US3639907A - Interrogated telemetry alarm system for physiological monitoring - Google Patents

Interrogated telemetry alarm system for physiological monitoring Download PDF

Info

Publication number
US3639907A
US3639907A US854582A US3639907DA US3639907A US 3639907 A US3639907 A US 3639907A US 854582 A US854582 A US 854582A US 3639907D A US3639907D A US 3639907DA US 3639907 A US3639907 A US 3639907A
Authority
US
United States
Prior art keywords
patient
transmitter
output
station
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US854582A
Inventor
Wilson Greatbatch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mennen Greatbatch Electronics Inc
Original Assignee
Mennen Greatbatch Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mennen Greatbatch Electronics Inc filed Critical Mennen Greatbatch Electronics Inc
Application granted granted Critical
Publication of US3639907A publication Critical patent/US3639907A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/363Detecting tachycardia or bradycardia
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • G07C9/28Individual registration on entry or exit involving the use of a pass the pass enabling tracking or indicating presence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • H04Q9/08Calling by using continuous ac
    • H04Q9/10Calling by using continuous ac using single different frequencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/903Radio telemetry

Definitions

  • a radio receiver with each patient has a band pass corresponding to a particular one 340/150 346/33 5g of the tone signals.
  • Each receiver when addressed activates a l 58]
  • Field ME radio transmitter with the patient for transmitting to a single 1 1 A 2 05 receiver at the station a coded signal indicative of the physiological state of the patient, derived from signal generating means operatively connected to the patient.
  • the signals [56] References cued received at the station are sequentially routed, decoded, and
  • Physiological monitoring of a large number of patients by automatic means is becoming increasingly necessary as shortages of hospital personnel increaseand as hospital activities expand and become more highly specialized.
  • patients Upon leaving intensive care units, patients are in hospital areas which often are relatively less rigidly observed, and in such areas automatic physiological monitoring can reduce the mortality rate from cardiac arrest and fibrillation.
  • additional intensive care units each of a more specialized nature, are envisioned and will augment the need for automatic physiological monitoring.
  • Automatic physiological monitoring by telemetry hasbeen proposed and isparticularly advantageous because of the ability to continuously monitor an ambulatory patient.
  • the number of patients that could be accommodated economically by telemetry was limited to about patients due to equipment and frequency spectrum limitations. For example, there must be interference-free reception from one patient about 200 feet from a receiving antenna and delivering only 2 or 3 microvolts of signal tothe receiver, and yet another patient on an adjacent telemetry channel and positioned only about 10 feet from the same antenna must not contribute any crosstalk. Otherwise, an alarm might be received from the wrong patient.
  • the channel separations must be unequal so as to avoid unwanted modulation products from mixed transmitter signals, from mixed receiver local oscillators and from various I.F. signals traveling through the system.
  • an object of this invention to provide apparatus for continuouslymonitoring the physiological condition of each of a large number of patients, such as about 100, by telemetry.
  • lt is a further object of this invention toprovide such apparatus which is readily usable with ambulatory patients.
  • the present invention provides physiological monitoring apparatus including a radio receiver 'with'each patient.
  • FIG. I is a schematic block diagram of physiological monitoringapparatus in accordance with the present invention.
  • FIG. 2 isa schematic block diagram showing in more detail a portion of the apparatus of FIG. 1.
  • the equipment designated generally at 10 on the left hand side of FIG. l is stationary, being in a fixed location relative to the patients being monitored.
  • the components .in this portion of the apparatus will be designated with the .term, station.
  • the nursess station on a hospital floor or the central monitoring station in an intensive care unit are examples of where station apparatus 10 can be located.
  • Station apparatus l0 comprises a radio transmitter 11 having a radiating antenna 12 which transmitter functions, briefly, to generate a radiofrequency signal consisting of a plurality of coded tones on a common carrier. There would be generated, more specifically, a different tone or a combination of different tones :for each patient, and the tones would be transmitted sequentially.
  • a sequencing means l3'suitable for this purpose is operatively connected through a line 14 to transmitter 11.
  • Station apparatus 10 further comprises a radio receiver 15 having a receiving antenna 16 which receiver functions,:briefly, toreceive radiofrequency signals on a different channel relative to that of transmitter 11. More specifically, receiver 15 responds to signals received from patients being monitored which signals indicate the physiological condition of each patient.
  • Receiver 15 is operatively connected through a line 17 to a decoding circuit 18 which also is operatively connected to sequencing means 13 through a line 19.
  • the purpose of this arrangement is to route properly a received and decoded signal to a particular one of a plurality of indicators 20, one for each patient, which are connected to the outputof decoder 18 through lines designated 21.
  • Indicators 20 preferably are lamps or other visual devices which tell the observer immediately when a particular patient is experiencing a physiological disorder, as willbe described in more detail hereafter.
  • Each patient-carried unit includes, briefly, a radio receiventhe antenna of which is designated 26 inFIG. 1, adapted to respond to a particular one of the coded tones generated by transmitter 11 at station .l0..Each. unit 25 further includes a radio transmitter conrnected in controlled relation tothe receiver and which functions, whenwactivated, to transmit from an antenna 27,
  • Eachunit25 further includes input terminals 28, 29
  • terminals 28, 29 are connected directly to the patient, being placed in or on his chest in a conventional manner, and the'voltages thereon indicative of cardiac behavior are amplified andprocessed by cadditionalcircuitry in component 25 as will be described hereafter;
  • terminals 28, 29 may be connected to the output of an appropriate transducer operatively connected to the'patient.
  • FIG. 2 shows in more detail a preferred form of each patient-carried unit especially suitable for monitoring cardiac behavior.
  • a radio receiver is operatively connected to antenna 26 and has a particular frequency passband which permits reception of a particular one of the coded tones from station transmitter 11.
  • Receiver 30 is connected through a line 31 in controlling relation to a radio transmitter 32 which, in turn, is operatively connected to antenna 27.
  • transmitter 32 When addressedby one of the coded tones from station transmitter 11 activates transmitter 32 which, in turn, radiates from antenna 27 a coded signal indicative of that patient's physiological condition, in this particular example a signal coded in terms of cardiac behavior.
  • Transmitter 32 is provided with information concerning the patients cardiac behavior by the following arrangement.
  • input terminals 28, 29 are connected to the input of a preamplifier 33 which is designed to have an amplification factor of about 1,000 when the apparatus is employed in cardiac monitoring. In this particular situation the signals on terminals 28, 29 indicative of the patients heartbeat will have an amplitude of only about 2-3 microvolts.
  • the amplified signals appearing at the output of preamplifier 33 are applied through a line 34 to the input of a decision circuit 35, the purpose of which is to determine whether the signals are indicative of normal or abnonnal physiological behavior. For example, in monitoring of cardiac activity, the repetition rate of signals applied to circuit 35 is the information parameter.
  • Circuit 35 which can include standard frequency responsive and logic networks, in this particular example makes a comparative determination as to whether the rate is normal, indicating that the cardiac condition of the patient is satisfactory, too fast indicating tachycardia/fibrillation, or too slow indicating bradycardia/arrest.
  • the frequency parameter on the input signal to circuit 35 can be converted therein to an amplitude or pulse width parameter on the output thereof.
  • circuit 35 can be constructed to provide no output when the rate is normal but to provide an output or alarm signal when either of the abovementioned disorders is detected, the particular one being determined by output signal amplitude, duration or even.
  • command circuit 36 There is also included a command circuit 36, the input of which is connected through a line 37 to the output of decision circuit 35.
  • the output of command circuit 36 is applied through a line 38 to a coding means 39, operatively connected to transmitter 32 through a line 40.
  • the purpose of command circuit 36 is to transfonn the signals received from decision circuit 35, indicative of the patients condition, into corresponding signals which are suitable to command operation of coding means 39 to generate a coded signal corresponding to the particular condition of the patient.
  • Coding means 39 can have several known forms, depending upon the manner in which the output signal of transmitter 32 is to be modulated in terms of information concerning the physiological condition of the patient.
  • the signal from transmitter 32 can, for example, be a coded tone in a one of three code indicating patient satisfactory, bradycardial/arrest alarm or tachycardia/arrest alarm.
  • a fourth state might be added to the code indicating no signal from the transmitter so that the particular patients equipment can be repaired or replaced.
  • coded tones other types of modulation, for example pulse width, might be employed.
  • command circuit 36 can have several known forms depending upon the nature of coding means 39 and the type of signals required to operate it. In certain applications it also may be possible to incorporate the function of command circuit 36 into either or both of decision circuit 35 and coding means 39.
  • the patient-carried apparatus 25 also includes a tape-loop recorder, designated generally at 45, for providing deferred access to stored physiological data, for example about 10 minutes of recorded ECG activity.
  • the output of preamplifier 33 accordingly is connected by lines 46 and 47 to a recording head 48 of tape recorder 45.
  • Tape recorder would be placed in operation at the patients location whenever it is desired that recording begin.
  • alarm activation would stop the tape so as to store the previous ten minutes of data preceding the event and to this end the output of decision circuit 35 is connected by a line 49 to a controlled tape drive means 50.
  • the physiological monitoring apparatus of the present invention operates in the following manner. It is, in effect, an interrogation system, and is somewhat similar to the [FF system (Identification, Friend or Foe) used in military aircraft.
  • Station transmitter 11 together with the patient-carried receivers, one of which is receiver 30, constitute an interrogator.
  • Transmitter 11 operates on a frequency different from that on which patient-carried transmitters 32 operate so that the overall system uses only two radiofrequency channels.
  • the coded tones provided by transmitter 11, one for each patient, are generated sequentially under control of sequencer 13 which in one form can be a two-gang stepping switch.
  • One gang provides sequencing of code generation by transmitter 11, represented schematically by line 14, and the other gang controls routing of signals from receiver 15 through decoder 18 to the particular one of the patient indicator 20. Since only a tone is elicited from each patient transmitter 32 in response to interrogation, i.e., the corresponding patient receiver 30 being addressed by the particular coded tone from transmitter 11, the patient scanning rate is very fast, sampling patients every 10 or 20 seconds.
  • the interrogator portion of the apparatus of the present invention can comprise one of several interrogation systems commercially available, modified so as to be coded with respect to the patients being monitored.
  • One is an induction coupled, low frequency variety wherein station antenna 12 would comprise a wire surrounding the patients being monitored and antennae 26, 26, etc., each with a particular patient, would be induction-coupled to the wire in a manner similar to the coupling between transformer secondary and primary coils.
  • a second variety is of the radiofrequency type, operating in the range of about 27 to about 54 megacycles, and including vibrating needs in the receivers for decoding.
  • Decoder 18 at the monitoring station 10 would include standard radio receiver detector circuitry, the exact nature depending upon the type of modulation employed in the patient transmitters 32. It is contemplated that the speed of operation of sequencer 13 in relation to the time needed for a radio signal to travel from station 10 and for a response signal to return is such that one response signal will be properly routed to a patient indicator 20 before sequencer l3 advances to the next step for generation of the next coded tone in transmitter 11.
  • the output of decoder 18, routed to the particular line 21, could be one of three voltage levels depending upon the nature of the alarm received.
  • Each indicator 20 could include three lamps differentiated by color or by indicia according to the nature of the alarm, and there would be included also suitable voltage level responsive circuitry for energizing the lamps.
  • the alarm signals generated by patient transmitters 32 rather than being coded tones could be microsecond duration pulses.
  • three radio receivers instead of a singlestation receiver 15, could be employed to locate the particular patient by vector resolution techniques. Such techniques are well known, for example Loran, and in this particular situation three receivers measure the time difference in arrival of a signal from a single transmitter (patient transmitter 32) rather than three transmitters sending signals to a single receiver which is the usual case.
  • the apparatus of the present invention advantageously provides continuous monitoring of a large number, for example about 100, ambulatory patients. Monitoring is done at an extremely fast rate, such as the total number of patients every or 20 seconds. Moreover, the patient-carried transmitters 32 operate only upon interrogation, in a time-sharing mode, thereby reducing battery drain and permitting less frequent battery replacement. All patient transmitters are identical units and only the coding elements in the patient receivers 30 are different so transmitter construction and tuning is advantageously quite simple.
  • the apparatus of the present invention can include an additional arrangement whereby in response to the occurrence of an alarm, a continuous readout of the patients ECG signal automatically is transmitted to the station.
  • line 46 on which the ECG signal is available from the output of preamplifier 33, is connected by a line 55 to the input of a component designated 56 in FIG. 2 for controlling the operation of transmitter 32 in this continuous readout mode.
  • Component 56 is to operate only in response to the occurrence of an alarm signal provided by decision circuit 35, and for this reason component 56 is connected in controlled relation through a line 57 and line 49 to the output of decision circuit 35.
  • Circuit 56 is connected by a line 58 to transmitter 32 whereby the carrier thereof is modulated with the patients ECG signal.
  • Circuit 56 in addition would be constructed to provide an additional tone which when transmitted to station 10 would stop sequencing of transmitter 11 and hold it on the particular channel where the alarm had been received.
  • a frequency-responsive circuit designated 60 in FIG. 1, is connected to the output of receiver by a line 61 and adapted to respond to this particular tone.
  • Circuit 60 in turn, is connected to sequencing means 13 by a line 62 to command stopping thereof.
  • the receiver 15 at station 10 then would receive continuous ECG data from the patient and would ignore all other patients on the system until that particular patients transmitter had been cleared whereupon the system would again start sequencing through the total number of patients. Readout and possibly also storage of the particular patients continuous ECG signal is performed by conventional equipment, designated 65, connected to the output of receiver 15.
  • Apparatus for monitoring from a single station a physiological condition of each of a plurality of remotely located patients comprising:
  • a radio receiver with each patient and each receiver having a different frequency passband
  • a signal producing means adapted to be operatively connected to each patient for providing electrical signals having a parameter which varies in accordance with changes in a physiological characteristic of the particular patient;
  • decision circuit means with each patient and having an input coupled to the output of said signal producing means, said decision circuit means comparing the variations in said parameter with a predetermined normal value and providing an output alarm signal in response to abnormal variations in said parameter;
  • each patient coupled to said decision circuit means and to said transmitter whereby the radiofrequency signal generated by each transmitter is coded in terms of the alarm state of the physiological characteristic of the particular patient;
  • a radio transmitter at said station for generating sequentially a plurality of signals, the number being equal to the total number of patients being monitored and the frequency of each one corresponding to a particular passband of one of said receivers whereby said transmitter with each patient is periodically interrogated;
  • a radio receiver at said station for receiving signals from said transmitter with each patient
  • decoding means connected to the output of said station receiver and operative sequentially in synchronism with said station transmitter for decoding the physiological state signal from each patient;
  • each signal producing means comprises:
  • an input terminal adapted to be operatively connected to the particular patient for sensing electrical signals indicative of cardiac behavior
  • decision circuit means having an input connected to the output of said amplifier, and wherein said decision circuit provides output alarm signals in response to an abnormal rate of signals applied to the input thereof.
  • Apparatus as defined in claim 2 further including magnetic tape recording means, the recording element of which is connected to the output of said amplifier and the drive means of which is connected in controlled relation to the output of said decision circuit for stopping said tape recording means in response to an alarm signal.
  • Apparatus as defined in claim 2 further including means connected in controlled relation to the output of said decision circuit for coupling the output of said amplifier directly to said patient transmitter in response to an alarm signal.

Abstract

Apparatus for monitoring from a single station a physiological condition of each of a plurality of remotely located patients. A radio transmitter at the station generates sequentially a plurality of tone signals, one for each patient and each of a different frequency, on a common carrier. A radio receiver with each patient has a band pass corresponding to a particular one of the tone signals. Each receiver when addressed activates a radio transmitter with the patient for transmitting to a single receiver at the station a coded signal indicative of the physiological state of the patient, derived from signal generating means operatively connected to the patient. The signals received at the station are sequentially routed, decoded, and applied to suitable indicators.

Description

United States Patent Greatbatch Feb. 1, 1972 INTERROGATED TELEMETRY ALARM SYSTEM FOR PHYSIOLOGICAL MONITORING Attorney-Christel and Bean [72] lnventor: Wilson Greatbatch, Clarence, NY. [73] Assignee: Mennen-Greatbatch Electronic, Inc., [57] ABSTRACT Clarence, N.Y. Apparatus for monitoring from a single station a physiological condition, of each of a plurality of remotely located patients. A [22] filed Sept radio transmitter at the station generates sequentially a plu- [21] Appl. No.: 854,582 rality of tone signals, one for each patient and each of a different frequency, on a common carrier. A radio receiver with each patient has a band pass corresponding to a particular one 340/150 346/33 5g of the tone signals. Each receiver when addressed activates a l 58] Field ME radio transmitter with the patient for transmitting to a single 1 1 A 2 05 receiver at the station a coded signal indicative of the physiological state of the patient, derived from signal generating means operatively connected to the patient. The signals [56] References cued received at the station are sequentially routed, decoded, and
UNITED STATES PATENTS applied to suitable indicators.
3,253,588 5/1966 Vuilleumier et al. ..340/1 83 X I 4 Claims, 2 Drawing Figures PATIENT PATIENT 3 RECElVER TRANsMrrTeR l l 37 k I 56 1-470 57 l g cormuuous I READOUT CODING CONTROL 8 4 7 l 39 V 55 -49 I @i 57 I PREAMPLIFlER DECISION COMMAND I INTERROGATED TELEMETRY ALARM SYSTEM FOR PHYSIOLOGICAL MONITORING BACKGROUND OF THE INVENTION dition of each of a large number of patients by the telemetry.
Physiological monitoring of a large number of patients by automatic means is becoming increasingly necessary as shortages of hospital personnel increaseand as hospital activities expand and become more highly specialized. Upon leaving intensive care units, patients are in hospital areas which often are relatively less rigidly observed, and in such areas automatic physiological monitoring can reduce the mortality rate from cardiac arrest and fibrillation. As hospital care progresses from its present state, additional intensive care units, each of a more specialized nature, are envisioned and will augment the need for automatic physiological monitoring. Automatic physiological monitoring by telemetry hasbeen proposed and isparticularly advantageous because of the ability to continuously monitor an ambulatory patient.
I-le'retofore, the number of patients that could be accommodated economically by telemetry was limited to about patients due to equipment and frequency spectrum limitations. For example, there must be interference-free reception from one patient about 200 feet from a receiving antenna and delivering only 2 or 3 microvolts of signal tothe receiver, and yet another patient on an adjacent telemetry channel and positioned only about 10 feet from the same antenna must not contribute any crosstalk. Otherwise, an alarm might be received from the wrong patient. In addition, the channel separations must be unequal so as to avoid unwanted modulation products from mixed transmitter signals, from mixed receiver local oscillators and from various I.F. signals traveling through the system.
SUMMARY OF THE INVENTION It is, therefore, an object of this invention to provide apparatus for continuouslymonitoring the physiological condition of each of a large number of patients, such as about 100, by telemetry.
lt is a further object of this invention toprovide such apparatus which is readily usable with ambulatory patients.
It is an additional object of this invention to provide such apparatus which provides a rapid indication of the type of patient disorder giving rise to an alarm, deferred access to stored physiological data, and continuous readout of data from apatient inalarm.
\ It is a further object of the present invention-to provide such apparatus which can monitor a large number of patients at a relatively-fast rate, for-example the total' number of patients every 10 or seconds. 5
The present invention provides physiological monitoring apparatus including a radio receiver 'with'each patient. and
connected in controlling relation to a correspondingradio transmitter with each patient, each receiver havinga different i The foregoing and'additionaladvantages and characterizing features of the present invention-willbecome clearly apparent upon a reading of theensuing *detail description of an illustrative embodiment together with theincluded drawing depicting the same.
BRIEF DESCRIPTION OF THE DRAWING FIGURES FIG. I is a schematic block diagram of physiological monitoringapparatus in accordance with the present invention; and
FIG. 2 isa schematic block diagram showing in more detail a portion of the apparatus of FIG. 1.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT Ina preferredarrangement of physiological monitoring apparatus constructed in accordance with the present invention,
the equipment designated generally at 10 on the left hand side of FIG. lis stationary, being in a fixed location relative to the patients being monitored. For convenience hereafter, the components .in this portion of the apparatus will be designated with the .term, station. The nursess station on a hospital floor or the central monitoring station in an intensive care unit are examples of where station apparatus 10 can be located.
Station apparatus l0comprises a radio transmitter 11 having a radiating antenna 12 which transmitter functions, briefly, to generate a radiofrequency signal consisting of a plurality of coded tones on a common carrier. There would be generated, more specifically, a different tone or a combination of different tones :for each patient, and the tones would be transmitted sequentially. A sequencing means l3'suitable for this purpose is operatively connected through a line 14 to transmitter 11. Station apparatus 10 further comprises a radio receiver 15 having a receiving antenna 16 which receiver functions,:briefly, toreceive radiofrequency signals on a different channel relative to that of transmitter 11. More specifically, receiver 15 responds to signals received from patients being monitored which signals indicate the physiological condition of each patient. Receiver 15 is operatively connected through a line 17 to a decoding circuit 18 which also is operatively connected to sequencing means 13 through a line 19. The purpose of this arrangement is to route properly a received and decoded signal to a particular one of a plurality of indicators 20, one for each patient, which are connected to the outputof decoder 18 through lines designated 21. Indicators 20 preferably are lamps or other visual devices which tell the observer immediately when a particular patient is experiencing a physiological disorder, as willbe described in more detail hereafter.
25 preferably is of a size and construction readily adapted to be carried by an ambulatory patient and for this reason will be referred to as being patient-carried. Each patient-carried unit includes, briefly, a radio receiventhe antenna of which is designated 26 inFIG. 1, adapted to respond to a particular one of the coded tones generated by transmitter 11 at station .l0..Each. unit 25 further includesa radio transmitter conrnected in controlled relation tothe receiver and which functions, whenwactivated, to transmit from an antenna 27,
radiofrequency signals indicative of that patients's physiological condition. These signals are received by receiver 15 at station I0. .Eachunit25 further includes input terminals 28, 29
for receivingv electrical signals indicative of the patients physiological condition. For example whenthe apparatus of 'thepresent invention isused to monitorthe cardiac behavior of each of a: number of patients, input- terminals 28, 29 are connected directly to the patient, being placed in or on his chest in a conventional manner, and the'voltages thereon indicative of cardiac behavior are amplified andprocessed by cadditionalcircuitry in component 25 as will be described hereafter; Alternatively, terminals 28, 29 may be connected to the output of an appropriate transducer operatively connected to the'patient.
FIG. 2 shows in more detail a preferred form of each patient-carried unit especially suitable for monitoring cardiac behavior. A radio receiver is operatively connected to antenna 26 and has a particular frequency passband which permits reception of a particular one of the coded tones from station transmitter 11. Receiver 30 is connected through a line 31 in controlling relation to a radio transmitter 32 which, in turn, is operatively connected to antenna 27. By virtue of this arrangement, receiver 30 when addressedby one of the coded tones from station transmitter 11 activates transmitter 32 which, in turn, radiates from antenna 27 a coded signal indicative of that patient's physiological condition, in this particular example a signal coded in terms of cardiac behavior.
Transmitter 32 is provided with information concerning the patients cardiac behavior by the following arrangement. input terminals 28, 29 are connected to the input of a preamplifier 33 which is designed to have an amplification factor of about 1,000 when the apparatus is employed in cardiac monitoring. In this particular situation the signals on terminals 28, 29 indicative of the patients heartbeat will have an amplitude of only about 2-3 microvolts. The amplified signals appearing at the output of preamplifier 33 are applied through a line 34 to the input of a decision circuit 35, the purpose of which is to determine whether the signals are indicative of normal or abnonnal physiological behavior. For example, in monitoring of cardiac activity, the repetition rate of signals applied to circuit 35 is the information parameter. Circuit 35, which can include standard frequency responsive and logic networks, in this particular example makes a comparative determination as to whether the rate is normal, indicating that the cardiac condition of the patient is satisfactory, too fast indicating tachycardia/fibrillation, or too slow indicating bradycardia/arrest. The frequency parameter on the input signal to circuit 35 can be converted therein to an amplitude or pulse width parameter on the output thereof. For example, circuit 35 can be constructed to provide no output when the rate is normal but to provide an output or alarm signal when either of the abovementioned disorders is detected, the particular one being determined by output signal amplitude, duration or even.
polarity.
There is also included a command circuit 36, the input of which is connected through a line 37 to the output of decision circuit 35. The output of command circuit 36 is applied through a line 38 to a coding means 39, operatively connected to transmitter 32 through a line 40. The purpose of command circuit 36 is to transfonn the signals received from decision circuit 35, indicative of the patients condition, into corresponding signals which are suitable to command operation of coding means 39 to generate a coded signal corresponding to the particular condition of the patient. Coding means 39 can have several known forms, depending upon the manner in which the output signal of transmitter 32 is to be modulated in terms of information concerning the physiological condition of the patient. The signal from transmitter 32 can, for example, be a coded tone in a one of three code indicating patient satisfactory, bradycardial/arrest alarm or tachycardia/arrest alarm. A fourth state might be added to the code indicating no signal from the transmitter so that the particular patients equipment can be repaired or replaced. Instead of coded tones, other types of modulation, for example pulse width, might be employed.
It is apparent, therefore, that command circuit 36 can have several known forms depending upon the nature of coding means 39 and the type of signals required to operate it. In certain applications it also may be possible to incorporate the function of command circuit 36 into either or both of decision circuit 35 and coding means 39.
The patient-carried apparatus 25 also includes a tape-loop recorder, designated generally at 45, for providing deferred access to stored physiological data, for example about 10 minutes of recorded ECG activity. The output of preamplifier 33 accordingly is connected by lines 46 and 47 to a recording head 48 of tape recorder 45. Tape recorder would be placed in operation at the patients location whenever it is desired that recording begin. Preferably, alarm activation would stop the tape so as to store the previous ten minutes of data preceding the event and to this end the output of decision circuit 35 is connected by a line 49 to a controlled tape drive means 50.
The physiological monitoring apparatus of the present invention operates in the following manner. It is, in effect, an interrogation system, and is somewhat similar to the [FF system (Identification, Friend or Foe) used in military aircraft. The patient-carried radio transmitters, such as transmitter 32, all operate at the same frequency but transmit only when interrogated. ln monitoring of cardiac behavior, the response modulation can be one of four audio tones, one for no alarm," the second for bradycardia/arrest alarm, the third for "tachycardia/fibrillation alarm," and the fourth for no signal alarm."
Station transmitter 11 together with the patient-carried receivers, one of which is receiver 30, constitute an interrogator. Transmitter 11 operates on a frequency different from that on which patient-carried transmitters 32 operate so that the overall system uses only two radiofrequency channels. The coded tones provided by transmitter 11, one for each patient, are generated sequentially under control of sequencer 13 which in one form can be a two-gang stepping switch. One gang provides sequencing of code generation by transmitter 11, represented schematically by line 14, and the other gang controls routing of signals from receiver 15 through decoder 18 to the particular one of the patient indicator 20. Since only a tone is elicited from each patient transmitter 32 in response to interrogation, i.e., the corresponding patient receiver 30 being addressed by the particular coded tone from transmitter 11, the patient scanning rate is very fast, sampling patients every 10 or 20 seconds.
The interrogator portion of the apparatus of the present invention can comprise one of several interrogation systems commercially available, modified so as to be coded with respect to the patients being monitored. One is an induction coupled, low frequency variety wherein station antenna 12 would comprise a wire surrounding the patients being monitored and antennae 26, 26, etc., each with a particular patient, would be induction-coupled to the wire in a manner similar to the coupling between transformer secondary and primary coils. A second variety is of the radiofrequency type, operating in the range of about 27 to about 54 megacycles, and including vibrating needs in the receivers for decoding.
Decoder 18 at the monitoring station 10 would include standard radio receiver detector circuitry, the exact nature depending upon the type of modulation employed in the patient transmitters 32. It is contemplated that the speed of operation of sequencer 13 in relation to the time needed for a radio signal to travel from station 10 and for a response signal to return is such that one response signal will be properly routed to a patient indicator 20 before sequencer l3 advances to the next step for generation of the next coded tone in transmitter 11. The output of decoder 18, routed to the particular line 21, could be one of three voltage levels depending upon the nature of the alarm received. Each indicator 20 could include three lamps differentiated by color or by indicia according to the nature of the alarm, and there would be included also suitable voltage level responsive circuitry for energizing the lamps.
The alarm signals generated by patient transmitters 32 rather than being coded tones could be microsecond duration pulses. In this case, three radio receivers instead of a singlestation receiver 15, could be employed to locate the particular patient by vector resolution techniques. Such techniques are well known, for example Loran, and in this particular situation three receivers measure the time difference in arrival of a signal from a single transmitter (patient transmitter 32) rather than three transmitters sending signals to a single receiver which is the usual case.
The apparatus of the present invention advantageously provides continuous monitoring of a large number, for example about 100, ambulatory patients. Monitoring is done at an extremely fast rate, such as the total number of patients every or 20 seconds. Moreover, the patient-carried transmitters 32 operate only upon interrogation, in a time-sharing mode, thereby reducing battery drain and permitting less frequent battery replacement. All patient transmitters are identical units and only the coding elements in the patient receivers 30 are different so transmitter construction and tuning is advantageously quite simple.
The apparatus of the present invention can include an additional arrangement whereby in response to the occurrence of an alarm, a continuous readout of the patients ECG signal automatically is transmitted to the station. To this end line 46, on which the ECG signal is available from the output of preamplifier 33, is connected by a line 55 to the input of a component designated 56 in FIG. 2 for controlling the operation of transmitter 32 in this continuous readout mode. Component 56 is to operate only in response to the occurrence of an alarm signal provided by decision circuit 35, and for this reason component 56 is connected in controlled relation through a line 57 and line 49 to the output of decision circuit 35. Circuit 56 is connected by a line 58 to transmitter 32 whereby the carrier thereof is modulated with the patients ECG signal. Circuit 56 in addition would be constructed to provide an additional tone which when transmitted to station 10 would stop sequencing of transmitter 11 and hold it on the particular channel where the alarm had been received. To this end a frequency-responsive circuit, designated 60 in FIG. 1, is connected to the output of receiver by a line 61 and adapted to respond to this particular tone. Circuit 60, in turn, is connected to sequencing means 13 by a line 62 to command stopping thereof.
The receiver 15 at station 10 then would receive continuous ECG data from the patient and would ignore all other patients on the system until that particular patients transmitter had been cleared whereupon the system would again start sequencing through the total number of patients. Readout and possibly also storage of the particular patients continuous ECG signal is performed by conventional equipment, designated 65, connected to the output of receiver 15.
It is therefore apparent that the present invention accomplishes its intended objects. While a single specific embodiment thereof has been described in detail, this is done for the purpose of illustration without thought of limitation.
lclaim:
1. Apparatus for monitoring from a single station a physiological condition of each of a plurality of remotely located patients comprising:
a. a radio receiver with each patient and each receiver having a different frequency passband;
b. a radio transmitter with each patient and connected in controlled relation to said receiver;
c. a signal producing means adapted to be operatively connected to each patient for providing electrical signals having a parameter which varies in accordance with changes in a physiological characteristic of the particular patient;
d. decision circuit means with each patient and having an input coupled to the output of said signal producing means, said decision circuit means comparing the variations in said parameter with a predetermined normal value and providing an output alarm signal in response to abnormal variations in said parameter;
e. coding means with each patient coupled to said decision circuit means and to said transmitter whereby the radiofrequency signal generated by each transmitter is coded in terms of the alarm state of the physiological characteristic of the particular patient;
f. a radio transmitter at said station for generating sequentially a plurality of signals, the number being equal to the total number of patients being monitored and the frequency of each one corresponding to a particular passband of one of said receivers whereby said transmitter with each patient is periodically interrogated;
g. a radio receiver at said station for receiving signals from said transmitter with each patient;
h. decoding means connected to the output of said station receiver and operative sequentially in synchronism with said station transmitter for decoding the physiological state signal from each patient; and
i. a plurality of indicating means, one for each patient,
operatively connected to said decoding means.
2. Apparatus as defined in claim 1 wherein each signal producing means comprises:
a. an input terminal adapted to be operatively connected to the particular patient for sensing electrical signals indicative of cardiac behavior; and
b. an amplifier having an input connected to said terminal and an output; and
c. decision circuit means having an input connected to the output of said amplifier, and wherein said decision circuit provides output alarm signals in response to an abnormal rate of signals applied to the input thereof.
3. Apparatus as defined in claim 2 further including magnetic tape recording means, the recording element of which is connected to the output of said amplifier and the drive means of which is connected in controlled relation to the output of said decision circuit for stopping said tape recording means in response to an alarm signal.
4. Apparatus as defined in claim 2 further including means connected in controlled relation to the output of said decision circuit for coupling the output of said amplifier directly to said patient transmitter in response to an alarm signal.
"una-

Claims (4)

1. Apparatus for monitoring from a single station a physiological condition of each of a plurality of remotely located patients comprising: a. a radio receiver with each patient and each receiver having a different frequency passband; b. a radio transmitter with each patient and connected in controlled relation to said receiver; c. a signal producing means adapted to be operatively connected to each patient for providing electrical signals having a parameter which varies in accordance with changes in a physiological characteristic of the particular patient; d. decision circuit means with each patient and having an input coupled to the output of said signal producing means, said decision circuit means comparing the variations in said parameter with a predetermined normal value and providing an output alarm signal in response to abnormal variations in said parameter; e. coding means with each patient coupled to said decision circuit means and to said transmitter whereby the radiofrequency signal generated by each transmitter is coded in terms of the alarm state of the physiological characteristic of the particular patient; f. a radio transmitter at said station for generating sequentially a plurality of signals, the number being equal to the total number of patients being monitored and the frequency of each one corresponding to a particular passband of one of said receivers whereby said transmitter with each patient is periodically interrogated; g. a radio receiver at said station for receiving signals from said transmitter with each patient; h. decoding means connected to the output of said station receiver and operative sequentially in synchronism with said station transmitter for decoding the physiological state signal from each patient; and i. a plurality of indicating means, one for each patient, operatively connected to said decoding means.
2. Apparatus as defined in claim 1 wherein each signal producing means comprises: a. an input terminal adapted to be operatively connected to the particular patient for sensing electrical signals indicative of cardiac behavior; and b. an amplifier having an input connected to said terminal and an output; and c. decision circuit means having an input connected to the output of said amplifier, and wherein said decision circuit provides output alarm signals in response to an abnormal rate of signals applied to the input thereof.
3. Apparatus as defined in claim 2 further including magnetic tape recording means, the recording element of which is connected to the output of said amplifier and the drive means of which is connected in controlled relation to the output of said decision circuit for stopping said tape recording means in response to an alarm signal.
4. Apparatus as defined in claim 2 further including means connected in controlled relation to the output of said decision circuit for coupling the output of said amplifier directly to said patient transmitter in response to an alarm signal.
US854582A 1969-09-02 1969-09-02 Interrogated telemetry alarm system for physiological monitoring Expired - Lifetime US3639907A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85458269A 1969-09-02 1969-09-02

Publications (1)

Publication Number Publication Date
US3639907A true US3639907A (en) 1972-02-01

Family

ID=25319088

Family Applications (1)

Application Number Title Priority Date Filing Date
US854582A Expired - Lifetime US3639907A (en) 1969-09-02 1969-09-02 Interrogated telemetry alarm system for physiological monitoring

Country Status (1)

Country Link
US (1) US3639907A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880144A (en) * 1973-03-12 1975-04-29 David B Coursin Method for stimulation and recording of neurophysiologic data
US3892227A (en) * 1973-03-12 1975-07-01 David B Coursin System for stimulation and recording of neurophysiologic data
US3898984A (en) * 1974-02-04 1975-08-12 Us Navy Ambulatory patient monitoring system
DE2535858A1 (en) * 1974-08-12 1976-02-26 Gabor Ujhelyi Kalman PATIENT MONITORING SYSTEM
US3953848A (en) * 1973-06-25 1976-04-27 Hewlett-Packard Company Electrocardiograph telemetry system including method and means for indicating inoperative conditions
FR2401647A1 (en) * 1977-08-29 1979-03-30 Karz Allen METHOD AND APPARATUS FOR CONTINUOUS MONITORING OF ELECTROCARDIOGRAMS OF HEART DISEASES
FR2420333A1 (en) * 1978-03-21 1979-10-19 Raymond Grellat Health monitor for individuals working in remote locations - has central transmitting and receiving station interrogating mobile ones
US4223678A (en) * 1978-05-03 1980-09-23 Mieczyslaw Mirowski Arrhythmia recorder for use with an implantable defibrillator
US4345334A (en) * 1977-05-05 1982-08-17 American Optical Corporation Reduced-cross talk telemetry system and method of manufacture thereof
US4706689A (en) * 1985-10-30 1987-11-17 Daniel Man Implantable homing device
EP0337669A2 (en) * 1988-04-12 1989-10-18 Renishaw plc Signal transmission system for machine tools, inspection machines, and the like
US4952928A (en) * 1988-08-29 1990-08-28 B. I. Incorporated Adaptable electronic monitoring and identification system
DE4029961C1 (en) * 1990-09-21 1991-10-24 Fehling, Guido, 8757 Karlstein, De
US5153584A (en) * 1989-03-17 1992-10-06 Cardiac Evaluation Center, Inc. Miniature multilead biotelemetry and patient location system
US5157604A (en) * 1988-03-07 1992-10-20 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence Heart rate monitoring system for plural persons using radio telemetry
US5204670A (en) * 1988-08-29 1993-04-20 B. I. Incorporated Adaptable electric monitoring and identification system
EP0543500A2 (en) * 1991-11-22 1993-05-26 Hewlett-Packard Company Telemetered location system and method
US5369699A (en) * 1988-08-29 1994-11-29 Bi Incorporated Adaptable personnel supervisory system with automatic fee collection
WO1994029825A1 (en) * 1993-06-04 1994-12-22 M & Fc Holding Company, Inc. Duplex bi-directional multi-mode remote instrument reading and telemetry system
EP0602459A3 (en) * 1992-12-16 1995-06-28 Siemens Medical Systems Inc System for monitoring patient location and data.
EP1038497A1 (en) * 1999-03-24 2000-09-27 GE Marquette Medical Systems, Inc. Patient monitoring system having two-way communication
US6211790B1 (en) 1999-05-19 2001-04-03 Elpas North America, Inc. Infant and parent matching and security system and method of matching infant and parent
US6259944B1 (en) * 1997-12-14 2001-07-10 Pylon, Inc System and method for monitoring activity
US20020167417A1 (en) * 2001-05-10 2002-11-14 Welles Kenneth Brakeley Location system using retransmission of identifying information
US6556630B1 (en) 1999-12-29 2003-04-29 Ge Medical Systems Information Technologies Dual band telemetry system
US20040015058A1 (en) * 1993-09-04 2004-01-22 Motorola, Inc. Wireless medical diagnosis and monitoring equipment
US20040073127A1 (en) * 2001-07-17 2004-04-15 Gmp Companies, Inc. Wireless ECG system
US6853310B2 (en) 1999-12-29 2005-02-08 Ge Medical Systems Information Technologies, Inc. Tri-mode medical telemetry antenna system
US20050177052A1 (en) * 2001-07-17 2005-08-11 Gmp Wireless Medicine, Inc. Wireless ECG system
US20070013476A1 (en) * 2005-07-13 2007-01-18 Petrovic Dragan P System to unlock doors
US20080012760A1 (en) * 2006-07-14 2008-01-17 Remotemdx Remote tracking device and a system and method for two-way voice communication between the device and a monitoring center
US20080096521A1 (en) * 1998-03-19 2008-04-24 Securealert, Inc. Emergency phone with single button activation
US7737841B2 (en) 2006-07-14 2010-06-15 Remotemdx Alarm and alarm management system for remote tracking devices
US7804412B2 (en) 2005-08-10 2010-09-28 Securealert, Inc. Remote tracking and communication device
US7936262B2 (en) 2006-07-14 2011-05-03 Securealert, Inc. Remote tracking system with a dedicated monitoring center
US8232876B2 (en) 2008-03-07 2012-07-31 Securealert, Inc. System and method for monitoring individuals using a beacon and intelligent remote tracking device
US8514070B2 (en) 2010-04-07 2013-08-20 Securealert, Inc. Tracking device incorporating enhanced security mounting strap

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253588A (en) * 1962-02-01 1966-05-31 Lear Siegler Inc Bio-instrumentation apparatus
US3434151A (en) * 1967-10-20 1969-03-18 Minnesota Mining & Mfg Electrocardiographic recording system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253588A (en) * 1962-02-01 1966-05-31 Lear Siegler Inc Bio-instrumentation apparatus
US3434151A (en) * 1967-10-20 1969-03-18 Minnesota Mining & Mfg Electrocardiographic recording system

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880144A (en) * 1973-03-12 1975-04-29 David B Coursin Method for stimulation and recording of neurophysiologic data
US3892227A (en) * 1973-03-12 1975-07-01 David B Coursin System for stimulation and recording of neurophysiologic data
US3953848A (en) * 1973-06-25 1976-04-27 Hewlett-Packard Company Electrocardiograph telemetry system including method and means for indicating inoperative conditions
US3898984A (en) * 1974-02-04 1975-08-12 Us Navy Ambulatory patient monitoring system
DE2535858A1 (en) * 1974-08-12 1976-02-26 Gabor Ujhelyi Kalman PATIENT MONITORING SYSTEM
US3972320A (en) * 1974-08-12 1976-08-03 Gabor Ujhelyi Kalman Patient monitoring system
FR2340588A1 (en) * 1974-08-12 1977-09-02 Kalman Gabor PATIENT SURVEILLANCE FACILITY
US4345334A (en) * 1977-05-05 1982-08-17 American Optical Corporation Reduced-cross talk telemetry system and method of manufacture thereof
FR2401647A1 (en) * 1977-08-29 1979-03-30 Karz Allen METHOD AND APPARATUS FOR CONTINUOUS MONITORING OF ELECTROCARDIOGRAMS OF HEART DISEASES
FR2420333A1 (en) * 1978-03-21 1979-10-19 Raymond Grellat Health monitor for individuals working in remote locations - has central transmitting and receiving station interrogating mobile ones
US4223678A (en) * 1978-05-03 1980-09-23 Mieczyslaw Mirowski Arrhythmia recorder for use with an implantable defibrillator
US4706689A (en) * 1985-10-30 1987-11-17 Daniel Man Implantable homing device
US5157604A (en) * 1988-03-07 1992-10-20 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence Heart rate monitoring system for plural persons using radio telemetry
US5150529A (en) * 1988-04-12 1992-09-29 Renishaw Plc Signal transmission system for machine tools, inspection machines, and the like
EP0337669A3 (en) * 1988-04-12 1990-03-28 Renishaw Plc Signal transmission system for machine tools, inspection machines, and the like
EP0337669A2 (en) * 1988-04-12 1989-10-18 Renishaw plc Signal transmission system for machine tools, inspection machines, and the like
US5369699A (en) * 1988-08-29 1994-11-29 Bi Incorporated Adaptable personnel supervisory system with automatic fee collection
US4952928A (en) * 1988-08-29 1990-08-28 B. I. Incorporated Adaptable electronic monitoring and identification system
US5204670A (en) * 1988-08-29 1993-04-20 B. I. Incorporated Adaptable electric monitoring and identification system
US5153584A (en) * 1989-03-17 1992-10-06 Cardiac Evaluation Center, Inc. Miniature multilead biotelemetry and patient location system
DE4029961C1 (en) * 1990-09-21 1991-10-24 Fehling, Guido, 8757 Karlstein, De
US5161540A (en) * 1990-09-21 1992-11-10 Guido Fehling Device for monitoring a patient for rejection reactions of an implanted heart and method of implanting the same
EP0543500A2 (en) * 1991-11-22 1993-05-26 Hewlett-Packard Company Telemetered location system and method
EP0543500A3 (en) * 1991-11-22 1994-04-06 Hewlett Packard Co
EP0602459A3 (en) * 1992-12-16 1995-06-28 Siemens Medical Systems Inc System for monitoring patient location and data.
WO1994029825A1 (en) * 1993-06-04 1994-12-22 M & Fc Holding Company, Inc. Duplex bi-directional multi-mode remote instrument reading and telemetry system
US5438329A (en) * 1993-06-04 1995-08-01 M & Fc Holding Company, Inc. Duplex bi-directional multi-mode remote instrument reading and telemetry system
US7215991B2 (en) 1993-09-04 2007-05-08 Motorola, Inc. Wireless medical diagnosis and monitoring equipment
US8771184B2 (en) 1993-09-04 2014-07-08 Body Science Llc Wireless medical diagnosis and monitoring equipment
US20040015058A1 (en) * 1993-09-04 2004-01-22 Motorola, Inc. Wireless medical diagnosis and monitoring equipment
US6259944B1 (en) * 1997-12-14 2001-07-10 Pylon, Inc System and method for monitoring activity
US20080096521A1 (en) * 1998-03-19 2008-04-24 Securealert, Inc. Emergency phone with single button activation
US6870484B1 (en) 1999-03-24 2005-03-22 Ge Marquette Medical Systems, Inc. Patient monitoring systems having two-way communication
EP1038497A1 (en) * 1999-03-24 2000-09-27 GE Marquette Medical Systems, Inc. Patient monitoring system having two-way communication
US6211790B1 (en) 1999-05-19 2001-04-03 Elpas North America, Inc. Infant and parent matching and security system and method of matching infant and parent
US6753781B2 (en) 1999-05-19 2004-06-22 Elpas North America, Inc. Infant and parent matching and security system and method of matching infant and parent
US6556630B1 (en) 1999-12-29 2003-04-29 Ge Medical Systems Information Technologies Dual band telemetry system
US6853310B2 (en) 1999-12-29 2005-02-08 Ge Medical Systems Information Technologies, Inc. Tri-mode medical telemetry antenna system
US6970097B2 (en) 2001-05-10 2005-11-29 Ge Medical Systems Information Technologies, Inc. Location system using retransmission of identifying information
US20020167417A1 (en) * 2001-05-10 2002-11-14 Welles Kenneth Brakeley Location system using retransmission of identifying information
US20050177052A1 (en) * 2001-07-17 2005-08-11 Gmp Wireless Medicine, Inc. Wireless ECG system
US20050251002A1 (en) * 2001-07-17 2005-11-10 Gmp/Wireless Medicine, Inc. Vital signs monitoring assembly having elastomeric connectors
US20050251004A1 (en) * 2001-07-17 2005-11-10 Gmp/Wireless Medicine, Inc. Radiolucent chest assembly
US20050251003A1 (en) * 2001-07-17 2005-11-10 Gmp/Wireless Medicine, Inc. Disposable chest assembly
US20040073127A1 (en) * 2001-07-17 2004-04-15 Gmp Companies, Inc. Wireless ECG system
US7403808B2 (en) 2001-07-17 2008-07-22 Lifesync Corporation Wireless ECG system
US8255041B2 (en) 2001-07-17 2012-08-28 Lifesync Corporation Wireless ECG system
US7933642B2 (en) 2001-07-17 2011-04-26 Rud Istvan Wireless ECG system
US20110160604A1 (en) * 2001-07-17 2011-06-30 Rud Istvan Wireless ecg system
US7860557B2 (en) 2001-07-17 2010-12-28 Lifesync Corporation Radiolucent chest assembly
US20070013476A1 (en) * 2005-07-13 2007-01-18 Petrovic Dragan P System to unlock doors
EP1906813A2 (en) * 2005-07-13 2008-04-09 Honeywell International Inc. System to unlock doors
EP1906813A4 (en) * 2005-07-13 2010-11-03 Honeywell Int Inc System to unlock doors
US8031077B2 (en) 2005-08-10 2011-10-04 Securealert, Inc. Remote tracking and communication device
US20100328063A1 (en) * 2005-08-10 2010-12-30 Securealert, Inc. Remote tracking and communication device
US7804412B2 (en) 2005-08-10 2010-09-28 Securealert, Inc. Remote tracking and communication device
US7936262B2 (en) 2006-07-14 2011-05-03 Securealert, Inc. Remote tracking system with a dedicated monitoring center
US8013736B2 (en) 2006-07-14 2011-09-06 Securealert, Inc. Alarm and alarm management system for remote tracking devices
US20100238024A1 (en) * 2006-07-14 2010-09-23 Securealert, Inc. Alarm and alarm management system for remote tracking devices
US7737841B2 (en) 2006-07-14 2010-06-15 Remotemdx Alarm and alarm management system for remote tracking devices
US20080012760A1 (en) * 2006-07-14 2008-01-17 Remotemdx Remote tracking device and a system and method for two-way voice communication between the device and a monitoring center
US8797210B2 (en) 2006-07-14 2014-08-05 Securealert, Inc. Remote tracking device and a system and method for two-way voice communication between the device and a monitoring center
US8232876B2 (en) 2008-03-07 2012-07-31 Securealert, Inc. System and method for monitoring individuals using a beacon and intelligent remote tracking device
US8514070B2 (en) 2010-04-07 2013-08-20 Securealert, Inc. Tracking device incorporating enhanced security mounting strap
US9129504B2 (en) 2010-04-07 2015-09-08 Securealert, Inc. Tracking device incorporating cuff with cut resistant materials

Similar Documents

Publication Publication Date Title
US3639907A (en) Interrogated telemetry alarm system for physiological monitoring
US3253588A (en) Bio-instrumentation apparatus
US5704351A (en) Multiple channel biomedical digital telemetry transmitter
US3478344A (en) Behavioral supervision system with wrist carried transceiver
US3646606A (en) Physiological monitoring system
US3572316A (en) Physiological signal monitoring system
US4075632A (en) Interrogation, and detection system
US3603881A (en) Frequency shift telemetry system with both radio and wire transmission paths
US3902478A (en) Disaster alarm
EP0232309B1 (en) Cardiac and respiratory gated magnetic resonance imaging
US5458123A (en) System for monitoring patient location and data
US5632279A (en) Method of interference-tolerant transmission of heartbeat signals
US3960140A (en) Physiological monitoring system
CA2158552A1 (en) Biomedical response monitor-exercise equipment and technique
GB2116808A (en) Randomized tag to monitoring station communication system
US3697876A (en) Antenna self-test systems
ATE145120T1 (en) WIRELESS ELECTROCARDIOGRAPHIC MONITORING SYSTEM
US3774594A (en) Apparatus for telemetering of ekg signals from mobile stations
US4156430A (en) Instrumentation for pacemaker diagnostic analysis
CN211534375U (en) Physiological signal detection device and medical equipment
US3444510A (en) Multichannel underwater acoustic telemetering system
JPH0556936A (en) Physical condition measuring system
GB2207579A (en) ECG telemetry system
JPS6290134A (en) Telemeter patient monitor apparatus
US3153760A (en) Signal and power coupling network adapted for use particularly with antenna test systems