US20110030482A1 - Apparatus and Method for Measuring Water Quality in a Water Meter Data Collection System - Google Patents

Apparatus and Method for Measuring Water Quality in a Water Meter Data Collection System Download PDF

Info

Publication number
US20110030482A1
US20110030482A1 US12/891,963 US89196310A US2011030482A1 US 20110030482 A1 US20110030482 A1 US 20110030482A1 US 89196310 A US89196310 A US 89196310A US 2011030482 A1 US2011030482 A1 US 2011030482A1
Authority
US
United States
Prior art keywords
water
meter
water quality
meter data
status signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/891,963
Inventor
Richard A. Meeusen
Gregory M. Gomez
Donald J. Faber
Dennis J. Webb
Daniel d. Zandron
Mark Lazar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/891,963 priority Critical patent/US20110030482A1/en
Publication of US20110030482A1 publication Critical patent/US20110030482A1/en
Priority to US15/013,558 priority patent/US20160153951A1/en
Priority to US16/587,472 priority patent/US20200033313A1/en
Priority to US17/587,409 priority patent/US20220260545A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing

Definitions

  • the field of the invention is meter data collection systems for metering consumption of water supplied to single-unit residential, multi-unit residential, commercial and industrial customers from a municipal or district utility provider.
  • the invention also relates to instruments for sensing water quality in such a meter data collection system.
  • the invention provides a method for the sensing of various biological and chemical contaminants and environmental parameters at the end points of a water utility metering network.
  • At least one sensor is associated with each end point (meter) in a water metering system to measure a different biological, chemical or environmental parameter within the specified region of the water distribution network. While more than one sensor might be utilized at a particular water meter, it is an objective of the invention to reduce the high cost of the various sensors that are necessary by distributing them among the end points in a zone of a water distribution system. Sensors can also be located at zone meters to monitor a specific parameter for a zone of the water distribution system, with different sensors being distributed to different zones.
  • a water utility distribution system can be protected from a wide array of potential biological and chemical contaminants and environmental parameters and can be economically deployed using the present invention, as there is only one parameter sensed per meter. It also provides early automatic detection of potential contamination events.
  • the invention can be used to provide a first indication of contamination from which further field or lab testing can be performed to confirm anomalous conditions.
  • FIG. 1 is schematic diagram of a water utility distribution and water metering system incorporating the present invention.
  • FIG. 2 is a block diagram of an apparatus at a single metering end point.
  • FIG. 1 illustrates a subsection of a water utility distribution system, where “A” designates individual single-unit end points within the distribution system. “B” designates individual commercial, industrial or multi-unit end points within the distribution system. “C” designates zone water meters that measure the quantity or quality of water distributed to one zone or section of the distribution system. “D” designates the utility main office computer system. “E” designates the end point meters that measure the quantity or quality of water distributed to a single Residential, commercial or industrial end point. “F” designates a water storage facility (tanks or vaults) for water used within the distribution system. And, “G” designates a wireless network such as SMS, GPRS, GSM, private radio network, PSTN, or wireless Internet.
  • individual sensors monitor respective parameters and are co-located with a meter, as illustrated by C or E in the illustration.
  • Meters illustrated as the element E, typically measure quantity of water consumed at a single end point within the distribution system.
  • These meters can also be assembled with, or connected to, one or more sensors to measure the quality of water supplied to the single end point. It is often advantageous to take readings from several places in the distribution system due to different concentrations of substances due to dilution.
  • zone meters illustrated as the element C, typically measure quantity of water consumed with a specific zone, or section, of the distribution system. When fitted with one or more sensors, these meters could provide water quality readings for an entire zone, or section.
  • a set of sensors for measuring or detecting respective chemical, biological and environmental parameters can be arranged to measure different parameters within a zone of the distribution system, thus providing coverage for many parameters.
  • Consumption and water quality data can be transmitted wirelessly to a collection station, such as a utility computer, D, over a wireless network, G, such as SMS, GPRS, GSM, private radio network, PSTN, or wireless Internet.
  • G such as SMS, GPRS, GSM, private radio network, PSTN, or wireless Internet.
  • Water quality reporting to the EPA could then be completed on a real-time basis, instead of on a quarterly or semi-annually.
  • FIG. 2 illustrates the components of a single distribution end point apparatus E at customer locations, A and B.
  • a meter 10 is connected in a pipe supplying water to the customer equipment at sites A, B.
  • the parameter sensor can be a sensor S 1 mounted in or on the pipeline near the meter 10 , or it can be sensor S 2 integrated into the meter 10 .
  • the meter 10 communicates with a communication interface circuit 12 through a transducer 11 which may convert movements of a magnet to electrical signals. It also feasible to use electronic meters which produce an electrical signal directly to the circuit 12 .
  • the sensors S 1 and S 2 also communicate electrical sensing signals to the communication interface circuit 12 .
  • This circuit 12 converts device input signals to data and in this embodiment, modulates a carrier wave with information signals representing the data, so that a radio signal can be transmitted over a wireless network through an antenna 13 . It is also possible for the communication interface circuit to transmit data signals through a communication port 13 to an external modulator/antenna unit. In either situation, radio signals encoded with metering data, including sensor data, are transmitted back to the collection station D including the utility computer seen in FIG. 1 .
  • the electronic circuitry 12 within the end point (meter) can in some embodiments poll the microsensor S 2 that resides within the meter 10 in the flow stream.
  • a tamper flag is set and an alarm transaction is transmitted to the collections station D via the communication interface circuit 12 .
  • utility personnel Upon notification of the anomalous condition, utility personnel will know which potential contaminant has been detected because of the identification number of the end point that transmits the alarm transaction. The water utility can then go to the source for further field testing to validate the contamination event.
  • sensors fitted into meters can be for first level detection of various bio-toxins, chemical toxins or other hazardous substances. This first level detection could greatly improve the response time and public notification of hazardous events.
  • Microelectronic sensors S 1 and S 2 are located at an end point (meter) within the flow stream of a water utility distribution system.
  • a parameter sensor detects the presence or threshold of a single respective biological, chemical or environmental parameter (e.g. TOC or dissolved oxygen).
  • Each sensor with a zone detects a different respective biological, chemical or environmental parameter. As the sensor is located in the supply flow stream, the system does not have a waste stream.
  • the flow meter 10 is located at the lowest point in the distribution system where the utility would like to measure the quantity of water. Also, the meter 10 may be the lowest point within the distribution system where the utility desires to measure the quality of water. In this case, the parameter sensors S 1 , S 2 would be located near or inside the meter 10 . In cases where water quantity and quality are important at that location the meter would measure the amount of water to pass through it and house the parameter sensor to measure the quality of the water passing through it.
  • transducer 11 for converting mechanical movement of the flow meter to electrical signals
  • memory for store readings
  • transmitter circuitry 12 , 13 for transmitting electrical signals to a remote receiver.
  • This transmitter can be part of a transceiver for receiving RF signals as well as transmitting RF signals.
  • the circuitry 11 , 12 and 13 would also read and act on water quality data and alarm conditions from the parameter sensor and transmit these to a remote receiver.
  • Many AMR systems are known for transmitting utility consumption data from the distribution end points (E) to a central location (D) for processing. Such systems can be modified to communicate and process water quality data as well.
  • the zone meters (C) can also be provided with this type of electronic signaling equipment. The water quality data from various locations within the system can then be collected at the collection station D for further processing to determine water quality on a system basis.

Abstract

A system for monitoring water quality in a water meter data collection system having a plurality of metering end points (E) for measuring consumption includes a plurality of chemical biological and environmental sensors (S1, S2) disposed in a distribution system near or within the distribution end points (A, B), with the sensors (S1, S2) generating electrical signals through a network (G) that can be processed and communicated with the water meter data to a collection station (D) from the metering end points (E).

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This is a continuation of U.S. patent application Ser. No. 12/439,258, filed Feb. 27, 2009, now copending, which was based on PCT Appl. No. PCT/U.S.08/070,052, filed Jul. 15, 2008. The benefit of priority based on U.S. Prov. Pat. App. No. 60/959,833, filed Jul. 17, 2007, is claimed herein.
  • TECHNICAL FIELD
  • The field of the invention is meter data collection systems for metering consumption of water supplied to single-unit residential, multi-unit residential, commercial and industrial customers from a municipal or district utility provider. The invention also relates to instruments for sensing water quality in such a meter data collection system.
  • BACKGROUND OF THE INVENTION
  • Current methods and practices for sensing water quality through biological and chemical parameters, as well as environmental parameters such as residual chlorine, TOC (total organic carbon), turbidity, pressure, and others, involve systems with expensive sensors located at special stations within a water system. Many systems currently available on the market to test for environmental parameters require a waste stream, sometimes toxic, as a byproduct of the testing. This methodology cannot be used at the end points of a utility distribution network. Also, the systems provided today provide sensing of several environmental parameters at one time. These systems are installed at source water, underground tanks and elevated tank locations. It has not been economically or environmentally practical to install these systems at end point locations in a water metering system.
  • However, end point locations in a water metering system have been identified as a potential source point for the introduction of contaminants into a water distribution network. If this were to occur, it is probable the current technologies and equipment would not detect the contamination event.
  • SUMMARY OF THE INVENTION
  • The invention provides a method for the sensing of various biological and chemical contaminants and environmental parameters at the end points of a water utility metering network.
  • In the system of the invention, at least one sensor is associated with each end point (meter) in a water metering system to measure a different biological, chemical or environmental parameter within the specified region of the water distribution network. While more than one sensor might be utilized at a particular water meter, it is an objective of the invention to reduce the high cost of the various sensors that are necessary by distributing them among the end points in a zone of a water distribution system. Sensors can also be located at zone meters to monitor a specific parameter for a zone of the water distribution system, with different sensors being distributed to different zones.
  • A water utility distribution system can be protected from a wide array of potential biological and chemical contaminants and environmental parameters and can be economically deployed using the present invention, as there is only one parameter sensed per meter. It also provides early automatic detection of potential contamination events.
  • The invention can be used to provide a first indication of contamination from which further field or lab testing can be performed to confirm anomalous conditions.
  • Other objects and advantages of the invention, besides those discussed above, will be apparent to those of ordinary skill in the art from the description of the preferred embodiments which follows. In the description, reference is made to the accompanying drawings, which form a part hereof, and which illustrate examples of the invention.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is schematic diagram of a water utility distribution and water metering system incorporating the present invention; and
  • FIG. 2 is a block diagram of an apparatus at a single metering end point.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates a subsection of a water utility distribution system, where “A” designates individual single-unit end points within the distribution system. “B” designates individual commercial, industrial or multi-unit end points within the distribution system. “C” designates zone water meters that measure the quantity or quality of water distributed to one zone or section of the distribution system. “D” designates the utility main office computer system. “E” designates the end point meters that measure the quantity or quality of water distributed to a single Residential, commercial or industrial end point. “F” designates a water storage facility (tanks or vaults) for water used within the distribution system. And, “G” designates a wireless network such as SMS, GPRS, GSM, private radio network, PSTN, or wireless Internet.
  • Currently, water utilities must report several parameters to a governmental environmental protection agency on a quarterly basis. These parameters include chlorine residual, TOC (total organic carbon), dissolved oxygen, etc. To accomplish this reporting, utilities typically take water samples from various locations throughout the distribution system and send these samples to a laboratory for analysis of parametric testing. An alternate method is the installation of expensive computer controlled systems that automatically take samples from each location and provide parametric analysis.
  • While these systems provide more data on a more frequent basis, they have a waste stream that requires maintenance and special handling. As they are expensive, most utilities are limited to installations at source water locations or storage facilities, and the equipment is not distributed throughout the distribution system.
  • In the present invention, individual sensors monitor respective parameters and are co-located with a meter, as illustrated by C or E in the illustration. Meters, illustrated as the element E, typically measure quantity of water consumed at a single end point within the distribution system. These meters can also be assembled with, or connected to, one or more sensors to measure the quality of water supplied to the single end point. It is often advantageous to take readings from several places in the distribution system due to different concentrations of substances due to dilution. Likewise, zone meters, illustrated as the element C, typically measure quantity of water consumed with a specific zone, or section, of the distribution system. When fitted with one or more sensors, these meters could provide water quality readings for an entire zone, or section. Also, a set of sensors for measuring or detecting respective chemical, biological and environmental parameters can be arranged to measure different parameters within a zone of the distribution system, thus providing coverage for many parameters.
  • Consumption and water quality data can be transmitted wirelessly to a collection station, such as a utility computer, D, over a wireless network, G, such as SMS, GPRS, GSM, private radio network, PSTN, or wireless Internet. Water quality reporting to the EPA could then be completed on a real-time basis, instead of on a quarterly or semi-annually.
  • FIG. 2 illustrates the components of a single distribution end point apparatus E at customer locations, A and B. As shown there, a meter 10 is connected in a pipe supplying water to the customer equipment at sites A, B. The parameter sensor can be a sensor S1 mounted in or on the pipeline near the meter 10, or it can be sensor S2 integrated into the meter 10. The meter 10 communicates with a communication interface circuit 12 through a transducer 11 which may convert movements of a magnet to electrical signals. It also feasible to use electronic meters which produce an electrical signal directly to the circuit 12. The sensors S1 and S2 also communicate electrical sensing signals to the communication interface circuit 12. This circuit 12 converts device input signals to data and in this embodiment, modulates a carrier wave with information signals representing the data, so that a radio signal can be transmitted over a wireless network through an antenna 13. It is also possible for the communication interface circuit to transmit data signals through a communication port 13 to an external modulator/antenna unit. In either situation, radio signals encoded with metering data, including sensor data, are transmitted back to the collection station D including the utility computer seen in FIG. 1.
  • The electronic circuitry 12 within the end point (meter) can in some embodiments poll the microsensor S2 that resides within the meter 10 in the flow stream. When the electronic circuitry detects an anomalous condition from the sensor, a tamper flag is set and an alarm transaction is transmitted to the collections station D via the communication interface circuit 12. Upon notification of the anomalous condition, utility personnel will know which potential contaminant has been detected because of the identification number of the end point that transmits the alarm transaction. The water utility can then go to the source for further field testing to validate the contamination event.
  • Other sensors fitted into meters can be for first level detection of various bio-toxins, chemical toxins or other hazardous substances. This first level detection could greatly improve the response time and public notification of hazardous events.
  • The system components at each meter C and E can be further described as follows.
  • Microelectronic sensors S1 and S2 are located at an end point (meter) within the flow stream of a water utility distribution system. A parameter sensor detects the presence or threshold of a single respective biological, chemical or environmental parameter (e.g. TOC or dissolved oxygen). Each sensor with a zone detects a different respective biological, chemical or environmental parameter. As the sensor is located in the supply flow stream, the system does not have a waste stream.
  • The flow meter 10 is located at the lowest point in the distribution system where the utility would like to measure the quantity of water. Also, the meter 10 may be the lowest point within the distribution system where the utility desires to measure the quality of water. In this case, the parameter sensors S1, S2 would be located near or inside the meter 10. In cases where water quantity and quality are important at that location the meter would measure the amount of water to pass through it and house the parameter sensor to measure the quality of the water passing through it.
  • There is typically a transducer 11 for converting mechanical movement of the flow meter to electrical signals, a memory to store readings and transmitter circuitry 12, 13 for transmitting electrical signals to a remote receiver. This transmitter can be part of a transceiver for receiving RF signals as well as transmitting RF signals. In cases where water quality is sensed at the meter 10, the circuitry 11, 12 and 13 would also read and act on water quality data and alarm conditions from the parameter sensor and transmit these to a remote receiver. Many AMR systems are known for transmitting utility consumption data from the distribution end points (E) to a central location (D) for processing. Such systems can be modified to communicate and process water quality data as well. The zone meters (C) can also be provided with this type of electronic signaling equipment. The water quality data from various locations within the system can then be collected at the collection station D for further processing to determine water quality on a system basis.
  • This has been a description of the preferred embodiments, but it will be apparent to those of ordinary skill in the art that modifications may be made in the details of these specific embodiments. Such modifications are intended to be encompassed by the broadest aspects of the present invention unless excluded by the following claims.

Claims (20)

1.-20. (canceled)
21. Apparatus for sensing water quality at a water metering system end point, the apparatus comprising:
a fluid flow metering element and a device that converts metering signals or movements of a flow metering element to electrical signals representing units of consumption;
communication interface circuitry for converting the electrical signals representing units of consumption to meter data signals;
means for electronically communicating the meter data signals to an external data collection device; and
a sensor disposed in or near the fluid flow metering element to associated therewith and to sense a quality of the water, said sensor producing a water quality status signal to the communication interface circuitry, and
wherein the communication interface circuitry is responsive to the water quality status signal to incorporate said water quality status signal into a group of data signals including meter data signals; and
wherein said means for electronically communicating the meter data will also communicate the water quality status signal in a transmission to a collection station in a water meter data collection network.
22. The apparatus of claim 21, wherein the means for communicating the meter data signals includes a data port for communicating meter data signals from the meter register device to an external transmitter.
23. The apparatus of claim 21, wherein the communication interface circuitry includes circuitry for producing radio frequency meter data signals and wherein the means for communicating the meter data signals to an external device includes an antenna for communicating the radio frequency meter data signals to an external device.
24. The apparatus of claim 21, wherein the water quality status signal is representative of at least one of a chemical, biological or environmental parameter.
25. The apparatus of claim 21, wherein the apparatus is installed as part of a metering system at a site of one water utility customer.
26. The apparatus of claim 21, wherein the apparatus is installed as a zone meter for measuring water quality in a branch of a water distribution system serving a plurality of water utility customers.
27. A system comprising a plurality of apparatuses as recited in claim 21, wherein the apparatuses are each associated with, and are adapted to electrically communicate with, respective sensors for sensing various different ones of a plurality of chemical biological, or environmental parameters of water quality in a water distribution system, said sensors generating electrical signals that can be communicated through a wireless network to a fixed, non-mobile meter data collection station.
28. The system of claim 27, wherein there are a plurality of sensors for different biological, chemical or environmental parameter that are distributed to respective distribution end points within a specified zone of the water metering network and wherein said sensors generate electrical signals that are communicated to the data collection station to provide data on a plurality of parameters related to water quality with the specified zone.
29. The system of claim 27, wherein there are no more than two biological, chemical or environmental sensors associated with each respective water metering system end point.
30. The system of claim 27, wherein each water metering system end point comprises a meter and wherein at least one biological, chemical or environmental sensor that is located in a distribution line in a vicinity of the meter.
31. The system of claim 27, wherein each water metering system end point is represented by a meter and wherein the at least one sensor is located within the meter.
32. The system of claim 27, wherein the apparatuses are installed as part of a water metering system at respective sites for a plurality of respective residential customers.
33. The system of claim 27, wherein the apparatuses are installed as zone meters for measuring water quality in respective branches of a water distribution system, wherein said branches distribute water to respective pluralities of residential customers.
34. A method for sensing water quality at a water metering system end point, the method comprising:
converting movements of a fluid flow metering element to electrical signals representing units of consumption;
converting the electrical signals representing units of consumption to meter data signals;
electronically communicating the meter data signals to an external data collection device; and
sensing a quality of the water in or near the fluid flow metering element, said sensor producing a water quality status signal; and
including said water quality status signal in a group of meter data signals to be transmitted to a collection station; and
electronically communicating the water status signal with the meter data to a collection station in a water meter data collection network.
35. The method of claim 34, wherein the water quality status signal is representative of at least one of a chemical, biological or environmental parameter.
36. The method of claim 34, wherein the water quality status signal is sensed by a water consumption meter adapted to be installed at the site of one water utility customer.
37. The method of claim 34, wherein the water quality status signal is sensed by a zone meter that is configured for measuring water quality in a branch of a water distribution system serving a plurality of water utility customers.
38. The method of claim 34, wherein respective sensors for sensing various different ones of a plurality of chemical biological, or environmental parameters of water quality are distributed with a plurality of water meters in a water distribution system, said sensors generating electrical signals through the water meter system end points and through a wireless network to a fixed, non-mobile meter data collection station.
39. The method of claim 34, wherein there are a plurality of sensors for different biological, chemical or environmental parameter that are distributed to respective meter data end points within a specified zone of the water metering network and wherein said sensors generate electrical signals that are communicated to the data collection station to provide data on a plurality of parameters related to water quality with the specified zone.
US12/891,963 2007-07-17 2010-09-28 Apparatus and Method for Measuring Water Quality in a Water Meter Data Collection System Abandoned US20110030482A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/891,963 US20110030482A1 (en) 2007-07-17 2010-09-28 Apparatus and Method for Measuring Water Quality in a Water Meter Data Collection System
US15/013,558 US20160153951A1 (en) 2007-07-17 2016-02-02 Apparatus And Method For Measuring Water Quality In A Water Distribution System
US16/587,472 US20200033313A1 (en) 2007-07-17 2019-09-30 Apparatus and Method for Measuring Water Quality in a Water Distribution System
US17/587,409 US20220260545A1 (en) 2007-07-17 2022-01-28 Apparatus And Method For Measuring Water Quality In A Water Distribution System

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US95983307P 2007-07-17 2007-07-17
PCT/US2008/070052 WO2009012254A1 (en) 2007-07-17 2008-07-15 Apparatus and method for measuring water quality in a water distribution system
US43925809A 2009-02-27 2009-02-27
US12/891,963 US20110030482A1 (en) 2007-07-17 2010-09-28 Apparatus and Method for Measuring Water Quality in a Water Meter Data Collection System

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2008/070052 Continuation WO2009012254A1 (en) 2007-07-17 2008-07-15 Apparatus and method for measuring water quality in a water distribution system
US12/439,258 Continuation US20100105146A1 (en) 2007-07-17 2008-07-15 Apparatus and Method for Measuring Water Quality in a Water Distribution System
US43925809A Continuation 2007-07-17 2009-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/013,558 Continuation US20160153951A1 (en) 2007-07-17 2016-02-02 Apparatus And Method For Measuring Water Quality In A Water Distribution System

Publications (1)

Publication Number Publication Date
US20110030482A1 true US20110030482A1 (en) 2011-02-10

Family

ID=40260037

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/439,258 Abandoned US20100105146A1 (en) 2007-07-17 2008-07-15 Apparatus and Method for Measuring Water Quality in a Water Distribution System
US12/891,963 Abandoned US20110030482A1 (en) 2007-07-17 2010-09-28 Apparatus and Method for Measuring Water Quality in a Water Meter Data Collection System
US15/013,558 Abandoned US20160153951A1 (en) 2007-07-17 2016-02-02 Apparatus And Method For Measuring Water Quality In A Water Distribution System
US16/587,472 Pending US20200033313A1 (en) 2007-07-17 2019-09-30 Apparatus and Method for Measuring Water Quality in a Water Distribution System
US17/587,409 Abandoned US20220260545A1 (en) 2007-07-17 2022-01-28 Apparatus And Method For Measuring Water Quality In A Water Distribution System

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/439,258 Abandoned US20100105146A1 (en) 2007-07-17 2008-07-15 Apparatus and Method for Measuring Water Quality in a Water Distribution System

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/013,558 Abandoned US20160153951A1 (en) 2007-07-17 2016-02-02 Apparatus And Method For Measuring Water Quality In A Water Distribution System
US16/587,472 Pending US20200033313A1 (en) 2007-07-17 2019-09-30 Apparatus and Method for Measuring Water Quality in a Water Distribution System
US17/587,409 Abandoned US20220260545A1 (en) 2007-07-17 2022-01-28 Apparatus And Method For Measuring Water Quality In A Water Distribution System

Country Status (4)

Country Link
US (5) US20100105146A1 (en)
CA (1) CA2662394C (en)
MX (1) MX2009002603A (en)
WO (1) WO2009012254A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156632A1 (en) * 2008-10-27 2010-06-24 Mueller International, Inc. Infrastructure monitoring system and method
US8823509B2 (en) 2009-05-22 2014-09-02 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US8833390B2 (en) 2011-05-31 2014-09-16 Mueller International, Llc Valve meter assembly and method
US8855569B2 (en) 2011-10-27 2014-10-07 Mueller International, Llc Systems and methods for dynamic squelching in radio frequency devices
US8931505B2 (en) 2010-06-16 2015-01-13 Gregory E. HYLAND Infrastructure monitoring devices, systems, and methods
CN104991505A (en) * 2015-05-21 2015-10-21 中国农业大学 Aquaculture water quality parameter perception device
US9494249B2 (en) 2014-05-09 2016-11-15 Mueller International, Llc Mechanical stop for actuator and orifice
US9565620B2 (en) 2014-09-02 2017-02-07 Mueller International, Llc Dynamic routing in a mesh network
US20170313904A1 (en) * 2016-04-27 2017-11-02 Shin-Etsu Chemical Co., Ltd. Resin composition, resin film, method for producing resin film, method for producing semiconductor device, and semiconductor device
US10060775B2 (en) 2014-03-10 2018-08-28 Driblet Labs, LLC Smart water management system
US10180414B2 (en) 2013-03-15 2019-01-15 Mueller International, Llc Systems for measuring properties of water in a water distribution system
CN111480053A (en) * 2017-11-08 2020-07-31 恩德莱斯和豪瑟尔欧洲两合公司 System and method for spatially resolved determination of at least one physical or chemical process variable
US11041839B2 (en) 2015-06-05 2021-06-22 Mueller International, Llc Distribution system monitoring
US11725366B2 (en) 2020-07-16 2023-08-15 Mueller International, Llc Remote-operated flushing system
US11940297B2 (en) * 2018-12-18 2024-03-26 Aclara Technologies Llc Very low power contaminant detection circuit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2946755A1 (en) * 2009-06-11 2010-12-17 Veolia Eau Cie Generale Eaux METHOD FOR GENERATING WATER LOTS MARKED
US9429553B2 (en) 2012-10-12 2016-08-30 Industrial Test Systems, Inc. Processor-based analysis system and method
DE102014106891A1 (en) * 2014-05-15 2015-11-19 MJM GmbH Apparatus for testing water pipes for contamination
CN105890719A (en) * 2015-10-29 2016-08-24 安徽翼迈科技股份有限公司 Device capable of automatically detecting water meter
US11579085B2 (en) * 2020-07-17 2023-02-14 Robert Bosch Gmbh Sensing devices
US11304253B1 (en) 2021-01-16 2022-04-12 Skylo Technologies, Inc. Coordinated transmissions over a transient roving wireless communication channel

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626992A (en) * 1984-05-21 1986-12-02 Motion Analysis Systems, Inc. Water quality early warning system
US5646863A (en) * 1994-03-22 1997-07-08 Morton; Stephen G. Method and apparatus for detecting and classifying contaminants in water
US6245224B1 (en) * 1998-09-17 2001-06-12 Hitachi, Ltd. Water quality management system
US6290908B1 (en) * 1998-03-30 2001-09-18 Hitachi, Ltd. Water quality meter and water monitoring system
US20040006513A1 (en) * 1998-12-17 2004-01-08 Wolfe Thomas D. Anti-terrorism water quality monitoring system
US6747571B2 (en) * 1999-03-08 2004-06-08 Comverge Technologies, Inc. Utility meter interface system
US6753186B2 (en) * 2001-03-16 2004-06-22 Ewatertek Inc. Water quality monitoring and transmission system and method
US20050247113A1 (en) * 2004-05-07 2005-11-10 Sensicore, Inc. Fluid treatment apparatus with input and output fluid sensing
US20070021936A1 (en) * 2005-07-21 2007-01-25 Marovitz Daniel J System and method for fluid distribution
US20070090059A1 (en) * 2005-07-22 2007-04-26 Plummer Robert J Remote water quality monitoring systems and techniques
US7497957B2 (en) * 2005-01-21 2009-03-03 Bernard Frank System, method and apparatus for end-to-end control of water quality

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386157A (en) * 1981-10-26 1983-05-31 Beggs James M Administrator Of Method for detecting coliform organisms
US5928492A (en) * 1997-06-05 1999-07-27 Lucid Treatment Systems, Inc. Method and apparatus for recovery of water and slurry abrasives used for chemical and mechanical planarization
US6860286B2 (en) * 2002-07-29 2005-03-01 Duc T. Doan Water supply system for multiple dwelling units
US7319525B2 (en) * 2003-11-06 2008-01-15 Fortebio, Inc. Fiber-optic assay apparatus based on phase-shift interferometry
US7338595B2 (en) * 2003-11-13 2008-03-04 Culligan International Company Flow-through tank for water treatment
US7249000B2 (en) * 2004-05-07 2007-07-24 Sensicore, Inc. Fluid monitoring systems and methods with data communication to interested parties
US7266344B2 (en) * 2004-06-02 2007-09-04 Wayne-Dalton Corp. Remotely activated bridge device for use with a home network and methods for programming and using the same
US7720615B2 (en) * 2006-03-20 2010-05-18 Sensis Corporation System for detection and prediction of water quality events
US8279080B2 (en) * 2006-06-08 2012-10-02 Fairfax County Water Authority Systems and methods for remote utility metering and meter monitoring
FR3016107B1 (en) * 2013-12-26 2017-03-24 Grdf METHOD OF TRANSMITTING DATA BY RADIO FREQUENCY LINKAGE IN A TELERELEVE INSTALLATION

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626992A (en) * 1984-05-21 1986-12-02 Motion Analysis Systems, Inc. Water quality early warning system
US5646863A (en) * 1994-03-22 1997-07-08 Morton; Stephen G. Method and apparatus for detecting and classifying contaminants in water
US6290908B1 (en) * 1998-03-30 2001-09-18 Hitachi, Ltd. Water quality meter and water monitoring system
US6398930B2 (en) * 1998-03-30 2002-06-04 Hitachi, Ltd. Water quality meter and water quality monitoring system
US6444172B2 (en) * 1998-03-30 2002-09-03 Hitachi, Ltd. Water quality meter and water quality monitoring system
US6245224B1 (en) * 1998-09-17 2001-06-12 Hitachi, Ltd. Water quality management system
US7454295B2 (en) * 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US20040006513A1 (en) * 1998-12-17 2004-01-08 Wolfe Thomas D. Anti-terrorism water quality monitoring system
US6747571B2 (en) * 1999-03-08 2004-06-08 Comverge Technologies, Inc. Utility meter interface system
US6753186B2 (en) * 2001-03-16 2004-06-22 Ewatertek Inc. Water quality monitoring and transmission system and method
US7104115B2 (en) * 2004-05-07 2006-09-12 Sensicore, Inc. Fluid treatment apparatus with input and output fluid sensing
US20050247113A1 (en) * 2004-05-07 2005-11-10 Sensicore, Inc. Fluid treatment apparatus with input and output fluid sensing
US7497957B2 (en) * 2005-01-21 2009-03-03 Bernard Frank System, method and apparatus for end-to-end control of water quality
US20070021936A1 (en) * 2005-07-21 2007-01-25 Marovitz Daniel J System and method for fluid distribution
US7289923B2 (en) * 2005-07-21 2007-10-30 Nagare System and method for fluid distribution
US20070090059A1 (en) * 2005-07-22 2007-04-26 Plummer Robert J Remote water quality monitoring systems and techniques

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9202362B2 (en) * 2008-10-27 2015-12-01 Mueller International, Llc Infrastructure monitoring system and method
US9934670B2 (en) 2008-10-27 2018-04-03 Mueller International, Llc Infrastructure monitoring system and method
US10262518B2 (en) 2008-10-27 2019-04-16 Mueller International Llc Method of disseminating monitoring information relating to contamination and corrosion within an infrastructure
US20100156632A1 (en) * 2008-10-27 2010-06-24 Mueller International, Inc. Infrastructure monitoring system and method
US8823509B2 (en) 2009-05-22 2014-09-02 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US9799204B2 (en) 2009-05-22 2017-10-24 Mueller International, Llc Infrastructure monitoring system and method and particularly as related to fire hydrants and water distribution
US9861848B2 (en) 2010-06-16 2018-01-09 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US8931505B2 (en) 2010-06-16 2015-01-13 Gregory E. HYLAND Infrastructure monitoring devices, systems, and methods
US9849322B2 (en) 2010-06-16 2017-12-26 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US8833390B2 (en) 2011-05-31 2014-09-16 Mueller International, Llc Valve meter assembly and method
US8855569B2 (en) 2011-10-27 2014-10-07 Mueller International, Llc Systems and methods for dynamic squelching in radio frequency devices
US10039018B2 (en) 2011-10-27 2018-07-31 Mueller International, Llc Systems and methods for recovering an out-of-service node in a hierarchical network
US11307190B2 (en) 2013-03-15 2022-04-19 Mueller International, Llc Systems for measuring properties of water in a water distribution system
US11255835B2 (en) 2013-03-15 2022-02-22 Mueller International, Llc Systems for measuring properties of water in a water distribution system
US10203315B2 (en) 2013-03-15 2019-02-12 Mueller International Llc Systems for measuring properties of water in a water distribution system
US10180414B2 (en) 2013-03-15 2019-01-15 Mueller International, Llc Systems for measuring properties of water in a water distribution system
US10060775B2 (en) 2014-03-10 2018-08-28 Driblet Labs, LLC Smart water management system
US9494249B2 (en) 2014-05-09 2016-11-15 Mueller International, Llc Mechanical stop for actuator and orifice
US9565620B2 (en) 2014-09-02 2017-02-07 Mueller International, Llc Dynamic routing in a mesh network
CN104991505A (en) * 2015-05-21 2015-10-21 中国农业大学 Aquaculture water quality parameter perception device
US11041839B2 (en) 2015-06-05 2021-06-22 Mueller International, Llc Distribution system monitoring
US20170313904A1 (en) * 2016-04-27 2017-11-02 Shin-Etsu Chemical Co., Ltd. Resin composition, resin film, method for producing resin film, method for producing semiconductor device, and semiconductor device
US10428239B2 (en) * 2016-04-27 2019-10-01 Shin-Etsu Chemical Co., Ltd. Resin composition, resin film, method for producing resin film, method for producing semiconductor device, and semiconductor device
KR20220002853A (en) * 2016-04-27 2022-01-07 신에쓰 가가꾸 고교 가부시끼가이샤 Resin composition, resin film, method for producing resin film, method for producing semiconductor device, and semiconductor device
KR102400059B1 (en) 2016-04-27 2022-05-19 신에쓰 가가꾸 고교 가부시끼가이샤 Resin composition, resin film, method for producing resin film, method for producing semiconductor device, and semiconductor device
CN111480053A (en) * 2017-11-08 2020-07-31 恩德莱斯和豪瑟尔欧洲两合公司 System and method for spatially resolved determination of at least one physical or chemical process variable
US11359944B2 (en) 2017-11-08 2022-06-14 Endress+Hauser SE+Co. KG System and method for spatially resolved determination of at least one physical or chemical process variable
US11940297B2 (en) * 2018-12-18 2024-03-26 Aclara Technologies Llc Very low power contaminant detection circuit
US11725366B2 (en) 2020-07-16 2023-08-15 Mueller International, Llc Remote-operated flushing system

Also Published As

Publication number Publication date
US20160153951A1 (en) 2016-06-02
MX2009002603A (en) 2009-03-20
US20220260545A1 (en) 2022-08-18
US20100105146A1 (en) 2010-04-29
CA2662394C (en) 2018-09-11
US20200033313A1 (en) 2020-01-30
WO2009012254A1 (en) 2009-01-22
CA2662394A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
US20220260545A1 (en) Apparatus And Method For Measuring Water Quality In A Water Distribution System
EP2314997B1 (en) System and method for detecting leaks in a pipeline network
US20170115151A1 (en) Water meter and water supply management system using same
AU2012241115B2 (en) Remote water quality monitoring
US6885302B2 (en) Magnetic field sensing for tamper identification
US9417093B2 (en) AMR transmitter and method using multiple radio messages
US20050060105A1 (en) Tracking vibrations in a pipeline network
CN101878415B (en) Process fluid pressure transmitter with pressure transient detection
US20080218378A1 (en) Method and system for collecting meter readings in wireless transmissions from unlisted customers
US7039529B2 (en) Consumption meter
KR100975566B1 (en) A water-quality measuring apparatus with the flow-meter
KR101250955B1 (en) A leak sencing apparatus
KR100406239B1 (en) Water leakout detection and monitoring system
KR102460023B1 (en) Integrated Information Providing System Using Multiple Water Quality Measurements For Smart Water City
CN210199811U (en) Water affair management platform
CN106257245A (en) Conduit section monitoring system
KR20120016731A (en) Intake online management system
GB2460109A (en) Utility meter reading systems
JP2013178273A (en) Pursuit of vibration in pipeline network
KR200363893Y1 (en) Total unmanned management system for provisional water supply facilities
Zaharia et al. On the Development of a Real Time Water Monitoring System
KR20230168860A (en) Apparatus for collecting water quality information and contol system comprising the same
KR20000006881A (en) automatic flow meter system with wireless
Santana et al. Development and Calibration of a Low-Cost Lidar Sensor for Water Level Measurements

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION