US20100174668A1 - Energy management of clothes dryer appliance - Google Patents

Energy management of clothes dryer appliance Download PDF

Info

Publication number
US20100174668A1
US20100174668A1 US12/559,684 US55968409A US2010174668A1 US 20100174668 A1 US20100174668 A1 US 20100174668A1 US 55968409 A US55968409 A US 55968409A US 2010174668 A1 US2010174668 A1 US 2010174668A1
Authority
US
United States
Prior art keywords
clothes dryer
cycles
cycle
energy
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/559,684
Inventor
Michael F. Finch
John K. Besore
Jeff Donald Drake
Darin Franks
Chad Michael Helms
Jerrod Aaron Kappler
Steven Keith Root
Natarajan Venkatakrishnan
Eric K. Watson
Joshua S. Wiseman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US12/559,684 priority Critical patent/US20100174668A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BESORE, JOHN K., DRAKE, JEFF DONALD, FRANKS, DARIN, HELMS, CHAD MICHAEL, KAPPLER, JERROD AARON, ROOT, STEVEN KEITH, VENKATAKRISHNAN, NATARAJAN, WATSON, ERIC K., WISEMAN, JOSHUA S.
Publication of US20100174668A1 publication Critical patent/US20100174668A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00024Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission by means of mobile telephony
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00026Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission involving a local wireless network, e.g. Wi-Fi, ZigBee or Bluetooth
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/66The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads one of the loads acting as master and the other or others acting as slaves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • This disclosure relates to energy management, and more particularly to energy management of household consumer appliances.
  • the disclosure finds particular application to changing existing appliances via add-on features or modules, and incorporating new energy saving features and functions into new appliances.
  • One proposed third party solution is to provide a system where a controller “switches” the actual energy supply to the appliance or control unit on and off. However, there is no active control beyond the mere on/off switching. It is believed that others in the industry cease some operations in a refrigerator during on-peak time.
  • AMI Advanced Metering Infrastructure
  • All electrical utility companies (more than 3,000 in the US) will not be using the same communication method to signal in the AMI system.
  • known systems do not communicate directly with the appliance using a variety of communication methods and protocols, nor is a modular and standard method created for communication devices to interface and to communicate operational modes to the main controller of the appliance.
  • WiFi/ZigBee/PLC communication solutions are becoming commonplace, this disclosure introduces numerous additional lower cost, reliable solutions to trigger “load shedding” responses in appliances or other users of power. This system may also utilize the commonplace solutions as parts of the communication protocols.
  • a controller is configured to receive and process a signal indicative of current state of an associated energy supplying utility.
  • the controller operates the cooking appliance in one of a plurality of operating modes, including at least a normal operating mode and an energy savings mode, in response to the received signal.
  • This disclosure is a low-cost alternative to using expensive or complicated methods of determining when peak electrical rates apply.
  • an ambient light sensor determines when it is morning, and then stays in energy-saving mode for a predetermined number of hours.
  • the system will need a counter to know that the room has been dark for a predetermined number of hours. When the lights come on for a certain length of time, then the system knows, for example, that it is morning.
  • a state for an associated energy supplying utility is determined. The utility state is indicative of at least a peak demand period or an off-peak demand period.
  • This disclosure provides a peak-shaving appliance such as a refrigerator, including a method to determine when to go into peak-shaving mode without using additional components, or components that have another purpose, and provides a high percentage of the maximum benefit for negligible cost.
  • the two components needed for this are an ambient light sensor and a timer.
  • the kitchen will be dark for an extended period of time while everyone is sleeping.
  • the light sensor and the timer will be used to determine that it is nighttime and morning can be determined by the light sensor.
  • the timer will be used to initiate peak shaving mode after some delay time. For example, peak shaving mode could start three hours after it is determined morning starts.
  • the ambient light sensor can also be used for dimming the refrigerator lights.
  • a controller is configured to receive and process an energy signal.
  • the signal has a first state indicative of a utility peak demand period and a second state indicative of a utility off-peak demand period.
  • the controller operates the cooking appliance in one of an energy savings mode and a normal operating mode based on the received signal being in the first and second states respectively.
  • An appliance interface can be provided for all appliances leaving the module to communicate with the AMI system.
  • the system provides for appliance sales with a Demand Side Management capable appliance.
  • the Demand Side Management Module (DSMM) is provided to control the energy consumption and control functions of an appliance using a communication method (including but not limited to PLC, FM, AM SSB, WiFi, ZigBee, Radio Broadcast Data System, 802.11, 802.15.4, etc.).
  • the modular approach will enable an appliance to match electrical utility communication requirements. Each electrical utility region may have different communication methods, protocol methods, etc. This modular approach allows an appliance to be adapted to a particular geographical area of a consumer or a particular electrical provider.
  • the module can be added as a follow on feature and applied after the appliance is installed.
  • Typical installations could include an integral mounted module (inside the appliance or unit) or an externally mounted module (at the wall electrical receptacle or anywhere outside the appliance or unit).
  • the module in this disclosure provides for 2 way communications if needed, and will provide for several states of operation—for example, 1) normal operation, 2) operation in low energy mode (but not off), and 3) operation in lowest energy mode.
  • This module could be powered from the appliance or via a separate power supply, or with rechargeable batteries.
  • the rechargeable batteries could be set to charge under off-peak conditions. With the module powered from the appliance, the appliance could turn it off until the appliance needed to make a decision about power usage, eliminating the standby power draw of the module. If powered separately, the appliance could go to a low energy state or completely off, while the module continued to monitor rates.
  • RFID tags Use of RFID tags in one proposed system should offer significant savings since the RFID tags have become very low cost due to the proliferation of these devices in retail and will effectively allow the enabled appliance to effectively communicate with the utility meter (e.g., receive signals from the utility meter).
  • This system makes it very easy for a customer to manage energy usage during peak demand periods and lowers the inconvenience level to the customer by not shutting off appliances in the home by the utility.
  • cost savings are seen by the customer.
  • This system also solves the issue of rolling brownouts/blackouts caused by excessive power demand by lowering the overall demand. Also, the system allows the customer to pre-program choices into the system that will ultimately lower utility demand as well as save the customer money in the customer's utility billing.
  • the customer may choose to disable the defrost cycle of a refrigerator during peak rate timeframes.
  • This disclosure provides for the controller to “communicate” with the internal appliance control board and command the appliance to execute specific actions with no curtailment in the energy supply.
  • This disclosure further provides a method of communicating data between a master device and one or more slave devices using RFID technology.
  • This can be a number of states or signals, either using one or more passive RFID tags that resonate at different frequencies resonated by the master, or one or more active RFID tags that can store data that can be manipulated by the master device and read by the slave device(s).
  • the states in either the passive or active RFID tags can then be read by the microcontroller on the slave device(s) and appropriate functions/actions can be taken based upon these signals.
  • Another exemplary embodiment uses continuous coded tones riding on carrier frequencies to transmit intelligence, for example, when one is merely passing rate information such as rate 1, 2, 3, or 4, using the tones to transmit the signals.
  • rate information such as rate 1, 2, 3, or 4
  • the appliance microcomputer would be programmed to respond to a given number that would arrive in binary format.
  • This disclosure also advantageously provides modes of load shedding in the appliance, lighting, or HVAC other than “on/off” to make the situation more acceptable from the perspective of the customer.
  • a clothes dryer comprising one or more power consuming functions and a controller in signal communication with an associated utility.
  • the controller can receive and process a signal from the associated utility indicative of current cost of supplied energy.
  • the controller operates the clothes dryer in one of a normal operating mode and an energy savings mode based on the received signal.
  • the controller is configured to change the power consuming functions by adjusting one or more of an operation schedule, an operation delay, an operation adjustment, and a selective deactivation of at least one of the one or more power consuming functions to reduce power consumption of the clothes dryer in the energy savings mode.
  • a method for controlling a clothes dryer comprising: determining a cost of supplied energy from an associated utility, the cost being indicative of a peak demand period or an off-peak demand period; operating the clothes dryer in a normal mode during the off-peak demand period; operating the clothes dryer in an energy savings mode during the peak demand period; scheduling, delaying, adjusting and/or selectively deactivating any number of one or more power consuming features/functions of the clothes dryer to reduce power consumption of the clothes dryer in the energy savings mode; and, returning to the normal mode after the peak demand period is over.
  • An advantage of the present disclosure is the ability to produce appliances with a common interface and let the module deal with the Demand Side Management.
  • Another advantage is the ability to control functions and features within the appliance and/or unit at various energy levels, i.e., as opposed to just an on/off function.
  • Another advantage is that the consumer can choose the module or choose not to have the module. If the module is chosen, it can be matched to the particular electrical utility service provider communication method of the consumer.
  • the module can be placed or positioned inside or outside the appliance and/or unit to provide demand side management.
  • Still other benefits relate to modularity, the ability to handle multiple communication methods and protocols without adversely impacting the cost of the appliance, opening up appliances to a variety of protocols, enabling demand side management or energy management, and/or providing for a standard interface to the appliance (for example, offering prechill and/or temperature set change during on-peak hours).
  • FIGS. 1-21 illustrate exemplary embodiments of an energy management system for household appliances.
  • FIG. 22 is a schematic illustration of an exemplary demand managed clothes dryer.
  • FIG. 23 is an exemplary operational flow chart for the clothes dryer of FIG. 22 .
  • FIG. 24 is an exemplary control response for the clothes dryer of FIG. 22 .
  • a more advanced system is provided to handle energy management between the utility and the homeowner's appliances.
  • the system can include one or more of the following: a controller, utility meter, communication network, intelligent appliances, local storage, local generator and/or demand server. Less advanced systems may actually allow the appliance to “communicate directly with the utility meter or mesh network through the DSSM (Demand Side Management Module) ( FIG. 1 ).
  • the demand server is a computer system that notifies the controller when the utility is in peak demand and what is the utility's current demand limit.
  • a utility meter can also provide the controller the occurrence of peak demand and demand limit.
  • the demand limit can also be set by the home owner.
  • the homeowner can choose to force various modes in the appliance control based on the rate the utility is charging at different times of the day.
  • the controller will look at the energy consumption currently used by the home via the utility meter and see if the home is exceeding the demand limit read from the server. If the demand limit is exceeded, the controller will notify the intelligent appliances, lighting and thermostat/HVAC ( FIG. 2 ).
  • Each intelligent appliance has a communication interface that links itself to the controller ( FIG. 3 ).
  • This interface can be power-line carrier, wireless, and/or wired.
  • the controller will interact with the appliance and lighting controls as well as thermostat (for HVAC) to execute the users preferences/settings.
  • Enabled appliances receive signals from the utility meter and help lower the peak load on the utility and lower the amount of energy that the consumer uses during high energy cost periods of the day.
  • wireless communication ZigBee, WiFi, etc
  • PLC power line carrier
  • passive RFID tags that resonate at different frequencies resonated by the master, or one or more active RFID tags that can store data that can be manipulated by the master device and read by the slave devices(s) is an effective and potentially lower cost communication solution since there is no protocol. Rather, a pulse of energy at a particular frequency will allow a low cost method with an open protocol for transmitting/communicating between a master device and one or more slave devices, and appropriate functions/actions can be taken based upon these signals.
  • controller will receive a demand limit from the utility, demand server or user.
  • the controller will then allocate the home's demand based on two factors: priority of the appliance and energy need level ( FIG. 4 ).
  • priority dictates which appliances have higher priority to be in full or partial energy mode than other appliances.
  • Energy need dictates how much energy is required for a certain time period in order for that appliance to function properly. If the appliance's energy need is too low to function properly, the appliance moves to a normal mode or a higher energy need level.
  • the energy saving mode is typically a lower energy usage mode for the appliance such as shutdowns of compressors and motors, delayed cycles, higher operating temperatures in summer or lower operating temperatures in winter until the peak demand period is over. Once the demand limit is reached, the appliances will stay in their energy mode until peak demand is over, or a user overrides, or appliance finishes need cycle or priority changes.
  • the controller constantly receives status updates from the appliances in order to determine which state they are in and in order to determine if priorities need to change to accomplish the system goals.
  • a set point is provided.
  • the controller will tell each appliance to go into peak demand mode ( FIG. 5 ).
  • the appliance will then go into a lower energy mode.
  • the customer can deactivate the energy savings mode by selecting a feature on the appliance front end controls (i.e. user interface board) before or during the appliance use or at the controller.
  • the controller can also communicate to a local storage or power generation unit. This local unit is connected to the incoming power supply from the utility.
  • the controller notifies the storage unit to charge when it is not in peak demand, if a storage unit is included and available. If the storage unit has enough energy to supply the appliances during peak demand, then the controller will switch the home's energy consumption from the utility to the storage unit.
  • the unit can also be local generator/storage such as solar, hydrogen fuel cell, etc.
  • the central controller handles energy management between the utility and home appliances, lighting, thermostat/HVAC, etc. with customer choices incorporated in the decision making process.
  • the controller may include notification of an energy saving mode based on demand limit read from one or more of a utility meter, utility, demand server or user.
  • An energy savings mode of an appliance can thereby be controlled or regulated based on priority and energy need level sent from the controller and/or the customer ( FIG. 6 ).
  • consideration to use of local energy storage and use of a local generator to offset peak demand limit can be incorporated into the energy management considerations, or provide the ability to override mode of energy savings through the controller or at the appliance, lighting, or thermostat/HVAC ( FIGS. 7 and 8 ).
  • the present disclosure has the ability for the home to shed loads in pending brown-out or black-out situations, yet have intelligence to prevent an improper action such as shutting down the refrigerator for extended timeframes that might compromise food storage safety.
  • How much energy the appliance consumes in peak demand is based on priority of the device and the energy need level. If the appliance's priority is high, then the appliance will most likely not go into a saving mode.
  • the energy need level is based on how little energy the appliance can consume during peak demand and still provide the function setting it is in (i.e. in a refrigerator, ensuring that the temperature is cool enough to prevent spoiling). It will also be appreciated that an appliance may have multiple energy need levels.
  • the controller will be the main product with the communication and settings control incorporated within future appliances. Specific meters will be selected so that the controller can read the demand usage. It is intended that the demand server will possibly be purchased or leased to the utility.
  • a method for constructing an appliance designed to perform any key function the appliance comprises of several mechanical and electrical elements controlled by a main controller.
  • This main controller has a port for receiving information regarding the operational state of the appliance.
  • the port also has a user interface or switch which could be used to override the information received by the controller through the port.
  • Two-way or one-way communication devices may be connected to the port. These communication devices will receive signals from a remote controller, process those signals and as a result communicate an operational state to the main controller of the appliance. This operational state is communicated to the main controller by one or more remote controllers in a specific format determined by the appliance. These signals from the remote controller(s) could be based on a variety of communication methods and associated protocols.
  • the appliance main controller On receiving the operational state signal, the appliance main controller causes the appliance to run a predetermined operational mode. These operational modes are designed into the appliance(s) and result in different resource consumption levels or patterns, even delaying use. Resources could include energy, water, air, heat, sunlight, time, etc.
  • the consumer In future appliance models, the consumer might be given the authority to modify the appliance responses to a given rate signal. The consumer would be presented a “check box” of potential response modes and allowed to choose within set parameters. For instance, the consumer might be allowed to choose the amount of temperature adjustment a refrigerator will make in response to a high utility rate.
  • a method of communicating data between a master device and one or more slave devices may advantageously use continuous tone-coded transmission system.
  • This can be a number of states or signals, either using one or more continuous tones that signify different rate states coming from the home area network (from meter) or the utility. Additionally, one could send a combination of tones to transmit binary messages using a few tones.
  • the slave devices will incorporate a receiver that receives the carrier frequency and then decodes the continuous tone which corresponds to the particular state of the utility rate. Once the “receiver board” detects the tone, then the downstream circuitry will trigger the appropriate response in the appliance.
  • the carrier frequency in this scheme can be numerous spectrums, one being the FM broadcast band or a specific FM band allocated by the FCC for low level power output.
  • broadcast band FM is the low cost of such devices and the potential to penetrate walls, etc. within a home with very low levels of power due to the long wavelength of the 89-106 Mhz carrier.
  • This process is used today in 2-way radio communications to reduce the annoyance of listening to multiple users on shared 2-way radio frequencies.
  • the process in these radios is referred to as CTCSS (continuous tone-coded squelch system) and would find application in this end use.
  • the structure and/or operation of a refrigerator may be modified or altered by reducing the temperature, especially in the freezer compartment pre on-peak time and further temporarily provide a compartment temperature increase to shave on-peak load.
  • defrost operation could be delayed until off-peak time.
  • the freezer and refrigerator temperature setpoints may be set to maintain less compressor on time during on-peak demand times.
  • the refrigerator/freezer could be programmed so that lights will not be permitted to come on or the lights must be dimmed lights during on-peak demand times.
  • the fan operating speeds can be reduced, and/or compressor operating speed reduced in order to reduce energy consumption.
  • Still another option is to reduce the delay time for the door alarm to sound during on-peak time.
  • Other power load reducing measures in a refrigerator may include (reducing before on-peak hours) the temperature of the freezer and refrigerator compartments in a refrigerator (prechill) and slightly increase temperature setting during on-peak rates. For example, just before peak rate time, the temperature setting could be decreased by 1-2 degrees (during off-peak rates).
  • Some communication line with the electrical company could be established.
  • the electrical company may be able to send a signal in advance to prechill the refrigerator (or in the case of an air conditioner, decrease the room temperature during off-peak rates as a pre-chill maneuver) and, in turn, increase the temperature setting during on-peak rates.
  • Still other energy consuming practices of the exemplary refrigerator that may be altered include turning the ice-maker off during on-peak demand times, or disabling the crushed ice mode during on-peak demand times.
  • the consumer may be given the ability to select via a user interface which items are incorporated into the on-peak demand via an enable/disable menu, or to provide input selection such as entry of a zip code ( FIG. 10 ) in order to select the utility company and time of use schedule ( FIG. 11 ), or using a time versus day of the week schedule input method ( FIGS. 12-13 ).
  • the user interface may also incorporate suggested energy saving tips or show energy usage, or provide an indicator during on-peak mode, or provide a counter to illustrate the energy impact of door opening, or showing an energy calculator to the consumer to serve as a reminder of the impact of certain selections/actions on energy use or energy conservation ( FIGS. 14-19 ).
  • FIG. 21 defines specifically exemplary modes of what are possible.
  • the main feature here is the enabling of the main board microprocessor or CPU to execute actions in the appliance to deliver load shedding (lowering power consumption at that instant).
  • the actions available in each appliance are only limited to the devices that the CPU has control over, which are nearly all of the electrical consuming devices in an appliance. This may work better where the appliance has an electronic control versus an electromechanical control.
  • a controller that acts as an intermediary between the utilities meter and the appliance interprets the utility signal, processes it and then submits this signal to the appliance for the prescribed reaction.
  • the controller may find application to other household utilities, for example, natural gas and water within the home.
  • the flow meters being connected to the controller could provide a consumer with a warning as to broken or leaking water lines by comparing the flow rate when a given appliance or appliances are on to the normal consumption.
  • the system could stop the flow of gas or water based on the data analysis.
  • Another feature might be the incorporation of “remote subscription” for the utility benefit.
  • the utility will be providing customers discounts/rebates for subscribing to DSM in their appliances, hot water heaters, etc.
  • the “remote subscription” feature would allow the utility to send a signal that would “lockout” the consumer from disabling the feature since they were on the “rebate” program.
  • controller lends itself to is the inclusion of “Remote diagnostics”. This feature would allow the appliance to send a signal or message to the controller indicating that something in the appliance was not up to specifications. The controller could then relay this signal to the utility or to the appliance manufacturer via the various communication avenues included into the controller (i.e., WIFI, WIMAX, Broadband, cell phone, or any other formats that the controller could “speak”).
  • the utilities today rely on the honesty of their subscribers to leave the DSM system functional. Some people may receive the discounts/rebate and then disable the feature that drives the load shedding. With this system, the utility can ensure that the feature will be enabled and provide the proper load shedding.
  • FIG. 22 An exemplary embodiment of a demand managed appliance 100 comprising a clothes dryer 110 is schematically illustrated in FIG. 22 .
  • the clothes dryer 110 comprises at least one power consuming feature/function 102 and a controller 104 operatively associated with the power consuming feature/function.
  • the controller 104 can include a micro computer on a printed circuit board which is programmed to selectively control the energization of the power consuming feature/function.
  • the controller 104 is configured to receive and process a signal 106 indicative of a utility state, for example, availability and/or current cost of supplied energy.
  • the energy signal may be generated by a utility provider, such as a power company, and can be transmitted via a power line, as a radio frequency signal, or by any other means for transmitting a signal when the utility provider desires to reduce demand for its resources.
  • the cost can be indicative of the state of the demand for the utility's energy, for example a relatively high price or cost of supplied energy is typically associated with a peak demand state or period and a relative low price or cost is typically associated with an off-peak demand state or period.
  • the controller 104 can operate the clothes dryer 110 in one of a plurality of operating modes, including a normal operating mode and an energy savings mode, in response to on the received signal. Specifically, the clothes dryer 110 can be operated in the normal mode in response to a signal indicating an off-peak demand state or period and can be operated in an energy savings mode in response to a signal indicating a peak demand state or period. As will be discussed in greater detail below, the controller 104 is configured to at least selectively adjust and/or disable the power consuming feature/function to reduce power consumption of the clothes dryer 110 in the energy savings mode.
  • the clothes dryer 110 generally includes a cabinet 112 and a control panel or user interface 116 .
  • the clothes dryer 110 may be of conventional construction, further including a drum 113 rotatably mounted in the cabinet 112 for receiving articles to be dried. Instructions and selections are displayed on the display 118 .
  • a light source 124 is provided for illuminating the user interface 116 .
  • Drum 113 is rotatably driven by a motor (not shown) to tumble articles in the drum.
  • the motor and associated drive system may be able to rotate the drum at a single speed, or a drive system with multiple speeds may be employed.
  • a fan (not shown) is provided within the case 112 to draw air into the case and circulate it through the drum to dry or freshen the clothes in the drum.
  • the fan also may be of a single speed or multiple speed design.
  • a heater is provided to heat the circulating air, which may be on or more electric resistive or radiant heating elements, one or more gas burners.
  • One or more dryness sensors are provided to detect the relative moisture content of the clothes to control the duration of the drying cycles to enable automatic determine the duration of a drying cycle.
  • Controller 104 is configured with a plurality of clothes drying algorithms preprogrammed in the memory to implement user selectable cycles for drying a variety of types and sizes of clothes loads. The cycles may of automatically determined duration, influenced by user selection of a desired degree of dryness. Drying cycles of fixed duration selected by the user are also enabled.
  • Each such cycle is a power consuming feature/function involving energization of a drive motor, a fan motor and a heater, and possibly other components such as a light illuminating the interior of the dryer at least when the dryer door is open.
  • the control panel 116 can include a display 118 and control buttons for making various operational selections. Drying algorithms can be preprogrammed in the memory for many different types of cycles. Instructions and selections are displayed on the display 118 .
  • a light source 124 is provided for illuminating the user interface 116 .
  • appliances can be delayed in their operation, rescheduled for a later start time, and/or altered in their functioning/features in order to reduce energy demands.
  • Some appliances lend themselves to an altered operational schedule to off-peak demand periods due to their functionality.
  • dishwashers, clothes washers, and clothes dryers all have the capacity to run at off-peak hours because demand on these appliances is either not constant and/or the functions of these appliances are such that immediate response is not necessary.
  • a clothes dryer that has been loaded during the daytime, i.e., on-peak demand period hours can be programmed to start its operations for a later, albeit off-peak demand hours.
  • on-peak and off-peak demand hours can correspond to high utility costs and relatively low utility costs ($/kilowatt), respectively.
  • clothes can be dried using energy during the off-peak demand period wherein the subsequently dried clothes become available either later in the present day or at a time the following day.
  • immediate drying of clothes is many times not necessary.
  • Changes or adjustments to the clothes dryer's scheduled time for which cycles begin can be varied in a number of ways. Delaying or modifying the clothes dryer's cycle schedule can be in response to a signal from the controller 104 for the appliance to conserve energy or can be at the user's/consumer's commands.
  • the appliance controller 104 can be in communication with an associated utility where the controller 104 receives and processes a signal from the associated utility indicative of current costs of supplying energy.
  • the appliance controller 104 can be in communication with another appliance, ‘master’ appliance, or ‘master’ controller that is in communication with an associated utility.
  • the controller 104 can then operate the clothes dryer in one of a normal operating mode and an energy savings mode based on the received signal.
  • the controller 104 can be configured to change the power consuming functions by adjusting one or more of an operation schedule, an operation delay, an operation adjustment, and a selective deactivation of at least one of the one or more power consuming functions to reduce power consumption of the clothes dryer in the energy savings mode.
  • the controller 104 is configured to selectively adjust and/or disable at least one of the one or more power consuming features/functions to reduce power consumption of the clothes dryer 110 in the energy savings mode.
  • the controller 104 is configured to reduce power levels in the energy savings mode.
  • the controller 104 is also configured to reduce functions and/or reduce the intensity of functions in the energy savings mode.
  • energy savings mode can be accomplished by adjusting operation functions/features during on peak demand periods, delaying or rescheduling operations to an off peak demand period, and through a combination of both adjustment of operations and rescheduling to off peak demands.
  • Off peak demand periods correspond to periods during which lower cost energy is being supplied by the utility relative to peak demand periods during identifiable periods.
  • Changing the start of an appliance operation can be through a delay in start time or a rescheduling to a particular time period.
  • Operational delays include one or more of a delay in start time, an extension of time to the delayed start, stopping an existing cycle and delaying a restart, finishing an existing cycle and delaying a restart (or start or subsequent cycle), and stopping after more than one cycle and delaying a restart.
  • the stopping after more than one cycle can comprise advancing through one or more cycles until a logical stop is reached and then delaying any further operations until off-peak mode hours.
  • the logical stop can include before an additional drying cycle, temperature change to a subsequent drying cycle, etc.
  • operations can either be delayed before they are initiated and/or they can be stopped after they have been initiated and restarted at a later time.
  • a heavy duty dry cycle it may be advantageous to finish an existing dry cycle and delaying a restart of any subsequent cycles to an off peak demand period.
  • the clothes dryer's cycles effectively operate “normally” but can be delayed wherein one or more of the cycles are stopped/delayed and restarted/started during a non-peak demand period.
  • an operational schedule can be initiated wherein a user interface gives a user the ability to select which of the one or more clothes dryer functions are to be scheduled by the clothes dryer control system at non-peak mode hours.
  • the clothes dryer control system can receive a zip code entry which corresponds to a time of use schedule of a utility company from which the clothes dryer control system can determine on-peak mode hours and off-peak mode hours.
  • the information can use a time versus day of the week schedule input method that receives a cost, or price, per i.e. kilowatt hour signal directly from the utility advising of the current costs and schedules activation of the clothes dryer to off-peak mode hours.
  • a control method in accordance with the present disclosure comprises determining a cost of supplying energy from the associated utility, the cost being indicative of a peak demand period or an off-peak demand period, operating the clothes dryer in a normal mode during the off-peak demand period, operating the clothes dryer in an energy savings mode during the peak (or off-peak) demand period, scheduling, delaying, adjusting and/or selectively deactivating any number of one or more power consuming features/functions of the clothes dryer to reduce power consumption of the clothes dryer in the energy savings mode, and returning to the normal mode after the peak demand period is over.
  • Off peak demand periods correspond to periods during which lower cost energy is being supplied by the utility relative to peak demand periods.
  • the following operation adjustments can be selected in order to reduce energy demands.
  • the operation adjustments to be described hereinafter can be implemented in conjunction with off-peak mode hours and/or can be implemented during on-peak mode hours.
  • the operational adjustments can include one or more of the following: a reduction in operating temperature (i.e. temperature set point adjustments) in one or more cycles, a disablement of one or more heaters in one or more cycles, reduction in power to one or more heaters, a switch from a selected cycle to a reduced power consumption cycle, a reduction in a duration of cycle time in one or more cycles, a disablement of one or more cycles, and a skipping of one or more cycles.
  • a switch from a selected cycle to a reduced power consumption cycle could include a change to the cycle definition when a command is received. For example, if a customer/user pushes “normal dry” cycle, the selected cycle would then switch to a “permanent press” cycle, or the customer/user pushes “permanent press” cycle which would then switch to a “delicate/light” cycle. As described, the switching is in response to lowering the energy demands from a selected cycle to a reduced power consumption cycle that meets a similar functional cycle.
  • a control method in accordance with the present disclosure comprises communicating with an associated utility and receiving and processing the signal indicative of cost of supplied energy (S 200 ), determining a state for an associated energy supplying utility, such as a cost of supplying energy from the associated utility (S 202 ), the utility state being indicative of at least a peak demand period or an off-peak demand period (S 203 ), operating the clothes dryer 110 in a normal mode during the off-peak demand period (S 204 ), operating the clothes dryer 110 in an energy savings mode during the peak demand period (S 206 ), selectively adjusting any number of one or more power consuming features/functions of the clothes dryer to reduce power consumption of the appliance in the energy savings mode (S 208 ), and returning to the normal mode (S 210 ) after the peak demand period is over (S 212 ).
  • the selective adjustment can include reducing power in the energy savings mode, for example, selecting one or more of the operational adjustments described above.
  • a selectable override option can be provided on the user interface 116 providing a user the ability to select which of the one or more power consuming features/functions are adjusted by the controller in the energy savings mode.
  • the user can override any adjustments, whether time related or function related, to any of the power consuming functions.
  • the override option can be initiated at any time or can be initiated based on a certain $/kilowatt hour. For the method outlined in FIG. 23 , if the utility state has an associated energy cost, the user can select a targeted energy cost (S 214 ) and can base operation of the appliance on the selected targeted energy cost. If the current cost of energy is above the user selected cost (S 216 ), then energy savings mode (S 206 ) is initiated.
  • the operational adjustments can be accompanied by a display on the panel which communicates activation of the energy savings mode.
  • the energy savings mode display can include a display of “ECO”, “Eco”, “EP”, “ER”, “CP”, “CPP”, “DR”, or “PP” on the appliance display panel 118 in cases where the display is limited to three characters. In cases with displays having additional characters available, messaging can be enhanced accordingly. Additionally, an audible signal can be provided to alert the user of the appliance operating in the energy savings mode.
  • the duration of time that the clothes dryer 110 operates in the energy savings mode may be determined by information in the energy signal 106 .
  • the energy signal 106 may inform the clothes dryer 110 to operate in the energy savings mode for a few minutes or for one hour, at which time the appliance returns to normal operation.
  • the energy signal 106 may be continuously transmitted by the utility provider, or other signal generating system, as long as it is determined that instantaneous load reduction is necessary. Once transmission of the signal 106 has ceased, the clothes dryer 110 returns to normal operating mode.
  • an energy signal may be transmitted to the clothes dryer to signal the clothes dryer to operate in the energy savings mode. A normal operation signal may then be later transmitted to the clothes dryer to signal the clothes dryer to return to the normal operating mode.
  • the operation of the clothes dryer 110 may vary as a function of a characteristic of the supplied energy, e.g., availability and/or price. Because some energy suppliers offer what is known as time-of-day pricing in their tariffs, price points could be tied directly to the tariff structure for the energy supplier. If real time pricing is offered by the energy supplier serving the site, this variance could be utilized to generate savings and reduce chain demand.
  • Another load management program offered by energy supplier utilizes price tiers which the utility manages dynamically to reflect the total cost of energy delivery to its customers. These tiers provide the customer a relative indicator of the price of energy and are usually defined as being LOW (level 1 ), MEDIUM (level 2 ), HIGH (level 3 ), and CRITICAL (level 4 ).
  • tiers are shown in the chart of FIG. 24 to partially illustrate operation of the clothes dryer 110 in each pricing tier.
  • the appliance control response to the LOW and MEDIUM tiers is the same namely the appliance remains in the normal operating mode.
  • the response to the HIGH and CRITICAL tiers is the same, namely operating the appliance in the energy saving mode.
  • the controller could be configured to implement a unique operating mode for each tier which provides a desired balance between compromised performance and cost savings/energy savings. If the utility offers more than two rate/cost conditions, different combinations of energy saving control steps may be programmed to provide satisfactory cost savings/performance tradeoff.
  • the operational and functional adjustments described above, and others, can be initiated and/or dependent upon the tiers.
  • the clothes dryer's highest heat setting selection can be prevented or ‘blocked’ from activating if the pricing tier is at level 3 or 4 .
  • the controller resets the drying temperature to a lower setting, i.e. using only the outer heating coil which essentially uses one half of the wattage when compared to full use of the heating coil.
  • the display 118 can include, a communication, for example, an audible and/or visual alert of pricing tier 3 and 4 . Some communication line with the utility can be established including, but not limited to, the communication arrangements hereinbefore described.
  • the display 118 can provide the actual cost of running the clothes dryer 110 in the selected mode of operation, as well as, maintain a running display of the present cost of energy. If the utility offers more than two rate/cost conditions, different combinations of energy saving control steps may be programmed to provide satisfactory cost savings/performance tradeoff.

Abstract

A clothes dryer is provided comprising one or more power consuming functions and a controller in signal communication with an associated utility. The controller can receive and process a signal from the associated utility indicative of current cost of supplied energy. The controller operates the clothes dryer in one of a normal operating mode and an energy savings mode based on the received signal. The controller is configured to change the power consuming functions by adjusting one or more of an operation schedule, an operation delay, an operation adjustment, and a selective deactivation of at least one of the one or more power consuming functions to reduce power consumption of the clothes dryer in the energy savings mode.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority from U.S. Provisional Patent Application Ser. No. 61/097,082 filed 15 Sep. 2008, now Ser. No. ______, filed 15 Sep. 2009 (Attorney Docket No. 231,308 (GECZ 2 00948)); which provisional patent application is expressly incorporated herein by reference, in its entirety. In addition, cross-reference is made to commonly owned, copending applications Ser. No. ______, filed 15 Sep. 2009 (Attorney Docket No. 233326 (GECZ 00989)); Ser. No. ______, filed 15 Sep. 2009 (238022 (GECZ 2 00991)); Ser. No. ______, filed 15 Sep. 2009 (234622 (GECZ 2 00992)); Ser. No. ______, filed 15 Sep. 2009 (234930 (GECZ 2 00993)); Ser. No. ______, filed 15 Sep. 2009 (235012 (GECZ 2 00994)); Ser. No. ______, filed 15 Sep. 2009 (235215 (GECZ 2 00995)); Ser. No. ______, filed 15 Sep. 2009 (238338 (GECZ 2 00997)); Ser. No. ______, filed 15 Sep. 2009 (238404 (GECZ 2 00998)); Ser. No. ______, filed 15 Sep. 2009 (237845 (GECZ 2 00999)); Ser. No. ______, filed 15 Sep. 2009 (237898 (GECZ 2 01000)); and Ser. No. ______, filed 15 Sep. 2009 (238022 (GECZ 2 00996)).
  • BACKGROUND
  • This disclosure relates to energy management, and more particularly to energy management of household consumer appliances. The disclosure finds particular application to changing existing appliances via add-on features or modules, and incorporating new energy saving features and functions into new appliances.
  • Currently utilities charge a flat rate, but with increasing cost of fuel prices and high energy usage at certain parts of the day, utilities have to buy more energy to supply customers during peak demand. Consequently, utilities are charging higher rates during peak demand. If peak demand can be lowered, then a potential huge cost savings can be achieved and the peak load that the utility has to accommodate is lessened.
  • One proposed third party solution is to provide a system where a controller “switches” the actual energy supply to the appliance or control unit on and off. However, there is no active control beyond the mere on/off switching. It is believed that others in the industry cease some operations in a refrigerator during on-peak time.
  • For example, in a refrigerator most energy is consumed to keep average freezer compartment temperature at a constant level. Recommended temperature level is based on bacteria multiplication. Normally recommended freezer temperature for long (1-2 month) food storage is 0 degrees F. Research shows that bacteria rise is a linear function of the compartment temperature, i.e., the lower the temperature the lower the bacteria multiplication. Refrigerator designers now use this knowledge to prechill a freezer compartment (and in less degree a refrigerator compartment also) before defrost, thus keeping an average temperature during time interval that includes before, during, and after defrost at approximately the same level (for example, 0 degrees F.).
  • There are also currently different methods used to determine when variable electricity-pricing schemes go into effect. There are phone lines, schedules, and wireless signals sent by the electrical company. One difficulty is that no peak shaving method for an appliance such as a refrigerator will provide a maximal benefit. Further, different electrical companies use different methods of communicating periods of high electrical demand to their consumers. Other electrical companies simply have rate schedules for different times of day.
  • Electrical utilities moving to an Advanced Metering Infrastructure (AMI) system will need to communicate to appliances, HVAC, water heaters, etc. in a home or office building. All electrical utility companies (more than 3,000 in the US) will not be using the same communication method to signal in the AMI system. Similarly, known systems do not communicate directly with the appliance using a variety of communication methods and protocols, nor is a modular and standard method created for communication devices to interface and to communicate operational modes to the main controller of the appliance. Although conventional WiFi/ZigBee/PLC communication solutions are becoming commonplace, this disclosure introduces numerous additional lower cost, reliable solutions to trigger “load shedding” responses in appliances or other users of power. This system may also utilize the commonplace solutions as parts of the communication protocols.
  • BRIEF DESCRIPTION
  • The present disclosure reduces power consumption during on-peak hours by reducing the energy demand on the power generation facility, and also enabling the user/consumer to pay less to operate the appliance on an annual basis. A controller is configured to receive and process a signal indicative of current state of an associated energy supplying utility. The controller operates the cooking appliance in one of a plurality of operating modes, including at least a normal operating mode and an energy savings mode, in response to the received signal.
  • This disclosure is a low-cost alternative to using expensive or complicated methods of determining when peak electrical rates apply. For example, when the refrigerator is in peak shaving mode (or it could be programmed to do this constantly), an ambient light sensor determines when it is morning, and then stays in energy-saving mode for a predetermined number of hours. Preferably, the system will need a counter to know that the room has been dark for a predetermined number of hours. When the lights come on for a certain length of time, then the system knows, for example, that it is morning. A state for an associated energy supplying utility is determined. The utility state is indicative of at least a peak demand period or an off-peak demand period.
  • This disclosure provides a peak-shaving appliance such as a refrigerator, including a method to determine when to go into peak-shaving mode without using additional components, or components that have another purpose, and provides a high percentage of the maximum benefit for negligible cost. The two components needed for this are an ambient light sensor and a timer. The kitchen will be dark for an extended period of time while everyone is sleeping. The light sensor and the timer will be used to determine that it is nighttime and morning can be determined by the light sensor. When the refrigerator determines it is morning, the timer will be used to initiate peak shaving mode after some delay time. For example, peak shaving mode could start three hours after it is determined morning starts. Similarly, the ambient light sensor can also be used for dimming the refrigerator lights. This disclosure advantageously uses ambient light to determine when to start peak shaving. A controller is configured to receive and process an energy signal. The signal has a first state indicative of a utility peak demand period and a second state indicative of a utility off-peak demand period. The controller operates the cooking appliance in one of an energy savings mode and a normal operating mode based on the received signal being in the first and second states respectively.
  • An appliance interface can be provided for all appliances leaving the module to communicate with the AMI system. The system provides for appliance sales with a Demand Side Management capable appliance. The Demand Side Management Module (DSMM) is provided to control the energy consumption and control functions of an appliance using a communication method (including but not limited to PLC, FM, AM SSB, WiFi, ZigBee, Radio Broadcast Data System, 802.11, 802.15.4, etc.). The modular approach will enable an appliance to match electrical utility communication requirements. Each electrical utility region may have different communication methods, protocol methods, etc. This modular approach allows an appliance to be adapted to a particular geographical area of a consumer or a particular electrical provider. The module can be added as a follow on feature and applied after the appliance is installed. Typical installations could include an integral mounted module (inside the appliance or unit) or an externally mounted module (at the wall electrical receptacle or anywhere outside the appliance or unit). The module in this disclosure provides for 2 way communications if needed, and will provide for several states of operation—for example, 1) normal operation, 2) operation in low energy mode (but not off), and 3) operation in lowest energy mode.
  • This module could be powered from the appliance or via a separate power supply, or with rechargeable batteries. The rechargeable batteries could be set to charge under off-peak conditions. With the module powered from the appliance, the appliance could turn it off until the appliance needed to make a decision about power usage, eliminating the standby power draw of the module. If powered separately, the appliance could go to a low energy state or completely off, while the module continued to monitor rates.
  • Use of RFID tags in one proposed system should offer significant savings since the RFID tags have become very low cost due to the proliferation of these devices in retail and will effectively allow the enabled appliance to effectively communicate with the utility meter (e.g., receive signals from the utility meter). This system makes it very easy for a customer to manage energy usage during peak demand periods and lowers the inconvenience level to the customer by not shutting off appliances in the home by the utility. When local storage and local generation are integrated into the system, then cost savings are seen by the customer. This system also solves the issue of rolling brownouts/blackouts caused by excessive power demand by lowering the overall demand. Also, the system allows the customer to pre-program choices into the system that will ultimately lower utility demand as well as save the customer money in the customer's utility billing. For instance, the customer may choose to disable the defrost cycle of a refrigerator during peak rate timeframes. This disclosure provides for the controller to “communicate” with the internal appliance control board and command the appliance to execute specific actions with no curtailment in the energy supply. This disclosure further provides a method of communicating data between a master device and one or more slave devices using RFID technology. This can be a number of states or signals, either using one or more passive RFID tags that resonate at different frequencies resonated by the master, or one or more active RFID tags that can store data that can be manipulated by the master device and read by the slave device(s). The states in either the passive or active RFID tags can then be read by the microcontroller on the slave device(s) and appropriate functions/actions can be taken based upon these signals.
  • Another exemplary embodiment uses continuous coded tones riding on carrier frequencies to transmit intelligence, for example, when one is merely passing rate information such as rate 1, 2, 3, or 4, using the tones to transmit the signals. One could further enhance the details of the messaging by assigning a binary number to a given tone, thus allowing one to “spell out” a message using binary coding with multiple tones. The appliance microcomputer would be programmed to respond to a given number that would arrive in binary format.
  • One advantage of this approach is that customers have complete control of their power. There have been proposals by utilities to shut off customers if they exceed demand limits or increase the number of rolling brownouts. This method also gives a customer finer granulity in their home in terms of control. A customer does not have to load shed a room just to manage a single device.
  • This disclosure also advantageously provides modes of load shedding in the appliance, lighting, or HVAC other than “on/off” to make the situation more acceptable from the perspective of the customer.
  • In one aspect of the disclosure, a clothes dryer is provided comprising one or more power consuming functions and a controller in signal communication with an associated utility. The controller can receive and process a signal from the associated utility indicative of current cost of supplied energy. The controller operates the clothes dryer in one of a normal operating mode and an energy savings mode based on the received signal. The controller is configured to change the power consuming functions by adjusting one or more of an operation schedule, an operation delay, an operation adjustment, and a selective deactivation of at least one of the one or more power consuming functions to reduce power consumption of the clothes dryer in the energy savings mode.
  • In another aspect of the disclosure, a method for controlling a clothes dryer is provided, comprising: determining a cost of supplied energy from an associated utility, the cost being indicative of a peak demand period or an off-peak demand period; operating the clothes dryer in a normal mode during the off-peak demand period; operating the clothes dryer in an energy savings mode during the peak demand period; scheduling, delaying, adjusting and/or selectively deactivating any number of one or more power consuming features/functions of the clothes dryer to reduce power consumption of the clothes dryer in the energy savings mode; and, returning to the normal mode after the peak demand period is over.
  • An advantage of the present disclosure is the ability to produce appliances with a common interface and let the module deal with the Demand Side Management.
  • Another advantage is the ability to control functions and features within the appliance and/or unit at various energy levels, i.e., as opposed to just an on/off function.
  • Another advantage is that the consumer can choose the module or choose not to have the module. If the module is chosen, it can be matched to the particular electrical utility service provider communication method of the consumer.
  • Another benefit is the increased flexibility with an associated electrical service provider, and the provision of several modes of operation (not simply an on/off mode). The module can be placed or positioned inside or outside the appliance and/or unit to provide demand side management.
  • Still other benefits relate to modularity, the ability to handle multiple communication methods and protocols without adversely impacting the cost of the appliance, opening up appliances to a variety of protocols, enabling demand side management or energy management, and/or providing for a standard interface to the appliance (for example, offering prechill and/or temperature set change during on-peak hours).
  • Low cost, reliable RF transmissions within the home, rather than using industrial solutions such as PLC or Zigbee solutions which are significantly more costly than the aforementioned system.
  • Still other features and benefits of the present disclosure will become apparent from reading and understanding the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1-21 illustrate exemplary embodiments of an energy management system for household appliances.
  • FIG. 22 is a schematic illustration of an exemplary demand managed clothes dryer.
  • FIG. 23 is an exemplary operational flow chart for the clothes dryer of FIG. 22.
  • FIG. 24 is an exemplary control response for the clothes dryer of FIG. 22.
  • DETAILED DESCRIPTION
  • In one embodiment, a more advanced system is provided to handle energy management between the utility and the homeowner's appliances. The system can include one or more of the following: a controller, utility meter, communication network, intelligent appliances, local storage, local generator and/or demand server. Less advanced systems may actually allow the appliance to “communicate directly with the utility meter or mesh network through the DSSM (Demand Side Management Module) (FIG. 1). The demand server is a computer system that notifies the controller when the utility is in peak demand and what is the utility's current demand limit. A utility meter can also provide the controller the occurrence of peak demand and demand limit. The demand limit can also be set by the home owner. Additionally, the homeowner can choose to force various modes in the appliance control based on the rate the utility is charging at different times of the day. The controller will look at the energy consumption currently used by the home via the utility meter and see if the home is exceeding the demand limit read from the server. If the demand limit is exceeded, the controller will notify the intelligent appliances, lighting and thermostat/HVAC (FIG. 2).
  • Each intelligent appliance has a communication interface that links itself to the controller (FIG. 3). This interface can be power-line carrier, wireless, and/or wired. The controller will interact with the appliance and lighting controls as well as thermostat (for HVAC) to execute the users preferences/settings.
  • Enabled appliances receive signals from the utility meter and help lower the peak load on the utility and lower the amount of energy that the consumer uses during high energy cost periods of the day. There are several ways to accomplish this, through wireless communication (ZigBee, WiFi, etc) or through PLC (power line carrier) communication. Alternatively, using passive RFID tags that resonate at different frequencies resonated by the master, or one or more active RFID tags that can store data that can be manipulated by the master device and read by the slave devices(s) is an effective and potentially lower cost communication solution since there is no protocol. Rather, a pulse of energy at a particular frequency will allow a low cost method with an open protocol for transmitting/communicating between a master device and one or more slave devices, and appropriate functions/actions can be taken based upon these signals.
  • The interaction between controller and appliances can occur in two ways. For example, in one scenario during a peak demand period, the controller will receive a demand limit from the utility, demand server or user. The controller will then allocate the home's demand based on two factors: priority of the appliance and energy need level (FIG. 4). The priority dictates which appliances have higher priority to be in full or partial energy mode than other appliances. Energy need dictates how much energy is required for a certain time period in order for that appliance to function properly. If the appliance's energy need is too low to function properly, the appliance moves to a normal mode or a higher energy need level. The energy saving mode is typically a lower energy usage mode for the appliance such as shutdowns of compressors and motors, delayed cycles, higher operating temperatures in summer or lower operating temperatures in winter until the peak demand period is over. Once the demand limit is reached, the appliances will stay in their energy mode until peak demand is over, or a user overrides, or appliance finishes need cycle or priority changes. The controller constantly receives status updates from the appliances in order to determine which state they are in and in order to determine if priorities need to change to accomplish the system goals.
  • In a second scenario, for example, a set point is provided. During a peak demand period, the controller will tell each appliance to go into peak demand mode (FIG. 5). The appliance will then go into a lower energy mode. The customer can deactivate the energy savings mode by selecting a feature on the appliance front end controls (i.e. user interface board) before or during the appliance use or at the controller. The controller can also communicate to a local storage or power generation unit. This local unit is connected to the incoming power supply from the utility. The controller notifies the storage unit to charge when it is not in peak demand, if a storage unit is included and available. If the storage unit has enough energy to supply the appliances during peak demand, then the controller will switch the home's energy consumption from the utility to the storage unit. The unit can also be local generator/storage such as solar, hydrogen fuel cell, etc.
  • The central controller handles energy management between the utility and home appliances, lighting, thermostat/HVAC, etc. with customer choices incorporated in the decision making process. The controller may include notification of an energy saving mode based on demand limit read from one or more of a utility meter, utility, demand server or user. An energy savings mode of an appliance can thereby be controlled or regulated based on priority and energy need level sent from the controller and/or the customer (FIG. 6). Likewise, consideration to use of local energy storage and use of a local generator to offset peak demand limit can be incorporated into the energy management considerations, or provide the ability to override mode of energy savings through the controller or at the appliance, lighting, or thermostat/HVAC (FIGS. 7 and 8).
  • The present disclosure has the ability for the home to shed loads in pending brown-out or black-out situations, yet have intelligence to prevent an improper action such as shutting down the refrigerator for extended timeframes that might compromise food storage safety.
  • How much energy the appliance consumes in peak demand is based on priority of the device and the energy need level. If the appliance's priority is high, then the appliance will most likely not go into a saving mode. The energy need level is based on how little energy the appliance can consume during peak demand and still provide the function setting it is in (i.e. in a refrigerator, ensuring that the temperature is cool enough to prevent spoiling). It will also be appreciated that an appliance may have multiple energy need levels.
  • The controller will be the main product with the communication and settings control incorporated within future appliances. Specific meters will be selected so that the controller can read the demand usage. It is intended that the demand server will possibly be purchased or leased to the utility.
  • A method is provided for constructing an appliance designed to perform any key function, the appliance comprises of several mechanical and electrical elements controlled by a main controller. This main controller has a port for receiving information regarding the operational state of the appliance. The port also has a user interface or switch which could be used to override the information received by the controller through the port. Two-way or one-way communication devices may be connected to the port. These communication devices will receive signals from a remote controller, process those signals and as a result communicate an operational state to the main controller of the appliance. This operational state is communicated to the main controller by one or more remote controllers in a specific format determined by the appliance. These signals from the remote controller(s) could be based on a variety of communication methods and associated protocols. On receiving the operational state signal, the appliance main controller causes the appliance to run a predetermined operational mode. These operational modes are designed into the appliance(s) and result in different resource consumption levels or patterns, even delaying use. Resources could include energy, water, air, heat, sunlight, time, etc. In future appliance models, the consumer might be given the authority to modify the appliance responses to a given rate signal. The consumer would be presented a “check box” of potential response modes and allowed to choose within set parameters. For instance, the consumer might be allowed to choose the amount of temperature adjustment a refrigerator will make in response to a high utility rate.
  • A method of communicating data between a master device and one or more slave devices may advantageously use continuous tone-coded transmission system. This can be a number of states or signals, either using one or more continuous tones that signify different rate states coming from the home area network (from meter) or the utility. Additionally, one could send a combination of tones to transmit binary messages using a few tones. The slave devices will incorporate a receiver that receives the carrier frequency and then decodes the continuous tone which corresponds to the particular state of the utility rate. Once the “receiver board” detects the tone, then the downstream circuitry will trigger the appropriate response in the appliance. The carrier frequency in this scheme can be numerous spectrums, one being the FM broadcast band or a specific FM band allocated by the FCC for low level power output. The advantage of broadcast band FM is the low cost of such devices and the potential to penetrate walls, etc. within a home with very low levels of power due to the long wavelength of the 89-106 Mhz carrier. This process is used today in 2-way radio communications to reduce the annoyance of listening to multiple users on shared 2-way radio frequencies. The process in these radios is referred to as CTCSS (continuous tone-coded squelch system) and would find application in this end use.
  • Generally, it is not known to have modular interfaces that can receive signals from a control source. Also, no prior arrangements have functioned by addressing the control board of the appliance with a signal that directs the appliance to respond.
  • Thus, by way of example only, the structure and/or operation of a refrigerator (FIG. 9, although other appliances are also represented) may be modified or altered by reducing the temperature, especially in the freezer compartment pre on-peak time and further temporarily provide a compartment temperature increase to shave on-peak load. Specifically, defrost operation could be delayed until off-peak time. Alternatively or conjunctively, the freezer and refrigerator temperature setpoints may be set to maintain less compressor on time during on-peak demand times. Similarly, the refrigerator/freezer could be programmed so that lights will not be permitted to come on or the lights must be dimmed lights during on-peak demand times. During on-peak demand times, the fan operating speeds can be reduced, and/or compressor operating speed reduced in order to reduce energy consumption. Still another option is to reduce the delay time for the door alarm to sound during on-peak time. Other power load reducing measures in a refrigerator may include (reducing before on-peak hours) the temperature of the freezer and refrigerator compartments in a refrigerator (prechill) and slightly increase temperature setting during on-peak rates. For example, just before peak rate time, the temperature setting could be decreased by 1-2 degrees (during off-peak rates). Some communication line with the electrical company could be established. Thus, the electrical company may be able to send a signal in advance to prechill the refrigerator (or in the case of an air conditioner, decrease the room temperature during off-peak rates as a pre-chill maneuver) and, in turn, increase the temperature setting during on-peak rates.
  • Still other energy consuming practices of the exemplary refrigerator that may be altered include turning the ice-maker off during on-peak demand times, or disabling the crushed ice mode during on-peak demand times. Alternatively, the consumer may be given the ability to select via a user interface which items are incorporated into the on-peak demand via an enable/disable menu, or to provide input selection such as entry of a zip code (FIG. 10) in order to select the utility company and time of use schedule (FIG. 11), or using a time versus day of the week schedule input method (FIGS. 12-13).
  • The user interface may also incorporate suggested energy saving tips or show energy usage, or provide an indicator during on-peak mode, or provide a counter to illustrate the energy impact of door opening, or showing an energy calculator to the consumer to serve as a reminder of the impact of certain selections/actions on energy use or energy conservation (FIGS. 14-19).
  • One path that is being pursued from the appliance perspective is to allow the onboard CPU (microprocessor) of the appliance to determine how to respond to an incoming signal asking for a load shedding response. For example, the CPU will turn on, turn off, throttle, delay, adjust, or modify specific functions and features in the appliance to provide a turndown in power consumption (FIG. 20). FIG. 21 defines specifically exemplary modes of what are possible. The main feature here is the enabling of the main board microprocessor or CPU to execute actions in the appliance to deliver load shedding (lowering power consumption at that instant). The actions available in each appliance are only limited to the devices that the CPU has control over, which are nearly all of the electrical consuming devices in an appliance. This may work better where the appliance has an electronic control versus an electromechanical control.
  • Of course, the above description focuses on the refrigerator but these concepts are equally applicable to other home appliances such as dishwasher, water heaters, washing machines, clothes dryers, televisions (activate a recording feature rather than turning on the television), etc., and the list is simply representative and not intended to be all encompassing.
  • Likewise, although these concepts have been described with respect to appliances, they may find application in areas other than appliances and other than electricity usage. For example, a controller that acts as an intermediary between the utilities meter and the appliance interprets the utility signal, processes it and then submits this signal to the appliance for the prescribed reaction. In a similar fashion, the controller may find application to other household utilities, for example, natural gas and water within the home. One can equip the water and gas meters to measure flow rates and then drive responses to a gas water heater or gas furnace precisely like the electrical case. This would assume that one might experience variable gas and water rates in the future. Secondly, the flow meters being connected to the controller could provide a consumer with a warning as to broken or leaking water lines by comparing the flow rate when a given appliance or appliances are on to the normal consumption. In cases where safety is a concern, the system could stop the flow of gas or water based on the data analysis.
  • Another feature might be the incorporation of “remote subscription” for the utility benefit. In some cases, the utility will be providing customers discounts/rebates for subscribing to DSM in their appliances, hot water heaters, etc. The “remote subscription” feature would allow the utility to send a signal that would “lockout” the consumer from disabling the feature since they were on the “rebate” program.
  • Another feature that the controller lends itself to is the inclusion of “Remote diagnostics”. This feature would allow the appliance to send a signal or message to the controller indicating that something in the appliance was not up to specifications. The controller could then relay this signal to the utility or to the appliance manufacturer via the various communication avenues included into the controller (i.e., WIFI, WIMAX, Broadband, cell phone, or any other formats that the controller could “speak”).
  • In the case of a remote subscription, the utilities today rely on the honesty of their subscribers to leave the DSM system functional. Some people may receive the discounts/rebate and then disable the feature that drives the load shedding. With this system, the utility can ensure that the feature will be enabled and provide the proper load shedding.
  • An exemplary embodiment of a demand managed appliance 100 comprising a clothes dryer 110 is schematically illustrated in FIG. 22. The clothes dryer 110 comprises at least one power consuming feature/function 102 and a controller 104 operatively associated with the power consuming feature/function. The controller 104 can include a micro computer on a printed circuit board which is programmed to selectively control the energization of the power consuming feature/function. The controller 104 is configured to receive and process a signal 106 indicative of a utility state, for example, availability and/or current cost of supplied energy. The energy signal may be generated by a utility provider, such as a power company, and can be transmitted via a power line, as a radio frequency signal, or by any other means for transmitting a signal when the utility provider desires to reduce demand for its resources. The cost can be indicative of the state of the demand for the utility's energy, for example a relatively high price or cost of supplied energy is typically associated with a peak demand state or period and a relative low price or cost is typically associated with an off-peak demand state or period.
  • The controller 104 can operate the clothes dryer 110 in one of a plurality of operating modes, including a normal operating mode and an energy savings mode, in response to on the received signal. Specifically, the clothes dryer 110 can be operated in the normal mode in response to a signal indicating an off-peak demand state or period and can be operated in an energy savings mode in response to a signal indicating a peak demand state or period. As will be discussed in greater detail below, the controller 104 is configured to at least selectively adjust and/or disable the power consuming feature/function to reduce power consumption of the clothes dryer 110 in the energy savings mode.
  • The clothes dryer 110 generally includes a cabinet 112 and a control panel or user interface 116. The clothes dryer 110 may be of conventional construction, further including a drum 113 rotatably mounted in the cabinet 112 for receiving articles to be dried. Instructions and selections are displayed on the display 118. A light source 124 is provided for illuminating the user interface 116. Drum 113 is rotatably driven by a motor (not shown) to tumble articles in the drum. The motor and associated drive system may be able to rotate the drum at a single speed, or a drive system with multiple speeds may be employed. A fan (not shown) is provided within the case 112 to draw air into the case and circulate it through the drum to dry or freshen the clothes in the drum. The fan also may be of a single speed or multiple speed design. A heater is provided to heat the circulating air, which may be on or more electric resistive or radiant heating elements, one or more gas burners. One or more dryness sensors are provided to detect the relative moisture content of the clothes to control the duration of the drying cycles to enable automatic determine the duration of a drying cycle. Controller 104 is configured with a plurality of clothes drying algorithms preprogrammed in the memory to implement user selectable cycles for drying a variety of types and sizes of clothes loads. The cycles may of automatically determined duration, influenced by user selection of a desired degree of dryness. Drying cycles of fixed duration selected by the user are also enabled. Each such cycle is a power consuming feature/function involving energization of a drive motor, a fan motor and a heater, and possibly other components such as a light illuminating the interior of the dryer at least when the dryer door is open. The control panel 116 can include a display 118 and control buttons for making various operational selections. Drying algorithms can be preprogrammed in the memory for many different types of cycles. Instructions and selections are displayed on the display 118. A light source 124 is provided for illuminating the user interface 116.
  • As described above, appliances can be delayed in their operation, rescheduled for a later start time, and/or altered in their functioning/features in order to reduce energy demands. Some appliances lend themselves to an altered operational schedule to off-peak demand periods due to their functionality. For example, dishwashers, clothes washers, and clothes dryers all have the capacity to run at off-peak hours because demand on these appliances is either not constant and/or the functions of these appliances are such that immediate response is not necessary. As one illustrative example, a clothes dryer that has been loaded during the daytime, i.e., on-peak demand period hours, can be programmed to start its operations for a later, albeit off-peak demand hours. It is to be appreciated that on-peak and off-peak demand hours can correspond to high utility costs and relatively low utility costs ($/kilowatt), respectively. In this manner, clothes can be dried using energy during the off-peak demand period wherein the subsequently dried clothes become available either later in the present day or at a time the following day. As most users can appreciate, particularly for household consumers, immediate drying of clothes is many times not necessary.
  • In order to reduce the peak energy consumed by a clothes dryer, modifications and/or delays of individual clothes dryer cycles can be adjusted in order to reduce the total energy consumed. Reducing total energy consumed also encompasses reducing the energy consumed at peak times and/or reducing the overall electricity demands during peak times and non-peak times. Electricity demand can be defined as average watts over a short period of time, typically 5-60 minutes
  • Changes or adjustments to the clothes dryer's scheduled time for which cycles begin can be varied in a number of ways. Delaying or modifying the clothes dryer's cycle schedule can be in response to a signal from the controller 104 for the appliance to conserve energy or can be at the user's/consumer's commands. The appliance controller 104 can be in communication with an associated utility where the controller 104 receives and processes a signal from the associated utility indicative of current costs of supplying energy. The appliance controller 104 can be in communication with another appliance, ‘master’ appliance, or ‘master’ controller that is in communication with an associated utility. The controller 104 can then operate the clothes dryer in one of a normal operating mode and an energy savings mode based on the received signal. The controller 104 can be configured to change the power consuming functions by adjusting one or more of an operation schedule, an operation delay, an operation adjustment, and a selective deactivation of at least one of the one or more power consuming functions to reduce power consumption of the clothes dryer in the energy savings mode. In order to reduce the peak energy consumed by the clothes dryer 110, the controller 104 is configured to selectively adjust and/or disable at least one of the one or more power consuming features/functions to reduce power consumption of the clothes dryer 110 in the energy savings mode. To this extent, the controller 104 is configured to reduce power levels in the energy savings mode. The controller 104 is also configured to reduce functions and/or reduce the intensity of functions in the energy savings mode.
  • It is to be appreciated that energy savings mode can be accomplished by adjusting operation functions/features during on peak demand periods, delaying or rescheduling operations to an off peak demand period, and through a combination of both adjustment of operations and rescheduling to off peak demands. Off peak demand periods correspond to periods during which lower cost energy is being supplied by the utility relative to peak demand periods during identifiable periods.
  • Changing the start of an appliance operation can be through a delay in start time or a rescheduling to a particular time period. Operational delays include one or more of a delay in start time, an extension of time to the delayed start, stopping an existing cycle and delaying a restart, finishing an existing cycle and delaying a restart (or start or subsequent cycle), and stopping after more than one cycle and delaying a restart. The stopping after more than one cycle can comprise advancing through one or more cycles until a logical stop is reached and then delaying any further operations until off-peak mode hours. The logical stop can include before an additional drying cycle, temperature change to a subsequent drying cycle, etc. In this manner, operations can either be delayed before they are initiated and/or they can be stopped after they have been initiated and restarted at a later time. For some functions, i.e., a heavy duty dry cycle, it may be advantageous to finish an existing dry cycle and delaying a restart of any subsequent cycles to an off peak demand period. In this manner, the clothes dryer's cycles effectively operate “normally” but can be delayed wherein one or more of the cycles are stopped/delayed and restarted/started during a non-peak demand period.
  • Alternatively, or in conjunction with the above operational delays, an operational schedule can be initiated wherein a user interface gives a user the ability to select which of the one or more clothes dryer functions are to be scheduled by the clothes dryer control system at non-peak mode hours. Additionally, the clothes dryer control system can receive a zip code entry which corresponds to a time of use schedule of a utility company from which the clothes dryer control system can determine on-peak mode hours and off-peak mode hours. The information can use a time versus day of the week schedule input method that receives a cost, or price, per i.e. kilowatt hour signal directly from the utility advising of the current costs and schedules activation of the clothes dryer to off-peak mode hours.
  • A control method in accordance with the present disclosure comprises determining a cost of supplying energy from the associated utility, the cost being indicative of a peak demand period or an off-peak demand period, operating the clothes dryer in a normal mode during the off-peak demand period, operating the clothes dryer in an energy savings mode during the peak (or off-peak) demand period, scheduling, delaying, adjusting and/or selectively deactivating any number of one or more power consuming features/functions of the clothes dryer to reduce power consumption of the clothes dryer in the energy savings mode, and returning to the normal mode after the peak demand period is over. Off peak demand periods correspond to periods during which lower cost energy is being supplied by the utility relative to peak demand periods.
  • In conjunction with the scheduling delays described above, or as separate operational changes, the following operation adjustments can be selected in order to reduce energy demands. The operation adjustments to be described hereinafter, can be implemented in conjunction with off-peak mode hours and/or can be implemented during on-peak mode hours. Associated with a clothes dryer, the operational adjustments can include one or more of the following: a reduction in operating temperature (i.e. temperature set point adjustments) in one or more cycles, a disablement of one or more heaters in one or more cycles, reduction in power to one or more heaters, a switch from a selected cycle to a reduced power consumption cycle, a reduction in a duration of cycle time in one or more cycles, a disablement of one or more cycles, and a skipping of one or more cycles. Illustratively, a switch from a selected cycle to a reduced power consumption cycle could include a change to the cycle definition when a command is received. For example, if a customer/user pushes “normal dry” cycle, the selected cycle would then switch to a “permanent press” cycle, or the customer/user pushes “permanent press” cycle which would then switch to a “delicate/light” cycle. As described, the switching is in response to lowering the energy demands from a selected cycle to a reduced power consumption cycle that meets a similar functional cycle.
  • With reference to FIG. 23, a control method in accordance with the present disclosure comprises communicating with an associated utility and receiving and processing the signal indicative of cost of supplied energy (S200), determining a state for an associated energy supplying utility, such as a cost of supplying energy from the associated utility (S202), the utility state being indicative of at least a peak demand period or an off-peak demand period (S203), operating the clothes dryer 110 in a normal mode during the off-peak demand period (S204), operating the clothes dryer 110 in an energy savings mode during the peak demand period (S206), selectively adjusting any number of one or more power consuming features/functions of the clothes dryer to reduce power consumption of the appliance in the energy savings mode (S208), and returning to the normal mode (S210) after the peak demand period is over (S212). The selective adjustment can include reducing power in the energy savings mode, for example, selecting one or more of the operational adjustments described above.
  • It is to be appreciated that a selectable override option can be provided on the user interface 116 providing a user the ability to select which of the one or more power consuming features/functions are adjusted by the controller in the energy savings mode. The user can override any adjustments, whether time related or function related, to any of the power consuming functions. The override option can be initiated at any time or can be initiated based on a certain $/kilowatt hour. For the method outlined in FIG. 23, if the utility state has an associated energy cost, the user can select a targeted energy cost (S214) and can base operation of the appliance on the selected targeted energy cost. If the current cost of energy is above the user selected cost (S216), then energy savings mode (S206) is initiated. If the current cost of energy is below the user selected cost, then the appliance continues to operate in normal mode (S204). The operational adjustments, particularly an energy savings operation can be accompanied by a display on the panel which communicates activation of the energy savings mode. The energy savings mode display can include a display of “ECO”, “Eco”, “EP”, “ER”, “CP”, “CPP”, “DR”, or “PP” on the appliance display panel 118 in cases where the display is limited to three characters. In cases with displays having additional characters available, messaging can be enhanced accordingly. Additionally, an audible signal can be provided to alert the user of the appliance operating in the energy savings mode.
  • The duration of time that the clothes dryer 110 operates in the energy savings mode may be determined by information in the energy signal 106. For example, the energy signal 106 may inform the clothes dryer 110 to operate in the energy savings mode for a few minutes or for one hour, at which time the appliance returns to normal operation. Alternatively, the energy signal 106 may be continuously transmitted by the utility provider, or other signal generating system, as long as it is determined that instantaneous load reduction is necessary. Once transmission of the signal 106 has ceased, the clothes dryer 110 returns to normal operating mode. In yet another embodiment, an energy signal may be transmitted to the clothes dryer to signal the clothes dryer to operate in the energy savings mode. A normal operation signal may then be later transmitted to the clothes dryer to signal the clothes dryer to return to the normal operating mode.
  • The operation of the clothes dryer 110 may vary as a function of a characteristic of the supplied energy, e.g., availability and/or price. Because some energy suppliers offer what is known as time-of-day pricing in their tariffs, price points could be tied directly to the tariff structure for the energy supplier. If real time pricing is offered by the energy supplier serving the site, this variance could be utilized to generate savings and reduce chain demand. Another load management program offered by energy supplier utilizes price tiers which the utility manages dynamically to reflect the total cost of energy delivery to its customers. These tiers provide the customer a relative indicator of the price of energy and are usually defined as being LOW (level 1), MEDIUM (level 2), HIGH (level 3), and CRITICAL (level 4). These tiers are shown in the chart of FIG. 24 to partially illustrate operation of the clothes dryer 110 in each pricing tier. In the illustrative embodiment the appliance control response to the LOW and MEDIUM tiers is the same namely the appliance remains in the normal operating mode. Likewise the response to the HIGH and CRITICAL tiers is the same, namely operating the appliance in the energy saving mode. However, it will be appreciated that the controller could be configured to implement a unique operating mode for each tier which provides a desired balance between compromised performance and cost savings/energy savings. If the utility offers more than two rate/cost conditions, different combinations of energy saving control steps may be programmed to provide satisfactory cost savings/performance tradeoff. The operational and functional adjustments described above, and others, can be initiated and/or dependent upon the tiers. For example, the clothes dryer's highest heat setting selection can be prevented or ‘blocked’ from activating if the pricing tier is at level 3 or 4. In one exemplary arrangement, the controller resets the drying temperature to a lower setting, i.e. using only the outer heating coil which essentially uses one half of the wattage when compared to full use of the heating coil. The display 118 can include, a communication, for example, an audible and/or visual alert of pricing tier 3 and 4. Some communication line with the utility can be established including, but not limited to, the communication arrangements hereinbefore described. In addition, the display 118 can provide the actual cost of running the clothes dryer 110 in the selected mode of operation, as well as, maintain a running display of the present cost of energy. If the utility offers more than two rate/cost conditions, different combinations of energy saving control steps may be programmed to provide satisfactory cost savings/performance tradeoff.
  • The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations.

Claims (28)

1. A clothes dryer comprising:
one or more power consuming features/functions including at least one of a cabinet for receiving articles to be dried, a fan for drawing air into the cabinet and circulating air, and a heater for heating air drawn into the cabinet; and,
a controller configured to receive and process a signal indicative of current state of an associated utility, the controller operating the clothes dryer in one of a plurality of operating modes, including at least a normal operating mode and an energy savings mode, in response to the received signal, the controller being configured to change the power consuming features/functions by adjusting one or more of an operation schedule, an operation delay, an operation adjustment, and a selective deactivation of at least one of the one or more power consuming features/functions to reduce power consumption of the clothes dryer in the energy savings mode.
2. The clothes dryer according to claim 1, wherein the operation delay is selected from the group consisting of a delay in start time, an extension of time to the delay start, stopping an existing cycle and delaying a restart, finishing an existing cycle and delaying a restart, and stopping after more than one cycle and delaying a restart.
3. The clothes dryer according to claim 2, wherein the stopping after more than one cycle occurs after at least one heat cycle duration.
4. The clothes dryer according to claim 1, wherein the operation schedule comprises a user interface that gives a user the ability to select which of the one or more power consuming clothes dryer functions are scheduled by the clothes dryer control system, that receives a zip code entry which corresponds to a time of use schedule of a utility company from which the clothes dryer control system can determine on-peak mode hours and off-peak mode hours; that uses a time versus day of the week schedule input method; that receives a rate signal directly from the utility advising of the current rate; and schedules activation of clothes dryer to off-peak mode hours.
5. The clothes dryer according to claim 4, wherein the operation adjustment adjusts the clothes dryer functions during off-peak mode hours.
6. The clothes dryer according to claim 5, wherein the operation adjustment is selected from the group consisting of a reduction in target temperature in one or more cycles, a disablement of one or more heaters in one or more cycles, reduction in power to one or more heaters, a switch from a selected cycle to a reduced power consumption cycle, a reduction in a duration of cycle time in one or more cycles, a disablement of one or more cycles, and a skipping of one or more cycles.
7. The clothes dryer according to claim 1, wherein the operation adjustment comprises a user interface that gives a user the ability to select which of the one or more power consuming clothes dryer functions are used by the clothes dryer control system, that receives a zip code entry which corresponds to a time of use schedule of a utility company from which the clothes dryer control system can determine on-peak mode hours and off-peak mode hours; that uses a time versus day of the week schedule input method; that receives a rate signal directly from the utility advising of the current rate; and adjusts the clothes dryer functions during on-peak mode hours.
8. The clothes dryer according to claim 7, wherein the operation adjustment is selected from the group consisting of a reduction in target temperature in one or more cycles, a disablement of one or more heaters in one or more cycles, reduction in power to one or more heaters, a switch from a selected cycle to a reduced power consumption cycle, a reduction in a duration of cycle time in one or more cycles, a disablement of one or more cycles, and a skipping of one or more cycles.
9. The clothes dryer according to claim 7, wherein the operation delay is selected from the group consisting of a delay in start time, an extension of time to the delay start, stopping an existing cycle and delaying a restart, finishing an existing cycle and delaying a restart, and stopping after more than one cycle and delaying a restart.
10. The clothes dryer according to claim 1, wherein the operation adjustment is selected from the group consisting of a reduction in target temperature in one or more cycles, a disablement of one or more heaters in one or more cycles, reduction in power to one or more heaters, a switch from a selected cycle to a reduced power consumption cycle, a reduction in a duration of cycle time in one or more cycles, a disablement of one or more cycles, and a skipping of one or more cycles
11. The clothes dryer according to claim 1, wherein the selective deactivation includes a user manual override function wherein the user can override any adjustments to one or more of the power consuming functions.
12. The clothes dryer according to claim 1, further comprising a display communicating activation of the energy savings mode.
13. The clothes dryer according to claim 12, wherein the energy savings mode display includes a message selected from the group consisting of ‘“ECO”, “Eco”, “EP”, “ER”, “CP”, “CPP”, “DR”, and “PP”.
14. A clothes dryer control method, comprising:
a) determining a state for an associated energy supplying utility, the utility state being indicative of at least a peak demand period or an off-peak demand period;
b) operating the clothes dryer in a normal mode during the off-peak demand period;
c) operating the clothes dryer in an energy savings mode during the peak demand period;
d) scheduling, delaying, adjusting and/or selectively deactivating any number of one or more power consuming features/functions of the clothes dryer to reduce power consumption of the clothes dryer in the energy savings mode; and,
e) returning to the normal mode after the peak demand period is over.
15. The clothes dryer control method according to claim 14, wherein the delaying is selected from the group consisting of a delay in start time, an extension of time to the delay start, stopping an existing cycle and delaying a restart, finishing an existing cycle and delaying a restart, and stopping after more than one cycle and delaying a restart.
16. The clothes dryer control method according to claim 15, wherein the adjusting of the functions of the clothes dryer is selected from the group consisting of a reduction in target temperature in one or more cycles, a disablement of one or more heaters in one or more cycles, reduction in power to one or more heaters in one or more cycles, a switch from a selected cycle to a reduced power consumption cycle, a reduction in a duration of cycle time in one or more cycles, a disablement of one or more cycles, and a skipping of one or more cycles.
17. The clothes dryer control method according to claim 14, wherein the scheduling comprises a user interface that gives a user the ability to select which of the one or more power consuming clothes dryer functions are scheduled by the clothes dryer control system, that receives a zip code entry which corresponds to a time of use schedule of a utility company from which the clothes dryer control system can determine on-peak mode hours and off-peak mode hours; that uses a time versus day of the week schedule input method; that receives a rate signal directly from the utility advising of the current rate; and schedules activation of clothes dryer to off-peak mode hours.
18. The clothes dryer control method according to claim 17, wherein the adjusting of the functions comprises a user interface that gives a user the ability to select which of the one or more power consuming clothes dryer functions are used by the clothes dryer control system and adjusts the clothes dryer functions during off-peak hours.
19. The clothes dryer control method according to claim 18, wherein the adjusting of the functions of the clothes dryer is selected from the group consisting of a reduction in target temperature in one or more cycles, a disablement of one or more heaters in one or more cycles, reduction in power to one or more heaters in one or more cycles, a switch from a selected cycle to a reduced power consumption cycle, a reduction in a duration of cycle time in one or more cycles, a disablement of one or more cycles, and a skipping of one or more cycles
20. The clothes dryer control method according to claim 14, wherein the scheduling comprises a user interface that gives a user the ability to select which of the one or more power consuming clothes dryer functions are scheduled by the clothes dryer control system, that receives a zip code entry which corresponds to a time of use schedule of a utility company from which the clothes dryer control system can determine on-peak mode hours and off-peak mode hours; that uses a time versus day of the week schedule input method; that receives a rate signal directly from the utility advising of the current rate; and adjusts the clothes dryer functions during on-peak mode hours.
21. The clothes dryer control method according to claim 20, wherein the adjusting of the functions of the clothes dryer is selected from the group consisting of a reduction in target temperature in one or more cycles, a disablement of one or more heaters in one or more cycles, reduction in power to one or more heaters in one or more cycles, a switch from a selected cycle to a reduced power consumption cycle, a reduction in a duration of cycle time in one or more cycles, a disablement of one or more cycles, and a skipping of one or more cycles.
22. The clothes dryer control method according to claim 21, wherein the delaying is selected from the group consisting of a delay in start time, an extension of time to the delay start, stopping an existing cycle and delaying a restart, finishing an existing cycle and delaying a restart, and stopping after more than one cycle and delaying a restart.
23. The clothes dryer control method according to claim 14, wherein the energy signal has an associated energy cost and wherein the controller is configured to override the operating mode of the clothes drying appliance based on a user selected targeted energy cost;
wherein if current energy cost exceeds the user selected cost, the controller operates the appliance in the energy savings mode; and,
wherein if the current energy cost is less than the user selected cost, the controller operates the appliance in the normal operating mode.
24. The clothes dryer control method according to claim 14, further comprising a display communicating activation of the energy savings mode.
25. The clothes dryer control method according to claim 24, wherein the energy savings mode display includes a message selected from the group consisting of ‘“ECO”, “Eco”, “EP”, “ER”, “CP”, “CPP”, “DR”, and “PP”.
26. The clothes dryer control method according to claim 14, further comprising:
determining energy cost associated with the utility state;
displaying current cost of operating the clothes dryer appliance;
displaying current cost of supplied energy; and,
alerting a user of a peak demand period.
27. A clothes dryer comprising:
a cabinet for receiving articles to be dried;
a fan for drawing air into the cabinet and circulating air through the cabinet;
a heater for heating air drawn into the cabinet; and,
a controller configured to control energization of the drive system, fan and heater to selectively implement a plurality of power consuming cycles, and to receive and process an energy signal, the signal having a first state indicative of a utility peak demand period and a second state indicative of a utility off-peak demand period, the controller operating the clothes dryer in one of an energy savings mode and a normal operating mode based on the received signal being in the first and second states respectively, the controller being configured to at least one of selectively delay or alter one or more of the power consuming cycles to reduce power consumption of the clothes dryer in the energy savings mode.
28. The clothes dryer of claim 27, wherein the energy signal has an associated energy cost and further including a display communicating current cost of energy and current cost of operating the clothes washer.
US12/559,684 2008-09-15 2009-09-15 Energy management of clothes dryer appliance Abandoned US20100174668A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/559,684 US20100174668A1 (en) 2008-09-15 2009-09-15 Energy management of clothes dryer appliance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9708208P 2008-09-15 2008-09-15
US12/559,684 US20100174668A1 (en) 2008-09-15 2009-09-15 Energy management of clothes dryer appliance

Publications (1)

Publication Number Publication Date
US20100174668A1 true US20100174668A1 (en) 2010-07-08

Family

ID=42005534

Family Applications (15)

Application Number Title Priority Date Filing Date
US12/559,528 Active 2031-11-02 US8704639B2 (en) 2008-09-15 2009-09-15 Management control of household appliances using RFID communication
US12/559,568 Abandoned US20100070434A1 (en) 2008-09-15 2009-09-15 Appliance with real time energy cost displayed based on usage
US12/559,636 Active 2031-03-20 US8355826B2 (en) 2008-09-15 2009-09-15 Demand side management module
US12/559,703 Active 2030-04-16 US8548635B2 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US12/559,581 Abandoned US20100094470A1 (en) 2008-09-15 2009-09-15 Demand side management of household appliances beyond electrical
US12/559,597 Abandoned US20100092625A1 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US12/559,577 Active 2030-09-26 US8617316B2 (en) 2008-09-15 2009-09-15 Energy management of dishwasher appliance
US12/559,550 Active 2031-04-07 US8730018B2 (en) 2008-09-15 2009-09-15 Management control of household appliances using continuous tone-coded DSM signalling
US12/559,684 Abandoned US20100174668A1 (en) 2008-09-15 2009-09-15 Energy management of clothes dryer appliance
US12/559,705 Active 2031-09-05 US8618452B2 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US12/559,561 Active 2031-12-13 US8474279B2 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US12/559,654 Active 2031-06-21 US8367984B2 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US12/559,751 Active 2032-07-25 US8627689B2 (en) 2008-09-15 2009-09-15 Energy management of clothes washer appliance
US12/559,539 Active 2033-03-27 US8793021B2 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US13/715,263 Active US8626347B2 (en) 2008-09-15 2012-12-14 Demand side management module

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US12/559,528 Active 2031-11-02 US8704639B2 (en) 2008-09-15 2009-09-15 Management control of household appliances using RFID communication
US12/559,568 Abandoned US20100070434A1 (en) 2008-09-15 2009-09-15 Appliance with real time energy cost displayed based on usage
US12/559,636 Active 2031-03-20 US8355826B2 (en) 2008-09-15 2009-09-15 Demand side management module
US12/559,703 Active 2030-04-16 US8548635B2 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US12/559,581 Abandoned US20100094470A1 (en) 2008-09-15 2009-09-15 Demand side management of household appliances beyond electrical
US12/559,597 Abandoned US20100092625A1 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US12/559,577 Active 2030-09-26 US8617316B2 (en) 2008-09-15 2009-09-15 Energy management of dishwasher appliance
US12/559,550 Active 2031-04-07 US8730018B2 (en) 2008-09-15 2009-09-15 Management control of household appliances using continuous tone-coded DSM signalling

Family Applications After (6)

Application Number Title Priority Date Filing Date
US12/559,705 Active 2031-09-05 US8618452B2 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US12/559,561 Active 2031-12-13 US8474279B2 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US12/559,654 Active 2031-06-21 US8367984B2 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US12/559,751 Active 2032-07-25 US8627689B2 (en) 2008-09-15 2009-09-15 Energy management of clothes washer appliance
US12/559,539 Active 2033-03-27 US8793021B2 (en) 2008-09-15 2009-09-15 Energy management of household appliances
US13/715,263 Active US8626347B2 (en) 2008-09-15 2012-12-14 Demand side management module

Country Status (6)

Country Link
US (15) US8704639B2 (en)
EP (1) EP2335125B1 (en)
KR (1) KR20110069010A (en)
AU (12) AU2009290577A1 (en)
CA (13) CA2723060C (en)
WO (13) WO2010031030A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080086394A1 (en) * 2006-06-29 2008-04-10 Carina Technology, Inc. System and method for controlling a utility meter
US20100192404A1 (en) * 2009-01-30 2010-08-05 Antonino Maltese Clothes dryer fire safeguard circuit with energized relay cutoffs
US20100217451A1 (en) * 2009-02-24 2010-08-26 Tetsuya Kouda Energy usage control system and method
US7941937B2 (en) * 2002-11-26 2011-05-17 Lg Electronics Inc. Laundry dryer control method
US20110190967A1 (en) * 2010-02-03 2011-08-04 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America Power line communication system and method
US20120101652A1 (en) * 2010-10-25 2012-04-26 Samsung Electronics Co., Ltd. Power management apparatus, power management system including the power management apparatus, and method for controlling the power management system
US20120101646A1 (en) * 2010-10-20 2012-04-26 Nydegger Neil K Interactive system for price-point control of power consumption
US20120158204A1 (en) * 2010-12-16 2012-06-21 Lg Electronics Inc. Power control apparatus and power control method
US20120197441A1 (en) * 2011-01-31 2012-08-02 Samsung Electronics Co., Ltd. Drying machine and method for controlling the same
US20120197451A1 (en) * 2011-01-27 2012-08-02 Samsung Electronics Co., Ltd. Electrical instrument, power management apparatus, power management system having the same, and method for controlling the same
US20120204044A1 (en) * 2009-10-20 2012-08-09 Lee Sangsu Method of controlling network system
US20120209445A1 (en) * 2009-10-26 2012-08-16 Yanghwan Kim Method of controlling network system
US20120215371A1 (en) * 2009-10-26 2012-08-23 Daegeun Seo Method of controlling network system
US20120310437A1 (en) * 2010-02-17 2012-12-06 Koonseok Lee Network system
US20120316695A1 (en) * 2011-06-07 2012-12-13 Fujitsu Limited System and Method for Managing Power Consumption
US20120312806A1 (en) * 2011-06-07 2012-12-13 General Electric Company Demand supply management override options
US20130181649A1 (en) * 2010-07-16 2013-07-18 Yongwoon Jang Component for a network system
US20130204444A1 (en) * 2010-06-26 2013-08-08 Junho AHN Network system
US20130268134A1 (en) * 2012-04-04 2013-10-10 Whirlpool Corporation Apparatus and method for controlling the energy usage of an appliance
US20140148925A1 (en) * 2010-06-25 2014-05-29 Lg Electronics Inc. Network system
US20140222168A1 (en) * 2010-06-22 2014-08-07 Junho AHN Method for controlling component for network system
US20140379153A1 (en) * 2011-10-15 2014-12-25 Philip Scott Lyren Home appliance that can operate in a time range
US20150219352A1 (en) * 2012-08-08 2015-08-06 Panasonic Intellectual Property Management Co., Ltd. Household electrical appliance and household electrical system
US20180151946A1 (en) * 2010-12-16 2018-05-31 Lennox Industries Inc. Priority-based energy management
US10126047B2 (en) 2013-08-26 2018-11-13 Toshiba Lifestyle Products & Services Corporation Power-consumption output device
US10443182B2 (en) 2016-12-29 2019-10-15 Whirlpool Corporation Customer selection of desired remaining moisture in clothing via user interface at machine or portable electronic device
US10551861B2 (en) * 2009-08-21 2020-02-04 Samsung Electronics Co., Ltd. Gateway for managing energy use at a site
US10872319B2 (en) * 2015-07-30 2020-12-22 Bsh Home Appliances Corporation Systems for providing service notifications to a product
US20220101155A1 (en) * 2020-09-25 2022-03-31 Motional Ad Llc Trajectory Generation Using Road Network Model
US11444464B1 (en) * 2016-03-25 2022-09-13 Goal Zero Llc Portable hybrid generator

Families Citing this family (450)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367685A1 (en) 2002-05-31 2003-12-03 Whirlpool Corporation Electronic system for power consumption management of appliances
US20040083112A1 (en) * 2002-10-25 2004-04-29 Horst Gale R. Method and apparatus for managing resources of utility providers
ES2538484T3 (en) * 2003-01-21 2015-06-22 Whirlpool Corporation A process to manage and reduce the power demand of household appliances and their components, and the system that uses said process
US8033479B2 (en) 2004-10-06 2011-10-11 Lawrence Kates Electronically-controlled register vent for zone heating and cooling
US20100299284A1 (en) * 2004-12-15 2010-11-25 Dario Gristina Methods and systems for providing utility usage and pricing information to a customer
US8121742B2 (en) 2007-11-08 2012-02-21 Flohr Daniel P Methods, circuits, and computer program products for generation following load management
WO2008118439A1 (en) * 2007-03-26 2008-10-02 Bpl Global , Ltd. System and method for integrated asset protection
US8750971B2 (en) 2007-05-24 2014-06-10 Bao Tran Wireless stroke monitoring
US8249731B2 (en) * 2007-05-24 2012-08-21 Alexander Bach Tran Smart air ventilation system
US8938311B2 (en) 2007-11-29 2015-01-20 Daniel P. Flohr Methods of remotely managing water heating units in a water heater
US20100179705A1 (en) * 2009-01-14 2010-07-15 Sequentric Energy Systems, Llc Methods, circuits, water heaters, and computer program products for remote management of separate heating elements in storage water heaters
EP2331737A1 (en) * 2008-07-07 2011-06-15 Arçelik Anonim Sirketi A household appliance
US8548638B2 (en) 2008-09-15 2013-10-01 General Electric Company Energy management system and method
US8843242B2 (en) 2008-09-15 2014-09-23 General Electric Company System and method for minimizing consumer impact during demand responses
US8541719B2 (en) 2008-09-15 2013-09-24 General Electric Company System for reduced peak power consumption by a cooking appliance
US9303878B2 (en) 2008-09-15 2016-04-05 General Electric Company Hybrid range and method of use thereof
US8803040B2 (en) 2008-09-15 2014-08-12 General Electric Company Load shedding for surface heating units on electromechanically controlled cooking appliances
US8704639B2 (en) 2008-09-15 2014-04-22 General Electric Company Management control of household appliances using RFID communication
US9588188B1 (en) 2008-10-17 2017-03-07 Steril-Aire, Inc. System and method of monitoring an electronic discharge device in an air purfication system
US20100213945A1 (en) * 2008-10-17 2010-08-26 Steril-Aire, Inc. System and Method of Monitoring an Electronic Discharge Device in an Air Purification System
DK200801782A (en) * 2008-12-15 2010-06-16 Danfoss Ventures As Power saving system and method
US20100161146A1 (en) * 2008-12-23 2010-06-24 International Business Machines Corporation Variable energy pricing in shortage conditions
JP4710982B2 (en) * 2009-01-26 2011-06-29 ダイキン工業株式会社 Demand control apparatus, demand control system, and demand control program
WO2010088663A1 (en) * 2009-02-02 2010-08-05 Corporate Systems Engineering, Llc Energy delivery control systems and methods
US8805597B2 (en) 2009-02-10 2014-08-12 Steffes Corporation Electrical appliance energy consumption control
US20100207728A1 (en) * 2009-02-18 2010-08-19 General Electric Corporation Energy management
US8755942B2 (en) * 2009-05-21 2014-06-17 Lennox Industries, Inc. Heating, ventilation and air conditioning system controller having a multifunctional indoor air quality sensor and method of controlling the system based on input from the sensor
EP2267386A3 (en) * 2009-06-22 2014-01-29 Samsung Electronics Co., Ltd. Refrigerator
US20110006887A1 (en) * 2009-07-13 2011-01-13 Kmc Controls, Inc. Programmable Communicating Thermostat And System
CN101989063B (en) * 2009-07-31 2012-07-18 漳州灿坤实业有限公司 Power saving method for electric heating temperature regulating device
US20110046805A1 (en) * 2009-08-18 2011-02-24 Honeywell International Inc. Context-aware smart home energy manager
US9209652B2 (en) 2009-08-21 2015-12-08 Allure Energy, Inc. Mobile device with scalable map interface for zone based energy management
US9109317B2 (en) 2009-08-21 2015-08-18 Whirlpool Corporation Controlled moisture removal in a laundry treating appliance
US9838255B2 (en) 2009-08-21 2017-12-05 Samsung Electronics Co., Ltd. Mobile demand response energy management system with proximity control
US8498749B2 (en) 2009-08-21 2013-07-30 Allure Energy, Inc. Method for zone based energy management system with scalable map interface
US8522579B2 (en) 2009-09-15 2013-09-03 General Electric Company Clothes washer demand response with dual wattage or auxiliary heater
US8943845B2 (en) 2009-09-15 2015-02-03 General Electric Company Window air conditioner demand supply management response
US8943857B2 (en) 2009-09-15 2015-02-03 General Electric Company Clothes washer demand response by duty cycling the heater and/or the mechanical action
US8869569B2 (en) 2009-09-15 2014-10-28 General Electric Company Clothes washer demand response with at least one additional spin cycle
KR20110043305A (en) * 2009-10-21 2011-04-27 엘지전자 주식회사 A network system supplying electric power and a control method thereof
US9367825B2 (en) 2009-10-23 2016-06-14 Viridity Energy, Inc. Facilitating revenue generation from wholesale electricity markets based on a self-tuning energy asset model
US8457802B1 (en) 2009-10-23 2013-06-04 Viridity Energy, Inc. System and method for energy management
US9159108B2 (en) 2009-10-23 2015-10-13 Viridity Energy, Inc. Facilitating revenue generation from wholesale electricity markets
US9159042B2 (en) 2009-10-23 2015-10-13 Viridity Energy, Inc. Facilitating revenue generation from data shifting by data centers
US8892264B2 (en) 2009-10-23 2014-11-18 Viridity Energy, Inc. Methods, apparatus and systems for managing energy assets
CN102598580A (en) * 2009-10-26 2012-07-18 Lg电子株式会社 Network system and method of controlling the same
US20120209444A1 (en) * 2009-10-26 2012-08-16 Daegeun Seo Device and method for controlling electric product
KR101629309B1 (en) * 2009-11-04 2016-06-10 엘지전자 주식회사 An Energy Mangement System, A Control method Thereof And An Electric appliance having An Energy Management Function
US8838282B1 (en) * 2009-11-16 2014-09-16 Comverge, Inc. Method and system for providing a central controller that can communicate across heterogenous networks for reaching various energy load control devices
EP2504807B1 (en) * 2009-11-26 2018-10-24 LG Electronics Inc. Network system for a component
US8421647B2 (en) * 2009-12-10 2013-04-16 General Electric Company Use of one LED to represent various utility rates and system status by varying frequency and/or duty cycle of LED
US8526935B2 (en) * 2009-12-15 2013-09-03 General Electric Company Appliance demand response antenna design for improved gain within the home appliance network
DE102009044905A1 (en) * 2009-12-15 2011-06-16 Webasto Ag Fuel operated heater and vehicle heating system
US9294298B2 (en) 2009-12-17 2016-03-22 Lg Electronics Inc. Network system and method of controlling network system
US8560140B2 (en) * 2009-12-21 2013-10-15 Bsh Home Appliances Corporation Home appliance and method for operating a home appliance
US8280556B2 (en) * 2009-12-22 2012-10-02 General Electric Company Energy management of HVAC system
US9244445B2 (en) 2009-12-22 2016-01-26 General Electric Company Temperature control based on energy price
US8369998B2 (en) * 2009-12-22 2013-02-05 General Electric Company Updating demand response settings
US8738190B2 (en) * 2010-01-08 2014-05-27 Rockwell Automation Technologies, Inc. Industrial control energy object
US9785155B2 (en) * 2010-01-19 2017-10-10 Millennial Net, Inc. Systems and methods utilizing a wireless mesh network
EP2354890B1 (en) * 2010-01-25 2014-10-15 Samsung Electronics Co., Ltd. Method and apparatus for controlling operations of devices based on information regarding power consumption of the devices
US8504668B2 (en) * 2010-02-01 2013-08-06 Gridglo Corp. System and method for managing delivery of public services
US8457803B2 (en) 2010-02-10 2013-06-04 Enernoc, Inc. Apparatus and method for demand coordination network
US8978195B2 (en) * 2010-02-11 2015-03-17 Lg Electronics Inc. Vacuum cleaner using an intelligent power network
US20110202293A1 (en) * 2010-02-15 2011-08-18 General Electric Company Diagnostics using sub-metering device
US20130018520A1 (en) * 2010-02-23 2013-01-17 Eungdal Kim Execution method of one function of a plurality of functions at a component
KR20110099542A (en) * 2010-03-02 2011-09-08 삼성전자주식회사 Demand response system
EP2369710A1 (en) 2010-03-26 2011-09-28 Alcatel Lucent A method of estimating an energy demand to be covered by a supplier, corresponding computer program product, and data storage device therefor
US20110241844A1 (en) * 2010-03-30 2011-10-06 Bsh Home Appliances Corporation Appliance including a radio frequency identification (rfid) device and method for two-way communication of dynamic data by the appliance via the rfid device
JP5520118B2 (en) * 2010-04-02 2014-06-11 パナソニック株式会社 Equipment control system
EP2375527B1 (en) * 2010-04-12 2018-09-19 Samsung Electronics Co., Ltd. Demand Response Method and Demand Response System
KR101801097B1 (en) * 2010-04-12 2017-11-28 삼성전자주식회사 Demand response method and demand response system
KR101708028B1 (en) * 2010-04-13 2017-02-20 삼성전자주식회사 Method and apparatus of displaying consumption power
GB201006510D0 (en) * 2010-04-20 2010-06-02 Senselogix Ltd Energy management system
KR101155347B1 (en) * 2010-04-21 2012-07-03 엘지전자 주식회사 Home Appliance and operating method
US8818535B2 (en) * 2010-04-22 2014-08-26 General Electric Company Updating thermostat weekly schedule over the air
KR20110119324A (en) * 2010-04-27 2011-11-02 엘지전자 주식회사 A smart control device
US9310792B2 (en) * 2010-05-03 2016-04-12 Battelle Memorial Institute Scheduling and modeling the operation of controllable and non-controllable electronic devices
DE102010028638A1 (en) * 2010-05-05 2011-11-10 BSH Bosch und Siemens Hausgeräte GmbH A method for supplying a household electrical appliance from a low voltage power supply
JPWO2011142131A1 (en) * 2010-05-11 2013-07-22 パナソニック株式会社 Electrical device control system, server, electrical device, and electrical device control method
US8606419B2 (en) 2010-05-17 2013-12-10 General Electric Company Submetering power consumption of appliances
GB201008368D0 (en) 2010-05-20 2010-07-07 Moore Jesse K Mobile meter
JP5716174B2 (en) * 2010-05-25 2015-05-13 パナソニックIpマネジメント株式会社 Resource management system
KR101927744B1 (en) * 2011-05-19 2018-12-12 엘지전자 주식회사 A network system
KR101668701B1 (en) * 2010-07-08 2016-10-24 엘지전자 주식회사 Method for controlling a device
KR101648224B1 (en) * 2010-06-22 2016-08-12 엘지전자 주식회사 Network system
US9417616B2 (en) 2010-06-22 2016-08-16 Lg Electronics Inc. Electric product for effectively managing energy sources
WO2011162552A2 (en) * 2010-06-22 2011-12-29 엘지전자 주식회사 Network system
EP2587728A4 (en) * 2010-06-22 2013-10-02 Lg Electronics Inc Component for network system and method for controlling same
KR101799105B1 (en) * 2011-01-06 2017-11-17 엘지전자 주식회사 Controlling method of a component for Network system
KR101619961B1 (en) * 2010-06-25 2016-05-12 엘지전자 주식회사 Method for controlling an electric appliance
WO2011162576A2 (en) * 2010-06-25 2011-12-29 엘지전자 주식회사 Network system
KR101660539B1 (en) * 2010-06-26 2016-09-27 엘지전자 주식회사 Network system and method of controlling the same
WO2011162581A2 (en) * 2010-06-26 2011-12-29 엘지전자 주식회사 Method for controlling component for network system
CN103155484A (en) * 2010-06-26 2013-06-12 Lg电子株式会社 Component for network system
WO2011162587A2 (en) * 2010-06-26 2011-12-29 엘지전자 주식회사 Network system
KR101660540B1 (en) * 2010-07-16 2016-09-27 엘지전자 주식회사 Network system
EP2587734B1 (en) * 2010-06-26 2015-04-08 LG Electronics Inc. Network system
US9979201B2 (en) * 2010-06-26 2018-05-22 Lg Electronics Inc. Component for a network system including a power saving function
EP2587731B1 (en) * 2010-06-26 2016-09-28 LG Electronics Inc. Method for controlling component for network system
US9494993B2 (en) 2010-06-26 2016-11-15 Lg Electronics Inc. Washing machine capable of communicating with a network system
US9692259B2 (en) * 2010-06-29 2017-06-27 International Business Machines Corporation Power management and priority charging assignments
US8170695B2 (en) * 2010-07-16 2012-05-01 General Electric Company Appliance incorporating load selectivity without employment of smart meters
KR101746221B1 (en) * 2010-07-16 2017-06-12 엘지전자 주식회사 Network system and washing device
US9291383B2 (en) * 2010-08-19 2016-03-22 Clemson University Demand response mullion sweat protection
JP5900966B2 (en) * 2010-08-24 2016-04-06 日本電気株式会社 State control system and method
WO2012026940A1 (en) * 2010-08-26 2012-03-01 Cooper Technologies Company Utility-driven energy-load management with adaptive fan control during load-control events
DE102010039834A1 (en) * 2010-08-26 2012-03-01 BSH Bosch und Siemens Hausgeräte GmbH household appliance
US20120054017A1 (en) * 2010-08-30 2012-03-01 Bindu Rama Rao Renewable energy consumption management using renewable energy consumption coupons
US20110125337A1 (en) * 2010-08-30 2011-05-26 Vyacheslav Zavadsky Household appliance adapted to work with time of use electricity rates
DE102010040032A1 (en) * 2010-08-31 2012-03-01 BSH Bosch und Siemens Hausgeräte GmbH A method of processing data of a home appliance, home appliance and system with a home appliance and at least one external unit
US20120050037A1 (en) * 2010-09-01 2012-03-01 General Electric Company Critical peak pricing audio alert
US8291718B2 (en) 2010-09-02 2012-10-23 General Electric Company DSM defrost during high demand
DE102010040297A1 (en) * 2010-09-06 2012-03-08 BSH Bosch und Siemens Hausgeräte GmbH Method and device for controlling a household appliance with intelligent electricity metering
US9104211B2 (en) 2010-11-19 2015-08-11 Google Inc. Temperature controller with model-based time to target calculation and display
US8510255B2 (en) 2010-09-14 2013-08-13 Nest Labs, Inc. Occupancy pattern detection, estimation and prediction
WO2012036799A1 (en) 2010-09-17 2012-03-22 Lg Electronics Inc. Network system
CN102401671A (en) * 2010-09-17 2012-04-04 北京航空航天大学 Wireless adaptive temperature sensor with functions of network testing and displaying
KR101788861B1 (en) * 2010-09-17 2017-10-20 엘지전자 주식회사 A network system
US8801862B2 (en) 2010-09-27 2014-08-12 General Electric Company Dishwasher auto hot start and DSM
US20120065791A1 (en) * 2010-09-28 2012-03-15 General Electric Company Home energy manager for providing energy projections
KR101736900B1 (en) * 2010-09-29 2017-05-17 삼성전자주식회사 Electrical instrument, power management system having electrical instrument, and method for controlling the same
US8831789B2 (en) * 2010-09-29 2014-09-09 Rockwell Automation Technologies, Inc. Goal-based load management
US8930037B2 (en) * 2010-10-01 2015-01-06 General Electric Company Energy manager with minimum use energy profile
EP2625465A2 (en) * 2010-10-08 2013-08-14 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance device
JP5602574B2 (en) * 2010-10-08 2014-10-08 パナソニック株式会社 Electric device control apparatus, electric device control method, and electric device
DE102010042769B4 (en) * 2010-10-21 2014-10-30 BSH Bosch und Siemens Hausgeräte GmbH Boiler
JP5685048B2 (en) * 2010-10-22 2015-03-18 パナソニックIpマネジメント株式会社 Home appliance, device control system and home appliance control method
JP2012094077A (en) * 2010-10-28 2012-05-17 Toshiba Corp Household energy management system
US9297577B2 (en) 2010-10-29 2016-03-29 Whirlpool Corporation Beverage dispensing system with machine vision
US9225766B2 (en) * 2010-10-29 2015-12-29 Sears Brands, L.L.C. Systems and methods for providing smart appliances
GB201018456D0 (en) * 2010-11-01 2010-12-15 Northern Design Electronics Ltd Improvments in metering
US8869546B2 (en) 2010-11-03 2014-10-28 General Electric Company Refrigeration demand response recovery
US8718798B2 (en) * 2010-11-09 2014-05-06 General Electric Company Gateway mirroring of metering data between zigbee networks
DE102010043757A1 (en) * 2010-11-11 2012-06-06 BSH Bosch und Siemens Hausgeräte GmbH Method for controlling an extractor hood
SG190293A1 (en) * 2010-11-15 2013-06-28 Ecotech Marine Llc Apparatus and methods for controlling a habitat environment
US8825215B2 (en) * 2010-11-17 2014-09-02 General Electric Company Power consumption compliance monitoring system and method
US9268344B2 (en) 2010-11-19 2016-02-23 Google Inc. Installation of thermostat powered by rechargeable battery
US9448567B2 (en) 2010-11-19 2016-09-20 Google Inc. Power management in single circuit HVAC systems and in multiple circuit HVAC systems
US9046898B2 (en) 2011-02-24 2015-06-02 Google Inc. Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat
US9092039B2 (en) 2010-11-19 2015-07-28 Google Inc. HVAC controller with user-friendly installation features with wire insertion detection
US8788103B2 (en) 2011-02-24 2014-07-22 Nest Labs, Inc. Power management in energy buffered building control unit
US8436279B2 (en) * 2010-11-19 2013-05-07 General Electric Company System for supplementation of appliance standby mode with internal power source
US9429962B2 (en) * 2010-11-19 2016-08-30 Google Inc. Auto-configuring time-of day for building control unit
US9459018B2 (en) 2010-11-19 2016-10-04 Google Inc. Systems and methods for energy-efficient control of an energy-consuming system
US20120047921A1 (en) 2010-11-22 2012-03-01 General Electric Company Dsm enabling of electro mechanically controlled refrigeration systems
US8185252B2 (en) * 2010-11-22 2012-05-22 General Electric Company DSM enabling of electro mechanically controlled refrigeration systems
US8504216B2 (en) 2010-11-22 2013-08-06 General Electric Company DSM enabling of electro mechanically controlled refrigeration systems
DE102010052699A1 (en) * 2010-11-26 2012-05-31 Liebherr-Hausgeräte Ochsenhausen GmbH Method for operating a refrigerator and / or freezer and refrigerator and / or freezer
US8423198B2 (en) 2010-11-30 2013-04-16 General Electric Company Energy response management—time of day method
GB2499164B (en) * 2010-12-02 2017-05-31 Tenrehte Tech Inc Appliance network connectivity apparatus
KR101527617B1 (en) * 2010-12-09 2015-06-09 엘에스산전 주식회사 Load control method
KR101456318B1 (en) * 2010-12-09 2014-11-03 엘에스산전 주식회사 Load control method for load contol apparatus
KR101749761B1 (en) * 2010-12-15 2017-06-22 한국전자통신연구원 Load control apparatus and method for advanced metering infrastructure network
US8234018B2 (en) 2010-12-16 2012-07-31 General Electric Company Energy management of appliance cycle longer than low rate period
DE102010063757A1 (en) * 2010-12-21 2012-06-21 BSH Bosch und Siemens Hausgeräte GmbH Method and device for operating a household appliance and household appliance
GB2486649A (en) * 2010-12-21 2012-06-27 Responsiveload Ltd Remotely controlled autonomous responsive load
CA2818696C (en) 2010-12-31 2020-07-28 Nest Labs, Inc. Flexible functionality partitioning within intelligent-thermostat-controlled hvac systems
EP2662651B1 (en) * 2011-01-06 2020-04-15 LG Electronics Inc. Refrigerator comprising a display
US20120176252A1 (en) * 2011-01-12 2012-07-12 Emerson Electric Co. Apparatus and Method for Determining Load of Energy Consuming Appliances Within a Premises
US8761944B2 (en) * 2011-01-12 2014-06-24 Emerson Electric Co. Apparatus and method for determining load of energy consuming appliances within a premises
KR20120088465A (en) * 2011-01-31 2012-08-08 삼성전자주식회사 Washing machine and method for controlling the same
KR101817355B1 (en) * 2011-01-31 2018-01-11 삼성전자주식회사 Method and apparatus for controlling electric power of smart appliance
US8172147B2 (en) * 2011-02-10 2012-05-08 Christian Smith Method and system for the estimating the energy consumption of commercially available electrical devices
US8944338B2 (en) 2011-02-24 2015-02-03 Google Inc. Thermostat with self-configuring connections to facilitate do-it-yourself installation
US8511577B2 (en) 2011-02-24 2013-08-20 Nest Labs, Inc. Thermostat with power stealing delay interval at transitions between power stealing states
JP2012186950A (en) * 2011-03-07 2012-09-27 Denso Corp Electric power supply system
US20120053741A1 (en) * 2011-03-08 2012-03-01 General Electric Company Manage whole home appliances/loads to a peak energy consumption
US8355805B2 (en) * 2011-03-08 2013-01-15 D. Light Design, Inc. Systems and methods for activation and deactivation of appliances
US8423194B2 (en) 2011-03-08 2013-04-16 General Electric Company Generator demand response behavior
US20120242207A1 (en) * 2011-03-22 2012-09-27 Martin Mershon Connection point for communication device on appliance
JP5259763B2 (en) * 2011-03-25 2013-08-07 株式会社東芝 Power management apparatus, system and method
US9128131B2 (en) 2011-04-07 2015-09-08 General Electric Company Device for measuring two phase power with single voltage input
CA2801938C (en) 2011-04-27 2017-08-29 Steffes Corporation Energy storage device control
US10621601B2 (en) 2011-04-29 2020-04-14 Schneider Electric USA, Inc. System and method for determining utility cost savings
JP5803248B2 (en) * 2011-05-06 2015-11-04 ソニー株式会社 Information processing apparatus, information processing method, and program
US20140067095A1 (en) * 2011-05-19 2014-03-06 BSH Bosch und Siemens Hausgeräte GmbH Cooking appliance
KR20120132117A (en) * 2011-05-27 2012-12-05 한국전자통신연구원 Energy control apparatus and method using property of electronic device
US20120310431A1 (en) * 2011-05-31 2012-12-06 General Electric Company System and method for selecting consumers for demand response
EP2535685A1 (en) * 2011-06-13 2012-12-19 General Electric Company Submetering power consumption of appliances
DE102011077660A1 (en) * 2011-06-16 2012-12-20 Meiko Maschinenbau Gmbh & Co. Kg Cleaning device with energy storage
US8942835B2 (en) 2011-06-16 2015-01-27 Bsh Home Appliances Corporation System and method of operating household appliances
US20120331156A1 (en) * 2011-06-21 2012-12-27 Colpitts Cameron Wireless control system, methods and apparatus
US20130008893A1 (en) * 2011-07-08 2013-01-10 General Electric Company Energy management in a microwave cooking appliance
US9151543B2 (en) 2011-07-15 2015-10-06 International Business Machines Corporation Data center coolant switch
US9157764B2 (en) 2011-07-27 2015-10-13 Honeywell International Inc. Devices, methods, and systems for occupancy detection
US9115908B2 (en) 2011-07-27 2015-08-25 Honeywell International Inc. Systems and methods for managing a programmable thermostat
KR20130014080A (en) * 2011-07-29 2013-02-07 삼성전자주식회사 Refrigerator and method for controlling the same
JP5316610B2 (en) * 2011-08-03 2013-10-16 ダイキン工業株式会社 Control device and control system for electrical equipment
EP2742590B1 (en) 2011-08-10 2018-02-14 Carrier Corporation Hvac motor load balancing
US8947245B2 (en) 2011-08-30 2015-02-03 General Electric Company Apparatus and method for transmitting operating cycle alerts
US10250520B2 (en) 2011-08-30 2019-04-02 Samsung Electronics Co., Ltd. Customer engagement platform and portal having multi-media capabilities
US9049078B2 (en) 2011-08-31 2015-06-02 Eneroc, Inc. NOC-oriented control of a demand coordination network
EP2566106A1 (en) 2011-09-02 2013-03-06 Nagravision S.A. System and method for controlling operating of consumption appliances
US11710971B2 (en) 2011-09-02 2023-07-25 Nagravision S.A. System and method for controlling operation of consumption appliances
US20130066482A1 (en) * 2011-09-13 2013-03-14 Samsung Electronics Co., Ltd. Apparatus and method for executing energy demand response process in an electrical power network
US9082294B2 (en) 2011-09-14 2015-07-14 Enernoc, Inc. Apparatus and method for receiving and transporting real time energy data
CN103814495B (en) * 2011-09-22 2016-07-06 松下知识产权经营株式会社 Power adjusting device and electric power method of adjustment
US8892266B2 (en) * 2011-09-30 2014-11-18 Infineon Technologies Austria Ag Active monitoring and controlling of home loads
KR20130037610A (en) 2011-10-06 2013-04-16 삼성전자주식회사 Apparatus and method for preventing collision between two commands in smart grid network
US9677809B1 (en) * 2011-10-10 2017-06-13 Portland General Electric Company Plural heat pump and thermal storage system for facilitating power shaping services on the electrical power grid at consumer premises
JP2014534405A (en) 2011-10-21 2014-12-18 ネスト・ラブズ・インコーポレイテッド User-friendly, networked learning thermostat and related systems and methods
US20130110413A1 (en) * 2011-10-27 2013-05-02 Brian Michael Schork Estimating gas usage in a gas burning device
US9209624B2 (en) * 2011-11-03 2015-12-08 General Electric Company System and method for overriding demand system management enabled functions
DE102011120254A1 (en) * 2011-11-07 2013-05-08 Liebherr-Hausgeräte Ochsenhausen GmbH Fridge and / or freezer
US20130111936A1 (en) * 2011-11-09 2013-05-09 Timothy John Olson Refrigerator With Individualized Locking Drawers
EP2594858A1 (en) * 2011-11-15 2013-05-22 Siemens Aktiengesellschaft Method and system for remote control of decentralised individual air conditioners without cross-linking interface
US8489481B2 (en) 2011-11-21 2013-07-16 M-Kopa Ipr, Llc Transaction processing and remote activation
JP5348229B2 (en) * 2011-12-01 2013-11-20 ダイキン工業株式会社 Intermediate device
US9206993B2 (en) * 2011-12-14 2015-12-08 Honeywell International Inc. HVAC controller with utility saver switch diagnostic feature
EP2604930B1 (en) * 2011-12-16 2020-08-12 Electrolux Professional S.p.A. Method of operating an cooking equipment
WO2013096902A1 (en) * 2011-12-22 2013-06-27 Optimized Thermal Systems, Llc Centralized multi-function heat exchange system
DE102011089981A1 (en) * 2011-12-27 2013-06-27 Ewe-Forschungszentrum Für Energietechnologie E. V. Method for controlling demand of electrical power in supply network for cloud computer, involves varying computing power of computers connected to power source for supply network by control system based on supply situation
KR20130083016A (en) * 2011-12-27 2013-07-22 한국전자통신연구원 Method and apparatus for calculating energy revenues of electric power devices based on real time pricing
CN102593821A (en) * 2011-12-31 2012-07-18 国网信息通信有限公司 Method and system for analyzing user load by using time information
KR20130080223A (en) * 2012-01-04 2013-07-12 삼성전자주식회사 Power management system and control method thereof
EP2612966B1 (en) * 2012-01-05 2017-08-23 Electrolux Home Products Corporation N.V. Appliance for drying laundry
US9691111B2 (en) * 2012-01-06 2017-06-27 Aclara Meters Llc Systems, methods, and apparatus for determining energy savings
JP5310880B2 (en) * 2012-01-11 2013-10-09 ダイキン工業株式会社 Energy control device and energy control system provided with energy control device
GB2498558B (en) * 2012-01-20 2013-12-25 South Downs Solar Ltd Electrical supply controller
US10069300B2 (en) * 2012-01-20 2018-09-04 Sunpower Corporation Methods and apparatus for dispatching electrical energy from distributed energy resources
US9140576B2 (en) * 2012-01-23 2015-09-22 General Electric Company Demand response without Time-of-Use metering
EP2807902B1 (en) * 2012-01-23 2020-08-19 CONNORS, Robert W. Compact microwave oven
US9118207B2 (en) * 2012-02-01 2015-08-25 Landis+Gyr Innovations, Inc. Methods and systems for requesting compliance with a requirement over a network
US10209751B2 (en) 2012-02-14 2019-02-19 Emerson Electric Co. Relay switch control and related methods
ITMI20120218A1 (en) * 2012-02-15 2013-08-16 Claber Spa ELECTRONIC CONTROL UNIT WITH ONE OR TWO WAYS CONTROLLED BY SOLENOID VALVES FOR PROGRAMMED LAUNDRY FACILITIES, GARDENS, PLANTERS AND ANALOGUE SPACES.
ITMI20120217A1 (en) * 2012-02-15 2013-08-16 Claber Spa ELECTRONIC CONTROL UNIT WITH ONE OR TWO WAYS CONTROLLED BY SOLENOID VALVES FOR PROGRAMMED LAUNDRY FACILITIES, GARDENS, PLANTERS AND ANALOGUE SPACES.
EP2827084A4 (en) * 2012-03-13 2015-09-02 Panasonic Corp Refrigerator and information system
US20130253724A1 (en) * 2012-03-22 2013-09-26 Joshua Blake Huff System and methods for use in operating energy consuming devices using load shedding override schedules
US9014868B2 (en) * 2012-03-29 2015-04-21 International Business Machines Corporation Power factor
US10571135B2 (en) 2012-04-09 2020-02-25 David Kreutzman Renewable energy hot water heater with heat pump
US20130266295A1 (en) * 2012-04-09 2013-10-10 David Kreutzman Hybrid Gas-Electric Hot Water Heater
US9234246B1 (en) * 2012-04-11 2016-01-12 Google Inc. Decentralized electrical load shedding
CA2774407C (en) 2012-04-17 2013-06-25 Renewable Environmental Energy Services Inc. Rate based power management device
US10305699B2 (en) 2012-04-18 2019-05-28 Tekpea, Inc. Device management system
US9411323B2 (en) 2012-04-18 2016-08-09 Tekpea, Inc. Home energy management system
US9746842B2 (en) 2012-05-01 2017-08-29 Duke Manufacturing Co. CAN bus commercial appliance system and method
US9513045B2 (en) 2012-05-03 2016-12-06 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
US20190317463A1 (en) 2012-05-19 2019-10-17 Growing Energy Labs, Inc. Adaptive energy storage operating system for multiple economic services
US9817376B1 (en) * 2012-05-19 2017-11-14 Growing Energy Labs, Inc. Adaptive energy storage operating system for multiple economic services
US9046291B2 (en) * 2012-06-04 2015-06-02 Electrolux Home Products, Inc. User-selectable operating modes for refrigeration appliances
EP2674822B1 (en) * 2012-06-15 2018-05-30 Emerson Electric Co. Connecting split HVAC systems to the internet and/or smart utility meters
CN103512144B (en) 2012-06-15 2016-12-21 艾默生电气公司 Split type heating ventilation and air conditioning system is connected to the Internet and/or intelligence instrument
US9010133B2 (en) 2012-06-20 2015-04-21 Whirlpool Corporation On-line energy consumption optimization adaptive to environmental condition
EP2680388A1 (en) 2012-06-28 2014-01-01 ABB Research Ltd. Energy management gateway and method thereof
US9123082B2 (en) * 2012-06-30 2015-09-01 At&T Intellectual Property I, L.P. Providing resource consumption recommendations
JP5658327B2 (en) * 2012-07-10 2015-01-21 シャープ株式会社 Electrical equipment
DE102012212321A1 (en) * 2012-07-13 2014-01-16 Robert Bosch Gmbh Device for determining and / or controlling an operating time of a consumer coupled to a power plant, in particular a photovoltaic power plant, and an energy store, and method for operating an energy store coupled to a power plant
JP2014023232A (en) * 2012-07-17 2014-02-03 Toshiba Corp Energy management device, energy management method, and energy management program
US9271333B2 (en) 2012-07-26 2016-02-23 General Electric Company Demand side management control system and methods
DE102012106829B4 (en) * 2012-07-27 2021-02-18 Deutsche Telekom Ag Method and device for the cost-efficient control of energy consumers
US20140028449A1 (en) * 2012-07-27 2014-01-30 Myine Electronics, Inc. System and method for using personal electronic device to wirelessly link remote diagnostic site to a home appliance for troubleshooting
US9124132B2 (en) * 2012-08-31 2015-09-01 Siemens Industry, Inc. Automated demand response gateway
US9207270B2 (en) 2012-08-31 2015-12-08 Elwha Llc Method and apparatus for measuring negawatt usage of an appliance
US20140067136A1 (en) 2012-08-31 2014-03-06 Lg Electronics Inc. Home appliance control method thereof
EP2893605B1 (en) * 2012-09-06 2019-04-24 Auckland UniServices Limited Local demand side power management for electric utility networks
KR101955875B1 (en) * 2012-09-07 2019-03-07 엘지전자 주식회사 Refrigerator
JP6078900B2 (en) * 2012-09-10 2017-02-15 パナソニックIpマネジメント株式会社 Equipment management device
US20140074309A1 (en) * 2012-09-10 2014-03-13 Rong-Ching Wu Power usage control system
CN103797844B (en) * 2012-09-13 2018-11-06 埃森哲环球服务有限公司 The mthods, systems and devices and visible computer readable medium of power grid peak load shifting
US8659302B1 (en) 2012-09-21 2014-02-25 Nest Labs, Inc. Monitoring and recoverable protection of thermostat switching circuitry
US8994540B2 (en) 2012-09-21 2015-03-31 Google Inc. Cover plate for a hazard detector having improved air flow and other characteristics
US9046414B2 (en) 2012-09-21 2015-06-02 Google Inc. Selectable lens button for a hazard detector and method therefor
US8708242B2 (en) 2012-09-21 2014-04-29 Nest Labs, Inc. Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity
US9007222B2 (en) 2012-09-21 2015-04-14 Google Inc. Detector unit and sensing chamber therefor
US9377791B2 (en) 2012-10-08 2016-06-28 International Business Machines Corporation Monitoring user position to determine a time for providing a specified state at a user premises
JP6288908B2 (en) * 2012-10-15 2018-03-07 三菱電機株式会社 Refrigeration system
US8897632B2 (en) 2012-10-17 2014-11-25 Daniel P. Flohr Methods of remotely managing water heating units in a water heater and related water heaters
US9642214B2 (en) * 2012-10-22 2017-05-02 Whirlpool Corporation Sensor system for refrigerator
US9188967B2 (en) 2012-10-23 2015-11-17 International Business Machines Corporation Enforcing fine-grained demand management in smart grids
US20140180761A1 (en) * 2012-10-26 2014-06-26 Peter Lawrence Yolles System and method for a customer engagement platform to increase residential water use efficiency
FR2998111B1 (en) * 2012-11-09 2014-11-28 Schneider Electric Ind Sas INTERMEDIATE ENERGY MANAGEMENT DEVICE AND ASSOCIATED ENERGY MANAGEMENT METHOD.
US8925335B2 (en) 2012-11-16 2015-01-06 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus and methods
CA2834642A1 (en) * 2012-11-26 2014-05-26 Stuart Lombard Hvac controller with integrated metering
US11006546B2 (en) 2012-11-28 2021-05-11 Eaton Intelligent Power Limited Equipment enclosure fan control systems and methods
US10076064B2 (en) 2012-11-28 2018-09-11 Eaton Intelligent Power Limited Housing having configurable airflow exhaust
GB2508380A (en) 2012-11-29 2014-06-04 Ibm Remote control of electrical appliances
US9141102B2 (en) * 2012-12-06 2015-09-22 General Electric Company Method and system for scheduling appliance operation during off-peak demand periods
KR20140075291A (en) * 2012-12-11 2014-06-19 동부대우전자 주식회사 Refrigerator
US9759450B2 (en) * 2012-12-12 2017-09-12 Haier Us Appliance Solutions, Inc. System and method for operating a water heater using an auxiliary power source
US9759472B2 (en) 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US9518773B2 (en) 2012-12-13 2016-12-13 Whirlpool Corporation Clear ice maker
US9476629B2 (en) 2012-12-13 2016-10-25 Whirlpool Corporation Clear ice maker and method for forming clear ice
US9500398B2 (en) 2012-12-13 2016-11-22 Whirlpool Corporation Twist harvest ice geometry
US9518770B2 (en) 2012-12-13 2016-12-13 Whirlpool Corporation Multi-sheet spherical ice making
US9599388B2 (en) 2012-12-13 2017-03-21 Whirlpool Corporation Clear ice maker with varied thermal conductivity
US9557087B2 (en) 2012-12-13 2017-01-31 Whirlpool Corporation Clear ice making apparatus having an oscillation frequency and angle
US9599385B2 (en) 2012-12-13 2017-03-21 Whirlpool Corporation Weirless ice tray
US9410723B2 (en) 2012-12-13 2016-08-09 Whirlpool Corporation Ice maker with rocking cold plate
US9310115B2 (en) 2012-12-13 2016-04-12 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US9470448B2 (en) 2012-12-13 2016-10-18 Whirlpool Corporation Apparatus to warm plastic side of mold
US9541912B1 (en) 2012-12-13 2017-01-10 Google Inc. Synchronization of appliances to a schedule of a user
US9303903B2 (en) 2012-12-13 2016-04-05 Whirlpool Corporation Cooling system for ice maker
US20140324240A1 (en) * 2012-12-14 2014-10-30 Alcatel-Lucent Usa Inc. Method And System For Disaggregating Thermostatically Controlled Appliance Energy Usage From Other Energy Usage
JP5945851B2 (en) * 2012-12-21 2016-07-05 パナソニックIpマネジメント株式会社 Energy management device, energy management system
US9716530B2 (en) 2013-01-07 2017-07-25 Samsung Electronics Co., Ltd. Home automation using near field communication
US9518350B2 (en) 2013-01-08 2016-12-13 Whirlpool Corporation Method, system, and device for adjusting operation of washing machine based on system modeling
US20140196478A1 (en) * 2013-01-14 2014-07-17 General Electric Company Method for operating a refrigerator appliance ice maker
US20140202549A1 (en) 2013-01-23 2014-07-24 Honeywell International Inc. Multi-tank water heater systems
US20140208951A1 (en) * 2013-01-28 2014-07-31 George M. Yui Bottled water dispensers with single-serve coffee brewing features
US20140214213A1 (en) * 2013-01-29 2014-07-31 Rocky Research Utility control of hvac with integral electrical storage unit
US20140228993A1 (en) * 2013-02-14 2014-08-14 Sony Europe Limited Apparatus, system and method for control of resource consumption and / or production
US9288102B2 (en) * 2013-02-18 2016-03-15 Microsoft Technology Licensing, Llc Controlling devices using cloud services and device-agnostic pipe mechanisms
US10063499B2 (en) 2013-03-07 2018-08-28 Samsung Electronics Co., Ltd. Non-cloud based communication platform for an environment control system
WO2014144933A1 (en) * 2013-03-15 2014-09-18 The Regents Of The University Of California System and method of use for energy efficient applications driven by multiple context clocks for personal energy footprint management
US9353966B2 (en) * 2013-03-15 2016-05-31 Iaire L.L.C. System for increasing operating efficiency of an HVAC system including air ionization
EP2796834A1 (en) * 2013-04-23 2014-10-29 Thomson Licensing Radio frequency identification system
WO2014177957A1 (en) 2013-05-02 2014-11-06 Danfoss A/S A method for controlling a vapour compression system connected to a smart grid
US9171276B2 (en) * 2013-05-06 2015-10-27 Viridity Energy, Inc. Facilitating revenue generation from wholesale electricity markets using an engineering-based model
US9098876B2 (en) 2013-05-06 2015-08-04 Viridity Energy, Inc. Facilitating revenue generation from wholesale electricity markets based on a self-tuning energy asset model
US9881250B2 (en) 2013-06-07 2018-01-30 Fisher Controls International Llc Methods and apparatus for RFID communications in a process control system
US9765469B2 (en) * 2013-07-10 2017-09-19 Whirlpool Corporation Laundry treating appliance with remotely controlled airflow and method of operating the same
US20130301253A1 (en) * 2013-07-16 2013-11-14 Paul Richard Drever Light tower and method
JP6115384B2 (en) * 2013-07-31 2017-04-19 株式会社富士通ゼネラル Air conditioner
GB2532654B (en) * 2013-08-05 2018-10-17 Agresearch Ltd A meat quality control process
KR102127385B1 (en) * 2013-08-14 2020-06-26 엘지전자 주식회사 Operating method for laundry machine
US9883257B2 (en) * 2013-08-14 2018-01-30 Atmel Corporation Smart grid appliance control
TR201720276T3 (en) * 2013-11-01 2019-05-21 Arcelik As REFRIGERATOR AND REFRIGERATOR CONTROL METHOD INCLUDING IMPROVED ENERGY MANAGEMENT MODE
US9898023B2 (en) * 2013-11-05 2018-02-20 Toshiba Tec Kabushiki Kaisha Power management method, power management server, and office machine for managing electric power
CN103744301B (en) * 2013-11-28 2016-10-05 国家电网公司 A kind of office power saving apparatus
US9554958B2 (en) * 2013-12-11 2017-01-31 General Electric Company System and method for detection of infant presence
US20150170084A1 (en) * 2013-12-12 2015-06-18 International Business Machines Corporation Augmenting business process execution using natural language processing
US20150316408A1 (en) * 2013-12-23 2015-11-05 William P. Kroll Portable, hand-held controller and indicator technology
EP3092750B1 (en) 2014-01-06 2020-07-15 Samsung Electronics Co., Ltd. System, device, and apparatus for coordinating environments using network devices and remote sensory information
US10135628B2 (en) 2014-01-06 2018-11-20 Samsung Electronics Co., Ltd. System, device, and apparatus for coordinating environments using network devices and remote sensory information
WO2015116408A2 (en) 2014-01-31 2015-08-06 Steffes Corporation Energy storage device power consumption management
KR102169953B1 (en) * 2014-02-07 2020-10-26 엘지전자 주식회사 Artificial Intelligence Refrigerator and Controlling Method for the same
US20140159487A1 (en) * 2014-02-12 2014-06-12 Jhen Ye International CO., LTD Energy-saving central control system and energy-saving lighting device comprised thereof
US9917447B2 (en) * 2014-03-13 2018-03-13 Enphase Energy, Inc. Systems and methods for synchronizing an appliance load to a local power generating capability
US10932103B1 (en) * 2014-03-21 2021-02-23 Amazon Technologies, Inc. Determining position of a user relative to a tote
US20150277463A1 (en) 2014-03-25 2015-10-01 Honeywell International Inc. System for communication, optimization and demand control for an appliance
US10670302B2 (en) 2014-03-25 2020-06-02 Ademco Inc. Pilot light control for an appliance
US9791839B2 (en) 2014-03-28 2017-10-17 Google Inc. User-relocatable self-learning environmental control device capable of adapting previous learnings to current location in controlled environment
US9568201B2 (en) 2014-03-28 2017-02-14 Google Inc. Environmental control system retrofittable with multiple types of boiler-based heating systems
US9581342B2 (en) 2014-03-28 2017-02-28 Google Inc. Mounting stand for multi-sensing environmental control device
US9609462B2 (en) 2014-03-28 2017-03-28 Google Inc. Facilitating radio frequency communications among environmental control system components
DE102014005240A1 (en) * 2014-04-10 2015-10-15 Joachim Leppig Method for operating a production and sales facility for retail goods
GB2525200A (en) * 2014-04-15 2015-10-21 Garry Richmond Stewart Improvements in or relating to power supply management
CN104534610B (en) * 2014-07-07 2017-07-07 陈好 A kind of central air-conditioning energy-saving system Based Intelligent Control operation method
US9353507B2 (en) * 2014-07-15 2016-05-31 General Electric Company Water line control system and method
US9811102B2 (en) * 2014-07-31 2017-11-07 Antonino Gulli' System and methods for monitoring and reducing the consumption of electricity with a network of smart sensors
US10693295B2 (en) * 2014-07-31 2020-06-23 Alternate Power Source, Inc. Residential electric load shifting energy storage system
US9887542B2 (en) * 2014-08-04 2018-02-06 Honeywell International Inc. Power broker module
US9316431B2 (en) * 2014-08-08 2016-04-19 Vishnu Sivadas Method of regulating a refrigeration device by storing thermal energy during non-peak hours for use during peak hours in order to shift refrigeration device operation to non-peak hours
EP3209953B1 (en) 2014-10-23 2020-03-25 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
WO2016071734A1 (en) * 2014-11-04 2016-05-12 Creative Power Co.Ltd Home electrical manager
US9684312B1 (en) 2014-11-22 2017-06-20 Orbit Irrigation Products, Inc. Resource consumption measurement system and method
US20160149716A1 (en) * 2014-11-24 2016-05-26 Rajiv Nelson Raj Remote Management And Control Of Utility Appliances
AU2014412384A1 (en) * 2014-11-25 2017-06-22 B Medical Systems S.à r.l. Cooling device
US10605474B2 (en) * 2015-07-30 2020-03-31 Encycle Corporation Smart thermostat orchestration
KR101621931B1 (en) * 2014-12-19 2016-05-17 한국인터넷진흥원 Power information transmitting and receiving system in the smart grid
US9612031B2 (en) 2015-01-07 2017-04-04 Google Inc. Thermostat switching circuitry robust against anomalous HVAC control line conditions
CN107576062A (en) * 2015-01-09 2018-01-12 蔡留凤 Automatic control drying air-source water heater and its method of work
US9829201B2 (en) * 2015-01-19 2017-11-28 Haier Us Appliance Solutions, Inc. Oven appliance and a method for operating an oven appliance
US9794522B2 (en) 2015-02-06 2017-10-17 Google Inc. Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout
US9679454B2 (en) 2015-02-06 2017-06-13 Google Inc. Systems, methods, and devices for managing coexistence of multiple transceiver devices using control signals
US9396633B1 (en) 2015-06-14 2016-07-19 Google Inc. Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout
US9799201B2 (en) 2015-03-05 2017-10-24 Honeywell International Inc. Water heater leak detection system
JP6079803B2 (en) * 2015-03-20 2017-02-15 ダイキン工業株式会社 Demand response control result presentation device
US9904269B2 (en) 2015-03-31 2018-02-27 Enernoc, Inc. Apparatus and method for demand coordination network control
US10303134B2 (en) * 2015-04-10 2019-05-28 Fisher Controls International Llc Methods and apparatus for multimode RFST communications in process control systems
US9920930B2 (en) 2015-04-17 2018-03-20 Honeywell International Inc. Thermopile assembly with heat sink
US20160313753A1 (en) * 2015-04-23 2016-10-27 Mingsheng Liu Sustainable Demand Control Device and Method
DE202015003152U1 (en) * 2015-04-29 2016-08-01 Johann Kasper remote control
WO2016182135A1 (en) * 2015-05-11 2016-11-17 Lg Electronics Inc. Refrigerator and control method thereof
US10749342B2 (en) 2015-06-10 2020-08-18 Breville Pty Limited Power sharing in an appliance
EP3664246A1 (en) * 2015-06-12 2020-06-10 Enphase Energy, Inc. Method and apparatus for control of intelligent loads in microgrids
US9543998B2 (en) 2015-06-14 2017-01-10 Google Inc. Systems, methods, and devices for managing coexistence of multiple transceiver devices using bypass circuitry
CN105223815B (en) * 2015-07-22 2017-10-31 广东天诚智能科技有限公司 Smart home wireless control system
CN104993488B (en) * 2015-07-24 2017-06-06 国家电网公司 The Regulation Control device of ULTC
CN106406157B (en) * 2015-07-30 2021-02-02 松下知识产权经营株式会社 Control method of information terminal and energy saving support system
JP6420912B2 (en) * 2015-08-12 2018-11-07 京セラ株式会社 Management server, management method and management system
US20170053360A1 (en) * 2015-08-18 2017-02-23 Michael R. Loeb System and method to dynamically allocate water savings amounts for remote water devices
FR3040769B1 (en) * 2015-09-08 2018-07-27 Eurokera WORK PLAN IN VITROCERAMIC
FR3040770B1 (en) * 2015-09-08 2018-07-27 Eurokera S.N.C. WORK PLAN IN VITROCERAMIC
US10154757B2 (en) * 2015-09-10 2018-12-18 Prince Castle LLC Modular food holding system
US9901213B2 (en) 2015-09-10 2018-02-27 Prince Castle LLC Modular food holding system
US10271689B2 (en) * 2015-09-10 2019-04-30 Prince Castle LLC Modular food holding system
US10455983B2 (en) * 2015-09-10 2019-10-29 Prince Castle LLC Modular food holding system
US9962038B2 (en) 2015-09-10 2018-05-08 Prince Castle LLC Modular food holding system
US20170083987A1 (en) * 2015-09-21 2017-03-23 Intel IP Corporation Real-time cost management for utilities
US10223902B2 (en) * 2015-09-25 2019-03-05 Robert Bosch Gmbh Methods and systems for operating a point device included in a system of point devices
JP6965747B2 (en) * 2015-10-01 2021-11-10 日本電気株式会社 Information processing equipment, information processing methods, and programs
CN105206176A (en) * 2015-10-30 2015-12-30 合肥华凌股份有限公司 Color-changing tag system and method as well as refrigerator adopting color-changing tag system
US10132510B2 (en) 2015-12-09 2018-11-20 Honeywell International Inc. System and approach for water heater comfort and efficiency improvement
US9703340B1 (en) 2015-12-18 2017-07-11 International Business Machines Corporation Intermittently redistributing energy from multiple power grids in a data center context
CN105425760A (en) * 2015-12-29 2016-03-23 上海移远通信技术股份有限公司 Wireless module-based unit power consumption management system and method
US10181165B2 (en) * 2016-02-12 2019-01-15 Fujitsu Limited Critical peak pricing demand response participant assessment
DE102016103978A1 (en) * 2016-03-04 2017-09-07 Deutsche Telekom Ag Emergency operation in a power grid
US10126724B2 (en) 2016-03-07 2018-11-13 Haier Us Appliance Solutions, Inc. Low power management system
CN105736742A (en) * 2016-04-27 2016-07-06 镇江威孚锅炉有限公司 Water outlet valve for boiler
JP6347800B2 (en) * 2016-04-28 2018-06-27 ダイキン工業株式会社 Heat pump system and power limiting system provided with the same
KR101700202B1 (en) * 2016-05-04 2017-01-26 엘지전자 주식회사 Control Method for Electric Device
US10901438B2 (en) * 2016-05-05 2021-01-26 Rachio, Inc. Flow sensing to improve system and device performance
US10613213B2 (en) 2016-05-13 2020-04-07 Google Llc Systems, methods, and devices for utilizing radar with smart devices
US10687184B2 (en) 2016-05-13 2020-06-16 Google Llc Systems, methods, and devices for utilizing radar-based touch interfaces
US11185191B2 (en) 2016-05-20 2021-11-30 Marmon Foodservice Technologies, Inc. Modular food holding system
US10969118B2 (en) 2016-05-26 2021-04-06 Electrolux Home Products, Inc. Steam cooking appliance
JP6701014B2 (en) * 2016-07-12 2020-05-27 三菱電機株式会社 Control device, control method and program
JP6699421B2 (en) * 2016-07-19 2020-05-27 住友電気工業株式会社 Control device, power equipment, power system, power equipment control method by control device, drivability display method by power equipment, and control program
US20180059701A1 (en) * 2016-09-01 2018-03-01 Honeywell International Inc. Providing demand response
CN107796167B (en) * 2016-09-05 2021-07-06 博西华电器(江苏)有限公司 Refrigerator and control device and control method thereof
KR101776525B1 (en) 2016-09-07 2017-09-07 엘지전자 주식회사 A network system
US20180076662A1 (en) * 2016-09-15 2018-03-15 Qualcomm Incorporated MANAGING INTERNET OF THINGS (IoT) DEVICES BASED ON ELECTRICAL POWER RELIABILITY
US10444717B2 (en) * 2016-09-16 2019-10-15 Whirlpool Corporation Coordination of control modes among appliances and utilities
US10837674B2 (en) * 2016-09-16 2020-11-17 Miclau-S.R.I. Inc. Safety power connecting system and method for electric water heaters
KR101736688B1 (en) 2016-09-29 2017-05-29 엘지전자 주식회사 Network system and control method the same
US10119726B2 (en) 2016-10-06 2018-11-06 Honeywell International Inc. Water heater status monitoring system
US10088192B2 (en) * 2016-10-06 2018-10-02 Google Llc Thermostat algorithms and architecture for efficient operation at low temperatures
WO2018081011A1 (en) * 2016-10-25 2018-05-03 Simple Energy, Inc. Energy product instant rebate engine
DE102016121404A1 (en) * 2016-11-09 2018-05-09 Miele & Cie. Kg System for controlling household appliances
KR102598167B1 (en) * 2016-12-23 2023-11-06 삼성전자주식회사 Washing apparutus and controlling method thereof
CN106813400A (en) * 2016-12-28 2017-06-09 佛山市恒学科技服务有限公司 A kind of Internet of Things remote monitoring control system for heat pump
CH713392A1 (en) * 2017-01-30 2018-07-31 Clean Air Entpr Ag Control electronics for several electrostatic filters.
CN106936673A (en) * 2017-03-13 2017-07-07 绍兴锋芒电子科技有限公司 A kind of intelligent domestic system
DE102017105870A1 (en) 2017-03-20 2018-09-20 Miele & Cie. Kg A method of executing a treatment program in a household appliance and household appliance
US10521977B2 (en) * 2017-03-27 2019-12-31 GM Global Technology Operations LLC Methods and systems for integrated vehicle sensor calibration and maintenance
US11274849B2 (en) * 2017-04-28 2022-03-15 Johnson Controls Tyco IP Holdings LLP Smart thermostat with model predictive control and demand response integration
TWI636407B (en) * 2017-06-08 2018-09-21 林淑貞 Housing agency's daily trip management device
US10452046B2 (en) * 2017-06-29 2019-10-22 Midea Group Co., Ltd. Cooking appliance control of residential heating, ventilation and/or air conditioning (HVAC) system
US10436470B2 (en) * 2017-07-18 2019-10-08 Abb Schweiz Ag Rule-based load shedding algorithm for building energy management
CN109407522B (en) * 2017-08-16 2021-10-29 佛山市顺德区美的电热电器制造有限公司 Control method and control system of heating platform assembly
CA3076486A1 (en) 2017-09-19 2019-03-28 A. O. Smith Corporation System and method for operating a grid controlled water heater
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
US10495346B2 (en) * 2017-11-13 2019-12-03 Avralis LLC WiFi and cloud enabled temperature control system
CN107894784B (en) * 2017-11-13 2021-03-09 山信软件股份有限公司 Dynamic water balance control method and device
CN108233361B (en) * 2017-12-18 2021-05-11 中国电建集团福建省电力勘测设计院有限公司 Garden microgrid-oriented hierarchical and partitioned cooperative control method for comprehensive energy supply system
EP3517842B1 (en) * 2018-01-24 2023-07-12 Electrolux Appliances Aktiebolag Method for operating a food preparation entity
JP2019146298A (en) * 2018-02-16 2019-08-29 富士ゼロックス株式会社 Information processing apparatus and program
EP3582365A1 (en) 2018-06-15 2019-12-18 Universita Degli Studi Di Cagliari Method and architecture for managing the energy demand of the multi-agent type for reducing the peaks of electrical consumption of a plurality of electrical appliances
US10992175B2 (en) 2018-06-15 2021-04-27 Google Llc Communication circuit for 2-wire protocols between HVAC systems and smart-home devices
US20190393699A1 (en) * 2018-06-26 2019-12-26 Ganesh Shastri Smart Utility Hub
CN109028601B (en) * 2018-07-17 2020-05-29 广东万家乐燃气具有限公司 Intelligent hot water heating method and device
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout
KR20200070900A (en) * 2018-12-10 2020-06-18 엘지전자 주식회사 laundry machine having an induction heater and the control method of the same
US11245570B2 (en) * 2019-03-01 2022-02-08 Itron, Inc. Remote data publishing
EP3739346B1 (en) 2019-05-14 2023-07-12 Landis+Gyr AG Load control module for a utility meter and meter arrangement comprising same
US10969143B2 (en) 2019-06-06 2021-04-06 Ademco Inc. Method for detecting a non-closing water heater main gas valve
TR202010237A2 (en) * 2020-06-29 2022-01-21 Arçeli̇k Anoni̇m Şi̇rketi̇ A REFRIGERATOR THAT DETECTS A UV LIGHT SOURCE DETECTION
US11692729B2 (en) * 2020-07-01 2023-07-04 Haier Us Appliance Solutions, Inc. Single-package air conditioner and methods of operation
CN111983303B (en) * 2020-07-09 2023-09-29 张子毅 Non-invasive electric quantity estimation method for washing machine based on duty cycle decomposition
US11697986B2 (en) * 2020-09-04 2023-07-11 Schlumberger Technology Corporation Power management at a wellsite
DE102021108026A1 (en) * 2021-03-30 2022-10-06 Grohe Ag Procedure for operating a smart water installation
US11933513B2 (en) * 2021-07-30 2024-03-19 Johnson Controls Tyco IP Holdings LLP Building control system with setpoint injection for online system identification
JP7397031B2 (en) 2021-08-25 2023-12-12 東芝ライフスタイル株式会社 refrigerator
CN113819641B (en) * 2021-09-18 2023-11-10 江苏麦赫物联网科技有限公司 Frosting and defrosting sensor, mounting structure and detection control method
US20230103316A1 (en) * 2021-10-05 2023-04-06 Haier Us Appliance Solutions, Inc. Domestic appliances activity monitoring systems and methods
US20230296277A1 (en) * 2022-03-21 2023-09-21 Lennox Industries Inc. Hvac system with improved operation of a variable speed compressor during a peak demand response
DE102022203456A1 (en) 2022-04-06 2023-10-12 Bob Patent Gmbh Grid-friendly load management for a heat pump
BE1030689B1 (en) * 2022-07-04 2024-01-30 Miele & Cie Method for controlling a flushing device, method for training a model, device and flushing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430430A (en) * 1992-07-03 1995-07-04 Euro Cp S.A.R.L. Method of managing electric power on the basis of tariff schedules, in a network within a dwelling or the like
US20030233201A1 (en) * 2002-06-13 2003-12-18 Horst Gale Richard Total home energy management
US20060095164A1 (en) * 2003-06-13 2006-05-04 Donnelly Matthew K Electrical appliance energy consumption control methods and electrical energy consumption systems
US20070203860A1 (en) * 2006-02-24 2007-08-30 Gridpoint, Inc. Energy budget manager
US20080272934A1 (en) * 2005-03-08 2008-11-06 Jackson Kit Wang Systems and Methods for Modifying Power Usage

Family Cites Families (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2545054A (en) 1946-02-25 1951-03-13 Wilbur E Stitz Refrigerator control
US3683343A (en) 1970-07-27 1972-08-08 Stephen Feldman Demand metering system for electric energy
US3720073A (en) 1971-07-02 1973-03-13 Gen Electric Air conditioner
US4048812A (en) 1976-02-17 1977-09-20 Thomason Harry E Solar-energy conserving
US4190756A (en) 1976-03-29 1980-02-26 Amana Refrigeration, Inc. Digitally programmed microwave cooker
US4167786A (en) * 1978-01-24 1979-09-11 General Electric Company Load control processor
US4216658A (en) 1978-05-11 1980-08-12 Baker Ralph N Iii Refrigeration means and methods
US4247786A (en) 1979-03-15 1981-01-27 Cyborex Laboratories, Inc. Energy management method using utility-generated signals
US4454509A (en) * 1980-02-27 1984-06-12 Regency Electronics, Inc. Apparatus for addressably controlling remote units
US4362970A (en) * 1980-09-08 1982-12-07 Grady John K Energy conserving electrical power control circuit
GB2105127B (en) 1981-08-06 1985-10-02 Micropore International Ltd Energy regulator for a household heating appliance
US4645908A (en) * 1984-07-27 1987-02-24 Uhr Corporation Residential heating, cooling and energy management system
US4718403A (en) * 1985-10-11 1988-01-12 Exemplar, Inc. Control for water heater system
US4659943A (en) * 1986-03-19 1987-04-21 Virant Robert L Peak demand limiter
US4637219A (en) 1986-04-23 1987-01-20 Enron Corp. Peak shaving system for air conditioning
US4731547A (en) * 1986-12-12 1988-03-15 Caterpillar Inc. Peak power shaving apparatus and method
US4841281A (en) * 1987-06-16 1989-06-20 Westinghouse Electric Corp. Apparatus for controlling a switching amplifier
US4998024A (en) 1988-04-01 1991-03-05 Vaughn Manufacturing Corporation Energy controlling system for time shifting electric power use
GB8815381D0 (en) * 1988-06-28 1988-08-03 New World Domestic Appliances Cooking ovens
US4903502A (en) * 1988-08-26 1990-02-27 Thermo King Corporation Rate of change temperature control for transport refrigeration systems
WO1990012261A1 (en) * 1989-04-13 1990-10-18 Voltage Regulated Systems Of South Carolina, Inc. A system for supplying hot water
US5040724A (en) 1989-12-11 1991-08-20 Eaton Corporation Electronic control system for an oven
US5289362A (en) * 1989-12-15 1994-02-22 Johnson Service Company Energy control system
US5479157A (en) 1990-01-19 1995-12-26 Prince Corporation Remote vehicle programming system
US5183998A (en) * 1990-05-30 1993-02-02 Mr. Coffee Inc. Apparatus and method for heating water for infusion and the like
US5137041A (en) 1990-09-21 1992-08-11 Glastender, Inc. Dishwasher with fill water control
DE4041193A1 (en) 1990-12-21 1992-07-02 Daimler Benz Ag CONTROL UNIT FOR AN AIR CONDITIONING OF A MOTOR VEHICLE
KR940002232B1 (en) 1991-04-01 1994-03-19 삼성전자 주식회사 Refrigerator
US5495551A (en) * 1991-07-12 1996-02-27 Electric Power Research Institute, Inc. Fast recovery circuit for heat pump water heater
US5220807A (en) * 1991-08-27 1993-06-22 Davis Energy Group, Inc. Combined refrigerator water heater
US5481140A (en) * 1992-03-10 1996-01-02 Mitsubishi Denki Kabushiki Kaisha Demand control apparatus and power distribution control system
US5761083A (en) * 1992-03-25 1998-06-02 Brown, Jr.; Robert J. Energy management and home automation system
US5408578A (en) * 1993-01-25 1995-04-18 Bolivar; Luis Tankless water heater assembly
US5488565A (en) * 1993-05-28 1996-01-30 Abb Power T&D Company Inc. Tamper detection methods and apparatus for load management terminals
US5479558A (en) * 1993-08-30 1995-12-26 White, Jr.; James A. Flow-through tankless water heater with flow switch and heater control system
US5415005A (en) 1993-12-09 1995-05-16 Long Island Lighting Company Defrost control device and method
US5462225A (en) * 1994-02-04 1995-10-31 Scientific-Atlanta, Inc. Apparatus and method for controlling distribution of electrical energy to a space conditioning load
US5635895A (en) 1994-02-14 1997-06-03 Murr; William C. Remote power cost display system
US5451843A (en) 1994-04-22 1995-09-19 Ruud Lighting, Inc. Apparatus and method for providing bilevel illumination
US5505377A (en) * 1994-05-18 1996-04-09 Micro Weiss Electronics, Inc. Automatic wall thermostat
US5574979A (en) 1994-06-03 1996-11-12 Norand Corporation Periodic interference avoidance in a wireless radio frequency communication system
US5504306A (en) 1994-07-25 1996-04-02 Chronomite Laboratories, Inc. Microprocessor controlled tankless water heater system
US5706191A (en) 1995-01-19 1998-01-06 Gas Research Institute Appliance interface apparatus and automated residence management system
US6018150A (en) * 1995-03-23 2000-01-25 Tridelta Industries, Inc. Method of heating a medium to a desired temperature
US6380866B1 (en) * 1995-06-08 2002-04-30 Lucent Technologies Inc. System and apparatus for controlling an appliance situated within a premises
US5581132A (en) 1995-08-04 1996-12-03 Chadwick; Jon D. Peak demand limiter and sequencer
AU7016396A (en) * 1995-10-10 1997-04-30 Donald Kuhnel Fluid heater with improved heating elements controller
US5816491A (en) 1996-03-15 1998-10-06 Arnold D. Berkeley Method and apparatus for conserving peak load fuel consumption and for measuring and recording fuel consumption
US5805856A (en) * 1996-05-03 1998-09-08 Jeffrey H. Hanson Supplemental heating system
US5874902A (en) * 1996-07-29 1999-02-23 International Business Machines Corporation Radio frequency identification transponder with electronic circuit enabling/disabling capability
US5956462A (en) * 1996-09-26 1999-09-21 Aquabeat Pty Ltd. Domestic electric energy control
US5886647A (en) 1996-12-20 1999-03-23 Badger; Berkley C. Apparatus and method for wireless, remote control of multiple devices
US5883802A (en) 1996-12-27 1999-03-16 Alliance Laundry Systems Llc Energy usage controller for an appliance
US5880536A (en) 1997-05-14 1999-03-09 Io Limited Partnership, Llp Customer side power management system including auxiliary fuel cell for reducing potential peak load upon utilities and providing electric power for auxiliary equipment
US6080971A (en) * 1997-05-22 2000-06-27 David Seitz Fluid heater with improved heating elements controller
US7092988B1 (en) 1997-05-27 2006-08-15 Jeffrey Bogatin Rapid cooking oven with broadband communication capability to increase ease of use
US5926776A (en) * 1997-06-04 1999-07-20 Gas Research Institute Smart thermostat having a transceiver interface
US6185483B1 (en) * 1998-01-27 2001-02-06 Johnson Controls, Inc. Real-time pricing controller of an energy storage medium
US6922558B2 (en) 1998-03-06 2005-07-26 Don Delp Integrated building control and information system with wireless networking
US5937942A (en) * 1998-03-17 1999-08-17 Hunter Fan Company Electronic programmable thermostat with temporary reset
JP3591300B2 (en) 1998-04-24 2004-11-17 株式会社日立製作所 Power supply control device
US6122603A (en) 1998-05-29 2000-09-19 Powerweb, Inc. Multi-utility energy control system with dashboard
US6144161A (en) * 1998-06-16 2000-11-07 Inform 2000 Microcomputer controlled photocell unit
US6026651A (en) 1998-07-21 2000-02-22 Heat Timer Corporation Remote controlled defrost sequencer
US6557756B1 (en) * 1998-09-04 2003-05-06 Ncr Corporation Communications, particularly in the domestic environment
IT1304664B1 (en) * 1998-09-30 2001-03-28 Merloni Elettrodomestici Spa SYSTEM FOR THE PROGRAMMING OF A HOUSEHOLD APPLIANCE ELECTRONIC CONTROL.
US6898942B2 (en) 1998-10-28 2005-05-31 Usa Technologies, Inc. Method and apparatus for conserving power consumed by a refrigerated appliance utilizing dispensing event data signals
US6118099A (en) * 1998-11-12 2000-09-12 Daimlerchrysler Corporation Controller for heating in reversible air conditioning and heat pump HVAC system for electric vehicles
US6179213B1 (en) 1999-02-09 2001-01-30 Energy Rest, Inc. Universal accessory for timing and cycling heat, ventilation and air conditioning energy consumption and distribution systems
JP2000244989A (en) * 1999-02-19 2000-09-08 Sharp Corp Two-way remote control system
JP2002539590A (en) 1999-03-11 2002-11-19 パワー・サーキット・イノベーションズ・インコーポレーテッド Networkable power controller
US6539213B1 (en) * 1999-06-14 2003-03-25 Time Domain Corporation System and method for impulse radio power control
US6246831B1 (en) * 1999-06-16 2001-06-12 David Seitz Fluid heating control system
US6229433B1 (en) * 1999-07-30 2001-05-08 X-10 Ltd. Appliance control
US20040024483A1 (en) * 1999-12-23 2004-02-05 Holcombe Bradford L. Controlling utility consumption
US6934862B2 (en) * 2000-01-07 2005-08-23 Robertshaw Controls Company Appliance retrofit monitoring device with a memory storing an electronic signature
US6489597B1 (en) 2000-01-10 2002-12-03 General Electric Company Range surface heating unit relay power switching control
US20010052433A1 (en) 2000-04-14 2001-12-20 Harris Donald B. Hybrid power supply module
US20010048361A1 (en) 2000-06-01 2001-12-06 Mays Wesley M. Method and apparatus for providing interchangeability of RFID devices
US6891478B2 (en) * 2000-06-09 2005-05-10 Jay Warren Gardner Methods and apparatus for controlling electric appliances during reduced power conditions
US7057140B2 (en) 2000-06-30 2006-06-06 Balboa Instruments, Inc. Water heater
US6872919B2 (en) 2000-08-29 2005-03-29 Maytag Corporation Multi-stage catalyst for a cooking appliance
US6778868B2 (en) 2000-09-12 2004-08-17 Kabushiki Kaisha Toshiba Remote control of laundry appliance
JP4480114B2 (en) 2000-12-13 2010-06-16 キヤノン株式会社 Image forming apparatus, apparatus for providing user interface, and display method
US6782706B2 (en) * 2000-12-22 2004-08-31 General Electric Company Refrigerator—electronics architecture
KR100653056B1 (en) * 2001-03-09 2006-12-01 삼성전자주식회사 microwave oven and method of controlling for power saving mode thereof
US6828695B1 (en) * 2001-04-09 2004-12-07 Rick L. Hansen System, apparatus and method for energy distribution monitoring and control and information transmission
US7039575B2 (en) 2001-04-12 2006-05-02 Ge Capital Services Structured Finance Group, Inc. Methods and systems for the evaluation of power generating facilities
US20020198629A1 (en) 2001-04-27 2002-12-26 Enerwise Global Technologies, Inc. Computerized utility cost estimation method and system
US20020175806A1 (en) 2001-05-25 2002-11-28 Marneweck Willem J. Electronic tag binary selection method
US7009493B2 (en) 2001-06-22 2006-03-07 Matsushita Electric Works, Ltd. Electronic device with paging for energy curtailment and code generation for manual verification of curtailment
US6879059B2 (en) 2001-07-05 2005-04-12 Sleva Associates, Inc. Interruptible power supply module
US7324876B2 (en) 2001-07-10 2008-01-29 Yingco Electronic Inc. System for remotely controlling energy distribution at local sites
US6694753B1 (en) * 2001-07-17 2004-02-24 Robertshaw Controls Company Defrost delay module
US20030036820A1 (en) 2001-08-16 2003-02-20 International Business Machines Corporation Method for optimizing energy consumption and cost
KR100409008B1 (en) 2001-08-24 2003-12-06 엘지전자 주식회사 Home Appliance Controlling Data Transferring System and Method for the Same
KR100381174B1 (en) 2001-09-03 2003-04-18 엘지전자 주식회사 Home Appliance Data Tranferring System
US6553595B1 (en) 2001-11-21 2003-04-29 Maytag Corporation Laundry appliance with energy saving feature
US20030171851A1 (en) 2002-03-08 2003-09-11 Peter J. Brickfield Automatic energy management and energy consumption reduction, especially in commercial and multi-building systems
US6631622B1 (en) * 2002-03-22 2003-10-14 Whirlpool Corporation Demand side management of freezer systems
US6704401B2 (en) 2002-03-22 2004-03-09 Hewlett-Packard Development Company, L.P. System of and method for configuring an automatic appliance
US7110832B2 (en) * 2002-03-22 2006-09-19 Whirlpool Corporation Energy management system for an appliance
CA2480551A1 (en) * 2002-03-28 2003-10-09 Robertshaw Controls Company Energy management system and method
US6817195B2 (en) 2002-03-29 2004-11-16 General Electric Company Reduced energy refrigerator defrost method and apparatus
AU2003220520A1 (en) 2002-04-01 2003-10-20 Battelle Memorial Institute Energy management system
US7049976B2 (en) 2002-04-15 2006-05-23 Hunt Power, L.P. User-installable power consumption monitoring system
US20040034484A1 (en) 2002-06-24 2004-02-19 Solomita Michael V. Demand-response energy management system
KR100445226B1 (en) 2002-07-24 2004-08-21 한국전력공사 System for remotely reading an meter using data structure grouped
US6943321B2 (en) 2002-08-30 2005-09-13 Wolf Appliance Company, Llc Convection oven with forced airflow circulation zones
US20060272830A1 (en) 2002-09-23 2006-12-07 R. Giovanni Fima Systems and methods for monitoring and controlling water consumption
US6806446B1 (en) * 2002-10-04 2004-10-19 Stephen D. Neale Power management controls for electric appliances
US20040088228A1 (en) * 2002-11-01 2004-05-06 Ward-Kraft, Inc. Automobile identification labeling and tracking system
US6975926B2 (en) * 2002-11-08 2005-12-13 Usa Technologies, Inc. Method and apparatus for power management control of a compressor-based appliance that reduces electrical power consumption of an appliance
US6961642B2 (en) 2002-11-15 2005-11-01 Whirlpool Corporation System and method for reducing an instantaneous load in an appliance
KR20040044707A (en) 2002-11-21 2004-05-31 삼성전자주식회사 Magnetron for microwave oven
US7082380B2 (en) 2002-11-22 2006-07-25 David Wiebe Refrigeration monitor
JP3840446B2 (en) 2002-11-26 2006-11-01 株式会社バッファロー Propagation environment detection technology
US7246395B2 (en) 2002-12-09 2007-07-24 General Electric Company Washer/dryer graphical user interface
US8567091B2 (en) 2002-12-24 2013-10-29 Lg Electronics Inc Automatic dryer control based on load information
ES2538484T3 (en) 2003-01-21 2015-06-22 Whirlpool Corporation A process to manage and reduce the power demand of household appliances and their components, and the system that uses said process
US6694927B1 (en) * 2003-02-18 2004-02-24 Honeywell International Inc. Cold water draw bypass valve and variable firing boiler control
US7041940B2 (en) 2003-03-28 2006-05-09 General Electric Company Power management systems and methods
EP1489719A3 (en) * 2003-06-20 2007-05-02 Matsushita Electric Industrial Co., Ltd. Energy management system, energy management method, and unit for providing information on energy-saving recommended equipment
US7446646B2 (en) 2003-06-30 2008-11-04 Nokia Corporation System and method for supporting multiple reader-tag configurations using multi-mode radio frequency tag
ITMI20031395A1 (en) 2003-07-09 2005-01-10 Whirlpool Co TEMPORALLY ADDRESSED AUTOMATIC DEFROST COOLER.
US6860431B2 (en) * 2003-07-10 2005-03-01 Tumkur S. Jayadev Strategic-response control system for regulating air conditioners for economic operation
US20070043478A1 (en) 2003-07-28 2007-02-22 Ehlers Gregory A System and method of controlling an HVAC system
WO2005015092A1 (en) 2003-08-05 2005-02-17 Matsushita Electric Industrial Co., Ltd. Fluid heating device and cleaning device using the same
US7083109B2 (en) 2003-08-18 2006-08-01 Honeywell International Inc. Thermostat having modulated and non-modulated provisions
US7043380B2 (en) 2003-09-16 2006-05-09 Rodenberg Iii Ernest Adolph Programmable electricity consumption monitoring system and method
WO2005040992A2 (en) 2003-10-24 2005-05-06 Square D Company Intelligent power management control system
WO2005041326A2 (en) 2003-10-27 2005-05-06 Ben M Enis Storing and using energy to reduce the end-user cost
US7155305B2 (en) 2003-11-04 2006-12-26 Universal Electronics Inc. System and methods for home appliance identification and control in a networked environment
US7274973B2 (en) 2003-12-08 2007-09-25 Invisible Service Technicians, Llc HVAC/R monitoring apparatus and method
US7113075B2 (en) 2003-12-23 2006-09-26 General Electric Company Power supply methods and apparatus
US7317404B2 (en) 2004-01-14 2008-01-08 Itron, Inc. Method and apparatus for collecting and displaying consumption data from a meter reading system
US7038176B2 (en) 2004-02-25 2006-05-02 Maytag Corporation Infinite temperature control for heating element of a cooking appliance
BRPI0402013A (en) 2004-05-04 2005-12-20 Multibras Eletrodomesticos Sa Refrigeration control system in combination refrigerators
JP4738329B2 (en) 2004-05-28 2011-08-03 パナソニック株式会社 Multi-mode control station, radio communication system, radio station, and radio communication control method
US7069090B2 (en) 2004-08-02 2006-06-27 E.G.O. North America, Inc. Systems and methods for providing variable output feedback to a user of a household appliance
US7379791B2 (en) 2004-08-03 2008-05-27 Uscl Corporation Integrated metrology systems and information and control apparatus for interaction with integrated metrology systems
US20060123807A1 (en) 2004-12-14 2006-06-15 Sullivan C B Apparatus and method for monitoring and displaying power usage
KR100628322B1 (en) 2004-12-17 2006-09-27 한국전자통신연구원 System for mediating convergence services of communication and broadcasting using non-communicative appliance
EP2208783A1 (en) * 2004-12-22 2010-07-21 Chugai Seiyaku Kabushiki Kaisha Method of producing an antibody using a cell in which the function of fucose transporter is inhibited
US20070005195A1 (en) 2005-01-10 2007-01-04 Nicholas Pasquale Distributed energy storage for reducing power demand
CN101151510B (en) 2005-01-25 2011-01-12 Nxp股份有限公司 A sensor circuit array, a control device for operating a sensor circuit array and a sensor system
KR100676905B1 (en) 2005-01-25 2007-02-01 (주) 엘지텔레콤 Mobile Phone having Union Remote Controller Function
US7349765B2 (en) 2005-02-18 2008-03-25 General Motors Corporation System and method for managing utility consumption
WO2006099318A1 (en) 2005-03-11 2006-09-21 Solomon Technologies, Inc. System and method for automating power generation and propulsion management
US7164851B2 (en) 2005-03-15 2007-01-16 Sturm William R Modular tankless water heater control circuitry and method of operation
US7468495B2 (en) 2005-05-06 2008-12-23 Viking Range Corporation Multi-mode convection oven with flow control baffles
US7266962B2 (en) 2005-05-17 2007-09-11 Whirlpool Corporation Battery supplemented refrigerator and method for using same
US7274975B2 (en) 2005-06-06 2007-09-25 Gridpoint, Inc. Optimized energy management system
US8027752B2 (en) 2005-06-09 2011-09-27 Whirlpool Corporation Network for changing resource consumption in an appliance
US8615332B2 (en) 2005-06-09 2013-12-24 Whirlpool Corporation Smart current attenuator for energy conservation in appliances
US7775454B2 (en) 2007-05-11 2010-08-17 Emerson Electric Co. Load management thermostat
US8312873B2 (en) 2005-08-01 2012-11-20 Western Industries, Inc. Low depth telescoping downdraft ventilator
US7280810B2 (en) 2005-08-03 2007-10-09 Kamilo Feher Multimode communication system
CN100463631C (en) * 2005-09-12 2009-02-25 徐佳义 Heating container
EP1955276A4 (en) 2005-11-14 2011-02-16 Sempa Power Systems Ltd Facility energy management system
DE102005055648A1 (en) 2005-11-22 2007-11-15 BSH Bosch und Siemens Hausgeräte GmbH Washing machine
US7685849B2 (en) 2005-11-28 2010-03-30 General Electric Company Methods and apparatus for monitoring a washing machine
US20070136217A1 (en) 2005-12-13 2007-06-14 Peter Johnson Method and apparatus for remotely monitoring electricity rates
US20070151311A1 (en) 2005-12-30 2007-07-05 Mcallister Karl D Fabric revitalizing system
US7781713B2 (en) 2006-02-08 2010-08-24 The Regents Of The University Of California Method for calibrating a lighting control system that facilitates daylight harvesting
US8014905B2 (en) 2006-03-09 2011-09-06 Ranco Incorporated Of Delaware System and method for demand limiting resistive load management
WO2008032225A2 (en) 2006-03-21 2008-03-20 Ranco Incorporated Of Delaware Refrigeration monitor unit
CA2644353A1 (en) 2006-03-24 2007-11-29 Rtp Controls Method and apparatus for controlling power consumption
US8103389B2 (en) 2006-05-18 2012-01-24 Gridpoint, Inc. Modular energy control system
US7751339B2 (en) 2006-05-19 2010-07-06 Cisco Technology, Inc. Method and apparatus for simply configuring a subscriber appliance for performing a service controlled by a separate service provider
US7420140B2 (en) 2006-06-30 2008-09-02 General Electric Company Method and apparatus for controlling the energization of a cooking appliance
US7368686B2 (en) 2006-09-06 2008-05-06 General Electric Company Apparatus and methods for operating an electric appliance
US7873441B2 (en) 2006-09-25 2011-01-18 Andreas Joanni Synesiou System for execution of a load operating plan for load control
CN101013979B (en) 2006-10-19 2010-05-12 杭州鸿雁电器有限公司 Digital family network system
US20080106147A1 (en) * 2006-11-08 2008-05-08 General Electric Company Apparatus and system for measurement and control of electrical power consumption
US7950086B2 (en) 2006-11-29 2011-05-31 Whirlpool Corporation Adaptive water level adjustment for an automatic washer
US20080144550A1 (en) 2006-12-15 2008-06-19 Motorola, Inc. Retransmission scheme for maintaining performance for wireless communications in the presence of periodic intermittent interference
US8855829B2 (en) * 2007-01-03 2014-10-07 Gridpoint, Inc. Method for controlling energy resources
US20080167931A1 (en) * 2007-01-04 2008-07-10 Richard Allen Gerstemeier Community resource management systems and methods
US20080177678A1 (en) * 2007-01-24 2008-07-24 Paul Di Martini Method of communicating between a utility and its customer locations
US8020777B2 (en) * 2007-01-29 2011-09-20 Lawrence Kates System and method for budgeted zone heating and cooling
WO2008100641A1 (en) 2007-02-16 2008-08-21 Genea Energy Partners, Inc. Building optimization system and lighting switch
US7653443B2 (en) 2007-03-01 2010-01-26 Daniel Flohr Methods, systems, circuits and computer program products for electrical service demand management
US8121742B2 (en) 2007-11-08 2012-02-21 Flohr Daniel P Methods, circuits, and computer program products for generation following load management
US7541941B2 (en) 2007-03-16 2009-06-02 Greenbox Technology Inc. System and method for monitoring and estimating energy resource consumption
US8094037B2 (en) 2007-03-30 2012-01-10 Sony Corporation Method and apparatus for identifying an electronic appliance
US7991513B2 (en) 2007-05-08 2011-08-02 Ecodog, Inc. Electric energy bill reduction in dynamic pricing environments
US8145918B2 (en) 2007-06-28 2012-03-27 International Business Machines Corporation Monitoring system processes energy consumption
US20090038369A1 (en) * 2007-08-06 2009-02-12 Petroleum Analyzer Company, Lp Microwave system generator and controller for gas and liquid chromatography and methods for making and using same
WO2009029777A1 (en) 2007-08-31 2009-03-05 Powerit Solutions, Llc Automated peak demand controller
US7800251B2 (en) 2007-10-18 2010-09-21 Hammerhead International, Llc System and method for load control
US20090146838A1 (en) 2007-12-09 2009-06-11 Daniel A. Katz Communication System for Data Acquisition from Remote Devices Applicable for AMR
US20090171862A1 (en) 2007-12-28 2009-07-02 Johnson Controls Technology Company Energy control system
KR101545488B1 (en) * 2008-03-21 2015-08-21 엘지전자 주식회사 Method for charging of refrigerant of air conditioner
US8866408B2 (en) 2008-04-14 2014-10-21 Digital Lumens Incorporated Methods, apparatus, and systems for automatic power adjustment based on energy demand information
US8754589B2 (en) 2008-04-14 2014-06-17 Digtial Lumens Incorporated Power management unit with temperature protection
US20090326728A1 (en) 2008-06-27 2009-12-31 Sharp Laboratories Of America, Inc. Systems and methods for controlling power usage on a device
US20100017242A1 (en) 2008-07-15 2010-01-21 International Business Machines Corporation Power standard compliance method and system
US8704639B2 (en) 2008-09-15 2014-04-22 General Electric Company Management control of household appliances using RFID communication
US8190302B2 (en) 2008-09-15 2012-05-29 General Electric Company Load shedding system for an electromechanically controlled oven
US8541719B2 (en) 2008-09-15 2013-09-24 General Electric Company System for reduced peak power consumption by a cooking appliance
US8803040B2 (en) 2008-09-15 2014-08-12 General Electric Company Load shedding for surface heating units on electromechanically controlled cooking appliances
US9303878B2 (en) 2008-09-15 2016-04-05 General Electric Company Hybrid range and method of use thereof
US8843242B2 (en) 2008-09-15 2014-09-23 General Electric Company System and method for minimizing consumer impact during demand responses
US8010240B2 (en) 2008-11-25 2011-08-30 International Business Machines Corporation Method and system for electricity consumption profile management for consumer devices
EP3089558A3 (en) 2008-11-26 2017-01-18 Wireless Environment, LLC Wireless lighting devices and applications
US20100262963A1 (en) 2009-04-09 2010-10-14 Gary Michael Wassermann Systems and methods for activating a network appliance
US8855830B2 (en) 2009-08-21 2014-10-07 Allure Energy, Inc. Energy management system and method
EP2312546A3 (en) 2009-10-14 2012-04-25 Whirlpool Corporation Modular system with appliance and cover having antenna
US20110106327A1 (en) 2009-11-05 2011-05-05 General Electric Company Energy optimization method
US8498527B2 (en) * 2009-11-23 2013-07-30 General Electric Company Water heating control and storage system
US8369998B2 (en) 2009-12-22 2013-02-05 General Electric Company Updating demand response settings
US8463448B2 (en) 2009-12-22 2013-06-11 General Electric Company Appliance having a user grace period for reinitiating operating when in demand response energy mode
US20120054123A1 (en) 2010-09-01 2012-03-01 General Electric Company Hot water heater with an integrated flow meter
US8185252B2 (en) 2010-11-22 2012-05-22 General Electric Company DSM enabling of electro mechanically controlled refrigeration systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430430A (en) * 1992-07-03 1995-07-04 Euro Cp S.A.R.L. Method of managing electric power on the basis of tariff schedules, in a network within a dwelling or the like
US20030233201A1 (en) * 2002-06-13 2003-12-18 Horst Gale Richard Total home energy management
US20060095164A1 (en) * 2003-06-13 2006-05-04 Donnelly Matthew K Electrical appliance energy consumption control methods and electrical energy consumption systems
US7420293B2 (en) * 2003-06-13 2008-09-02 Battelle Memorial Institute Electrical appliance energy consumption control methods and electrical energy consumption systems
US20080272934A1 (en) * 2005-03-08 2008-11-06 Jackson Kit Wang Systems and Methods for Modifying Power Usage
US20070203860A1 (en) * 2006-02-24 2007-08-30 Gridpoint, Inc. Energy budget manager

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7941937B2 (en) * 2002-11-26 2011-05-17 Lg Electronics Inc. Laundry dryer control method
US20080086394A1 (en) * 2006-06-29 2008-04-10 Carina Technology, Inc. System and method for controlling a utility meter
US8140414B2 (en) * 2006-06-29 2012-03-20 Carina Technology, Inc. System and method for controlling a utility meter
US20100192404A1 (en) * 2009-01-30 2010-08-05 Antonino Maltese Clothes dryer fire safeguard circuit with energized relay cutoffs
US20100217451A1 (en) * 2009-02-24 2010-08-26 Tetsuya Kouda Energy usage control system and method
US10551861B2 (en) * 2009-08-21 2020-02-04 Samsung Electronics Co., Ltd. Gateway for managing energy use at a site
US20120204044A1 (en) * 2009-10-20 2012-08-09 Lee Sangsu Method of controlling network system
US20120215371A1 (en) * 2009-10-26 2012-08-23 Daegeun Seo Method of controlling network system
US20120209445A1 (en) * 2009-10-26 2012-08-16 Yanghwan Kim Method of controlling network system
US20110190967A1 (en) * 2010-02-03 2011-08-04 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America Power line communication system and method
US8541903B2 (en) * 2010-02-03 2013-09-24 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America Power line communication system and method
US9386905B2 (en) * 2010-02-17 2016-07-12 Lg Electronics Inc. Network system
US20120310437A1 (en) * 2010-02-17 2012-12-06 Koonseok Lee Network system
US9513613B2 (en) * 2010-06-22 2016-12-06 Lg Electronics Inc. Method for controlling component for network system
US20140222168A1 (en) * 2010-06-22 2014-08-07 Junho AHN Method for controlling component for network system
US20140148925A1 (en) * 2010-06-25 2014-05-29 Lg Electronics Inc. Network system
US20130204444A1 (en) * 2010-06-26 2013-08-08 Junho AHN Network system
US9405280B2 (en) * 2010-06-26 2016-08-02 Lg Electronics Inc. Network system
US20130181649A1 (en) * 2010-07-16 2013-07-18 Yongwoon Jang Component for a network system
US9129241B2 (en) * 2010-07-16 2015-09-08 Lg Electronics Inc. Component for a network system
US20120101646A1 (en) * 2010-10-20 2012-04-26 Nydegger Neil K Interactive system for price-point control of power consumption
US8918224B2 (en) * 2010-10-25 2014-12-23 Samsung Electronics Co., Ltd. Power management apparatus, power management system including the power management apparatus, and method for controlling the power management system
US20120101652A1 (en) * 2010-10-25 2012-04-26 Samsung Electronics Co., Ltd. Power management apparatus, power management system including the power management apparatus, and method for controlling the power management system
US20180151946A1 (en) * 2010-12-16 2018-05-31 Lennox Industries Inc. Priority-based energy management
US10950924B2 (en) * 2010-12-16 2021-03-16 Lennox Industries Inc. Priority-based energy management
US20120158204A1 (en) * 2010-12-16 2012-06-21 Lg Electronics Inc. Power control apparatus and power control method
US9146604B2 (en) * 2010-12-16 2015-09-29 Lg Electronics Inc. Power control apparatus and power control method
KR101764612B1 (en) * 2011-01-27 2017-08-14 삼성전자주식회사 Electrical instrument, power management apparatus, power management system and method for controlling the same
US20120197451A1 (en) * 2011-01-27 2012-08-02 Samsung Electronics Co., Ltd. Electrical instrument, power management apparatus, power management system having the same, and method for controlling the same
US9236741B2 (en) * 2011-01-27 2016-01-12 Samsung Electronics Co., Ltd. Apparatus, system, and method for managing energy consumption
KR101745889B1 (en) * 2011-01-31 2017-06-20 삼성전자주식회사 Dryer and method for controlling the same
US20120197441A1 (en) * 2011-01-31 2012-08-02 Samsung Electronics Co., Ltd. Drying machine and method for controlling the same
US8868243B2 (en) * 2011-01-31 2014-10-21 Samsung Electronics Co., Ltd. Drying machine and method for controlling the same
US9300138B2 (en) * 2011-06-07 2016-03-29 Fujitsu Limited System and method for managing power consumption
US20120316695A1 (en) * 2011-06-07 2012-12-13 Fujitsu Limited System and Method for Managing Power Consumption
US20120312806A1 (en) * 2011-06-07 2012-12-13 General Electric Company Demand supply management override options
US20140379153A1 (en) * 2011-10-15 2014-12-25 Philip Scott Lyren Home appliance that can operate in a time range
US8954199B2 (en) * 2011-10-15 2015-02-10 Philip Scott Lyren Home appliance that can operate in a time range
US20130268134A1 (en) * 2012-04-04 2013-10-10 Whirlpool Corporation Apparatus and method for controlling the energy usage of an appliance
US9359712B2 (en) * 2012-04-04 2016-06-07 Whirlpool Corporation Apparatus and method for controlling the energy usage of an appliance
US10135245B2 (en) 2012-04-04 2018-11-20 Whirlpool Corporation Apparatus and method for controlling the energy usage of an appliance
US20150219352A1 (en) * 2012-08-08 2015-08-06 Panasonic Intellectual Property Management Co., Ltd. Household electrical appliance and household electrical system
US9791162B2 (en) * 2012-08-08 2017-10-17 Panasonic Intellectual Property Management Co., Ltd. Household electrical appliance and household electrical system
US10551080B2 (en) 2012-08-08 2020-02-04 Panasonic Intellectual Property Management Co., Ltd. Household electrical appliance and household electrical system
EP2884194A4 (en) * 2012-08-08 2015-12-02 Panasonic Ip Man Co Ltd Household electrical appliance and household electrical system
US10126047B2 (en) 2013-08-26 2018-11-13 Toshiba Lifestyle Products & Services Corporation Power-consumption output device
US10872319B2 (en) * 2015-07-30 2020-12-22 Bsh Home Appliances Corporation Systems for providing service notifications to a product
US11444464B1 (en) * 2016-03-25 2022-09-13 Goal Zero Llc Portable hybrid generator
US10907298B2 (en) 2016-12-29 2021-02-02 Whirlpool Corporation Customer selection of desired remaining moisture in clothing via user interface at machine or portable electronic device
US10443182B2 (en) 2016-12-29 2019-10-15 Whirlpool Corporation Customer selection of desired remaining moisture in clothing via user interface at machine or portable electronic device
US11359330B2 (en) 2016-12-29 2022-06-14 Whirlpool Corporation Customer selection of desired remaining moisture in clothing via user interface at machine or portable electronic device
US20220101155A1 (en) * 2020-09-25 2022-03-31 Motional Ad Llc Trajectory Generation Using Road Network Model

Also Published As

Publication number Publication date
AU2009291569A1 (en) 2012-07-26
CA2722870C (en) 2017-03-07
AU2009290590A1 (en) 2012-07-26
US20100070099A1 (en) 2010-03-18
AU2009290588B2 (en) 2015-11-26
EP2335125A4 (en) 2018-01-03
US20100089909A1 (en) 2010-04-15
CA2723154C (en) 2016-09-13
WO2010031027A3 (en) 2010-05-06
US20100094470A1 (en) 2010-04-15
CA2723097A1 (en) 2010-03-18
AU2009290589B2 (en) 2015-03-26
US20100121499A1 (en) 2010-05-13
US8548635B2 (en) 2013-10-01
US20100175719A1 (en) 2010-07-15
AU2009290588A1 (en) 2010-03-18
AU2009291571A1 (en) 2012-07-26
AU2009291572B2 (en) 2015-09-24
US8618452B2 (en) 2013-12-31
AU2009290586B2 (en) 2014-04-03
WO2010031024A1 (en) 2010-03-18
AU2009291569B2 (en) 2015-10-22
AU2009290586A1 (en) 2012-07-19
AU2009290589A1 (en) 2012-07-26
CA2723150C (en) 2015-11-17
AU2009290585B2 (en) 2016-01-07
CA2722870A1 (en) 2010-03-18
US8367984B2 (en) 2013-02-05
CA2723073A1 (en) 2010-03-18
CA2723055A1 (en) 2010-03-18
EP2335125A2 (en) 2011-06-22
WO2010031029A1 (en) 2010-03-18
US20100101254A1 (en) 2010-04-29
US8626347B2 (en) 2014-01-07
CA2722999C (en) 2017-03-07
US20100092625A1 (en) 2010-04-15
US20130103222A1 (en) 2013-04-25
AU2009290585A1 (en) 2012-07-26
WO2010031025A1 (en) 2010-03-18
CA2723060A1 (en) 2010-03-18
WO2010031014A1 (en) 2010-03-18
CA2723152C (en) 2017-07-25
KR20110069010A (en) 2011-06-22
WO2010031018A1 (en) 2010-03-18
AU2009290591A1 (en) 2012-07-26
CA2723067A1 (en) 2010-03-18
CA2723083A1 (en) 2010-03-18
EP2335125B1 (en) 2020-05-13
WO2010031015A1 (en) 2010-03-18
CA2723152A1 (en) 2010-03-18
AU2009291572A1 (en) 2012-07-26
AU2009290578A1 (en) 2012-07-19
AU2009291571B2 (en) 2015-08-20
US20100090806A1 (en) 2010-04-15
US8627689B2 (en) 2014-01-14
WO2010031017A1 (en) 2010-03-18
US8704639B2 (en) 2014-04-22
CA2723060C (en) 2018-08-07
US8730018B2 (en) 2014-05-20
CA2723073C (en) 2018-02-06
CA2723051C (en) 2016-12-06
CA2723158A1 (en) 2010-03-18
CA2723154A1 (en) 2010-03-18
CA2723150A1 (en) 2010-03-18
US20100187219A1 (en) 2010-07-29
US8355826B2 (en) 2013-01-15
CA2723067C (en) 2015-02-10
AU2009290591B2 (en) 2015-10-01
WO2010031028A1 (en) 2010-03-18
WO2010031013A1 (en) 2010-03-18
US8474279B2 (en) 2013-07-02
US8617316B2 (en) 2013-12-31
AU2009290579A1 (en) 2012-07-26
US20100070434A1 (en) 2010-03-18
CA2723097C (en) 2017-10-10
CA2723051A1 (en) 2010-03-18
CA2722999A1 (en) 2010-03-18
WO2010031027A2 (en) 2010-03-18
WO2010031019A1 (en) 2010-03-18
AU2009290577A1 (en) 2012-07-19
AU2009290578B2 (en) 2015-11-12
WO2010031012A1 (en) 2010-03-18
US8793021B2 (en) 2014-07-29
US20100146712A1 (en) 2010-06-17
US20100070091A1 (en) 2010-03-18
WO2010031030A1 (en) 2010-03-18
AU2009291570A1 (en) 2012-07-26
AU2009291570B2 (en) 2016-07-28
US20100179708A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
US8617316B2 (en) Energy management of dishwasher appliance

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BESORE, JOHN K.;DRAKE, JEFF DONALD;FRANKS, DARIN;AND OTHERS;REEL/FRAME:023231/0072

Effective date: 20090910

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION