higher energies can be applied to the at least one by means of the at least one stirring element mixing material are exercised. This ensures a reliable mixing of at least one material to be mixed.
  • the mixing of different liquids is often a prerequisite for performing chemical and / or biochemical / molecular biology processes.
  • the improved mixing efficiency achievable by means of the present invention can thus ensure a more advantageous / faster / more thorough course of chemical reactions and / or biochemical / molecular biological processes.
  • the at least one stirring element is adjustable by means of a centrifugal force which can be effected during operation of the centrifuge in which the reagent vessel is inserted, and / or by a compressive force which can be effected during operation of the pressure varying device in which the reagent vessel is inserted.
  • a centrifugal force which can be effected during operation of the centrifuge in which the reagent vessel is inserted
  • a compressive force which can be effected during operation of the pressure varying device in which the reagent vessel is inserted.
  • the at least one stirring element in the at least one semi-stable position and / or the at least one semi-stable position can be preserved until the effectable centrifugal force and / or the compressive force which can be exerted exceeds a threshold value defined by the formation of the at least one contacted holding structure.
  • a threshold value defined by the formation of the at least one contacted holding structure.
  • the threshold value can thus be fixed in a simple manner by means of the formation of the at least one associated holding structure, the energy exerted on the at least one material to be mixed during the further movement of the at least one stirring element can also be determined in a simple manner and via the centrifugal force and / or the pressure force to be provided.
  • the at least one stirring element may be able to be spun out of the at least one semi-stable position and / or out of the at least one semi-stable position.
  • the at least one stirring element is ejected, a comparatively large amount of kinetic energy is transferred to the at least one material to be mixed. In particular, let In this way, even liquids with a high viscosity, powder and / or mixtures with slightly clumping particles mix efficiently / reliably.
  • At least one elastic restoring element is arranged on the at least one stirring element such that at least the at least one subunit of the at least one stirring element is greater than the restoring force of the respective at least one restoring element from a starting position into one by means of a controllable centrifugal force and / or a compressive force maximum deflection position is adjustable, and is less adjustable than the restoring force in the starting position at a feasible centrifugal force and / or a compressive force can be effected.
  • the at least one holding structure can be used several times to apply a comparatively large kinetic energy to the at least one material to be mixed.
  • the centrifugal force / pressing force the at least one material to be mixed can be reliably mixed.
  • the at least one support structure may protrude on at least one inner wall of the at least one inner volume.
  • the at least one holding structure can thus be formed simultaneously in a cost-effective manner in the production of the inner wall.
  • the at least one support structure is at least partially formed from an elastic material. This ensures frequent use of the at least one support structure, the damage of which is reliably prevented.
  • the at least one holding structure can also be formed from an inelastic material.
  • the at least one stirring element has arithmetic structures, sieve structures, finger structures and / or lattice structures.
  • a multiplicity of openings / recesses is formed on the at least one stirring element, by means of which the at least one material to be mixed can be pressed by means of the energy which can be coupled in. This ensures a high mixing efficiency.
  • the at least one stirring element is fixedly attached at its first end to the reagent vessel insertion part, while a second end of the respective stirring element is adjustable with respect to the first end of the same stirring element with bending at least one intermediate portion portion of the same stirring element.
  • the at least one stirring element can be designed in a cost-effective manner to exert itself a restoring force on the used as an adjustable subunit second end.
  • an additional mass may be attached to the second end of the at least one stirring element. Since the flow energy produced in the at least one material to be mixed is proportional to the accelerated mass, the flow velocity can thus be increased significantly, which leads to a chaotic flow behavior of the latter due to the internal friction of the at least one material to be mixed. In this way, the mixing efficiency can be further increased.
  • the reagent vessel insertion part may be formed as a revolver component.
  • the present invention is thus advantageously integrated into the use of turret components / turrets for switching liquids to one another.
  • the designability of the reagent vessel insert is not limited to such a turret component.
  • the described advantages can be realized by means of a corresponding reagent vessel for a centrifuge and / or a pressure-varying device.
  • the advantages are ensured in the case of a reagent vessel having an outer wall, which is designed such that the reagent vessel can be used in a centrifuge and / or in a pressure-varying apparatus, and at least one stirring element which is arranged in at least one inner volume formed in the reagent vessel such that a position and / or a position of the at least one stirring element is variable with respect to the outer wall, wherein at least one subunit of the at least one stirring element along an adjustment so that at least one at least one inner volume can be filled or filled material is stirrable, and wherein at least the at least one subunit of the at least one stirring element during an adjustment along the Verstellwegs contacted at least one support structure, by means of which the at least one stirring element in at least one semi-stable position and / or at least one semi-stable position with respect to the outer wall is durable.
  • the advantages may also be accomplished by carrying out the method of centrifuging at least one material or by performing the method of pressure treating at least one material.
  • Each of the methods is further developable according to the embodiments / further developments described above.
  • each show reagent vessel insertion parts 10 for a reagent vessel 36 for a centrifuge and / or a pressure device and / or a reagent vessel 36 for a centrifuge and / or a pressure device.
  • the respective reagent vessel 36 for a centrifuge and / or a pressure device has an outer wall 36a / outer shape (not detailed), which is designed such that the reagent vessel 36 can be inserted in a centrifuge and / or a pressure-varying device.
  • the reagent vessel 36 is formed so that a reliable hold / seat of the reagent vessel 36 is ensured in the operated centrifuge and / or in the operated Druckvariiervorraum.
  • a reagent vessel 36 for a centrifuge and / or a pressure variegating device can thus be understood to mean a reagent vessel 36 which, owing to its external shape, lends itself well to operation of the centrifuge with a comparatively high rotational speed and / or application of a jet deviating greatly from the atmospheric pressure - And / or negative pressure by means of Druckvariiervorraum.
  • the reagent vessel 36 can be understood to mean a (standard) test tube / test tube. Further embodiments are centrifuge tubes (eg 15 mL centrifuge tubes and 50 mL centrifuge tubes), 0.5 mL Eppendorf tubes, 1.5 mL Eppendorf tubes, 2 mL Eppendorf tubes and microtiter plates, such as 20 ⁇ L microtiter plates (per well).
  • the reagent vessel 36 may in particular be a revolver drum / drum. It should be noted, however, that the formability of the reagent vessel 36 is not limited to the examples listed here.
  • the dimensions of the reagent vessel 36 are dictated solely by the desired usability of the reagent vessel 36 in the centrifuge and / or in the pressure-varying device. The feasibility of the invention described below However, technology does not dictate an outer shape of the reagent vessel 36. Therefore, the reagent vessel 36 may be configured to receive samples in an amount that may be selectively selected from a range of a few ⁇ L to 1L.
  • the technology according to the invention can be used by means of any centrifuge, by means of which a (minimum) centrifugal force can be exerted from 20 g.
  • the technology according to the invention can be used for any pressure-varying device, by means of which an underpressure and / or overpressure can be applied.
  • the reagent vessel insert 10 may comprise a turret.
  • the reagent vessel part may in particular be a revolver drum / drum.
  • other embodiments of a reagent container insert 10 that can be arranged in a reagent container 36 for a centrifuge and / or a pressure device are also possible.
  • the reagent vessel insertion part 10 has an insertion part housing 10 a, which can be arranged / inserted in at least one reagent vessel 36.
  • the respective reagent vessel 36 may be formed as one of the above enumerated embodiments, without being limited thereto.
  • the applicability of the insert part housing 10a in the relevant reagent vessel 36 for a centrifuge and / or a Druckvariiervorraum can be interpreted so that an outer wall 10b of the insert part housing 10a at least partially to an inner wall 36b of the reagent vessel 36, and a Reagenzgefäßteils corresponds.
  • a reliable hold / seat of the Reagenzgefäß-inserting part 10 in the respective reagent vessel 36, and the Reagenzgefäßteil guaranteed can be interpreted so that an outer wall 10b of the insert part housing 10a at least partially to an inner wall 36b of the reagent vessel 36, and a Reagenzgefäßteils corresponds.
  • a reliable hold / seat of the Reagenzgefäß-inserting part 10 in the respective reagent vessel 36, and the Reagenzgefäßteil guaranteed can be interpreted so that an outer wall 10b of the insert part housing 10a at least partially to
  • Fig. 1 shows a schematic partial view of a first embodiment of the Reagenzgefäß insertion part.
  • reagent vessel insertion part 10 comprises at least one stirring element 12 which is arranged in at least one in the Einskyeilgephaseuse 10a formed inner volume 14 so that a position and / or position of the at least one stirring element 12 with respect to the Einskyeilgephaseuse 10a is changeable.
  • At least one subunit 16 of the at least a stirring element 12 is adjustable along an adjustment path 18 such that at least one material that can be filled or filled into the at least one inner volume 14 (not shown) can be stirred.
  • the at least one subunit 16 of the at least one stirring element 12 contacts during adjustment along the adjustment path 18 at least one holding structure 20, by means of which the at least one stirring element 12 in at least one semi-stable position and / or in at least one semi-stable position with respect to the Einmaneilgepuruse 10 a durable is.
  • the energy exerted on the at least one stirring element 12 to overcome the at least one holding structure 20 can be transferred as kinetic energy into the at least one material to be mixed be initiated.
  • a flow velocity caused in the at least one material to be mixed can be increased, which causes more chaotic flows due to its internal friction.
  • the mixing efficiency during mixing of the at least one material can be improved.
  • the at least one semi-stable position and / or in the at least one semi-stable position can be understood to mean a position / position of the at least one stirring element 12 from which the at least one stirring element 12 can be adjusted to at least one further position / position with a reduced potential energy. wherein for adjusting the at least one stirring element 12 from the semi-stable position / position an energy threshold is overcome.
  • the at least one stirring element 12 in the semi-stable position / position has a first potential energy which is greater than a second potential energy of the at least one stirring element 12 in the further position / position, wherein the adjustment of the at least one stirring element 12 from the semi-stable position / Position in the further position / position only about an intermediate position of the at least one stirring element 12 with a third potential energy greater than the first potential energy is possible.
  • the energy threshold can also be predetermined by a deformation of the at least one stirring element 12 and / or the at least one holding structure 20 to be carried out for adjusting the at least one stirring element 12 from the semi-stable position / position into the further position / position.
  • the at least one support structure 20 may project on at least one inner wall 22 of the at least one inner volume 14.
  • the at least one support structure 20 is at least partially made of an elastic material.
  • the at least one support structure 20 can thus be used several times, without fear of damage from this.
  • the formability of the at least one support structure 20 is not limited to the use of an elastic material.
  • the at least one stirring element 12 may be, for example, by centrifugal force during operation of the centrifuge in which the reagent vessel is mounted with the reagent vessel insert 10 disposed therein, and / or during operation of the pressure varying device in which the reagent vessel insert 10 is contained Reagent vessel is used, be acting as a compressive force Aktorkraft Fa adjustable.
  • Aktorkraft Fa adjustable a compressive force
  • the at least one stirring element 12 is preferably durable in the at least one semi-stable position and / or the at least one semi-stable position until the actuatable actuator force Fa exceeds a threshold value established by means of the formation of the at least one contacted holding structure 20.
  • a threshold value is exceeded by the actuatable actuator force Fa
  • at least the at least one subunit 16 of the at least one stirring element 12 can be further adjusted along at least one subsection of the adjustment path 18.
  • the at least one stirring element 12 can be spun out of the at least one semi-stable position and / or out of the at least one semi-stable position by exceeding the threshold value by means of the actuatable actuator force Fa.
  • a relatively large kinetic energy can be transferred to the at least one material to be mixed.
  • the process of ejecting the at least one stirring element 12 out of the at least one semi-stable position and / or out of the at least one semi-stable position can also be described as overcoming / breaking through the at least one contacted holding structure
  • the limit value / threshold value for the rotational acceleration / rotational speed of the centrifuge, from which the centrifugal force caused by the actuator force Fa sufficient Overcoming / breaking the at least one contacted holding structure 20 may be at least 20 g, for example at least 100 g, preferably at least 500 g, in particular at least 1000 g.
  • the compressive force from which the at least one holding structure 20 is overcome / breached may only be present at a significant underpressure or overpressure.
  • the at least one stirring element 12 has at least one through opening 24 / pore.
  • the currents flowing through the at least one continuous opening / pore when flowing through the at least one material to be mixed can thus additionally increase the mixing efficiency.
  • the at least one through opening 24 / pore can be of any desired design, e.g. rectangular or circular.
  • a diameter of the at least one through opening 24 / pore can in particular be in a range between 0.1 to 3 mm. However, the range for the diameter of the at least one through opening 24 / pore mentioned here should be interpreted only as an example.
  • the illustrated stirring element 12 is designed as a sieve.
  • the at least one stirring element 12 can also have arithmetic structures, finger structures and / or grid structures. In all the cases enumerated, the mixing efficiency can be increased due to the multiplicity of through openings 24 / pores.
  • stirring element 12 is exposed, ie formed without a connection to a wall of the inner volume 14.
  • exposed stirring element 12 possible.
  • Fig. 2 shows a schematic partial view of a second embodiment of the Reagenzgefäß insertion part.
  • Fig. 2 (At least partially) schematically reproduced reagent vessel insertion part 10 is a development of the embodiment described above.
  • the holding structures 20 arranged in the inner volume 14 can be subdivided into a plurality of groups, which are contacted successively during the adjusting movement of the stirring element 12.
  • the obstacle structure made up of a plurality of groups of holding structures 20 realized in this way enables a sequential adjustment of the Stirring element 12 in which acts as a mixing chamber inner volume 14 by means of the actuator force Fa and thus a multiple effective coupling of energy in the at least one material to be mixed.
  • the various groups of support structures 20 may have the same threshold or different thresholds.
  • the different threshold values can be determined, for example, by means of a different elasticity of the various groups of holding structures 20. In both cases, a jerky and multiple movement of the stirring element 12 can be realized.
  • Fig. 3a-3c show schematic partial views of a third embodiment of the Reagenzgefäß insert part.
  • Each (at least partially) reproduced reagent vessel insertion part 10 is also a development / conversion of the initially described embodiment.
  • At least one elastic restoring element 26 is arranged on the at least one stirring element 12 so that at least the at least one subunit 16 of the at least one stirring element 12 is greater than a restoring force Fr of the respective at least one restoring element 26 from a starting position (see FIG Fig. 3c ) in a maximum deflection position (see Fig. 3b ) is adjustable.
  • at least the at least one subunit 16 of the at least one stirring element 12 is smaller than the restoring force Fr in the initial position when the actuator force Fa is achievable.
  • the restoring force Fr of the respective at least one restoring element 26 is increased.
  • the at least one subunit 16 of the at least one stirring element 12 can contact at least one holding structure 20 in its initial position and / or during the adjustment from the starting position to the maximum deflection position, and the at least one holding structure 20 at an actuator force Fa greater than a sum of the adjacent Reset force Fr and threshold / break through.
  • the respective stirring element 12 can be further adjusted despite the increase of the restoring force Fr by means of a larger actuator force Fa. If the actuator force Fa is greater than a sum of the applied restoring force Fr and the at least one threshold value of the at least one holding structure 20 contacted by the stirring element 12, the respective stirring element 12 can be adjusted to a maximum deflection position / deflection position.
  • the stirring element 12 is from an actuator force Fa smaller than the applied restoring force Fr from the maximum deflection position / deflection position in its starting position / home position back adjustable.
  • the stirring element 12 contacts the at least one holding structure 20 during the adjustment from the maximum deflection position / deflection position to its starting position / starting position. Thereafter, the advantageous transfer of kinetic energy to the at least one material to be mixed can occur by means of a simple variation of the actuator force Fa be repeated once.
  • the embodiment of the Fig. 3a-3c is therefore rewritten as a reversible snap mechanism.
  • the at least one holding structure 20 may be designed to be stiff or elastic (flexible).
  • the at least one return element 26 may be, for example, a spring.
  • the at least one return element 26 may also be formed from a compressible or stretchable material, such as a polymer and / or an elastomer.
  • the restoring force Fr can be both a compressive force and a tensile force.
  • several return elements 26 can advantageously cooperate.
  • Fig. 4a-4d show schematic partial views of a fourth embodiment of the Reagenzgefäß insert part.
  • reagent container insert part 10 has at least one stirring element 12 which is fixedly attached at its first end 28 to the reagent vessel insertion part 10 or to a component firmly fixed in the reagent vessel insertion part 10.
  • the first end 28 is fixedly secured in the reagent container insertion part 10 so that it does not change its position with respect to the insertion part housing 10a, even with an acceleration of 10000 g applied thereto, or a corresponding compressive force.
  • a second end 30 of the respective stirring element 12 is bent relative to the first end 28 of the same stirring element 12 while bending at least one intermediate section 32 of the same same stirring element 12 adjustable from a starting position.
  • the at least one intermediate portion 32 is formed so that its bending causes a restoring force Fr, by means of which the second end 30 is adjustable back to the starting position with respect to the first end 28.
  • the at least one stirring element 12 may be bar-shaped or web-shaped.
  • the bar or web-shaped stirring element 12 may have a width between 0.1 to 3 mm.
  • a plurality of bar-shaped or web-shaped stirring elements 12 can be used, which are arranged at a distance of between 0.1 to 3 mm from each other.
  • the at least one stirring element 12 may be comb-shaped (with side bars).
  • the numerical values and possible formulas of the at least one stirring element 12 mentioned here are only to be interpreted as examples.
  • an additional mass 34 is arranged on the at least one second end 30 of the at least one stirring element 12. Since the transferred to the at least one material to be mixed kinetic energy is proportional to the accelerated mass, thus, the mixing efficiency can be increased by means of the additional mass 34.
  • Fig. 4a is the stirring element 12 in its initial position.
  • the restoring force Fr is thus equal to zero.
  • the stirring element 12 can be ordered from its initial position into at least one stop position, in which the stirring element 12 contacts at least one holding structure 20.
  • the stirring element 12 is durable in a semi-stable position until the applied actuator force Fa is greater than a sum of a defined by the at least contacted support structure 20 threshold and the at least one restoring force Fr. If the actuator force Fa exceeds this sum, then the stirring element 12 can bend elastically so that it snaps out of the semi-stable position and in this way introduces a high kinetic energy into the at least one material to be mixed.
  • the at least one stirring element 12 is further bendable until it is present in a maximum deflection position, in which the restoring force Fr of the bent intermediate section 32 is equal to the actuator force Fa (see Fig. 4c ).
  • the actuator force Fa By reducing the actuator force Fa under the applied restoring force Fr, this is at least a stirring element 12 back to its original position réellever mon (see Fig. 4d ).
  • the basis of the Fig. 4a-4d operations are repeated at least once.
  • the embodiment of the Fig. 4a-4d thus realizes a reversible / repeatedly usable snap mechanism.
  • the at least one holding structure 20 can also be designed as a catch with a predetermined breaking point or as a predetermined breaking point.
  • Fig. 5a and 5b show schematic partial views of a fifth embodiment of the Reagenzgefäß insert part.
  • the at least one stirring element 23, prior to use / use of the reagent vessel insertion part 10 equipped therewith, is fixedly arranged in the internal volume on account of the at least one holding structure 20. Only when the threshold value defined by the at least one holding structure 20 designed as a predetermined breaking point is exceeded by means of the actuator force Fa is the at least one stirring element 12 at least partially so freely refracted that it can carry out the mixing process in order to utilize the energy released in the process.
  • a stirring element 12 can additionally be used as a mechanical one-way bursting valve.
  • the stirring element 12 can close a channel or a reservoir until the stirring element 12 is released at a larger actuator force Fa and at the same time begins to carry out the mixing process.
  • the stirring element 12 which snaps out of the at least one semi-stable position and / or semi-stable position can also open a predetermined breaking point and thus release a reservoir and / or open a drain.
  • the stirring element 12 may also be equipped with a tip, a cutting edge and / or a mandrel, by means of which a separating structure / membrane can be pierced.
  • stirring element 12 is integrally formed with at least one spring 26 formed as a return element.
  • the return element 26 may be formed, for example, as a helical spring.
  • the return element 26 as a be formed multi-stranded spring (see Fig. 5b ).
  • the restoring element 26 has a plurality of spring strands 26a anchored to the stirring element 12 and which wind around at least part of the stirring element 12.
  • Such a spring type is adjustable by a comparatively large differential path 26b without tilting of the stirring element 12.
  • the integrally formed with the at least one restoring element 26 stirring element 12 is not limited to a particular type of spring.
  • the stirring element 12 may also be formed in one piece with at least one elastic support component and / or with at least one compressible support component.
  • the at least one elastic support component and / or compressible support component may comprise a polymer and / or an elastomer.
  • reagent vessel insertion parts 10 further process steps and structures may be integrated, such as, for example, sedimentation structures, channel structures or siphon structures for forwarding and switching at least one liquid contained in the reagent vessel insertion parts 10.
  • at least one subunit of the inner volume 14 or of another volume of a reagent vessel insertion part 10 can be filled with at least one liquid as a "storage container" which contains at least one chemical reaction with a subsequently filled material to be processed and / or examined. or performing a biochemical / molecular biological process.
  • the at least one "reservoir” may e.g. filled with chemicals, dyes, antibodies, antigens, receptors, proteins, DNA strands and / or RNA strands.
  • the reagent vessel insert parts 10 described above may be at least partially made of a polymer, for example of COP, COC, PC, PA, PU, PP, PET and / or PMMA.
  • Other materials are also suitable for forming the reagent vessel inserts 10. These can be firm, elastic or flexible. Suitable materials are also, for example, metal, polymer, paper, plastic, rubber material, or the like.
  • special chambers, containers and / or doors can be formed.
  • the reagent vessel insert parts 10 may still be equipped with additional components, such as valves and / or pumps.
  • additional components such as valves and / or pumps.
  • the technology according to the invention can interact in a simple manner with a multiplicity of conventional actuation, detection and / or control units.
  • the embodiments described above may include additional mechanical switches and / or actuation mechanisms, such as magnetic, electrical, electromagnetic anti-jar or repulsion mechanisms.
  • Fig. 6 shows a schematic representation of an embodiment of the reagent vessel.
  • the reagent vessel 36 shown schematically has a plurality of turret components 10 / revolver designed reagent vessel insertion parts 10.
  • the various turret components 10 are arranged axially one above the other.
  • an integrated mechanism such as a ballpoint pen mechanism 38 and / or a ratchet mechanism, the turret components 10 can be rotated relative to each other position and / or axially adjusted, with the inner volume 14 and / or other cavities of the turret components 10 can be switched to each other.
  • the turret assemblies 10 may include, in addition to the equipment components described above, still channels, reaction chambers, and other structures for performing fluidic unit operations.
  • An activation of the mechanism used can be done for example by means of the actuator force Fa.
  • the turret components 10 can be switched to one another such that their openings overlap and thus liquids can be transported along a vector 40 of the actuator force Fa of at least one turret component 10 into an adjacent turret component 10.
  • FIG. 12 is a flow chart illustrating one embodiment of the method for centrifuging at least one material.
  • a method step S1 the at least one material is introduced into a reagent vessel for a centrifuge with an inserted advantageous reagent vessel insertion part or in a corresponding reagent vessel.
  • the reagent vessel is arranged in a process step S2 in the centrifuge.
  • the centrifuge is operated at a first rotational speed for at least a first time interval.
  • the first rotational speed causes a centrifugal force under a threshold value defined by the at least one holding structure contacted by the at least one stirring element. Therefore, the at least one stirring element is held in the respective semi-stable position and / or in the respective semi-stable position by means of the at least one holding structure.
  • step S4 the rotational speed is increased to a second rotational speed for at least a second time interval.
  • the second rotational speed causes a centrifugal force above the threshold, whereby the at least one stirring element is thrown out of the respective semi-stable position and / or out of the respective semi-stable position. This ensures advantageous mixing of the at least one material.
  • the method steps S3 and S4 can be repeated as often as desired in order to increase the mixing efficiency.
  • FIG. 12 is a flowchart for explaining an embodiment of the method of pressure-treating at least one material.
  • the devices described above can be used.
  • the feasibility of the method described below is not limited to the use of these devices.
  • the method begins with a method step S10, in which the at least one material is introduced into a reagent vessel for a pressure-varying device with an inserted advantageous reagent vessel insert part or in a corresponding reagent vessel is filled.
  • An arrangement of the reagent vessel in the Druckvariiervoriques takes place in a method step S11.
  • a first pressure difference deviating from the atmospheric pressure is applied in the reagent vessel by means of the pressure varying device for at least a first time interval at which a pressure force is effected under a threshold value determined by the at least one holding structure contacted by the at least one stirring element.
  • the at least one stirring element is held in the respective semi-stable position and / or in the respective semi-stable position by means of the at least one holding structure.
  • step S13 a second pressure difference deviating from the atmospheric pressure greater than the first pressure difference is applied for at least a second time interval. Characterized a compressive force is effected above the threshold value, whereby the at least one stirring element is thrown out of the respective semi-stable position and / or out of the respective semi-stable position. The at least one material is thus mixed.
  • the method steps S3 and S4 can also be repeated as often as desired in order to increase the mixing efficiency.

Abstract

Die Erfindung betrifft ein Reagenzgefäß-Einsetzteil (10) für ein Reagenzgefäß für eine Zentrifuge und/oder eine Druckvariiervorrichtung mit einem Einsetzteilgehäuse (10a), welches so ausgebildet ist, dass das Reagenzgefäß-Einsetzteil (10) in einem Reagenzgefäß für eine Zentrifuge und/oder für eine Druckvariiervorrichtung einsetzbar ist, und mindestens einem Rührelement (12), welches in mindestens einem Innenvolumen (14) so angeordnet ist, dass eine Stellung und/oder eine Position des mindestens einen Rührelements (12) in Bezug zu dem Einsetzteilgehäuse (10a) veränderbar ist, wobei mindestens ein in das mindestens eine Innenvolumen (14) einfüllbares oder eingefülltes Material umrührbar ist, und wobei zumindest eine Untereinheit (16) des mindestens einen Rührelements (12) während eines Verstellens mindestens eine Haltestruktur (20) kontaktiert, mittels welcher das mindestens eine Rührelement (12) in mindestens einer semistabilen Stellung und/oder mindestens einer semistabilen Position haltbar ist. Ebenso betrifft die Erfindung Reagenzgefäße für eine Zentrifuge und/oder eine Druckvariiervorrichtung, ein Verfahren zum Zentrifugieren und ein Verfahren zum Druckbehandeln mindestens eines Materials.

Description

  • Die Erfindung betrifft ein Reagenzgefäß-Einsetzteil für ein Reagenzgefäß für eine Zentrifuge und/oder eine Druckvariiervorrichtung. Ebenso betrifft die Erfindung Reagenzgefäße für eine Zentrifuge und/oder eine Druckvariiervorrichtung. Des Weiteren betrifft die Erfindung ein Verfahren zum Zentrifugieren mindestens eines Materials und ein Verfahren zum Druckbehandeln mindestens eines Materials.
  • Stand der Technik
  • In der DE 10 2010 003 224 A1 ist ein Mischer zum Einsetzen in einen Rotor einer Zentrifuge beschrieben. Der Mischer umfasst eine Mischwanne und eine Hinderniseinrichtung, welche so ausgebildet sind, dass ein Abstand zwischen zumindest einem Wandabschnitt der Mischwanne und der Hinderniseinrichtung variabel ist. Mittels eines Variierens des Abstands soll eine in der Mischwanne befindliche Flüssigkeit durch mindestens eine Durchgangsöffnung in der Hinderniseinrichtung zum Mischen der Flüssigkeit pressbar sein.
  • Offenbarung der Erfindung
  • Die Erfindung schafft ein Reagenzgefäß-Einsetzteil für ein Reagenzgefäß für eine Zentrifuge und/oder eine Druckvariiervorrichtung mit den Merkmalen des Anspruchs 1, ein Reagenzgefäß für eine Zentrifuge und/oder eine Druckvariiervorrichtung mit den Merkmalen des Anspruchs 12, ein Reagenzgefäß für eine Zentrifuge und/oder eine Druckvariiervorrichtung mit den Merkmalen des Anspruchs 13, ein Verfahren zum Zentrifugieren mindestens eines Materials mit den Merkmalen des Anspruchs 14 und ein Verfahren zum Druckbehandeln mindestens eines Materials mit den Merkmalen des Anspruchs 15.
  • Vorteile der Erfindung
  • Die vorliegende Erfindung ermöglicht ein effizienteres Vermischen mindestens eines Materials während eines Zentrifugierens, eines Anlegens eines Unterdrucks und/oder eines Anlegens eines Überdrucks. Wie unten genauer ausgeführt wird, sind mittels der mindestens einen Hindernisstruktur höhere Energien in das mindestens eine zu mischende Material einkoppelbar. Die Steigerung der auf das mindestens eine zu mischende Material ausgeübten Energie führt zu einer Erhöhung der Mischeffizienz beim Mischen des mindestens einen Materials. Somit können auch hochviskose Flüssigkeiten, Pulver und/oder leicht verklumpende Partikelhaufen mittels der vorliegenden Erfindung erfolgreich gemischt werden.
  • Die mittels der vorliegenden Erfindung realisierbaren Vorrichtungen und Verfahren sind kompatibel zur zentrifugalen Prozessierung und/oder zur druckgetriebenen Prozessierung, insbesondere unter Verwendung mindestens eines Revolverbauteils/Revolvers. Die vorliegende Erfindung kann umgesetzt werden unter Verwendung mehrerer Revolver/Revolverbauteile, welche axial übereinander gestapelt sind und Kavitäten zum Ausführen fluidischer Einheitsoperationen umfassen. Ein Schalten der Kavitäten zueinander kann mittels mindestens einer Kugelschreibermechanik oder einer Ratschenmechanik ausgeführt werden. Auf diese Weise können die Revolver axial wie auch azimutal zueinander positioniert werden. Die vorliegende Erfindung ist somit in eine vorteilhafte Technologie zum Schalten von chemischen Reaktionen und/oder von biochemischen/molekularbiologischen Prozessen integrierbar.
  • Bei einem ohne die Verwendung einer Haltestruktur ausgeführten Mischverfahren ist eine Geschwindigkeit eines Rührelements, welches in einer Mischkammer mittels einer darauf ausgeübten Kraft verstellbar ist, in der Regel abhängig von einer Ableitung der jeweiligen Kraft. Beispielsweise ist bei einer Nutzung eines zentrifugalen Kraftfelds zum Verstellen des Rührelements die Geschwindigkeit der Auslenkung des Rührelements abhängig von der Beschleunigungsänderung des zentrifugalen Kraftfeldes. Deshalb können bei einem ohne eine Haltestruktur ausgeführten Mischverfahren nur geringe Energien mittels des mindestens einen Rührelements auf das mindestens eine zu mischende Material ausgeübt werden. Demgegenüber können mittels der vorliegenden Erfindung weitaus höhere Energien mittels des mindestens einen Rührelements auf das mindestens eine zu mischende Material ausgeübt werden. Dies gewährleistet ein verlässliches Vermischen des mindestens einen zu mischenden Materials.
  • Das Mischen von verschiedenen Flüssigkeiten ist häufig eine Grundvoraussetzung zur Durchführung von chemischen Verfahren und/oder biochemischen/molekularbiologischen Prozessen. Die mittels der vorliegenden Erfindung realisierbare verbesserte Mischeffizienz kann somit einen vorteilhafteren/schnelleren/gründlicheren Ablauf von chemischen Reaktionen und/oder biochemischen/molekularbiologischen Prozessen gewährleisten.
  • In einer vorteilhaften Ausführungsform ist das mindestens eine Rührelement mittels einer bei einem Betrieb der Zentrifuge, in welcher das Reagenzgefäß eingesetzt ist, bewirkbaren Zentrifugalkraft und/oder bei einem Betrieb der Druckvariiervorrichtung, in welcher das Reagenzgefäß eingesetzt ist, bewirkbaren Druckkraft verstellbar. Zum Verstellen des mindestens einen Rührelements, über welches das mindestens eine Material umgerührt wird, können somit einfach aufbringbare Kräfte genutzt werden.
  • Außerdem kann das mindestens eine Rührelement in der mindestens einen semistabilen Stellung und/oder der mindestens einen semistabilen Position haltbar sein, bis die bewirkbare Zentrifugalkraft und/oder die bewirkbare Druckkraft einen mittels der Ausbildung der mindestens einen kontaktierten Haltestruktur festgelegten Schwellwert übersteigt. Bei einem Übersteigen des Schwellwerts durch die bewirkbare Zentrifugalkraft und/oder die bewirkbare Druckkraft ist vorzugsweise zumindest die mindestens eine Untereinheit des mindestens einen Rührelements entlang zumindest eines Teilabschnitts des Verstellwegs weiter verstellbar. Da der Schwellwert somit auf einfache Weise mittels der Ausbildung der mindestens einen zugeordneten Haltestruktur festlegbar ist, kann auch die während des Weiterverstellens des mindestens einen Rührelements auf das mindestens eine zu mischende Material ausgeübte Energie auf einfache Weise festgelegt und über die Zentrifugalkraft und/oder die Druckkraft bereitgestellt werden.
  • Insbesondere kann das mindestens eine Rührelement bei einem Übersteigen des Schwellwerts mittels der bewirkbaren Zentrifugalkraft und/oder mittels der bewirkbaren Druckkraft aus der mindestens einen semistabilen Stellung und/oder aus der mindestens einen semistabilen Position heraus schleuderbar sein. Bei dem Herausschleudern des mindestens einen Rührelements wird eine vergleichsweise große Menge an kinetischer Energie auf das zu mischende mindestens eine Material übertragen. Insbesondere lassen sich auf diese Weise auch Flüssigkeiten mit einer hohen Viskosität, Pulver und/oder Gemische mit leicht verklumpenden Partikeln effizient/verlässlich mischen.
  • In einer vorteilhaften Weiterbildung ist mindestens ein elastisches Rückstellelement an dem mindestens einen Rührelement so angeordnet, dass zumindest die mindestens eine Untereinheit des mindestens einen Rührelements mittels einer bewirkbaren Zentrifugalkraft und/oder einer bewirkbaren Druckkraft größer als Rückstellkraft des jeweiligen mindestens einen Rückstellelements aus einer Ausgangsposition in eine maximale Auslenkposition verstellbar ist, und bei einer bewirkbaren Zentrifugalkraft und/oder einer bewirkbaren Druckkraft kleiner als die Rückstellkraft in die Ausgangsposition zurückverstellbar ist. Insbesondere kann in diesem Fall die mindestens eine Haltestruktur mehrmals zum Ausüben einer vergleichsweise großen kinetischen Energie auf das mindestens eine zu mischende Material genutzt werden. Somit kann auf kostengünstige Weise durch lediglich ein Variieren der Zentrifugalkraft/Druckkraft das mindestens eine zu mischende Material verlässlich gemischt werden.
  • Beispielsweise kann die mindestens eine Haltestruktur an mindestens einer Innenwand des mindestens einen Innenvolumens hervorragen. Die mindestens eine Haltestruktur kann somit auf kostengünstige Weise bei der Herstellung der Innenwand gleichzeitig ausgebildet werden.
  • In einer vorteilhaften Ausführungsform ist die mindestens eine Haltestruktur zumindest teilweise aus einem elastischen Material gebildet. Dies gewährleistet eine häufige Nutzung der mindestens einen Haltestruktur, wobei deren Beschädigung verlässlich verhindert ist. Die mindestens eine Haltestruktur kann jedoch auch aus einem unelastischen Material gebildet sein.
  • In einer weiteren vorteilhaften Ausbildung weist das mindestens eine Rührelement Rechenstrukturen, Siebstrukturen, Fingerstrukturen und/oder Gitterstrukturen auf. In diesem Fall ist an dem mindestens einen Rührelement jeweils eine Vielzahl von Öffnungen/Aussparungen ausgebildet, durch welche das mindestens eine zu mischende Material mittels der einkoppelbaren Energie pressbar ist. Dies gewährleistet eine hohe Mischeffizienz.
  • In einer weiteren vorteilhaften Ausführungsform ist das mindestens eine Rührelement an seinem ersten Ende fest an dem Reagenzgefäß-Einsetzteil angebracht, während ein zweites Ende des jeweiligen Rührelements in Bezug zu dem ersten Ende des gleichen Rührelements unter Verbiegung zumindest eines Zwischenteilabschnitts des gleichen Rührelements verstellbar ist. Somit kann das mindestens eine Rührelement auf kostengünstige Weise dazu ausgelegt sein, selbst eine Rückstellkraft auf das als verstellbare Untereinheit eingesetzte zweite Ende auszuüben. Mittels des oben schon beschriebenen Variierens der Zentrifugalkraft/Druckkraft kann somit das mindestens eine zweite Ende mehrmals entlang des Verstellwegs verstellt werden. Auf diese Weise ist eine vergleichsweise große kinetische Energie auf das mindestens eine zu mischende Material übertragbar.
  • In einer Weiterbildung kann eine Zusatzmasse an dem zweiten Ende des mindestens einen Rührelements angebracht sein. Da die in dem mindestens einen zu mischenden Material bewirkte Strömungsenergie proportional zu der beschleunigten Masse ist, kann somit die Strömungsgeschwindigkeit signifikant gesteigert werden, was aufgrund der inneren Reibung des mindestens einen zu mischenden Materials zu einem chaotischen Strömungsverhalten von diesem führt. Auf diese Weise kann die Mischeffizienz zusätzlich gesteigert werden.
  • Beispielsweise kann das Reagenzgefäß-Einsetzteil als Revolverbauteil ausgebildet sein. Die vorliegende Erfindung ist somit vorteilhaft in die Verwendung von Revolverbauteilen/Revolvern zum Schalten von Flüssigkeiten zueinander integrierbar. Die Ausbildbarkeit des Reagenzgefäß-Einsetzteils ist jedoch nicht auf ein derartiges Revolverbauteil limitiert.
  • Die oben beschriebenen Vorteile sind auch bei einem Reagenzgefäß für eine Zentrifuge und/oder eine Druckvariiervorrichtung mit mindestens einem derartigen Reagenzgefäß-Einsetzteil gewährleistet.
  • Ebenso sind die beschriebenen Vorteile realisierbar mittels eines korrespondierenden Reagenzgefäßes für eine Zentrifuge und/oder eine Druckvariiervorrichtung. Die Vorteile sind gewährleistet bei einem Reagenzgefäß mit einer Außenwand, welche so ausgebildet ist, dass das Reagenzgefäß in einer Zentrifuge und/oder in einer Druckvariiervorrichtung einsetzbar ist, und mindestens einem Rührelement, welches in mindestens einem in dem Reagenzgefäß ausgebildeten Innenvolumen so angeordnet ist, dass eine Stellung und/oder eine Position des mindestens einen Rührelements in Bezug zu der Außenwand veränderbar ist, wobei zumindest eine Untereinheit des mindestens einen Rührelements entlang eines Verstellwegs so verstellbar ist, dass mindestens ein in das mindestens eine Innenvolumen einfüllbares oder eingefülltes Material umrührbar ist, und wobei zumindest die mindestens eine Untereinheit des mindestens einen Rührelements während eines Verstellens entlang des Verstellwegs mindestens eine Haltestruktur kontaktiert, mittels welcher das mindestens eine Rührelement in mindestens einer semistabilen Stellung und/oder mindestens einer semistabilen Position in Bezug zu der Außenwand haltbar ist. Das Reagenzgefäß ist entsprechend der oben beschriebenen Ausführungsformen und/oder Weiterentwicklungen weiter entwickelbar.
  • Des Weiteren können die Vorteile auch bewirkt werden durch Ausführen des Verfahrens zum Zentrifugieren mindestens eines Materials oder durch Ausführen des Verfahrens zum Druckbehandeln mindestens eines Materials. Jedes der Verfahren ist entsprechend der oben beschriebenen Ausführungsformen/Weiterentwicklungen weiter entwickelbar.
  • Kurze Beschreibung der Zeichnungen
  • Weitere Merkmale und Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Figuren erläutert. Es zeigen:
  • Fig. 1
    eine schematische Teildarstellung einer ersten Ausführungsform des Reagenzgefäß-Einsetzteils;
    Fig. 2
    eine schematische Teildarstellung einer zweiten Ausführungsform des Reagenzgefäß-Einsetzteils;
    Fig. 3a-3c
    schematische Teildarstellungen einer dritten Ausführungsform des Reagenzgefäß-Einsetzteils;
    Fig. 4a-4d
    schematische Teildarstellungen einer vierten Ausführungsform des Reagenzgefäß-Einsetzteils;
    Fig. 5a und 5b
    schematische Teildarstellungen einer fünften Ausführungsform des Reagenzgefäß-Einsetzteils;
    Fig. 6
    eine schematische Darstellung einer Ausführungsform des Reagenzgefäßes;
    Fig. 7
    ein Flussdiagramm zum Darstellen einer Ausführungsform des Verfahrens zum Zentrifugieren mindestens eines Materials; und
    Fig. 8
    ein Flussdiagramm zum Erläutern einer Ausführungsform des Verfahrens zum Druckbehandeln mindestens eines Materials.
    Ausführungsformen der Erfindung
  • Die nachfolgend erläuterten Figuren zeigen jeweils Reagenzgefäß-Einsetzteile 10 für ein Reagenzgefäß 36 für eine Zentrifuge und/oder eine Druckeinrichtung und/oder ein Reagenzgefäß 36 für eine Zentrifuge und/oder eine Druckeinrichtung. Das jeweilige Reagenzgefäß 36 für eine Zentrifuge und/oder eine Druckeinrichtung weist eine (nicht genauer ausgeführte) Außenwand 36a/äußere Form auf, welche so ausgebildet ist, dass das Reagenzgefäß 36 in einer Zentrifuge und/oder einer Druckvariiervorrichtung einsetzbar ist. Vorzugsweise ist das Reagenzgefäß 36 so ausgebildet, dass ein verlässlicher Halt/Sitz des Reagenzgefäßes 36 in der betriebenen Zentrifuge und/oder in der betriebenen Druckvariiervorrichtung gewährleistet ist. Unter einem Reagenzgefäß 36 für eine Zentrifuge und/oder eine Druckvariiervorrichtung kann somit ein Reagenzgefäß 36 verstanden werden, welches sich aufgrund seiner äußeren Form gut für einen Betrieb der Zentrifuge mit einer vergleichsweise großen Drehzahl und/oder für ein Anlegen eines stark von dem Atmosphärendruck abweichenden Über- und/oder Unterdrucks mittels der Druckvariiervorrichtung eignet.
  • Unter dem Reagenzgefäß 36 kann beispielsweise ein (Standard)-Reagenzglas/Reagenzröhrchen verstanden werden. Weitere Ausführungsbeispiele sind Zentrifungenröhrchen (z.B. 15 mL Zentrifungenröhrchen und 50 mL Zentrifungenröhrchen), 0,5 ml Eppendorf-Röhrchen, 1,5 mL Eppendorf-Röhrchen, 2 mL Eppendorf-Röhrchen und Mikrotiterplatten, wie z.B. 20 µL Mikrotiterplatten (pro Kavität). Das Reagenzgefäß 36 kann insbesondere eine Revolvertrommel/Trommel sein/umfassen. Es wird jedoch darauf hingewiesen, dass die Ausbildbarkeit des Reagenzgefäßes 36 nicht auf die hier aufgezählten Beispiele limitiert ist. Außerdem sind die Maße des Reagenzgefäßes 36 lediglich aufgrund der erwünschten Einsetzbarkeit des Reagenzgefäßes 36 in der Zentrifuge und/oder in der Druckvariiervorrichtung vorgegeben. Die Ausführbarkeit der im Weiteren beschriebenen erfindungsgemäßen Technologie schreibt jedoch keine äußere Form des Reagenzgefäßes 36 vor. Deshalb kann das Reagenzgefäß 36 zur Aufnahme von Proben in einer Menge ausgelegt sein, welche wahlweise aus einem Bereich von wenigen µL bis zu 1 L gewählt werden kann.
  • Es wird darauf hingewiesen, dass unter der im Weiteren erwähnten Zentrifuge und Druckvariiervorrichtung keine bestimmten Gerätetypen zu verstehen sind. Stattdessen ist die erfindungsgemäße Technologie mittels jeder Zentrifuge nutzbar, mittels welcher eine (Mindest-)Zentrifugalkraft ab 20 g ausübbar ist. Ebenso kann die erfindungsgemäße Technologie für jede Druckvariiervorrichtung genutzt werden, mittels welcher ein Unter- und/oder Überdruck anlegbar ist.
  • Unter dem Reagenzgefäß-Einsetzteil 10 kann z.B. ein Revolverbauteil/Revolver verstanden werden. Ebenso kann das Reagenzgefäß-Einsetzteil 10 einen Revolver umfassen. Das Reagenzgefäßteil kann insbesondere eine Revolvertrommel/Trommel sein. Andere Ausbildungsformen eines in einem Reagenzgefäß 36 für eine Zentrifuge und/oder eine Druckeinrichtung anordbaren Reagenzgefäß-Einsetzteils 10 sind jedoch ebenso möglich. Das Reagenzgefäß-Einsetzteil 10 hat ein Einsetzteilgehäuse 10a, welches in mindestens einem Reagenzgefäß 36 anordbar/einsetzbar ist. Das jeweilige Reagenzgefäß 36 kann als eine der oben aufgezählten Ausführungsformen ausgebildet sein, ohne darauf limitiert zu sein. Die Einsetzbarkeit des Einsetzteilgehäuse 10a in das betreffende Reagenzgefäß 36 für eine Zentrifuge und/oder eine Druckvariiervorrichtung kann so interpretiert werden, dass eine Außenwand 10b des Einsetzteilgehäuse 10a zumindest teilweise zu einer Innenwand 36b des Reagenzgefäßes 36, bzw. eines Reagenzgefäßteils, korrespondiert. Vorzugsweise ist auch während eines Betriebs der Zentrifuge und/oder der Druckvariiervorrichtung ein verlässlicher Halt/Sitz des Reagenzgefäß-Einsetzteils 10 in dem betreffenden Reagenzgefäß 36, bzw. dem Reagenzgefäßteil, gewährleistet.
  • Fig. 1 zeigt eine schematische Teildarstellung einer ersten Ausführungsform des Reagenzgefäß-Einsetzteils.
  • Das in Fig. 1 (zumindest teilweise) schematisch dargestellte Reagenzgefäß-Einsetzteil 10 umfasst mindestens ein Rührelement 12, welches in mindestens einem in dem Einsetzteilgehäuse 10a ausgebildeten Innenvolumen 14 so angeordnet ist, dass eine Stellung und/oder eine Position des mindestens einen Rührelements 12 in Bezug zu dem Einsetzteilgehäuse 10a veränderbar ist. Zumindest eine Untereinheit 16 des mindestens einen Rührelements 12 ist entlang eines Verstellwegs 18 so verstellbar, dass mindestens ein in das mindestens eine Innenvolumen 14 einfüllbares oder eingefülltes (nicht skizziertes) Material umrührbar ist. Die mindestens eine Untereinheit 16 des mindestens einen Rührelements 12 kontaktiert während eines Verstellens entlang des Verstellwegs 18 mindestens eine Haltestruktur 20, mittels welcher das mindestens eine Rührelement 12 in mindestens einer semistabilen Stellung und/oder in mindestens einer semistabilen Position in Bezug zu dem Einsetzteilgehäuse 10a haltbar ist.
  • Mittels der Zwischenlagerung des mindestens einen Rührelements 12 in der mindestens einen semistabilen Stellung und/oder in der mindestens einen semistabilen Position kann die zum Überwinden der mindestens einen Haltestruktur 20 auf das mindestens eine Rührelement 12 ausgeübte Energie als kinetische Energie in das mindestens eine zu mischende Material eingeleitet werden. Auf diese Weise ist eine in dem mindestens einen zu mischenden Material bewirkte Strömungsgeschwindigkeit steigerbar, welches aufgrund von dessen innerer Reibung chaotischere Strömungen bewirkt. Somit kann mittels der mindestens einen Haltestruktur 16 die Mischeffizienz beim Mischen des mindestens einen Materials verbessert werden.
  • Unter der mindestens einen semistabilen Stellung und/oder in der mindestens einen semistabilen Position kann eine Stellung/Position des mindestens einen Rührelements 12 verstanden werden, aus welcher das mindestens eine Rührelement 12 in mindestens eine weitere Stellung/Position mit einer reduzierten potentiellen Energie verstellbar ist, wobei zum Verstellen des mindestens einen Rührelements 12 aus der semistabilen Stellung/Position eine Energieschwelle zu überwinden ist. Beispielsweise hat das mindestens eine Rührelement 12 in der semistabilen Stellung/Position eine erste potentielle Energie, welche größer als eine zweite potentiellen Energie des mindestens einen Rührelements 12 in der weiteren Stellung/Position ist, wobei das Verstellen des mindestens einen Rührelements 12 aus der semistabilen Stellung/Position in die weitere Stellung/Position nur über eine Zwischenstellung des mindestens einen Rührelements 12 mit einer dritten potentiellen Energie größer als der ersten potentiellen Energie möglich ist. Die Energieschwelle kann auch durch eine zum Verstellen des mindestens einen Rührelements 12 aus der semistabilen Stellung/Position in die weitere Stellung/Position auszuführende Verformung des mindestens einen Rührelements 12 und/oder der mindestens einen Haltestruktur 20 vorgegeben sein.
  • Die mindestens eine Haltestruktur 20 kann an mindestens einer Innenwand 22 des mindestens einen Innenvolumens 14 hervorragen. Somit kann eine vergleichsweise einfache Ausbildung der mindestens einen Haltestruktur 20 bereits den oben beschriebenen signifikanten Vorteil bewirken. Bei der Ausführungsform der Fig. 1 ist die mindestens eine Haltestruktur 20 zumindest teilweise aus einem elastischen Material. Wie unten genauer ausgeführt wird, kann die mindestens eine Haltestruktur 20 somit mehrmals eingesetzt werden, ohne dass eine Beschädigung von dieser zu befürchten ist. Die Ausbildbarkeit der mindestens einen Haltestruktur 20 ist jedoch nicht auf die Verwendung von einem elastischen Material beschränkt.
  • Das mindestens eine Rührelement 12 kann beispielsweise mittels einer bei einem Betrieb der Zentrifuge, in welcher das Reagenzgefäß mit dem darin angeordneten Reagenzgefäß-Einsetzteil 10 eingesetzt ist, als Zentrifugalkraft und/oder einer bei einem Betrieb der Druckvariiervorrichtung, in welcher das Reagenzgefäß-Einsetzteil 10 enthaltende Reagenzgefäß eingesetzt ist, als Druckkraft bewirkbaren Aktorkraft Fa verstellbar sein. Somit können einfach auslösbare Kräfte zum Verstellen des mindestens einen Rührelements 12 beim Mischen des mindestens einen Materials genutzt werden.
  • Das mindestens eine Rührelement 12 ist vorzugsweise so lange in der mindestens einen semistabilen Stellung und/oder der mindestens einen semistabilen Position haltbar, bis die bewirkbare Aktorkraft Fa einen mittels der Ausbildung der mindestens einen kontaktierten Haltestruktur 20 festgelegten Schwellwert übersteigt. Bei einem Übersteigen des Schwellwerts durch die bewirkbare Aktorkraft Fa ist zumindest die mindestens eine Untereinheit 16 des mindestens einen Rührelements 12 entlang zumindest eines Teilabschnitts des Verstellwegs 18 weiter verstellbar. Bevorzugter Weise ist das mindestens eine Rührelement 12 bei dem Übersteigen des Schwellwerts mittels der bewirkbaren Aktorkraft Fa aus der mindestens einen semistabilen Stellung und/oder aus der mindestens einen semistabilen Position herausschleuderbar. Somit kann eine vergleichsweise große kinetische Energie auf das mindestens eine zu mischende Material übertragen werden. Man kann den Vorgang des Herausschleuderns des mindestens einen Rührelements 12 aus der mindestens einen semistabilen Stellung und/oder aus der mindestens einen semistabilen Position heraus auch als ein Überwinden/Durchbrechen der mindestens einen kontaktierten Haltestruktur 20 umschreiben.
  • Der Grenzwert/Schwellwert für die Rotationsbeschleunigung/Drehgeschwindigkeit der Zentrifuge, ab welcher die als Zentrifugalkraft bewirkte Aktorkraft Fa ausreichend Überwinden/Durchbrechen der mindestens einen kontaktierten Haltestruktur 20 ist, kann bei mindestens 20 g, beispielsweise bei mindestens 100 g, vorzugsweise bei mindestens 500 g, insbesondere bei mindestens 1000 g, liegen. Entsprechend kann auch die Druckkraft, ab welcher die mindestens eine Haltestruktur 20 überwunden/durchbrochen ist, erst bei einem signifikanten Unter- oder Überdruck vorliegen.
  • Vorzugsweise weist das mindestens eine Rührelement 12 mindestens eine durchgehende Öffnung 24/Pore auf. Die beim Durchströmen des mindestens einen zu mischenden Materials durch die mindestens eine durchgehende Öffnung/Pore bewirkten Strömungen können somit die Mischeffizienz zusätzlich steigern. Die mindestens eine durchgehende Öffnung 24/Pore kann beliebig ausgebildet sein, z.B. rechteckig oder kreisförmig. Ein Durchmesser der mindestens einen durchgehenden Öffnung 24/Pore kann insbesondere in einem Bereich zwischen 0,1 bis 3 mm liegen. Der hier genannte Bereich für den Durchmesser der mindestens einen durchgehenden Öffnung 24/Pore ist jedoch lediglich beispielhaft zu interpretieren.
  • Bei der Ausführungsform der Fig. 1 ist das dargestellte Rührelement 12 als Sieb ausgelegt. Anstelle oder als Alternative zu Siebstrukturen kann das mindestens eine Rührelement 12 auch Rechenstrukturen, Fingerstrukturen und/oder Gitterstrukturen aufweisen. In allen aufgezählten Fällen ist die Mischeffizienz aufgrund der Vielzahl von durchgehenden Öffnungen 24/Poren steigerbar.
  • Bei der Ausführungsform der Fig. 1 ist das Rührelement 12 freiliegend, d.h. ohne eine Verbindung zu einer Wand des Innenvolumens 14, ausgebildet. Wie unten genauer erläutert wird, ist jedoch auch eine Alternative zu dem in Fig. 1 dargestellten freiliegenden Rührelement 12 möglich.
  • Fig. 2 zeigt eine schematische Teildarstellung einer zweiten Ausführungsform des Reagenzgefäß-Einsetzteils.
  • Das in Fig. 2 (zumindest teilweise) schematisch wiedergegebene Reagenzgefäß-Einsetzteil 10 ist eine Weiterbildung der zuvor beschriebenen Ausführungsform. Die in dem Innenvolumen 14 angeordneten Haltestrukturen 20 sind in mehrere Gruppen unterteilbar, welche nacheinander während der Verstellbewegung des Rührelements 12 kontaktiert werden. Die auf diese Weise realisierte Hindernisstruktur aus mehreren Gruppen von Haltestrukturen 20 ermöglicht ein sequentielles Verstellen des Rührelements 12 in dem als Mischkammer fungierenden Innenvolumen 14 mittels der Aktorkraft Fa und somit eine mehrfache effektive Einkopplung von Energie in das mindestens eine zu mischende Material.
  • Die verschiedenen Gruppen von Haltestrukturen 20 können den gleichen Schwellwert oder unterschiedliche Schwellwerte aufweisen. Die unterschiedlichen Schwellwerte sind beispielsweise mittels einer unterschiedlichen Elastizität der verschiedenen Gruppen von Haltestrukturen 20 festlegbar. In beiden Fällen ist eine ruckartige und multiple Bewegung des Rührelements 12 realisierbar.
  • Fig. 3a-3c zeigen schematische Teildarstellungen einer dritten Ausführungsform des Reagenzgefäß-Einsetzteils.
  • Das in Fig. 3a-3c jeweils (zumindest teilweise) wiedergegebene Reagenzgefäß-Einsetzteil 10 ist auch eine Weiterbildung/Umwandlung der anfangs beschriebenen Ausführungsform. Bei dem Reagenzgefäß-Einsetzteil 10 der Fig. 3a-3c ist mindestens ein elastisches Rückstellelement 26 an dem mindestens einen Rührelement 12 so angeordnet, dass zumindest die mindestens eine Untereinheit 16 des mindestens einen Rührelements 12 mittels der bewirkbaren Aktorkraft Fa größer als eine Rückstellkraft Fr des jeweiligen mindestens einen Rückstellelements 26 aus einer Ausgangsposition (siehe Fig. 3c) in eine maximale Auslenkposition (siehe Fig. 3b) verstellbar ist. Außerdem ist zumindest die mindestens eine Untereinheit 16 des mindestens einen Rührelements 12 bei einer bewirkbaren Aktorkraft Fa kleiner als die Rückstellkraft Fr in die Ausgangsposition zurückverstellbar. Insbesondere wird bei dem Verstellen der mindestens einen Untereinheit 16 des mindestens einen Rührelements 12 aus der Ausgangsposition die Rückstellkraft Fr des jeweiligen mindestens einen Rückstellelements 26 gesteigert. Dabei kann die mindestens eine Untereinheit 16 des mindestens einen Rührelements 12 mindestens eine Haltestruktur 20 in ihrer Ausgangsposition und/oder während des Verstellens aus der Ausgangsposition in die maximale Auslenkposition kontaktieren, und die mindestens eine Haltestruktur 20 bei einer Aktorkraft Fa größer als einer Summe der anliegenden Rückstellkraft Fr und des Schwellwerts überwinden/durchbrechen.
  • Man kann dies auch so umschreiben, dass das mindestens eine Rückstellelement 26 bei einem Herausverstellen des zugeordneten Rührelements 12 aus seiner Ausgangsstellung/Ausgangsposition so gespannt oder komprimiert wird, dass die Rückstellkraft Fr zunimmt. Jedoch kann das jeweilige Rührelement 12 trotz der Zunahme der Rückstellkraft Fr mittels einer größeren Aktorkraft Fa weiter verstellt werden. Sofern die Aktorkraft Fa größer als eine Summe der anliegenden Rückstellkraft Fr und des mindestens einen Schwellwerts der mindestens einen von dem Rührelement 12 kontaktierten Haltestruktur 20 ist, kann das jeweilige Rührelement 12 in eine maximale Auslenkstellung/Auslenkposition verstellt werden. Vorzugsweise ist das Rührelement 12 ab einer Aktorkraft Fa kleiner als die anliegende Rückstellkraft Fr aus der maximalen Auslenkstellung/Auslenkposition in seine Ausgangsstellung/Ausgangsposition zurück verstellbar. Bevorzugter Weise kontaktiert das Rührelement 12 während des Verstellens aus der maximalen Auslenkstellung/Auslenkposition in seine Ausgangsstellung/Ausgangsposition erneut die mindestens eine Haltestruktur 20. Danach kann das vorteilhafte Übertragen von kinetischer Energie auf das mindestens eine zu mischende Material mittels eines einfachen Variierens der Aktorkraft Fa mindestens einmal wiederholt werden. Die Ausführungsform der Fig. 3a-3c ist deshalb als reversibler Schnappmechanismus umschreibbar.
  • Die mindestens eine Haltestruktur 20 kann steif oder elastisch (flexibel) ausgelegt sein. Das mindestens eine Rückstellelement 26 kann beispielsweise eine Feder sein. Als Alternative oder als Ergänzung dazu kann das mindestens eine Rückstellelement 26 auch aus einem komprimierbaren oder dehnbaren Material, wie beispielsweise einem Polymer und/oder einem Elastomer, geformt sein. Die Rückstellkraft Fr kann sowohl eine Druckkraft als auch eine Zugkraft sein. Insbesondere können mehrere Rückstellelemente 26 vorteilhaft zusammenwirken.
  • Fig. 4a-4d zeigen schematische Teildarstellungen einer vierten Ausführungsform des Reagenzgefäß-Einsetzteils.
  • Das in Fig. 4a-4d teilweise dargestellte Reagenzgefäß-Einsetzteil 10 weist mindestens ein Rührelement 12 auf, welches an seinem ersten Ende 28 fest an dem Reagenzgefäß-Einsetzteil 10, bzw. einer fest in dem Reagenzgefäß-Einsetzteil 10 befestigten Komponente, angebracht ist. Bevorzugter Weise ist das erste Ende 28 so fest in dem Reagenzgefäß-Einsetzteil 10 befestigt, dass es auch bei einer darauf ausgeübten Beschleunigung von 10000g, bzw. einer entsprechenden Druckkraft, seine Position in Bezug zu dem Einsetzteilgehäuse 10a nicht verändert. Ein zweites Ende 30 des jeweiligen Rührelements 12 ist in Bezug zu dem ersten Ende 28 des gleichen Rührelements 12 unter Verbiegung zumindest eines Zwischenteilabschnitts 32 des gleichen Rührelements 12 aus einer Ausgangsposition verstellbar. Vorzugsweise ist der zumindest eine Zwischenteilabschnitt 32 so ausgebildet, dass dessen Verbiegung eine Rückstellkraft Fr bewirkt, mittels welcher das zweite Ende 30 in die Ausgangsposition in Bezug zu dem ersten Ende 28 zurück verstellbar ist.
  • Das mindestens eine Rührelement 12 kann balken- oder stegförmig ausgebildet sein. Beispielsweise kann das balken- oder stegförmig ausgebildete Rührelement 12 eine Breite zwischen 0,1 bis 3 mm aufweisen. Insbesondere können mehrere balken- oder stegförmig ausgebildete Rührelemente 12 eingesetzt werden, welche in einem Abstand zwischen 0,1 bis 3 mm zueinander angeordnet sind. Ebenso kann das mindestens eine Rührelement 12 kammförmig (mit Seitenstegen) ausgebildet sein. Die hier genannten Zahlenwerte und möglichen Formeln des mindestens einen Rührelements 12 sind jedoch nur beispielhaft zu interpretieren.
  • Vorzugsweise ist eine Zusatzmasse 34 an dem mindestens einen zweiten Ende 30 des mindestens einen Rührelements 12 angeordnet. Da die auf das mindestens eine zu mischende Material übertragene kinetische Energie proportional zu der beschleunigten Masse ist, kann somit die Mischeffizienz mittels der Zusatzmasse 34 gesteigert werden.
  • In Fig. 4a liegt das Rührelement 12 in seiner Ausgangsstellung vor. Die Rückstellkraft Fr ist somit gleich Null. Mittels einer Aktorkraft Fa kann das Rührelement 12 aus seiner Ausgangsstellung in zumindest eine Anschlagstellung bestellt werden, in welcher das Rührelement 12 mindestens eine Haltestruktur 20 kontaktiert. Mittels der mindestens einen kontaktierten Haltestruktur 20 ist das Rührelement 12 solange in einer semistabilen Stellung haltbar, bis die darauf ausgeübte Aktorkraft Fa größer als eine Summe aus einem durch die mindestens kontaktierte Haltestruktur 20 festgelegten Schwellwert und der mindestens einen Rückstellkraft Fr ist. Überschreitet die Aktorkraft Fa diese Summe, so kann sich das Rührelement 12 elastisch so verbiegen, dass es aus der semistabilen Stellung herausschnappt und auf diese Weise eine hohe kinetische Energie in das mindestens eine zu mischende Material einbringt.
  • Nach einem Überwinden/Durchbrechen der mindestens einen Haltestruktur 20 ist das mindestens eine Rührelement 12 solange weiter verbiegbar, bis es in einer maximalen Auslenkstellung vorliegt, in welchem die Rückstellkraft Fr des verbogenen Zwischenteilabschnitts 32 gleich der Aktorkraft Fa ist (siehe Fig. 4c). Durch ein Reduzieren der Aktorkraft Fa unter die anliegende Rückstellkraft Fr ist das mindestens eine Rührelement 12 erneut in seine Ausgangsstellung zurückverstellbar (siehe Fig. 4d). Mittels eines erneuten Steigerns der Aktorkraft Fa können die anhand der Fig. 4a-4d dargestellten Vorgänge mindestens einmal wiederholt werden. Die Ausführungsform der Fig. 4a-4d realisiert somit einen reversiblen/mehrmals nutzbaren Schnappmechanismus.
  • Als Alternative oder als Ergänzung zu den oben beschriebenen Haltestrukturen 20 kann die mindestens eine Haltestruktur 20 auch als eine Arretierung mit einer Sollbruchstelle, bzw. als Sollbruchstelle, ausgebildet sein.
  • Fig. 5a und 5b zeigen schematische Teildarstellungen einer fünften Ausführungsform des Reagenzgefäß-Einsetzteils.
  • Bei der Ausführungsform der Fig. 5a und 5b ist das mindestens eine Rührelement 23 vor einer Nutzung/Verwendung des damit ausgestatteten Reagenzgefäß-Einsetzteils 10 aufgrund der mindestens einen Haltestruktur 20 fest in dem Innenvolumen angeordnet sein. Erst ab einem Übersteigen des durch die mindestens eine als Sollbruchstelle ausgebildeten Haltestruktur 20 festgelegten Schwellwerts mittels der Aktorkraft Fa wird das mindestens eine Rührelement 12 zumindest teilweise so frei gebrochen, dass es zur Nutzung der dabei freigesetzten Energie den Mischvorgang ausführen kann.
  • Nach diesem beschriebenen Funktionsprinzip kann ein Rührelement 12 zusätzlich auch als mechanisches Einweg-Berstventil verwendet werden. Beispielsweise kann das Rührelement 12 einen Kanal oder ein Reservoir so lange verschließen, bis das Rührelement 12 bei einer größeren Aktorkraft Fa freigebrochen wird und gleichzeitig mit einem Ausführen des Mischvorgangs beginnt.
  • In einer weiteren Ausführungsform kann das aus der mindestens einen semistabilen Position und/oder semistabilen Stellung herausschnappende Rührelement 12 auch eine Sollbruchstelle aufschlagen und damit ein Reservoir freigeben und/oder einen Abfluss öffnen. Vorteilhafter Weise kann in diesem Fall das Rührelement 12 auch mit einer Spitze, einer Schneide und/oder einem Dorn ausgestattet sein, mittels welchem eine Trennstruktur/Membran durchstoßbar ist.
  • Das in Fig. 5a und 5b dargestellte Rührelement 12 ist einstückig mit mindestens einem als Feder ausgebildeten Rückstellelement 26 ausgebildet. Das Rückstellelement 26 kann z.B. als Schraubenfeder ausgebildet sein. Ebenso kann das Rückstellelement 26 als eine mehrsträngige Feder ausgebildet sein (siehe Fig. 5b). Darunter kann verstanden werden, dass das Rückstellelement 26 mehrere an dem Rührelement 12 verankerte Federstränge 26a aufweist, welche sich um zumindest einen Teil des Rührelements 12 winden. Ein derartiger Federtyp ist um einen vergleichsweise großen Differenzweg 26b ohne ein Verkippen des Rührelements 12 verstellbar. Es wird jedoch darauf hingewiesen, dass das mit dem mindestens einen Rückstellelement 26 einstückig ausgebildete Rührelement 12 nicht auf einen bestimmten Federtyp limitiert ist.
  • Als Alternative zu der Ausführungsform der Fig. 5a und 5b kann das Rührelement 12 auch einstückig mit mindestens einer elastischen Abstützkomponente und/oder mit mindestens einer komprimierbaren Abstützkomponente ausgebildet sein. Die mindestens eine elastische Abstützkomponente und/oder komprimierbare Abstützkomponente kann einen Polymer und/oder einen Elastomer umfassen.
  • In den oben beschriebenen Reagenzgefäß-Einsetzteilen 10 können noch weitere Prozessschritte und Strukturen integriert sein, wie beispielsweise Sedimentationsstrukturen, Kanalstrukturen oder Siphonstrukturen zum Weiterleiten und Schalten von mindestens einer in den Reagenzgefäß-Einsetzteilen 10 enthaltenen Flüssigkeit. Insbesondere kann mindestens eine Untereinheit des Innenvolumens 14 oder eines anderen Volumens eines Reagenzgefäß-Einsetzteils 10 als "Vorratsbehälter" mit mindestens einer Flüssigkeit gefüllt sein, welche mit einem nachträglich eingefüllten, zu verarbeitenden und/oder zu untersuchenden Material/Probenmaterial mindestens eine chemische Reaktion und/oder einen biochemischen/molekularbiologischen Prozess ausführt. Der mindestens eine "Vorratsbehälter" kann z.B. mit Chemikalien, Farbstoffen, Antikörpern, Antigenen, Rezeptoren, Proteinen, DNA-Strängen und/oder RNA-Strängen gefüllt sein.
  • Die oben beschriebenen Reagenzgefäß-Einsetzteile 10 können zumindest teilweise aus einem Polymer, z.B. aus COP, COC, PC, PA, PU, PP, PET und/oder PMMA, sein. Auch weitere Materialien sind zum Bilden der Reagenzgefäß-Einsetzteile 10 geeignet. Diese können fest, elastisch oder flexibel sein. Geeignete Materialien sind auch beispielsweise Metall, Polymer, Papier, Kunststoff, Gummimaterial, oder ähnliches. Zur Unterteilung der Reagenzgefäß-Einsetzteile 10 in mehrere (abgeschlossene) Flüssigkeitsvolumen können spezielle Kammern, Behälter und/oder Türen ausgebildet sein.
  • Die Reagenzgefäß-Einsetzteile 10 können noch mit zusätzlichen Komponenten, wie beispielsweise Ventilen und/oder Pumpen, ausgestattet sein. Außerdem kann die erfindungsgemäße Technologie auf einfache Weise mit einer Vielzahl von herkömmlichen Aktuations-, Detektions- und/oder Steuereinheiten zusammenwirken. Die oben beschriebenen Ausführungsformen können noch zusätzliche mechanische Schalter und/oder Aktuationsmechanismen, wie beispielsweise magnetische, elektrische, elektromagnetische Anti- oder Abstoßmechanismen aufweisen.
  • Mittels der Reagenzgefäß-Einsetzteile 10 können chemische und biochemische Prozesse voll automatisiert ausgeführt werden. Es wird darauf hingewiesen, dass die beschriebenen Figuren als Vereinfachungen der realisierbaren Reagenzgefäß-Einsetzteile 10 interpretiert werden können.
  • Fig. 6 zeigt eine schematische Darstellung einer Ausführungsform des Reagenzgefäßes.
  • Das in Fig. 6 schematisch dargestellte Reagenzgefäß 36 weist mehrere als Revolverbauteile 10/Revolver ausgebildete Reagenzgefäß-Einsetzteile 10 auf. Die verschiedenen Revolverbauteile 10 sind axial übereinander angeordnet. Mittels einer integrierten Mechanik, wie z.B. einer Kugelschreibermechanik 38 und/oder einer Ratschenmechanik, können die Revolverbauteile 10 bezüglich ihrer Position zueinander rotiert und/oder axial verstellt werden, wobei sich die Innenvolumen 14 und/oder weitere Kavitäten der Revolverbauteile 10 zueinander schalten lassen. (Die Revolverbauteile 10 können zusätzlich zu den oben beschriebenen Ausstattungskomponenten noch Kanäle, Reaktionskammern und weitere Strukturen für die Durchführung von fluidischen Einheitsoperationen aufweisen.)
  • Eine Aktivierung der verwendeten Mechanik kann beispielsweise mittels der Aktorkraft Fa erfolgen. Mittels der aktivierten Mechanik können sich die Revolverbauteile 10 so zueinander schalten lassen, dass ihre Öffnungen sich überdecken und somit Flüssigkeiten entlang eines Vektors 40 der Aktorkraft Fa von mindestens einem Revolverbauteil 10 in ein benachbartes Revolverbauteil 10 transportierbar sind.
  • Fig. 7 zeigt ein Flussdiagramm zum Darstellen einer Ausführungsform des Verfahrens zum Zentrifugieren mindestens eines Materials.
  • Das in Fig. 7 wiedergegebene Verfahren kann beispielsweise unter Verwendung der oben beschriebenen Ausführungsformen ausgeführt werden. Die Ausführbarkeit des Verfahrens ist jedoch nicht auf die Verwendung von diesen reduziert.
  • In einem Verfahrensschritt S1 wird das mindestens eine Material in ein Reagenzgefäß für eine Zentrifuge mit einem eingesetzten vorteilhaften Reagenzgefäß-Einsetzteil oder in einem entsprechenden Reagenzgefäß eingefüllt. Das Reagenzgefäß wird in einem Verfahrensschritt S2 in der Zentrifuge angeordnet.
  • In einem Verfahrensschritt S3 wird die Zentrifuge für mindestens ein erstes Zeitintervall mit einer ersten Drehgeschwindigkeit betrieben. Die erste Drehgeschwindigkeit bewirkt eine Zentrifugalkraft unter einem durch die mindestens eine von dem mindestens einen Rührelement kontaktierte Haltestruktur festgelegten Schwellwert. Deshalb wird das mindestens eine Rührelement mittels der mindestens einen Haltestruktur in der jeweiligen semistabilen Stellung und/oder in der jeweiligen semistabilen Position gehalten.
  • In einem nachfolgenden Verfahrensschritt S4 wird die Drehgeschwindigkeit für mindestens ein zweites Zeitintervall auf eine zweite Drehgeschwindigkeit gesteigert. Die zweite Drehgeschwindigkeit bewirkt eine Zentrifugalkraft über dem Schwellwert, wodurch das mindestens eine Rührelement aus der jeweiligen semistabilen Stellung und/oder aus der jeweiligen semistabilen Position heraus geschleudert wird. Dies gewährleistet ein vorteilhaftes Mischen des mindestens einen Materials.
  • Die Verfahrensschritte S3 und S4 können beliebig oft wiederholt werden, um die Mischeffizienz zu steigern.
  • Fig. 8 zeigt ein Flussdiagramm zum Erläutern einer Ausführungsform des Verfahrens zum Druckbehandeln mindestens eines Materials.
  • Auch zum Ausführen des im Weiteren beschriebenen Verfahrens können die oben beschriebenen Vorrichtungen verwendet werden. Die Ausführbarkeit des im Weiteren beschriebenen Verfahrens ist jedoch nicht auf die Nutzung dieser Vorrichtungen limitiert.
  • Das Verfahren beginnt mit einem Verfahrensschritt S10, in welchem das mindestens eine Material in ein Reagenzgefäß für eine Druckvariiervorrichtung mit einem eingesetzten vorteilhaften Reagenzgefäß-Einsetzteil oder in ein entsprechendes Reagenzgefäß eingefüllt wird. Ein Anordnen des Reagenzgefäßes in der Druckvariiervorrichtung erfolgt in einem Verfahrensschritt S11.
  • Danach wird in einem Verfahrensschritt S12 eine von dem Atmosphärendruck abweichende erste Druckdifferenz in dem Reagenzgefäß mittels der Druckvariiervorrichtung für mindestens ein erstes Zeitintervall angelegt, bei welcher eine Druckkraft unter einem durch die mindestens eine von dem mindestens einen Rührelement kontaktierte Haltestruktur festgelegten Schwellwert bewirkt wird. Somit wird das mindestens eine Rührelement mittels der mindestens einen Haltestruktur in der jeweiligen semistabilen Stellung und/oder in der jeweiligen semistabilen Position gehalten.
  • In einem weiteren Verfahrensschritt S13 wird eine von dem Atmosphärendruck abweichende zweite Druckdifferenz größer als der ersten Druckdifferenz für mindestens ein zweites Zeitintervall angelegt. Dadurch wird eine Druckkraft über dem Schwellwert bewirkt, wodurch das mindestens eine Rührelement aus der jeweiligen semistabilen Stellung und/oder aus der jeweiligen semistabilen Position heraus geschleudert wird. Das mindestens eine Material wird somit gemischt.
  • Auch die Verfahrensschritte S3 und S4 können zum Steigern der Mischeffizienz beliebig oft wiederholt werden.

Claims (15)

  1. Reagenzgefäß-Einsetzteil (10) für ein Reagenzgefäß (36) für eine Zentrifuge und/oder eine Druckvariiervorrichtung mit:
    einem Einsetzteilgehäuse (10a), welches so ausgebildet ist, dass das Reagenzgefäß-Einsetzteil (10) in einem Reagenzgefäß (36) für eine Zentrifuge und/oder für eine Druckvariiervorrichtung einsetzbar ist; und
    mindestens einem Rührelement (12), welches in mindestens einem in dem Einsetzteilgehäuse (10a) ausgebildeten Innenvolumen (14) so angeordnet ist, dass eine Stellung und/oder eine Position des mindestens einen Rührelements (12) in Bezug zu dem Einsetzteilgehäuse (10a) veränderbar ist, wobei zumindest eine Untereinheit (16) des mindestens einen Rührelements (12) entlang eines Verstellwegs (18) so verstellbar ist, dass mindestens ein in das mindestens eine Innenvolumen (14) einfüllbares oder eingefülltes Material umrührbar ist;
    dadurch gekennzeichnet, dass
    zumindest die mindestens eine Untereinheit (16) des mindestens einen Rührelements (12) während eines Verstellens entlang des Verstellwegs (18) mindestens eine Haltestruktur (20) kontaktiert, mittels welcher das mindestens eine Rührelement (12) in mindestens einer semistabilen Stellung und/oder mindestens einer semistabilen Position in Bezug zu dem Einsetzteilgehäuse (10a) haltbar ist.
  2. Reagenzgefäß-Einsetzteil (10) nach Anspruch 1, wobei das mindestens eine Rührelement (12) mittels einer bei einem Betrieb der Zentrifuge, in welcher das Reagenzgefäß (36) eingesetzt ist, bewirkbaren Zentrifugalkraft und/oder einer bei einem Betrieb der Druckvariiervorrichtung, in welcher das Reagenzgefäß (36) eingesetzt ist, bewirkbaren Druckkraft verstellbar ist.
  3. Reagenzgefäß-Einsetzteil (10) nach Anspruch 2, wobei das mindestens eine Rührelement (12) in der mindestens einen semistabilen Stellung und/oder der mindestens einen semistabilen Position haltbar ist, bis die bewirkbare Zentrifugalkraft und/oder die bewirkbare Druckkraft einen mittels der Ausbildung der mindestens einen kontaktierten Haltestruktur (20) festgelegten Schwellwert übersteigt, und bei einem Übersteigen des Schwellwerts durch die bewirkbare Zentrifugalkraft und/oder die bewirkbare Druckkraft zumindest die mindestens eine Untereinheit (16) des mindestens einen Rührelements (12) entlang zumindest eines Teilabschnitts des Verstellwegs (18) weiterverstellbar ist.
  4. Reagenzgefäß-Einsetzteil (10) nach Anspruch 3, wobei das mindestens eine Rührelement (12) bei dem Übersteigen des Schwellwerts mittels der bewirkbaren Zentrifugalkraft und/oder mittels der bewirkbaren Druckkraft aus der mindestens einen semistabilen Stellung und/oder aus der mindestens einen semistabilen Position heraus schleuderbar ist.
  5. Reagenzgefäß-Einsetzteil (10) nach einem der Ansprüche 2 bis 4, wobei mindestens ein elastisches Rückstellelement (26) an dem mindestens einen Rührelement (12) so angeordnet ist, dass zumindest die mindestens eine Untereinheit (16) des mindestens einen Rührelements (21) mittels einer bewirkbaren Zentrifugalkraft und/oder einer bewirkbaren Druckkraft größer als eine Rückstellkraft (Fr) des jeweiligen mindestens einen Rückstellelements (26) aus einer Ausgangsposition in eine maximale Auslenkungsposition verstellbar ist, und bei einer bewirkbaren Zentrifugalkraft und/oder einer bewirkbaren Druckkraft kleiner als die Rückstellkraft (Fr) in die Ausgangsposition zurück verstellbar ist.
  6. Reagenzgefäß-Einsetzteil (10) nach einem der vorhergehenden Ansprüche, wobei die mindestens eine Haltestruktur (20) an mindestens einer Innenwand (22) des mindestens einen Innenvolumens (14) hervorragt.
  7. Reagenzgefäß-Einsetzteil (10) nach einem der vorhergehenden Ansprüche, wobei die mindestens eine Haltestruktur (20) zumindest teilweise aus einem elastischen Material gebildet ist.
  8. Reagenzgefäß-Einsetzteil (10) nach einem der vorhergehenden Ansprüche, wobei das mindestens eine Rührelement (12) Rechenstrukturen, Siebstrukturen, Fingerstrukturen und/oder Gitterstrukturen aufweist.
  9. Reagenzgefäß-Einsetzteil (10) nach einem der vorhergehenden Ansprüche, wobei das mindestens eine Rührelement (12) an seinem ersten Ende (28) fest an dem Reagenzgefäß-Einsetzteil (10a) angebracht ist, während ein zweites Ende (30) des jeweiligen Rührelements (12) in Bezug zu dem ersten Ende (28) des gleichen Rührelements (12) unter Verbiegung zumindest eines Zwischenteilabschnitts (32) des gleichen Rührelements (12) verstellbar ist.
  10. Reagenzgefäß-Einsetzteil (10) nach Anspruch 9, wobei eine Zusatzmasse (34) an dem zweiten Ende (30) des mindestens einen Rührelements (12) angebracht ist.
  11. Reagenzgefäß-Einsetzteil (10) nach einem der vorhergehenden Ansprüche, wobei das Reagenzgefäß-Einsetzteil (10) als Revolverbauteil ausgebildet ist.
  12. Reagenzgefäß (36) für eine Zentrifuge und/oder eine Druckvariiervorrichtung mit mindestens einem Reagenzgefäß-Einsetzteil (10) nach einem der vorhergehenden Ansprüche.
  13. Reagenzgefäß (36) für eine Zentrifuge und/oder eine Druckvariiervorrichtung mit:
    einer Außenwand (36a), welche so ausgebildet ist, dass das Reagenzgefäß (36) in einer Zentrifuge und/oder in einer Druckvariiervorrichtung einsetzbar ist; und
    mindestens einem Rührelement (12), welches in mindestens einem in dem Reagenzgefäß (36) ausgebildeten Innenvolumen (14) so angeordnet ist, dass eine Stellung und/oder eine Position des mindestens einen Rührelements (12) in Bezug zu der Außenwand (36a) veränderbar ist, wobei zumindest eine Untereinheit (16) des mindestens einen Rührelements (12) entlang eines Verstellwegs (18) so verstellbar ist, dass mindestens ein in das mindestens eine Innenvolumen (14) einfüllbares oder eingefülltes Material umrührbar ist;
    dadurch gekennzeichnet, dass
    zumindest die mindestens eine Untereinheit (16) des mindestens einen Rührelements (12) während eines Verstellens entlang des Verstellwegs (18) mindestens eine Haltestruktur (20) kontaktiert, mittels welcher das mindestens eine Rührelement (12) in mindestens einer semistabilen Stellung und/oder mindestens einer semistabilen Position in Bezug zu der Außenwand (36a) haltbar ist.
  14. Verfahren zum Zentrifugieren mindestens eines Materials mit den Schritten:
    Einfüllen des mindestens einen Materials in ein Reagenzgefäß (36) für eine Zentrifuge mit einem eingesetzten Reagenzgefäß-Einsetzteil (10) nach einem der Ansprüche 1 bis 10 oder in ein Reagenzgefäß (36) nach Anspruch 11 oder 12 (S1);
    Anordnen des Reagenzgefäßes (36) in der Zentrifuge (S2);
    Betreiben der Zentrifuge für mindestens ein erstes Zeitintervall mit einer ersten Drehgeschwindigkeit, welche eine Zentrifugalkraft unter einem durch die mindestens eine von dem mindestens einen Rührelement (12) kontaktierte Haltestruktur (20) festgelegten Schwellwert bewirkt, damit das mindestens eine Rührelement (12) mittels der mindestens einen Haltestruktur (20) in der jeweiligen semistabilen Stellung und/oder in der jeweiligen semistabilen Position gehalten wird (S3); und
    Steigern der Drehgeschwindigkeit für mindestens ein zweites Zeitintervall auf eine zweite Drehgeschwindigkeit, welche eine Zentrifugalkraft über dem Schwellwert bewirkt, damit das mindestens eine Rührelement (12) aus der jeweiligen semistabilen Stellung und/oder aus der jeweiligen semistabilen Position heraus geschleudert wird, wodurch das mindestens eine Material gemischt wird (S4).
  15. Verfahren zum Druckbehandeln mindestens eines Materials mit den Schritten:
    Einfüllen des mindestens einen Materials in ein Reagenzgefäß (36) für eine Druckvariiervorrichtung mit einem eingesetzten Reagenzgefäß-Einsetzteil (10) nach einem der Ansprüche 1 bis 10 oder in ein Reagenzgefäß (36) nach Anspruch 11 oder 12 (S10);
    Anordnen des Reagenzgefäßes (36) in der Druckvariiervorrichtung (S11);
    Anlegen einer von dem Atmosphärendruck abweichenden ersten Druckdifferenz in dem Reagenzgefäß (36) mittels der Druckvariiervorrichtung für mindestens ein erstes Zeitintervall, bei welchem eine Druckkraft unter einem durch die mindestens eine von dem mindestens einen Rührelement (12) kontaktierte Haltestruktur (20) festgelegten Schwellwert bewirkt wird, damit das mindestens eine Rührelement (12) mittels der mindestens einen Haltestruktur (20) in der jeweiligen semistabilen Stellung und/oder in der jeweiligen semistabilen Position gehalten wird (S12); und
    Anlegen einer von dem Atmosphärendruck abweichenden zweiten Druckdifferenz größer als der ersten Druckdifferenz für mindestens ein zweites Zeitintervall, bei welcher eine Druckkraft über dem Schwellwert bewirkt wird, damit das mindestens eine Rührelement (12) aus der jeweiligen semistabilen Stellung und/oder aus der jeweiligen semistabilen Position heraus geschleudert wird, wodurch das mindestens eine Material gemischt wird (S13).
EP13176845.9A 2012-08-03 2013-07-17 Reagenzgefäß-Einsetzteil, Reagenzgefäße, Verfahren zum Zentrifugieren mindestens eines Materials und Verfahren zum Druckbehandeln mindestens eines Materials Not-in-force EP2692440B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012213757.2A DE102012213757A1 (de) 2012-08-03 2012-08-03 Reagenzgefäß-Einsetzteil, Reagenzgefäße, Verfahren zum Zentrifugieren mindestens eines Materials und Verfahren zum Druckbehandeln mindestens eines Materials

Publications (2)

Publication Number Publication Date
EP2692440A1 true EP2692440A1 (de) 2014-02-05
EP2692440B1 EP2692440B1 (de) 2016-09-21

Family

ID=48875526

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13176845.9A Not-in-force EP2692440B1 (de) 2012-08-03 2013-07-17 Reagenzgefäß-Einsetzteil, Reagenzgefäße, Verfahren zum Zentrifugieren mindestens eines Materials und Verfahren zum Druckbehandeln mindestens eines Materials

Country Status (3)

Country Link
US (1) US20140038307A1 (de)
EP (1) EP2692440B1 (de)
DE (1) DE102012213757A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788938A (zh) * 2016-09-30 2019-05-21 罗伯特·博世有限公司 用于压电换能器的微机械调节系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9535082B2 (en) 2013-03-13 2017-01-03 Abbott Laboratories Methods and apparatus to agitate a liquid
USD962471S1 (en) 2013-03-13 2022-08-30 Abbott Laboratories Reagent container
USD978375S1 (en) 2013-03-13 2023-02-14 Abbott Laboratories Reagent container
US10058866B2 (en) 2013-03-13 2018-08-28 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1450159A2 (de) * 2003-02-24 2004-08-25 Ortho-Clinical Diagnostics, Inc. Verfahren und Vorrichtung zur Detektion der Agglutination von Proben
DE102010003224A1 (de) 2010-03-24 2011-09-29 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Mischer zum Einsetzen in einen Rotor einer Zentrifuge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES266599Y (es) * 1982-06-18 1983-11-16 "dispositivo aplicable a la realizacion de analisis".
CA2062238C (en) * 1991-03-19 1996-06-25 Rudolf Bucheli Closure for reagent container
CA2181828C (en) * 1996-07-22 2002-01-15 Richard Lamoureux One-piece cap for liquid dispenser container
US6030582A (en) * 1998-03-06 2000-02-29 Levy; Abner Self-resealing, puncturable container cap
US6716396B1 (en) * 1999-05-14 2004-04-06 Gen-Probe Incorporated Penetrable cap
DE10105753C1 (de) * 2001-02-08 2002-03-28 Merck Patent Gmbh Verschluß für Reagenzbehälter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1450159A2 (de) * 2003-02-24 2004-08-25 Ortho-Clinical Diagnostics, Inc. Verfahren und Vorrichtung zur Detektion der Agglutination von Proben
DE102010003224A1 (de) 2010-03-24 2011-09-29 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Mischer zum Einsetzen in einen Rotor einer Zentrifuge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788938A (zh) * 2016-09-30 2019-05-21 罗伯特·博世有限公司 用于压电换能器的微机械调节系统

Also Published As

Publication number Publication date
EP2692440B1 (de) 2016-09-21
DE102012213757A1 (de) 2014-02-27
US20140038307A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
EP2413138B1 (de) Vorrichtung und verfahren zur abtrennung von bestandteilen einer probenflüssigkeit
EP2692440A1 (de) Reagenzgefäß-Einsetzteil, Reagenzgefäße, Verfahren zum Zentrifugieren mindestens eines Materials und Verfahren zum Druckbehandeln mindestens eines Materials
EP1032471A1 (de) Vorrichtung zur sequentiellen ausgabe von fliessfähigen reagenzien
EP2535108B1 (de) Mikrofluidisches System und Verfahren zum Betreiben eines solchen Systems
EP1987362A2 (de) Vorrichtung und verfahren zur behandlung oder aufreinigung von probenmaterial, insbesondere von nukleinsäuren
EP2514515B1 (de) Verfahren zum Mischen einer ersten und zweiten Komponente
EP2536490B1 (de) Mischer zum einsetzen in einen rotor einer zentrifuge
EP3538267A1 (de) Mikrofluidische vorrichtung und verfahren zur analyse von nukleinsäuren
EP2532426A2 (de) Kartusche, Zentrifuge sowie Verfahren
EP2637788A1 (de) Vorrichtung zur filtration von blut
EP3230730B1 (de) Spritzengehäuse zum pipettieren eines biologischen materials mit integrierten membranen
EP2647433B1 (de) Reagenzgefäß-Einsetzteil und Reagenzgefäß
EP2647436A2 (de) Revolverbauteil für ein Reagenzgefäß
EP3263215B1 (de) Vorrichtung mit einer flusszelle mit reagenzspeicher
DE102009001257A1 (de) Vorrichtung und Verfahren zur Handhabung von Flüssigkeiten
WO2014019826A1 (de) REVOLVERBAUTEIL FÜR EIN REAGENZGEFÄß, REAGENZGEFÄßTEIL UND REAGENZGEFÄß FÜR EINE ZENTRIFUGE UND/ODER FÜR EINE DRUCKVARIIERVORRICHTUNG
WO2013149762A1 (de) Kammerbauteil für ein reagenzgefäss und seine verwendung
DE102015203779A1 (de) Vorrichtung zur automatisierten Prozessierung von Flüssigkeiten
EP2834005B1 (de) Kapillarbauteil für ein reagenzgefäss und seine verwendung
DE102014209841A1 (de) Aktuierungseinrichtung für eine Vorrichtung, insbesondere für eine mikrofluidische Vorrichtung, mit gestapelten Körpern
DE102014206526A1 (de) Ventileinrichtung und Vorrichtung zur Handhabung von Flüssigkeiten
WO2015044037A1 (de) Vorrichtung und verfahren zur aufbereitung und/oder prozessierung von biologischen proben
DE102013203684A1 (de) Verfahren und Vorrichtung zum fluidischen Koppeln von Kavitäten in einer Zentrifuge
WO2017203037A1 (de) Mikroprobenbehälter und verfahren zum einbringen einer flüssigen probe in einen mikroprobenbehälter

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140805

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20150429

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 830610

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013004652

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170121

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013004652

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

26N No opposition filed

Effective date: 20170622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170717

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130717

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 830610

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190724

Year of fee payment: 7

Ref country code: DE

Payment date: 20190924

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180717

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190725

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013004652

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202