US20080109387A1 - Power Theft Detection System and Method - Google Patents

Power Theft Detection System and Method Download PDF

Info

Publication number
US20080109387A1
US20080109387A1 US11/775,209 US77520907A US2008109387A1 US 20080109387 A1 US20080109387 A1 US 20080109387A1 US 77520907 A US77520907 A US 77520907A US 2008109387 A1 US2008109387 A1 US 2008109387A1
Authority
US
United States
Prior art keywords
power
data
power line
delivered
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/775,209
Inventor
Brian J. Deaver
William O. Radtke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Current Technologies LLC
Original Assignee
Current Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Current Technologies LLC filed Critical Current Technologies LLC
Priority to US11/775,209 priority Critical patent/US20080109387A1/en
Priority to PCT/US2007/082760 priority patent/WO2008057808A2/en
Assigned to AP CURRENT HOLDINGS, LLC reassignment AP CURRENT HOLDINGS, LLC SECURITY AGREEMENT Assignors: CURRENT TECHNOLOGIES, LLC
Assigned to CURRENT TECHNOLOGIES, LLC reassignment CURRENT TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RADTKE, WILLIAM O., DEAVER, BRIAN J., SR.
Publication of US20080109387A1 publication Critical patent/US20080109387A1/en
Assigned to CURRENT TECHNOLOGIES, LLC reassignment CURRENT TECHNOLOGIES, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: AP CURRENT HOLDINGS, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16547Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies voltage or current in AC supplies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging

Definitions

  • the present invention generally relates to methods and apparatus for detecting power theft, and more particularly to methods and apparatus for detecting, locating, and communicating power theft in a power distribution system.
  • Electrical power for consumption at residences, offices and other structures is delivered by a power distribution system. Electrical power is transmitted at high voltages from a power plant to substations near populated areas. Electrical power then is distributed from a substation along power lines and through distribution transformers toward consumer premises. Utility meters typically are located at the consumer's premises to measure the amount of power being consumed at the premises. Equipment, appliances and other devices plug into power outlets at the premises and draw power.
  • Power traversing through the utility meter is metered to determine the utility fees to be billed to the customer of a given premises.
  • Power that is used upstream from a given power meter is not measured by such power meter.
  • Tapping into the power line upstream of the power meter to supply power to a premises or devices is illegal and is power theft. It is estimated that approximately 3% of the power being generated in the United States is stolen (used by, but not paid for, by consumers). In other countries the amount may be significantly higher being estimated to be approximately 10% in Europe and up to 30% elsewhere.
  • power theft also has adverse effects on consumers and society.
  • One effect to consumers is the increase in the fees paid by consumers who pay for power.
  • a consumer may be billed for power based upon the amount of power consumed.
  • the cost of producing and delivering power is passed on to the consumer and determines, in part, the rates charged for power.
  • the paying consumer ends up subsidizing the power thief by paying the thief's share of the power costs.
  • a less apparent effect is that a thief receiving some power for free is not billed accurately for all of their power consumption. In effect the thief is getting power at a lesser charge. Therefore, the thief does not have the same motivation to conserve power, which, in the aggregate, may impact the environment.
  • One of the challenges in stopping power theft is the difficulty in detecting power theft. In particular it is difficult to obtain data which identifies specific locations where power theft is occurring.
  • Power is delivered to premises low voltage power lines that are supplied power by medium voltage power lines.
  • Parameters of power delivery include power line current, power line voltage and network load distribution, among others. Measurement of such parameters has not been available in a satisfactory manner to optimize power network management. For example, consider power line current. Current measurements typically have only been available at transfer substations (i.e., a location where the high voltage power lines couple to medium voltage power lines for regional power distribution) and, in some instances, at the customer's power meter.
  • One or more embodiments of the present invention may overcome the disadvantages of the prior art and satisfy the need.
  • the present invention provides a device, system and method of providing utility data services.
  • the method includes receiving meter data of the measured power consumed by a plurality of power customers, receiving delivered power data that includes data of the power delivered to the plurality of power customers, determining a difference between the meter data and the delivered power data, determining that the difference between the meter data and the delivered power data is greater than a predetermined amount, and indicating a discrepancy if the difference between the meter data and the delivered power data is greater than a predetermined amount.
  • the method may include determining that a discrepancy varies over time by a predetermined amount and providing a discrepancy notification such as wirelessly and/or via power line.
  • FIG. 1 is a block diagram of an example power line communication and power distribution parameter measurement system
  • FIG. 2 is a block diagram and partial schematic of an example embodiment of a power line current sensor device
  • FIG. 3 is a block diagram of a power line parameter sensor device coupled to a power line communication device
  • FIG. 4 is a block diagram of a power line parameter sensor device coupled to a power line communication device by a wireless medium
  • FIG. 5 is a block diagram of a power line parameter sensor device coupled to a power line communication device by a wireless medium
  • FIG. 6 is a block diagram of an example embodiment of a backhaul node
  • FIG. 7 illustrates an implementation of an example embodiment of a backhaul node
  • FIG. 8 is a block diagram of an example embodiment of an access node
  • FIG. 9 illustrates an implementation of an example embodiment of an access node
  • FIG. 10 illustrates a plurality of sensor devices located at various positions for collecting power line distribution parameter data according to an example embodiment of the present invention
  • FIG. 11 is a partial network diagram showing an example topology of a power line communication and power distribution parameter system according to an example embodiment of the present invention.
  • FIG. 12 illustrates a power detection configuration for isolating a source location of power theft down to a group of premises located downstream of a given transformer
  • FIG. 13 illustrates a power detection configuration for isolating a source location of power theft down to a specific premise among a group of premises downstream of a given transformer
  • FIG. 14 illustrates a configuration for detecting power theft downstream of a given transformer, in which the theft source may be identified as being from a first group of premises or from a specific premise among a second group of premises;
  • FIG. 15 illustrates a configuration for detecting power theft downstream of a given transformer, in which the theft source may be identified as being from a first group of premises or from a second group of premises;
  • FIG. 16 illustrates a configuration for detecting power theft downstream of a given transformer, in which the theft source may be identified as being from a specific premise among a first group of premises or from a specific premise among a second group of premises;
  • FIG. 17 illustrates a configuration for isolating a source location of power theft within a region as being within an area serviced by a specific distribution transformer
  • FIG. 18 illustrates a configuration for isolating a source location of power theft within a region as being within an area serviced by a specific distribution transformer, wherein sensed power parameters may be communicated by wired or wireless transmission;
  • FIG. 19 illustrates an alternative configuration for isolating a source location of power theft within a region as being within an area serviced by a specific distribution transformer
  • FIG. 20 illustrates an alternative configuration for isolating a source location of power theft within a region as being within an area serviced by a specific distribution transformer, wherein sensed power parameters may be communicated by wired or wireless transmission;
  • FIG. 21 illustrates a flow chart of an example implementation for processing the data according to an example embodiments of the present invention.
  • a power line communication and measurement system including a power parameter sensing device, various communication devices and protocols, and implementation software. Also described are exemplary network topologies. Such systems and devices may be implemented in various embodiments to detect power theft. Specific embodiments of system configurations for detecting theft, along with specific embodiments of methods for detecting theft are described below in a separate section, following the discussion of the communication and measurement system.
  • An embodiment of a power line communication and power distribution parameter measurement system may be implemented to gather power distribution parameters from multiple points along a power distribution network and transmit the gathered data to a utility or other processing center.
  • sensor devices may be positioned along overhead and underground medium voltage power lines, and along network (external or internal) low voltage power lines.
  • the measured power line parameter data may be used in many ways.
  • the power line utility may monitor power line current at many locations to improve operations and maintenance, to assist in network planning, and to detect power theft.
  • the power line communication and power distribution parameter measurement system also may provide user services (i.e., communicate user data), such as: high speed broadband internet access; mobile telephone communications; broadband communications; streaming video and audio services; and other communication services to homes, buildings and structures, and to each room, office, apartment, or other unit or sub-unit of multi-unit structures.
  • Communication services also may be provided to mobile and stationary devices in outdoor areas such as customer premises yards, parks, stadiums, and also to public and semi-public indoor areas such as subway trains, subway stations, train stations, airports, restaurants, public and private automobiles, bodies of water (e.g., rivers, bays, inlets, etc.), building lobbies, elevators, etc.
  • power line parameter sensor devices which include a sensor for measuring a parameter (i.e., value or characteristic), are installed at locations along MV power lines and LV power lines.
  • a power line sensor device may be in communication with a communication node which may monitor the device and forward data to a more central location.
  • the power parameter sensor device may measure (meant to include measure or detect) one or more electrical distribution parameters, which may include, for example purposes only, power usage, power line voltage, power line current, detection of a power outage, detection of water in a pad mount, detection of an open pad mount, detection of a street light failure, power delivered to a transformer, power factor (e.g., the phase angle between the voltage and current of a power line), power delivered to a downstream branch, data of the harmonic components of a power signal, load transients, and/or load distribution.
  • power distribution parameters may include, for example purposes only, power usage, power line voltage, power line current, detection of a power outage, detection of water in a pad mount, detection of an open pad mount, detection of a street light failure, power delivered to a transformer, power factor (e.g., the phase angle between the voltage and current of a power line), power delivered to a downstream branch, data of the harmonic components of a power signal, load transients, and/or load distribution.
  • power factor
  • the sensor device may comprise a power line current sensor that is formed of a Rogowski coil and such sensor device may be installed throughout a network (on both MV and LV power lines).
  • the Rogowski coil is an electrical device for measuring alternating current (AC) or high speed current pulses.
  • An exemplary embodiment includes a first and second helical coils of wire (loops) electrically connected in series with each other. The first loop is wound with a substantially constant winding density in a first direction around a core that has a substantially constant cross section. The second loop is wound with a substantially constant winding density in a second direction around a core that has a substantially constant cross section.
  • a conductor e.g., a power line
  • a voltage may be induced in the coil based on the rate of change of the current running through the power line.
  • Rogowski coils may have other configurations as well.
  • other current sensors may be used that, for example, include a hall effect sensor.
  • a Rogowski coil may be open-ended and flexible, allowing it to be wrapped around an energized conductor.
  • a Rogowski coil may include an air core (or other dielectric core) rather than an iron core, which gives the coil a low inductance and an ability to respond to fast-changing currents.
  • the Rogowski coil typically is highly linear, even when subjected to large currents, such as those of low voltage and medium voltage power lines. By forming the Rogowski coil with equally spaced windings, effects of electromagnetic interference may be substantially avoided. On method of providing equal spaced windings is to use printed circuit boards to manufacture the coil.
  • FIG. 1 shows components of a power line communication system 104 that may be provide communications for a power distribution parameter measurement system.
  • the system 104 includes a plurality of communication nodes 128 which form communication links using power lines 110 , 114 and other communication media.
  • Various user devices 130 and power line communication devices may transmit and receive data over the links to communicate via an IP network 126 (e.g., the Internet).
  • IP network 126 e.g., the Internet
  • the communicated data may include measurement data of power distribution parameters, control data and user data.
  • One type of communication node 128 may be a backhaul node 132 .
  • Another type of communication node 128 may be an access node 134 .
  • Another type of communication node 128 may be a repeater node 135 .
  • a given node 128 may serve as a backhaul node 132 , access node 134 , and/or repeater node 135 .
  • a communication link is formed between two communication nodes 128 over a communication medium. Some links may be formed over MV power lines 110 . Some links may be formed over LV power lines 114 . Other links may be gigabit-Ethernet links 152 , 154 formed, for example, using a fiber optic cable. Thus, some links may be formed using a portion 101 of the power system infrastructure, while other links may be formed over another communication media, (e.g., a coaxial cable, a T-1 line, a fiber optic cable, wirelessly (e.g., IEEE 802.11a/b/g, 802.16, 1G, 2G, 3G, or satellite such as WildBlue®)). The links formed by wired or wireless media may occur at any point along a communication path between a backhaul node 132 and a user device 130 .
  • the links formed by wired or wireless media may occur at any point along a communication path between a backhaul node 132 and a user device 130 .
  • Each communication node 128 may be formed by one or more communication devices.
  • Communication nodes which communicate over a power line medium include a power line communication device.
  • Exemplary power line communication devices include a backhaul device 138 (see FIG. 6 ), an access device 139 (see FIG. 8 ), and a repeater 135 . These power line communication devices are described below in more detail below.
  • Communication nodes which communicate wirelessly may include a mobile telephone cell site, wireless pager transceiver, or a wireless access point having at least a wireless transceiver, (which may comprise mobile telephone cell site/transceiver (e.g., a micro or pico cell site) or an IEEE 802.11 transceiver (Wifi)).
  • Communication nodes which communicate over a coaxial cable may include a cable modem.
  • Communication nodes which communicate over a twisted pair wire may include a DSL modem or other modem.
  • a given communication node typically will communicate in two directions (either full duplex or half duplex), which may be over the same or different types of communication media.
  • a backhaul device 138 or access device 139 or repeater may establish links over MV power lines 110 , LV power lines 114 , wired media, and wireless media. Accordingly, a given communication node may communicate along two or more directions establishing multiple communication links, which may be formed along the same or different types of communication media.
  • a power line parameter sensor device 115 may be located in the vicinity of, and communicatively coupled to, a power line communication device 138 , 139 , 135 .
  • the power line parameter sensor device 115 measures (hereinafter to include measure or detect) a power line parameter of a power line 110 , 114 , such as: current, voltage, power usage data, detection of a power outage, detection of water in a pad mount transformer enclosure, detection of an open pad mount transformer enclosure, detection of a street light failure, power delivered to a transformer data (i.e., wherein the sensor device is coupled the conductor that connects the distribution transformer to the MV power line), power factor data (e.g., the phase angle between the voltage and current of a power line), power delivered to a downstream branch data, data of the harmonic components of a power signal, load transients data, and/or load distribution data.
  • a transformer data i.e., wherein the sensor device is coupled the conductor that connects the distribution transformer to the MV power line
  • a backhaul node 132 may serve as an interface between a power line medium (e.g., an MV power line 110 ) of the system 104 and an upstream node 127 , which may be, for example, connected to an aggregation point 124 that may provide a connection to an IP network 126 .
  • the system 104 typically includes one or more backhaul nodes 132 . Upstream communications from user premises and control and monitoring communications from power line communication devices may be communicated to an access node 134 , to a backhaul node 132 , and then transmitted to an aggregation point 124 which is communicatively coupled to the IP network 126 .
  • Communications may traverse the IP network to a destination, such as a web server, power line server 118 , or an end user device.
  • the backhaul node 132 may be coupled to the aggregation point 124 directly or indirectly (i.e., via one or more intermediate nodes 127 ).
  • the backhaul node 132 may communicate with its upstream device via any of several alternative communication media, such as a fiber optic cable (digital or analog (e.g., Wave Division Multiplexed)), coaxial cable, WiMAX, IEEE 802.11, twisted pair and/or another wired or wireless media.
  • Downstream communications from the IP network 126 typically are communicated through the aggregation point 124 to the backhaul node 132 .
  • the aggregation point 124 typically includes an Internet Protocol (IP) network data packet router and is connected to an IP network backbone, thereby providing access to an IP network 126 (i.e., can be connected to or form part of a point of presence or POP). Any available mechanism may be used to link the aggregation point 124 to the POP or other device (e.g., fiber optic conductors, T-carrier, Synchronous Optical Network (SONET), and wireless techniques).
  • IP Internet Protocol
  • POP Internet Protocol
  • Any available mechanism may be used to link the aggregation point 124 to the POP or other device (e.g., fiber optic conductors, T-carrier, Synchronous Optical Network (SONET), and wireless techniques).
  • SONET Synchronous Optical Network
  • An access node 134 may transmit data to and receive data from, one or more user devices 130 or other network destinations. Other data, such as power line parameter data (e.g., current measured by a power line current sensor) may be received by an access node's power line communication device 139 . The data enters the network 104 along a communication medium coupled to the access node 134 . The data is routed through the network 104 to a backhaul node 132 . Downstream data is sent through the network 104 to a user device 130 .
  • power line parameter data e.g., current measured by a power line current sensor
  • Exemplary user devices 130 include a computer 130 a , LAN, a WLAN, router 130 b , Voice-over IP endpoint, game system, personal digital assistant (PDA), mobile telephone, digital cable box, security system, alarm system (e.g., fire, smoke, carbon dioxide, security/burglar, etc.), stereo system, television, fax machine 130 c , HomePlug residential network, or other user device having a data interface.
  • the system also may be use to communicate utility usage data from a automated gas, water, and/or electric power meter.
  • a user device 130 may include or be coupled to a modem to communicate with a given access node 134 .
  • Exemplary modems include a power line modem 136 , a wireless modem 131 , a cable modem, a DSL modem or other suitable modem or transceiver for communicating with its access node.
  • a repeater node 135 may receive and re-transmit data (i.e., repeat), for example, to extend the communications range of other communication elements.
  • backhaul nodes 132 and access nodes 134 also may serve as repeater nodes 135 , (e.g., for other access nodes and other backhaul nodes 132 ).
  • Repeaters may also be stand-alone devices without additional functionality.
  • Repeaters 135 may be coupled to and repeat data on MV power lines or LV power lines (and, for the latter, be coupled to the internal or external LV power lines).
  • the power line distribution parameter sensor device 115 may measure or detect a parameter of a power line 110 , 114 .
  • Some exemplary parameters include as current, voltage, and power usage data (e.g. data of power traversing through the power line in, for example, watts).
  • Other parameters may include detection of a power outage, detection of water in a pad mount transformer enclosure, detection of an open pad mount transformer enclosure, and detection of a street light failure.
  • Still another parameter may include power delivered to a transformer (e.g., a sensor device may be coupled to the conductor 165 that connects the distribution transformer 112 to the MV power line—see FIG. 10 ).
  • Another parameter may include power factor data (e.g., the phase angle between the voltage and current of a power line), which may be determined by processing data from multiple sensors (i.e., current and voltage). Still other parameters may include power delivered to a downstream branch data, data of the harmonic components of a power signal, load transients data, load distribution data, and/or other characteristics. One skilled in the art will appreciate that other types of parameter data also may be gathered.
  • one sensor device 115 may be configured to provide data pertaining to more than one parameter. For example, a sensor device 115 may be configured to provide data of the voltage and current carried by the power line (and therefore have multiple sensors).
  • One or more sensor devices 115 may be installed at a given power line 110 and/or 114 and be coupled to a corresponding power line communication device 138 , 139 , 135 .
  • a power line current sensor device may be installed at power lines 110 and 114 alone or with another power line parameter sensor device (e.g., a power line voltage sensor device on power line 114 ). Such a configuration may be used to determine the current and power into and out of a transformer.
  • the data provided by the sensor device 115 may be used to determine additional parameters (either by the sensor device, the power line communication device, or a remote computer).
  • a sensor device 115 may be configured to measure the instantaneous voltage and current (e.g., over brief or extended time period).
  • the measurement data may be provided to the power line communication device 138 , 139 , 135 for processing.
  • the device 138 , 138 , or 135 may compute the power factor of the power line (through means well known in the art) and power delivered.
  • other power line parameters may be measured using an appropriate sensor device coupled to a power line 110 , 114 in the vicinity of a power line communication device 138 , 139 , 135 in place of, or in addition to, the power line current sensor device.
  • FIG. 2 shows one example embodiment of a power line parameter sensor device 115 , which comprises a power line current sensor device 116 including a Rogowski coil 200 having two loops 201 , 202 , an integrator 204 and an interface 206 .
  • Each loop 201 , 202 has a first end 208 and a second end 210 .
  • the Rogowski coil 200 may be readily installed at a power line 110 , 114 .
  • the coil 200 may have a generally circular shape with an open arc between the ends 208 , 210 (to be slipped around the power line) or may be substantially a full closed circle (and formed in two pieces that are hinged together to clamp over the power line).
  • the two pieces of the loops 201 , 202 are clamped around the power line 110 , 114 (which may require pulling back the power line neutral conductor for underground power lines).
  • a power line 110 , 114 passes through the circular shape as shown.
  • the coil 200 of the Rogowski coil may include a first winding 201 wound in a first direction, a second winding 202 wound in a second direction, and wherein said first winding 201 and said second winding 202 each include traces on a printed circuit board.
  • the windings 201 , 202 are traced on one or more printed circuit boards (PCBs) 216 , 218 , and then the printed circuit boards (if more than one) are coupled together to form a monolithic PCB assembly (i.e., one structure).
  • the two windings of the coil are traced together and interwoven with each other on the PCB (a multi-layer printed circuit board) and therefore may be referred to as being “coupled” together.
  • the loops are not identical in form.
  • the windings may be traced separately on separate PCBs and have identical geometries on separate PCBs, and be positioned along the power line 110 , 114 in close proximity.
  • a magnetic field is generated inducing an electrical field (i.e. voltage) within each winding 201 , 202 of the Rogowski coil 200 .
  • other sources of electromagnetic interference also may induce current flow in the windings 201 , 202 .
  • the effects from external sources are largely cancelled out.
  • external fields from sources outside the Rogowski coil 200 such as other power lines or power line communication and distribution equipment, generate equal but opposite electrical flow in the windings 201 , 202 .
  • the Rogowski coil 200 provides an instantaneous voltage measurement that is related to the alternating current (AC) flowing through the power line 110 , 114 .
  • Each winding 201 , 202 of the Rogowski coil 200 comprises an electrical conductor 212 wound around a dielectric core 214 (e.g., PCB).
  • a dielectric core 214 e.g., PCB
  • each loop 201 , 202 has windings that are wound with a substantially constant density and a core 214 that has a magnetic permeability that may be equal to the permeability of free space ⁇ o (such as, for example, air) or a printed circuit board.
  • the cross section of the core 214 may be substantially constant.
  • the coil output voltage, v(t) may be integrated.
  • the integrator 204 may convert the measured voltage v(t) into a value equating to measured current.
  • the integrator 204 may comprise a resistor-capacitor (RC) integrator, an operational amplifier integrator, a digital filter (integrator), another circuit or a processor. Observing that the voltage v(t), is proportional to the derivative of the current being measured, and that if that current is sinusoidal, the voltage v(t) will also be sinusoidal. Thus, determining the current does not always require integration of the voltage v(t)), in which embodiment the integrator 204 may be omitted.
  • each power line distribution parameter sensor device 115 may include an interface 206 which provides communications with a power line communication device, such as a backhaul device 138 , an access device 139 , a repeater 135 , or other communication device. In various embodiments different interfaces 206 may be implemented.
  • the sensor device 115 may include an analog to digital converter (ADC).
  • ADC analog to digital converter
  • raw analog data is communicated from the sensor device 115 to the power line communication device, which may convert the analog data to digital data (via an ADC) and provide processing.
  • Such processing may include, for example, time stamping, formatting the data, normalizing the data, converting the data (e.g., converting the voltage measured by the ADC to a current value), removing an offset, and other such data processing.
  • the processing also may be performed in the sensor device 115 , in the power line communication device.
  • the sensor device 115 of some embodiments may include a controller, an analog to digital converter (ADC), and a memory coupled to said ADC (perhaps via a controller) and configured to store current data.
  • the data may be transmitted to the power line server 118 or another remote computer for processing.
  • the overhead medium voltage power lines typically are not insulated.
  • sensor devices 115 which contact (e.g., are to be clamped around for a Rogowski coil) an overhead medium voltage power line or other high voltage conductor, it may be necessary to isolate the voltage (which may be 5,000-10,000 volts or more) of the power line (to which the power line parameter sensor device 116 is mounted) from the power line communication device 138 , 139 , 135 and other non-MV power line devices.
  • the communication path of the measured data may comprise a non-conductive communication link that allows the data to be communicated but that does not conduct the high voltages of the MV or other power lines.
  • isolation may not be necessary because underground power lines are insulated and, therefore the sensor devices 115 do not come into contact with the medium voltage.
  • FIGS. 3 , 4 and 5 show different manners of coupling the power line parameter sensor device 115 to the power line communication device 138 , 139 , 135 , via a non-conductive communication link to provide electrical isolation (when necessary) from the medium voltage power line 110 .
  • a wired medium 220 carries measurement data from the power line parameter sensor device 115 to the power line communication device 138 , 139 , 135 .
  • the wired medium 220 may comprise a conductive wire (i.e., a pair or wires).
  • the wired medium 220 may include a fiber optic cable or other wired medium that does not conduct high voltages.
  • the power line parameter sensor device 115 and power line communication device 138 , 139 , 135 each may include a fiber optic transceiver (or fiber optic transmitter in the sensor device 115 and an optic receiver in the communication device).
  • the fiber optic cable may carry analog or digitized sensor data to the power line communication device 138 , 139 , 135 .
  • the sensor device 115 may require a power source (i.e., an energy harvesting system) for powering the fiber optic transceiver and other components (such as an ADC) of the sensor device 115 .
  • power may be sent over a fiber optic cable as an optical signal from the power line communication device 138 , 139 , 135 (or another device) to the sensor device 115 , where the photonic energy is converted to electrical energy to power the fiber optic transmitter (that may form part of a transceiver) and other components of the power line parameter sensor device 115 via a power supply 221 .
  • a photonic power delivery system may be used whereby light from a laser source illuminates a highly efficient photovoltaic power converter at the sensor device 115 to produce electrical power.
  • the power line parameter sensor device 115 may include a different power system, such as a solar cell or battery, or kinetic energy converter (e.g., to convert vibrations to electrical energy), to provide power to the sensor device 115 circuits.
  • a power supply 221 may derive power from the power line 110 via inductance.
  • a transformer may be formed by a magnetically permeable core placed substantially around the entire circumference of power line 110 (perhaps with a gap) and a winding around the core. The power line 110 , core, and winding form a transformer with the winding connected to the power supply 221 .
  • FIG. 4 shows an embodiment in which a wireless link 222 carries measurement data from the power line parameter sensor device 115 to the power line communication device 138 , 139 , 135 .
  • the interface 206 may include a wireless transceiver 224 (e.g., IEEE 802.11a,b,g, or n or Bluetooth®, ISM band transceiver) or wireless transmitter which communicates with a wireless transceiver 226 (or receiver) of the power line communication device 138 , 139 , 135 .
  • a wireless transceiver 224 e.g., IEEE 802.11a,b,g, or n or Bluetooth®, ISM band transceiver
  • the power line parameter sensor device 116 also may include a power supply 223 with an isolated power source such as a solar cell, battery, a photonic power source, or an MV inductive power source, to provide power to the sensor device 115 circuits.
  • the wireless methods may include means for coordinating the transmissions from individual sensor devices 115 so that they do not interfere with each other and so that the power line communication device can determine the source of the data.
  • a transceiver may use the ISM bands (915 MHz) and use an “ID Code” embedded in the data to identify the sensor device 115 .
  • the links may communicate via different frequency bands.
  • FIG. 5 shows another embodiment in which a wireless link 230 carries measurement data from a radio frequency identification (RFID) transponder 232 of a power line parameter sensor device 115 to the power line communication device 138 , 139 , 135 .
  • RFID radio frequency identification
  • the sensor transponder 232 may be passive (having no power source of its own) or active (having its own power source).
  • the interface includes a passive radio transponder 232 .
  • the power line communication device 138 , 139 , 135 also includes a transponder 234 which transmits a signal to the power line parameter sensor device 115 .
  • the strength of the transmitted signal may provide enough power to drive the power line parameter sensor transponder 232 and, if necessary, the sensor's 115 other components as well.
  • the sensor device 115 powers up, gathers one or more samples of the power line current, voltage, and/or other data, and transmits the sampled data back to the power line communication device 138 , 139 , 135 via transponder 232 .
  • the sensor device includes an active radio transponder having its own power supply, which may have an isolated power source as described herein.
  • data from the sensor devices 115 of the system or within a region or neighborhood covered by a sub-portion of the system may be sampled substantially simultaneously (e.g., all sensor devices 115 sample within a thirty second, sixty second, three minute, or five minute time period). Such samples may be gathered at a set scheduled time, at regular times, at regular intervals, or in response to a command received from a remote computer. Uses of the measured (and processed) power line parameter data are described below in more detail.
  • the invention may employ a communication method that reduces the power needed to communicate the measured data over the non-conductive communication link. Specifically, reducing the power needed to communicate the data allows the sensor device to communicate data when very little power is available (e.g., from the isolated power source).
  • the sensor device 115 includes a timing circuit that periodically wakes up the sensing and memory circuits (e.g., analog to digital converter and memory) from a reduced power state (e.g., hibernation or standby state) to allow the measurement(s) to be taken (samples converted to digital data), processed, and stored in memory.
  • a reduced power state e.g., hibernation or standby state
  • the communication circuitry of the interface 206 may be woken up to transmit the stored data to the power line communication device 138 , 139 , 135 via the non-conductive communication link (e.g., the fiber optic conductor, through the air via a wireless transmitter or transceiver, etc.).
  • the non-conductive communication link e.g., the fiber optic conductor, through the air via a wireless transmitter or transceiver, etc.
  • the communication circuitry is configured to transmit a plurality of samples of the parameter data in a bursting transmission, which may comprise a relatively high transmission rate and relatively short transmission time. Specifically, over a given time period (e.g., a day) a plurality of bursts of the parameter data may be transmitted, with each burst transmitting data a plurality of the stored samples.
  • the bursting at high data rates may allow the transmitter of the interface 206 of the sensor device 206 to remain powered down (or in a low power use state) a high percentage of the time.
  • the bursting transmission over a time period may have an extremely low duty cycle such as less than 0.01 (1%), more preferably less than 0.001 (0.1%), even more preferably less than 0.0001 (0.01%), and still more preferably less than 0.00001 (0.001%).
  • Communication nodes such as access nodes, repeaters, and backhaul nodes, may communicate to and from the IP network (which may include the Internet) via a backhaul node 132 .
  • a backhaul node 132 comprises a backhaul device 138 .
  • the backhaul device 138 may transmit communications directly to an aggregation point 124 , or to a distribution point 127 which in turn transmits the data to an aggregation point 124 .
  • FIGS. 6 and 7 show an example embodiment of a backhaul device 138 which may form all or part of a backhaul node 132 .
  • the backhaul device 138 may include a medium voltage power line interface (MV Interface) 140 , a controller 142 , an expansion port 146 , and a gigabit Ethernet (gig-E) switch 148 .
  • the backhaul device 138 also may include a low voltage power line interface (LV interface) 144 .
  • the MV interface 140 is used to communicate over the MV power lines and may include an MV power line coupler coupled to an MV signal conditioner, which may be coupled to an MV modem 141 .
  • the MV power line coupler prevents the medium voltage power from passing from the MV power line 110 to the rest of the device's circuitry, while allowing the communications signal to pass between the backhaul device 138 and the MV power line 110 .
  • the MV signal conditioner may provide amplification, filtering, frequency translation, and transient voltage protection of data signals communicated over the MV power lines 110 .
  • the MV signal conditioner may be formed by a filter, amplifier, a mixer and local oscillator, and other circuits which provide transient voltage protection.
  • the MV modem 141 may demodulate, decrypt, and decode data signals received from the MV signal conditioner and may encode, encrypt, and modulate data signals to be provided to the MV signal conditioner.
  • the backhaul device 138 also may include a low voltage power line interface (LV Interface) 144 for receiving and transmitting data over an LV power line 114 .
  • the LV interface 144 may include an LV power line coupler coupled to an LV signal conditioner, which may be coupled to an LV modem 143 .
  • the LV power line coupler may be an inductive coupler.
  • the LV power line coupler may be a conductive coupler.
  • the LV signal conditioner may provide amplification, filtering, frequency translation, and transient voltage protection of data signals communicated over the LV power lines 114 . Data signals received by the LV signal conditioner may be provided to the LV modem 143 .
  • the LV signal conditioner may be formed by a filter, amplifier, a mixer and local oscillator, and other circuits which provide transient voltage protection.
  • the LV modem 143 may demodulate, decrypt, and decode data signals received from the LV signal conditioner and may encode, encrypt, and modulate data signals to be provided to the LV signal conditioner.
  • the backhaul device 138 also may include an expansion port 146 , which may be used to connect to a variety of devices.
  • a wireless access point which may include a wireless transceiver or modem 147 , may be integral to or coupled to the backhaul device 138 via the expansion port 146 .
  • the wireless modem 147 may establish and maintain a communication link 150 .
  • a communication link is established and maintained over an alternative communications medium (e.g., fiber optic, cable, twisted pair) using an alternative transceiver device.
  • the expansion port 146 may provide an Ethernet connection allowing communications with various devices over optical fiber, coaxial cable or other wired medium.
  • the modem 147 may be an Ethernet transceiver (fiber or copper) or other suitable modem may be employed (e.g., cable modem, DSL modem).
  • the expansion port may be coupled to a Wifi access point (IEEE 802.11 transceiver), WiMAX (IEEE 802.16), wireless pager transceiver, mobile telephone transceiver, or mobile telephone cell site.
  • the expansion port may be employed to establish a communication link 150 between the backhaul device 138 and devices at a residence, building, other structure, another fixed location, or between the backhaul device 138 and a mobile device.
  • Various sensor devices 115 also may be connected to the backhaul device 138 through the expansion port 146 or via other means (e.g., a dedicated sensor interface not shown).
  • Exemplary sensors that may be coupled to the backhaul device 138 may include a power distribution parameter sensor 116 (which may comprise current sensor device 115 or a voltage sensor device), a level sensor (to determine pole tilt), a camera (e.g., for monitoring security, detecting motion, monitoring children's areas, monitoring a pet area), an audio input device (e.g., microphone for monitoring children, detecting noises), a vibration sensor, a motion sensor (e.g., an infrared motion sensor for security), a home security system, a smoke detector, a heat detector, a carbon monoxide detector, a natural gas detector, a thermometer, a barometer, a biohazard detector, a water or moisture sensor, a temperature sensor, and a light sensor.
  • a power distribution parameter sensor 116 which may comprise current sensor device 115 or
  • the expansion port may provide direct access to the core processor (which may form part of the controller 142 ) through a MII (Media Independent Interface), parallel, serial, or other connection.
  • MII Media Independent Interface
  • This direct processor interface may then be used to provide processing services and control to devices connected via the expansion port thereby allowing for a more less expensive device (e.g., sensor).
  • the power parameter sensor device 115 may measure and/or detect one or more parameters, which, for example, may include power usage data, power line voltage data, power line current data, detection of a power outage, detection of water in a pad mount, detection of an open pad mount, detection of a street light failure, power delivered to a transformer data, power factor data (e.g., the phase angle between the voltage and current of a power line), power delivered to a downstream branch data, data of the harmonic components of a power signal, load transients data, and/or load distribution data.
  • power usage data power line voltage data, power line current data, detection of a power outage, detection of water in a pad mount, detection of an open pad mount, detection of a street light failure
  • power delivered to a transformer data power factor data (e.g., the phase angle between the voltage and current of a power line)
  • power factor data e.g., the phase angle between the voltage and current of a power line
  • power delivered to a downstream branch data data of the harmonic components of
  • the backhaul device 138 may include multiple sensor devices 115 so that parameters of multiple power lines may be measured such as a separate parameter sensor device 116 on each of three MV power line conductors and a separate parameter sensor on each of two energized LV power line conductors and one on each neutral conductor.
  • a separate parameter sensor device 116 on each of three MV power line conductors and a separate parameter sensor on each of two energized LV power line conductors and one on each neutral conductor.
  • the expansion port may be coupled to an interface for communicating with the interface 206 of the sensor device 116 via a non-conductive communication link.
  • the backhaul device 138 also may include a gigabit Ethernet (Gig-E) switch 148 .
  • Gigabit Ethernet is a term describing various technologies for implementing Ethernet networking at a nominal speed of one gigabit per second, as defined by the IEEE 802.3z and 802.3ab standards. There are a number of different physical layer standards for implementing gigabit Ethernet using optical fiber, twisted pair cable, or balanced copper cable.
  • the IEEE ratified a 10 Gigabit Ethernet standard which provides data rates at 10 gigabits per second.
  • the 10 gigabit Ethernet standard encompasses seven different media types for LAN, MAN and WAN. Accordingly the gig-E switch may be rated at 1 gigabit per second (or greater as for a 10 gigabit Ethernet switch).
  • the switch 148 may be included in the same housing or co-located with the other components of the node (e.g., mounted at or near the same utility pole or transformer).
  • the gig-E switch 148 maintains a table of which communication devices are connected to which switch 148 port (e.g., based on MAC address).
  • the switch receiving the packet determines the data packet's destination address and forwards the packet towards the destination device rather than to every device in a given network. This greatly increases the potential speed of the network because collisions are substantially reduced or eliminated, and multiple communications may occur simultaneously.
  • the gig-E switch 148 may include an upstream port for maintaining a communication link 152 with an upstream device (e.g., a backhaul node 132 , an aggregation point 124 , a distribution point 127 ), a downstream port for maintaining a communication link 152 with a downstream device (e.g., another backhaul node 134 ; an access node 134 ), and a local port for maintaining a communication link 154 to a Gig-E compatible device such as a mobile telephone cell cite 155 (i.e., base station), a wireless device (e.g., WiMAX (IEEE 802.16) transceiver), an access node 134 , another backhaul node 132 , or another device.
  • the gig-E switch 148 may include additional ports.
  • the link 154 may be connected to mobile telephone cell site configured to provide mobile telephone communications (digital or analog) and use the signal set and frequency bands suitable to communicate with mobile phones, PDAs, and other devices configured to communicate over a mobile telephone network.
  • Mobile telephone cell sites, networks and mobile telephone communications of such mobile telephone cell sites are meant to include analog and digital cellular telephone cell sites, networks and communications, respectively, including, but not limited to AMPS, 1G, 2G, 3G, GSM (Global System for Mobile communications), PCS (Personal Communication Services) (sometimes referred to as digital cellular networks), 1 ⁇ Evolution-Data Optimized (EVDO), and other cellular telephone cell sites and networks.
  • One or more of these networks and cell sites may use various access technologies such as frequency division multiple access (FDMA), time division multiple access (TDMA), or code division multiple access (CDMA) (e.g., some of which may be used by 2G devices) and others may use CDMA2000 (based on 2G Code Division Multiple Access), WCDMA (UMTS)—Wideband Code Division Multiple Access, or TD-SCDMA (e.g., some of which may be used by 3G devices).
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • CDMA code division multiple access
  • CDMA2000 based on 2G Code Division Multiple Access
  • WCDMA UMTS
  • TD-SCDMA Wideband Code Division Multiple Access
  • the gig-E switch 148 adds significant versatility to the backhaul device 138 .
  • several backhaul devices may be coupled in a daisy chain topology (see FIG. 11 ), rather than by running a different fiber optic conductor to each backhaul node 134 .
  • the local gig-E port allows a communication link 154 for connecting to high bandwidth devices (e.g., WiMAX (IEEE 802.16) or other wireless devices).
  • the local gig-E port may maintain an Ethernet connection for communicating with various devices over optical fiber, coaxial cable or other wired medium.
  • Exemplary devices may include user devices 130 , a mobile telephone cell cite 155 , and sensors (as described above with regard to the expansion port 146 .
  • Communications may be input to the gig-E switch 148 from the MV interface 140 , LV interface 144 or expansion port 146 through the controller 142 . Communications also may be input from each of the upstream port, local port and downstream port.
  • the gig-E switch 148 may be configured (by the controller 142 dynamically) to direct the input data from a given input port through the switch 148 to the upstream port, local port, or downstream port.
  • An advantage of the gig-E switch 148 is that communications received at the upstream port or downstream port need not be provided (if so desired) to the controller 142 . Specifically, communications received at the upstream port or downstream port may not be buffered or otherwise stored in the controller memory or processed by the controller.
  • communications received at the local port may be directed to the controller 142 for processing or for output over the MV interface 140 , LV interface 144 or expansion port 146 ).
  • the controller 142 controls the gig-E switch 148 , allowing the switch 148 to pass data upstream and downstream (e.g. according to parameters (e.g., prioritization, rate limiting, etc.) provided by the controller).
  • data may pass directly from the upstream port to the downstream port without the controller 142 receiving the data.
  • data may pass directly from the downstream port to the upstream port without the controller 142 receiving the data.
  • data may pass directly from the upstream port to the local port in a similar manner; or from the downstream port to the local port; or from the local port to the upstream port or downstream port. Moving such data through the controller 142 would significantly slow communications or require an ultra fast processor in the controller 142 .
  • Data from the controller 142 (originating from the controller 142 or received via the MV interface 140 , the LV interface 144 , or expansion port 146 ) may be supplied to the Gig-E switch 148 for communication upstream (or downstream) via the upstream port (or downstream port) according to the address of the data packet.
  • data from the controller 142 may be multiplexed in (and routed/switched) along with other data communicated by the switch 148 .
  • to route and routing is meant to include the functions performed by of any a router, switch, and bridge.
  • the backhaul device 138 also may include a controller 142 which controls the operation of the device 138 by executing program codes stored in memory.
  • the program code may be executable to process the measured parameter data to, for example, convert the measured data to current, voltage, or power factor data.
  • the backhaul 138 may also include a router, which routes data along an appropriate path.
  • the controller 142 includes program code for performing routing (hereinafter to include switching and/or bridging). Thus, the controller 142 may maintain a table of which communication devices are connected to port in memory.
  • the controller 142 matches data packets with specific messages (e.g., control messages) and destinations, performs traffic control functions, performs usage tracking functions, authorizing functions, throughput control functions and similar related services.
  • Communications entering the backhaul device 138 from the MV power lines 110 at the MV interface 140 are received, and then may be routed to the LV interface 144 , expansion port 146 or gig-E switch 148 .
  • Communications entering the backhaul device 138 from the LV power lines 114 at the LV interface 144 are received, and may then be routed to the MV interface 140 , the expansion port 146 , or the gig-E switch 148 .
  • Communications entering the backhaul device 138 from the expansion port 146 are received, and may then be routed to the MV interface 140 , the LV interface 144 , or the gig-E switch 148 .
  • the controller 142 may receive data from the MV interface 140 , LV interface 144 or the expansion port 146 , and may route the received data to the MV interface 140 , LV interface 144 , the expansion port 146 , or gig-E switch 148 .
  • user data may be routed based on the destination address of the packet (e.g., the IP destination address). Not all data packets, of course, are routed. Some packets received may not have a destination address for which the particular backhaul device 138 routes data packets. Additionally, some data packets may be addressed to the backhaul device 138 itself, in which case the backhaul device may process the data as a control message.
  • the backhaul nodes 132 may communicate with user devices via one or more access nodes 134 , which may include an access device 139 .
  • FIGS. 8-9 show an example embodiment of such an access device 139 for providing communication services to mobile devices and to user devices at a residence, building, and other locations.
  • FIG. 9 shows the access node 134 coupled to an overhead power line, in other embodiments an access node 134 (and its associated sensor devices 115 ) may be coupled to an underground power line.
  • access nodes 124 provide communication services for user devices 130 such as security management; IP network protocol (IP) packet routing; data filtering; access control; service level monitoring; service level management; signal processing; and modulation/demodulation of signals transmitted over the communication medium.
  • IP IP network protocol
  • the access device 139 of this example node 134 may include a bypass device that moves data between an MV power line 110 and an LV power line 114 .
  • the access device 139 may include a medium voltage power line interface (MV Interface) 140 having a MV modem 141 , a controller 142 , a low voltage power line interface (LV interface) 144 having a LV modem 143 , and an expansion port 146 , which may have the functionality, functional components (and for connecting to devices, such as power line parameter sensor device 115 ) as previously described above with regard of the backhaul device 138 .
  • the access device 139 also may include a gigabit Ethernet (gig-E) port 156 .
  • gig-E gigabit Ethernet
  • the gig-E port 156 maintains a connection using a gigabit Ethernet protocol as described above for the gig-E switch 146 of FIG. 6 .
  • the power parameter sensor device 116 may be connected to the access device 139 to measure and/or detect one or more parameters of the MV power or the LV power line, which, for example, may include power usage data, power line voltage data, power line current data, detection of a power outage, detection of water in a pad mount, detection of an open pad mount, detection of a street light failure, power delivered to a transformer data, power factor data (e.g., the phase angle between the voltage and current of a power line), power delivered to a downstream branch data, data of the harmonic components of a power signal, load transients data, and/or load distribution data.
  • power usage data power line voltage data, power line current data, detection of a power outage, detection of water in a pad mount, detection of an open pad mount, detection of a street light failure
  • power delivered to a transformer data power factor data (e
  • the access device 134 may include multiple sensor devices 116 so that parameters of multiple power lines may be measured such as a separate parameter sensor device 116 on each of three MV power line conductors and a separate parameter sensor on each of two energized LV power line conductors and one on each neutral conductor.
  • a separate parameter sensor device 116 on each of three MV power line conductors and a separate parameter sensor on each of two energized LV power line conductors and one on each neutral conductor.
  • the sensor devices 115 described herein may be co-located with the power line communication device with which the sensor device 115 communicates or may displaced therefrom (e.g., at the next utility pole or transformer).
  • the Gig-E port 156 may maintain an Ethernet connection for communicating with various devices over optical fiber, coaxial cable or other wired medium. For example, a communication link 157 may be maintained between the access device 139 and another device through the gig-E port 156 .
  • the gig-E port 156 may provide a connection to user devices 130 , sensors (as described above with regard to the expansion port 146 , such as to power line parameter sensor device 115 ), or a cell station 155 .
  • Communications may be received at the access device 139 through the MV interface 140 , LV interface 144 , expansion port 146 or gig-E port 156 .
  • Communications may enter the access device 139 from the MV power lines 110 through the MV interface 140 , and then may be routed to the LV interface 142 , expansion port 146 or gig-E port 156 .
  • Communications may enter the access device 139 from the LV power lines 114 through the LV interface 144 , and then may be routed to the MV interface 140 , the expansion port 146 , or the gig-E port 156 .
  • Communications may enter the access device 139 from the expansion port 146 , and then may routed to the MV interface 140 , the LV interface 144 , or the gig-E port 156 .
  • Communications may enter the access device 139 via the gig-E port 156 , and then may be routed to the MV interface 140 , the LV interface 144 , or the expansion port 146 .
  • the controller 142 controls communications through the access device 139 . Accordingly, the access device 139 receives data from the MV interface 140 , LV interface 144 , the expansion port 146 , or the gig-E port 156 and may route the data to the MV interface 140 , LV interface 144 , expansion port 146 , or gig-E port 156 under the direction of the controller 142 .
  • the access node 134 may be coupled to a backhaul node 132 via a wired medium coupled to Gig-E port 156 while in another embodiment, the access node is coupled to the backhaul node 132 via an MV power line (via MV interface 140 ). In yet another embodiment, the access node 134 may be coupled to a backhaul node 132 via a wireless link (via expansion port 146 or Gig-E port 156 ).
  • the controller may include program code that is executable to control the operation of the device 139 and to process the measured parameter data to, for example, convert the measured data to current, voltage, or power factor data.
  • a repeater e.g., indoor, outdoor, low voltage (LVR) and/or medium voltage
  • LVR low voltage
  • a repeater serves to extend the communication range of other communication elements (e.g., access devices, backhaul devices, and other nodes).
  • the repeater may be coupled to power lines (e.g., MV power line; LV power line) and other communication media (e.g., fiber optical cable, coaxial cable, T-1 line or wireless medium).
  • power lines e.g., MV power line; LV power line
  • other communication media e.g., fiber optical cable, coaxial cable, T-1 line or wireless medium.
  • a repeater node 135 may also include a device for providing communications to a user device 130 (and thus also serve as an access node 134 ).
  • a user device 130 is coupled to an access node 134 using a modem.
  • a power line medium a power line modem 136 is used.
  • a wireless medium a wireless modem is used.
  • a coaxial cable a cable modem is may be used.
  • a twisted pair a DSL modem may be used. The specific type of modem depends on the type of medium linking the access node 134 and user device 130 .
  • the PLCS may include intelligent power meters, which, in addition to measuring power, may include a parameter sensor device 115 and also have communication capabilities (a controller coupled to a modem coupled to the LV power line) for communicating the measured parameter data to the access node 134 .
  • intelligent power meters which, in addition to measuring power, may include a parameter sensor device 115 and also have communication capabilities (a controller coupled to a modem coupled to the LV power line) for communicating the measured parameter data to the access node 134 .
  • a power line modem 136 couples a communication onto or off of an LV power line 114 .
  • a power line modem 136 is coupled on one side to the LV power line.
  • the power line modem 136 includes a connector to connect to a wired or wireless medium leading to the user device 130 .
  • One protocol for communicating with access nodes 132 over an LV power line is the HomePlug 1.0 standard of the HomePlug® Alliance for routing communications over low voltage power lines. In this manner, a customer can connect a variety of user devices 130 to the communication network 104 .
  • the parameter sensor devices 115 and applications for using the related data also be incorporated in power line communication systems that communicate over underground power lines.
  • Detailed descriptions of the components, features, and power line communication devices of some example underground PLCSs are provided in U.S. patent application Ser. No. 11/399,529 filed on Apr. 7, 2006 entitled, “Power Line Communications Device and Method,” which is hereby incorporated herein by reference in its entirety.
  • the parameter sensor devices 115 described herein (or portions thereof) may be formed in or integrated with couplers for coupling communication signals to and from the power lines.
  • the Rogowski coils described above may be attached to the transformer side of the coupler (or integrated into the coupler) that couples to the underground (or overhead) MV power lines to allow installation of the coupler to also accomplish installation of the sensor device 115 .
  • FIG. 10 shows an example embodiment of a portion of a network having multiple power line distribution parameter sensor devices 116 , 162 .
  • the devices 116 are located along the LV power lines.
  • the devices 162 are located along the MV power lines.
  • a device 162 may be a dual sensor assembly 160 , including a pair of current sensor devices 115 that may be coupled together (e.g., mechanically) and may share a common communication interface for communication with a power line communication device (e.g., a backhaul device 138 , an access device 139 , or a repeater 135 ).
  • the dual sensor device assembly 160 is coupled to the power line communication device 138 , 139 , 135 by a fiber optic conductor 174 .
  • communications with the power line communication device may occur over a wireless communication path.
  • the distribution transformer 112 is connected to the MV power line 110 via conductor 165 at a connection point 164 .
  • a first current sensor device 115 a is disposed on a first side of the connection point 164 and a second current sensor device 115 b is disposed on the second side of the connection point 164 .
  • the flow of current is from left to right over the MV power line 110 .
  • current sensor device 115 a measures the current on the MV power line 110 before the connection point 164 associated with transformer 112 .
  • Current sensor device 115 b measures the current on the MV power line 110 after the connection point 164 associated with transformer 112 .
  • the PLC device 138 , 139 , 135 (assembly device 160 ) or other device (e.g., a remote computer) can determine the current carried through conductor 165 and drawn by the transformer 112 .
  • Various sub-networks 170 a - d may be coupled to the medium voltage power line 110 and also include the same sensor device assemblies 160 and power line communication devices.
  • FIG. 10 also shows a power line distribution parameter sensor device 116 that measures current and voltage of the LV power line.
  • the sensor 116 may be located between the transformer 112 and customer premises on a LV power line connected to the transformer 112 .
  • a power line distribution parameter sensor device 116 may be located at the power meter for the premises, at the transformer 112 or somewhere along the low voltage power line 114 .
  • the power line parameter sensor device 116 is coupled to, and located near, the power line communication device 138 , 139 , 135 and includes a voltage and current sensor device 117 measuring the voltage and current on both LV energized conductors (and current on the neutral).
  • the current and/or power drawn by the transformer 112 can be determined by the power line communication device 138 , 139 , 135 ) and transmitted to a remote computer (e.g., over the MV power line, wirelessly, or via fiber optic) for use by the utility.
  • Information of the current and/or power being drawn by the transformer 112 can be used initiate replacement of the transformer 112 (e.g., if the transformer load is approaching capacity) and/or for planning purposes.
  • the voltage of the MV power line 110 is known with sufficient accuracy or measured by a sensor device 116 , the power input to, and output from, the transformer 112 can be calculated to thereby determine the efficiency of the transformer 112 .
  • the dual sensor device assembly 160 may be packaged with (and installed together with) the conductor 165 at the connection point 164 .
  • a conventional conductor 165 already in place may have its connector jumpered out to be replaced with a connector coupling to the dual sensor device assembly 160 .
  • the dual sensor device assembly 160 may be self-powered, as discussed herein, by inductively drawing power from the medium voltage power line 110 . Near the end of a medium voltage power line 110 , the current may drop below a level needed to power the sensor assembly device 160 d . In such case, however, the parameters measured by the immediately upstream dual sensor assembly 160 c may be used to derive the load of the more downstream load 170 d.
  • the communication network 104 may provide high speed internet access and other high data-rate data services to user devices, homes, buildings and other structure, and to each room, office, apartment, or other unit or sub-unit of multi-unit structure. In doing so, a communication link is formed between two communication nodes 128 over a communication medium. Some links are formed by using a portion 101 of the power system infrastructure. Specifically, some links are formed over MV power lines 110 , and other links are formed over LV power lines 114 .
  • Still other links may be formed over another communication media, (e.g., a coaxial cable, a T-1 line, a fiber optic cable, wirelessly (e.g., IEEE 802.11a/b/g, 802.16, 1G, 2G, 3G, wireless pager system, or satellite such as WildBlue®)).
  • Some links may comprise wired Ethernet, multipoint microwave distribution system (MMDS) standards, DOCSIS (Data Over Cable System Interface Specification) signal standards or another suitable communication method.
  • MMDS multipoint microwave distribution system
  • DOCSIS Data Over Cable System Interface Specification
  • frequency bands are used that are selected from among ranges of licensed frequency bands (e.g., 6 GHz, 11 GHz, 18 GHz, 23 GHz, 24 GHz, 28 GHz, or 38 GHz band) and unlicensed frequency bands (e.g., 900 MHz, 2.4 GHz, 5.8 GHz, 24 GHz, 38 GHz, or 60 GHz (i.e., 57-64 GHz)).
  • licensed frequency bands e.g., 6 GHz, 11 GHz, 18 GHz, 23 GHz, 24 GHz, 28 GHz, or 38 GHz band
  • unlicensed frequency bands e.g., 900 MHz, 2.4 GHz, 5.8 GHz, 24 GHz, 38 GHz, or 60 GHz (i.e., 57-64 GHz)
  • the communication network 104 includes links that may be formed by power lines, non-power line wired media, and wireless media.
  • the links may occur at any point along a communication path between a backhaul node 132 and a user device 130 , or between a backhaul node 132 and a distribution point 127 or aggregation point 124 .
  • the nodes 128 may use time division multiplexing and implement one or more layers of the 7 layer open systems interconnection (OSI) model.
  • OSI open systems interconnection
  • the devices and software may implement switching and routing technologies, and create logical paths, known as virtual circuits, for transmitting data from node to node.
  • error handling, congestion control and packet sequencing can be performed at Layer 3.
  • Layer 2 ‘data link’ activities include encoding and decoding data packets and handling errors of the ‘physical’ layer 1, along with flow control and frame synchronization.
  • the configuration of the various communication nodes may vary.
  • the nodes coupled to power lines may include a modem that is substantially compatible with the HomePlug 1.0 or A/V standard.
  • the communications among nodes may be time division multiple access or frequency division multiple access.
  • the sensor devices described above are described in the context of power line communication system (that may include wireless links), the sensor devices may be connected (communicatively coupled) to wireless communication devices that communicate, for example, via through one or more of a mobile telephone network, two way wireless pager system, WAN, or WiMAX network (and include a transceiver suitable for the wireless network)—and that does not communicate over power lines.
  • wireless communication devices that communicate, for example, via through one or more of a mobile telephone network, two way wireless pager system, WAN, or WiMAX network (and include a transceiver suitable for the wireless network)—and that does not communicate over power lines.
  • FIG. 11 shows an example embodiment of a network topology which illustrates many of the communication features of the backhaul node 132 and access node 134 .
  • several backhaul nodes 132 a - c may be coupled together in a daisy chain configuration by communication links 152 .
  • Such links 152 may be formed by the upstream and downstream ports of the gig-E switch 148 of the respective backhaul nodes 132 .
  • the gig-E switch 148 also may be implemented to connect a backhaul node 132 c to a distribution point 127 . Accordingly, the gig-E switch 148 may form part of a communication link along a path for communicating with an internet protocol network 126 .
  • a local port of a gig-E switch 148 may be implemented to couple a backhaul node 132 a to a mobile phone site 155 via link 154 .
  • the backhaul nodes 132 a - d also may be coupled to MV power lines 110 to maintain MV links for communication with multiple access nodes 134 (shown as small rectangles).
  • the backhaul node 132 a may also be coupled to an access node 134 a (which may repeat data for other access nodes 134 ) over a wireless communication link 150 , for example, through the expansion port 146 .
  • the backhaul node 132 a is further illustrated to couple to a chain of access devices 134 and a backhaul node 132 e .
  • the link from the backhaul node 132 a to the access node 134 b may be formed by coupling a downstream port of the gig-e switch 148 of backhaul node 132 a to the gig-E port 156 of the access node 134 b .
  • a similar link is shown between the backhaul node 132 d and the access node 134 c .
  • Still another communication link is shown over an LV power line 114 to couple an access node 134 d to a computer and to couple a backhaul node 132 f to computer via a LV power line 114 .
  • the communication network 104 may be monitored and controlled via a power line server that may be remote from the structure and physical location of the network elements.
  • the controller of the nodes 128 describe herein may include executable program code for controlling the operation of the nodes and responding to commands.
  • the PLS may transmit any number of commands to a backhaul nodes 132 and access nodes 134 to manage the system. As will be evident to those skilled in the art, most of these commands are equally applicable for backhaul nodes 132 and access nodes 134 . For ease of discussion, the description of the commands will be in the context of a node 128 (meant to include both).
  • These commands may include altering configuration information, synchronizing the time of the node 128 with that of the PLS, controlling measurement intervals (e.g., voltage measurements), requesting measurement or data statistics, requesting the status of user device activations, rate shaping, and requesting reset or other system-level commands. Any or all of these commands may require a unique response from the node 128 , which may be transmitted by the node 128 and received and stored by the PLS.
  • the PLS may include software to transmit a command to any or all of the nodes ( 134 and 132 ) to schedule a voltage and/or current measurement at any particular time so that all of the network elements of the PLCS take the measurement(s) at the same time.
  • the node 128 has the ability to send Alerts and Alarms to the PLS.
  • Alerts typically are either warnings or informational messages transmitted to the PLS in light of events detected or measured by the node 128 .
  • Alarms typically are error conditions detected.
  • an Alarm is an Out-of-Limit Alarm that indicates that an out-of-limit condition has been detected at the node 128 , which may indicate a power outage on the LV power line, an MV or LV voltage too high, an MV or LV voltage too low, a temperature measurement inside the node 128 is too high, and/or other out-of-limit conditions.
  • Information of the Out-of-Limit condition such as the type of condition (e.g., a LV voltage measurement, a node 128 temperature), the Out-of-Limit threshold exceeded, the time of detection, the amount (e.g., over, under, etc.) the out of limit threshold has been exceeded, is stored in the memory of the node 128 and transmitted with the alert or transmitted in response to a request from the PLS.
  • the type of condition e.g., a LV voltage measurement, a node 128 temperature
  • the Out-of-Limit threshold exceeded e.g., the time of detection, the amount (e.g., over, under, etc.) the out of limit threshold has been exceeded
  • the Software Upgrade Handler software may be started by the node 128 Command Processing software in response to a PLS command.
  • Information needed to download the upgrade file including for example the remote file name and PLS IP address, may be included in the parameters passed to the Software Command Handler within the PLS command.
  • the Software Command Handler task may open a file transfer program such as Trivial File Transfer Protocol (TFTP) to provide a connection to the PLS and request the file.
  • TFTP Trivial File Transfer Protocol
  • the requested file may then be downloaded to the node 128 .
  • the PLS may transmit the upgrade through the Internet to the node 128 (and perhaps through the backhaul node, and over the MV power line) where the upgrade may be stored in a local RAM buffer and validated (e.g., error checked) while the node 128 continues to operate (i.e., continues to communicate packets).
  • the task copies the downloaded software into a backup boot page in non-volatile memory, and transmits an Alert indicating successful installation to the PLS.
  • the node 128 then makes the downloaded software the primary boot page and reboots.
  • the device restarts the downloaded software will be copied to RAM and executed.
  • the device will then notify the PLS that it has rebooted via an alert indicating such.
  • new software code may be received by the controller for storage in (e.g., to replace existing code) and execution at the media access control (MAC) layer of the LV modem and/or the MV modem of the access device or the backhaul device.
  • MAC media access control
  • Any of the nodes described herein may include an analog to digital converter (ADC) for measuring the voltage, current, and/or other parameters of any power line 110 , 114 .
  • the ADC may be located within the power line parameter sensor device 115 or within the power line communication device 138 , 139 , 135 .
  • the ADC Scheduler software in conjunction with the real-time operating system, creates ADC scheduler tasks to perform ADC sampling according to configurable periods for each sample type. Each sample type corresponds with an ADC channel.
  • the ADC Scheduler software creates a scheduling table in memory with entries for each sampling channel according to default configurations or commands received from the PLS. The table contains timer intervals for the next sample for each ADC channel, which are monitored by the ADC scheduler.
  • the ADC Measurement Software in conjunction with the real-time operating system, creates ADC measurement tasks that are responsible for monitoring and measuring data accessible through the ADC 330 such as the power distribution parameter sensor devices 115 (including the current sensor devices 115 and voltage sensor devices) described herein. Each separate measurable parameter may have an ADC measurement task. Each ADC measurement task may have configurable rates for processing, recording, and reporting for example.
  • An ADC measurement task may wait on a timer (set by the ADC scheduler). When the timer expires the task may retrieve all new ADC samples for that measurement type from the sample buffer, which may be one or more samples. The raw samples are converted into a measurement value. The measurement is given the timestamp of the last ADC sample used to make the measurement. The measurement may require further processing. If the measurement (or processed measurement) exceeds limit values, an alert condition may be generated. Out of limit Alerts may be transmitted to the PLS and repeated at the report rate until the measurement is back within limits. An out of limit recovery Alert may be generated (and transmitted to the PLS) when the out of limit condition is cleared (i.e., the measured value falls back within limit conditions).
  • the measurements performed by the ADC may include node 128 inside temperature, LV power line voltage, LV power line current, MV power line voltage, and/or MV power line current for example.
  • MV and LV power line measurements may be accomplished via the power line parameter sensor devices 115 .
  • the nodes may include value limits for most of these measurements stored in memory with which the measured value may be compared. If a measurement is below a lower limit, or above an upper limit (or otherwise out of an acceptable range), the node 128 may transmit an Out-of-Limit Alert. Such alert may be received and stored by the PLS. In some instances, one or more measured values are processed to convert the measured value(s) to a standard or more conventional data value.
  • the LV power line voltage measurement may be used to provide various information.
  • the measurement may be used to determine a power outage (and subsequently a restoration), or measure the power used by a consumer (when current data is also available) or by all of the consumers connected to that distribution transformer.
  • it may be used to determine the power quality of the LV power line by measuring and processing the measured values over time to provide frequency, harmonic content, and other power line quality characteristics.
  • power line distribution parameter data may be used to detect power theft, and to isolate a source area, neighborhood or premises where such power theft is occurring.
  • the parameter data also may be used for other purposes, as described below in a separate section.
  • Power line distribution parameter data may be gathered at regular times, periodically, aperiodically, at one or more scheduled times, or in response to specific commands or triggering events. Also, the power line distribution parameter may be simultaneously measured from one sensor device 115 , multiple sensor devices or all sensor devices 115 of a single power line communication device 138 , 139 , 135 or all power line communication devices 138 , 139 , 135 . For example, parameter data of a building, neighborhood, a city, a country, or other region may be measured. Alternately, data for the entire power line distribution system 104 may be collected.
  • the parameter sensor device 115 may be any of the sensor devices previously described, such as sensor 115 , current sensor 116 , and dual-sensor assembly 160 .
  • One example sensor device 115 comprises a power sensor device 198 measures a power line parameter to determine the power delivered to over a low voltage power line. In particular, by collecting measurements over time, power consumption over a corresponding time period may be derived. By comparing such finding with the sum of power measurements received from the power meters connected to that low voltage power line, a utility provider may determine how much power is being provided via that power line that is not being measured by the utility meters. Minor discrepancies may be expected due to power line losses and power utility devices. Such a discrepancy is expected to be generally constant, and thus identifiable. Discrepancies due to power theft typically will be larger and vary over time according to the amount of power being stolen (i.e., consumed by the devices or premises that is illegally connected to the power line).
  • FIGS. 12-16 show various configurations in which one or more sensor devices 198 are positioned along LV power lines 114 to detect and isolate power theft downstream of a given distribution transformer 112 .
  • sensor device 198 is configured to measure parameters sufficient to determine the power delivered via the power line and, therefore, may include a voltage and current sensor.
  • the voltage sensor may not be necessary and the voltage may be derived via a measurement from a separate device or estimated based on other known voltages.
  • the sensors that form part of the sensor device 198 may be integrated together or may be separate.
  • the location of the power theft may be generally located to a group of premises or location.
  • FIGS. 17-20 show configurations in which a sensor device 198 may be located along an MV power line in the vicinity of a distribution transformer 112 to detect power theft that may be occurring in an area near (e.g., served by) a specific transformer 112 .
  • FIG. 12 shows a configuration 200 for isolating power theft from a LV subnet (i.e., the low voltage power lines that are electrically connected to a distribution transformer) that is connected to a group 202 of premises 204 , which may include one or more residences, office buildings, and/or other structures.
  • Power traverses along the MV power line 110 , is stepped down at a distribution transformer 112 , and then delivered over a LV subnet (LV power lines 114 and 206 ) as LV power to the one or more respective premises 204 .
  • An LV power line 114 extends from the distribution transformer 112 and splits into (or is coupled to) multiple LV power supply lines 206 .
  • each LV power supply line 206 extends to a power utility meter 208 at a corresponding premises 204 to supply to that premises.
  • the utility meter 208 measures the power entering the premises 204 via the meter 208 . More specifically, each meter 208 measures the power traversing the power supply line 206 at the meter's location, which, when no theft is occurring, includes all the power entering the premises and being consumed by the electrical devices at the premises.
  • Obtaining power by connecting an electrical device (or the entire premises 208 ) to a low voltage subnet (e.g., a power supply line 206 or LV power line 114 ) on the upstream (transformer) side of the meter 208 (thereby delivering power to the electrical device or premises by bypassing the power around the meter 208 ) is power theft.
  • a low voltage subnet e.g., a power supply line 206 or LV power line 114
  • FIG. 12 An example of power theft is shown in FIG. 12 .
  • a jumper 500 connects a LV power supply line 206 a to the customer premises 204 a bypassing the meter 208 a .
  • the jumper 500 from power supply line 206 a may be connected to (and supply power to) customer premises 204 b (a customer premises that receives power from a different supply line 206 ).
  • the jumper 500 from one LV power line may be connected to (and supply power to) a customer premises 204 that receives power via a different LV subnet (from a different distribution transformer 112 ). There are many other examples.
  • the invention may locate the LV subnet, LV power line, and/or LV power supply line, from which power is being stolen.
  • the stolen power may be provided to a customer premises on the same or a different LV subnet or to an electrical device not associated with a customer premises.
  • a power line communication device 210 may be located in the vicinity of the distribution transformer 112 .
  • communications propagating along the MV power line 110 may bypass the distribution transformer 112 , and be transmitted downstream along an LV power line 114 to a destination.
  • communications propagating along an LV power line 114 may bypass the transformer 112 , and be transmitted upstream along the MV power line 110 .
  • a power sensor device 198 may be coupled to a power line 114 between the distribution transformer 112 and junction 207 of two or more power supply lines 206 .
  • Data from the sensor device 198 is provided to the power line communication device 210 (or other communication device), such as over a wired medium 212 .
  • power usage data from the utility meters 208 also may be transmitted to the power line communication device 210 , such as by a LV power line or wireless communication.
  • the power line communication device 210 may store power usage data from the sensor device 198 and meters 208 and process the data to determine whether power theft is likely to be occurring.
  • the power line communication device 210 may transmit the power usage data and the data from the sensor device(s) 198 to a power line server 118 or other remote device accessible by the utility provider for processing to determine whether power theft is likely to be occurring.
  • the utility meters 208 may send wired or wireless communications to the utility provider or power line server 118 by another route (a route that does not include the communication device 210 ).
  • the utility provider or power line server 118 also may receive the sensor device 198 data from the communication device 210 , and process the data and the meter data to determine if power theft is occurring.
  • the power data (which may comprise current data or current and voltage data) from sensor device 198 may be used to determine power the delivered to the low voltage subnet by the distribution transformer 112 over a given time period (e.g., five minutes, fifteen minutes, one hour, six hours, twelve hours, one day, one week, or one month).
  • Data from each utility meter 208 receiving power from that transformer 112 may be used to determine power delivered to the premises 204 that the consumers are being billed for over the same time period.
  • the power delivered as measured by sensor device 198 is expected to be substantially equal to the aggregate (the sum) of the power consumed by the premises 204 as determined by the data from the meters 208 .
  • the meter data (i.e., the power paid for by the customers) from all of the meters 204 of that LV subnet should sum to be substantially the same as the power data as measured by the power sensor device 198 (i.e., the power delivered) over a given time period.
  • the values i.e., (1) the sum of the meter data from all the meters and (2) the power data from the sensor device 198
  • the discrepancy may be due to power theft. Analyzing the differences over time can further confirm the discrepancies as being attributable to power theft. For example, if the discrepancy in the values varies it may be more likely that the discrepancy is caused by power theft.
  • a first step may include determining the amount of a discrepancy (e.g., is it greater than a predetermined amount (percentage or absolute value)) and second, does the discrepancy vary over time.
  • the power line communication device 210 may transmit an alert to a remote device.
  • the power line server or other remote computer may log the discrepancy, determine the location (e.g., by pole number, street address, etc.) and provide notice to the utility provider.
  • the utility provider may respond to the discrepancies in various manners. When the difference is insignificant, and may be explained by other causes, such as power line losses, the discrepancy may be ignored. The pattern of discrepancy should be generally constant in such case. When the difference is significant, but amounts to a relatively small amount (in dollars), an email, warning letter, or other notification may be sent to all the premises connected to the transformer 112 .
  • the utility provider typically will have a means to identify the customers and customer premises 204 connected to the transformer 112 .
  • the utility pole number on which the power line communication device 210 (or other communication device) and the distribution transformer 112 is installed may be stored in a database in memory, which also stores information of the customer premises (e.g., addresses) and names of customers that are connected to the transformer 112 .
  • the notification received may include a serial number of the device 210 (that is cross referenced to a pole number to retrieve the customer name and address data), pole number, or other data sufficient to retrieve data of the customer(s) connected to the LV subnet from which power is being stolen.
  • the utility provider may send a notification to the customers electronically or via mail.
  • a notification may be generated and sent automatically based upon an automated process at the power line server 118 or utility's computer system.
  • a warning message may be automatically included with or on the next bill of each customer in the vicinity of the transformer 112 supplying the stolen power (e.g., the customers receiving power from the distribution transformer and those premises adjacent thereto).
  • a person may review the findings on behalf of the utility and determine that an appropriate course of action is to send a warning letter in the mail, electronically, or include a message in the next bill.
  • the response may be to install additional sensor devices 198 (as described below) to isolate the source of the discrepancy more precisely to a specific supply line 206 and/or premises 204 .
  • the device's 198 local communication device may include an interface for communicating with parameter sensor device 198 , a user device interface, a controller, and a network interface that includes a network modem for communicating with to an upstream device. Examples of such devices are described herein although the present invention is not limited to those communication devices described herein.
  • data from sensor devices 198 may be communicated via the network modem of the device 210 over twisted pair conductors, coaxial cable, a wireless mobile telephone network, or other wired or wireless network by its local communication device 210 to an upstream device.
  • the network modem may be a DSL modem, cable modem, WiMAX modem, mobile telephone transceiver, WLAN modem, wireless paging transceiver, HomePlug compatible modem, or DS2 modem, and may employ any suitable protocol and/or modulation scheme including, but not limited to, OFDM, DOCSIS, WiMAX (IEEE 802.16), DSL, Ultra Wide Band (UWB), or other suitable modulation scheme or protocol.
  • the local communication devices 210 may employ a wireless modem (forming part of its network interface) for wireless communications upstream such as an IEEE 802.11a,b,g, or n modem, a WiMAX (IEEE 802.16) modem, a mobile telephone network transceiver, a wireless pager system transceiver, or another suitable wireless modem.
  • the local communication device 210 may include a LV power line interface (that includes a modem for communicating with one or more user devices) and communicate the user data over the LV power line or alternately via twisted pair conductors, coaxial cable, fiber optic cable, or wireless link.
  • FIG. 13 shows another configuration 220 for locating power theft from a group 222 of premises 224 a - c , which may include one or more residences, office buildings, and/or other structures.
  • Power is delivered as described above with regard to the configuration 200 of FIG. 12 , along power lines 110 , 114 , and 206 .
  • Utility meters 208 measure power entering corresponding premises 224 a - c . More specifically, each meter 208 measures the power traversing the power supply line 206 at the meter's location, which, when no theft is occurring, includes all the power entering the premises 208 and being consumed by the electrical devices at the premises 224 .
  • a communication device 210 e.g., backhaul device 138 ; bypass device 139 ; or repeater 135 ) may be located in the vicinity of the distribution transformer 112 to provide power line communications.
  • a power sensor device 198 may be installed on each power supply line 206 between a corresponding utility meter 208 and a junction 207 of the LV power line 114 .
  • Data from the sensor devices 198 may be provided to the power line communication device 210 , such as via respective wired media 212 or via a wireless link.
  • power usage data from the utility meters 208 may be provided to the power line communication device 210 as well, such as by a wireless communication, or by transmitting data over the LV power line.
  • the power line communication device 210 may store and process data from the sensor devices 198 and meters 208 to detect power theft.
  • the power line communication device may transmit the power data and/or the results of processing upstream to a power line server 118 or other device accessible by the utility provider.
  • the power line server or another utility provider computing device may process the data to determine whether power theft may be occurring.
  • the data from each sensor device 198 a - c may be used to determine the power delivered over each power supply line 206 over a given time period by the distribution transformer 112 .
  • the power as measured by each utility meter 208 may be compared to the power delivered as measured by the sensor device 198 connected to the corresponding power supply line 206 .
  • the power measured over a given time period by a given sensor device 198 a installed on a power supply line 206 a is expected to be substantially the same as the power measured over the time period by the meter 208 a at the corresponding premises 224 a receiving power via that supply line 206 a .
  • the discrepancy may be due to power theft.
  • the specific residence, building or other structure e.g., premise 224 a
  • the meter 208 a may be identified as a possible location where power theft may be occurring.
  • the device 210 , power line server, or remote computer system processing the data may monitor and measure the discrepancy over time to determine if the discrepancy varies to further determine an increased likelihood of theft.
  • the utility may respond to discrepancies and possible power theft in a manner similar to that described above.
  • FIG. 14 shows a configuration 230 which combines configurations 200 and 220 of FIGS. 12 and 13 .
  • configuration 230 includes a first group 232 of premises 234 and a second group 236 of premises 238 .
  • the first group 232 is monitored as a group by sensor device 198 d .
  • Each premises 238 a - c of the second group 236 is monitored individually by sensor devices 198 a - c .
  • Both groups 232 , 236 are provided power through a common distribution transformer 112 and LV power subnet and power line 114 .
  • the LV power line 114 splits into one LV power line branch 240 that serves the first group 232 , and a second LV power line branch 242 that serves the second group 236 .
  • Branch 240 may run from the vicinity of one utility pole 244 to another utility pole 246 , and then split (i.e., be connected to multiple supply lines 206 ) to serve the respective premises 234 a - 234 b .
  • Branch 242 may extend from the vicinity near the utility pole 244 and split (i.e., be connected to multiple supply lines 206 ) to serve the respective premises 238 a - 238 c.
  • the first group 232 has a configuration similar to configuration 200 in that one sensor device 198 d may be installed on the first branch 240 to measure the cumulative power delivered to premises 234 a - b .
  • the second group 236 has a configuration similar to configuration 220 in that a sensor device 198 a - c is installed on the power supply line 206 supply power to each respective customer premises 238 a - c .
  • a utility meter 208 located at each of the premises 234 a - b , 238 a - c measures the power entering the premises at the meter's location.
  • One common communication device 210 may received data from the sensor devices 198 a - d for both the first group 232 and second group 236 .
  • the data from any given sensor device 198 a - d may be used to measure power delivered for a given time period.
  • data from the corresponding utility meters 208 may be used to measure the power entering the premises over the same time period at the corresponding premises 234 a - b , 238 a - c .
  • the power delivered as measured from sensor device 198 d is expected to be generally equal to the sum of the power entering premises 234 a - b , as determined from the meters 208 at such premises 234 a - b .
  • the power delivered over each supply line 206 of group 236 as measured from each sensor device 198 a - c is expected to be generally equal to the power entering the premises 238 a - c , as measured from the meter 208 at such premises 238 a - c.
  • the device 210 may monitor and measure the discrepancy over time to determine if the discrepancy varies to further determine an increased likelihood of theft. Also, the utility may respond to discrepancies, and possible power theft, in a manner similar to that described above.
  • FIG. 15 shows yet another configuration 250 for detecting power theft.
  • Configuration 250 includes a first group 252 of premises 254 and a second group 256 of premises 258 .
  • the first group 252 is monitored as a group by sensor device 198 e .
  • the second group 256 is monitored as a group by sensor device 198 f .
  • Both groups 252 , 256 are served with power through a common distribution transformer 112 and LV power line 114 .
  • the LV power line 114 splits into one power line branch 260 that serves the first group 252 , and a second power line branch 262 that serves the second group 256 .
  • Branch 260 runs from the vicinity of one utility pole 244 to another utility pole 246 , and then provides power via power supply lines 206 to premises 254 a - 254 b .
  • Branch 262 extends from the vicinity near the utility pole 244 and supplies power via power supply lines 206 to premises 258 a - 258 c.
  • the first group 252 has a configuration similar to configuration 200 in that one sensor device 198 e may be located along the first branch 260 to measure the total power delivered to premises 254 a - b .
  • the second group 256 also has a configuration similar to configuration 200 in that one sensor device 198 f may be located along the second branch 262 to measure the power delivered to premises 258 a - c .
  • a utility meter 208 is located at each of the premises 254 a - b , 258 a - c .
  • One common communication device 210 may receive data from the sensor devices 198 e - f for both the first group 252 and second group 256 .
  • the measurements of any given sensor device 198 e - f may be used to determine the power delivered for a given time period (e.g., between data) via the power line (e.g., branches 260 and 262 respectively). Also, the measurements at the corresponding utility meters 208 may be used to determine the power traversing the power lines (over the same time period) at the meter, which may be at the ingress of the power lines into the premises 254 a - b , 258 a - c .
  • the power delivered as measured from sensor device 198 e is expected to be generally equal to the sum of the power entering the premises 254 a - b , as measured by the meters 208 at such premises 254 a - b .
  • the power delivered as measured by sensor device 198 f is expected to be generally equal to the sum of the power entering the premises 258 a - c as measured by the meters 208 at such premises 258 a - c .
  • the device 210 may monitor and measure the discrepancy over time to determine if the discrepancy varies to further determine an increased likelihood of theft. Also, the utility may respond to discrepancies, and possible power theft, in a manner similar to that described above for the other configurations.
  • FIG. 16 shows yet another configuration 270 for detecting power theft.
  • Configuration 270 includes a first group 272 of premises 274 and a second group 276 of premises 278 .
  • the first group 272 of premises 274 a - b is monitored individually by corresponding sensors 198 g - h .
  • the second group 276 of premises 278 a - c is monitored individually by corresponding sensor devices 198 a - c .
  • Both groups 272 and 276 are served with power through a common distribution transformer 112 and LV power line 114 .
  • the LV power line 114 is coupled to a power line branch 280 that serves the first group 272 and a second power line branch 282 that serves the second group 276 .
  • Branch 280 runs from the vicinity of one utility pole 244 to another utility pole 246 , and is connected to power supply lines 206 that provide power to the respective premises 274 a - 274 b .
  • Branch 282 extends from the vicinity near the utility pole 244 and is connected to power supply lines 206 that provide power to the respective premises 278 a - 278 c.
  • the first group 272 has a configuration similar to configuration 220 (see FIG. 13 ). For each one premises 274 a - b there may be a corresponding sensor device 198 g - h .
  • the second group 276 also has a configuration similar to configuration 220 in that for each one premises 278 a - c there may be a corresponding sensor device 198 a - c .
  • a utility meter 208 is also located at each of the premises 274 a - b , 278 a - c .
  • One common communication device 210 may receive data from the sensor devices 198 a - c , 198 g - h for both the first group 272 and second group 276 .
  • sensor devices 198 g - h may include a wireless link for communicating with communication device 210 , (see FIGS. 4 and 5 ).
  • the measurements at any given sensor device 198 may be used to measure the power delivered over the power supply line 206 for a given time period. Also, the measurements of the corresponding utility meters 208 may be used to determine the power entering the premises via the meter over the same time period at premises 274 a - b , 278 a - c .
  • the power delivered as measured by each sensor device 198 g - h is expected to be generally equal to the power measured at its corresponding premises 274 a - b , as determined from the meter 208 at such premises 274 a - b .
  • each sensor device 198 a - c is expected to be generally equal to the power entering the premises at its corresponding premises 278 a - c , as determined from the meter 208 at such premises 278 a - c.
  • the device 210 may monitor and measure the discrepancy over time to determine if the discrepancy varies to further determine an increased likelihood of theft. Also, the utility may respond to discrepancies, and possible power theft, in a manner similar to that described above.
  • the sensor devices 198 may be installed on a power line (e.g., a branch, supply line 206 , or LV power line 114 ) that is connected to a different power line than the power line to which the communication device 210 is connected.
  • the sensor devices 198 g - h of FIG. 17 may be installed on a different LV subnet and measure the power delivered from a different transformer 112 .
  • the remote computer system e.g., PLS
  • the communication device 210 may perform the processing to identify theft.
  • FIGS. 17-18 show configurations 290 , 300 , respectively, in which a sensor device 198 may be installed on the medium voltage power line supplying power to a distribution transformer 112 for each of multiple distribution transformers 112 in a region.
  • each sensor device 198 may be located on a conductor 292 extending from the transformer 112 to the MV power line 110 .
  • An LV power line 114 extends from each transformer 112 to provide power to premises connected to the LV subnet of the transformer 112 .
  • the LV power line may split downstream and extend to respective premises being served.
  • a power line communication device 210 receives measurement data from the sensor device 198 .
  • Each sensor device 198 communicates with a corresponding communication device 210 via wire 294 , fiber optic or a wireless 302 link ( FIG. 18 ).
  • configuration 290 see FIG. 17
  • configuration 300 for each transformer there may or may not be a nearby power line communication device 210 .
  • at transformer 112 a there is a sensor device 198 a , but no communication device 210 .
  • At transformer 112 b there is a sensor device 198 b and a communication device 210 b .
  • the sensor devices 198 a, c which do not have an immediately nearby communication device 210 b may include a wireless communication link 302 (e.g., via a wireless transceiver or transponder, see FIGS. 4 and 5 ) to a remote communication device 210 b .
  • sensor devices 198 a and 198 c are depicted as measuring the power supplied to a distribution transformer 112 a,c from the same MV power 110 that supplies power to distribution transformer 112 b
  • devices 198 a - c may be installed to measure the power delivered by different MV power lines (e.g., different phases of three phase conductors).
  • the data from any given sensor device 198 may be used to determine the power supplied to the distribution transformer 112 for a given time period.
  • the voltage into the transformer may be estimated based on an upstream measurement such as at the medium voltage substation.
  • a voltage sensor may be connected to a low voltage power line 114 in order to determine the voltage for calculating power.
  • the output power may be estimated. More specifically, the rated efficiency of a distribution transformer 112 is typically known by the utility provider.
  • the power supplied to the LV subnet (the LV power line 114 , supply lines 206 , and all customer premises) may be estimated. For example, if a transformer is rated at ninety-five percent efficiency and the input to the transformer 112 is measured or determined to be 100 KWatts, the power supplied to the LV subnet may be estimated to be 95 KWatts.
  • the transformer efficiency ratings may be stored at the device processing the data to detect theft such as, for example, at the communication device 210 , power line server, remote computer system, or other device.
  • each communication device 210 may receive data from its associated sensor device 198 .
  • a given communication device 210 b may receive data from multiple sensor devices 198 via wired or wireless links.
  • the communication device 210 may process the data and transmit the reading and/or processing results to the utility provider or power line server 118 .
  • the communication device 210 also may receive data from various utility meters (not shown), and process and/or forward that data and processing results to the utility provider or power line server 118 .
  • a communication device 210 may receive utility meter data from utility meters installed on its low voltage subnet.
  • the power usage data from the utility meters 208 of the LV subnet receiving power from the distribution transformer 112 may be summed together and compared to the power supplied to the LV subnet. If there is a significant discrepancy between the aggregate measured power usage data (from the meters) and the estimated power delivered to the LV subnet, a power theft may be detected.
  • the utility may respond to discrepancies, and possible power theft, in a manner similar to that described above with regard to the other configurations.
  • FIGS. 19-20 show configurations 310 , 320 , which are similar to configurations 290 , 300 of FIGS. 17-18 , respectively.
  • the sensor devices 198 are located along the MV power line 110 , rather than on a conductor 292 coupling a transformer 112 to the MV power line 110 , as in configurations 290 , 300 .
  • a power line communication device 210 receives measurement data from the sensor devices 198 .
  • FIG. 21 illustrates a flow chart of an example implementation for processing the data according to one or more examples of the present invention.
  • the meter data is received, which includes the data from one or more meters 208 for a given time period (e.g., five minutes, fifteen minutes, one hour, twelve hours, one day, one week, or one month).
  • the meter data from a plurality of meters 208 is summed together.
  • the meters that are summed may be those meters 208 to which the power delivered is measured and received at process 326 . In some embodiments it may not be necessary to sum the meter data such as for the embodiment shown in FIG.
  • the power delivered to a single customer premises is known or measured (and which can be compared to the data from a single meter).
  • predetermined criteria such as, for example, having a predetermined magnitude (e.g., cost, percentage in watts, absolute in watts, etc.) and/or that varies over time.
  • process 330 may determine location information associated with the discrepancy such as, for example, retrieving from a database a pole number, a street address, a plurality of street addresses, a block, a building address (with a plurality of premises), a LV subnet, a transformer number, a transformer location, and/or other data.
  • location information such as, for example, retrieving from a database a pole number, a street address, a plurality of street addresses, a block, a building address (with a plurality of premises), a LV subnet, a transformer number, a transformer location, and/or other data.
  • notification of the discrepancy and the location information may be provided to the utility provider and at process 334 one or more customers may be notified (e.g., automatically electronically, via mail, via personnel, etc.).
  • the process may be repeated for other LV subnets and repeated for the same LV subnet when new data is available.
  • all of these processes illustrated may be performed by a remote computer that receives the data.
  • some processes may be performed locally by a local communication device (e.g., processes 322 , 324 , and 326 in a first embodiment and processes 322 , 324 , 326 , 328 in a second embodiment) and others may be performed by a remote computer that receives the data (e.g., processes 328 , 330 , 332 , and 334 in the first embodiment and processes 330 , 332 , and 334 in the second embodiment).
  • Each sensor device 198 communicates with a corresponding communication device 210 via a wired 312 , fiber optic or a wireless 302 link.
  • configuration 310 see FIG. 19
  • configuration 320 for each transformer 112 there may or may not be a nearby power line communication device 210 .
  • at transformer 112 a there is a sensor device 198 a but no communication device 210 .
  • At transformer 112 b there is a sensor device 198 b and a communication device 210 b .
  • the sensor devices 198 a and 198 c which do not have a nearby communication device 210 b may include a wireless link 302 (e.g., via a wireless transceiver or transponder, see FIGS. 4 and 5 ) to a remote communication device 210 b .
  • the communication device 210 b may receive and process the sensor device 198 a, b, c measurement data.
  • the data obtained from any given sensor device 198 may be used to estimate the power delivered for a given time period.
  • the sensor devices 198 are located along the MV power line, downstream is not limited a specific area served by a specific transformer 112 .
  • a power measurement derived from sensor device 198 b should be less than such a measurement derived from sensor device 198 a by the amount of power supplied by distribution transformer 112 b .
  • a power measurement derived from sensor device 198 c should be less than a power measurement from sensor device 198 b by the amount of power drawn by distribution transformer 112 c .
  • the amount of power supplied to that transformer may be determined.
  • the configurations 310 and 320 of FIGS. 19-20 determine the amount of power supplied to the distribution transformer 112 differently than the configurations 290 and 300 of FIGS. 17 and 18 , the remainder of the configurations (the method of determining the power delivered by the LV subnet and detecting power theft) are substantially the same and therefore not repeated here.
  • FIGS. 12-20 are in the context of an overhead power distribution system, the invention is equally suitable for use in an underground power distribution system.
  • the sensor devices 198 may be combined with wireless communication devices (e.g., mobile telephone transceivers, two way wireless pager system transceivers, WiFi transceivers, or other transceivers) to communicate via a wireless data network.
  • wireless communication devices e.g., mobile telephone transceivers, two way wireless pager system transceivers, WiFi transceivers, or other transceivers
  • the sensor devices 198 used for theft detection and other inventions described herein may take various forms and be comprised of any implementations of sensors and other software and circuitry suitable for the application and is not limited to the sensor devices described herein.
  • collection of data from the communication devices may be via a wireless transceiver that is in a moving vehicle that drives by the communication devices and collects the data from the communications devices and/or meters (which may be wireless).
  • Power line distribution parameter data also may be useful for maintaining, planning, and managing distribution of power within a region. Various examples are described below.
  • Maintenance of the power line distribution system may be performed efficiently by monitoring power line distribution parameters at sensors 115 / 116 / 198 located at many power line communication devices 138 , 139 , 135 positioned throughout the communication and distribution system 104 .
  • Examples of maintenance that may be improved include recloser duty monitoring; reading voltages associated with specific capacitors, specific capacitor banks, and regulators; voltage imbalance detection may be performed; secondary neutral failures may be identified; and switching steps may be more effectively implemented during planned power outages.
  • Planning may be performed more efficiently by monitoring power line distribution parameters at sensors 115 / 116 / 198 located at many power line communication devices 138 , 139 , 135 positioned throughout the communication and distribution system 104 .
  • Examples of planning processes that may be improved include; feeder flow planning (by power flow validation); quantification of cold load pickup; quantification of secondary losses; quantification of primary losses; application of manual switching devices; application of distribution automation devices; subsidiary relay settings; selection/validation of fuse sizes; recloser settings; capacitor switching sequencing; adaptive preferred/alternate switch schemes (semi-firm design); transformer unit/bank size requirements; and detection of current imbalances.
  • the current sensor devices 116 , voltage sensor devices and other parameter sensor devices 115 may be used to measure the parameters, and store the data in a database (e.g., of the power line server) for use in predicting conditions such as power distribution equipment failures.
  • a database e.g., of the power line server
  • the values of the stored parameters just prior to the condition may be analyzed to identify a correlation (e.g., a pattern) between the parameter values and the condition so that when substantially the same parameter value measurements are detected again, the condition may be predicted (and notification transmitted).
  • Managing power distribution may be improved.
  • power line distribution parameter data such as power line current, power line voltage, power factor data, load or other parameter
  • the efficiency of the power line distribution system may be improved.
  • real time monitoring of power line current at many locations (such as many MV power line locations) within the power line distribution system may enable switches in the system (MV feeder switches) to be reconfigured to redistribute the load (i.e., the flow of current) in response to measured data.
  • the redistribution may be done manually (e.g., by sending personnel), semi-automatically (e.g., by personnel remotely actuating the switch(es)), and/or automatically (e.g., actuation of the switch(es) via a remote computer executing program code that transmits control information to actuate the switch). For example, when one area habitually uses less power, that excess capacity can be utilized to supply more heavily loaded areas, to optimize utilization of the installed infrastructure.
  • the duration of the power outage may be reduced to consumers.
  • a break in the overhead power line may be traced to a location, such as where current still flows, but at a reduced amount because the overhead power line is ‘dancing’ on the asphalt, averting a significant safety hazard.
  • transient faults may be located.
  • Current overloads may be identified to a specific device, signifying that such device should be replaced. Overloads also may be detected at a specific conductor, signifying that such conductor should be replaced.
  • Overloads may be detected at a specific transformer, signifying that such transformer should be replaced.
  • the measured current data may be used in selecting the MV power line switching sequences to restore power to specific areas.
  • a switch may be evaluated by monitoring current across the switch (i.e., when in the normally closed position) to ensure that the switch is off and not faulty.
  • a tie switch inadvertently left closed may be identified and located via current data.
  • the measured current data may be used to derive the power factor, which in turn may be used to determine if load in an area is too reactive (e.g. to inductive). When too the load is too reactive, a switch may be actuated to insert or take out a capacitor bank for such area.
  • an incipient failure of a transformer may be detected, and notice provided to the utility to replace the transformer.
  • High voltage exceptions may be identified and located and low voltage exceptions may be identified and located.
  • Voltage drops on secondary service loops can be characterized and the system reinforced if indicated.

Abstract

A system and method of providing utility data services is provided. In one embodiment the method includes receiving meter data of the measured power consumed by a plurality of power customers, receiving delivered power data that includes data of the power delivered to the plurality of power customers, determining a difference between the meter data and the delivered power data, determining that the difference between the meter data and the delivered power data is greater than a predetermined amount, and indicating a discrepancy if the difference between the meter data and the delivered power data is greater than a predetermined amount. In addition, the method may include determining that a discrepancy varies over time by a predetermined amount and providing a discrepancy notification such as wirelessly and/or via power line.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of, and claims priority to, U.S. patent application Ser. No. 11/555,740 filed Nov. 2, 2006 (CRNT-0302-US), which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention generally relates to methods and apparatus for detecting power theft, and more particularly to methods and apparatus for detecting, locating, and communicating power theft in a power distribution system.
  • BACKGROUND OF THE INVENTION
  • Electrical power for consumption at residences, offices and other structures is delivered by a power distribution system. Electrical power is transmitted at high voltages from a power plant to substations near populated areas. Electrical power then is distributed from a substation along power lines and through distribution transformers toward consumer premises. Utility meters typically are located at the consumer's premises to measure the amount of power being consumed at the premises. Equipment, appliances and other devices plug into power outlets at the premises and draw power.
  • Power traversing through the utility meter is metered to determine the utility fees to be billed to the customer of a given premises. Power that is used upstream from a given power meter is not measured by such power meter. Tapping into the power line upstream of the power meter to supply power to a premises or devices is illegal and is power theft. It is estimated that approximately 3% of the power being generated in the United States is stolen (used by, but not paid for, by consumers). In other countries the amount may be significantly higher being estimated to be approximately 10% in Europe and up to 30% elsewhere.
  • Other than the loss of revenue to the utility provider, power theft also has adverse effects on consumers and society. One effect to consumers is the increase in the fees paid by consumers who pay for power. For example, a consumer may be billed for power based upon the amount of power consumed. The cost of producing and delivering power is passed on to the consumer and determines, in part, the rates charged for power. As a result, the paying consumer ends up subsidizing the power thief by paying the thief's share of the power costs. A less apparent effect is that a thief receiving some power for free is not billed accurately for all of their power consumption. In effect the thief is getting power at a lesser charge. Therefore, the thief does not have the same motivation to conserve power, which, in the aggregate, may impact the environment.
  • One of the challenges in stopping power theft is the difficulty in detecting power theft. In particular it is difficult to obtain data which identifies specific locations where power theft is occurring.
  • Power is delivered to premises low voltage power lines that are supplied power by medium voltage power lines. Parameters of power delivery include power line current, power line voltage and network load distribution, among others. Measurement of such parameters has not been available in a satisfactory manner to optimize power network management. For example, consider power line current. Current measurements typically have only been available at transfer substations (i.e., a location where the high voltage power lines couple to medium voltage power lines for regional power distribution) and, in some instances, at the customer's power meter.
  • Accordingly, there is a need for measuring power and other parameters in a manner enabling effective identification of power theft. One or more embodiments of the present invention may overcome the disadvantages of the prior art and satisfy the need.
  • SUMMARY OF THE INVENTION
  • The present invention provides a device, system and method of providing utility data services. In one embodiment the method includes receiving meter data of the measured power consumed by a plurality of power customers, receiving delivered power data that includes data of the power delivered to the plurality of power customers, determining a difference between the meter data and the delivered power data, determining that the difference between the meter data and the delivered power data is greater than a predetermined amount, and indicating a discrepancy if the difference between the meter data and the delivered power data is greater than a predetermined amount. In addition, the method may include determining that a discrepancy varies over time by a predetermined amount and providing a discrepancy notification such as wirelessly and/or via power line.
  • The invention will be better understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is further described in the detailed description that follows, by reference to the noted drawings by way of non-limiting illustrative embodiments of the invention, in which like reference numerals represent similar parts throughout the drawings. As should be understood, however, the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
  • FIG. 1 is a block diagram of an example power line communication and power distribution parameter measurement system;
  • FIG. 2 is a block diagram and partial schematic of an example embodiment of a power line current sensor device;
  • FIG. 3 is a block diagram of a power line parameter sensor device coupled to a power line communication device;
  • FIG. 4 is a block diagram of a power line parameter sensor device coupled to a power line communication device by a wireless medium;
  • FIG. 5 is a block diagram of a power line parameter sensor device coupled to a power line communication device by a wireless medium;
  • FIG. 6 is a block diagram of an example embodiment of a backhaul node;
  • FIG. 7 illustrates an implementation of an example embodiment of a backhaul node;
  • FIG. 8 is a block diagram of an example embodiment of an access node;
  • FIG. 9 illustrates an implementation of an example embodiment of an access node;
  • FIG. 10 illustrates a plurality of sensor devices located at various positions for collecting power line distribution parameter data according to an example embodiment of the present invention;
  • FIG. 11 is a partial network diagram showing an example topology of a power line communication and power distribution parameter system according to an example embodiment of the present invention;
  • FIG. 12 illustrates a power detection configuration for isolating a source location of power theft down to a group of premises located downstream of a given transformer;
  • FIG. 13 illustrates a power detection configuration for isolating a source location of power theft down to a specific premise among a group of premises downstream of a given transformer;
  • FIG. 14 illustrates a configuration for detecting power theft downstream of a given transformer, in which the theft source may be identified as being from a first group of premises or from a specific premise among a second group of premises;
  • FIG. 15 illustrates a configuration for detecting power theft downstream of a given transformer, in which the theft source may be identified as being from a first group of premises or from a second group of premises;
  • FIG. 16 illustrates a configuration for detecting power theft downstream of a given transformer, in which the theft source may be identified as being from a specific premise among a first group of premises or from a specific premise among a second group of premises;
  • FIG. 17 illustrates a configuration for isolating a source location of power theft within a region as being within an area serviced by a specific distribution transformer;
  • FIG. 18 illustrates a configuration for isolating a source location of power theft within a region as being within an area serviced by a specific distribution transformer, wherein sensed power parameters may be communicated by wired or wireless transmission;
  • FIG. 19 illustrates an alternative configuration for isolating a source location of power theft within a region as being within an area serviced by a specific distribution transformer;
  • FIG. 20 illustrates an alternative configuration for isolating a source location of power theft within a region as being within an area serviced by a specific distribution transformer, wherein sensed power parameters may be communicated by wired or wireless transmission; and
  • FIG. 21 illustrates a flow chart of an example implementation for processing the data according to an example embodiments of the present invention.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • In the following description, for purposes of explanation and not limitation, specific details are set forth, such as particular networks, communication systems, computers, terminals, devices, components, techniques, data and network protocols, power line communication systems (PLCSs), sensor devices, software products and systems, enterprise applications, operating systems, development interfaces, hardware, etc. in order to provide a thorough understanding of the present invention.
  • However, it will be apparent to one skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. Detailed descriptions of well-known networks, communication systems, computers, terminals, devices, PLCSs, components, techniques, sensor devices, data and network protocols, software products and systems, operating systems, development interfaces, and hardware are omitted so as not to obscure the description of the present invention.
  • Following is a description of example embodiments of a power line communication and measurement system, including a power parameter sensing device, various communication devices and protocols, and implementation software. Also described are exemplary network topologies. Such systems and devices may be implemented in various embodiments to detect power theft. Specific embodiments of system configurations for detecting theft, along with specific embodiments of methods for detecting theft are described below in a separate section, following the discussion of the communication and measurement system.
  • Communication and Measurement System
  • An embodiment of a power line communication and power distribution parameter measurement system may be implemented to gather power distribution parameters from multiple points along a power distribution network and transmit the gathered data to a utility or other processing center. For example, sensor devices may be positioned along overhead and underground medium voltage power lines, and along network (external or internal) low voltage power lines. The measured power line parameter data may be used in many ways. For example, the power line utility may monitor power line current at many locations to improve operations and maintenance, to assist in network planning, and to detect power theft.
  • The power line communication and power distribution parameter measurement system also may provide user services (i.e., communicate user data), such as: high speed broadband internet access; mobile telephone communications; broadband communications; streaming video and audio services; and other communication services to homes, buildings and structures, and to each room, office, apartment, or other unit or sub-unit of multi-unit structures. Communication services also may be provided to mobile and stationary devices in outdoor areas such as customer premises yards, parks, stadiums, and also to public and semi-public indoor areas such as subway trains, subway stations, train stations, airports, restaurants, public and private automobiles, bodies of water (e.g., rivers, bays, inlets, etc.), building lobbies, elevators, etc.
  • In some embodiments, power line parameter sensor devices, which include a sensor for measuring a parameter (i.e., value or characteristic), are installed at locations along MV power lines and LV power lines. A power line sensor device may be in communication with a communication node which may monitor the device and forward data to a more central location. The power parameter sensor device may measure (meant to include measure or detect) one or more electrical distribution parameters, which may include, for example purposes only, power usage, power line voltage, power line current, detection of a power outage, detection of water in a pad mount, detection of an open pad mount, detection of a street light failure, power delivered to a transformer, power factor (e.g., the phase angle between the voltage and current of a power line), power delivered to a downstream branch, data of the harmonic components of a power signal, load transients, and/or load distribution. One skilled in the art will appreciate that other types of utility and parameter data also may be measured or detected.
  • In an example embodiment, the sensor device may comprise a power line current sensor that is formed of a Rogowski coil and such sensor device may be installed throughout a network (on both MV and LV power lines). The Rogowski coil is an electrical device for measuring alternating current (AC) or high speed current pulses. An exemplary embodiment includes a first and second helical coils of wire (loops) electrically connected in series with each other. The first loop is wound with a substantially constant winding density in a first direction around a core that has a substantially constant cross section. The second loop is wound with a substantially constant winding density in a second direction around a core that has a substantially constant cross section. A conductor (e.g., a power line) whose current is to be measured traverses through the loops. A voltage may be induced in the coil based on the rate of change of the current running through the power line. Rogowski coils may have other configurations as well. In other embodiments, other current sensors may be used that, for example, include a hall effect sensor.
  • One advantage of a Rogowski coil is that it may be open-ended and flexible, allowing it to be wrapped around an energized conductor. Also, a Rogowski coil may include an air core (or other dielectric core) rather than an iron core, which gives the coil a low inductance and an ability to respond to fast-changing currents. Further, the Rogowski coil typically is highly linear, even when subjected to large currents, such as those of low voltage and medium voltage power lines. By forming the Rogowski coil with equally spaced windings, effects of electromagnetic interference may be substantially avoided. On method of providing equal spaced windings is to use printed circuit boards to manufacture the coil. Some examples of a Rogowski coil are described in U.S. Pat. No. 6,313,623 issued on Nov. 6, 2001 for “High Precision Rogowski Coil,” which is incorporated herein by reference in its entirety.
  • FIG. 1 shows components of a power line communication system 104 that may be provide communications for a power distribution parameter measurement system. The system 104 includes a plurality of communication nodes 128 which form communication links using power lines 110, 114 and other communication media. Various user devices 130 and power line communication devices may transmit and receive data over the links to communicate via an IP network 126 (e.g., the Internet). Thus, the communicated data may include measurement data of power distribution parameters, control data and user data. One type of communication node 128 may be a backhaul node 132. Another type of communication node 128 may be an access node 134. Another type of communication node 128 may be a repeater node 135. A given node 128 may serve as a backhaul node 132, access node 134, and/or repeater node 135.
  • A communication link is formed between two communication nodes 128 over a communication medium. Some links may be formed over MV power lines 110. Some links may be formed over LV power lines 114. Other links may be gigabit- Ethernet links 152, 154 formed, for example, using a fiber optic cable. Thus, some links may be formed using a portion 101 of the power system infrastructure, while other links may be formed over another communication media, (e.g., a coaxial cable, a T-1 line, a fiber optic cable, wirelessly (e.g., IEEE 802.11a/b/g, 802.16, 1G, 2G, 3G, or satellite such as WildBlue®)). The links formed by wired or wireless media may occur at any point along a communication path between a backhaul node 132 and a user device 130.
  • Each communication node 128 may be formed by one or more communication devices. Communication nodes which communicate over a power line medium include a power line communication device. Exemplary power line communication devices include a backhaul device 138 (see FIG. 6), an access device 139 (see FIG. 8), and a repeater 135. These power line communication devices are described below in more detail below. Communication nodes which communicate wirelessly may include a mobile telephone cell site, wireless pager transceiver, or a wireless access point having at least a wireless transceiver, (which may comprise mobile telephone cell site/transceiver (e.g., a micro or pico cell site) or an IEEE 802.11 transceiver (Wifi)). Communication nodes which communicate over a coaxial cable may include a cable modem. Communication nodes which communicate over a twisted pair wire may include a DSL modem or other modem. A given communication node typically will communicate in two directions (either full duplex or half duplex), which may be over the same or different types of communication media.
  • According to an embodiment of a power line communication device, a backhaul device 138 or access device 139 or repeater may establish links over MV power lines 110, LV power lines 114, wired media, and wireless media. Accordingly, a given communication node may communicate along two or more directions establishing multiple communication links, which may be formed along the same or different types of communication media.
  • A power line parameter sensor device 115 may be located in the vicinity of, and communicatively coupled to, a power line communication device 138, 139, 135. The power line parameter sensor device 115 measures (hereinafter to include measure or detect) a power line parameter of a power line 110, 114, such as: current, voltage, power usage data, detection of a power outage, detection of water in a pad mount transformer enclosure, detection of an open pad mount transformer enclosure, detection of a street light failure, power delivered to a transformer data (i.e., wherein the sensor device is coupled the conductor that connects the distribution transformer to the MV power line), power factor data (e.g., the phase angle between the voltage and current of a power line), power delivered to a downstream branch data, data of the harmonic components of a power signal, load transients data, and/or load distribution data. One skilled in the art will appreciate that other types of utility parameter data also may be measured. The measured parameter may be sampled by the power line communication device and communicated to a power line server 118, or other power line distribution management system and/or power line communication management system.
  • A backhaul node 132 may serve as an interface between a power line medium (e.g., an MV power line 110) of the system 104 and an upstream node 127, which may be, for example, connected to an aggregation point 124 that may provide a connection to an IP network 126. The system 104 typically includes one or more backhaul nodes 132. Upstream communications from user premises and control and monitoring communications from power line communication devices may be communicated to an access node 134, to a backhaul node 132, and then transmitted to an aggregation point 124 which is communicatively coupled to the IP network 126. Communications may traverse the IP network to a destination, such as a web server, power line server 118, or an end user device. The backhaul node 132 may be coupled to the aggregation point 124 directly or indirectly (i.e., via one or more intermediate nodes 127). The backhaul node 132 may communicate with its upstream device via any of several alternative communication media, such as a fiber optic cable (digital or analog (e.g., Wave Division Multiplexed)), coaxial cable, WiMAX, IEEE 802.11, twisted pair and/or another wired or wireless media. Downstream communications from the IP network 126 typically are communicated through the aggregation point 124 to the backhaul node 132. The aggregation point 124 typically includes an Internet Protocol (IP) network data packet router and is connected to an IP network backbone, thereby providing access to an IP network 126 (i.e., can be connected to or form part of a point of presence or POP). Any available mechanism may be used to link the aggregation point 124 to the POP or other device (e.g., fiber optic conductors, T-carrier, Synchronous Optical Network (SONET), and wireless techniques).
  • An access node 134 may transmit data to and receive data from, one or more user devices 130 or other network destinations. Other data, such as power line parameter data (e.g., current measured by a power line current sensor) may be received by an access node's power line communication device 139. The data enters the network 104 along a communication medium coupled to the access node 134. The data is routed through the network 104 to a backhaul node 132. Downstream data is sent through the network 104 to a user device 130. Exemplary user devices 130 include a computer 130 a, LAN, a WLAN, router 130 b, Voice-over IP endpoint, game system, personal digital assistant (PDA), mobile telephone, digital cable box, security system, alarm system (e.g., fire, smoke, carbon dioxide, security/burglar, etc.), stereo system, television, fax machine 130 c, HomePlug residential network, or other user device having a data interface. The system also may be use to communicate utility usage data from a automated gas, water, and/or electric power meter. A user device 130 may include or be coupled to a modem to communicate with a given access node 134. Exemplary modems include a power line modem 136, a wireless modem 131, a cable modem, a DSL modem or other suitable modem or transceiver for communicating with its access node.
  • A repeater node 135 may receive and re-transmit data (i.e., repeat), for example, to extend the communications range of other communication elements. As a communication traverses the communication network 104, backhaul nodes 132 and access nodes 134 also may serve as repeater nodes 135, (e.g., for other access nodes and other backhaul nodes 132). Repeaters may also be stand-alone devices without additional functionality. Repeaters 135 may be coupled to and repeat data on MV power lines or LV power lines (and, for the latter, be coupled to the internal or external LV power lines).
  • Power Distribution Parameter Sensor Device:
  • In various embodiments, the power line distribution parameter sensor device 115 may measure or detect a parameter of a power line 110, 114. Some exemplary parameters include as current, voltage, and power usage data (e.g. data of power traversing through the power line in, for example, watts). Other parameters may include detection of a power outage, detection of water in a pad mount transformer enclosure, detection of an open pad mount transformer enclosure, and detection of a street light failure. Still another parameter may include power delivered to a transformer (e.g., a sensor device may be coupled to the conductor 165 that connects the distribution transformer 112 to the MV power line—see FIG. 10). Another parameter may include power factor data (e.g., the phase angle between the voltage and current of a power line), which may be determined by processing data from multiple sensors (i.e., current and voltage). Still other parameters may include power delivered to a downstream branch data, data of the harmonic components of a power signal, load transients data, load distribution data, and/or other characteristics. One skilled in the art will appreciate that other types of parameter data also may be gathered. In addition, one sensor device 115 may be configured to provide data pertaining to more than one parameter. For example, a sensor device 115 may be configured to provide data of the voltage and current carried by the power line (and therefore have multiple sensors). One or more sensor devices 115 may be installed at a given power line 110 and/or 114 and be coupled to a corresponding power line communication device 138, 139, 135. For example, a power line current sensor device may be installed at power lines 110 and 114 alone or with another power line parameter sensor device (e.g., a power line voltage sensor device on power line 114). Such a configuration may be used to determine the current and power into and out of a transformer. In addition, the data provided by the sensor device 115 may be used to determine additional parameters (either by the sensor device, the power line communication device, or a remote computer). For example, a sensor device 115 may be configured to measure the instantaneous voltage and current (e.g., over brief or extended time period). The measurement data may be provided to the power line communication device 138, 139, 135 for processing. With adequate voltage and current sampling, the device 138, 138, or 135 may compute the power factor of the power line (through means well known in the art) and power delivered. Thus, other power line parameters may be measured using an appropriate sensor device coupled to a power line 110, 114 in the vicinity of a power line communication device 138, 139, 135 in place of, or in addition to, the power line current sensor device.
  • FIG. 2 shows one example embodiment of a power line parameter sensor device 115, which comprises a power line current sensor device 116 including a Rogowski coil 200 having two loops 201, 202, an integrator 204 and an interface 206. Each loop 201, 202 has a first end 208 and a second end 210. By shaping the loops 201, 202 to bring the two ends 208, 210 toward each other, while leaving space between the ends 208, 210, the Rogowski coil 200 may be readily installed at a power line 110, 114. The coil 200 may have a generally circular shape with an open arc between the ends 208, 210 (to be slipped around the power line) or may be substantially a full closed circle (and formed in two pieces that are hinged together to clamp over the power line). One of ordinary skill in the art will appreciate that other shapes may be implemented. In this example embodiment, to install the current sensor device 116, the two pieces of the loops 201, 202 are clamped around the power line 110, 114 (which may require pulling back the power line neutral conductor for underground power lines). A power line 110, 114 passes through the circular shape as shown. An advantage of these configurations is that the power line 110, 114 may not need to be disconnected (in many instances) to install the current sensor device 116.
  • The coil 200 of the Rogowski coil may include a first winding 201 wound in a first direction, a second winding 202 wound in a second direction, and wherein said first winding 201 and said second winding 202 each include traces on a printed circuit board. In some embodiments the windings 201, 202 are traced on one or more printed circuit boards (PCBs) 216, 218, and then the printed circuit boards (if more than one) are coupled together to form a monolithic PCB assembly (i.e., one structure). In another embodiment, the two windings of the coil are traced together and interwoven with each other on the PCB (a multi-layer printed circuit board) and therefore may be referred to as being “coupled” together. Because the windings are traced within each other (that is, the loops are interwoven), the loops are not identical in form. In another embodiment, the windings may be traced separately on separate PCBs and have identical geometries on separate PCBs, and be positioned along the power line 110, 114 in close proximity.
  • As alternating current flows through the power line 110, 114, a magnetic field is generated inducing an electrical field (i.e. voltage) within each winding 201, 202 of the Rogowski coil 200. However, other sources of electromagnetic interference also may induce current flow in the windings 201, 202. By including a left-hand winding 201 and a right-hand winding 202 (i.e., windings in substantially opposite directions) with equally spaced windings, the effects from external sources are largely cancelled out. In particular, external fields from sources outside the Rogowski coil 200, such as other power lines or power line communication and distribution equipment, generate equal but opposite electrical flow in the windings 201, 202. The Rogowski coil 200 provides an instantaneous voltage measurement that is related to the alternating current (AC) flowing through the power line 110, 114.
  • Each winding 201, 202 of the Rogowski coil 200 comprises an electrical conductor 212 wound around a dielectric core 214 (e.g., PCB). In an example embodiment each loop 201, 202 has windings that are wound with a substantially constant density and a core 214 that has a magnetic permeability that may be equal to the permeability of free space μo (such as, for example, air) or a printed circuit board. In addition, the cross section of the core 214 may be substantially constant.
  • To obtain an expression for the voltage that is proportional to the current flowing through the power line 110, 114, the coil output voltage, v(t), may be integrated. For example, the integrator 204 may convert the measured voltage v(t) into a value equating to measured current. In example embodiments, the integrator 204 may comprise a resistor-capacitor (RC) integrator, an operational amplifier integrator, a digital filter (integrator), another circuit or a processor. Observing that the voltage v(t), is proportional to the derivative of the current being measured, and that if that current is sinusoidal, the voltage v(t) will also be sinusoidal. Thus, determining the current does not always require integration of the voltage v(t)), in which embodiment the integrator 204 may be omitted.
  • Referring to FIGS. 2-5, each power line distribution parameter sensor device 115 may include an interface 206 which provides communications with a power line communication device, such as a backhaul device 138, an access device 139, a repeater 135, or other communication device. In various embodiments different interfaces 206 may be implemented. In some embodiments the sensor device 115 may include an analog to digital converter (ADC). In other embodiments, raw analog data is communicated from the sensor device 115 to the power line communication device, which may convert the analog data to digital data (via an ADC) and provide processing. Such processing may include, for example, time stamping, formatting the data, normalizing the data, converting the data (e.g., converting the voltage measured by the ADC to a current value), removing an offset, and other such data processing. The processing also may be performed in the sensor device 115, in the power line communication device. Thus, the sensor device 115 of some embodiments may include a controller, an analog to digital converter (ADC), and a memory coupled to said ADC (perhaps via a controller) and configured to store current data. Alternately, the data may be transmitted to the power line server 118 or another remote computer for processing.
  • The overhead medium voltage power lines typically are not insulated. Thus, for sensor devices 115 which contact (e.g., are to be clamped around for a Rogowski coil) an overhead medium voltage power line or other high voltage conductor, it may be necessary to isolate the voltage (which may be 5,000-10,000 volts or more) of the power line (to which the power line parameter sensor device 116 is mounted) from the power line communication device 138, 139, 135 and other non-MV power line devices. The communication path of the measured data may comprise a non-conductive communication link that allows the data to be communicated but that does not conduct the high voltages of the MV or other power lines. For power line parameter sensor devices 115 which are clamped around an underground power line, isolation may not be necessary because underground power lines are insulated and, therefore the sensor devices 115 do not come into contact with the medium voltage.
  • FIGS. 3, 4 and 5 show different manners of coupling the power line parameter sensor device 115 to the power line communication device 138, 139, 135, via a non-conductive communication link to provide electrical isolation (when necessary) from the medium voltage power line 110. In FIG. 3, a wired medium 220 carries measurement data from the power line parameter sensor device 115 to the power line communication device 138, 139, 135. For underground insulated MV power lines and for low voltage power lines (which are also usually insulated), the wired medium 220 may comprise a conductive wire (i.e., a pair or wires). For overhead un-insulated MV power lines, however, the wired medium 220 may include a fiber optic cable or other wired medium that does not conduct high voltages. In such embodiment the power line parameter sensor device 115 and power line communication device 138, 139, 135 each may include a fiber optic transceiver (or fiber optic transmitter in the sensor device 115 and an optic receiver in the communication device). The fiber optic cable may carry analog or digitized sensor data to the power line communication device 138, 139, 135. In some embodiments such as this one, the sensor device 115 may require a power source (i.e., an energy harvesting system) for powering the fiber optic transceiver and other components (such as an ADC) of the sensor device 115. In one example embodiment, power may be sent over a fiber optic cable as an optical signal from the power line communication device 138, 139, 135 (or another device) to the sensor device 115, where the photonic energy is converted to electrical energy to power the fiber optic transmitter (that may form part of a transceiver) and other components of the power line parameter sensor device 115 via a power supply 221. In other words, a photonic power delivery system may be used whereby light from a laser source illuminates a highly efficient photovoltaic power converter at the sensor device 115 to produce electrical power. An example embodiment of a photonic power supply system and method is described in U.S. patent application Ser. No. 10/292,745 filed on Nov. 12, 2002, entitled, “Floating Power Supply and Method of Using the Same,” which is incorporated herein by reference in its entirety. In an alternative embodiment the power line parameter sensor device 115 may include a different power system, such as a solar cell or battery, or kinetic energy converter (e.g., to convert vibrations to electrical energy), to provide power to the sensor device 115 circuits. As still another alternative, a power supply 221 may derive power from the power line 110 via inductance. Specifically, a transformer may be formed by a magnetically permeable core placed substantially around the entire circumference of power line 110 (perhaps with a gap) and a winding around the core. The power line 110, core, and winding form a transformer with the winding connected to the power supply 221. Current through the power line 110 induces a current in the winding, which supplies power to the sensor device 115 (for use by its transmitter and/or other components). Collectively, such power sources such as these (photonic, solar, battery, kinetic (e.g., from vibrations), and inductive power systems), which derive power via a method that isolates the MV power line voltage from the LV power line and the power line communication device, shall be referred to herein as an isolated power source. Isolated power sources other the examples described herein may be employed as well.
  • FIG. 4 shows an embodiment in which a wireless link 222 carries measurement data from the power line parameter sensor device 115 to the power line communication device 138, 139, 135. In such embodiment the interface 206 may include a wireless transceiver 224 (e.g., IEEE 802.11a,b,g, or n or Bluetooth®, ISM band transceiver) or wireless transmitter which communicates with a wireless transceiver 226 (or receiver) of the power line communication device 138, 139, 135. In some such embodiments the power line parameter sensor device 116 also may include a power supply 223 with an isolated power source such as a solar cell, battery, a photonic power source, or an MV inductive power source, to provide power to the sensor device 115 circuits. When multiple sensor devices 115 are connected to a power line communication device 138, 139, or 135, the wireless methods may include means for coordinating the transmissions from individual sensor devices 115 so that they do not interfere with each other and so that the power line communication device can determine the source of the data. For example, a transceiver may use the ISM bands (915 MHz) and use an “ID Code” embedded in the data to identify the sensor device 115. Alternately, the links may communicate via different frequency bands.
  • FIG. 5 shows another embodiment in which a wireless link 230 carries measurement data from a radio frequency identification (RFID) transponder 232 of a power line parameter sensor device 115 to the power line communication device 138, 139, 135. In various embodiments the sensor transponder 232 may be passive (having no power source of its own) or active (having its own power source). For example, in one embodiment the interface includes a passive radio transponder 232. The power line communication device 138, 139, 135 also includes a transponder 234 which transmits a signal to the power line parameter sensor device 115. The strength of the transmitted signal may provide enough power to drive the power line parameter sensor transponder 232 and, if necessary, the sensor's 115 other components as well. The sensor device 115 powers up, gathers one or more samples of the power line current, voltage, and/or other data, and transmits the sampled data back to the power line communication device 138, 139, 135 via transponder 232. In another embodiment the sensor device includes an active radio transponder having its own power supply, which may have an isolated power source as described herein.
  • In various embodiments, data from the sensor devices 115 of the system or within a region or neighborhood covered by a sub-portion of the system may be sampled substantially simultaneously (e.g., all sensor devices 115 sample within a thirty second, sixty second, three minute, or five minute time period). Such samples may be gathered at a set scheduled time, at regular times, at regular intervals, or in response to a command received from a remote computer. Uses of the measured (and processed) power line parameter data are described below in more detail.
  • In the embodiments described herein and others, the invention may employ a communication method that reduces the power needed to communicate the measured data over the non-conductive communication link. Specifically, reducing the power needed to communicate the data allows the sensor device to communicate data when very little power is available (e.g., from the isolated power source). In one example embodiment, the sensor device 115 includes a timing circuit that periodically wakes up the sensing and memory circuits (e.g., analog to digital converter and memory) from a reduced power state (e.g., hibernation or standby state) to allow the measurement(s) to be taken (samples converted to digital data), processed, and stored in memory. In addition, after a predetermined number of measurements have been taken and the associated data stored, the communication circuitry of the interface 206 may be woken up to transmit the stored data to the power line communication device 138, 139, 135 via the non-conductive communication link (e.g., the fiber optic conductor, through the air via a wireless transmitter or transceiver, etc.).
  • In one example embodiment, the communication circuitry is configured to transmit a plurality of samples of the parameter data in a bursting transmission, which may comprise a relatively high transmission rate and relatively short transmission time. Specifically, over a given time period (e.g., a day) a plurality of bursts of the parameter data may be transmitted, with each burst transmitting data a plurality of the stored samples. The bursting at high data rates may allow the transmitter of the interface 206 of the sensor device 206 to remain powered down (or in a low power use state) a high percentage of the time. The bursting transmission over a time period (e.g., an hour or day) may have an extremely low duty cycle such as less than 0.01 (1%), more preferably less than 0.001 (0.1%), even more preferably less than 0.0001 (0.01%), and still more preferably less than 0.00001 (0.001%).
  • Backhaul Node 132:
  • Communication nodes, such as access nodes, repeaters, and backhaul nodes, may communicate to and from the IP network (which may include the Internet) via a backhaul node 132. In one example embodiment, a backhaul node 132 comprises a backhaul device 138. The backhaul device 138, for example, may transmit communications directly to an aggregation point 124, or to a distribution point 127 which in turn transmits the data to an aggregation point 124.
  • FIGS. 6 and 7 show an example embodiment of a backhaul device 138 which may form all or part of a backhaul node 132. The backhaul device 138 may include a medium voltage power line interface (MV Interface) 140, a controller 142, an expansion port 146, and a gigabit Ethernet (gig-E) switch 148. In some embodiments the backhaul device 138 also may include a low voltage power line interface (LV interface) 144. The MV interface 140 is used to communicate over the MV power lines and may include an MV power line coupler coupled to an MV signal conditioner, which may be coupled to an MV modem 141. The MV power line coupler prevents the medium voltage power from passing from the MV power line 110 to the rest of the device's circuitry, while allowing the communications signal to pass between the backhaul device 138 and the MV power line 110. The MV signal conditioner may provide amplification, filtering, frequency translation, and transient voltage protection of data signals communicated over the MV power lines 110. Thus, the MV signal conditioner may be formed by a filter, amplifier, a mixer and local oscillator, and other circuits which provide transient voltage protection. The MV modem 141 may demodulate, decrypt, and decode data signals received from the MV signal conditioner and may encode, encrypt, and modulate data signals to be provided to the MV signal conditioner.
  • The backhaul device 138 also may include a low voltage power line interface (LV Interface) 144 for receiving and transmitting data over an LV power line 114. The LV interface 144 may include an LV power line coupler coupled to an LV signal conditioner, which may be coupled to an LV modem 143. In one embodiment the LV power line coupler may be an inductive coupler. In another embodiment the LV power line coupler may be a conductive coupler. The LV signal conditioner may provide amplification, filtering, frequency translation, and transient voltage protection of data signals communicated over the LV power lines 114. Data signals received by the LV signal conditioner may be provided to the LV modem 143. Thus, data signals from the LV modem 143 are transmitted over the LV power lines 110 through the signal conditioner and coupler. The LV signal conditioner may be formed by a filter, amplifier, a mixer and local oscillator, and other circuits which provide transient voltage protection. The LV modem 143 may demodulate, decrypt, and decode data signals received from the LV signal conditioner and may encode, encrypt, and modulate data signals to be provided to the LV signal conditioner.
  • The backhaul device 138 also may include an expansion port 146, which may be used to connect to a variety of devices. For example a wireless access point, which may include a wireless transceiver or modem 147, may be integral to or coupled to the backhaul device 138 via the expansion port 146. The wireless modem 147 may establish and maintain a communication link 150. In other embodiments a communication link is established and maintained over an alternative communications medium (e.g., fiber optic, cable, twisted pair) using an alternative transceiver device. In such other embodiments the expansion port 146 may provide an Ethernet connection allowing communications with various devices over optical fiber, coaxial cable or other wired medium. In such embodiment the modem 147 may be an Ethernet transceiver (fiber or copper) or other suitable modem may be employed (e.g., cable modem, DSL modem). In other embodiments, the expansion port may be coupled to a Wifi access point (IEEE 802.11 transceiver), WiMAX (IEEE 802.16), wireless pager transceiver, mobile telephone transceiver, or mobile telephone cell site. The expansion port may be employed to establish a communication link 150 between the backhaul device 138 and devices at a residence, building, other structure, another fixed location, or between the backhaul device 138 and a mobile device.
  • Various sensor devices 115 also may be connected to the backhaul device 138 through the expansion port 146 or via other means (e.g., a dedicated sensor interface not shown). Exemplary sensors that may be coupled to the backhaul device 138 may include a power distribution parameter sensor 116 (which may comprise current sensor device 115 or a voltage sensor device), a level sensor (to determine pole tilt), a camera (e.g., for monitoring security, detecting motion, monitoring children's areas, monitoring a pet area), an audio input device (e.g., microphone for monitoring children, detecting noises), a vibration sensor, a motion sensor (e.g., an infrared motion sensor for security), a home security system, a smoke detector, a heat detector, a carbon monoxide detector, a natural gas detector, a thermometer, a barometer, a biohazard detector, a water or moisture sensor, a temperature sensor, and a light sensor. The expansion port may provide direct access to the core processor (which may form part of the controller 142) through a MII (Media Independent Interface), parallel, serial, or other connection. This direct processor interface may then be used to provide processing services and control to devices connected via the expansion port thereby allowing for a more less expensive device (e.g., sensor). The power parameter sensor device 115 may measure and/or detect one or more parameters, which, for example, may include power usage data, power line voltage data, power line current data, detection of a power outage, detection of water in a pad mount, detection of an open pad mount, detection of a street light failure, power delivered to a transformer data, power factor data (e.g., the phase angle between the voltage and current of a power line), power delivered to a downstream branch data, data of the harmonic components of a power signal, load transients data, and/or load distribution data. In addition, the backhaul device 138 may include multiple sensor devices 115 so that parameters of multiple power lines may be measured such as a separate parameter sensor device 116 on each of three MV power line conductors and a separate parameter sensor on each of two energized LV power line conductors and one on each neutral conductor. One skilled in the art will appreciate that other types of utility data also may be gathered. As will be evident to those skilled in the art, the expansion port may be coupled to an interface for communicating with the interface 206 of the sensor device 116 via a non-conductive communication link.
  • The backhaul device 138 also may include a gigabit Ethernet (Gig-E) switch 148. Gigabit Ethernet is a term describing various technologies for implementing Ethernet networking at a nominal speed of one gigabit per second, as defined by the IEEE 802.3z and 802.3ab standards. There are a number of different physical layer standards for implementing gigabit Ethernet using optical fiber, twisted pair cable, or balanced copper cable. In 2002, the IEEE ratified a 10 Gigabit Ethernet standard which provides data rates at 10 gigabits per second. The 10 gigabit Ethernet standard encompasses seven different media types for LAN, MAN and WAN. Accordingly the gig-E switch may be rated at 1 gigabit per second (or greater as for a 10 gigabit Ethernet switch).
  • The switch 148 may be included in the same housing or co-located with the other components of the node (e.g., mounted at or near the same utility pole or transformer). The gig-E switch 148 maintains a table of which communication devices are connected to which switch 148 port (e.g., based on MAC address). When a communication device transmits a data packet, the switch receiving the packet determines the data packet's destination address and forwards the packet towards the destination device rather than to every device in a given network. This greatly increases the potential speed of the network because collisions are substantially reduced or eliminated, and multiple communications may occur simultaneously.
  • The gig-E switch 148 may include an upstream port for maintaining a communication link 152 with an upstream device (e.g., a backhaul node 132, an aggregation point 124, a distribution point 127), a downstream port for maintaining a communication link 152 with a downstream device (e.g., another backhaul node 134; an access node 134), and a local port for maintaining a communication link 154 to a Gig-E compatible device such as a mobile telephone cell cite 155 (i.e., base station), a wireless device (e.g., WiMAX (IEEE 802.16) transceiver), an access node 134, another backhaul node 132, or another device. In some embodiments the gig-E switch 148 may include additional ports.
  • In one embodiment, the link 154 may be connected to mobile telephone cell site configured to provide mobile telephone communications (digital or analog) and use the signal set and frequency bands suitable to communicate with mobile phones, PDAs, and other devices configured to communicate over a mobile telephone network. Mobile telephone cell sites, networks and mobile telephone communications of such mobile telephone cell sites, as used herein, are meant to include analog and digital cellular telephone cell sites, networks and communications, respectively, including, but not limited to AMPS, 1G, 2G, 3G, GSM (Global System for Mobile communications), PCS (Personal Communication Services) (sometimes referred to as digital cellular networks), 1× Evolution-Data Optimized (EVDO), and other cellular telephone cell sites and networks. One or more of these networks and cell sites may use various access technologies such as frequency division multiple access (FDMA), time division multiple access (TDMA), or code division multiple access (CDMA) (e.g., some of which may be used by 2G devices) and others may use CDMA2000 (based on 2G Code Division Multiple Access), WCDMA (UMTS)—Wideband Code Division Multiple Access, or TD-SCDMA (e.g., some of which may be used by 3G devices).
  • The gig-E switch 148 adds significant versatility to the backhaul device 138. For example, several backhaul devices may be coupled in a daisy chain topology (see FIG. 11), rather than by running a different fiber optic conductor to each backhaul node 134. Additionally, the local gig-E port allows a communication link 154 for connecting to high bandwidth devices (e.g., WiMAX (IEEE 802.16) or other wireless devices). The local gig-E port may maintain an Ethernet connection for communicating with various devices over optical fiber, coaxial cable or other wired medium. Exemplary devices may include user devices 130, a mobile telephone cell cite 155, and sensors (as described above with regard to the expansion port 146.
  • Communications may be input to the gig-E switch 148 from the MV interface 140, LV interface 144 or expansion port 146 through the controller 142. Communications also may be input from each of the upstream port, local port and downstream port. The gig-E switch 148 may be configured (by the controller 142 dynamically) to direct the input data from a given input port through the switch 148 to the upstream port, local port, or downstream port. An advantage of the gig-E switch 148 is that communications received at the upstream port or downstream port need not be provided (if so desired) to the controller 142. Specifically, communications received at the upstream port or downstream port may not be buffered or otherwise stored in the controller memory or processed by the controller. (Note, however, that communications received at the local port may be directed to the controller 142 for processing or for output over the MV interface 140, LV interface 144 or expansion port 146). The controller 142 controls the gig-E switch 148, allowing the switch 148 to pass data upstream and downstream (e.g. according to parameters (e.g., prioritization, rate limiting, etc.) provided by the controller). In particular, data may pass directly from the upstream port to the downstream port without the controller 142 receiving the data. Likewise, data may pass directly from the downstream port to the upstream port without the controller 142 receiving the data. Also, data may pass directly from the upstream port to the local port in a similar manner; or from the downstream port to the local port; or from the local port to the upstream port or downstream port. Moving such data through the controller 142 would significantly slow communications or require an ultra fast processor in the controller 142. Data from the controller 142 (originating from the controller 142 or received via the MV interface 140, the LV interface 144, or expansion port 146) may be supplied to the Gig-E switch 148 for communication upstream (or downstream) via the upstream port (or downstream port) according to the address of the data packet. Thus, data from the controller 142 may be multiplexed in (and routed/switched) along with other data communicated by the switch 148. As used herein, to route and routing is meant to include the functions performed by of any a router, switch, and bridge.
  • The backhaul device 138 also may include a controller 142 which controls the operation of the device 138 by executing program codes stored in memory. In addition, the program code may be executable to process the measured parameter data to, for example, convert the measured data to current, voltage, or power factor data. The backhaul 138 may also include a router, which routes data along an appropriate path. In this example embodiment, the controller 142 includes program code for performing routing (hereinafter to include switching and/or bridging). Thus, the controller 142 may maintain a table of which communication devices are connected to port in memory. The controller 142, of this embodiment, matches data packets with specific messages (e.g., control messages) and destinations, performs traffic control functions, performs usage tracking functions, authorizing functions, throughput control functions and similar related services. Communications entering the backhaul device 138 from the MV power lines 110 at the MV interface 140 are received, and then may be routed to the LV interface 144, expansion port 146 or gig-E switch 148. Communications entering the backhaul device 138 from the LV power lines 114 at the LV interface 144 are received, and may then be routed to the MV interface 140, the expansion port 146, or the gig-E switch 148. Communications entering the backhaul device 138 from the expansion port 146 are received, and may then be routed to the MV interface 140, the LV interface 144, or the gig-E switch 148. Accordingly, the controller 142 may receive data from the MV interface 140, LV interface 144 or the expansion port 146, and may route the received data to the MV interface 140, LV interface 144, the expansion port 146, or gig-E switch 148. In this example embodiment, user data may be routed based on the destination address of the packet (e.g., the IP destination address). Not all data packets, of course, are routed. Some packets received may not have a destination address for which the particular backhaul device 138 routes data packets. Additionally, some data packets may be addressed to the backhaul device 138 itself, in which case the backhaul device may process the data as a control message.
  • Access Node 134:
  • The backhaul nodes 132 may communicate with user devices via one or more access nodes 134, which may include an access device 139. FIGS. 8-9 show an example embodiment of such an access device 139 for providing communication services to mobile devices and to user devices at a residence, building, and other locations. Although FIG. 9 shows the access node 134 coupled to an overhead power line, in other embodiments an access node 134 (and its associated sensor devices 115) may be coupled to an underground power line.
  • In one example embodiment, access nodes 124 provide communication services for user devices 130 such as security management; IP network protocol (IP) packet routing; data filtering; access control; service level monitoring; service level management; signal processing; and modulation/demodulation of signals transmitted over the communication medium.
  • The access device 139 of this example node 134 may include a bypass device that moves data between an MV power line 110 and an LV power line 114. The access device 139 may include a medium voltage power line interface (MV Interface) 140 having a MV modem 141, a controller 142, a low voltage power line interface (LV interface) 144 having a LV modem 143, and an expansion port 146, which may have the functionality, functional components (and for connecting to devices, such as power line parameter sensor device 115) as previously described above with regard of the backhaul device 138. The access device 139 also may include a gigabit Ethernet (gig-E) port 156. The gig-E port 156 maintains a connection using a gigabit Ethernet protocol as described above for the gig-E switch 146 of FIG. 6. The power parameter sensor device 116 may be connected to the access device 139 to measure and/or detect one or more parameters of the MV power or the LV power line, which, for example, may include power usage data, power line voltage data, power line current data, detection of a power outage, detection of water in a pad mount, detection of an open pad mount, detection of a street light failure, power delivered to a transformer data, power factor data (e.g., the phase angle between the voltage and current of a power line), power delivered to a downstream branch data, data of the harmonic components of a power signal, load transients data, and/or load distribution data. In addition, the access device 134 may include multiple sensor devices 116 so that parameters of multiple power lines may be measured such as a separate parameter sensor device 116 on each of three MV power line conductors and a separate parameter sensor on each of two energized LV power line conductors and one on each neutral conductor. One skilled in the art will appreciate that other types of utility data also may be gathered. The sensor devices 115 described herein may be co-located with the power line communication device with which the sensor device 115 communicates or may displaced therefrom (e.g., at the next utility pole or transformer).
  • The Gig-E port 156 may maintain an Ethernet connection for communicating with various devices over optical fiber, coaxial cable or other wired medium. For example, a communication link 157 may be maintained between the access device 139 and another device through the gig-E port 156. For example, the gig-E port 156 may provide a connection to user devices 130, sensors (as described above with regard to the expansion port 146, such as to power line parameter sensor device 115), or a cell station 155.
  • Communications may be received at the access device 139 through the MV interface 140, LV interface 144, expansion port 146 or gig-E port 156. Communications may enter the access device 139 from the MV power lines 110 through the MV interface 140, and then may be routed to the LV interface 142, expansion port 146 or gig-E port 156. Communications may enter the access device 139 from the LV power lines 114 through the LV interface 144, and then may be routed to the MV interface 140, the expansion port 146, or the gig-E port 156. Communications may enter the access device 139 from the expansion port 146, and then may routed to the MV interface 140, the LV interface 144, or the gig-E port 156. Communications may enter the access device 139 via the gig-E port 156, and then may be routed to the MV interface 140, the LV interface 144, or the expansion port 146. The controller 142 controls communications through the access device 139. Accordingly, the access device 139 receives data from the MV interface 140, LV interface 144, the expansion port 146, or the gig-E port 156 and may route the data to the MV interface 140, LV interface 144, expansion port 146, or gig-E port 156 under the direction of the controller 142. In one example embodiment, the access node 134 may be coupled to a backhaul node 132 via a wired medium coupled to Gig-E port 156 while in another embodiment, the access node is coupled to the backhaul node 132 via an MV power line (via MV interface 140). In yet another embodiment, the access node 134 may be coupled to a backhaul node 132 via a wireless link (via expansion port 146 or Gig-E port 156). In addition, the controller may include program code that is executable to control the operation of the device 139 and to process the measured parameter data to, for example, convert the measured data to current, voltage, or power factor data.
  • Other Devices:
  • Another communication device is a repeater (e.g., indoor, outdoor, low voltage (LVR) and/or medium voltage) which may form part of a repeater node 135 (see FIG. 1). A repeater serves to extend the communication range of other communication elements (e.g., access devices, backhaul devices, and other nodes). The repeater may be coupled to power lines (e.g., MV power line; LV power line) and other communication media (e.g., fiber optical cable, coaxial cable, T-1 line or wireless medium). Note that in some embodiments, a repeater node 135 may also include a device for providing communications to a user device 130 (and thus also serve as an access node 134).
  • In various embodiments a user device 130 is coupled to an access node 134 using a modem. For a power line medium, a power line modem 136 is used. For a wireless medium, a wireless modem is used. For a coaxial cable, a cable modem is may be used. For a twisted pair, a DSL modem may be used. The specific type of modem depends on the type of medium linking the access node 134 and user device 130.
  • In addition, the PLCS may include intelligent power meters, which, in addition to measuring power, may include a parameter sensor device 115 and also have communication capabilities (a controller coupled to a modem coupled to the LV power line) for communicating the measured parameter data to the access node 134. Detailed descriptions of some examples of such power meter modules are provided in U.S. patent application Ser. No. 11/341,646, filed on Jan. 30, 2006 entitled, “Power Line Communications Module and Method,” which is hereby incorporated herein by reference in it entirety.
  • A power line modem 136 couples a communication onto or off of an LV power line 114. A power line modem 136 is coupled on one side to the LV power line. On the other side, the power line modem 136 includes a connector to connect to a wired or wireless medium leading to the user device 130. One protocol for communicating with access nodes 132 over an LV power line is the HomePlug 1.0 standard of the HomePlug® Alliance for routing communications over low voltage power lines. In this manner, a customer can connect a variety of user devices 130 to the communication network 104.
  • The parameter sensor devices 115 and applications for using the related data also be incorporated in power line communication systems that communicate over underground power lines. Detailed descriptions of the components, features, and power line communication devices of some example underground PLCSs are provided in U.S. patent application Ser. No. 11/399,529 filed on Apr. 7, 2006 entitled, “Power Line Communications Device and Method,” which is hereby incorporated herein by reference in its entirety. The parameter sensor devices 115 described herein (or portions thereof) may be formed in or integrated with couplers for coupling communication signals to and from the power lines. For example, the Rogowski coils described above may be attached to the transformer side of the coupler (or integrated into the coupler) that couples to the underground (or overhead) MV power lines to allow installation of the coupler to also accomplish installation of the sensor device 115.
  • Power Line Parameter Sensing:
  • FIG. 10 shows an example embodiment of a portion of a network having multiple power line distribution parameter sensor devices 116, 162. The devices 116 are located along the LV power lines. The devices 162 are located along the MV power lines. In one embodiment a device 162 may be a dual sensor assembly 160, including a pair of current sensor devices 115 that may be coupled together (e.g., mechanically) and may share a common communication interface for communication with a power line communication device (e.g., a backhaul device 138, an access device 139, or a repeater 135). In this example embodiment, the dual sensor device assembly 160 is coupled to the power line communication device 138, 139, 135 by a fiber optic conductor 174. In other embodiments of sensor devices 115, 116, 160, communications with the power line communication device may occur over a wireless communication path.
  • As shown in FIG. 10, the distribution transformer 112 is connected to the MV power line 110 via conductor 165 at a connection point 164. In this example, a first current sensor device 115 a is disposed on a first side of the connection point 164 and a second current sensor device 115 b is disposed on the second side of the connection point 164. As shown in the figure, the flow of current is from left to right over the MV power line 110. Thus, current sensor device 115 a measures the current on the MV power line 110 before the connection point 164 associated with transformer 112. Current sensor device 115 b measures the current on the MV power line 110 after the connection point 164 associated with transformer 112. By computing the difference measured between the two measured current sensor devices 115 (the current of device 115 a minus the current of 115 b), the PLC device 138, 139, 135 (assembly device 160) or other device (e.g., a remote computer) can determine the current carried through conductor 165 and drawn by the transformer 112. Various sub-networks 170 a-d may be coupled to the medium voltage power line 110 and also include the same sensor device assemblies 160 and power line communication devices.
  • FIG. 10 also shows a power line distribution parameter sensor device 116 that measures current and voltage of the LV power line. The sensor 116 may be located between the transformer 112 and customer premises on a LV power line connected to the transformer 112. For example a power line distribution parameter sensor device 116 may be located at the power meter for the premises, at the transformer 112 or somewhere along the low voltage power line 114. In the illustrated embodiment, the power line parameter sensor device 116 is coupled to, and located near, the power line communication device 138, 139, 135 and includes a voltage and current sensor device 117 measuring the voltage and current on both LV energized conductors (and current on the neutral).
  • By measuring current on the upstream and downstream side of the connection point 164, the current and/or power drawn by the transformer 112 can be determined by the power line communication device 138, 139, 135) and transmitted to a remote computer (e.g., over the MV power line, wirelessly, or via fiber optic) for use by the utility. Information of the current and/or power being drawn by the transformer 112 can be used initiate replacement of the transformer 112 (e.g., if the transformer load is approaching capacity) and/or for planning purposes. In addition, if the voltage of the MV power line 110 is known with sufficient accuracy or measured by a sensor device 116, the power input to, and output from, the transformer 112 can be calculated to thereby determine the efficiency of the transformer 112.
  • In some embodiments the dual sensor device assembly 160 may be packaged with (and installed together with) the conductor 165 at the connection point 164. For example, a conventional conductor 165 already in place may have its connector jumpered out to be replaced with a connector coupling to the dual sensor device assembly 160.
  • In some embodiments the dual sensor device assembly 160 may be self-powered, as discussed herein, by inductively drawing power from the medium voltage power line 110. Near the end of a medium voltage power line 110, the current may drop below a level needed to power the sensor assembly device 160 d. In such case, however, the parameters measured by the immediately upstream dual sensor assembly 160 c may be used to derive the load of the more downstream load 170 d.
  • Network Communication Protocols:
  • The communication network 104 may provide high speed internet access and other high data-rate data services to user devices, homes, buildings and other structure, and to each room, office, apartment, or other unit or sub-unit of multi-unit structure. In doing so, a communication link is formed between two communication nodes 128 over a communication medium. Some links are formed by using a portion 101 of the power system infrastructure. Specifically, some links are formed over MV power lines 110, and other links are formed over LV power lines 114. Still other links may be formed over another communication media, (e.g., a coaxial cable, a T-1 line, a fiber optic cable, wirelessly (e.g., IEEE 802.11a/b/g, 802.16, 1G, 2G, 3G, wireless pager system, or satellite such as WildBlue®)). Some links may comprise wired Ethernet, multipoint microwave distribution system (MMDS) standards, DOCSIS (Data Over Cable System Interface Specification) signal standards or another suitable communication method. The wireless links may also use any suitable frequency band. In one example, frequency bands are used that are selected from among ranges of licensed frequency bands (e.g., 6 GHz, 11 GHz, 18 GHz, 23 GHz, 24 GHz, 28 GHz, or 38 GHz band) and unlicensed frequency bands (e.g., 900 MHz, 2.4 GHz, 5.8 GHz, 24 GHz, 38 GHz, or 60 GHz (i.e., 57-64 GHz)).
  • Accordingly, the communication network 104 includes links that may be formed by power lines, non-power line wired media, and wireless media. The links may occur at any point along a communication path between a backhaul node 132 and a user device 130, or between a backhaul node 132 and a distribution point 127 or aggregation point 124.
  • Communication among nodes 128 may occur using a variety of protocols and media. In one example, the nodes 128 may use time division multiplexing and implement one or more layers of the 7 layer open systems interconnection (OSI) model. For example, at the layer 3 ‘network’ level, the devices and software may implement switching and routing technologies, and create logical paths, known as virtual circuits, for transmitting data from node to node. Similarly, error handling, congestion control and packet sequencing can be performed at Layer 3. In one example embodiment, Layer 2 ‘data link’ activities include encoding and decoding data packets and handling errors of the ‘physical’ layer 1, along with flow control and frame synchronization. The configuration of the various communication nodes may vary. For example, the nodes coupled to power lines may include a modem that is substantially compatible with the HomePlug 1.0 or A/V standard. In various embodiments, the communications among nodes may be time division multiple access or frequency division multiple access.
  • While the sensor devices described above are described in the context of power line communication system (that may include wireless links), the sensor devices may be connected (communicatively coupled) to wireless communication devices that communicate, for example, via through one or more of a mobile telephone network, two way wireless pager system, WAN, or WiMAX network (and include a transceiver suitable for the wireless network)—and that does not communicate over power lines.
  • Network Topology:
  • FIG. 11 shows an example embodiment of a network topology which illustrates many of the communication features of the backhaul node 132 and access node 134. For example, several backhaul nodes 132 a-c may be coupled together in a daisy chain configuration by communication links 152. Such links 152 may be formed by the upstream and downstream ports of the gig-E switch 148 of the respective backhaul nodes 132. The gig-E switch 148 also may be implemented to connect a backhaul node 132 c to a distribution point 127. Accordingly, the gig-E switch 148 may form part of a communication link along a path for communicating with an internet protocol network 126. Further, a local port of a gig-E switch 148 may be implemented to couple a backhaul node 132 a to a mobile phone site 155 via link 154. The backhaul nodes 132 a-d also may be coupled to MV power lines 110 to maintain MV links for communication with multiple access nodes 134 (shown as small rectangles). The backhaul node 132 a may also be coupled to an access node 134 a (which may repeat data for other access nodes 134) over a wireless communication link 150, for example, through the expansion port 146. The backhaul node 132 a is further illustrated to couple to a chain of access devices 134 and a backhaul node 132 e. The link from the backhaul node 132 a to the access node 134 b may be formed by coupling a downstream port of the gig-e switch 148 of backhaul node 132 a to the gig-E port 156 of the access node 134 b. A similar link is shown between the backhaul node 132 d and the access node 134 c. Still another communication link is shown over an LV power line 114 to couple an access node 134 d to a computer and to couple a backhaul node 132 f to computer via a LV power line 114.
  • Software
  • The communication network 104 may be monitored and controlled via a power line server that may be remote from the structure and physical location of the network elements. The controller of the nodes 128 describe herein may include executable program code for controlling the operation of the nodes and responding to commands. The PLS may transmit any number of commands to a backhaul nodes 132 and access nodes 134 to manage the system. As will be evident to those skilled in the art, most of these commands are equally applicable for backhaul nodes 132 and access nodes 134. For ease of discussion, the description of the commands will be in the context of a node 128 (meant to include both). These commands may include altering configuration information, synchronizing the time of the node 128 with that of the PLS, controlling measurement intervals (e.g., voltage measurements), requesting measurement or data statistics, requesting the status of user device activations, rate shaping, and requesting reset or other system-level commands. Any or all of these commands may require a unique response from the node 128, which may be transmitted by the node 128 and received and stored by the PLS. The PLS may include software to transmit a command to any or all of the nodes (134 and 132) to schedule a voltage and/or current measurement at any particular time so that all of the network elements of the PLCS take the measurement(s) at the same time.
  • Alerts
  • In addition to commands and responses, the node 128 has the ability to send Alerts and Alarms to the PLS. Alerts typically are either warnings or informational messages transmitted to the PLS in light of events detected or measured by the node 128. Alarms typically are error conditions detected.
  • One example of an Alarm is an Out-of-Limit Alarm that indicates that an out-of-limit condition has been detected at the node 128, which may indicate a power outage on the LV power line, an MV or LV voltage too high, an MV or LV voltage too low, a temperature measurement inside the node 128 is too high, and/or other out-of-limit conditions. Information of the Out-of-Limit condition, such as the type of condition (e.g., a LV voltage measurement, a node 128 temperature), the Out-of-Limit threshold exceeded, the time of detection, the amount (e.g., over, under, etc.) the out of limit threshold has been exceeded, is stored in the memory of the node 128 and transmitted with the alert or transmitted in response to a request from the PLS.
  • Software Upgrade Handler
  • The Software Upgrade Handler software may be started by the node 128 Command Processing software in response to a PLS command. Information needed to download the upgrade file, including for example the remote file name and PLS IP address, may be included in the parameters passed to the Software Command Handler within the PLS command.
  • Upon startup, the Software Command Handler task may open a file transfer program such as Trivial File Transfer Protocol (TFTP) to provide a connection to the PLS and request the file. The requested file may then be downloaded to the node 128. For example, the PLS may transmit the upgrade through the Internet to the node 128 (and perhaps through the backhaul node, and over the MV power line) where the upgrade may be stored in a local RAM buffer and validated (e.g., error checked) while the node 128 continues to operate (i.e., continues to communicate packets). Finally, the task copies the downloaded software into a backup boot page in non-volatile memory, and transmits an Alert indicating successful installation to the PLS. The node 128 then makes the downloaded software the primary boot page and reboots. When the device restarts the downloaded software will be copied to RAM and executed. The device will then notify the PLS that it has rebooted via an alert indicating such. In addition, and through substantially the same procedure, new software code may be received by the controller for storage in (e.g., to replace existing code) and execution at the media access control (MAC) layer of the LV modem and/or the MV modem of the access device or the backhaul device.
  • ADC Scheduler
  • Any of the nodes described herein may include an analog to digital converter (ADC) for measuring the voltage, current, and/or other parameters of any power line 110, 114. The ADC may be located within the power line parameter sensor device 115 or within the power line communication device 138, 139, 135. The ADC Scheduler software, in conjunction with the real-time operating system, creates ADC scheduler tasks to perform ADC sampling according to configurable periods for each sample type. Each sample type corresponds with an ADC channel. The ADC Scheduler software creates a scheduling table in memory with entries for each sampling channel according to default configurations or commands received from the PLS. The table contains timer intervals for the next sample for each ADC channel, which are monitored by the ADC scheduler.
  • ADC Measurement Software
  • The ADC Measurement Software, in conjunction with the real-time operating system, creates ADC measurement tasks that are responsible for monitoring and measuring data accessible through the ADC 330 such as the power distribution parameter sensor devices 115 (including the current sensor devices 115 and voltage sensor devices) described herein. Each separate measurable parameter may have an ADC measurement task. Each ADC measurement task may have configurable rates for processing, recording, and reporting for example.
  • An ADC measurement task may wait on a timer (set by the ADC scheduler). When the timer expires the task may retrieve all new ADC samples for that measurement type from the sample buffer, which may be one or more samples. The raw samples are converted into a measurement value. The measurement is given the timestamp of the last ADC sample used to make the measurement. The measurement may require further processing. If the measurement (or processed measurement) exceeds limit values, an alert condition may be generated. Out of limit Alerts may be transmitted to the PLS and repeated at the report rate until the measurement is back within limits. An out of limit recovery Alert may be generated (and transmitted to the PLS) when the out of limit condition is cleared (i.e., the measured value falls back within limit conditions).
  • The measurements performed by the ADC, each of which has a corresponding ADC measurement task, may include node 128 inside temperature, LV power line voltage, LV power line current, MV power line voltage, and/or MV power line current for example. MV and LV power line measurements may be accomplished via the power line parameter sensor devices 115.
  • As discussed, the nodes may include value limits for most of these measurements stored in memory with which the measured value may be compared. If a measurement is below a lower limit, or above an upper limit (or otherwise out of an acceptable range), the node 128 may transmit an Out-of-Limit Alert. Such alert may be received and stored by the PLS. In some instances, one or more measured values are processed to convert the measured value(s) to a standard or more conventional data value.
  • The LV power line voltage measurement may be used to provide various information. For example, the measurement may be used to determine a power outage (and subsequently a restoration), or measure the power used by a consumer (when current data is also available) or by all of the consumers connected to that distribution transformer. In addition, it may be used to determine the power quality of the LV power line by measuring and processing the measured values over time to provide frequency, harmonic content, and other power line quality characteristics.
  • Methods and Configurations for Detecting Power Line Theft
  • According to embodiments of the present invention, power line distribution parameter data may be used to detect power theft, and to isolate a source area, neighborhood or premises where such power theft is occurring. The parameter data also may be used for other purposes, as described below in a separate section.
  • Power line distribution parameter data may be gathered at regular times, periodically, aperiodically, at one or more scheduled times, or in response to specific commands or triggering events. Also, the power line distribution parameter may be simultaneously measured from one sensor device 115, multiple sensor devices or all sensor devices 115 of a single power line communication device 138, 139, 135 or all power line communication devices 138, 139, 135. For example, parameter data of a building, neighborhood, a city, a country, or other region may be measured. Alternately, data for the entire power line distribution system 104 may be collected. The parameter sensor device 115 may be any of the sensor devices previously described, such as sensor 115, current sensor 116, and dual-sensor assembly 160.
  • One example sensor device 115 comprises a power sensor device 198 measures a power line parameter to determine the power delivered to over a low voltage power line. In particular, by collecting measurements over time, power consumption over a corresponding time period may be derived. By comparing such finding with the sum of power measurements received from the power meters connected to that low voltage power line, a utility provider may determine how much power is being provided via that power line that is not being measured by the utility meters. Minor discrepancies may be expected due to power line losses and power utility devices. Such a discrepancy is expected to be generally constant, and thus identifiable. Discrepancies due to power theft typically will be larger and vary over time according to the amount of power being stolen (i.e., consumed by the devices or premises that is illegally connected to the power line).
  • FIGS. 12-16 show various configurations in which one or more sensor devices 198 are positioned along LV power lines 114 to detect and isolate power theft downstream of a given distribution transformer 112. In this example embodiment, sensor device 198 is configured to measure parameters sufficient to determine the power delivered via the power line and, therefore, may include a voltage and current sensor. In some embodiments, the voltage sensor may not be necessary and the voltage may be derived via a measurement from a separate device or estimated based on other known voltages. Depending on the embodiment, the sensors that form part of the sensor device 198 may be integrated together or may be separate. According to various configurations, the location of the power theft may be generally located to a group of premises or location. FIGS. 17-20 show configurations in which a sensor device 198 may be located along an MV power line in the vicinity of a distribution transformer 112 to detect power theft that may be occurring in an area near (e.g., served by) a specific transformer 112.
  • FIG. 12 shows a configuration 200 for isolating power theft from a LV subnet (i.e., the low voltage power lines that are electrically connected to a distribution transformer) that is connected to a group 202 of premises 204, which may include one or more residences, office buildings, and/or other structures. Power traverses along the MV power line 110, is stepped down at a distribution transformer 112, and then delivered over a LV subnet (LV power lines 114 and 206) as LV power to the one or more respective premises 204. An LV power line 114 extends from the distribution transformer 112 and splits into (or is coupled to) multiple LV power supply lines 206. In this example, each LV power supply line 206 extends to a power utility meter 208 at a corresponding premises 204 to supply to that premises. The utility meter 208 measures the power entering the premises 204 via the meter 208. More specifically, each meter 208 measures the power traversing the power supply line 206 at the meter's location, which, when no theft is occurring, includes all the power entering the premises and being consumed by the electrical devices at the premises.
  • Obtaining power by connecting an electrical device (or the entire premises 208) to a low voltage subnet (e.g., a power supply line 206 or LV power line 114) on the upstream (transformer) side of the meter 208 (thereby delivering power to the electrical device or premises by bypassing the power around the meter 208) is power theft. An example of power theft is shown in FIG. 12. Specifically, a jumper 500 connects a LV power supply line 206 a to the customer premises 204 a bypassing the meter 208 a. Thus, power entering the premises 204 a via the jumper 500 is not measured by the meter 208 a (and therefore is not paid for by the residences of customer premises 204 a), which constitutes one example of power theft. As another example, the jumper 500 from power supply line 206 a may be connected to (and supply power to) customer premises 204 b (a customer premises that receives power from a different supply line 206). In yet another example, the jumper 500 from one LV power line may be connected to (and supply power to) a customer premises 204 that receives power via a different LV subnet (from a different distribution transformer 112). There are many other examples. Thus, in many of the examples described herein, the invention may locate the LV subnet, LV power line, and/or LV power supply line, from which power is being stolen. The stolen power may be provided to a customer premises on the same or a different LV subnet or to an electrical device not associated with a customer premises.
  • In the example of FIG. 12, a power line communication device 210 (e.g., backhaul device 138; bypass device 139; or repeater 135) may be located in the vicinity of the distribution transformer 112. As described above, communications propagating along the MV power line 110 may bypass the distribution transformer 112, and be transmitted downstream along an LV power line 114 to a destination. Similarly, communications propagating along an LV power line 114 may bypass the transformer 112, and be transmitted upstream along the MV power line 110.
  • In the configuration of FIG. 12, a power sensor device 198 may be coupled to a power line 114 between the distribution transformer 112 and junction 207 of two or more power supply lines 206. Data from the sensor device 198 is provided to the power line communication device 210 (or other communication device), such as over a wired medium 212. In some embodiments, power usage data from the utility meters 208 also may be transmitted to the power line communication device 210, such as by a LV power line or wireless communication. The power line communication device 210 may store power usage data from the sensor device 198 and meters 208 and process the data to determine whether power theft is likely to be occurring. In some embodiments, the power line communication device 210 (or other communication device) may transmit the power usage data and the data from the sensor device(s) 198 to a power line server 118 or other remote device accessible by the utility provider for processing to determine whether power theft is likely to be occurring. In an alternative method, the utility meters 208 may send wired or wireless communications to the utility provider or power line server 118 by another route (a route that does not include the communication device 210). In such example, the utility provider or power line server 118 also may receive the sensor device 198 data from the communication device 210, and process the data and the meter data to determine if power theft is occurring.
  • The power data (which may comprise current data or current and voltage data) from sensor device 198 may be used to determine power the delivered to the low voltage subnet by the distribution transformer 112 over a given time period (e.g., five minutes, fifteen minutes, one hour, six hours, twelve hours, one day, one week, or one month). Data from each utility meter 208 receiving power from that transformer 112 may be used to determine power delivered to the premises 204 that the consumers are being billed for over the same time period. The power delivered as measured by sensor device 198 is expected to be substantially equal to the aggregate (the sum) of the power consumed by the premises 204 as determined by the data from the meters 208. For example, the meter data (i.e., the power paid for by the customers) from all of the meters 204 of that LV subnet should sum to be substantially the same as the power data as measured by the power sensor device 198 (i.e., the power delivered) over a given time period. When the values (i.e., (1) the sum of the meter data from all the meters and (2) the power data from the sensor device 198) differ significantly, the discrepancy may be due to power theft. Analyzing the differences over time can further confirm the discrepancies as being attributable to power theft. For example, if the discrepancy in the values varies it may be more likely that the discrepancy is caused by power theft. The discrepancy may vary due to power theft because the consumer varies the load by turning on and off the electrical devices that are consuming the stolen power, while if the discrepancy remains substantially constant it may be due to a lossy power lines. Thus, a first step may include determining the amount of a discrepancy (e.g., is it greater than a predetermined amount (percentage or absolute value)) and second, does the discrepancy vary over time.
  • In one embodiment in which the communication device 210 identifies power theft, the power line communication device 210 (or other communication device), may transmit an alert to a remote device. Alternately, if the power line server or other remote computer identifies the discrepancy (or receives the alert), the computer or server may log the discrepancy, determine the location (e.g., by pole number, street address, etc.) and provide notice to the utility provider.
  • The utility provider may respond to the discrepancies in various manners. When the difference is insignificant, and may be explained by other causes, such as power line losses, the discrepancy may be ignored. The pattern of discrepancy should be generally constant in such case. When the difference is significant, but amounts to a relatively small amount (in dollars), an email, warning letter, or other notification may be sent to all the premises connected to the transformer 112. The utility provider typically will have a means to identify the customers and customer premises 204 connected to the transformer 112. For example, the utility pole number on which the power line communication device 210 (or other communication device) and the distribution transformer 112 is installed may be stored in a database in memory, which also stores information of the customer premises (e.g., addresses) and names of customers that are connected to the transformer 112. Thus, the notification received may include a serial number of the device 210 (that is cross referenced to a pole number to retrieve the customer name and address data), pole number, or other data sufficient to retrieve data of the customer(s) connected to the LV subnet from which power is being stolen.
  • Thus, depending on the embodiment, the utility provider may send a notification to the customers electronically or via mail. Such a notification may be generated and sent automatically based upon an automated process at the power line server 118 or utility's computer system. Alternatively, a warning message may be automatically included with or on the next bill of each customer in the vicinity of the transformer 112 supplying the stolen power (e.g., the customers receiving power from the distribution transformer and those premises adjacent thereto). Rather than send a warning automatically, in an alternative approach a person may review the findings on behalf of the utility and determine that an appropriate course of action is to send a warning letter in the mail, electronically, or include a message in the next bill. When the difference exceeds a threshold amount corresponding to a significant amount of consumption in dollars, utility personnel may be dispatched to the area to inspect the LV subnet (e.g., power supply lines 206 and power line 114) and meters 208 to identify possible power theft. Still in another alternative, the response may be to install additional sensor devices 198 (as described below) to isolate the source of the discrepancy more precisely to a specific supply line 206 and/or premises 204.
  • The device's 198 local communication device may include an interface for communicating with parameter sensor device 198, a user device interface, a controller, and a network interface that includes a network modem for communicating with to an upstream device. Examples of such devices are described herein although the present invention is not limited to those communication devices described herein. For example, data from sensor devices 198 may be communicated via the network modem of the device 210 over twisted pair conductors, coaxial cable, a wireless mobile telephone network, or other wired or wireless network by its local communication device 210 to an upstream device. The network modem may be a DSL modem, cable modem, WiMAX modem, mobile telephone transceiver, WLAN modem, wireless paging transceiver, HomePlug compatible modem, or DS2 modem, and may employ any suitable protocol and/or modulation scheme including, but not limited to, OFDM, DOCSIS, WiMAX (IEEE 802.16), DSL, Ultra Wide Band (UWB), or other suitable modulation scheme or protocol. In one embodiment, some or all of the local communication devices 210 may employ a wireless modem (forming part of its network interface) for wireless communications upstream such as an IEEE 802.11a,b,g, or n modem, a WiMAX (IEEE 802.16) modem, a mobile telephone network transceiver, a wireless pager system transceiver, or another suitable wireless modem. In this example embodiment, the local communication device 210 may include a LV power line interface (that includes a modem for communicating with one or more user devices) and communicate the user data over the LV power line or alternately via twisted pair conductors, coaxial cable, fiber optic cable, or wireless link.
  • FIG. 13 shows another configuration 220 for locating power theft from a group 222 of premises 224 a-c, which may include one or more residences, office buildings, and/or other structures. Power is delivered as described above with regard to the configuration 200 of FIG. 12, along power lines 110, 114, and 206. Utility meters 208 measure power entering corresponding premises 224 a-c. More specifically, each meter 208 measures the power traversing the power supply line 206 at the meter's location, which, when no theft is occurring, includes all the power entering the premises 208 and being consumed by the electrical devices at the premises 224. A communication device 210 (e.g., backhaul device 138; bypass device 139; or repeater 135) may be located in the vicinity of the distribution transformer 112 to provide power line communications.
  • In the configuration 220 of FIG. 13, a power sensor device 198 may be installed on each power supply line 206 between a corresponding utility meter 208 and a junction 207 of the LV power line 114. Data from the sensor devices 198 may be provided to the power line communication device 210, such as via respective wired media 212 or via a wireless link. In some embodiments, power usage data from the utility meters 208 may be provided to the power line communication device 210 as well, such as by a wireless communication, or by transmitting data over the LV power line. The power line communication device 210 may store and process data from the sensor devices 198 and meters 208 to detect power theft. In some embodiments, the power line communication device may transmit the power data and/or the results of processing upstream to a power line server 118 or other device accessible by the utility provider. In some embodiments, the power line server or another utility provider computing device may process the data to determine whether power theft may be occurring.
  • The data from each sensor device 198 a-c may be used to determine the power delivered over each power supply line 206 over a given time period by the distribution transformer 112. Specifically, the power as measured by each utility meter 208 may be compared to the power delivered as measured by the sensor device 198 connected to the corresponding power supply line 206. The power measured over a given time period by a given sensor device 198 a installed on a power supply line 206 a is expected to be substantially the same as the power measured over the time period by the meter 208 a at the corresponding premises 224 a receiving power via that supply line 206 a. When the values differ by a significant amount (e.g., a predetermined percentage or other amount), the discrepancy may be due to power theft. Accordingly, the specific residence, building or other structure (e.g., premise 224 a) to which the meter 208 a is attached (and in some instances those premises nearby such as the adjacent residences or other residences on the LV subnet) may be identified as a possible location where power theft may be occurring. As with the other embodiments described herein, the device 210, power line server, or remote computer system processing the data may monitor and measure the discrepancy over time to determine if the discrepancy varies to further determine an increased likelihood of theft. The utility may respond to discrepancies and possible power theft in a manner similar to that described above.
  • FIG. 14 shows a configuration 230 which combines configurations 200 and 220 of FIGS. 12 and 13. Specifically, configuration 230 includes a first group 232 of premises 234 and a second group 236 of premises 238. The first group 232 is monitored as a group by sensor device 198 d. Each premises 238 a-c of the second group 236 is monitored individually by sensor devices 198 a-c. Both groups 232, 236 are provided power through a common distribution transformer 112 and LV power subnet and power line 114. The LV power line 114 splits into one LV power line branch 240 that serves the first group 232, and a second LV power line branch 242 that serves the second group 236. Branch 240 may run from the vicinity of one utility pole 244 to another utility pole 246, and then split (i.e., be connected to multiple supply lines 206) to serve the respective premises 234 a-234 b. Branch 242 may extend from the vicinity near the utility pole 244 and split (i.e., be connected to multiple supply lines 206) to serve the respective premises 238 a-238 c.
  • The first group 232 has a configuration similar to configuration 200 in that one sensor device 198 d may be installed on the first branch 240 to measure the cumulative power delivered to premises 234 a-b. The second group 236 has a configuration similar to configuration 220 in that a sensor device 198 a-c is installed on the power supply line 206 supply power to each respective customer premises 238 a-c. As discussed, a utility meter 208 located at each of the premises 234 a-b, 238 a-c measures the power entering the premises at the meter's location. One common communication device 210 may received data from the sensor devices 198 a-d for both the first group 232 and second group 236.
  • As described above with regard to the other configurations, the data from any given sensor device 198 a-d may be used to measure power delivered for a given time period. Also, data from the corresponding utility meters 208 may be used to measure the power entering the premises over the same time period at the corresponding premises 234 a-b, 238 a-c. The power delivered as measured from sensor device 198 d is expected to be generally equal to the sum of the power entering premises 234 a-b, as determined from the meters 208 at such premises 234 a-b. The power delivered over each supply line 206 of group 236 as measured from each sensor device 198 a-c is expected to be generally equal to the power entering the premises 238 a-c, as measured from the meter 208 at such premises 238 a-c.
  • As with the other embodiments described herein, the device 210, power line server, or remote computer system processing the data may monitor and measure the discrepancy over time to determine if the discrepancy varies to further determine an increased likelihood of theft. Also, the utility may respond to discrepancies, and possible power theft, in a manner similar to that described above.
  • FIG. 15 shows yet another configuration 250 for detecting power theft. Configuration 250 includes a first group 252 of premises 254 and a second group 256 of premises 258. The first group 252 is monitored as a group by sensor device 198 e. The second group 256 is monitored as a group by sensor device 198 f. Both groups 252, 256 are served with power through a common distribution transformer 112 and LV power line 114. The LV power line 114 splits into one power line branch 260 that serves the first group 252, and a second power line branch 262 that serves the second group 256. Branch 260 runs from the vicinity of one utility pole 244 to another utility pole 246, and then provides power via power supply lines 206 to premises 254 a-254 b. Branch 262 extends from the vicinity near the utility pole 244 and supplies power via power supply lines 206 to premises 258 a-258 c.
  • The first group 252 has a configuration similar to configuration 200 in that one sensor device 198 e may be located along the first branch 260 to measure the total power delivered to premises 254 a-b. The second group 256 also has a configuration similar to configuration 200 in that one sensor device 198 f may be located along the second branch 262 to measure the power delivered to premises 258 a-c. As discussed, a utility meter 208 is located at each of the premises 254 a-b, 258 a-c. One common communication device 210 may receive data from the sensor devices 198 e-f for both the first group 252 and second group 256.
  • As described above with regard to the other configurations, the measurements of any given sensor device 198 e-f may be used to determine the power delivered for a given time period (e.g., between data) via the power line (e.g., branches 260 and 262 respectively). Also, the measurements at the corresponding utility meters 208 may be used to determine the power traversing the power lines (over the same time period) at the meter, which may be at the ingress of the power lines into the premises 254 a-b, 258 a-c. The power delivered as measured from sensor device 198 e is expected to be generally equal to the sum of the power entering the premises 254 a-b, as measured by the meters 208 at such premises 254 a-b. Similarly, the power delivered as measured by sensor device 198 f is expected to be generally equal to the sum of the power entering the premises 258 a-c as measured by the meters 208 at such premises 258 a-c. When a comparison of the power delivered derived from the sensor device measurements and power consumed derived from the meter data shows discrepancies, power theft may be occurring.
  • As with the other embodiments described herein, the device 210, power line server, or remote computer system processing the data may monitor and measure the discrepancy over time to determine if the discrepancy varies to further determine an increased likelihood of theft. Also, the utility may respond to discrepancies, and possible power theft, in a manner similar to that described above for the other configurations.
  • FIG. 16 shows yet another configuration 270 for detecting power theft. Configuration 270 includes a first group 272 of premises 274 and a second group 276 of premises 278. The first group 272 of premises 274 a-b is monitored individually by corresponding sensors 198 g-h. The second group 276 of premises 278 a-c is monitored individually by corresponding sensor devices 198 a-c. Both groups 272 and 276 are served with power through a common distribution transformer 112 and LV power line 114. The LV power line 114 is coupled to a power line branch 280 that serves the first group 272 and a second power line branch 282 that serves the second group 276. Branch 280 runs from the vicinity of one utility pole 244 to another utility pole 246, and is connected to power supply lines 206 that provide power to the respective premises 274 a-274 b. Branch 282 extends from the vicinity near the utility pole 244 and is connected to power supply lines 206 that provide power to the respective premises 278 a-278 c.
  • The first group 272 has a configuration similar to configuration 220 (see FIG. 13). For each one premises 274 a-b there may be a corresponding sensor device 198 g-h. The second group 276 also has a configuration similar to configuration 220 in that for each one premises 278 a-c there may be a corresponding sensor device 198 a-c. A utility meter 208 is also located at each of the premises 274 a-b, 278 a-c. One common communication device 210 may receive data from the sensor devices 198 a-c, 198 g-h for both the first group 272 and second group 276. Because the sensor devices 198 g-h are located in the vicinity of a different utility pole than the communication device 210, sensor devices 198 g-h may include a wireless link for communicating with communication device 210, (see FIGS. 4 and 5).
  • As described above with regard to the other configurations, the measurements at any given sensor device 198 may be used to measure the power delivered over the power supply line 206 for a given time period. Also, the measurements of the corresponding utility meters 208 may be used to determine the power entering the premises via the meter over the same time period at premises 274 a-b, 278 a-c. The power delivered as measured by each sensor device 198 g-h is expected to be generally equal to the power measured at its corresponding premises 274 a-b, as determined from the meter 208 at such premises 274 a-b. Similarly, the power delivered as measured by each sensor device 198 a-c is expected to be generally equal to the power entering the premises at its corresponding premises 278 a-c, as determined from the meter 208 at such premises 278 a-c.
  • As with the other embodiments described herein, the device 210, power line server, or remote computer system processing the data may monitor and measure the discrepancy over time to determine if the discrepancy varies to further determine an increased likelihood of theft. Also, the utility may respond to discrepancies, and possible power theft, in a manner similar to that described above.
  • In other embodiments, the sensor devices 198 may be installed on a power line (e.g., a branch, supply line 206, or LV power line 114) that is connected to a different power line than the power line to which the communication device 210 is connected. For example, the sensor devices 198 g-h of FIG. 17 may be installed on a different LV subnet and measure the power delivered from a different transformer 112. In such an embodiment, it may practical for the remote computer system (e.g., PLS) to compare the meter data from the meters 208 with the data from the sensor devices 198 to detect theft since the communication device 210 may not have ready access to the meter data. However, in some embodiments wherein the device 210 receives the meter data from the meters 208 (e.g., via a wireless link or from the PLS) the communication device 210 may perform the processing to identify theft.
  • FIGS. 17-18 show configurations 290, 300, respectively, in which a sensor device 198 may be installed on the medium voltage power line supplying power to a distribution transformer 112 for each of multiple distribution transformers 112 in a region. In particular, each sensor device 198 may be located on a conductor 292 extending from the transformer 112 to the MV power line 110. An LV power line 114 extends from each transformer 112 to provide power to premises connected to the LV subnet of the transformer 112. For example, the LV power line may split downstream and extend to respective premises being served. A power line communication device 210 receives measurement data from the sensor device 198. Each sensor device 198 communicates with a corresponding communication device 210 via wire 294, fiber optic or a wireless 302 link (FIG. 18). In configuration 290 (see FIG. 17) there is a power line communication device 210 located in the vicinity of each transformer 112. For each power line communication device 210 there is a corresponding sensor device 198. In configuration 300 (see FIG. 18) for each transformer there may or may not be a nearby power line communication device 210. For example, at transformer 112 a there is a sensor device 198 a, but no communication device 210. At transformer 112 b there is a sensor device 198 b and a communication device 210 b. At transformer 112 c there is a sensor device 198 c but no communication device 210. For configuration 300, the sensor devices 198 a, c which do not have an immediately nearby communication device 210 b may include a wireless communication link 302 (e.g., via a wireless transceiver or transponder, see FIGS. 4 and 5) to a remote communication device 210 b. While sensor devices 198 a and 198 c are depicted as measuring the power supplied to a distribution transformer 112 a,c from the same MV power 110 that supplies power to distribution transformer 112 b, devices 198 a-c may be installed to measure the power delivered by different MV power lines (e.g., different phases of three phase conductors).
  • Referring to FIGS. 17 and 18, the data from any given sensor device 198 may be used to determine the power supplied to the distribution transformer 112 for a given time period. In some embodiments, the voltage into the transformer may be estimated based on an upstream measurement such as at the medium voltage substation. In other embodiments, a voltage sensor may be connected to a low voltage power line 114 in order to determine the voltage for calculating power. Once the power into the distribution transformer is known, the output power may be estimated. More specifically, the rated efficiency of a distribution transformer 112 is typically known by the utility provider. By subtracting the losses of the distribution transformer 112 from the power supplied to the distribution transformer 112, the power supplied to the LV subnet (the LV power line 114, supply lines 206, and all customer premises) may be estimated. For example, if a transformer is rated at ninety-five percent efficiency and the input to the transformer 112 is measured or determined to be 100 KWatts, the power supplied to the LV subnet may be estimated to be 95 KWatts. The transformer efficiency ratings may be stored at the device processing the data to detect theft such as, for example, at the communication device 210, power line server, remote computer system, or other device.
  • For configuration 290, each communication device 210 may receive data from its associated sensor device 198. For configuration 300, a given communication device 210 b may receive data from multiple sensor devices 198 via wired or wireless links. As described above for the other configurations, the communication device 210 may process the data and transmit the reading and/or processing results to the utility provider or power line server 118. In some embodiments the communication device 210 also may receive data from various utility meters (not shown), and process and/or forward that data and processing results to the utility provider or power line server 118. For example, in configuration 290 a communication device 210 may receive utility meter data from utility meters installed on its low voltage subnet.
  • The power usage data from the utility meters 208 of the LV subnet receiving power from the distribution transformer 112 may be summed together and compared to the power supplied to the LV subnet. If there is a significant discrepancy between the aggregate measured power usage data (from the meters) and the estimated power delivered to the LV subnet, a power theft may be detected. The utility may respond to discrepancies, and possible power theft, in a manner similar to that described above with regard to the other configurations.
  • FIGS. 19-20 show configurations 310, 320, which are similar to configurations 290, 300 of FIGS. 17-18, respectively. In configurations 310, 320, however, the sensor devices 198 are located along the MV power line 110, rather than on a conductor 292 coupling a transformer 112 to the MV power line 110, as in configurations 290, 300. For each of configuration 310, 320 there is a sensor device 198 located along the MV power line 110 in the vicinity of a corresponding distribution transformer 112 for each of multiple distribution transformers 112 in a region. A power line communication device 210 receives measurement data from the sensor devices 198.
  • FIG. 21 illustrates a flow chart of an example implementation for processing the data according to one or more examples of the present invention. At process 322, the meter data is received, which includes the data from one or more meters 208 for a given time period (e.g., five minutes, fifteen minutes, one hour, twelve hours, one day, one week, or one month). Depending on the embodiment, at process 324 the meter data from a plurality of meters 208 is summed together. The meters that are summed may be those meters 208 to which the power delivered is measured and received at process 326. In some embodiments it may not be necessary to sum the meter data such as for the embodiment shown in FIG. 13 or other embodiments wherein the power delivered to a single customer premises is known or measured (and which can be compared to the data from a single meter). At process 328 it is determined whether there is a discrepancy exists between the power delivered and the power entering the premises (the power paid for) satisfying predetermined criteria such as, for example, having a predetermined magnitude (e.g., cost, percentage in watts, absolute in watts, etc.) and/or that varies over time. If a discrepancy is identified, process 330 may determine location information associated with the discrepancy such as, for example, retrieving from a database a pole number, a street address, a plurality of street addresses, a block, a building address (with a plurality of premises), a LV subnet, a transformer number, a transformer location, and/or other data. At process 332 notification of the discrepancy and the location information may be provided to the utility provider and at process 334 one or more customers may be notified (e.g., automatically electronically, via mail, via personnel, etc.). If a discrepancy is not identified at process 328, the process may be repeated for other LV subnets and repeated for the same LV subnet when new data is available. In some embodiments, all of these processes illustrated (and others) may be performed by a remote computer that receives the data. In other embodiments, some processes may be performed locally by a local communication device (e.g., processes 322, 324, and 326 in a first embodiment and processes 322, 324, 326, 328 in a second embodiment) and others may be performed by a remote computer that receives the data (e.g., processes 328, 330, 332, and 334 in the first embodiment and processes 330, 332, and 334 in the second embodiment).
  • Each sensor device 198 communicates with a corresponding communication device 210 via a wired 312, fiber optic or a wireless 302 link. In configuration 310 (see FIG. 19) there is a power line communication device 210 located in the vicinity of each transformer 112. Accordingly, for each power line communication device 210 there is a corresponding sensor device 198. In configuration 320 (see FIG. 20) for each transformer 112 there may or may not be a nearby power line communication device 210. For example, at transformer 112 a there is a sensor device 198 a but no communication device 210. At transformer 112 b there is a sensor device 198 b and a communication device 210 b. At transformer 112 c there is a sensor device 198 c but no communication device 210. For configuration 320, the sensor devices 198 a and 198 c which do not have a nearby communication device 210 b may include a wireless link 302 (e.g., via a wireless transceiver or transponder, see FIGS. 4 and 5) to a remote communication device 210 b. The communication device 210 b may receive and process the sensor device 198 a, b, c measurement data.
  • The data obtained from any given sensor device 198 may be used to estimate the power delivered for a given time period. However, because the sensor devices 198 are located along the MV power line, downstream is not limited a specific area served by a specific transformer 112. Consider the flow of power signal which traverses the MV power line 110 in a direction 314. Power is drawn at each transformer 112 a-c to serve a group of customers. Thus, a power measurement derived from sensor device 198 b should be less than such a measurement derived from sensor device 198 a by the amount of power supplied by distribution transformer 112 b. Similarly, a power measurement derived from sensor device 198 c should be less than a power measurement from sensor device 198 b by the amount of power drawn by distribution transformer 112 c. Thus, by placing sensors on a MV power line on each side of a distribution transformer, the amount of power supplied to that transformer may be determined.
  • Thus, while the configurations 310 and 320 of FIGS. 19-20 determine the amount of power supplied to the distribution transformer 112 differently than the configurations 290 and 300 of FIGS. 17 and 18, the remainder of the configurations (the method of determining the power delivered by the LV subnet and detecting power theft) are substantially the same and therefore not repeated here.
  • It will be appreciated that various configurations as presented herein may be combined and implemented at various areas of a power distribution system to detect power theft and identify a source of power theft to various levels of detail. For example, while the embodiments described along with FIGS. 12-20 are in the context of an overhead power distribution system, the invention is equally suitable for use in an underground power distribution system. Similarly, while the described embodiments communicate data via a power line communication system, the sensor devices 198 may be combined with wireless communication devices (e.g., mobile telephone transceivers, two way wireless pager system transceivers, WiFi transceivers, or other transceivers) to communicate via a wireless data network. In addition, the sensor devices 198 used for theft detection and other inventions described herein may take various forms and be comprised of any implementations of sensors and other software and circuitry suitable for the application and is not limited to the sensor devices described herein. In addition, collection of data from the communication devices may be via a wireless transceiver that is in a moving vehicle that drives by the communication devices and collects the data from the communications devices and/or meters (which may be wireless).
  • Other Applications of Power Line Parameter Data
  • Power line distribution parameter data also may be useful for maintaining, planning, and managing distribution of power within a region. Various examples are described below.
  • Maintenance of the power line distribution system may be performed efficiently by monitoring power line distribution parameters at sensors 115/116/198 located at many power line communication devices 138, 139, 135 positioned throughout the communication and distribution system 104. Examples of maintenance that may be improved include recloser duty monitoring; reading voltages associated with specific capacitors, specific capacitor banks, and regulators; voltage imbalance detection may be performed; secondary neutral failures may be identified; and switching steps may be more effectively implemented during planned power outages.
  • Planning may be performed more efficiently by monitoring power line distribution parameters at sensors 115/116/198 located at many power line communication devices 138, 139, 135 positioned throughout the communication and distribution system 104. Examples of planning processes that may be improved include; feeder flow planning (by power flow validation); quantification of cold load pickup; quantification of secondary losses; quantification of primary losses; application of manual switching devices; application of distribution automation devices; subsidiary relay settings; selection/validation of fuse sizes; recloser settings; capacitor switching sequencing; adaptive preferred/alternate switch schemes (semi-firm design); transformer unit/bank size requirements; and detection of current imbalances. The current sensor devices 116, voltage sensor devices and other parameter sensor devices 115 may be used to measure the parameters, and store the data in a database (e.g., of the power line server) for use in predicting conditions such as power distribution equipment failures. Thus, upon detecting a certain power distribution condition (e.g., a failure of a transformer, a fault, etc.), the values of the stored parameters just prior to the condition may be analyzed to identify a correlation (e.g., a pattern) between the parameter values and the condition so that when substantially the same parameter value measurements are detected again, the condition may be predicted (and notification transmitted).
  • Managing power distribution may be improved. By gathering power line distribution parameter data, such as power line current, power line voltage, power factor data, load or other parameter, the efficiency of the power line distribution system may be improved. For example, real time monitoring of power line current at many locations (such as many MV power line locations) within the power line distribution system may enable switches in the system (MV feeder switches) to be reconfigured to redistribute the load (i.e., the flow of current) in response to measured data. The redistribution may be done manually (e.g., by sending personnel), semi-automatically (e.g., by personnel remotely actuating the switch(es)), and/or automatically (e.g., actuation of the switch(es) via a remote computer executing program code that transmits control information to actuate the switch). For example, when one area habitually uses less power, that excess capacity can be utilized to supply more heavily loaded areas, to optimize utilization of the installed infrastructure.
  • In addition, by monitoring fault current and thereby locating faults, the duration of the power outage may be reduced to consumers. By detecting a high impedance (low current) fault on a MV power line, a break in the overhead power line may be traced to a location, such as where current still flows, but at a reduced amount because the overhead power line is ‘dancing’ on the asphalt, averting a significant safety hazard. By analyzing trends in power line current and short duration changes, transient faults may be located. Current overloads may be identified to a specific device, signifying that such device should be replaced. Overloads also may be detected at a specific conductor, signifying that such conductor should be replaced. Overloads may be detected at a specific transformer, signifying that such transformer should be replaced. After a power outage, the measured current data may be used in selecting the MV power line switching sequences to restore power to specific areas. A switch may be evaluated by monitoring current across the switch (i.e., when in the normally closed position) to ensure that the switch is off and not faulty. A tie switch inadvertently left closed may be identified and located via current data. The measured current data may be used to derive the power factor, which in turn may be used to determine if load in an area is too reactive (e.g. to inductive). When too the load is too reactive, a switch may be actuated to insert or take out a capacitor bank for such area. By looking for a specific voltage and/or current signature pattern, such as a step function, an incipient failure of a transformer may be detected, and notice provided to the utility to replace the transformer. High voltage exceptions may be identified and located and low voltage exceptions may be identified and located. Voltage drops on secondary service loops can be characterized and the system reinforced if indicated.
  • It is to be understood that the foregoing illustrative embodiments have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the invention. Words used herein are words of description and illustration, rather than words of limitation. In addition, the advantages and objectives described herein may not be realized by each and every embodiment practicing the present invention. Further, although the invention has been described herein with reference to particular structure, materials and/or embodiments, the invention is not intended to be limited to the particulars disclosed herein. Rather, the invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims. Those skilled in the art, having the benefit of the teachings of this specification, may affect numerous modifications thereto and changes may be made without departing from the scope and spirit of the invention.

Claims (36)

1. A method of providing utility data services, comprising:
receiving meter data of the measured power consumed by a plurality of power customers;
receiving delivered power data that includes data of the power delivered to the plurality of power customers;
determining a difference between the meter data and the delivered power data;
determining that the difference between the meter data and the delivered power data is greater than a predetermined amount; and
indicating a discrepancy if the difference between the meter data and the delivered power data is greater than a predetermined amount.
2. The method of claim 1, further comprising determining location information associated with the discrepancy.
3. The method of claim 2, further comprising generating a notification of the discrepancy.
4. The method of claim 3, further comprising providing the notification to a utility provider.
5. The method of claim 3, further comprising providing the notification to one or more power customers.
6. The method of claim 2, wherein said location information is used to dispatch personnel.
7. The method of claim 1, further comprising summing meter data of each of the plurality of power customers.
8. The method of claim 1, wherein the delivered power data comprises data of the power delivered over a low voltage power supply line supplying power to the plurality of power customers.
9. The method of claim 1, wherein said determining a difference comprises determining a difference between the meter data of a power customer and the power delivered to that power customer via a low voltage power supply line.
10. The method of claim 1, wherein the delivered power data comprises data of the power delivered over each of a plurality of low voltage power supply lines that supply power to each of the plurality of power customers.
11. The method of claim 1, wherein the delivered power data is received via a data path that includes a wireless data network.
12. The method of claim 11, wherein the wireless data network comprises a mobile telephone network.
13. The method of claim 11, wherein the wireless data network comprises a wireless pager network.
14. The method of claim 1, wherein the delivered power data is received via a data path that includes a medium voltage power line.
15. The method of claim 1, further comprising determining that the difference between the meter data and the delivered power data varies over time.
16. A method of providing utility services, comprising:
establishing a plurality of first communication links with a plurality of utility meters configured to provide meter data used to bill the plurality of power customers;
receiving meter data from the plurality of utility meters via the plurality of first communication links to one or more remote devices;
establishing a plurality of second communication links with a plurality of sensor devices configured to provide power data sufficient for determining the power delivered to the plurality of power customers via power lines that are connected to the plurality of meters;
receiving data of the power delivered to the plurality of customers from the plurality of sensor devices via the plurality of second communication links; and
determining one or more discrepancies between the meter data and the data of the power delivered.
17. The method of claim 16, wherein each of the second communication links comprises a communication device installed on a utility pole.
18. The method of claim 16, wherein each of the second communication links comprises a communication device installed in an underground transformer enclosure.
19. The method of claim 16, wherein a plurality of the plurality of first and second communication links comprises a wireless data path.
20. The method of claim 16, wherein the plurality of second communication links comprises a power line communication path.
21. The method of claim 16, further comprising summing the meter data for a multitude of the plurality of utility meters.
22. The method of claim 18, wherein determining one or more discrepancies comprises comparing the summed meter data with data of the power delivered via power lines that are connected to the multitude of the plurality of utility meters.
23. The method of claim 18, further comprising determining location information for the one or more discrepancies.
24. The method of claim 16, further comprising determining location information for the one or more discrepancies.
25. The method of claim 16, wherein determining one or more discrepancies comprises determining that meter data and data of the power delivered differs by a predetermined amount.
26. The method of claim 16, further comprising determining that a difference between meter data and data of the power delivered varies by a predetermined amount over time.
27. A device, comprising:
a modem;
a controller communicatively coupled to said modem;
a plurality of sensor devices communicatively coupled to said controller, and wherein each of said plurality of sensor devices is configured to measure the current of a different LV power supply line supplying power to a different power customer; and
wherein said controller is configured to cause said modem to transmit data derived from measurements of the plurality of sensor devices to a remote device.
28. The device of claim 27, wherein said modem is configured to communicate over a power line.
29. The device of claim 27, wherein said modem is configured to communicate wirelessly.
30. The device of claim 27, wherein said modem is configured to communicate over a coaxial cable.
31. The device of claim 27, wherein said modem is configured to communicate over a twisted pair conductor.
32. The device of claim 27, wherein said controller is configured to determine the power delivered to each of the different power customers.
33. The device of claim 27, wherein said controller is configured to determine the power delivered to each of the different power customers and to receive meter data for each of the different power customers.
34. The device of claim 33, wherein said controller is configured to determine a discrepancy between meter data of a power customer and the power delivered to that customer.
35. The device of claim 34, wherein the data derived from measurements comprises a notification of a discrepancy.
36. The device of claim 27, wherein the data derived from measurements comprises data of the power delivered to each of the different power customers.
US11/775,209 2006-11-02 2007-07-09 Power Theft Detection System and Method Abandoned US20080109387A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/775,209 US20080109387A1 (en) 2006-11-02 2007-07-09 Power Theft Detection System and Method
PCT/US2007/082760 WO2008057808A2 (en) 2006-11-02 2007-10-28 Power theft detection system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/555,740 US7795877B2 (en) 2006-11-02 2006-11-02 Power line communication and power distribution parameter measurement system and method
US11/775,209 US20080109387A1 (en) 2006-11-02 2007-07-09 Power Theft Detection System and Method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/555,740 Continuation-In-Part US7795877B2 (en) 2006-11-02 2006-11-02 Power line communication and power distribution parameter measurement system and method

Publications (1)

Publication Number Publication Date
US20080109387A1 true US20080109387A1 (en) 2008-05-08

Family

ID=39359281

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/555,740 Expired - Fee Related US7795877B2 (en) 2006-11-02 2006-11-02 Power line communication and power distribution parameter measurement system and method
US11/756,858 Expired - Fee Related US7701357B2 (en) 2006-11-02 2007-06-01 System and method for detecting distribution transformer overload
US11/775,205 Expired - Fee Related US7675427B2 (en) 2006-11-02 2007-07-09 System and method for determining distribution transformer efficiency
US11/775,209 Abandoned US20080109387A1 (en) 2006-11-02 2007-07-09 Power Theft Detection System and Method
US12/714,936 Expired - Fee Related US7965193B2 (en) 2006-11-02 2010-03-01 System and method for detecting distribution transformer overload

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/555,740 Expired - Fee Related US7795877B2 (en) 2006-11-02 2006-11-02 Power line communication and power distribution parameter measurement system and method
US11/756,858 Expired - Fee Related US7701357B2 (en) 2006-11-02 2007-06-01 System and method for detecting distribution transformer overload
US11/775,205 Expired - Fee Related US7675427B2 (en) 2006-11-02 2007-07-09 System and method for determining distribution transformer efficiency

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/714,936 Expired - Fee Related US7965193B2 (en) 2006-11-02 2010-03-01 System and method for detecting distribution transformer overload

Country Status (2)

Country Link
US (5) US7795877B2 (en)
WO (1) WO2008057807A2 (en)

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090045976A1 (en) * 2007-08-13 2009-02-19 Zoldi Scott M Utility network and revenue assurance
US20090107212A1 (en) * 2007-10-30 2009-04-30 Honeywell International Inc. Process field instrument with integrated sensor unit and related system and method
EP2081273A2 (en) 2008-01-21 2009-07-22 Current Communications Services, LLC System and method for providing power distribution system information
US20090315535A1 (en) * 2008-06-20 2009-12-24 Lee Jr Robert Edward Method and system for detecting electricity theft
US20100010643A1 (en) * 2008-07-13 2010-01-14 Afeka Academic Method and system for controlling a usage of an object
US20100094473A1 (en) * 2008-10-15 2010-04-15 Square D Company System For Detecting Load Loss Following An Electrical Power Disturbance
US20100114390A1 (en) * 2008-11-05 2010-05-06 Square D Company Load operation profiling and notification in a monitored electrical power distribution system
US20100328072A1 (en) * 2009-06-26 2010-12-30 Melvin Price Cable theft monitoring system
US20110125432A1 (en) * 2008-07-13 2011-05-26 Afeka Tel Aviv Academic College Of Engineering Remote monitoring of device operation by tracking its power consumption
US20110153244A1 (en) * 2008-05-13 2011-06-23 Rocha Alves Jr Jose Eduardo Da Individualized self-monitoring system for transformers in power measurement installations and method of self-monitoring and diagnosis of transformers in power measurement installations
US20110208364A1 (en) * 2010-02-22 2011-08-25 Qualcomm Incorporated Methods and apparatus for time synchronization and measurement of power distribution systems
US20120001768A1 (en) * 2010-05-17 2012-01-05 Flir Systems, Inc. Multisensory Meter System
US20120059609A1 (en) * 2010-09-03 2012-03-08 Lsis Co., Ltd. System for electric energy management
US20120062389A1 (en) * 2010-09-10 2012-03-15 Southern Company Services, Inc. Locating Utility Metering Devices
US20120062390A1 (en) * 2010-09-10 2012-03-15 Southern Company Services, Inc. Locating Utility Metering Devices
RU2467337C2 (en) * 2011-02-21 2012-11-20 Евгений Сергеевич Балыкин Power loss metre (versions)
US20130180979A1 (en) * 2012-01-17 2013-07-18 Valentin Borovinov Systems and Methods for Protecting Electrical Wire Connections from Overheating
US8583520B1 (en) * 2012-10-24 2013-11-12 Causam Holdings, LLC System, method, and apparatus for settlement for participation in an electric power grid
US20130335062A1 (en) * 2012-06-15 2013-12-19 Eric George de Buda Power Monitoring System and Method
US20140015688A1 (en) * 2010-01-06 2014-01-16 La Crosse Technology, Ltd. Central Monitoring and Measurement System
US8761952B2 (en) 2012-07-31 2014-06-24 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US20140203949A1 (en) * 2013-01-21 2014-07-24 International Business Machines Corporation Method and system for automatic residual consumption
US20140222224A1 (en) * 2011-07-20 2014-08-07 Cameron International Corporation Energy and Data Distribution System
US8805552B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US8806239B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
WO2014129058A1 (en) * 2013-02-19 2014-08-28 Mitsubishi Electric Corporation Method for detecting non-technical losses in branch of electric power distribution system
US8862279B2 (en) 2011-09-28 2014-10-14 Causam Energy, Inc. Systems and methods for optimizing microgrid power generation and management with predictive modeling
US20140310138A1 (en) * 2012-09-12 2014-10-16 General Electric Company Methods and systems for estimating recoverable utility revenue
US8890505B2 (en) 2007-08-28 2014-11-18 Causam Energy, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US20140379303A1 (en) * 2013-06-21 2014-12-25 Oracle International Corporation Identifying utility resource diversion
US20150002134A1 (en) * 2013-06-28 2015-01-01 Landis+Gyr, Inc. Magnetic Tampering Detection in a Utility Meter
US8983669B2 (en) 2012-07-31 2015-03-17 Causam Energy, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
EP2784898A3 (en) * 2013-03-26 2015-04-08 Siemens AG Österreich Method and system for monitoring a low voltage network for the use of photovoltaics
US9043174B2 (en) 2012-05-02 2015-05-26 International Business Machines Corporation Estimating loss rates of links in smart grids
US9122618B2 (en) 2011-12-12 2015-09-01 Mbh Consulting Ltd. Systems, apparatus and methods for quantifying and identifying diversion of electrical energy
US9130402B2 (en) 2007-08-28 2015-09-08 Causam Energy, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US9177323B2 (en) 2007-08-28 2015-11-03 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US9207698B2 (en) 2012-06-20 2015-12-08 Causam Energy, Inc. Method and apparatus for actively managing electric power over an electric power grid
US9225173B2 (en) 2011-09-28 2015-12-29 Causam Energy, Inc. Systems and methods for microgrid power generation and management
US9305448B2 (en) * 2014-04-04 2016-04-05 Sahibzada Ali Mahmud Securing distribution lines from pilferages
US9380545B2 (en) 2011-08-03 2016-06-28 Astrolink International Llc System and methods for synchronizing edge devices on channels without carrier sense
US9429974B2 (en) 2012-07-14 2016-08-30 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US9438312B2 (en) 2013-06-06 2016-09-06 Astrolink International Llc System and method for inferring schematic relationships between load points and service transformers
US9461471B2 (en) 2012-06-20 2016-10-04 Causam Energy, Inc System and methods for actively managing electric power over an electric power grid and providing revenue grade date usable for settlement
US9465398B2 (en) 2012-06-20 2016-10-11 Causam Energy, Inc. System and methods for actively managing electric power over an electric power grid
US20160327603A1 (en) * 2015-05-04 2016-11-10 Itron, Inc. Electric Grid High Impedance Condition Detection
US20160352142A1 (en) * 2011-12-12 2016-12-01 Mbh Consulting Ltd. Systems, apparatus and methods for quantifying and identifying diversion of electrical energy
WO2016194012A1 (en) * 2015-06-05 2016-12-08 Agt S.R.L. Method for the determination of illegal connection or tampering of meters of a power line
US9536198B2 (en) 2013-11-22 2017-01-03 International Business Machines Corporation Non-technical loss detection and localization
US9563248B2 (en) 2011-09-28 2017-02-07 Causam Energy, Inc. Systems and methods for microgrid power generation management with selective disconnect
US20170124667A1 (en) * 2015-10-30 2017-05-04 Global Design Corporation Ltd. Energy Consumption Alerting System, Platform and Method
US9647994B2 (en) 2011-06-09 2017-05-09 Astrolink International Llc System and method for grid based cyber security
WO2017216715A1 (en) * 2016-06-14 2017-12-21 Energy Re-Connect Ltd. Methods circuits devices assemblies systems and functionally associated computer executable code for detecting a line condition
US9853498B2 (en) 2014-10-30 2017-12-26 Astrolink International Llc System, method, and apparatus for grid location
US20180017602A1 (en) * 2013-05-21 2018-01-18 The Research Foundation For The State University Of New York Sensors for power distribution network and electrical grid monitoring system associated therewith
WO2018063996A1 (en) * 2016-09-28 2018-04-05 Commscope, Inc. Of North Carolina Tap, meter and transformation device for power distribution from hfc plant
US9952061B2 (en) * 2013-01-25 2018-04-24 Hewlett Packard Enterprise Development Lp Detecting fraud in resource distribution systems
US9961572B2 (en) 2015-10-22 2018-05-01 Delta Energy & Communications, Inc. Augmentation, expansion and self-healing of a geographically distributed mesh network using unmanned aerial vehicle (UAV) technology
US10001514B2 (en) 2013-06-13 2018-06-19 Astrolink International Llc System and method for detecting and localizing non-technical losses in an electrical power distribution grid
US10055966B2 (en) 2015-09-03 2018-08-21 Delta Energy & Communications, Inc. System and method for determination and remediation of energy diversion in a smart grid network
US10055869B2 (en) 2015-08-11 2018-08-21 Delta Energy & Communications, Inc. Enhanced reality system for visualizing, evaluating, diagnosing, optimizing and servicing smart grids and incorporated components
US10079765B2 (en) 2014-10-30 2018-09-18 Astrolink International Llc System and methods for assigning slots and resolving slot conflicts in an electrical distribution grid
US10097240B2 (en) 2013-02-19 2018-10-09 Astrolink International, Llc System and method for inferring schematic and topological properties of an electrical distribution grid
US10116560B2 (en) 2014-10-20 2018-10-30 Causam Energy, Inc. Systems, methods, and apparatus for communicating messages of distributed private networks over multiple public communication networks
WO2018167758A3 (en) * 2018-06-13 2018-11-29 Elektra Noreste, S.A. Measurement concentrator in a pedestal type
US20180348268A1 (en) * 2017-06-05 2018-12-06 Victor Patton System and method for preventing theft of electricity
WO2018229712A1 (en) * 2017-06-14 2018-12-20 Eaton Intelligent Power Limited System and method for detecting theft of electricity with integrity checks analysis
WO2018229714A1 (en) * 2017-06-14 2018-12-20 Eaton Intelligent Power Limited System and method for detecting theft of electricity
WO2019014074A1 (en) * 2017-07-09 2019-01-17 Selene Photonics, Inc. Anti-theft power distribution systems and methods
US10295969B2 (en) 2007-08-28 2019-05-21 Causam Energy, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US10346934B2 (en) * 2014-08-01 2019-07-09 Amrita Vishwa Vidyapeetham Apparatus for power theft detection on an electrical power grid
US10379146B2 (en) 2015-09-23 2019-08-13 International Business Machines Corporation Detecting non-technical losses in electrical networks based on multi-layered statistical techniques from smart meter data
US10408866B2 (en) * 2015-08-06 2019-09-10 Utopus Insights, Inc. Power theft location identification in distribution systems using voltage reading from smart meters
US10459411B2 (en) 2011-04-15 2019-10-29 Astrolink International Llc System and method for single and multizonal optimization of utility services delivery and utilization
US10476597B2 (en) 2015-10-22 2019-11-12 Delta Energy & Communications, Inc. Data transfer facilitation across a distributed mesh network using light and optical based technology
US10515308B2 (en) 2015-10-30 2019-12-24 Global Design Corporation Ltd. System, method and cloud-based platform for predicting energy consumption
US10577099B2 (en) 2017-09-12 2020-03-03 Motorola Solutions, Inc. Inductive landing apparatus for an unmanned aerial vehicle
US10600307B2 (en) 2015-10-30 2020-03-24 Global Design Corporation Ltd. Energy consumption alerting method, energy consumption alerting system and platform
US10652633B2 (en) 2016-08-15 2020-05-12 Delta Energy & Communications, Inc. Integrated solutions of Internet of Things and smart grid network pertaining to communication, data and asset serialization, and data modeling algorithms
US10677825B2 (en) * 2017-10-02 2020-06-09 Eaton Intelligent Power Limited System and method for detecting theft of electricity using meter data disaggregation
US10732203B2 (en) 2015-05-03 2020-08-04 Itron, Inc. Detection of electrical theft from a transformer secondary
US10749571B2 (en) 2013-06-13 2020-08-18 Trc Companies, Inc. System and methods for inferring the feeder and phase powering an on-grid transmitter
US10791020B2 (en) 2016-02-24 2020-09-29 Delta Energy & Communications, Inc. Distributed 802.11S mesh network using transformer module hardware for the capture and transmission of data
US10861112B2 (en) 2012-07-31 2020-12-08 Causam Energy, Inc. Systems and methods for advanced energy settlements, network-based messaging, and applications supporting the same on a blockchain platform
US11004160B2 (en) 2015-09-23 2021-05-11 Causam Enterprises, Inc. Systems and methods for advanced energy network
US11172273B2 (en) 2015-08-10 2021-11-09 Delta Energy & Communications, Inc. Transformer monitor, communications and data collection device
US11196621B2 (en) 2015-10-02 2021-12-07 Delta Energy & Communications, Inc. Supplemental and alternative digital data delivery and receipt mesh net work realized through the placement of enhanced transformer mounted monitoring devices
US11249120B2 (en) * 2018-03-29 2022-02-15 Tsinghua University Method and device for detecting electricity theft, and computer readable medium
US11499994B2 (en) * 2017-03-15 2022-11-15 Omron Corporation Power distribution network monitoring system and power distribution network monitoring device

Families Citing this family (329)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998962B2 (en) * 2000-04-14 2006-02-14 Current Technologies, Llc Power line communication apparatus and method of using the same
US7921443B2 (en) * 2003-01-31 2011-04-05 Qwest Communications International, Inc. Systems and methods for providing video and data services to a customer premises
US8490129B2 (en) 2003-01-31 2013-07-16 Qwest Communications International Inc. Methods, systems and apparatus for selectively distributing urgent public information
US7295133B1 (en) * 2004-12-30 2007-11-13 Hendrix Wire & Cable, Inc. Electrical circuit monitoring device
US7977919B1 (en) 2005-04-06 2011-07-12 Rf Micro Devices, Inc. Over-voltage protection accounting for battery droop
GB0610503D0 (en) * 2006-05-26 2006-07-05 Acbond Ltd Communication apparatus and method
US7795877B2 (en) * 2006-11-02 2010-09-14 Current Technologies, Llc Power line communication and power distribution parameter measurement system and method
US7804280B2 (en) * 2006-11-02 2010-09-28 Current Technologies, Llc Method and system for providing power factor correction in a power distribution system
WO2008086396A2 (en) 2007-01-09 2008-07-17 Power Monitors Inc. Method and apparatus for smart circuit breaker
US8154153B2 (en) * 2007-01-25 2012-04-10 Systems General Corp. Method and apparatus for providing a communication channel through an output cable of a power supply
US7538663B2 (en) * 2007-01-26 2009-05-26 Csi Technology, Inc. Enhancement of periodic data collection by addition of audio data
US7956615B1 (en) 2007-02-27 2011-06-07 Rf Micro Devices, Inc. Utilizing computed battery resistance as a battery-life indicator in a mobile terminal
US7962109B1 (en) * 2007-02-27 2011-06-14 Rf Micro Devices, Inc. Excess current and saturation detection and correction in a power amplifier
US8264370B2 (en) * 2007-05-30 2012-09-11 Cameron International Corporation Power and signal distribution system
US7714682B2 (en) * 2007-06-21 2010-05-11 Current Technologies, Llc Power line data signal attenuation device and method
US7969159B2 (en) * 2007-07-25 2011-06-28 Power Monitors, Inc. Method and apparatus for an electrical conductor monitoring system
US8094034B2 (en) 2007-09-18 2012-01-10 Georgia Tech Research Corporation Detecting actuation of electrical devices using electrical noise over a power line
US7714592B2 (en) * 2007-11-07 2010-05-11 Current Technologies, Llc System and method for determining the impedance of a medium voltage power line
US20090289637A1 (en) * 2007-11-07 2009-11-26 Radtke William O System and Method for Determining the Impedance of a Medium Voltage Power Line
US20090164174A1 (en) * 2007-12-21 2009-06-25 James Bears Solar system automatic sizing and failure identification on location using resident gps receiver
US20090167494A1 (en) * 2007-12-27 2009-07-02 Carlos Eduardo Martins Intelligent Power Cord Device ( iCord)
US8067945B2 (en) 2008-01-02 2011-11-29 At&T Intellectual Property I, L.P. Method and apparatus for monitoring a material medium
US7965195B2 (en) 2008-01-20 2011-06-21 Current Technologies, Llc System, device and method for providing power outage and restoration notification
US8566046B2 (en) * 2008-01-21 2013-10-22 Current Technologies, Llc System, device and method for determining power line equipment degradation
JP5235908B2 (en) * 2008-02-06 2013-07-10 三菱電機株式会社 Power measurement system, equipment control system
US20120268136A1 (en) * 2008-02-21 2012-10-25 Robert Lee Electrical Test Apparatus
US20090212964A1 (en) * 2008-02-21 2009-08-27 Rodney Hibma Electrical Test Apparatus
WO2009111386A2 (en) 2008-03-04 2009-09-11 Power Monitors, Inc. Method and apparatus for a voice-prompted electrical hookup
US8400297B2 (en) * 2008-05-05 2013-03-19 Round Rock Research, Llc Power conserving active RFID label
US8076923B2 (en) * 2008-05-23 2011-12-13 Consolidated Edison Company Of New York, Inc. Dead-line phase identification system and method thereof
US20100007354A1 (en) * 2008-07-08 2010-01-14 Deaver Sr Brian J System and Method for Predicting a Fault in a Power Line
US8159210B2 (en) * 2008-07-11 2012-04-17 Kinects Solutions, Inc. System for automatically detecting power system configuration
US8188855B2 (en) * 2008-11-06 2012-05-29 Current Technologies International Gmbh System, device and method for communicating over power lines
US20100111199A1 (en) * 2008-11-06 2010-05-06 Manu Sharma Device and Method for Communicating over Power Lines
US8279058B2 (en) * 2008-11-06 2012-10-02 Current Technologies International Gmbh System, device and method for communicating over power lines
WO2010067420A1 (en) * 2008-12-09 2010-06-17 パイオニア株式会社 Communication system, method, and communication device
US8248059B2 (en) * 2009-01-30 2012-08-21 Elster Solutions, Llc Electronic transformer measuring device having surface mounting assembly
US8018348B1 (en) * 2009-02-19 2011-09-13 David Pagnani Apparatus for identifying a circuit breaker feeding a remotely disposed electrical outlet and method of using the apparatus
EP2401805B1 (en) * 2009-02-27 2017-04-05 ABB Research Ltd. A hybrid distribution transformer with an integrated voltage source converter
SG174600A1 (en) * 2009-03-31 2011-11-28 Freestyle Technology Pty Ltd A communications process, device and system
US9678114B2 (en) 2009-04-16 2017-06-13 Panoramic Power Ltd. Apparatus and methods thereof for error correction in split core current transformers
GB2481778B (en) 2009-04-16 2014-02-05 Panoramic Power Ltd Apparatus and methods thereof for power consumption measurement at circuit breaker points
US9134348B2 (en) 2009-04-16 2015-09-15 Panoramic Power Ltd. Distributed electricity metering system
CA2759045C (en) * 2009-04-30 2016-01-05 Underground Systems, Inc. Overhead power line monitor
US8504213B2 (en) * 2009-06-26 2013-08-06 General Electric Company Regulation of generating plant
AU2009350612B2 (en) 2009-07-30 2016-01-21 Prysmian S.P.A. Apparatus and method for generating electric energy in an electric power transmission system
WO2011012134A1 (en) * 2009-07-31 2011-02-03 Gridmanager A/S Method and apparatus for managing transmission of power in a power transmission network
US20110043190A1 (en) * 2009-08-20 2011-02-24 Farr Lawrence B Rogowski coil, medium voltage electrical apparatus including the same, and method of providing electrostatic shielding for a rogowski coil
US20110047188A1 (en) * 2009-08-24 2011-02-24 Carios Martins Method and System for Automatic Tracking of Information Technology Components and Corresponding Power Outlets in a Data Center
US20110047263A1 (en) * 2009-08-24 2011-02-24 Carlos Martins Method and System for Automatic Location Tracking of Information Technology Components in a Data Center
US9279699B2 (en) 2009-09-16 2016-03-08 At&T Mobility Ii Llc Leveraging a femtocell network for premises management or monitoring
US8824364B2 (en) 2009-09-16 2014-09-02 At&T Mobility Ii Llc Targeting communications in a femtocell network
US9766277B2 (en) 2009-09-25 2017-09-19 Belkin International, Inc. Self-calibrating contactless power consumption sensing
US8773108B2 (en) 2009-11-10 2014-07-08 Power Monitors, Inc. System, method, and apparatus for a safe powerline communications instrumentation front-end
US20110187503A1 (en) * 2010-02-01 2011-08-04 Mario Costa Method and System for Data Center Rack Brackets For Automatic Location Tracking of Information Technology Components
WO2011109073A1 (en) * 2010-03-05 2011-09-09 Radioshack Corporation Near-field high-bandwidth dtv transmission system
US8294303B2 (en) * 2010-03-11 2012-10-23 First Solar, Inc Photovoltaic grounding
KR101820644B1 (en) * 2010-04-07 2018-01-22 에이비비 슈바이쯔 아게 Outdoor dry-type transformer
US20110279278A1 (en) * 2010-05-17 2011-11-17 Al-Absi Munir A Monitoring and early warning alarm system for high voltage insulator failure
US8427301B2 (en) 2010-06-24 2013-04-23 Avocent Corporation System and method for identifying electrical equipment using wireless receivers
US8972211B2 (en) 2010-07-02 2015-03-03 Belkin International, Inc. System for monitoring electrical power usage of a structure and method of same
TWI423549B (en) * 2010-07-02 2014-01-11 Univ Nat Chiao Tung Power monitoring device for identifying state of electric equipment and power monitoring method thereof
US9291694B2 (en) 2010-07-02 2016-03-22 Belkin International, Inc. System and method for monitoring electrical power usage in an electrical power infrastructure of a building
WO2012015890A1 (en) * 2010-07-27 2012-02-02 Georgia Tech Research Corporation Systems and methods for determining current flow through a utility asset
KR101149648B1 (en) * 2010-07-29 2012-05-29 한국전력공사 Automatic meter reading system based on wired and wireless communication for underground distribution line
EP2413105B1 (en) 2010-07-29 2017-07-05 Power Monitors, Inc. Method and apparatus for a demand management monitoring system
US10060957B2 (en) 2010-07-29 2018-08-28 Power Monitors, Inc. Method and apparatus for a cloud-based power quality monitor
US8024077B2 (en) * 2010-10-06 2011-09-20 San Diego Gas & Electric Company Smart transformer
US20120092114A1 (en) * 2010-10-15 2012-04-19 Matthews Kenneth R Power transformer condition monitor
CA2801402A1 (en) * 2010-11-11 2012-05-18 Zhejiang Tuwei Electricity Technology Co., Ltd Technology and device for precisely measuring temperature of cable joint on the basis of radio frequency technique
US8680812B2 (en) * 2011-03-09 2014-03-25 General Electric Company Methods and systems for charging an electric vehicle
US8437157B2 (en) * 2011-03-16 2013-05-07 Marmon Utility, Llc Power line current fed power supplies producing stable load currents and related methods
JP5750960B2 (en) * 2011-03-18 2015-07-22 ソニー株式会社 Detection apparatus and detection method
US20130024033A1 (en) * 2011-07-20 2013-01-24 General Electric Company Systems and methods for a power distribution transfer capacity calculator
US8610306B2 (en) * 2011-07-29 2013-12-17 General Electric Company Power plant control system and method for influencing high voltage characteristics
US8823370B2 (en) * 2011-08-31 2014-09-02 Virginia Tech Intellectual Properties, Inc. High frequency loss measurement apparatus and methods for inductors and transformers
WO2013033576A1 (en) * 2011-09-01 2013-03-07 Utility Risk Management Corporation, Llc Method and apparatus for real-time line rating of a transmission line
US8912807B2 (en) * 2011-09-09 2014-12-16 General Electric Company Sensor devices and methods for use in sensing current through a conductor
US8875807B2 (en) 2011-09-30 2014-11-04 Elwha Llc Optical power for self-propelled mineral mole
US8746369B2 (en) 2011-09-30 2014-06-10 Elwha Llc Umbilical technique for robotic mineral mole
US9143197B2 (en) * 2011-10-18 2015-09-22 Texas Instruments Incorporated Joining process for G3 networks
US20130110424A1 (en) * 2011-10-28 2013-05-02 General Electric Company Apparatus and method to detect power
US9229036B2 (en) 2012-01-03 2016-01-05 Sentient Energy, Inc. Energy harvest split core design elements for ease of installation, high performance, and long term reliability
US9182429B2 (en) 2012-01-04 2015-11-10 Sentient Energy, Inc. Distribution line clamp force using DC bias on coil
AU2013210745A1 (en) * 2012-01-20 2014-08-21 Neurio Technology Inc. System and method of compiling and organizing power consumption data and converting such data into one or more user actionable formats
DE102012102396A1 (en) * 2012-03-21 2013-09-26 Maschinenfabrik Reinhausen Gmbh Power transformer with electronic components
US20130335061A1 (en) * 2012-06-15 2013-12-19 GRID20/20, Inc. Systems and Methods for Monitoring Underground Power Lines
US9761111B2 (en) * 2012-07-16 2017-09-12 IntraGrain Technologies Inc. Adaptive bandwidth consumption in remote monitoring of agricultural assets
AU2013295526B2 (en) 2012-07-27 2017-03-30 San Diego Gas & Electric Company System for detecting a falling electric power conductor and related methods
DE102012107346B4 (en) * 2012-08-09 2014-05-28 Deutsche Telekom Ag Method and device for spatiotemporal control of the electrical energy consumption of a telecommunications network as a function of states of the power supply system
US9403441B2 (en) 2012-08-21 2016-08-02 Cooper Technologies Company Autonomous management of distribution transformer power load
US10782721B2 (en) * 2012-08-27 2020-09-22 Stem, Inc. Method and apparatus for balancing power on a per phase basis in multi-phase electrical load facilities using an energy storage system
EP2905629A4 (en) * 2012-10-01 2016-05-25 Fujitsu Ltd Power distribution management device, abnormality detection method, and abnormality detection program
DE102012221571A1 (en) * 2012-11-26 2014-05-28 Siemens Aktiengesellschaft Method for computer-aided control of an electrical power distribution network from a plurality of network nodes
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9430012B2 (en) * 2012-12-11 2016-08-30 General Electric Company Systems and methods of transformer failure detection and control
IN2015DN04306A (en) * 2012-12-12 2015-10-16 Siemens Ag
DE212013000286U1 (en) * 2013-02-25 2015-10-09 Isabellenhütte Heusler Gmbh & Co. Kg measuring system
US10761147B2 (en) * 2016-11-21 2020-09-01 GRID20/20, Inc. Transformer monitoring and data analysis systems and methods
US9500716B2 (en) * 2013-03-29 2016-11-22 GRID 20/20, Inc. Power monitoring systems and methods
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
RU2541207C1 (en) * 2013-07-16 2015-02-10 Владимир Филиппович Ермаков Smart microprocessor-based system for monitoring and power loss recording in switchgear connections
US9865410B2 (en) * 2013-09-25 2018-01-09 Abb Schweiz Ag Methods, systems, and computer readable media for topology control and switching loads or sources between phases of a multi-phase power distribution system
EP2863553B1 (en) * 2013-10-17 2017-12-13 Power Plus Communications AG Coupling device for coupling a powerline device and a measurement device to a power supply network, and a measurement node
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9420674B2 (en) 2013-11-21 2016-08-16 General Electric Company System and method for monitoring street lighting luminaires
US9622324B2 (en) 2013-11-21 2017-04-11 General Electric Company Geolocation aid and system
US10509101B2 (en) 2013-11-21 2019-12-17 General Electric Company Street lighting communications, control, and special services
WO2015077639A1 (en) * 2013-11-21 2015-05-28 General Electric Company Luminaire associate status transponder
US9646495B2 (en) 2013-11-21 2017-05-09 General Electric Company Method and system for traffic flow reporting, forecasting, and planning
US9621265B2 (en) 2013-11-21 2017-04-11 General Electric Company Street lighting control, monitoring, and data transportation system and method
US9209902B2 (en) * 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
DE102014200946C5 (en) 2014-01-20 2020-06-10 Robert Bosch Gmbh Overload monitoring device and method for overload monitoring
US9470747B1 (en) * 2014-01-23 2016-10-18 Southern Company Services, Inc. Mislinked meter identifier
JP6599428B2 (en) * 2014-07-17 2019-10-30 スリーエム イノベイティブ プロパティズ カンパニー System and method for classifying on-site sensor response data patterns representing grid anomaly severity
US9823311B2 (en) * 2014-07-31 2017-11-21 Schneider Electric USA, Inc. System to identify potential electrical network faults combining vibration and power quality analysis
US20160036596A1 (en) * 2014-08-04 2016-02-04 Canon Kabushiki Kaisha Communication apparatus and control method therefor
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US10073726B2 (en) * 2014-09-02 2018-09-11 Microsoft Technology Licensing, Llc Detection of outage in cloud based service using usage data based error signals
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9954354B2 (en) 2015-01-06 2018-04-24 Sentient Energy, Inc. Methods and apparatus for mitigation of damage of power line assets from traveling electrical arcs
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US10782360B2 (en) * 2015-05-04 2020-09-22 General Electric Company Systems and methods for monitoring and diagnosing transformer health
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US10024885B2 (en) 2015-07-28 2018-07-17 Panoramic Power Ltd. Thermal management of self-powered power sensors
US9891252B2 (en) 2015-07-28 2018-02-13 Panoramic Power Ltd. Thermal management of self-powered power sensors
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US10951962B2 (en) 2015-08-10 2021-03-16 Delta Energy & Communications, Inc. Data transfer facilitation to and across a distributed mesh network using a hybrid TV white space, Wi-Fi and advanced metering infrastructure construct
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
WO2017052578A1 (en) 2015-09-25 2017-03-30 Intel Corporation Alert system for internet of things (iot) devices
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US10175286B1 (en) 2015-09-28 2019-01-08 Peter Reilley Power line fault locating system
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US9984818B2 (en) 2015-12-04 2018-05-29 Sentient Energy, Inc. Current harvesting transformer with protection from high currents
US9749882B2 (en) 2015-12-11 2017-08-29 T-Mobile Usa, Inc. Commercial power restore indicator for sites, such as cellular telecommunications sites
WO2017126733A1 (en) 2016-01-19 2017-07-27 연세대학교 산학협력단 Apparatus and method for ldpc encoding suitable for highly reliable and low latency communication
US10184964B2 (en) 2016-03-21 2019-01-22 International Business Machines Corporation Automatic measurement and notification of electrical level using smartphone sensors
RU2624001C1 (en) * 2016-03-28 2017-06-30 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Intellectual microprocessor system for determining the value of technical losses of electricity
TWI612314B (en) * 2016-03-29 2018-01-21 國立臺灣大學 Sensor device and power transmission monitoring system with using thereof
KR102558782B1 (en) * 2016-05-04 2023-07-21 엘에스일렉트릭(주) Apparatus for predicting power loss of transformer
US11394426B2 (en) 2016-06-22 2022-07-19 Korrus, Inc. Intelligent modules for intelligent networks
CN109644166B (en) 2016-06-22 2021-12-07 天空公司 Intelligent module for intelligent network and intelligent network system
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10003396B2 (en) * 2016-09-06 2018-06-19 Centurylink Intellectual Property Llc Distributed broadband wireless implementation in premises electrical devices
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US11183048B2 (en) * 2016-10-06 2021-11-23 Electric Power Research Institute, Inc. Apparatus and method for identifying ballistic impact to power transmission assets
JP6715740B2 (en) * 2016-10-13 2020-07-01 株式会社日立製作所 Power system power flow monitoring device, power system stabilizing device, and power system power flow monitoring method
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10634733B2 (en) 2016-11-18 2020-04-28 Sentient Energy, Inc. Overhead power line sensor
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US11366460B2 (en) * 2016-12-23 2022-06-21 Ecolibrium Energy Private Limited System for monitoring electrical devices and a method thereof
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10811876B2 (en) * 2017-04-28 2020-10-20 Florida Power & Light Company Disconnect switch status in a power distribution system
CN111316114B (en) * 2017-07-26 2021-06-29 全景电力有限公司 Timing synchronization of self-powered power sensors and central controller from which samples are collected
WO2019022808A1 (en) 2017-07-26 2019-01-31 Panoramic Power Ltd. Transmission of time stamps of samples of self-powered power
WO2019022796A1 (en) 2017-07-26 2019-01-31 Panoramic Power Ltd. System and method of timing synchronization of a self-powered power sensor
US10390111B2 (en) * 2017-10-17 2019-08-20 Facebook, Inc. Systems and methods for monitoring a powerline conductor using an associated fiber optic cable
CN111699542B (en) 2017-11-29 2023-05-16 康姆艾德技术美国分公司 Retuning for impedance matching network control
US20180283955A1 (en) * 2018-05-08 2018-10-04 Ming Dong Method of assessing multiple distribution transformer loading conditions in one area using an autonomous drone
US11783996B2 (en) 2018-06-06 2023-10-10 Battelle Memorial Institute Transformer power management controllers and transformer power management methods
US11476674B2 (en) 2018-09-18 2022-10-18 Sentient Technology Holdings, LLC Systems and methods to maximize power from multiple power line energy harvesting devices
US11041915B2 (en) 2018-09-18 2021-06-22 Sentient Technology Holdings, LLC Disturbance detecting current sensor
US11125832B2 (en) 2018-12-13 2021-09-21 Sentient Technology Holdings, LLC Multi-phase simulation environment
WO2020163367A1 (en) 2019-02-04 2020-08-13 Sentient Energy, Inc. Power supply for electric utility underground equipment
CN110263995B (en) * 2019-06-18 2022-03-22 广西电网有限责任公司电力科学研究院 Distribution transformer overload prediction method considering load increase rate and user power utilization characteristics
US11527385B2 (en) 2021-04-29 2022-12-13 COMET Technologies USA, Inc. Systems and methods for calibrating capacitors of matching networks
US11114279B2 (en) 2019-06-28 2021-09-07 COMET Technologies USA, Inc. Arc suppression device for plasma processing equipment
US11107661B2 (en) 2019-07-09 2021-08-31 COMET Technologies USA, Inc. Hybrid matching network topology
US11596309B2 (en) 2019-07-09 2023-03-07 COMET Technologies USA, Inc. Hybrid matching network topology
WO2021011918A1 (en) * 2019-07-17 2021-01-21 Ubicquia Llc Distribution transformer monitor
CN110336247B (en) * 2019-08-14 2022-01-28 张晓菊 Method for protecting transformer, capacity controller and protection system
US11830708B2 (en) 2020-01-10 2023-11-28 COMET Technologies USA, Inc. Inductive broad-band sensors for electromagnetic waves
US11521832B2 (en) 2020-01-10 2022-12-06 COMET Technologies USA, Inc. Uniformity control for radio frequency plasma processing systems
US11887820B2 (en) 2020-01-10 2024-01-30 COMET Technologies USA, Inc. Sector shunts for plasma-based wafer processing systems
US11670488B2 (en) 2020-01-10 2023-06-06 COMET Technologies USA, Inc. Fast arc detecting match network
US11605527B2 (en) 2020-01-20 2023-03-14 COMET Technologies USA, Inc. Pulsing control match network
CN111913081B (en) * 2020-07-14 2023-05-02 上海电力大学 Mean shift clustering-based switch cabinet insulation state anomaly detection method
CN111861248B (en) * 2020-07-27 2023-02-03 国网河南省电力公司电力科学研究院 Comprehensive evaluation method and device for power quality treatment effect of power distribution network
US11373844B2 (en) 2020-09-28 2022-06-28 COMET Technologies USA, Inc. Systems and methods for repetitive tuning of matching networks
CN112327086B (en) * 2020-11-05 2021-06-29 中国民用航空飞行学院 Electromagnetic environment evaluation system for civil aviation airport and aviation station
WO2022158989A1 (en) * 2021-01-21 2022-07-28 Electronet Technology Limited Voltage based fault detection
CN117642950A (en) * 2021-06-28 2024-03-01 3M创新有限公司 Multifunctional high-density power grid monitoring
US11923175B2 (en) 2021-07-28 2024-03-05 COMET Technologies USA, Inc. Systems and methods for variable gain tuning of matching networks
US11657980B1 (en) 2022-05-09 2023-05-23 COMET Technologies USA, Inc. Dielectric fluid variable capacitor
CN115204319A (en) * 2022-09-15 2022-10-18 广东电网有限责任公司中山供电局 Low-voltage distribution network topology parameter identification method and system

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688271A (en) * 1970-08-10 1972-08-29 Readex Electronics Inc Method and apparatus for transmitting utility meter data to a remote mobile command unit
US4415896A (en) * 1981-06-09 1983-11-15 Adec, Inc. Computer controlled energy monitoring system
US5553094A (en) * 1990-02-15 1996-09-03 Iris Systems, Inc. Radio communication network for remote data generating stations
US5699276A (en) * 1995-12-15 1997-12-16 Roos; Charles E. Utility meter providing an interface between a digital network and home electronics
US5831550A (en) * 1992-06-01 1998-11-03 Centro De Pesquisas De Energia Eletrica - Cepel System and process for the measurement of the electric energy consumption of a plurality of consumers
US6067029A (en) * 1997-03-04 2000-05-23 Durston; Tom Power check meter
US6239722B1 (en) * 1997-10-16 2001-05-29 Cic Global, Llc System and method for communication between remote locations
US6300881B1 (en) * 1999-06-09 2001-10-09 Motorola, Inc. Data transfer system and method for communicating utility consumption data over power line carriers
US20040064276A1 (en) * 2002-10-01 2004-04-01 Poweronedata Corporation Utility power meter database
US20040082203A1 (en) * 2002-05-07 2004-04-29 Oleg Logvinov Method and apparatus for power theft prevention based on TDR or FDR signature monitoring on LV and MV power lines
US6785592B1 (en) * 1999-07-16 2004-08-31 Perot Systems Corporation System and method for energy management
US20050033707A1 (en) * 2002-03-28 2005-02-10 Ehlers Gregory A. Configurable architecture for controlling delivery and/or usage of a commodity
US20050040809A1 (en) * 2003-08-22 2005-02-24 Uber Arthur E. Power line property measurement devices and power line fault location methods, devices and systems
US20050111533A1 (en) * 2003-10-15 2005-05-26 Berkman William H. Surface wave power line communications system and method
US20050270173A1 (en) * 2003-02-14 2005-12-08 Boaz Jon A Automated meter reading system, communication and control network for automated meter reading, meter data collector program product, and associated methods
US20060007016A1 (en) * 2004-07-09 2006-01-12 Centerpoint Energy, Inc. Utilities and communication integrator
US20060091877A1 (en) * 2004-10-19 2006-05-04 Robinson Andrew J Method and apparatus for an electric meter
US7054770B2 (en) * 2000-02-29 2006-05-30 Quadlogic Controls Corporation System and method for on-line monitoring and billing of power consumption
US20060238364A1 (en) * 2005-04-26 2006-10-26 Keefe R A Power distribution network performance data presentation system and method
US20070002876A1 (en) * 2005-06-21 2007-01-04 Berkman William H Wireless link for power line communications system
US20070018852A1 (en) * 2005-07-19 2007-01-25 Seitz Shane M Power load pattern monitoring system
US20070055889A1 (en) * 2002-08-29 2007-03-08 Henneberry Scott M Multi-function intelligent electronic device with secure access
US20070136082A1 (en) * 2005-12-14 2007-06-14 Southern Company Services, Inc. System and method for energy diversion investigation management
US20070179721A1 (en) * 2006-01-30 2007-08-02 Yaney David S System and method for detecting noise source in a power line communications system
US7327998B2 (en) * 2004-12-22 2008-02-05 Elster Electricity, Llc System and method of providing a geographic view of nodes in a wireless network
US20080077336A1 (en) * 2006-09-25 2008-03-27 Roosevelt Fernandes Power line universal monitor
US20080177678A1 (en) * 2007-01-24 2008-07-24 Paul Di Martini Method of communicating between a utility and its customer locations

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US690630A (en) * 1901-04-06 1902-01-07 Arthur C Bates Rock-drill.
US1790024A (en) * 1926-03-02 1931-01-27 American Brown Boveri Electric Device for determining the condition of transformers
US3793559A (en) * 1972-08-10 1974-02-19 Westinghouse Electric Corp Transformer apparatus and monitoring system
US4419619A (en) 1981-09-18 1983-12-06 Mcgraw-Edison Company Microprocessor controlled voltage regulating transformer
US4475047A (en) * 1982-04-29 1984-10-02 At&T Bell Laboratories Uninterruptible power supplies
US4635055A (en) 1983-04-13 1987-01-06 Niagara Mohawk Power Corporation Apparatus for measuring the temperature and other parameters of an electic power conductor
US4689752A (en) 1983-04-13 1987-08-25 Niagara Mohawk Power Corporation System and apparatus for monitoring and control of a bulk electric power delivery system
US4654806A (en) * 1984-03-30 1987-03-31 Westinghouse Electric Corp. Method and apparatus for monitoring transformers
US4550360A (en) * 1984-05-21 1985-10-29 General Electric Company Circuit breaker static trip unit having automatic circuit trimming
US4823280A (en) * 1987-03-12 1989-04-18 Decibel Products, Inc. Computer-controlled electronic system monitor
US5006846A (en) 1987-11-12 1991-04-09 Granville J Michael Power transmission line monitoring system
US5369356A (en) 1991-08-30 1994-11-29 Siemens Energy & Automation, Inc. Distributed current and voltage sampling function for an electric power monitoring unit
FR2692074B1 (en) * 1992-06-05 1994-07-22 Alsthom Gec ROGOWSKI COIL.
US5760492A (en) 1995-01-17 1998-06-02 Hitachi, Ltd. Control system for power transmission and distribution system
US5777545A (en) 1995-05-09 1998-07-07 Elcom Technologies Corporation Remote control apparatus for power line communications system
US6018203A (en) * 1995-05-22 2000-01-25 Target Hi-Tech Electronics Ltd. Apparatus for and method of evenly distributing an electrical load across an n-phase power distribution network
GB9616157D0 (en) * 1996-08-01 1996-09-11 Switched Reluctance Drives Ltd Current transducer
US7158012B2 (en) 1996-11-01 2007-01-02 Foster-Miller, Inc. Non-invasive powerline communications system
IL119753A0 (en) 1996-12-04 1997-03-18 Powercom Control Systems Ltd Electric power supply management system
US20030105608A1 (en) 1997-02-12 2003-06-05 Power Measurement Ltd. Phasor transducer apparatus and system for protection, control, and management of electricity distribution systems
US6112136A (en) * 1998-05-12 2000-08-29 Paul; Steven J. Software management of an intelligent power conditioner with backup system option employing trend analysis for early prediction of ac power line failure
US6496342B1 (en) 1999-02-12 2002-12-17 Bitronics Inc. Distributed monitoring and protection system for a distributed power network
US6828770B1 (en) 1999-04-12 2004-12-07 Chk Wireless Technologies Australia Pty Ltd. Apparatus and method for electrical measurements on conductors
US7231482B2 (en) 2000-06-09 2007-06-12 Universal Smart Technologies, Llc. Method and system for monitoring and transmitting utility status via universal communications interface
US6714000B2 (en) * 1999-06-14 2004-03-30 Genscape, Inc. Method for monitoring power and current flow
US6313623B1 (en) 2000-02-03 2001-11-06 Mcgraw-Edison Company High precision rogowski coil
US6998962B2 (en) * 2000-04-14 2006-02-14 Current Technologies, Llc Power line communication apparatus and method of using the same
US6965302B2 (en) * 2000-04-14 2005-11-15 Current Technologies, Llc Power line communication system and method of using the same
US6522256B2 (en) * 2000-05-16 2003-02-18 Southern Electric Equipment Hybrid current and voltage sensing system
US6445196B1 (en) * 2000-09-25 2002-09-03 Xenia Burdette White Transformer test control device
US6549120B1 (en) 2000-11-24 2003-04-15 Kinectrics Inc. Device for sending and receiving data through power distribution transformers
DE20101454U1 (en) 2001-01-27 2001-05-23 Phoenix Contact Gmbh & Co Circuit board-based current sensor
PA8539501A1 (en) * 2001-02-14 2002-09-30 Warner Lambert Co TRIAZOLO COMPOUNDS AS MMP INHIBITORS
US6714022B2 (en) * 2001-02-20 2004-03-30 Gary Hoffman Apparatus and method for cooling power transformers
US6906630B2 (en) * 2001-02-28 2005-06-14 General Electric Company Transformer management system and method
US6711512B2 (en) * 2001-08-07 2004-03-23 Korea Electric Power Data Network Co. Ltd. Pole transformer load monitoring system using wireless internet network
WO2003021547A1 (en) 2001-08-30 2003-03-13 Stewart William L Power management method and system
US7729810B2 (en) 2002-04-01 2010-06-01 Programable Control Services, Inc. Electrical power distribution control systems and processes
US7069117B2 (en) 2002-04-01 2006-06-27 Programmable Control Services, Inc. Electrical power distribution control systems and processes
US6917888B2 (en) 2002-05-06 2005-07-12 Arkados, Inc. Method and system for power line network fault detection and quality monitoring
US6810069B2 (en) * 2002-07-12 2004-10-26 Mcgraw-Edison Company Electrical arc furnace protection system
RU2222858C1 (en) 2002-10-31 2004-01-27 Механошин Борис Иосифович Device for remote monitoring of overhead power transmission line conductors for condition (alternatives)
US7519506B2 (en) 2002-11-06 2009-04-14 Antonio Trias System and method for monitoring and managing electrical power transmission and distribution networks
US7132819B1 (en) 2002-11-12 2006-11-07 Current Technologies, Llc Floating power supply and method of using the same
US7436321B2 (en) * 2002-12-10 2008-10-14 Current Technologies, Llc Power line communication system with automated meter reading
US7224272B2 (en) * 2002-12-10 2007-05-29 Current Technologies, Llc Power line repeater system and method
EP3081947B1 (en) 2003-01-31 2019-11-13 FMC Tech Limited A system for monitoring a medium voltage network
US20040160227A1 (en) 2003-02-18 2004-08-19 Piesinger Gregory H. Apparatus and method for determining the status of an electric power cable
US7174261B2 (en) 2003-03-19 2007-02-06 Power Measurement Ltd. Power line sensors and systems incorporating same
US7321291B2 (en) * 2004-10-26 2008-01-22 Current Technologies, Llc Power line communications system and method of operating the same
US20060241880A1 (en) 2003-07-18 2006-10-26 Forth J B Methods and apparatus for monitoring power flow in a conductor
US20050083206A1 (en) 2003-09-05 2005-04-21 Couch Philip R. Remote electrical power monitoring systems and methods
US7105952B2 (en) * 2003-10-03 2006-09-12 Soft Switching Technologies Corporation Distributed floating series active impendances for power transmission systems
US7089125B2 (en) 2003-10-27 2006-08-08 Itron, Inc. Distributed asset optimization (DAO) system and method
US20050096772A1 (en) * 2003-10-31 2005-05-05 Cox David N. Transformer performance prediction
US7490013B2 (en) 2003-12-09 2009-02-10 Oslsoft, Inc. Power grid failure detection system and method
JP2005302794A (en) * 2004-04-07 2005-10-27 Hitachi Industrial Equipment Systems Co Ltd Transformer monitoring system
IES20050382A2 (en) * 2004-06-04 2005-12-14 Fmc Tech Ltd A method of monitoring line faults in a medium voltage network
US7455435B2 (en) * 2004-08-12 2008-11-25 Radioshack Corporation High speed data interface to the AC power line through a standard light bulb socket
US7269753B2 (en) 2004-08-27 2007-09-11 Hewlett-Packard Development Company, L.P. Mapping power system components
US7495574B2 (en) 2004-09-03 2009-02-24 Cooper Technologies Company Electrical system controlling device with wireless communication link
CA2479603A1 (en) 2004-10-01 2006-04-01 Sureshchandra B. Patel Sequential and parallel loadflow computation for electrical power system
US7417554B2 (en) * 2004-10-12 2008-08-26 Gaton Corporation Wireless system for one or more electrical switching apparatus
US7253602B2 (en) 2004-10-12 2007-08-07 Eaton Corporation Self-powered power bus sensor employing wireless communication
CA2487050A1 (en) 2004-10-21 2006-04-21 Veris Industries, Llc Power monitor sensor
US20060106554A1 (en) 2004-11-01 2006-05-18 Centerpoint Energy, Inc. Current sensing lug
US20060168794A1 (en) * 2005-01-28 2006-08-03 Hitachi Global Storage Technologies Method to control mask profile for read sensor definition
WO2006078944A2 (en) 2005-01-19 2006-07-27 Power Measurement Ltd. Sensor apparatus
CA2534937C (en) 2005-02-28 2015-04-14 S&C Electric Company Integrated power and communication device
US20060251147A1 (en) * 2005-05-06 2006-11-09 Qualitrol Corporation Transformer temperature monitoring and control
US7626497B2 (en) 2005-05-25 2009-12-01 Current Technologies, Llc Power line communication vegetation management system and method
US7558206B2 (en) * 2005-06-21 2009-07-07 Current Technologies, Llc Power line communication rate limiting system and method
US7684441B2 (en) 2005-07-01 2010-03-23 Bickel Jon A Automated precision alignment of data in a utility monitoring system
US7469190B2 (en) 2005-07-01 2008-12-23 Square D Company Automated system approach to analyzing harmonic distortion in an electric power system
US7345863B2 (en) * 2005-07-14 2008-03-18 Schweitzer Engineering Laboratories, Inc. Apparatus and method for identifying a loss of a current transformer signal in a power system
US7573253B2 (en) 2005-07-29 2009-08-11 Dmi Manufacturing Inc. System for managing electrical consumption
US20070052426A1 (en) * 2005-08-01 2007-03-08 Wells Charles H On-line transformer condition monitoring
US7323852B2 (en) * 2005-09-14 2008-01-29 Hoffman Gary R Sensing load tap changer (LTC) conditions
US7271572B2 (en) 2005-10-24 2007-09-18 Schweitzer Engineering Laboratories, Inc. Apparatus and methods for providing a voltage adjustment for single-phase voltage regulator operation in a three-phase power system
US20070108986A1 (en) * 2005-11-17 2007-05-17 Moore Robert E Systems and methods for performing differential measurements in an electrical system
US20070171958A1 (en) * 2006-01-23 2007-07-26 Anh Hoang Electrical device measurement probes
US7584066B2 (en) 2006-02-01 2009-09-01 Siemens Energy, Inc. Method for determining power flow in an electrical distribution system
CA2535848A1 (en) * 2006-02-10 2007-08-10 Roger Morrison Electrical profile monitoring system for detection of utilities theft
US8036872B2 (en) 2006-03-10 2011-10-11 Edsa Micro Corporation Systems and methods for performing automatic real-time harmonics analyses for use in real-time power analytics of an electrical power distribution system
US7813842B2 (en) 2006-03-09 2010-10-12 Sony Corporation Systems and methods for use in providing local power line communication
US7701356B2 (en) 2006-03-16 2010-04-20 Power Monitors, Inc. Underground monitoring system and method
US7184903B1 (en) 2006-03-16 2007-02-27 Vrb Power Systems Inc. System and method for a self-healing grid using demand side management techniques and energy storage
US7764943B2 (en) * 2006-03-27 2010-07-27 Current Technologies, Llc Overhead and underground power line communication system and method using a bypass
US7532012B2 (en) 2006-07-07 2009-05-12 Ambient Corporation Detection and monitoring of partial discharge of a power line
US8093745B2 (en) 2006-07-07 2012-01-10 Ambient Corporation Sensing current flowing through a power line
US7705607B2 (en) 2006-08-25 2010-04-27 Instrument Manufacturing Company Diagnostic methods for electrical cables utilizing axial tomography
US20080065342A1 (en) 2006-09-11 2008-03-13 Mainnet Communications Ltd. Apparatus and method to provide power grid diagnostics
US7795877B2 (en) 2006-11-02 2010-09-14 Current Technologies, Llc Power line communication and power distribution parameter measurement system and method
US8566046B2 (en) * 2008-01-21 2013-10-22 Current Technologies, Llc System, device and method for determining power line equipment degradation

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688271A (en) * 1970-08-10 1972-08-29 Readex Electronics Inc Method and apparatus for transmitting utility meter data to a remote mobile command unit
US4415896A (en) * 1981-06-09 1983-11-15 Adec, Inc. Computer controlled energy monitoring system
US5553094A (en) * 1990-02-15 1996-09-03 Iris Systems, Inc. Radio communication network for remote data generating stations
US5831550A (en) * 1992-06-01 1998-11-03 Centro De Pesquisas De Energia Eletrica - Cepel System and process for the measurement of the electric energy consumption of a plurality of consumers
US5699276A (en) * 1995-12-15 1997-12-16 Roos; Charles E. Utility meter providing an interface between a digital network and home electronics
US6067029A (en) * 1997-03-04 2000-05-23 Durston; Tom Power check meter
US6239722B1 (en) * 1997-10-16 2001-05-29 Cic Global, Llc System and method for communication between remote locations
US6300881B1 (en) * 1999-06-09 2001-10-09 Motorola, Inc. Data transfer system and method for communicating utility consumption data over power line carriers
US6785592B1 (en) * 1999-07-16 2004-08-31 Perot Systems Corporation System and method for energy management
US7054770B2 (en) * 2000-02-29 2006-05-30 Quadlogic Controls Corporation System and method for on-line monitoring and billing of power consumption
US20050033707A1 (en) * 2002-03-28 2005-02-10 Ehlers Gregory A. Configurable architecture for controlling delivery and/or usage of a commodity
US20040082203A1 (en) * 2002-05-07 2004-04-29 Oleg Logvinov Method and apparatus for power theft prevention based on TDR or FDR signature monitoring on LV and MV power lines
US20070055889A1 (en) * 2002-08-29 2007-03-08 Henneberry Scott M Multi-function intelligent electronic device with secure access
US20040064276A1 (en) * 2002-10-01 2004-04-01 Poweronedata Corporation Utility power meter database
US20050270173A1 (en) * 2003-02-14 2005-12-08 Boaz Jon A Automated meter reading system, communication and control network for automated meter reading, meter data collector program product, and associated methods
US20050040809A1 (en) * 2003-08-22 2005-02-24 Uber Arthur E. Power line property measurement devices and power line fault location methods, devices and systems
US20050111533A1 (en) * 2003-10-15 2005-05-26 Berkman William H. Surface wave power line communications system and method
US20060007016A1 (en) * 2004-07-09 2006-01-12 Centerpoint Energy, Inc. Utilities and communication integrator
US20060091877A1 (en) * 2004-10-19 2006-05-04 Robinson Andrew J Method and apparatus for an electric meter
US7327998B2 (en) * 2004-12-22 2008-02-05 Elster Electricity, Llc System and method of providing a geographic view of nodes in a wireless network
US20060238364A1 (en) * 2005-04-26 2006-10-26 Keefe R A Power distribution network performance data presentation system and method
US7627453B2 (en) * 2005-04-26 2009-12-01 Current Communications Services, Llc Power distribution network performance data presentation system and method
US20070002876A1 (en) * 2005-06-21 2007-01-04 Berkman William H Wireless link for power line communications system
US20070018852A1 (en) * 2005-07-19 2007-01-25 Seitz Shane M Power load pattern monitoring system
US20070136082A1 (en) * 2005-12-14 2007-06-14 Southern Company Services, Inc. System and method for energy diversion investigation management
US20070179721A1 (en) * 2006-01-30 2007-08-02 Yaney David S System and method for detecting noise source in a power line communications system
US20080077336A1 (en) * 2006-09-25 2008-03-27 Roosevelt Fernandes Power line universal monitor
US20080177678A1 (en) * 2007-01-24 2008-07-24 Paul Di Martini Method of communicating between a utility and its customer locations

Cited By (237)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194899B2 (en) * 2007-08-13 2015-11-24 Fair Isaac Corporation Utility network and revenue assurance
US20090045976A1 (en) * 2007-08-13 2009-02-19 Zoldi Scott M Utility network and revenue assurance
US8890505B2 (en) 2007-08-28 2014-11-18 Causam Energy, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US10985556B2 (en) 2007-08-28 2021-04-20 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US11733726B2 (en) 2007-08-28 2023-08-22 Causam Enterprises, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US11022995B2 (en) 2007-08-28 2021-06-01 Causam Enterprises, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US11025057B2 (en) 2007-08-28 2021-06-01 Causam Enterprises, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US11108263B2 (en) 2007-08-28 2021-08-31 Causam Enterprises, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US11119521B2 (en) 2007-08-28 2021-09-14 Causam Enterprises, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US9130402B2 (en) 2007-08-28 2015-09-08 Causam Energy, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US9177323B2 (en) 2007-08-28 2015-11-03 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US10833504B2 (en) 2007-08-28 2020-11-10 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US10394268B2 (en) 2007-08-28 2019-08-27 Causam Energy, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US11650612B2 (en) 2007-08-28 2023-05-16 Causam Enterprises, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US9899836B2 (en) 2007-08-28 2018-02-20 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US9766644B2 (en) 2007-08-28 2017-09-19 Causam Energy, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US11651295B2 (en) 2007-08-28 2023-05-16 Causam Enterprises, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US8806239B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US11735915B2 (en) 2007-08-28 2023-08-22 Causam Enterprises, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US10295969B2 (en) 2007-08-28 2019-05-21 Causam Energy, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US9678522B2 (en) 2007-08-28 2017-06-13 Causam Energy, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US8805552B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US10303194B2 (en) 2007-08-28 2019-05-28 Causam Energy, Inc System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US9651973B2 (en) 2007-08-28 2017-05-16 Causam Energy, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US10396592B2 (en) 2007-08-28 2019-08-27 Causam Energy, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US10389115B2 (en) 2007-08-28 2019-08-20 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US10116134B2 (en) 2007-08-28 2018-10-30 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US20090107212A1 (en) * 2007-10-30 2009-04-30 Honeywell International Inc. Process field instrument with integrated sensor unit and related system and method
EP2081273A2 (en) 2008-01-21 2009-07-22 Current Communications Services, LLC System and method for providing power distribution system information
US10001512B2 (en) * 2008-05-13 2018-06-19 Centro de Pesquisas de Energia Elétrica—CEPEL Individualized self-monitoring system for transformers in power measurement installations and method of monitoring and diagnosing transformers in power measurement installations
US20110153244A1 (en) * 2008-05-13 2011-06-23 Rocha Alves Jr Jose Eduardo Da Individualized self-monitoring system for transformers in power measurement installations and method of self-monitoring and diagnosis of transformers in power measurement installations
US7936163B2 (en) * 2008-06-20 2011-05-03 General Electric Company Method and system for detecting electricity theft
US20090315535A1 (en) * 2008-06-20 2009-12-24 Lee Jr Robert Edward Method and system for detecting electricity theft
US20110125432A1 (en) * 2008-07-13 2011-05-26 Afeka Tel Aviv Academic College Of Engineering Remote monitoring of device operation by tracking its power consumption
US20100010643A1 (en) * 2008-07-13 2010-01-14 Afeka Academic Method and system for controlling a usage of an object
US20100094473A1 (en) * 2008-10-15 2010-04-15 Square D Company System For Detecting Load Loss Following An Electrical Power Disturbance
US20100114390A1 (en) * 2008-11-05 2010-05-06 Square D Company Load operation profiling and notification in a monitored electrical power distribution system
US11676079B2 (en) 2009-05-08 2023-06-13 Causam Enterprises, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US8378822B2 (en) 2009-06-26 2013-02-19 Melvin Price Cable theft monitoring system
US20100328072A1 (en) * 2009-06-26 2010-12-30 Melvin Price Cable theft monitoring system
US20140015688A1 (en) * 2010-01-06 2014-01-16 La Crosse Technology, Ltd. Central Monitoring and Measurement System
US11436917B2 (en) * 2010-01-06 2022-09-06 La Crosse Technology Ltd. Central monitoring and measurement system
US10657803B2 (en) * 2010-01-06 2020-05-19 La Crosse Technology Ltd. Central monitoring and measurement system
US9271057B2 (en) * 2010-02-22 2016-02-23 Qualcomm Incorporated Methods and apparatus for time synchronization and measurement of power distribution systems
US20110208364A1 (en) * 2010-02-22 2011-08-25 Qualcomm Incorporated Methods and apparatus for time synchronization and measurement of power distribution systems
US20120001768A1 (en) * 2010-05-17 2012-01-05 Flir Systems, Inc. Multisensory Meter System
US9615147B2 (en) * 2010-05-17 2017-04-04 Flir Systems, Inc. Multisensory meter system
US20120059609A1 (en) * 2010-09-03 2012-03-08 Lsis Co., Ltd. System for electric energy management
US9030334B2 (en) * 2010-09-10 2015-05-12 Southern Company Services, Inc. Locating utility metering devices
US9258627B2 (en) * 2010-09-10 2016-02-09 Southern Company Services, Inc. Locating utility metering devices
US20120062390A1 (en) * 2010-09-10 2012-03-15 Southern Company Services, Inc. Locating Utility Metering Devices
US20120062389A1 (en) * 2010-09-10 2012-03-15 Southern Company Services, Inc. Locating Utility Metering Devices
RU2467337C2 (en) * 2011-02-21 2012-11-20 Евгений Сергеевич Балыкин Power loss metre (versions)
US10459411B2 (en) 2011-04-15 2019-10-29 Astrolink International Llc System and method for single and multizonal optimization of utility services delivery and utilization
US9647994B2 (en) 2011-06-09 2017-05-09 Astrolink International Llc System and method for grid based cyber security
US10356055B2 (en) 2011-06-09 2019-07-16 Astrolink International Llc System and method for grid based cyber security
US20140222224A1 (en) * 2011-07-20 2014-08-07 Cameron International Corporation Energy and Data Distribution System
US9848446B2 (en) 2011-08-03 2017-12-19 Astrolink International Llc System and methods for synchronizing edge devices on channels without carrier sense
US9380545B2 (en) 2011-08-03 2016-06-28 Astrolink International Llc System and methods for synchronizing edge devices on channels without carrier sense
US9979198B2 (en) 2011-09-28 2018-05-22 Causam Energy, Inc. Systems and methods for microgrid power generation and management
US9880580B2 (en) 2011-09-28 2018-01-30 Causam Energy, Inc. Systems and methods for microgrid power generation management with selective disconnect
US10261536B2 (en) 2011-09-28 2019-04-16 Causam Energy, Inc. Systems and methods for optimizing microgrid power generation and management with predictive modeling
US9639103B2 (en) 2011-09-28 2017-05-02 Causam Energy, Inc. Systems and methods for optimizing microgrid power generation and management with predictive modeling
US9225173B2 (en) 2011-09-28 2015-12-29 Causam Energy, Inc. Systems and methods for microgrid power generation and management
US9563248B2 (en) 2011-09-28 2017-02-07 Causam Energy, Inc. Systems and methods for microgrid power generation management with selective disconnect
US8862279B2 (en) 2011-09-28 2014-10-14 Causam Energy, Inc. Systems and methods for optimizing microgrid power generation and management with predictive modeling
US20160352142A1 (en) * 2011-12-12 2016-12-01 Mbh Consulting Ltd. Systems, apparatus and methods for quantifying and identifying diversion of electrical energy
US9941740B2 (en) * 2011-12-12 2018-04-10 Mbh Consulting Ltd. Systems, apparatus and methods for quantifying and identifying diversion of electrical energy
US9418045B2 (en) 2011-12-12 2016-08-16 Mbh Consulting Ltd. Systems, apparatus and methods for quantifying and identifying diversion of electrical energy
US9122618B2 (en) 2011-12-12 2015-09-01 Mbh Consulting Ltd. Systems, apparatus and methods for quantifying and identifying diversion of electrical energy
US9531184B2 (en) * 2012-01-17 2016-12-27 Valentin Borovinov Systems and methods for protecting electrical wire connections from overheating
US20130180979A1 (en) * 2012-01-17 2013-07-18 Valentin Borovinov Systems and Methods for Protecting Electrical Wire Connections from Overheating
US9043174B2 (en) 2012-05-02 2015-05-26 International Business Machines Corporation Estimating loss rates of links in smart grids
US9048664B2 (en) 2012-05-02 2015-06-02 International Business Machines Corporation Estimating loss rates of links in smart grids
US20130335062A1 (en) * 2012-06-15 2013-12-19 Eric George de Buda Power Monitoring System and Method
US9207698B2 (en) 2012-06-20 2015-12-08 Causam Energy, Inc. Method and apparatus for actively managing electric power over an electric power grid
US10768653B2 (en) 2012-06-20 2020-09-08 Causam Holdings, LLC System and methods for actively managing electric power over an electric power grid and providing revenue grade data usable for settlement
US11703903B2 (en) 2012-06-20 2023-07-18 Causam Enterprises, Inc. Method and apparatus for actively managing electric power over an electric power grid
US10547178B2 (en) 2012-06-20 2020-01-28 Causam Energy, Inc. System and methods for actively managing electric power over an electric power grid
US11262779B2 (en) 2012-06-20 2022-03-01 Causam Enterprises, Inc. Method and apparatus for actively managing electric power over an electric power grid
US11703902B2 (en) 2012-06-20 2023-07-18 Causam Enterprises, Inc. System and methods for actively managing electric power over an electric power grid and providing revenue grade data usable for settlement
US9461471B2 (en) 2012-06-20 2016-10-04 Causam Energy, Inc System and methods for actively managing electric power over an electric power grid and providing revenue grade date usable for settlement
US11228184B2 (en) 2012-06-20 2022-01-18 Causam Enterprises, Inc. System and methods for actively managing electric power over an electric power grid
US11165258B2 (en) 2012-06-20 2021-11-02 Causam Enterprises, Inc. System and methods for actively managing electric power over an electric power grid
US9465398B2 (en) 2012-06-20 2016-10-11 Causam Energy, Inc. System and methods for actively managing electric power over an electric power grid
US11899482B2 (en) 2012-06-20 2024-02-13 Causam Exchange, Inc. System and method for actively managing electric power over an electric power grid and providing revenue grade data usable for settlement
US10651655B2 (en) 2012-06-20 2020-05-12 Causam Energy, Inc. System and methods for actively managing electric power over an electric power grid
US11899483B2 (en) 2012-06-20 2024-02-13 Causam Exchange, Inc. Method and apparatus for actively managing electric power over an electric power grid
US9952611B2 (en) 2012-06-20 2018-04-24 Causam Energy, Inc. System and methods for actively managing electric power over an electric power grid and providing revenue grade data usable for settlement
US10831223B2 (en) 2012-06-20 2020-11-10 Causam Energy, Inc. System and method for actively managing electric power over an electric power grid and providing revenue grade data usable for settlement
US10088859B2 (en) 2012-06-20 2018-10-02 Causam Energy, Inc. Method and apparatus for actively managing electric power over an electric power grid
US11625058B2 (en) 2012-07-14 2023-04-11 Causam Enterprises, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US10429871B2 (en) 2012-07-14 2019-10-01 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US10768654B2 (en) 2012-07-14 2020-09-08 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US11126213B2 (en) 2012-07-14 2021-09-21 Causam Enterprises, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US11782470B2 (en) 2012-07-14 2023-10-10 Causam Enterprises, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US9429974B2 (en) 2012-07-14 2016-08-30 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US9563215B2 (en) 2012-07-14 2017-02-07 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US10861112B2 (en) 2012-07-31 2020-12-08 Causam Energy, Inc. Systems and methods for advanced energy settlements, network-based messaging, and applications supporting the same on a blockchain platform
US11501389B2 (en) 2012-07-31 2022-11-15 Causam Enterprises, Inc. Systems and methods for advanced energy settlements, network-based messaging, and applications supporting the same on a blockchain platform
US11095151B2 (en) 2012-07-31 2021-08-17 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10996706B2 (en) 2012-07-31 2021-05-04 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US10998764B2 (en) 2012-07-31 2021-05-04 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US9806563B2 (en) 2012-07-31 2017-10-31 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10985609B2 (en) 2012-07-31 2021-04-20 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10938236B2 (en) 2012-07-31 2021-03-02 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US9008852B2 (en) 2012-07-31 2015-04-14 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10852760B2 (en) 2012-07-31 2020-12-01 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US8983669B2 (en) 2012-07-31 2015-03-17 Causam Energy, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US9804625B2 (en) 2012-07-31 2017-10-31 Causam Energy, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US9740227B2 (en) 2012-07-31 2017-08-22 Causam Energy, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US9729010B2 (en) 2012-07-31 2017-08-08 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US8930038B2 (en) 2012-07-31 2015-01-06 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10651682B2 (en) 2012-07-31 2020-05-12 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11782471B2 (en) 2012-07-31 2023-10-10 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US11307602B2 (en) 2012-07-31 2022-04-19 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US11774996B2 (en) 2012-07-31 2023-10-03 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US9729011B2 (en) 2012-07-31 2017-08-08 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11316367B2 (en) 2012-07-31 2022-04-26 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11747849B2 (en) 2012-07-31 2023-09-05 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US9729012B2 (en) 2012-07-31 2017-08-08 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10559976B2 (en) 2012-07-31 2020-02-11 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US8761952B2 (en) 2012-07-31 2014-06-24 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10523050B2 (en) 2012-07-31 2019-12-31 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US9465397B2 (en) 2012-07-31 2016-10-11 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10429872B2 (en) 2012-07-31 2019-10-01 Causam Energy, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US11561564B2 (en) 2012-07-31 2023-01-24 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US9513648B2 (en) 2012-07-31 2016-12-06 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11681317B2 (en) 2012-07-31 2023-06-20 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US10310534B2 (en) 2012-07-31 2019-06-04 Causam Energy, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US10320227B2 (en) 2012-07-31 2019-06-11 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11561565B2 (en) 2012-07-31 2023-01-24 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US11650613B2 (en) 2012-07-31 2023-05-16 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10381870B2 (en) 2012-07-31 2019-08-13 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US20140310138A1 (en) * 2012-09-12 2014-10-16 General Electric Company Methods and systems for estimating recoverable utility revenue
WO2014043287A3 (en) * 2012-09-12 2015-03-26 General Electric Company Methods and systems for estimating recoverable utility revenue
US11288755B2 (en) * 2012-10-24 2022-03-29 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US8768799B1 (en) * 2012-10-24 2014-07-01 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US8996418B2 (en) * 2012-10-24 2015-03-31 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US9704206B2 (en) * 2012-10-24 2017-07-11 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US8583520B1 (en) * 2012-10-24 2013-11-12 Causam Holdings, LLC System, method, and apparatus for settlement for participation in an electric power grid
US8996419B2 (en) * 2012-10-24 2015-03-31 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US9418393B2 (en) 2012-10-24 2016-08-16 Causam Energy, Inc System, method, and apparatus for settlement for participation in an electric power grid
US20140344124A1 (en) * 2012-10-24 2014-11-20 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US10497073B2 (en) * 2012-10-24 2019-12-03 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US10497074B2 (en) * 2012-10-24 2019-12-03 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20220215490A1 (en) * 2012-10-24 2022-07-07 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11270392B2 (en) * 2012-10-24 2022-03-08 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11727509B2 (en) * 2012-10-24 2023-08-15 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US10521868B2 (en) * 2012-10-24 2019-12-31 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US10529037B2 (en) * 2012-10-24 2020-01-07 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US8706584B1 (en) 2012-10-24 2014-04-22 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US9799084B2 (en) * 2012-10-24 2017-10-24 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11823292B2 (en) * 2012-10-24 2023-11-21 Causam Enterprises, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US8719125B1 (en) * 2012-10-24 2014-05-06 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20220180454A1 (en) * 2012-10-24 2022-06-09 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20220092708A1 (en) * 2012-10-24 2022-03-24 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US8706583B1 (en) * 2012-10-24 2014-04-22 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US8849715B2 (en) 2012-10-24 2014-09-30 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11798103B2 (en) * 2012-10-24 2023-10-24 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US9786020B2 (en) * 2012-10-24 2017-10-10 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20150142526A1 (en) * 2012-10-24 2015-05-21 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20220188947A1 (en) * 2012-10-24 2022-06-16 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11263710B2 (en) * 2012-10-24 2022-03-01 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20210390634A1 (en) * 2012-10-24 2021-12-16 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11195239B2 (en) * 2012-10-24 2021-12-07 Causam Enterprises, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11803921B2 (en) * 2012-10-24 2023-10-31 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11816744B2 (en) * 2012-10-24 2023-11-14 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20150248737A1 (en) * 2012-10-24 2015-09-03 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US9070173B2 (en) 2012-10-24 2015-06-30 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20150046306A1 (en) * 2012-10-24 2015-02-12 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US9779461B2 (en) * 2012-10-24 2017-10-03 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20150149256A1 (en) * 2012-10-24 2015-05-28 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20140279326A1 (en) * 2012-10-24 2014-09-18 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20140203949A1 (en) * 2013-01-21 2014-07-24 International Business Machines Corporation Method and system for automatic residual consumption
US9699525B2 (en) * 2013-01-21 2017-07-04 International Business Machines Corporation Method and system for automatic residual consumption
US9952061B2 (en) * 2013-01-25 2018-04-24 Hewlett Packard Enterprise Development Lp Detecting fraud in resource distribution systems
WO2014129058A1 (en) * 2013-02-19 2014-08-28 Mitsubishi Electric Corporation Method for detecting non-technical losses in branch of electric power distribution system
US10097240B2 (en) 2013-02-19 2018-10-09 Astrolink International, Llc System and method for inferring schematic and topological properties of an electrical distribution grid
US10554257B2 (en) 2013-02-19 2020-02-04 Dominion Energy Technologies, Inc. System and method for inferring schematic and topological properties of an electrical distribution grid
US10541724B2 (en) 2013-02-19 2020-01-21 Astrolink International Llc Methods for discovering, partitioning, organizing, and administering communication devices in a transformer area network
EP2784898A3 (en) * 2013-03-26 2015-04-08 Siemens AG Österreich Method and system for monitoring a low voltage network for the use of photovoltaics
US10794939B2 (en) * 2013-05-21 2020-10-06 The Research Foundation For The State University Of New York Sensors for power distribution network and electrical grid monitoring system associated therewith
US20180017602A1 (en) * 2013-05-21 2018-01-18 The Research Foundation For The State University Of New York Sensors for power distribution network and electrical grid monitoring system associated therewith
US9438312B2 (en) 2013-06-06 2016-09-06 Astrolink International Llc System and method for inferring schematic relationships between load points and service transformers
US10749571B2 (en) 2013-06-13 2020-08-18 Trc Companies, Inc. System and methods for inferring the feeder and phase powering an on-grid transmitter
US10001514B2 (en) 2013-06-13 2018-06-19 Astrolink International Llc System and method for detecting and localizing non-technical losses in an electrical power distribution grid
US10564196B2 (en) 2013-06-13 2020-02-18 Astrolink International Llc System and method for detecting and localizing non-technical losses in an electrical power distribution grid
US20140379303A1 (en) * 2013-06-21 2014-12-25 Oracle International Corporation Identifying utility resource diversion
US20150002134A1 (en) * 2013-06-28 2015-01-01 Landis+Gyr, Inc. Magnetic Tampering Detection in a Utility Meter
US9658254B2 (en) * 2013-06-28 2017-05-23 Landis+Gyr, Inc. Magnetic tampering detection in a utility meter
US9536198B2 (en) 2013-11-22 2017-01-03 International Business Machines Corporation Non-technical loss detection and localization
US9305448B2 (en) * 2014-04-04 2016-04-05 Sahibzada Ali Mahmud Securing distribution lines from pilferages
US10346934B2 (en) * 2014-08-01 2019-07-09 Amrita Vishwa Vidyapeetham Apparatus for power theft detection on an electrical power grid
US10116560B2 (en) 2014-10-20 2018-10-30 Causam Energy, Inc. Systems, methods, and apparatus for communicating messages of distributed private networks over multiple public communication networks
US11770335B2 (en) 2014-10-20 2023-09-26 Causam Enterprises, Inc. Systems, methods, and apparatus for communicating messages of distributed private networks over multiple public communication networks
US10833985B2 (en) 2014-10-20 2020-11-10 Causam Energy, Inc. Systems, methods, and apparatus for communicating messages of distributed private networks over multiple public communication networks
US10020677B2 (en) 2014-10-30 2018-07-10 Astrolink International Llc System, method, and apparatus for grid location
US9853498B2 (en) 2014-10-30 2017-12-26 Astrolink International Llc System, method, and apparatus for grid location
US10079765B2 (en) 2014-10-30 2018-09-18 Astrolink International Llc System and methods for assigning slots and resolving slot conflicts in an electrical distribution grid
US10732203B2 (en) 2015-05-03 2020-08-04 Itron, Inc. Detection of electrical theft from a transformer secondary
US11340264B2 (en) 2015-05-03 2022-05-24 Itron, Inc. Detection of electrical theft from a transformer secondary
US10724977B2 (en) 2015-05-04 2020-07-28 Itron, Inc. Electric grid high impedance condition detection
US10338017B2 (en) * 2015-05-04 2019-07-02 Itron, Inc. Electric grid high impedance condition detection
US20160327603A1 (en) * 2015-05-04 2016-11-10 Itron, Inc. Electric Grid High Impedance Condition Detection
WO2016194012A1 (en) * 2015-06-05 2016-12-08 Agt S.R.L. Method for the determination of illegal connection or tampering of meters of a power line
US10408866B2 (en) * 2015-08-06 2019-09-10 Utopus Insights, Inc. Power theft location identification in distribution systems using voltage reading from smart meters
US11172273B2 (en) 2015-08-10 2021-11-09 Delta Energy & Communications, Inc. Transformer monitor, communications and data collection device
US10055869B2 (en) 2015-08-11 2018-08-21 Delta Energy & Communications, Inc. Enhanced reality system for visualizing, evaluating, diagnosing, optimizing and servicing smart grids and incorporated components
US10055966B2 (en) 2015-09-03 2018-08-21 Delta Energy & Communications, Inc. System and method for determination and remediation of energy diversion in a smart grid network
US10379146B2 (en) 2015-09-23 2019-08-13 International Business Machines Corporation Detecting non-technical losses in electrical networks based on multi-layered statistical techniques from smart meter data
US11004160B2 (en) 2015-09-23 2021-05-11 Causam Enterprises, Inc. Systems and methods for advanced energy network
US11196621B2 (en) 2015-10-02 2021-12-07 Delta Energy & Communications, Inc. Supplemental and alternative digital data delivery and receipt mesh net work realized through the placement of enhanced transformer mounted monitoring devices
US10476597B2 (en) 2015-10-22 2019-11-12 Delta Energy & Communications, Inc. Data transfer facilitation across a distributed mesh network using light and optical based technology
US9961572B2 (en) 2015-10-22 2018-05-01 Delta Energy & Communications, Inc. Augmentation, expansion and self-healing of a geographically distributed mesh network using unmanned aerial vehicle (UAV) technology
US10510126B2 (en) * 2015-10-30 2019-12-17 Global Design Corporation Ltd. Energy consumption alerting system, platform and method
US20170124667A1 (en) * 2015-10-30 2017-05-04 Global Design Corporation Ltd. Energy Consumption Alerting System, Platform and Method
US10515308B2 (en) 2015-10-30 2019-12-24 Global Design Corporation Ltd. System, method and cloud-based platform for predicting energy consumption
US10600307B2 (en) 2015-10-30 2020-03-24 Global Design Corporation Ltd. Energy consumption alerting method, energy consumption alerting system and platform
US10791020B2 (en) 2016-02-24 2020-09-29 Delta Energy & Communications, Inc. Distributed 802.11S mesh network using transformer module hardware for the capture and transmission of data
WO2017216715A1 (en) * 2016-06-14 2017-12-21 Energy Re-Connect Ltd. Methods circuits devices assemblies systems and functionally associated computer executable code for detecting a line condition
US10652633B2 (en) 2016-08-15 2020-05-12 Delta Energy & Communications, Inc. Integrated solutions of Internet of Things and smart grid network pertaining to communication, data and asset serialization, and data modeling algorithms
US11378602B2 (en) 2016-09-28 2022-07-05 Commscope, Inc. Of North Carolina Tap, meter and transformation device for power distribution from HFC plant
WO2018063996A1 (en) * 2016-09-28 2018-04-05 Commscope, Inc. Of North Carolina Tap, meter and transformation device for power distribution from hfc plant
US11499994B2 (en) * 2017-03-15 2022-11-15 Omron Corporation Power distribution network monitoring system and power distribution network monitoring device
US20180348268A1 (en) * 2017-06-05 2018-12-06 Victor Patton System and method for preventing theft of electricity
WO2018229714A1 (en) * 2017-06-14 2018-12-20 Eaton Intelligent Power Limited System and method for detecting theft of electricity
CN110945368A (en) * 2017-06-14 2020-03-31 伊顿智能动力有限公司 System and method for detecting power theft using integrity check analysis
WO2018229712A1 (en) * 2017-06-14 2018-12-20 Eaton Intelligent Power Limited System and method for detecting theft of electricity with integrity checks analysis
US10746768B2 (en) 2017-06-14 2020-08-18 Eaton Intelligent Power Limited System and method for detecting theft of electricity
US10768212B2 (en) 2017-06-14 2020-09-08 Eaton Intelligent Power Limited System and method for detecting theft of electricity with integrity checks analysis
US11307547B2 (en) 2017-07-09 2022-04-19 Selene Photonics, Inc. Anti-theft power distribution systems and methods
WO2019014074A1 (en) * 2017-07-09 2019-01-17 Selene Photonics, Inc. Anti-theft power distribution systems and methods
US10577099B2 (en) 2017-09-12 2020-03-03 Motorola Solutions, Inc. Inductive landing apparatus for an unmanned aerial vehicle
US10677825B2 (en) * 2017-10-02 2020-06-09 Eaton Intelligent Power Limited System and method for detecting theft of electricity using meter data disaggregation
US11249120B2 (en) * 2018-03-29 2022-02-15 Tsinghua University Method and device for detecting electricity theft, and computer readable medium
WO2018167758A3 (en) * 2018-06-13 2018-11-29 Elektra Noreste, S.A. Measurement concentrator in a pedestal type

Also Published As

Publication number Publication date
US7675427B2 (en) 2010-03-09
US7795877B2 (en) 2010-09-14
US20080122642A1 (en) 2008-05-29
US7701357B2 (en) 2010-04-20
WO2008057807A2 (en) 2008-05-15
US7965193B2 (en) 2011-06-21
US20080106426A1 (en) 2008-05-08
US20080106425A1 (en) 2008-05-08
WO2008057807A3 (en) 2008-07-24
US20100156649A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
US20080109387A1 (en) Power Theft Detection System and Method
US7804280B2 (en) Method and system for providing power factor correction in a power distribution system
US8779931B2 (en) Method and apparatus for communicating power distribution event and location
US7714592B2 (en) System and method for determining the impedance of a medium voltage power line
US20100007354A1 (en) System and Method for Predicting a Fault in a Power Line
US20090289637A1 (en) System and Method for Determining the Impedance of a Medium Voltage Power Line
JP6301967B2 (en) A method for analyzing and optimizing the performance of a data collection network in a distribution grid
US7769149B2 (en) Automated utility data services system and method
CA2602289C (en) Using a fixed network wireless data collection system to improve utility responsiveness to power outages
EP2058954A1 (en) System and method for establishing communications with an electronic meter
US9853445B2 (en) Method and system for monitoring an electrical power grid
US20110018704A1 (en) System, Device and Method for Providing Power Line Communications
US20080143491A1 (en) Power Line Communication Interface Device and Method
WO2016070104A1 (en) System and methods for assigning slots and resolving slot conflicts in an electrical distribution grid
CN110769446B (en) Intelligent monitoring system and method for 5G communication base station
AU2020102880A4 (en) Power Theft Detection: POWER THEFT DETECTION AND NOTIFICATION USING WIRELESS NETWORK
Rengaraju et al. Communication networks and non-technical energy loss control system for smart grid networks
WO2008057810A2 (en) System and method for determining distribution transformer efficiency
WO2008057808A2 (en) Power theft detection system and method
WO2008057809A2 (en) System and method for detecting distribution transformer overload
JP2021184679A (en) Distribution board system, integration system, control method of distribution board system, and program
Narayanan et al. NETCBM-CONDITION BASED MONITORING OF POWER DISTRIBUTION NETWORKS

Legal Events

Date Code Title Description
AS Assignment

Owner name: AP CURRENT HOLDINGS, LLC, PENNSYLVANIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CURRENT TECHNOLOGIES, LLC;REEL/FRAME:020518/0001

Effective date: 20080129

Owner name: AP CURRENT HOLDINGS, LLC,PENNSYLVANIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CURRENT TECHNOLOGIES, LLC;REEL/FRAME:020518/0001

Effective date: 20080129

AS Assignment

Owner name: CURRENT TECHNOLOGIES, LLC, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEAVER, BRIAN J., SR.;RADTKE, WILLIAM O.;REEL/FRAME:020526/0475;SIGNING DATES FROM 20080204 TO 20080208

AS Assignment

Owner name: CURRENT TECHNOLOGIES, LLC, MARYLAND

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:AP CURRENT HOLDINGS, LLC;REEL/FRAME:021096/0131

Effective date: 20080516

Owner name: CURRENT TECHNOLOGIES, LLC,MARYLAND

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:AP CURRENT HOLDINGS, LLC;REEL/FRAME:021096/0131

Effective date: 20080516

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION