US20060168804A1 - Method for providing an electrical connection - Google Patents

Method for providing an electrical connection Download PDF

Info

Publication number
US20060168804A1
US20060168804A1 US11/393,494 US39349406A US2006168804A1 US 20060168804 A1 US20060168804 A1 US 20060168804A1 US 39349406 A US39349406 A US 39349406A US 2006168804 A1 US2006168804 A1 US 2006168804A1
Authority
US
United States
Prior art keywords
component
wire pin
circuit board
printed circuit
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/393,494
Inventor
Garry Loy
Kenneth Shuey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elster Solutions LLC
Original Assignee
Elster Electricity LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elster Electricity LLC filed Critical Elster Electricity LLC
Priority to US11/393,494 priority Critical patent/US20060168804A1/en
Publication of US20060168804A1 publication Critical patent/US20060168804A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/065Details of electronic electricity meters related to mechanical aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/193Means for increasing contact pressure at the end of engagement of coupling part, e.g. zero insertion force or no friction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/306Lead-in-hole components, e.g. affixing or retention before soldering, spacing means
    • H05K3/308Adaptations of leads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/368Assembling printed circuits with other printed circuits parallel to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/32Wires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10287Metal wires as connectors or conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10295Metallic connector elements partly mounted in a hole of the PCB
    • H05K2201/10303Pin-in-hole mounted pins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0271Mechanical force other than pressure, e.g. shearing or pulling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49139Assembling to base an electrical component, e.g., capacitor, etc. by inserting component lead or terminal into base aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49139Assembling to base an electrical component, e.g., capacitor, etc. by inserting component lead or terminal into base aperture
    • Y10T29/4914Assembling to base an electrical component, e.g., capacitor, etc. by inserting component lead or terminal into base aperture with deforming of lead or terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49144Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • Y10T29/53183Multilead component

Definitions

  • the present invention relates to a method for electrically interconnecting two or more components.
  • Manufactured products that perform electrical functions often include two or more electrically-connected components such as circuit boards, displays, external connections, etc.
  • the electrical connection between components is typically achieved using techniques such as soldering (or other conduction reflow processes); flexible wires with connectors attached to the ends thereof; flexible printed circuits equipped with special connectors or electrically-conductive adhesive; rigid pins and receptacles; arrays of springs mounted in a housing clamped between the electrically-connected components; etc.
  • a preferred method for electrically connecting a first and a second component comprises inserting a wire pin through a through hole formed in the first component so that a first portion of the wire pin is located within the through hole and a second portion of the wire pin is located within a retaining feature formed at least in part by the second component.
  • a preferred method also comprises moving one of the first and the second components in relation to the other of the first and the second components so that the wire pin resiliently deflects thereby establishing a first contact force between the first portion of the wire pin and the first component, and a second contact force between the second portion of the wire pin and the second component.
  • Another preferred method for electrically connecting a first and a second component comprises substantially aligning a first through hole formed in the first component with one of a second through hole formed in the second component and a pocket formed at least in part by the second component, and inserting a wire pin through the first through hole in a first direction so that a first portion of the wire pin is located within the first through hole and a second portion of the wire pin is located within one of the second through hole and the pocket
  • a preferred method also comprises moving one of the first and the second components in a second direction in relation to the other of the first and the second components, the second direction being substantially perpendicular to the first direction, thereby causing one of the first and second portions of the wire pin to move in relation to the other of the first and second portions of the wire pin.
  • a preferred method for establishing electrical contact between a first and a second component comprises substantially aligning a first retaining feature defined at least in part by the first component with a second retaining feature defined at least in part by the second component so that the first and second retaining features can each receive a respective portion of a wire pin.
  • a preferred method also comprises substantially misaligning the first and second retaining features after the first and second retaining features have each received the respective portions of the wire pin so that the first and second components bend the wire pin and thereby establish contact forces between the first component and the wire pin, and the second component and the wire pin.
  • Another preferred method for electrically connecting a first and a second component comprises inserting a wire pin through a first retaining feature formed at least in part by the first component so that a first portion of the wire pin is located within the first retaining feature and a second portion of the wire pin is located within a retaining feature formed at least in part by the second component.
  • a preferred method also comprises moving one of the first and the second components in relation to the other of the first and the second components so that the first component engages the first portion of the wire pin by way of the first retaining feature, and the second component engages the second portion of the wire pin by way of the second retaining feature thereby causing the first portion of the wire pin to move in relation to the second portion of the wire pin and bending the wire pin.
  • a preferred method for electrically connecting a first, a second, and a third component comprises inserting a wire pin through respective through holes formed in the first and second components so that a first portion of the wire pin is located within the through hole formed in the first component, a second portion of the wire pin is located within the though hole formed in the second component, and a third portion of the wire pin is located in a retaining feature formed at least in part by the third component.
  • a preferred method also comprises moving the second component in relation to the first and the third components so that the wire pin resiliently deflects thereby establishing a first contact force between the first portion of the wire pin and the first component, a second contact force between the second portion of the wire pin and the second component, and a third contact force between the third portion of the wire pin and the third component.
  • a preferred embodiment of an electrical energy meter comprises a base for mounting on a supporting surface, and a current sensor assembly comprising a plurality of contact blades extending through the base for electrically contacting a conductor of electrical energy, and a current transformer mechanically coupled to the base and electrically coupled to the contact blades.
  • the current transformer produces an electrical output proportional to an electrical current in the conductor of electrical energy.
  • a preferred embodiment also comprises a printed circuit board for calculating a cumulative amount of electrical energy passing through the conductor of electrical energy based on the electrical output of the current transformer and a voltage of the conductor of electrical energy, and a contact blade electrically coupled to the printed circuit board by a wire pin.
  • the wire pin engages retaining features defined at least in part by the respective printed circuit board and contact blade.
  • the retaining features are substantially misaligned so that the wire pin is bent and contact forces are thereby established between the wire pin and the printed circuit board, and between the wire pin and the contact blade.
  • FIG. 1 is an exploded perspective view of an electrical-energy meter having a printed circuit board (PCB) and a contact blade that can be electrically connected in accordance with a preferred method in accordance with the present invention
  • PCB printed circuit board
  • FIG. 2A is a cross-sectional side view of a PCB, a contact blade, a PCB housing, a base, and a wire pin of the electrical-energy meter shown in FIG. 1 , with the wire pin about to be inserted through the PCB and the PCB housing;
  • FIG. 2B is a cross-sectional side view of the PCB, contact blade, PCB housing, base, and wire pin shown in FIG. 2A , after the wire pin has been inserted through the PCB and the PCB housing and into a pocket of the base;
  • FIG. 2C is a cross-sectional side view of the PCB, contact blade, PCB housing, base, and wire pin shown in FIGS. 2A and 2B , after the PCB and PCB housing have been moved laterally in relation to the base and contact blade;
  • FIG. 2D is a cross-sectional side view of the PCB, contact blade, PCB housing, base, and wire pin shown in FIGS. 2A-2C , after the PCB and PCB housing have been further moved laterally in relation to the base and contact blade to bend the wire pin;
  • FIG. 3A a cross-sectional side view of a first and a second PCB, a first and a second PCB housing, and a wire pin of an alternative embodiment of the electrical-energy meter shown in FIGS. 1-2D , after the wire pin has been inserted through the first PCB housing and the first and second PCBs;
  • FIG. 3B is a cross-sectional side view of the first and second PCBs, first and second PCB housings, and wire pin shown in FIG. 3A , after the first PCB and first PCB housing have been moved laterally in relation to the second PCB and PCB housing to bend the wire pin;
  • FIG. 4A is a cross-sectional side view of a first and a second PCB, a PCB housing, a base, a contact blade, and a wire pin of an alternative embodiment of the electrical-energy meter shown in FIGS. 1-2D , after the wire pin has been inserted through the first and second PCBs and the PCB housing, and into a pocket of the base; and
  • FIG. 4B is a cross-sectional side view of the first and second PCB, PCB housing, base, contact blade, and wire pin shown in FIG. 4A , after the second PCB has been moved laterally in relation to the first PCB, PCB housing, base, and contact blade to bend the wire pin.
  • a preferred method for providing an electrical connection is described herein.
  • the preferred method as described herein, is used to establish an electrical connection between a printed circuit board (PCB) 58 and an electrically-conductive contact blade 74 of an electrical-energy meter 14 (see FIG. 1 ).
  • PCB printed circuit board
  • the preferred method is described in relation to these particular components for exemplary purposes only.
  • the preferred method can be used to electrically connect other types of components, in other types of electrical devices or systems.
  • the electrical-energy meter 14 comprises a base 50 , a current sensor assembly 52 , and a power transformer 54 (see FIG. 1 ).
  • the current sensor assembly 52 and the power transformer 54 are mounted on the base 50 by way of a retainer 56 .
  • the electrical-energy meter 14 also includes the PCB 58 , a PCB housing 59 , a name plate 62 , and a digital display 63 mounted on the name plate 62 .
  • the name plate 62 is mounted on snap posts 64 formed in the base 50 .
  • the current sensor assembly 52 comprises an annular current sensor 66 , current conductors 68 that conduct electrical current to the current sensor 66 , and meter blades 69 connected to opposite ends of each current conductor 68 .
  • the meter blades 69 are retained in the base 50 by way of keyhole slots 70 formed in a major portion 50 a of the base 50 .
  • Each of the meter blades 69 slidably and securely engages a corresponding receptacle (not shown) mounted on the residential or commercial establishment in which the electrical-energy meter 14 is used.
  • the engagement of the blades 69 and the corresponding receptacles electrically couples the electrical-power meter 14 to the conductor that supplies electrical power to the residential or commercial establishment.
  • the current sensor 66 is electrically coupled to the PCB 58 , and measures the electrical current flowing through the electrical-power meter 14 by way of the current conductors 68 and the meter blades 69 .
  • the meter blades 69 are electrically coupled to the PCB 58 through the output of the current sensor ( 66 ).
  • the PCB 58 thus receives a voltage input that is proportional to the voltage of the conductor that supplies electrical power to the residential or commercial establishment.
  • the PCB 58 calculates the total (cumulative) watt-hours of power that have passed through the electrical-energy meter 14 over time based on the measured current and the voltage input, using conventional techniques known to those skilled in the field of electrical-energy meter design.
  • the PCB 58 continually updates the cumulative watt-hours, and displays the updated value on the digital display 63 .
  • the current sensor assembly 52 , power transformer 54 , PCB 58 , name plate 62 , and digital display 63 are housed within a cover 72 .
  • the electrical-energy meter 14 includes a plurality of the contact blades 74 (see FIGS. 1-2D ; only one of the contact blades 74 is depicted in FIG. 1 , for clarity).
  • the contact blades 74 are mounted in slots 76 formed in the major portion 50 a of the base 50 .
  • the contact blades 74 are electrically connected to the PCB 58 , as discussed below.
  • a first portion 74 a of each contact blade 74 extends downward (in the “ ⁇ y” direction) from the major portion 50 a of the base 50 (from the perspective of FIGS. 2A-2D ).
  • the first portion slidably and securely engages a corresponding receptacle (not shown) mounted on the residential or commercial establishment in which the electrical-energy meter 14 is used.
  • the engagement of the blades 74 and the corresponding receptacle facilitates the transmission of electrical energy through the electrical energy meter 14 to the residential or commercial establishment.
  • electrical-energy meter 14 Specific details of the electrical-energy meter 14 are presented for exemplary purposes only. The present invention can be applied to other types of electrical-energy meters, and to other types of devices and systems.
  • the PCB 58 and the contact blades 74 are electrically connected using an electrically-conductive wire pin 77 (see FIGS. 2A-2D ).
  • a first end portion 77 a of the wire pin 77 is positioned in a through hole 78 formed in the PCB 58 when the wire pin 77 is in its installed position, i.e., in the position depicted in FIG. 2D .
  • the through hole 78 is defined by a surface 80 of the PCB 58 .
  • the through hole 78 is a plated through hole. In other words, the surface 80 is covered by an electrically-conductive coating.
  • the through hole 78 acts as a retaining feature for the wire pin 77 , as discussed below.
  • a second end portion 77 b of the wire pin 77 is positioned against the contact blade 74 when the wire pin 77 is in its installed position.
  • the through hole 78 and the contact blade 74 are substantially misaligned with respect to the vertical (“y”) direction, i.e., the through hole 78 is offset from the contact blade 74 in the “x” direction, when the wire pin 77 is in its installed position.
  • This misalignment creates a contact force between the surface 80 of the PCB 58 and the first end portion 77 a of the wire pin 77 .
  • the misalignment also creates a contact force between the second end portion 77 b of the wire pin 77 and the contact blade 74 .
  • the contact forces help to establish electrical contact between the wire pin 77 and the PCB 58 , and between the wire pin 77 and the contact blade 74 .
  • the contact forces also help to retain the wire pin 77 in its installed position.
  • the PCB 58 is fixedly coupled to the PCB housing 59 by a suitable means such as fasteners (not shown).
  • the PCB housing 59 has a through hole 84 formed therein.
  • the through hole 84 is substantially aligned with the through hole 78 in the PCB 58 .
  • a second portion 74 b of the contact blade 74 extends upward (in the “+y” direction) from the major portion 50 a of the base 50 (from the perspective of FIGS. 2A-2D .
  • the base 50 includes a projection 86 that extends upward from the major portion 50 a (the projection 86 is not shown in FIG. 1 , for clarity).
  • the projection 86 is located proximate the second portion 74 b of the contact blade 74 , and is offset from the second portion 74 b in the “x” direction.
  • the projection 86 and the second portion 74 b define a pocket 88 therebetween.
  • the pocket 88 acts as a retaining feature for the wire pin 77 , as discussed below.
  • the wire pin 77 is installed by positioning the PCB 58 and the PCB housing 59 as shown in FIG. 2A .
  • the PCB 58 and the PCB housing 59 are positioned so that the through holes 78 , 84 are positioned over, and substantially align with the pocket 88 .
  • the wire pin 77 is subsequently inserted through the through holes 78 , 84 , until the second end portion 77 b enters the pocket 88 and abuts the major portion 50 a of the base 50 (the direction of insertion is denoted by the arrow 89 in FIG. 2A ).
  • the wire pin 77 can be inserted manually, or by a suitable automated device.
  • the wire pin 77 can also be inserted by dropping the wire pin 77 through the through holes 78 , 84 .)
  • the respective diameters of the wire pin 77 and the through holes 78 , 84 , and the width (“x” axis dimension) of the pocket 88 are preferably chosen so that the wire pin 77 can be freely inserted through the through holes 78 , 84 and into the pocket 88 .
  • the length of the wire pin 77 is preferably selected so that the wire pin 77 is positioned as shown in FIG. 2B when the wire pin 77 has been fully inserted through the through holes 78 , 84 .
  • the first end portion 77 a is positioned within and above the through hole 78 , and below the through hole 84 when the wire pin 77 has been fully inserted (from the perspective of FIG. 2B ).
  • a force is subsequently exerted on the PCB housing 59 to move the PCB housing 59 laterally, in the “ ⁇ x” direction, in relation to the base 50 .
  • the force can be exerted manually, or by a suitable automated device.
  • the PCB 58 is fixedly coupled to the PCB housing 59 , as discussed above.
  • the PCB 58 therefore moves with the PCB housing 59 (the direction of movement of the PCB 58 and the PCB housing 59 is denoted by the arrow 90 in FIGS. 2B, 2C ).
  • the surface 80 of the PCB 58 urges the first end portion 77 a of the wire pin 77 in the “ ⁇ x” direction in response to the lateral movement of the PCB 58 .
  • the movement of the first end portion 77 a causes a middle portion 77 c of the wire pin 77 to contact an upper edge 86 a of the projection 86 , as shown in FIG. 2C .
  • the projection 86 restrains the middle portion 77 c so that further lateral movement of the PCB 58 in relation of the base 50 causes the second end portion 77 b to contact the second portion 74 b upper portion 40 a of the contact blade 74 (see FIG. 2C ).
  • the restraining effect of the projection 86 causes the wire pin 77 to pivot about the upper edge 86 a in a counterclockwise direction (from the perspective of FIGS. 2 b and 2 C) until the second end portion 77 b of the wire pin 77 contacts the second portion 74 b of the contact blade 74 .
  • the physical properties and the length to diameter (“L/D”) ratio of the wire pin 77 are preferably selected so that the wire pin 77 can resiliently deflect (bend) in response to this combination of forces thereon, as shown in FIG. 2D .
  • the method provided by the present invention can be used in high or low voltage applications.
  • the diameter of the wire pin 77 should also be selected on the basis of the current that is to be transmitted therethrough.
  • the PCB 58 is moved in the lateral (“ ⁇ x”) direction until a side portion 59 a of the PCB housing 59 substantially aligns with a corresponding side portion 50 b of the base 50 with respect to the vertical (“y”) direction, as shown in FIG. 2D .
  • the through hole 78 is substantially misaligned with the pocket 88 with respect to the vertical direction at this point.
  • the side portions 59 a , 50 b can each be equipped with suitable complementary locking features, such as latches 92 , to secure the PCB housing 59 and the PCB 58 in position in relation to the base 50 once the side portions 59 a , 50 b have been aligned.
  • the wire pin 77 forms an electrically-conductive path between the PCB 58 and the contact blade 74 .
  • the resilience of the wire pin 77 helps to establish a contact force between the surface 80 of the PCB 58 and the first end portion 77 a of the wire pin 77 , and between the contact blade 74 and the contact blade 74 .
  • the contact forces help to establish (and enhance) the electrical contact between the wire pin 77 and the PCB and contact blade 74 .
  • the first end portion 77 a contacts the surface 80 of the PCB 58 at two locations due to the angled orientation of the first end portion 77 a in relation to the PCB 58 , as depicted in FIG. 2D . Redundant contact points are thus established between the wire pin 77 and the PCB 58 .
  • the deflection of the wire pin 77 should be limited to values that cause the material from which the wire pin 77 is formed to remain within its elastic limit as the wire pin 77 deflects.
  • the wire pin 77 thus behaves as a spring that exerts a contact force proportional to the deflection thereof.
  • the contact force exerted by the wire pin 77 should be sufficient to establish adequate electrical contact between the wire pin 77 and the PCB 58 and contact blade 74 .
  • the contact force should also be sufficient to adequately retain the wire pin 77 in its installed position.
  • the contact force exerted by the wire pin 77 is related to the length-to-diameter ratio thereof, and to the hardness of the material from which the wire pin 77 is formed.
  • the wire pin 77 is preferably formed from a material having relatively high hardness, conductivity, and corrosion resistance.
  • the wire pin 77 can be formed from non-annealed phosphor-bronze wire (the drawing process used to form with phosphor-bronze material into wire is believed to provide the phosphor-bronze material with the requisite hardness for use in this application).
  • the wire pin 77 can be formed from materials such as stainless steel, copper, beryllium-copper, or other suitable materials.
  • the preferred method (and variants thereof) can be used to establish an electrical path between two or more components without the use of soldering or other conduction reflow processes.
  • the preferred method does not require precise control of process variables, in contradistinction to conduction reflow processes.
  • the preferred method can thus be implemented without the expense and complications associated with providing such control.
  • the preferred method can be automated at a relatively low cost, thus making the use of the preferred method economically feasible for low-volume production runs.
  • Electrical connections formed in accordance with the preferred method can be disassembled with relative ease, unlike connections formed using solder or adhesive. Electrical connections formed in accordance with the preferred method are also believed to be more reliable than connections that rely on the use of solder or adhesive.
  • the preferred method can be used in lieu of electrical connectors and conventional flexible wires, extended rigid pins and corresponding receptacles, and spring arrays.
  • the preferred method it is believed, can provide electrical connections that are less expensive, have a lower parts count and footprint, and require less assembly effort than electrical connections provided by the noted techniques.
  • the electrical connections provided by the preferred method are more reliable than connections formed using electrical connectors and conventional flexible wires, extended rigid pins and corresponding receptacles, and spring arrays. Moreover, such techniques can be difficult to automate.
  • the preferred method by contrast, can readily be performed on an automated basis in both high and low-volume production runs.
  • Alternative methods within the scope of the present invention can be used to electrically connect two components having through holes formed therein for receiving the respective first and second end portions 77 a , 77 b of the wire pin 77 .
  • an alternative version of the preferred method can be used to connect two of the PCBs 10 .
  • the wire pin 77 can be inserted through the through hole 78 of the upper PCB 58 so that the second end portion 77 b of the wire pin 77 is positioned, in part, within the through hole 78 of the lower PCB 58 , and the first end 77 a is positioned, in part, within the through hole 78 of the upper PCB 58 (see FIG. 3A ).
  • the lower PCB 58 is fixedly coupled to a PCB housing 94 that does not have one of the through holes 84 formed therein (the PCB housing 94 thus supports the wire pin 77 when the wire pin 77 positioned as depicted in FIG. 3A ).
  • the upper PCB 58 and its associated PCB cover 59 can be moved laterally. (in the “ ⁇ x” direction) to bend the wire pin 77 as shown in FIG. 3B , thereby establishing a contact force between the wire pin 77 and the upper and lower PCBs 58 .
  • FIGS. 4A and 4B depict a wire pin 96 that interconnects two of the PCBs 58 and one of the contact blades 74 (the wire pin 96 is longer than the wire pin 77 , but is otherwise substantially identical to the wire pin 77 ).
  • the wire pin 96 can be inserted through the through holes 78 in the PCBs 58 , until reaching the position depicted in FIG. 4A .
  • the lower PCB 58 can then be moved laterally (in the “ ⁇ x” direction) to cause the wire pin 96 to resiliently deflect, thereby establishing contact forces between the wire pin 96 and the PCBs 10 and contact blade 74 (see FIG. 4B ).
  • the lower PCB 58 does not have an associated PCB housing in this particular embodiment.

Abstract

A preferred method for electrically connecting a first and a second component includes inserting a wire pin through a through hole formed in the first component so that a first portion of the wire pin is located within the through hole and a second portion of the wire pin is located within a retaining feature formed at least in part by the second component. The preferred method also includes moving one of the first and the second components in relation to the other of the first and the second components so that the wire pin resiliently deflects thereby establishing a first contact force between the first portion of the wire and the first components and a second contact force between the second portion of the wire and the second component.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a divisional of application Ser. No. 10/813,841, filed Mar. 31, 2004, the entirety of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a method for electrically interconnecting two or more components.
  • BACKGROUND OF THE INVENTION
  • Manufactured products that perform electrical functions often include two or more electrically-connected components such as circuit boards, displays, external connections, etc. The electrical connection between components is typically achieved using techniques such as soldering (or other conduction reflow processes); flexible wires with connectors attached to the ends thereof; flexible printed circuits equipped with special connectors or electrically-conductive adhesive; rigid pins and receptacles; arrays of springs mounted in a housing clamped between the electrically-connected components; etc.
  • The above-noted techniques can present disadvantages. For example, the process of installing flexible wires between two electrical components can be difficult to automate. Other techniques can more readily be automated. Achieving such automation, however, can be relatively expensive, and may not be cost-effective in low-volume production runs. Moreover, electrical connections that incorporate solder or adhesive can make it difficult to disassemble the interconnected components. The formation of solder connections can introduce process variables that must be closely controlled, thereby increasing the complexity and cost of the assembly process.
  • SUMMARY OF THE INVENTION
  • A preferred method for electrically connecting a first and a second component comprises inserting a wire pin through a through hole formed in the first component so that a first portion of the wire pin is located within the through hole and a second portion of the wire pin is located within a retaining feature formed at least in part by the second component.
  • A preferred method also comprises moving one of the first and the second components in relation to the other of the first and the second components so that the wire pin resiliently deflects thereby establishing a first contact force between the first portion of the wire pin and the first component, and a second contact force between the second portion of the wire pin and the second component.
  • Another preferred method for electrically connecting a first and a second component comprises substantially aligning a first through hole formed in the first component with one of a second through hole formed in the second component and a pocket formed at least in part by the second component, and inserting a wire pin through the first through hole in a first direction so that a first portion of the wire pin is located within the first through hole and a second portion of the wire pin is located within one of the second through hole and the pocket
  • A preferred method also comprises moving one of the first and the second components in a second direction in relation to the other of the first and the second components, the second direction being substantially perpendicular to the first direction, thereby causing one of the first and second portions of the wire pin to move in relation to the other of the first and second portions of the wire pin.
  • A preferred method for establishing electrical contact between a first and a second component comprises substantially aligning a first retaining feature defined at least in part by the first component with a second retaining feature defined at least in part by the second component so that the first and second retaining features can each receive a respective portion of a wire pin.
  • A preferred method also comprises substantially misaligning the first and second retaining features after the first and second retaining features have each received the respective portions of the wire pin so that the first and second components bend the wire pin and thereby establish contact forces between the first component and the wire pin, and the second component and the wire pin.
  • Another preferred method for electrically connecting a first and a second component comprises inserting a wire pin through a first retaining feature formed at least in part by the first component so that a first portion of the wire pin is located within the first retaining feature and a second portion of the wire pin is located within a retaining feature formed at least in part by the second component.
  • A preferred method also comprises moving one of the first and the second components in relation to the other of the first and the second components so that the first component engages the first portion of the wire pin by way of the first retaining feature, and the second component engages the second portion of the wire pin by way of the second retaining feature thereby causing the first portion of the wire pin to move in relation to the second portion of the wire pin and bending the wire pin.
  • A preferred method for electrically connecting a first, a second, and a third component comprises inserting a wire pin through respective through holes formed in the first and second components so that a first portion of the wire pin is located within the through hole formed in the first component, a second portion of the wire pin is located within the though hole formed in the second component, and a third portion of the wire pin is located in a retaining feature formed at least in part by the third component.
  • A preferred method also comprises moving the second component in relation to the first and the third components so that the wire pin resiliently deflects thereby establishing a first contact force between the first portion of the wire pin and the first component, a second contact force between the second portion of the wire pin and the second component, and a third contact force between the third portion of the wire pin and the third component.
  • A preferred embodiment of an electrical energy meter comprises a base for mounting on a supporting surface, and a current sensor assembly comprising a plurality of contact blades extending through the base for electrically contacting a conductor of electrical energy, and a current transformer mechanically coupled to the base and electrically coupled to the contact blades. The current transformer produces an electrical output proportional to an electrical current in the conductor of electrical energy.
  • A preferred embodiment also comprises a printed circuit board for calculating a cumulative amount of electrical energy passing through the conductor of electrical energy based on the electrical output of the current transformer and a voltage of the conductor of electrical energy, and a contact blade electrically coupled to the printed circuit board by a wire pin.
  • The wire pin engages retaining features defined at least in part by the respective printed circuit board and contact blade. The retaining features are substantially misaligned so that the wire pin is bent and contact forces are thereby established between the wire pin and the printed circuit board, and between the wire pin and the contact blade.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing summary, as well as the following detailed description of a presently-preferred embodiment, is better understood when read in conjunction with the appended diagrammatic drawings. For the purpose of illustrating the invention, the drawings show an embodiment that is presently preferred. The invention is not limited, however, to the specific instrumentalities disclosed in the drawings. In the drawings:
  • FIG. 1 is an exploded perspective view of an electrical-energy meter having a printed circuit board (PCB) and a contact blade that can be electrically connected in accordance with a preferred method in accordance with the present invention;
  • FIG. 2A is a cross-sectional side view of a PCB, a contact blade, a PCB housing, a base, and a wire pin of the electrical-energy meter shown in FIG. 1, with the wire pin about to be inserted through the PCB and the PCB housing;
  • FIG. 2B is a cross-sectional side view of the PCB, contact blade, PCB housing, base, and wire pin shown in FIG. 2A, after the wire pin has been inserted through the PCB and the PCB housing and into a pocket of the base;
  • FIG. 2C is a cross-sectional side view of the PCB, contact blade, PCB housing, base, and wire pin shown in FIGS. 2A and 2B, after the PCB and PCB housing have been moved laterally in relation to the base and contact blade;
  • FIG. 2D is a cross-sectional side view of the PCB, contact blade, PCB housing, base, and wire pin shown in FIGS. 2A-2C, after the PCB and PCB housing have been further moved laterally in relation to the base and contact blade to bend the wire pin;
  • FIG. 3A a cross-sectional side view of a first and a second PCB, a first and a second PCB housing, and a wire pin of an alternative embodiment of the electrical-energy meter shown in FIGS. 1-2D, after the wire pin has been inserted through the first PCB housing and the first and second PCBs;
  • FIG. 3B is a cross-sectional side view of the first and second PCBs, first and second PCB housings, and wire pin shown in FIG. 3A, after the first PCB and first PCB housing have been moved laterally in relation to the second PCB and PCB housing to bend the wire pin;
  • FIG. 4A is a cross-sectional side view of a first and a second PCB, a PCB housing, a base, a contact blade, and a wire pin of an alternative embodiment of the electrical-energy meter shown in FIGS. 1-2D, after the wire pin has been inserted through the first and second PCBs and the PCB housing, and into a pocket of the base; and
  • FIG. 4B is a cross-sectional side view of the first and second PCB, PCB housing, base, contact blade, and wire pin shown in FIG. 4A, after the second PCB has been moved laterally in relation to the first PCB, PCB housing, base, and contact blade to bend the wire pin.
  • DESCRIPTION OF PREFERRED METHODS
  • A preferred method for providing an electrical connection is described herein. The preferred method, as described herein, is used to establish an electrical connection between a printed circuit board (PCB) 58 and an electrically-conductive contact blade 74 of an electrical-energy meter 14 (see FIG. 1). The preferred method is described in relation to these particular components for exemplary purposes only. The preferred method can be used to electrically connect other types of components, in other types of electrical devices or systems.
  • The electrical-energy meter 14 comprises a base 50, a current sensor assembly 52, and a power transformer 54 (see FIG. 1). The current sensor assembly 52 and the power transformer 54 are mounted on the base 50 by way of a retainer 56. The electrical-energy meter 14 also includes the PCB 58, a PCB housing 59, a name plate 62, and a digital display 63 mounted on the name plate 62. The name plate 62 is mounted on snap posts 64 formed in the base 50.
  • The current sensor assembly 52 comprises an annular current sensor 66, current conductors 68 that conduct electrical current to the current sensor 66, and meter blades 69 connected to opposite ends of each current conductor 68. The meter blades 69 are retained in the base 50 by way of keyhole slots 70 formed in a major portion 50 a of the base 50.
  • Each of the meter blades 69 slidably and securely engages a corresponding receptacle (not shown) mounted on the residential or commercial establishment in which the electrical-energy meter 14 is used. The engagement of the blades 69 and the corresponding receptacles electrically couples the electrical-power meter 14 to the conductor that supplies electrical power to the residential or commercial establishment.
  • The current sensor 66 is electrically coupled to the PCB 58, and measures the electrical current flowing through the electrical-power meter 14 by way of the current conductors 68 and the meter blades 69. The meter blades 69 are electrically coupled to the PCB 58 through the output of the current sensor (66). The PCB 58 thus receives a voltage input that is proportional to the voltage of the conductor that supplies electrical power to the residential or commercial establishment. The PCB 58 calculates the total (cumulative) watt-hours of power that have passed through the electrical-energy meter 14 over time based on the measured current and the voltage input, using conventional techniques known to those skilled in the field of electrical-energy meter design. The PCB 58 continually updates the cumulative watt-hours, and displays the updated value on the digital display 63.
  • The current sensor assembly 52, power transformer 54, PCB 58, name plate 62, and digital display 63 are housed within a cover 72.
  • The electrical-energy meter 14 includes a plurality of the contact blades 74 (see FIGS. 1-2D; only one of the contact blades 74 is depicted in FIG. 1, for clarity). The contact blades 74 are mounted in slots 76 formed in the major portion 50 a of the base 50. The contact blades 74 are electrically connected to the PCB 58, as discussed below.
  • A first portion 74 a of each contact blade 74 extends downward (in the “−y” direction) from the major portion 50 a of the base 50 (from the perspective of FIGS. 2A-2D). The first portion slidably and securely engages a corresponding receptacle (not shown) mounted on the residential or commercial establishment in which the electrical-energy meter 14 is used. The engagement of the blades 74 and the corresponding receptacle facilitates the transmission of electrical energy through the electrical energy meter 14 to the residential or commercial establishment.
  • Specific details of the electrical-energy meter 14 are presented for exemplary purposes only. The present invention can be applied to other types of electrical-energy meters, and to other types of devices and systems.
  • The PCB 58 and the contact blades 74 are electrically connected using an electrically-conductive wire pin 77 (see FIGS. 2A-2D). A first end portion 77 a of the wire pin 77 is positioned in a through hole 78 formed in the PCB 58 when the wire pin 77 is in its installed position, i.e., in the position depicted in FIG. 2D. The through hole 78 is defined by a surface 80 of the PCB 58. The through hole 78 is a plated through hole. In other words, the surface 80 is covered by an electrically-conductive coating. The through hole 78 acts as a retaining feature for the wire pin 77, as discussed below.
  • A second end portion 77 b of the wire pin 77 is positioned against the contact blade 74 when the wire pin 77 is in its installed position.
  • The through hole 78 and the contact blade 74 are substantially misaligned with respect to the vertical (“y”) direction, i.e., the through hole 78 is offset from the contact blade 74 in the “x” direction, when the wire pin 77 is in its installed position. (The figures are referenced to a common coordinate system 82 depicted therein.) This misalignment creates a contact force between the surface 80 of the PCB 58 and the first end portion 77 a of the wire pin 77. The misalignment also creates a contact force between the second end portion 77 b of the wire pin 77 and the contact blade 74. The contact forces help to establish electrical contact between the wire pin 77 and the PCB 58, and between the wire pin 77 and the contact blade 74. The contact forces also help to retain the wire pin 77 in its installed position.
  • Details relating to the installation of the wire pin 77 are as follows.
  • The PCB 58 is fixedly coupled to the PCB housing 59 by a suitable means such as fasteners (not shown). The PCB housing 59 has a through hole 84 formed therein. The through hole 84 is substantially aligned with the through hole 78 in the PCB 58.
  • A second portion 74 b of the contact blade 74 extends upward (in the “+y” direction) from the major portion 50 a of the base 50 (from the perspective of FIGS. 2A-2D. The base 50 includes a projection 86 that extends upward from the major portion 50 a (the projection 86 is not shown in FIG. 1, for clarity). The projection 86 is located proximate the second portion 74 b of the contact blade 74, and is offset from the second portion 74 b in the “x” direction. The projection 86 and the second portion 74 b define a pocket 88 therebetween. The pocket 88 acts as a retaining feature for the wire pin 77, as discussed below.
  • The wire pin 77 is installed by positioning the PCB 58 and the PCB housing 59 as shown in FIG. 2A. In particular, the PCB 58 and the PCB housing 59 are positioned so that the through holes 78, 84 are positioned over, and substantially align with the pocket 88.
  • The wire pin 77 is subsequently inserted through the through holes 78, 84, until the second end portion 77 b enters the pocket 88 and abuts the major portion 50 a of the base 50 (the direction of insertion is denoted by the arrow 89 in FIG. 2A). (The wire pin 77 can be inserted manually, or by a suitable automated device. The wire pin 77 can also be inserted by dropping the wire pin 77 through the through holes 78, 84.) The respective diameters of the wire pin 77 and the through holes 78, 84, and the width (“x” axis dimension) of the pocket 88 are preferably chosen so that the wire pin 77 can be freely inserted through the through holes 78, 84 and into the pocket 88.
  • The length of the wire pin 77 is preferably selected so that the wire pin 77 is positioned as shown in FIG. 2B when the wire pin 77 has been fully inserted through the through holes 78, 84. In particular, the first end portion 77a is positioned within and above the through hole 78, and below the through hole 84 when the wire pin 77 has been fully inserted (from the perspective of FIG. 2B).
  • A force is subsequently exerted on the PCB housing 59 to move the PCB housing 59 laterally, in the “−x” direction, in relation to the base 50. (The force can be exerted manually, or by a suitable automated device.) The PCB 58 is fixedly coupled to the PCB housing 59, as discussed above. The PCB 58 therefore moves with the PCB housing 59 (the direction of movement of the PCB 58 and the PCB housing 59 is denoted by the arrow 90 in FIGS. 2B, 2C).
  • The surface 80 of the PCB 58 urges the first end portion 77 a of the wire pin 77 in the “−x” direction in response to the lateral movement of the PCB 58. The movement of the first end portion 77 a causes a middle portion 77 c of the wire pin 77 to contact an upper edge 86 a of the projection 86, as shown in FIG. 2C.
  • The projection 86 restrains the middle portion 77 c so that further lateral movement of the PCB 58 in relation of the base 50 causes the second end portion 77 b to contact the second portion 74 b upper portion 40 a of the contact blade 74 (see FIG. 2C). In other words, the restraining effect of the projection 86 causes the wire pin 77 to pivot about the upper edge 86 a in a counterclockwise direction (from the perspective of FIGS. 2 b and 2C) until the second end portion 77b of the wire pin 77 contacts the second portion 74 b of the contact blade 74.
  • Further lateral movement of the PCB 58 urges the first end portion 77 a of the wire pin 77 in the “−x” direction, while the middle portion 77 c and the second end portion 77 b are restrained by the respective projection 86 and contact blade 74. The physical properties and the length to diameter (“L/D”) ratio of the wire pin 77 are preferably selected so that the wire pin 77 can resiliently deflect (bend) in response to this combination of forces thereon, as shown in FIG. 2D. (The method provided by the present invention can be used in high or low voltage applications. Hence, the diameter of the wire pin 77 should also be selected on the basis of the current that is to be transmitted therethrough.)
  • The PCB 58 is moved in the lateral (“−x”) direction until a side portion 59 a of the PCB housing 59 substantially aligns with a corresponding side portion 50 b of the base 50 with respect to the vertical (“y”) direction, as shown in FIG. 2D. (The through hole 78 is substantially misaligned with the pocket 88 with respect to the vertical direction at this point.) The side portions 59 a, 50 b can each be equipped with suitable complementary locking features, such as latches 92, to secure the PCB housing 59 and the PCB 58 in position in relation to the base 50 once the side portions 59 a, 50 b have been aligned.
  • The wire pin 77 forms an electrically-conductive path between the PCB 58 and the contact blade 74. The resilience of the wire pin 77 helps to establish a contact force between the surface 80 of the PCB 58 and the first end portion 77 a of the wire pin 77, and between the contact blade 74 and the contact blade 74.
  • The contact forces help to establish (and enhance) the electrical contact between the wire pin 77 and the PCB and contact blade 74. (The first end portion 77 a contacts the surface 80 of the PCB 58 at two locations due to the angled orientation of the first end portion 77 a in relation to the PCB 58, as depicted in FIG. 2D. Redundant contact points are thus established between the wire pin 77 and the PCB 58.)
  • Friction between the first end portion 77 a of the wire pin 77 and the surface 80 of the PCB 58, and between the second end portion 77 b and the contact blade 74, it is believed, helps to retain the wire pin 77 in its installed position. (The through hole 78 and the pocket 88 thus act as retaining features that facilitate retention of the wire pin 77 in its installed position.)
  • The deflection of the wire pin 77 should be limited to values that cause the material from which the wire pin 77 is formed to remain within its elastic limit as the wire pin 77 deflects. The wire pin 77 thus behaves as a spring that exerts a contact force proportional to the deflection thereof.
  • The contact force exerted by the wire pin 77 should be sufficient to establish adequate electrical contact between the wire pin 77 and the PCB 58 and contact blade 74. The contact force should also be sufficient to adequately retain the wire pin 77 in its installed position.
  • The contact force exerted by the wire pin 77 is related to the length-to-diameter ratio thereof, and to the hardness of the material from which the wire pin 77 is formed. The wire pin 77 is preferably formed from a material having relatively high hardness, conductivity, and corrosion resistance. For example, the wire pin 77 can be formed from non-annealed phosphor-bronze wire (the drawing process used to form with phosphor-bronze material into wire is believed to provide the phosphor-bronze material with the requisite hardness for use in this application). Alternatively, the wire pin 77 can be formed from materials such as stainless steel, copper, beryllium-copper, or other suitable materials.
  • The preferred method (and variants thereof) can be used to establish an electrical path between two or more components without the use of soldering or other conduction reflow processes. The preferred method, it is believed, does not require precise control of process variables, in contradistinction to conduction reflow processes. The preferred method can thus be implemented without the expense and complications associated with providing such control. Moreover, it is believed that the preferred method can be automated at a relatively low cost, thus making the use of the preferred method economically feasible for low-volume production runs.
  • Electrical connections formed in accordance with the preferred method can be disassembled with relative ease, unlike connections formed using solder or adhesive. Electrical connections formed in accordance with the preferred method are also believed to be more reliable than connections that rely on the use of solder or adhesive.
  • The preferred method can be used in lieu of electrical connectors and conventional flexible wires, extended rigid pins and corresponding receptacles, and spring arrays. The preferred method, it is believed, can provide electrical connections that are less expensive, have a lower parts count and footprint, and require less assembly effort than electrical connections provided by the noted techniques.
  • It is believed that the electrical connections provided by the preferred method are more reliable than connections formed using electrical connectors and conventional flexible wires, extended rigid pins and corresponding receptacles, and spring arrays. Moreover, such techniques can be difficult to automate. The preferred method, by contrast, can readily be performed on an automated basis in both high and low-volume production runs.
  • The foregoing description is provided for the purpose of explanation and is not to be construed as limiting the invention. While the invention has been described with reference to preferred embodiments or preferred methods, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Furthermore, although the invention has been described herein with reference to particular structure, methods, and embodiments, the invention is not intended to be limited to the particulars disclosed herein, as the invention extends to all structures, methods and uses that are within the scope of the appended claims. Those skilled in the relevant art, having the benefit of the teachings of this specification, may effect numerous modifications to the invention as described herein, and changes may be made without departing from the scope and spirit of the invention as defined by the appended claims.
  • Alternative methods within the scope of the present invention can be used to electrically connect two components having through holes formed therein for receiving the respective first and second end portions 77 a, 77 b of the wire pin 77. For example, an alternative version of the preferred method can be used to connect two of the PCBs 10. The wire pin 77 can be inserted through the through hole 78 of the upper PCB 58 so that the second end portion 77 b of the wire pin 77 is positioned, in part, within the through hole 78 of the lower PCB 58, and the first end 77 a is positioned, in part, within the through hole 78 of the upper PCB 58 (see FIG. 3A).
  • The lower PCB 58 is fixedly coupled to a PCB housing 94 that does not have one of the through holes 84 formed therein (the PCB housing 94 thus supports the wire pin 77 when the wire pin 77 positioned as depicted in FIG. 3A). The upper PCB 58 and its associated PCB cover 59 can be moved laterally. (in the “−x” direction) to bend the wire pin 77 as shown in FIG. 3B, thereby establishing a contact force between the wire pin 77 and the upper and lower PCBs 58.
  • Other alternative methods within the scope of the present invention can be used to electrically connect three or more components. For example, FIGS. 4A and 4B depict a wire pin 96 that interconnects two of the PCBs 58 and one of the contact blades 74 (the wire pin 96 is longer than the wire pin 77, but is otherwise substantially identical to the wire pin 77).
  • The wire pin 96 can be inserted through the through holes 78 in the PCBs 58, until reaching the position depicted in FIG. 4A. The lower PCB 58 can then be moved laterally (in the “−x” direction) to cause the wire pin 96 to resiliently deflect, thereby establishing contact forces between the wire pin 96 and the PCBs 10 and contact blade 74 (see FIG. 4B). (The lower PCB 58 does not have an associated PCB housing in this particular embodiment.)

Claims (18)

1. A method for electrically connecting a component and a printed circuit board, comprising:
inserting a wire pin through a first through hole formed in the component so that a first portion of the wire pin is located within the first through hole and a second portion of the wire pin is located within a second through hole formed in the printed circuit board; and
moving one of the component and the printed circuit board in relation to the other of the component and the printed circuit board so that the wire pin resiliently deflects thereby establishing a first contact force between the first portion of the wire pin and the component, and a second contact force between the second portion of the wire pin and the printed circuit board.
2. The method of claim 1, wherein the component is a printed circuit board.
3. The method of claim 2, wherein the component is a printed circuit board of an electrical-energy meter.
4. The method of claim 1, wherein inserting a wire pin through a first through hole formed in the component comprises inserting the wire pin in a first direction, and moving one of the component and the printed circuit board in relation to the other of the component and the printed circuit board comprises moving the one of the component and the printed circuit board in relation to the other of the component and the printed circuit board in a second direction substantially perpendicular to the first direction.
5. The method of claim 1, wherein moving one of the component and the printed circuit board in relation to the other of the component and the printed circuit board so that the wire pin resiliently deflects comprises moving one of the component and the printed circuit board in relation to the other of the component and the printed circuit board so that the wire pin bends.
6. The method of claim 1, further comprising substantially aligning the first and second through holes before inserting the wire pin.
7. The method of claim 6, wherein the moving one of the component and the printed circuit board in relation to the other of the component and the printed circuit board so that the wire pin resiliently deflects comprises substantially misaligning the first and second through holes.
8. The method of claim 1, wherein the first through hole is a plated through hole and the first contact force is established between the first portion of the wire and plating of the first through hole.
9. The method of claim 1, further comprising locking the one of the component and the printed circuit board in position in relation to the other of the component and printed circuit board after moving the one of the component and the printed circuit board in relation to the other of the component and the printed circuit board.
10. The method of claim 1, wherein inserting a wire pin through a first through hole formed in the component comprises dropping the wire pin through the first through hole.
11. The method of claim 1, wherein moving one of the component and the printed circuit board in relation to the other of the component and the printed circuit board so that the wire pin resiliently deflects comprises moving the one of the component and the printed circuit board in relation to the other of the component and the printed circuit board so that the first portion of the wire is restrained by the component and the second portion of the wire is restrained by the printed circuit board thereby causing the first portion of the wire to move in relation to the second portion of the wire in response to the movement of the component in relation to the printed circuit board.
12. A method for electrically connecting a first and a second component, comprising:
substantially aligning a first through hole formed in the first component with a second through hole formed in the second component;
inserting a wire pin through the first through hole in a first direction so that a first portion of the wire pin is located within the first through hole and a second portion of the wire pin is located within the second through hole; and
moving one of the first and the second components in a second direction in relation to the other of the first and the second components, the second direction being substantially perpendicular to the first direction, thereby causing one of the first and second portions of the wire pin to move in relation to the other of the first and second portions of the wire pin.
13. The method of claim 12, wherein the first component is a printed circuit board.
14. The method of claim 13, wherein the first component is a printed circuit board of an electrical-energy meter.
15. The method of claim 12, wherein the second component is a printed circuit board.
16. The method of claim 15, wherein the second component is a printed circuit board of an electrical-energy meter.
17. The method of claim 12, wherein moving one of the first and the second components in a second direction in relation to the other of the first and the second components comprises moving one of the first and the second components in a second direction in relation to the other of the first and the second components so that the wire pin resiliently deflects thereby establishing a contact force between the wire pin and the first and second components.
18. The method of claim 12, wherein moving one of the first and the second components in a second direction in relation to the other of the first and the second components comprises moving the one of the first and the second components in relation to the other of the first and the second components so that the first portion of the wire is restrained by the first component and the second portion of the wire is restrained by the second component thereby causing the first portion of the wire to move in relation to the second portion of the wire.
US11/393,494 2004-03-31 2006-03-30 Method for providing an electrical connection Abandoned US20060168804A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/393,494 US20060168804A1 (en) 2004-03-31 2006-03-30 Method for providing an electrical connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/813,841 US7051432B2 (en) 2004-03-31 2004-03-31 Method for providing an electrical connection
US11/393,494 US20060168804A1 (en) 2004-03-31 2006-03-30 Method for providing an electrical connection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/813,841 Division US7051432B2 (en) 2004-03-31 2004-03-31 Method for providing an electrical connection

Publications (1)

Publication Number Publication Date
US20060168804A1 true US20060168804A1 (en) 2006-08-03

Family

ID=35059046

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/813,841 Expired - Lifetime US7051432B2 (en) 2004-03-31 2004-03-31 Method for providing an electrical connection
US11/393,494 Abandoned US20060168804A1 (en) 2004-03-31 2006-03-30 Method for providing an electrical connection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/813,841 Expired - Lifetime US7051432B2 (en) 2004-03-31 2004-03-31 Method for providing an electrical connection

Country Status (1)

Country Link
US (2) US7051432B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437883B2 (en) 2009-05-07 2013-05-07 Dominion Resources, Inc Voltage conservation using advanced metering infrastructure and substation centralized voltage control
US9325174B2 (en) 2013-03-15 2016-04-26 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9354641B2 (en) 2013-03-15 2016-05-31 Dominion Resources, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US9367075B1 (en) 2013-03-15 2016-06-14 Dominion Resources, Inc. Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis
US9563218B2 (en) 2013-03-15 2017-02-07 Dominion Resources, Inc. Electric power system control with measurement of energy demand and energy efficiency using t-distributions
US9847639B2 (en) 2013-03-15 2017-12-19 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency
US10732656B2 (en) 2015-08-24 2020-08-04 Dominion Energy, Inc. Systems and methods for stabilizer control

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995995A1 (en) * 2007-05-25 2008-11-26 3Dconnexion Holding SA Electric circuit for individually controlling light-emitting elements and optoelectronic device
CN103762206A (en) * 2014-01-07 2014-04-30 申宇慈 Electronic device interconnection body
JP6351316B2 (en) * 2014-03-13 2018-07-04 大崎電気工業株式会社 Power distribution equipment
US9887475B2 (en) * 2015-12-09 2018-02-06 Honeywell International Inc. Helical spring backplane circuit board connector
CN113020845B (en) * 2021-03-08 2021-12-10 浙江能兴电气科技有限公司 Integrated spot welding equipment for intelligent electric meter terminal and using method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924918A (en) * 1973-10-09 1975-12-09 Du Pont Daughter board contact
US3973322A (en) * 1974-05-13 1976-08-10 Hollis Engineering, Inc. Mass soldering system and method
US4420205A (en) * 1981-09-14 1983-12-13 Augat Inc. Low insertion force electronic component socket
US4749943A (en) * 1984-06-11 1988-06-07 Thomas Black Automatic test system
US4757600A (en) * 1987-07-27 1988-07-19 Holcomb Gregory W Radial lead electrical component feeder
US4963822A (en) * 1988-06-01 1990-10-16 Manfred Prokopp Method of testing circuit boards and the like
US4998102A (en) * 1988-08-02 1991-03-05 Distribution Control Systems, Inc. Integrated meter transponder
US5217383A (en) * 1989-03-21 1993-06-08 Siemens Nixdorf Informationssysteme Ag Plug contact arrangement
US6838867B2 (en) * 2002-06-27 2005-01-04 Elster Electricity, Llc Electrical-energy meter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924918A (en) * 1973-10-09 1975-12-09 Du Pont Daughter board contact
US3973322A (en) * 1974-05-13 1976-08-10 Hollis Engineering, Inc. Mass soldering system and method
US4420205A (en) * 1981-09-14 1983-12-13 Augat Inc. Low insertion force electronic component socket
US4749943A (en) * 1984-06-11 1988-06-07 Thomas Black Automatic test system
US4757600A (en) * 1987-07-27 1988-07-19 Holcomb Gregory W Radial lead electrical component feeder
US4963822A (en) * 1988-06-01 1990-10-16 Manfred Prokopp Method of testing circuit boards and the like
US4998102A (en) * 1988-08-02 1991-03-05 Distribution Control Systems, Inc. Integrated meter transponder
US5217383A (en) * 1989-03-21 1993-06-08 Siemens Nixdorf Informationssysteme Ag Plug contact arrangement
US6838867B2 (en) * 2002-06-27 2005-01-04 Elster Electricity, Llc Electrical-energy meter

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437883B2 (en) 2009-05-07 2013-05-07 Dominion Resources, Inc Voltage conservation using advanced metering infrastructure and substation centralized voltage control
US8577510B2 (en) 2009-05-07 2013-11-05 Dominion Resources, Inc. Voltage conservation using advanced metering infrastructure and substation centralized voltage control
US9887541B2 (en) 2013-03-15 2018-02-06 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency using T-distributions
US10476273B2 (en) 2013-03-15 2019-11-12 Dominion Energy, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9367075B1 (en) 2013-03-15 2016-06-14 Dominion Resources, Inc. Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis
US9553453B2 (en) 2013-03-15 2017-01-24 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9563218B2 (en) 2013-03-15 2017-02-07 Dominion Resources, Inc. Electric power system control with measurement of energy demand and energy efficiency using t-distributions
US9582020B2 (en) 2013-03-15 2017-02-28 Dominion Resources, Inc. Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis
US9678520B2 (en) 2013-03-15 2017-06-13 Dominion Resources, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US9847639B2 (en) 2013-03-15 2017-12-19 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency
US9325174B2 (en) 2013-03-15 2016-04-26 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US10274985B2 (en) 2013-03-15 2019-04-30 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US10386872B2 (en) 2013-03-15 2019-08-20 Dominion Energy, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US9354641B2 (en) 2013-03-15 2016-05-31 Dominion Resources, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US10666048B2 (en) 2013-03-15 2020-05-26 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency using t-distributions
US11550352B2 (en) 2013-03-15 2023-01-10 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US10768655B2 (en) 2013-03-15 2020-09-08 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US10775815B2 (en) 2013-03-15 2020-09-15 Dominion Energy, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US10784688B2 (en) 2013-03-15 2020-09-22 Dominion Energy, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US11132012B2 (en) 2013-03-15 2021-09-28 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US11353907B2 (en) 2015-08-24 2022-06-07 Dominion Energy, Inc. Systems and methods for stabilizer control
US10732656B2 (en) 2015-08-24 2020-08-04 Dominion Energy, Inc. Systems and methods for stabilizer control
US11755049B2 (en) 2015-08-24 2023-09-12 Dominion Energy, Inc. Systems and methods for stabilizer control

Also Published As

Publication number Publication date
US20050223553A1 (en) 2005-10-13
US7051432B2 (en) 2006-05-30

Similar Documents

Publication Publication Date Title
US20060168804A1 (en) Method for providing an electrical connection
CN100483859C (en) Connector
US5338208A (en) High density electronic connector and method of assembly
CN101438463B (en) Hermaphroditic socket/adapter
EP0519264A2 (en) Electrical connector
CN107425366A (en) Connector
CN101416354A (en) Connecting terminal for printed circuit boards
EP0765004A1 (en) Electrical installation bus connector
US6666693B2 (en) Surface-mounted right-angle electrical connector
WO2008014194A2 (en) Methods and apparatus for releasably mounting a semiconductor device to a printed circuit board
JPH04233180A (en) Surface mouting type electric connector and manufacture thereof
KR200391493Y1 (en) Circuit connecting apparatus using integrated silicone contactor
US6958670B2 (en) Offset connector with compressible conductor
CN108432055B (en) Electrical connector
KR20210146204A (en) Coaxial terminals, coaxial connectors, circuit boards, and electronic component testing equipment
EP1898497A2 (en) Connector and contacts for use in the connector
US8317523B2 (en) Plug connector for circuit boards
JP2010205604A (en) Electric connector
KR102191759B1 (en) Probe pin and test socket using the same
KR100719428B1 (en) Contact pin, contact pin assembly and socket for electric parts
JPH1012342A (en) Contact and ic socket provided with the contact
EP0385019A1 (en) Electrical connector having preloaded terminals and method of manufacture
CN100521399C (en) Coaxial connector with a switch
CN217562856U (en) Conductive terminal and electric connection assembly
US8313341B1 (en) Guide element for a connector device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION