US3821364A - Process of producing collagenase - Google Patents

Process of producing collagenase Download PDF

Info

Publication number
US3821364A
US3821364A US00312092A US31209272A US3821364A US 3821364 A US3821364 A US 3821364A US 00312092 A US00312092 A US 00312092A US 31209272 A US31209272 A US 31209272A US 3821364 A US3821364 A US 3821364A
Authority
US
United States
Prior art keywords
collagenase
tissue
debridement
ointment
histolyticum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00312092A
Inventor
A Chiulli
E Wegman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Biofactures Corp
Original Assignee
Advance Biofactures Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Biofactures Corp filed Critical Advance Biofactures Corp
Priority to US00312092A priority Critical patent/US3821364A/en
Application granted granted Critical
Publication of US3821364A publication Critical patent/US3821364A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/842Clostridium

Definitions

  • This invention relates to collagenase and to processes for producing the same. More particularly, this invention relates to a novel collagenase having superior properties for the debridement of necrotic tissue.
  • Enzymatic debridement offers a less painful and more satisfactory procedure for the removal of dead tissue. Efficient enzymatic debridement requires the removal not only of Y the obviously necrotic tissue but of that material, usually on the periphery of the wound, which while apparently viable contains sub-clinical necrosis.
  • the mammalian tissue which prevents the sloughing of all necrosis and developing necrosis is connective tissue or collagen.
  • This is a protein which is resistant to all mammalian enzymes so that sloughing is dependent on slow denaturation processes which change the collagen into a new form which can then be digested by local or systemic enzymes.
  • the patient In order then to remove undenatured collagenmore rapidly, the patient must be provided with a collagenase, i.e., an enzyme which will digest undenatured collagen.
  • necrosis is prone to rapid microbial infection.
  • this dead and dying tissue prevents the initiation of the healing processes which in man are granulation and epithelization.
  • collagenase asa material for debridement has been proposed previously.
  • the previously known collagenases have not been as efficient debridement agents as the novel collagenase of this invention. ln some cases the prior collagenases possessed only collagenase activity without substantial activity against the other proteins present.
  • An object of this invention is to provide a novel collagenase which is more efiicient as a debridement agent than the presently known collagenases.
  • Another object of this invention is to provide a nontoxic collagenase which causes substantially no side effects.
  • a further object is to provide a novel process for producing the novel collagenase of this invention.
  • a still further object is to provide a topical ointment containing the novel collagenase of this invention for application to dermal lesions.
  • a still further object is to provide an injectable col-' newly discovered species of Clostridium histolyticum which has no flagella and is therefore non-motile.
  • This new strain of Cl. histolyticum has been isolated as a mutant in a culture of conventional flagellated Cl. histolyt- [cum and has'been deposited in the American Type Culture Collection as ATCC No. 21000.
  • the collagenase elaborated by this new strain'of microorganism has unexpected superiorproperties as a debriding agent.
  • This new collagenase efficiently cleans away all necrotic tissue anda small surrounding area of mixed live and dead tissue, attacking both collagen and other proteins. This leaves a clean surface from which the growth of new healthy tissue can be initiated.
  • the new collagenase of this invention has an inhibi tory action on the growth of microbes.
  • This new collagenase in concentrations greater than about 0.1 mg/ml inhibits the growth of various. microbes such as Staph. aureus and organisms of the genus Clostridium. Dilution of the collagenase to concentrations of 0.1 mg/ml or less permits growth of these bacteria.
  • the strain of Cl. histolyticum which has been found to give the new collagenase of this invention differs from the usual Cl. histolyticum characterized in Bergeys Manual of Determinative Bacteriology (seventh edition, 1957, pages 690-691), in that this new strain hasno flagella and is therefore nonmotile.
  • Fermentation according to this invention is carried out under conditions which are conventional for the growth of Cl. histolyticum. Fermentation is carried out at about 32 to 37C. (preferably 37C.) for 21 to 26 hours in a nutrient mediumwhich includes proteinaceous materials such as trypticase soy and proteose peptone, as well as vitamins and mineral salts such as magnesium sulfate, potassium phosphatemonobasic, sodium phosphate dibasic, and ferrous sulfate.
  • the proteinaceous material serves as a source of both nutrient carbon and nutrient nitrogen.
  • the preferred pH of the fermentation medium is between 6.5 and 7.5
  • Other fermentation media for the growth of Cl. histolyticum are known in the art and these may be substituted for the above described medium.
  • the fermentation vessel is innoculated with a culture of Cl. histolyticum ATCC No. 21000, using conventional innoculation techniques. Prior to innoculation, the fermentation vessel and its contents are autoclaved at an elevated temperature and pressure, e.g., 121C. and 15 psig, for 30 minutes, and are then cooled to room temperature, in
  • the fermentation broth is centrifuged in order to separate the broth from the cellsof the microorganism.
  • the clear centrifuged broth may be poured into a saturated aqueous solution of ammonium sulfate in order to precipitate the collagenase.
  • This ammonium sulfate solution is held at a low temperature, not over 6C. and usually about 4C.
  • This solution may contain about 500 grams per liter of salt, the exact amount varying depending primarily on the amount contained in the saturatedsolution at the particular operating temperature chosen.
  • the collagenase material remains in this ammonium sulfate solution for a substantial length of time, say about 18 hours, at a temperature which is not allowed to rise above, 6C.
  • the precipitate is filtered or centrifuged according to conventional techniques.
  • the collagenase is cooled and placed in dialyzing tubing,
  • the dialyzed enzyme is frozen and then freeze dried. This may be accomplished by transferring the enzyme from the dialysis tubing into trays in which the freezing and freeze drying take place.
  • the freeze drier is maintained at a pressure of 250 microns or lower. While freeze drying temperatures may vary widely, the operation is speeded if a relatively high temperature, about 21C., is maintained. The time in the freeze drier is generally about 18 hours.
  • the freeze dried material is removed from the drying trays, and is then placed in polyethylene bag's.
  • the freeze dried collagenase product must be sterilized.
  • the inventors have found that this can be done efficiently with low collagenase losses by irradiation.
  • Cobalt 60 is the preferred radiation source, although other radioactive isotopes can be used. Irradiation can also be accomplished by means of X-ray, although this is not a preferred procedure.
  • Irradiation according to this invention subjects the lyophilized collagenase to a total radiation dosage of at least 2.5 megarads and preferably about 4.5 to 5.5 megarads.
  • the dosage is not allowed to exceed approximately 7 megarads as higher doses result in some decomposition of the enzymes.
  • Irradiation may be carried out in conventional machinery for this purpose.
  • the enzyme to be irradiated is contained in the aforementioned polyethylene bags, which are placed at such distance that the irradiation intensity is fairly uniform throughout the bag. Total irradiation time is about l20-l 60 hours when the irradiation intensity is on the order of about 0.03 to 0.04 megarads per hour.
  • Collagenase produced according to this invention can be sterilized by other means, such as filtration, if desired.
  • the sterilized material is tested for both collagenase activity and-proteolytic activity, using the ninhydrin test and the Azocoll test respectively. Standard test procedures as described in the art may be used for making these tests. For example, the Azocoll and ninhydrin test procedures may follow those described in Mandl et al., J. Clin, Invest. 32, I323 supra. The material is also tested for sterility.
  • the sterility test is carried out by diluting the enzyme to 0.1 mg/ml, placing aliquots of the enzyme into two sets of tubes, one containing a nutrient medium and a small number (e.g., about to 10) of viable microbial cells and the other containing the nutrient medium but no cells. Standard test microorganisms such asStaph. aureus may be used for this purpose. If the collagenase is sterile, growth will take place in the tubes containing cells but not in the tubes to which no cells have been added. Dilution of the enzyme to about 0.1 mg/ml or less is essential in making the sterility test, because the enzyme in greater concentrations may inhibit the growth of microorganisms.
  • collagenase of this invention is conveniently applied as a topical ointment.
  • collagenase may be incorporated in a conventional topical ointment medium such as petrolatum in concentrations ranging from about 0.1 percent to about 2 percent by weight of collagenase.
  • a preferred ointment contains 0.5 percent of collagenase by weight of petrolatum.
  • the ointments of this invention may also contain antibiotics if desired in order to combat infection at the site of the lesion.
  • Collagenase ointment of this invention is applied directly to the lesion.
  • the area is first preferably cleaned in order to remove any materials which may interfere with the action of the collagenase. This can be done with a sterile gauze pad saturated with sterile water or buffer having a pH of 7.0 to 7.5.
  • the ointment may be put on a gauze dressing which is up plied directly to the lesion. Application of the ointment should take place either every day or every other day.
  • the gauze containing the ointment is covered with a sterile dressing in preferred procedures.
  • the debridement activity of collagenase of this invention can be demonstrated by controlled experiments on laboratory animals such as guinea pigs. For test purposes burns of predetermined intensity are produced on thetest animals. Application of a collagenase ointment of this invention to the burned surfaces results in remarkably efficient debridement of burned tissue.
  • the ointment of this invention has been found to be stable over a period of 48 weeks at room temperature.
  • the enzyme is heat labile, and temperatures appreciably in excess of room temperature are avoided.
  • the ointment should be stored at a temperature not-in excess of 37C.
  • Collagenase may be used as an injectable to facilitate internal sloughing and reabsorption of physiologically antagonistic tissue.
  • lnjectable solutions may be used, for example, to speed the sloughing of operable prostate glands whose viability has been destroyed by injection of liquid nitrogen, to destroy the stroma of tumor masses, and to digest the collagen matrix of excess calcium deposits.
  • Suitable injectable solutions may contain about 0.2 to 5 percent by weight of collagenase in physiological saline.
  • Collagenase produced according to this invention has a combination of proteolytic enzyme andv collagenase activity which makes it uniquely effective inthe debridement of tissue.
  • This collagenase can be used alone for effective debridement of necrotic and moribund tissue, while prior collagenases when used alone give poorer results.
  • the conjoint use of previously known collagenase and a proteolytic enzyme cannot be relied on for effective debridement, because the two enzymes are frequently incompatible.
  • Collagenase of this invention inhibits the growth of microorganisms when present in concentrations of about 1 mg/ml or greater. In many cases, particularly when bacterial infection has not set in, the use of antibiotics in conjunction with the novel collagenase is not necessary. However, the instant collagenase may be used with an antibiotic when desired. The inventors have also discovered that the growth-inhibiting properties of the instant collagenase require its dilution to about O.l mg/ml or less in making sterility tests as aforedescribed.
  • EXAMPLE 1 A strain of Clostridium histolyticum ATCC No. 21000 is used to innoculate a seed medium containing 3 percent by weight of Trypticase soy broth, 1 percent by weight of proteose peptone, balance water, and having a pH between 6.5 to 7.5, which'has been previously sterilized by autoclaving in excess of l2l.5C. and psi pressure for more than 15 minutes followed by cooling to room temperature. The volume of each seed flask'is 250 ml. The seed flasks are incubated for 48 hours at 37C. At the end of this period, samples of the fermentation medium are examined microscopically to examine for purity,'and the proteolytic activity is mea sured by the Azocoll method to be hereinafter described. I
  • Ten liters of fermentation medium is the following composition:
  • nicotinic acid 20 mg pyridoxine, 20 mg pimelic acid, 20 mg thiamine and 2.0 mg riboflavin.
  • the fermentation vessel is autoclaved in excess of 12] .5C. and 15 psi for 30 minutes and allowed to cool to room temperature. It is then innoculated with the seed flask cultures of Clostridium histolyticum, and incubated at 37C. for 21 to 26 hours. The cells are separated from the broth by centrifuging the latter at 10,000 rpm until clear broth is obtained. The broth is then poured into a precipitation drum containing a saturated solution of aqueous ammonium sulfate (approximately 500 grams per liter) at 4C. and thoroughly stirred for ten minutes. They precipitation drum and contents are held at 4C.
  • the precipitate is then filtered, collected, and placed in a cellophane dialysis tube and dialyzed against running water for 24 hours. During the final hour, water is allowed to stay in contact with the tube. The water is checked for ammonia with Nesslers reagent. If the reaction is positive, dialysis is continued for 3 more hours, and the water is again checked with Nesslers reagent. When the reaction is negative, the dialyzed precipitate is emptied into stainless steel lyophilizing trays, frozen, and put into a tray freeze drier. The freeze drier is maintained at a pressure no greater than 250 microns, and at a temperature of 2lfC. Freeze drying time is approximately 18 hours. The freeze dried material is removed, milled gently, and placed in polyethylene bags. One bag is used for each tray. Each bag contains an average of 35 grams each of freeze dried collagenase.
  • the enzyme is sterilized by irradiation using a cobalt 60 source.
  • the container is irradiated in an apparatus which includes a shielded enclosure, a cobalt 60 source, and a turntable rotating about a vertical axis passing through the radiation source.
  • a container filled with enzyme is supported on the turntable with its base 7 inches above the floor of the enclohigher than 6C.
  • excess sure and its axis 5 inches from the source At the conclusion of washing, excess sure and its axis 5 inches from the source.
  • the average height of the container above the floor is the same as the height of the source.
  • the container was irradiated for atotal of 142 hours, receiving an average dose of 5.0 megarads, which varied from 4.77 megarads at the base of the container to 5.25 megarads at the middle.
  • Collagenase assay Undenatured collagen is made for the collagenase as follows: Bovine Achilles tendon taken from a freshly slaughtered animal is stripped of fat and adventitia and then cut into pieces approximately A inch square. These pieces are soaked successively in three solutions of M/l5 aqueous dibasic sodium phosphate at 4C. for' 3 days in each solution. After the third soaking the tendon is soaked for 24 hours in tap water. The washed tendon is then soaked successively in three 25 percent aqueous potassium chloride solutions for three days in each solution. After the third potassium chloride soaking the tendon is soaked in tap water for one week and the water is changed daily.
  • the supernatant solution is checked for the presence of chloride ion using the silver nitrate test. Water washing is continued until this test is negative. All of the above processing is done at a temperature no water is drained and the tendonchunks are lyophilized.
  • a control tube A is prepared as above except that the enzyme is omitted.
  • a second control tube B is prepared as above, except for omission of the collagen (Tube B contains enzyme).
  • a third control tube C is prepared as above, except that 0. 1 ml of 0.1 percent trypsin (Armour Phannaceutical Co., Kankakee, Ill.) is added in place of the collagenase. Each of the four tubes is incubated at 37C. for 24 hours.
  • 0.5 ml of the clear supematent is decanted from each tube and placed in a 10 ml volumetric flask.
  • To each volumetric flask are added 1 ml of 1' percent aqueous ninhydrin solution and l ml'of 5 percent aqueous puridine solution.
  • the volumetric flasks are placed in a boiling water bath for 20 minutes.
  • Sufficient distilled water is added to give a total volume of 10 ml and the test solutions are read in a Klett photoelectric colorimeter at 570 millimicrons against the control.
  • the collagenase activity is expressed in C units.
  • One C unit represents the calculated optical density reading obtained when one mg of enzyme acts on 25 mg .of collagen under the above conditions.
  • the collagenase must have a minimum activity of 40,000 C units per gram; otherwise it is discarded.
  • Azocoll a hide powder preparation coupled to an azo dye
  • Protease assay is made according to the procedure of Oakley et al., Joumalof Pathologyand Bacteriology, Vol. LVIII, No. 2, pp. 227,232 (1946).
  • Proteolytic enzyme activity using Azocoll reagent is determined according to the procedure of Mandi et al., J ournal of Clinical Investigation, 32, 1323 (1953 The protease activity must be not less than 4000 Q units; otherwise the enzyme is discarded.
  • EXAMPLE 2 An ointment is prepared by mixing 5 grams of sterilized collagenase, prepared as described in Example 1, with 995 grams of white petrolatum. I
  • EXAMPLE 3 lagenase ointment on the right side. Two animals were treated with collagenase ointment on both sides, and two animals received control ointment on both sides.
  • the ointments were applied to each test animal daily.
  • the ointments were spread on gauze pads which were placed in contact with the lesion. These were taped in place circumferentially and one additional length of tape was run around the animals neck to prevent dislodging.
  • the ointments were coded so that the person administering them did not know whether he was administering a collagenase ointment or the control ointment.
  • the order in which the animals were observed was varied from day to day. Prior to each observation, the lesion was gently rubed with a cotton wad dipped in water. Treatment in this manner was conducted for 96 hours. At the end of this time, the animals were observed and the percentage of debridement was determined by measuring the debrided area.
  • Both sides of the animals were clipped with an electric clipper and then shaved.
  • a circular area 5 centimeters in diameter was marked out on each side tangent to a line parallel with and inch from the animals spine.
  • a ml beaker of water was heated to 80C. as measured with a mercury bulb thermometer immersed just below the top surface'of the water.
  • the marked area of the animal was held in contact with the surface of the water for 20 seconds.
  • the burn area was wiped with denatured ethyl alcohol which was then allowed to evaporate.
  • Example 3 A test ointment prepared as described in Example 3, and a control ointment consisting of petrolatum and Strep-Combiotic in the amounts stated in Example 3,
  • a method for the debridement of necrotic tissue which comprises applying an enzymatic composition to said tissue in an amount sufficient to clean away all necrotic tissue and leave a clean surface, said enzymatic composition produced by growing cells of the nonmotile and non-flagellated strain of Clostridium histolyticum identified as ATCC No. 2 l 000 under anaerobic conditions in a fermentation medium containing nutrient sources of carbon and nitrogen, harvesting the cells, and recovering collagenase from the nutrient medium.
  • a topical ointment for the debridement of necrotic tissue comprising from about 0.1 to about 2 percent by weight of an enzymatic composition in a pharmaceutically acceptable base, said enzymatic composition 3.
  • An injectable composition for facilitating internal sloughing and readsorption of physiologically antagotmn-motile and tissue comprising from about 0.2 to about 4 7 weight percent of an enzymatic composition in a pharmaceutically acceptable aqueous solution, said enzymatic composition being produced by growing cells of the non-motile and non-flagellatcd strain of Closlridium histolyticum identified as ATCC No. 21000 under ana erobic conditions in a fermentation medium containing nutrient sources of carbon and nitrogen, harvesting the cells, and recovering collagenase from the nutrient medium.

Abstract

A non-flagellated, non-motile strain of Clostridium histolyticum (ATCC No. 21000), when fermented under conventional conditions for the growth of Cl. histolyticum, yields an elaboration product characterized by collagenase and proteolytic enzyme activity and inhibits the growth of microbes such as Staphylococcus aureus and organisms of the genus Clostridium. This collagenase may be employed in the form of a topical ointment for debridement of necrotic tissue or as an injectable solution to facilitate internal sloughing and readsorption of physiologically antagonistic tissue.

Description

United States Patent Chiulli et al.
[ PROCESS OF PRODUCING COLLAGENASE [75] Inventors: Angelo J. Chiulli, l-lempstead;
Edwin H. Wegman, Freeport, both of NY.
[73] Assignee: vAdvance Biofacturos Corporation, Lynbrook, NY.
[22] Filed: Dec. 4, 1972 21 Appl. No.: 312,092
Related us. Application Data [62] Division of Ser. No. 563,702, .lulyv8, i966, Pat. No.
OTHER PUBLICATIONS Zaets et al., Chemical Abstracts, Vol. 5 9, 5624f.
[ll] 3,821,364 June 28, 1974 Hakim et 3.1., Chemical Abstracts, Vol. 58, 6l05df.
Primary Examiner-Albert T. Meyers Assistant Examiner-Norman A. Drezin Att0mey,.Agent, 0r Firm-Kenyon & Kenyon Reilly Carr & Chapin 57 ABSTRACT A non-flagellated, non-motile strain of Clostridium histolyticum (ATCC No. 21000), when fermented under conventional conditions for the growth of Cl. histolyticum, yields an elaboration product characterized by collagenase and proteolytic enzyme activity and inhibits the growth of microbes such as Staphylococcus aureus and organisms of the genus Clostridium. This collagenase may be employed in the form of a topical ointment for debridement of necrotic tissue or as an injectabie solution to facilitate internal sloughing and r'eadsorption of physiologically antagonistic tissue.
3 Claims, No Drawings 1 PROCESS OF PRODUCING COLLAGENAS This application is a division of copending applica tion Ser. No. 563,702 filed July 8, 1966, now US. Pat. No. 3,705,083.
This invention relates to collagenase and to processes for producing the same. More particularly, this invention relates to a novel collagenase having superior properties for the debridement of necrotic tissue.
The healing process associated with infected wounds, dermal ulcers, second and third degree burns, and other conditions which produce dermal lesions in man and other mammals, is ordinarily quite slow. One of the characteristics of such lesions is the presence of dead tissue at the siteof the lesion. It is necessary to remove this dead tissue in order to provide a healthy base for the growth of new tissue. Removal of this dead tissue can be accelerated by debridement, either surgical or enzymatic. Surgical debridement has the disadvantage that it is quite painful if all dead tissue is cut away, leaving exposed live tissue. Yet it is essential that all dead tissue be removed in order tofacilitate the healing of the lesion and the growing of new tissue. Enzymatic debridement offers a less painful and more satisfactory procedure for the removal of dead tissue. Efficient enzymatic debridement requires the removal not only of Y the obviously necrotic tissue but of that material, usually on the periphery of the wound, which while apparently viable contains sub-clinical necrosis.
The mammalian tissue which prevents the sloughing of all necrosis and developing necrosis is connective tissue or collagen. This is a protein which is resistant to all mammalian enzymes so that sloughing is dependent on slow denaturation processes which change the collagen into a new form which can then be digested by local or systemic enzymes. In order then to remove undenatured collagenmore rapidly, the patient must be provided with a collagenase, i.e., an enzyme which will digest undenatured collagen.
v The urgency of removal of necrosis is related to two important factors. First, this necrosis is prone to rapid microbial infection. In addition, this dead and dying tissue prevents the initiation of the healing processes which in man are granulation and epithelization.
The use of collagenase asa material for debridement has been proposed previously. However, the previously known collagenases have not been as efficient debridement agents as the novel collagenase of this invention. ln some cases the prior collagenases possessed only collagenase activity without substantial activity against the other proteins present.
An object of this invention is to provide a novel collagenase which is more efiicient as a debridement agent than the presently known collagenases.
Another object of this inventionis to provide a nontoxic collagenase which causes substantially no side effects.
A further object is to provide a novel process for producing the novel collagenase of this invention.
A still further object is to provide a topical ointment containing the novel collagenase of this invention for application to dermal lesions.
A still further object is to provide an injectable col-' newly discovered species of Clostridium histolyticum which has no flagella and is therefore non-motile. This new strain of Cl. histolyticum has been isolated as a mutant in a culture of conventional flagellated Cl. histolyt- [cum and has'been deposited in the American Type Culture Collection as ATCC No. 21000.
Surprisingly, the collagenase elaborated by this new strain'of microorganism has unexpected superiorproperties as a debriding agent. This new collagenase efficiently cleans away all necrotic tissue anda small surrounding area of mixed live and dead tissue, attacking both collagen and other proteins. This leaves a clean surface from which the growth of new healthy tissue can be initiated.
The new collagenase of this invention has an inhibi tory action on the growth of microbes. This new collagenase in concentrations greater than about 0.1 mg/ml inhibits the growth of various. microbes such as Staph. aureus and organisms of the genus Clostridium. Dilution of the collagenase to concentrations of 0.1 mg/ml or less permits growth of these bacteria.
The strain of Cl. histolyticum which has been found to give the new collagenase of this invention differs from the usual Cl. histolyticum characterized in Bergeys Manual of Determinative Bacteriology (seventh edition, 1957, pages 690-691), in that this new strain hasno flagella and is therefore nonmotile.
Fermentation according to this invention is carried out under conditions which are conventional for the growth of Cl. histolyticum. Fermentation is carried out at about 32 to 37C. (preferably 37C.) for 21 to 26 hours in a nutrient mediumwhich includes proteinaceous materials such as trypticase soy and proteose peptone, as well as vitamins and mineral salts such as magnesium sulfate, potassium phosphatemonobasic, sodium phosphate dibasic, and ferrous sulfate. The proteinaceous material serves as a source of both nutrient carbon and nutrient nitrogen. The preferred pH of the fermentation medium is between 6.5 and 7.5 Other fermentation media for the growth of Cl. histolyticum are known in the art and these may be substituted for the above described medium. The fermentation vessel is innoculated witha culture of Cl. histolyticum ATCC No. 21000, using conventional innoculation techniques. Prior to innoculation, the fermentation vessel and its contents are autoclaved at an elevated temperature and pressure, e.g., 121C. and 15 psig, for 30 minutes, and are then cooled to room temperature, in
order to sterilize the medium.
The fermentation broth is centrifuged in order to separate the broth from the cellsof the microorganism. The clear centrifuged broth may be poured into a saturated aqueous solution of ammonium sulfate in order to precipitate the collagenase. This ammonium sulfate solution is held at a low temperature, not over 6C. and usually about 4C. This solution may contain about 500 grams per liter of salt, the exact amount varying depending primarily on the amount contained in the saturatedsolution at the particular operating temperature chosen. The collagenase material remains in this ammonium sulfate solution for a substantial length of time, say about 18 hours, at a temperature which is not allowed to rise above, 6C. The precipitate is filtered or centrifuged according to conventional techniques. The collagenase is cooled and placed in dialyzing tubing,
generally made of cellophane, and dialyzed against running water for about 24 hours in order to remove salt. The presence of ammonia in the efiluent water can be determined by Nesslers reagent. Dialysis is continued until the Nessler reagent test is negative.
The dialyzed enzyme is frozen and then freeze dried. This may be accomplished by transferring the enzyme from the dialysis tubing into trays in which the freezing and freeze drying take place. The freeze drier is maintained at a pressure of 250 microns or lower. While freeze drying temperatures may vary widely, the operation is speeded if a relatively high temperature, about 21C., is maintained. The time in the freeze drier is generally about 18 hours. The freeze dried material is removed from the drying trays, and is then placed in polyethylene bag's.
The freeze dried collagenase product must be sterilized. The inventors have found that this can be done efficiently with low collagenase losses by irradiation. Cobalt 60 is the preferred radiation source, although other radioactive isotopes can be used. Irradiation can also be accomplished by means of X-ray, although this is not a preferred procedure.
Irradiation according to this invention subjects the lyophilized collagenase to a total radiation dosage of at least 2.5 megarads and preferably about 4.5 to 5.5 megarads. The dosage is not allowed to exceed approximately 7 megarads as higher doses result in some decomposition of the enzymes. Irradiation may be carried out in conventional machinery for this purpose. The enzyme to be irradiated is contained in the aforementioned polyethylene bags, which are placed at such distance that the irradiation intensity is fairly uniform throughout the bag. Total irradiation time is about l20-l 60 hours when the irradiation intensity is on the order of about 0.03 to 0.04 megarads per hour.
Collagenase produced according to this invention can be sterilized by other means, such as filtration, if desired.
The sterilized material is tested for both collagenase activity and-proteolytic activity, using the ninhydrin test and the Azocoll test respectively. Standard test procedures as described in the art may be used for making these tests. For example, the Azocoll and ninhydrin test procedures may follow those described in Mandl et al., J. Clin, Invest. 32, I323 supra. The material is also tested for sterility.
The sterility test is carried out by diluting the enzyme to 0.1 mg/ml, placing aliquots of the enzyme into two sets of tubes, one containing a nutrient medium and a small number (e.g., about to 10) of viable microbial cells and the other containing the nutrient medium but no cells. Standard test microorganisms such asStaph. aureus may be used for this purpose. If the collagenase is sterile, growth will take place in the tubes containing cells but not in the tubes to which no cells have been added. Dilution of the enzyme to about 0.1 mg/ml or less is essential in making the sterility test, because the enzyme in greater concentrations may inhibit the growth of microorganisms.
The collagenase of this invention is conveniently applied as a topical ointment. For this purpose, collagenase may be incorporated in a conventional topical ointment medium such as petrolatum in concentrations ranging from about 0.1 percent to about 2 percent by weight of collagenase. A preferred ointment contains 0.5 percent of collagenase by weight of petrolatum.
41, The ointments of this invention may also contain antibiotics if desired in order to combat infection at the site of the lesion. Collagenase ointment of this invention is applied directly to the lesion. The area is first preferably cleaned in order to remove any materials which may interfere with the action of the collagenase. This can be done with a sterile gauze pad saturated with sterile water or buffer having a pH of 7.0 to 7.5. The ointment may be put on a gauze dressing which is up plied directly to the lesion. Application of the ointment should take place either every day or every other day. The gauze containing the ointment is covered with a sterile dressing in preferred procedures.
The debridement activity of collagenase of this invention can be demonstrated by controlled experiments on laboratory animals such as guinea pigs. For test purposes burns of predetermined intensity are produced on thetest animals. Application of a collagenase ointment of this invention to the burned surfaces results in remarkably efficient debridement of burned tissue.
The ointment of this invention has been found to be stable over a period of 48 weeks at room temperature. However, the enzyme is heat labile, and temperatures appreciably in excess of room temperature are avoided.
, To assure long shelflife, the ointment should be stored at a temperature not-in excess of 37C.
Collagenase may be used as an injectable to facilitate internal sloughing and reabsorption of physiologically antagonistic tissue. lnjectable solutions may be used, for example, to speed the sloughing of operable prostate glands whose viability has been destroyed by injection of liquid nitrogen, to destroy the stroma of tumor masses, and to digest the collagen matrix of excess calcium deposits. Suitable injectable solutions may contain about 0.2 to 5 percent by weight of collagenase in physiological saline.
Collagenase produced according to this invention has a combination of proteolytic enzyme andv collagenase activity which makes it uniquely effective inthe debridement of tissue. This collagenase can be used alone for effective debridement of necrotic and moribund tissue, while prior collagenases when used alone give poorer results. The conjoint use of previously known collagenase and a proteolytic enzyme cannot be relied on for effective debridement, because the two enzymes are frequently incompatible.
Virtually no side effects are caused by the collagenase of this invention. Slight inflammation of surrounding tissue ossurs occasionally; otherwise no side effects have been observed.
Collagenase of this invention inhibits the growth of microorganisms when present in concentrations of about 1 mg/ml or greater. In many cases, particularly when bacterial infection has not set in, the use of antibiotics in conjunction with the novel collagenase is not necessary. However, the instant collagenase may be used with an antibiotic when desired. The inventors have also discovered that the growth-inhibiting properties of the instant collagenase require its dilution to about O.l mg/ml or less in making sterility tests as aforedescribed.
This invention will now be described in greater detail with respect to specific embodiments thereof, as illustrated in the examples which follow.
EXAMPLE 1 A strain of Clostridium histolyticum ATCC No. 21000 is used to innoculate a seed medium containing 3 percent by weight of Trypticase soy broth, 1 percent by weight of proteose peptone, balance water, and having a pH between 6.5 to 7.5, which'has been previously sterilized by autoclaving in excess of l2l.5C. and psi pressure for more than 15 minutes followed by cooling to room temperature. The volume of each seed flask'is 250 ml. The seed flasks are incubated for 48 hours at 37C. At the end of this period, samples of the fermentation medium are examined microscopically to examine for purity,'and the proteolytic activity is mea sured by the Azocoll method to be hereinafter described. I
Ten liters of fermentation medium is the following composition:
Trypticase soy broth 1.5 percent Proteose peptone 5.0 percent MgSO, 7H O 800 mg KHQPO, 19.2 grams Na l-lPO, 90 grams Vitamin concentrate* 50 ml FeSO, solution (0.120 percent by weight) 60 ml prepared having pH 6.5 to7.5
* I00 ml of this concentrate contains mg calcium pantothenate. 20
mg nicotinic acid, 20 mg pyridoxine, 20 mg pimelic acid, 20 mg thiamine and 2.0 mg riboflavin.
The fermentation vessel is autoclaved in excess of 12] .5C. and 15 psi for 30 minutes and allowed to cool to room temperature. It is then innoculated with the seed flask cultures of Clostridium histolyticum, and incubated at 37C. for 21 to 26 hours. The cells are separated from the broth by centrifuging the latter at 10,000 rpm until clear broth is obtained. The broth is then poured into a precipitation drum containing a saturated solution of aqueous ammonium sulfate (approximately 500 grams per liter) at 4C. and thoroughly stirred for ten minutes. They precipitation drum and contents are held at 4C. for [Shows The precipitate is then filtered, collected, and placed in a cellophane dialysis tube and dialyzed against running water for 24 hours. During the final hour, water is allowed to stay in contact with the tube. The water is checked for ammonia with Nesslers reagent. If the reaction is positive, dialysis is continued for 3 more hours, and the water is again checked with Nesslers reagent. When the reaction is negative, the dialyzed precipitate is emptied into stainless steel lyophilizing trays, frozen, and put into a tray freeze drier. The freeze drier is maintained at a pressure no greater than 250 microns, and at a temperature of 2lfC. Freeze drying time is approximately 18 hours. The freeze dried material is removed, milled gently, and placed in polyethylene bags. One bag is used for each tray. Each bag contains an average of 35 grams each of freeze dried collagenase.
The enzyme is sterilized by irradiation using a cobalt 60 source. A pair of bags, and additional small sample portions if desired, having a combined weight of about 75 grams, are placed in a container 4% inches in diameter and 5 inches high. The container is irradiated in an apparatus which includes a shielded enclosure, a cobalt 60 source, and a turntable rotating about a vertical axis passing through the radiation source. in a typical run, a container filled with enzyme is supported on the turntable with its base 7 inches above the floor of the enclohigher than 6C. At the conclusion of washing, excess sure and its axis 5 inches from the source. The average height of the container above the floor is the same as the height of the source. In a typical run, the container was irradiated for atotal of 142 hours, receiving an average dose of 5.0 megarads, which varied from 4.77 megarads at the base of the container to 5.25 megarads at the middle.
Each sample of collagenase after irradiation is tested for collagenase activity. protease activity, and sterility.
Collagenase assay. Undenatured collagen is made for the collagenase as follows: Bovine Achilles tendon taken from a freshly slaughtered animal is stripped of fat and adventitia and then cut into pieces approximately A inch square. These pieces are soaked successively in three solutions of M/l5 aqueous dibasic sodium phosphate at 4C. for' 3 days in each solution. After the third soaking the tendon is soaked for 24 hours in tap water. The washed tendon is then soaked successively in three 25 percent aqueous potassium chloride solutions for three days in each solution. After the third potassium chloride soaking the tendon is soaked in tap water for one week and the water is changed daily. The supernatant solution is checked for the presence of chloride ion using the silver nitrate test. Water washing is continued until this test is negative. All of the above processing is done at a temperature no water is drained and the tendonchunks are lyophilized.
HCl, 0.2 M 44.2 ml calcium acetate, 0.02 M 100 ml distilled water q.s. to 200 ml A control tube A is prepared as above except that the enzyme is omitted. A second control tube B is prepared as above, except for omission of the collagen (Tube B contains enzyme). A third control tube C is prepared as above, except that 0. 1 ml of 0.1 percent trypsin (Armour Phannaceutical Co., Kankakee, Ill.) is added in place of the collagenase. Each of the four tubes is incubated at 37C. for 24 hours. After incubation, 0.5 ml of the clear supematent is decanted from each tube and placed in a 10 ml volumetric flask. To each volumetric flask are added 1 ml of 1' percent aqueous ninhydrin solution and l ml'of 5 percent aqueous puridine solution. The volumetric flasks are placed in a boiling water bath for 20 minutes. Sufficient distilled water is added to give a total volume of 10 ml and the test solutions are read in a Klett photoelectric colorimeter at 570 millimicrons against the control. The collagenase activity is expressed in C units. One C unit represents the calculated optical density reading obtained when one mg of enzyme acts on 25 mg .of collagen under the above conditions. The collagenase must have a minimum activity of 40,000 C units per gram; otherwise it is discarded.
Protease assay. Azocoll, a hide powder preparation coupled to an azo dye, is made according to the procedure of Oakley et al., Joumalof Pathologyand Bacteriology, Vol. LVIII, No. 2, pp. 227,232 (1946). Proteolytic enzyme activity using Azocoll reagent is determined according to the procedure of Mandi et al., J ournal of Clinical Investigation, 32, 1323 (1953 The protease activity must be not less than 4000 Q units; otherwise the enzyme is discarded.
EXAMPLE 2 An ointment is prepared by mixing 5 grams of sterilized collagenase, prepared as described in Example 1, with 995 grams of white petrolatum. I
EXAMPLE 3 lagenase ointment on the right side. Two animals were treated with collagenase ointment on both sides, and two animals received control ointment on both sides.
The ointments were applied to each test animal daily. The ointments were spread on gauze pads which were placed in contact with the lesion. These were taped in place circumferentially and one additional length of tape was run around the animals neck to prevent dislodging. The ointments were coded so that the person administering them did not know whether he was administering a collagenase ointment or the control ointment. The order in which the animals were observed was varied from day to day. Prior to each observation, the lesion was gently rubed with a cotton wad dipped in water. Treatment in this manner was conducted for 96 hours. At the end of this time, the animals were observed and the percentage of debridement was determined by measuring the debrided area. Percentages of debridement using both collagenase and-control ointments, and the differences between these two percentages of debridement for the 16 animals that received collagenase ointment on one side and control ointment 9n thssthsrs sis sixes sTab ss sbsl wss 1;; a,
TABLE .1
Side Receiving Debridement Animal No. Collagenase Left Side Right Side Difference 8-! Left 90 0 90 8-2 Right 0 I00 I00 8-3 Left 95 70 9-1 Right 0 95 95 9-2 Right 0 70 70 9-3 Left 80 0 80 9-4 Right 10 100 90 9-5 Left 15 0 l5 l0-l Left 95 2O 75 I0 2 Right 90 10-3 Left 95 30 l0-4 Right 0 95 95 10-5 Left I5 60 10-6 Right 5 95 9O l0-7 Left 90 15 75 l0-8 Right 0 70 70 lO-9 Both 7O 10-10 Both 70 10-] 1 Neither 0 5 10-12 Neither 20 0 EXAMPLE 4 20 guinea pigs ranging in weight from 500 to 800 grams were anesthetized with sodium pentobarbital PB.
Both sides of the animals were clipped with an electric clipper and then shaved. A circular area 5 centimeters in diameter was marked out on each side tangent to a line parallel with and inch from the animals spine. A ml beaker of water was heated to 80C. as measured with a mercury bulb thermometer immersed just below the top surface'of the water. The marked area of the animal was held in contact with the surface of the water for 20 seconds. The burn area was wiped with denatured ethyl alcohol which was then allowed to evaporate.
A test ointment prepared as described in Example 3, and a control ointment consisting of petrolatum and Strep-Combiotic in the amounts stated in Example 3,
.Pyifiqlifll lq a en se were evaluated or the 20 animals used in this study, 16 animsisiif treated with collagenase ointment on one side and control ointment on the other. Ofthese. eight received col that these are by way of illustration rather than limitation, and the scope of the invention shall be measured only by the appended claims.
What is claimed is:
l. A method for the debridement of necrotic tissue which comprises applying an enzymatic composition to said tissue in an amount sufficient to clean away all necrotic tissue and leave a clean surface, said enzymatic composition produced by growing cells of the nonmotile and non-flagellated strain of Clostridium histolyticum identified as ATCC No. 2 l 000 under anaerobic conditions in a fermentation medium containing nutrient sources of carbon and nitrogen, harvesting the cells, and recovering collagenase from the nutrient medium.
2. A topical ointment for the debridement of necrotic tissue comprising from about 0.1 to about 2 percent by weight of an enzymatic composition in a pharmaceutically acceptable base, said enzymatic composition 3. An injectable composition for facilitating internal sloughing and readsorption of physiologically antagotmn-motile and tissue comprising from about 0.2 to about 4 7 weight percent of an enzymatic composition in a pharmaceutically acceptable aqueous solution, said enzymatic composition being produced by growing cells of the non-motile and non-flagellatcd strain of Closlridium histolyticum identified as ATCC No. 21000 under ana erobic conditions in a fermentation medium containing nutrient sources of carbon and nitrogen, harvesting the cells, and recovering collagenase from the nutrient medium.

Claims (2)

  1. 2. A topical ointment for the debridement of necrotic tissue comprising from about 0.1 to about 2 percent by weight of an enzymatic composition in a pharmaceutically acceptable base, said enzymatic composition being produced by growing cells of the non-motile and non-flagellated strain of Clostridium histolyticum identified as ATCC No. 21000 under anaerobic conditions in a fermentation medium containing nutrient sources of carbon and nitrogen, harvesting the cells, and recovering collagenase from the nutrient medium.
  2. 3. An injectable composition for facilitating internal sloughing and readsorption of physiologically antagonistic tissue comprising from about 0.2 to about 5 weight percent of an enzymatic composition in a pharmaceutically acceptable aqueous solution, said enzymatic composition being produced by growing cells of the non-motile and non-flagellated strain of Clostridium histolyticum identified as ATCC No. 21000 under anaerobic conditions in a fermentation medium containing nutrient sources of carbon and nitrogen, harvesting the cells, and recovering collagenase from the nutrient medium.
US00312092A 1966-07-08 1972-12-04 Process of producing collagenase Expired - Lifetime US3821364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00312092A US3821364A (en) 1966-07-08 1972-12-04 Process of producing collagenase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56370266A 1966-07-08 1966-07-08
US00312092A US3821364A (en) 1966-07-08 1972-12-04 Process of producing collagenase

Publications (1)

Publication Number Publication Date
US3821364A true US3821364A (en) 1974-06-28

Family

ID=26978219

Family Applications (1)

Application Number Title Priority Date Filing Date
US00312092A Expired - Lifetime US3821364A (en) 1966-07-08 1972-12-04 Process of producing collagenase

Country Status (1)

Country Link
US (1) US3821364A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468411A2 (en) * 1990-07-23 1992-01-29 Pliva Farmaceutska, Kemijska, Prehrambena I Kozmeticka Industrija S P.O. A mutant of bacterium Clostridium histolyticum, a process for the obtaining thereof, and its use in the production of clostripain-free collagenase
US5332503A (en) * 1993-04-16 1994-07-26 Baxter International Inc. Process for purifying collagenase
US5753485A (en) * 1994-06-24 1998-05-19 Boehringer Mannheim Corporation Purified mixture of collagenase I, collagenase II and two other proteases
US5830741A (en) * 1996-12-06 1998-11-03 Boehringer Mannheim Corporation Composition for tissue dissociation containing collagenase I and II from clostridium histolyticum and a neutral protease
US5989888A (en) * 1996-01-24 1999-11-23 Roche Diagnostics Corporation Purified mixture of collagenase I, collagenase II and two other proteases
US20080145357A1 (en) * 2006-12-13 2008-06-19 Story Brooks J Tissue fusion method using collagenase for repair of soft tissue
US20100159564A1 (en) * 2007-11-30 2010-06-24 Dwulet Francis E Protease resistant recombinant bacterial collagenases
WO2011071986A1 (en) 2009-12-08 2011-06-16 Healthpoint, Ltd. Enzymatic wound debriding compositions with enhanced enzymatic activity
US20120237497A1 (en) * 2011-03-16 2012-09-20 Biospecifics Technologies Corp. Compositions and methods for producing clostridial collagenases
US20150273028A1 (en) * 2012-10-24 2015-10-01 The Research Foundation For The State University Of New York Use of collagenase to treat glaucoma
WO2016094675A1 (en) 2014-12-12 2016-06-16 Smith & Nephew, Inc. Use of clostridium histolyticum protease mixture in promoting wound healing
US9744138B2 (en) 2013-03-15 2017-08-29 Biospecifics Technologies Corp. Treatment method and product for uterine fibroids using purified collagenase
WO2018094167A1 (en) 2016-11-17 2018-05-24 Iovance Biotherapeutics, Inc. Remnant tumor infiltrating lymphocytes and methods of preparing and using the same
AU2016208378B2 (en) * 2012-01-12 2018-10-11 Endo Global Ventures Clostridium histolyticum enzymes and methods for the use thereof
US10272140B2 (en) 2014-01-15 2019-04-30 Biospecifics Technologies Corp. Thermosensitive hydrogel collagenase formulations
US11123280B2 (en) 2017-03-01 2021-09-21 Endo Ventures Limited Method of assessing and treating cellulite
US11473074B2 (en) 2017-03-28 2022-10-18 Endo Global Aesthetics Limited Method of producing collagenase
US11872267B2 (en) 2019-10-15 2024-01-16 The Johns Hopkins University Treatment of uterine fibroids using purified collagenase

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468411A3 (en) * 1990-07-23 1992-09-23 Pliva Farmaceutska, Kemijska, Prehrambena I Kozmeticka Industrija S P.O. A mutant of bacterium clostridium histolyticum, a process for the obtaining thereof, and its use in the production of clostripain-free collagenase
US5252481A (en) * 1990-07-23 1993-10-12 Pliva Farmaceutska, Kemijska Mutant of bacterium Clostridium histolyticum, a process for the obtaining thereof, and its use in the production of clostripain-free collagenase
EP0468411A2 (en) * 1990-07-23 1992-01-29 Pliva Farmaceutska, Kemijska, Prehrambena I Kozmeticka Industrija S P.O. A mutant of bacterium Clostridium histolyticum, a process for the obtaining thereof, and its use in the production of clostripain-free collagenase
US5332503A (en) * 1993-04-16 1994-07-26 Baxter International Inc. Process for purifying collagenase
US5753485A (en) * 1994-06-24 1998-05-19 Boehringer Mannheim Corporation Purified mixture of collagenase I, collagenase II and two other proteases
US5989888A (en) * 1996-01-24 1999-11-23 Roche Diagnostics Corporation Purified mixture of collagenase I, collagenase II and two other proteases
US5830741A (en) * 1996-12-06 1998-11-03 Boehringer Mannheim Corporation Composition for tissue dissociation containing collagenase I and II from clostridium histolyticum and a neutral protease
US5952215A (en) * 1996-12-06 1999-09-14 Roche Diagnostics Corporation Enzyme composition for tissue dissociation
US8323642B2 (en) 2006-12-13 2012-12-04 Depuy Mitek, Inc. Tissue fusion method using collagenase for repair of soft tissue
US20080145357A1 (en) * 2006-12-13 2008-06-19 Story Brooks J Tissue fusion method using collagenase for repair of soft tissue
US20100159564A1 (en) * 2007-11-30 2010-06-24 Dwulet Francis E Protease resistant recombinant bacterial collagenases
US9694100B2 (en) 2009-12-08 2017-07-04 Smith & Nephew, Inc. Enzymatic wound debriding compositions with enhanced enzymatic activity
US10556037B2 (en) 2009-12-08 2020-02-11 Smith & Nephew, Inc. Enzymatic wound debriding compositions with enhanced enzymatic activity
WO2011071986A1 (en) 2009-12-08 2011-06-16 Healthpoint, Ltd. Enzymatic wound debriding compositions with enhanced enzymatic activity
US10155061B2 (en) 2009-12-08 2018-12-18 Smith & Nephew, Inc. Enzymatic wound debriding compositions with enhanced enzymatic activity
US10119131B2 (en) * 2011-03-16 2018-11-06 Biospecifics Technologies Corp. Compositions and methods for producing clostridial collagenases
US20120237497A1 (en) * 2011-03-16 2012-09-20 Biospecifics Technologies Corp. Compositions and methods for producing clostridial collagenases
US11879141B2 (en) 2012-01-12 2024-01-23 Endo Global Ventures Nucleic acid molecules encoding clostridium histolyticum collagenase II and methods of producing the same
AU2016208378B2 (en) * 2012-01-12 2018-10-11 Endo Global Ventures Clostridium histolyticum enzymes and methods for the use thereof
US20150273028A1 (en) * 2012-10-24 2015-10-01 The Research Foundation For The State University Of New York Use of collagenase to treat glaucoma
US9636385B2 (en) * 2012-10-24 2017-05-02 The Research Foundation For The State University Of New York Use of collagenase to treat glaucoma
US9744138B2 (en) 2013-03-15 2017-08-29 Biospecifics Technologies Corp. Treatment method and product for uterine fibroids using purified collagenase
US11857685B2 (en) 2013-03-15 2024-01-02 Biospecifics Technologies Llc Treatment method and product for uterine fibroids using purified collagenase
US10369110B2 (en) 2013-03-15 2019-08-06 Biospecifics Technologies Corporation Treatment method and product for uterine fibroids using purified collagenase
US10272140B2 (en) 2014-01-15 2019-04-30 Biospecifics Technologies Corp. Thermosensitive hydrogel collagenase formulations
WO2016094675A1 (en) 2014-12-12 2016-06-16 Smith & Nephew, Inc. Use of clostridium histolyticum protease mixture in promoting wound healing
US11938173B2 (en) 2014-12-12 2024-03-26 Smith & Nephew, Inc. Use of Clostridium histolyticum protease mixture in promoting wound healing
WO2018094167A1 (en) 2016-11-17 2018-05-24 Iovance Biotherapeutics, Inc. Remnant tumor infiltrating lymphocytes and methods of preparing and using the same
US11123280B2 (en) 2017-03-01 2021-09-21 Endo Ventures Limited Method of assessing and treating cellulite
US11813347B2 (en) 2017-03-01 2023-11-14 Endo Ventures Limited Method of assessing and treating cellulite
US11473074B2 (en) 2017-03-28 2022-10-18 Endo Global Aesthetics Limited Method of producing collagenase
US11872267B2 (en) 2019-10-15 2024-01-16 The Johns Hopkins University Treatment of uterine fibroids using purified collagenase

Similar Documents

Publication Publication Date Title
US3705083A (en) Process for producing collagenase
US3821364A (en) Process of producing collagenase
Peel et al. Human lymphadenitis due to Corynebacterium pseudotuberculosis: report of ten cases from Australia and review
Daniel et al. Lavage of septic joints in rabbits: effects of chondrolysis
EP0134385B1 (en) A protein having cell growth stimulating action, composition thereof and method for producing the same
Herrell et al. Experimental and clinical studies on gramicidin
CN113425891B (en) Photosynthetic bacterium-loaded hydrogel and preparation method and application thereof
Roberts et al. Infective bulbar necrosis (heel-abscess) of sheep, a mixed infection with Fusiformis necrophorus and Corynebacterium pyogenes
Miller et al. Clinical experience with streptokinase and streptodornase
US3409719A (en) Debridement agent
US20220152129A1 (en) External composition for wound healing containing lactobacillus fermentation product and method for promoting wound healing using the same
Connell et al. The use of enzymatic agents in the debridement of burn and wound sloughs
Stewart The role of Lucilia sericata Meig. larvae in osteomyelitis wounds
Schwaitzberg et al. Pyoderma gangrenosum: a possible cause of wound necrosis
EP0988374B1 (en) Hydrophilic composition containing protease produced by vibrio proteolyticus
Altemeier et al. Enzymatic debridement of burns
Schultz-Haudt et al. Lysis of collagen by human gingival bacteria.
EP0363491B1 (en) Bacterial preparation for prophylaxis and treatment of inflammatory processes and allergic diseases
Hellgren Cleansing properties of stabilized trypsin and streptokinase-streptodornase in necrotic leg ulcers
Thonard et al. Resistance of human gingival collagen to human gingival bacteria.
HIGHMAN et al. Staphylococcal endocarditis and glomerulonephritis in dogs
Colebrook et al. The growth and death of wound bacteria in serum, exudate and slough
Bagley Jr BRAIN ABSCESS DUE TO GAS-FORMING, SPORE-BEARING ANAEROBES: REPORT OF TWO CASES, WITH RECOVERY
US4057627A (en) Acne preparation for oral administration
Lyall et al. Progressive postoperative gangrene of the skin: observations on aetiology and treatment in two cases