US3866966A - Multiple prehension manipulator - Google Patents

Multiple prehension manipulator Download PDF

Info

Publication number
US3866966A
US3866966A US448342A US44834274A US3866966A US 3866966 A US3866966 A US 3866966A US 448342 A US448342 A US 448342A US 44834274 A US44834274 A US 44834274A US 3866966 A US3866966 A US 3866966A
Authority
US
United States
Prior art keywords
finger
positioning
finger means
gear
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US448342A
Inventor
Ii Frank R Skinner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US448342A priority Critical patent/US3866966A/en
Application granted granted Critical
Publication of US3866966A publication Critical patent/US3866966A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0009Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/54Artificial arms or hands or parts thereof
    • A61F2/58Elbows; Wrists ; Other joints; Hands
    • A61F2/583Hands; Wrist joints
    • A61F2/588Hands having holding devices shaped differently from human fingers, e.g. claws, hooks, tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/701Operating or control means electrical operated by electrically controlled means, e.g. solenoids or torque motors

Definitions

  • the invention disclosed herein overcomes these and other problems associated with the prior art by providing a manipulator which has virtually all ofthe basic capabilities associated with the human hand.
  • the construction of the invention is relatively simple thereby reducing the manufacturing cost and maintenance cost.
  • the invention comprises generally a plurality of finger assemblies, each including a finger pivoted about at least one finger axis through a single plane normal to the finger axis, a base mounting the finger assemblies so that the plane of each finger can be rotated about a positioning axis through the plane and normal to the finger axes, finger drive means for pivoting the fingers about the respective finger axes, and positioning means for moving the finger assemblies so that at least two of the planes will be rotated about their respective positioning axes.
  • the finger drive means may individually or collectively pivot the fingers about their finger axes. Also, the planes of movement of the fingers may be rotated so that the positioning axis substantially intersects the finger axes.
  • FIG. I is a perspective view of one embodiment of the invention.
  • FIG. 2 is a side view of the manipulator of FIG. 1 shown partly in cross-section with the fingers in tip prehensile mode and the finger drive mechanism omitted for clarity;
  • FIG. 3 is a cross-sectional view taken along line 33 in FIG. 2 and showing the finger assemblies in threejaw prehensile mode;
  • FIG. 4 is an operating end view of the manipulator of FIG. 1;
  • FIG. 5 is a cross-sectional view of the finger mechanism taken along line 5-5 in FIG. 4.
  • the first embodiment of the manipulator is designated by the numeral 10.
  • the manipulator 10 includes a base 11, a plurality of finger assemblies 12 mounted on base 11, a finger driving mechanism 14 carried by each finger assembly 12, and a positioning mechanism 15 carried in base 11 for positioning the finger assemblies 12.
  • the manipulator is an assembly of drives and mechanisms intended for prehension. These mechanisms, called fingers, can have one or more bending sections. Externally, a finger with its bending sections resembles an open linkage. Each finger link is a component of a closed linkage which can pivot or rotate the link. The fingers do not translate and are attached to a base. Three fingers are considered necessary and sufficient in the construction of the manipulator. Fingers can approach, contact, or pass one another during prehensile operation.
  • the manipulator contains all of the drives either in the base or finger assemblies.
  • a multiple degree-of-freedom wrist mechanism (not shown) 'may be used to connect to and move the manipulator so that it can approach an object from any direction
  • the objective of the manipulator is to produce a highly versatile hand with a minimum number of moving parts, a dependable drive system, and an optimum number of degrees of freedom.
  • the number of degrees of freedom is considered optimum when it is estimated that the manipulator can grasp all of the basic geometrical shapes from any aspect with the minimum number of external control inputs. These basic shapes are rectangular and triangular prisms, spheres, and cylinders.
  • the human hand is generally accepted as being capable of the six basic prehensile patterns: lateral, hook, tip, palmar, spherical, and cylindrical. These six basic prehensile patterns. because of similarities, can be reduced to the three basic mechanical equivalents of wrap, three-jaw and tip prehension that very nearly duplicate the basic human hand prehensile patterns. Additionally, in order to grip large objects that the fingers can not surround, spread prehension is created which consists of inserting the fingers into an opening in the object and then bending them outward to engage the object within the opening. The manipulator 10 is able to generate all of the above four equivalent prehensile ipatterns.
  • the base 11 is hollow with an equilateral triangular shaped top palmar plate 21 and bottom base plate 22.
  • a tubular side wall 24 also having a general equilateral triangular cross-sectional shape connects the plates 21 and 22 so that the plates are substantially parallel to each other and in vertical alignment.
  • palmar plate 21 corresponds to the palm of the human hand.
  • a cavity 25 is defined within the plates 21 and 22 and side wall 24. requires velocity
  • a finger assembly 12 is rotatably journalled between plates 21 and 22 at each of their three corners and extends outwardly from the palm plate 21.
  • the finger asseniblies 12 are individually designated 12., -l2 to distinguish each.
  • the finger driving mechanism 14 of each assembly 12 is positioned in cavity 25 and rotatable with its associated assembly 12 as will become more apparent.
  • the positioning mechanism 15 is also mounted within cavity 25.
  • Finger assemblies 12 42 are all identical in con- 5 40-42 with respect to each other and the finger 12 with struction and therefore only one assembly which is designated generally 12 as seen in FIG. 5 will be described in detail with like reference numbers applied to each.
  • the assembly 12 includes a frame 31 which is rotatably journalled about a positioning axis PA between palmar plate 21 and base plate 22 as seen in FIG. 2.
  • a mounting bracket 32 on frame 31 projects through an appropriate opening 26 in palmar plate 21.
  • a finger 34 is connected to bracket 32 through a single revolute joint 35 so the entire finger 34 is pivotal through a single curling plane CP as best seen in FIG. 1 about a curling axis CA passing through the joint 35.
  • the positioning axis PA is parallel to the curling axis CA passing through the joint 35. It will be noted that the positioning axis PA is parallel to the curling plane CP while the curling axis CA is perpendicular to the curling plane CP. In this embodiment, it will be noted that the positioning axis PA substantially intersects the curling axis CA and lies within the curling plane CP.
  • fingers 34 may be a single rigid member, those illustrated have multiple links joined by revolute joints to increase the ability of the finger to constrain an object and thus its versatility.
  • the fingers 34 may have any number of links, however, three links are illustrated and have been found sufficient when used in combination with other like fingers to approximate the human hand.
  • the links illustrated are a base link 40, an intermediate link 41 and a distal link 42.
  • the base link 40 is connected at one end to the bracket 32 through the revolute joint 35.
  • One end of the intermediate link 41 is connected to the other end of the base link 40 through a revolute joint 44 so that link 41 is pivoted to link 40 about a second curling axis CA-2 parallel to the axis CA ofjoint 35.
  • One end of the distal link 42 is connected to the other end of the intermediate link 41 through a third revolute joint 45 so that link 42 is pivoted to link 41 about a third curling axis CA-3 parallel to the second axis CA-2 and base axis CA.
  • Each link is provided with a gripping surface 46 to engage an object as is apparent. While only one gripping surface 46 is provided on one side of each link, it is to be understood that such surfaces may be provided on both sides if the finger is to be double acting as will become more apparent.
  • a stop 48 may be provided on each end of base link 40 at the revolute joints 35 and 44 as well as on the distal link 42 at the revolute joint 45.
  • the stops 48 may be configurated differently depending on the movement to be controlled, however,.
  • the stops 48 illustrated limit the opening movement of the links to a position in which the links are longitudinally aligned in a substantially straight path P as seen in FIGS. 2 and 5 and the entire finger 34 so that the path P is substantially normal to the working surface 23 of the palmar plate 21 when the finger assembly 12 is in its normal open position.
  • the embodiment shown curls the fingers 34 away from path P in only one direction and that is in the direction toward the surface 46 as indicated by arrow C in FIGS. 2 and 5.
  • the finger 12 is shown in a first curled position in FIG. 2 by dashed lines and in anrespect to bracket 32 and the working surface of palmar plate 21.
  • the links 4042 may be pivoted independently at each revolute joint 35,44 and 45 or the pivoting at the joints may be coupled in any desired fashion.
  • Several systems which can be used are cross four-bar chains, miniature compound pulleys, four-bar chains with an expanding link and tension cables.
  • Cross fourbar chains are dependable, easily built, and can transmit an angular displacement to the finger links in a continuously compounding manner.
  • Miniature compound pulleys develop a high mechanical advantage and allow the finger links to bend through large angles.
  • Expanding link four-bar chains can be used to drive the links easily with a high mechanical advantage and reasonable losses.
  • Tension cables rotate the links by simple direct contact and require very little space.
  • the finger driving mechanism 14 is shown by way of example only and is a tension cable-pulley system.
  • the mechanism 14 is mounted in frame 31 and rotatable therewith so that the relative positions are maintained between the finger 34 and driving mechanism 14 as the finger assembly 12 is rotated about its position ing axis PA. Because the motion of the finger 34 is attempting to duplicate that of the human finger, the base revolute joint 35 is independently rotated while the second and third revolute joints 44 and 45 are concurrently rotated in this illustration.
  • the mechanism 14 includes a curl drive unit 50 and a pinch drive unit 51 as best seen in FIG. 5.
  • Unit 50 includes a reversible drive motor 52 drivingly connected to a first multiple sheave winding drum 54.
  • a third cable drive is operatively connected to one sheave of drum 54 and serves to selectively close the third revolute joint 45.
  • Third cable drive 55 includes a pair of pulleys 56, one being rotatably journalled in the distal link 42 on the opposite side from the revolute joint 45 and one being rotatably journalled in the intermediate link 41 on the opposite side from joint 45.
  • a flexible cable 58 is wound around pulleys 56 and attached to drum 54 in such a way that when cable 58 is wound upon drum 54 as drum 54 is rotated in a first direction, the cable 58 forces the pulleys 56 toward each other to force the link 45 to pivot toward link 44 about the third curl axis CA-3.
  • a second cable drive 60 similar to drive 55 is operatively connected to another sheave of the winding drum 54 to selectively close the second revolute joint 44.
  • the second drive 60 includes a pair of pulleys 61 journalled in links 41 and 40 across joint 44 and drive cable 62 wound therearound and connected to drum 55 so that, as the drum rotates in the first direction, the pulleys 61 will be drawn together to pivot link 41 toward link 40 about the second curl axis CA-Z.
  • the unit 50 also includes an uncurling cable drive 64 operatively connected to yet another sheave of the first winding drum 54 and serves to concurrently open the .second and third revolute joints 44 and 45.
  • the drive 64 includes a pair of pulleys 65, one rotatably journalled in the inboard end of link 42 at the stop 48 and the other rotatably journalled in the outboard end of base link 40 at stop 48.
  • a slack adjustment pulley 66 is rotatably journalled in link 41 intermediate its ends and is spring urged toward the gripping surface 46.
  • a flexible cable 68 is wound around pulleys 65 and 66 and connected to winding drum 54 in such a manner that when drum 54 is rotated oppositely to the first direction, the pulleys 65 will be forced toward pulley 66 to open the links 41 and 42 about the curling axes CA-2 and CA-3.
  • the links 41 and 42 will be concurrently curled, and as drum 54 is rotated in the opposite direction (clockwise in FIG. 5) the links 41 and 42 will be uncurled to straighten the finger 34.
  • Unit 51 includes a reversible drive motor 70 drivingly connected to a second multiple sheave winding drum 71.
  • a first cable drive 72 is operatively connected to one sheave of drum 71 and serves to selectively close the first revolute joint 35.
  • First cable drive 72 includes a pair of pulleys 74, one being rotatably journalled in the base link 40 on the opposite side from the revolute joint 35 and one being rotatably journalled in the bracket 32 on the opposite side from joint 35.
  • a flexible cable 75 is wound around pulleys 74 and attached to drum 71 in such a way that when cable 75 is wound upon drum 71, as the drum 71 is rotated in a first direction, the cable 75 forces the pulleys 74 toward each other to force the link 40 to pivot toward bracket 32 about the first curl axis CA to impart a pinching movement to finger 34.
  • the unit 51 also includes an unpinching cable drive 76 operatively connected to another sheave of the second winding drum 71 and serves to concurrently open the first revolute joint 35.
  • the drive 76 includes a pulley 78 rotatably journalled in the inboard end oflink 40 at the stop 48.
  • Pulley 79 is rotatably journalled in bracket 32 and is spring urged away from revolute joint 35.
  • a flexible cable 80 is wound around pulleys 78 and 79 and connected to winding drum 71 in such a manner that when drum 71 is rotated oppositely to the first direction, the pulley 78 will be forced toward pulley 79 to open the link 40 about the curling axis CA.
  • the link 40 will be rotated to cause the finger 34 to pinch, and as drum 71 is rotated in the opposite direction (counterclockwise in FIG. 5) the link 40 will be unpinched to straighten the finger 34.
  • the positioning mechanism uses a single drive motor to drive the finger assemblies 12 into their various prehensile modes. If the fingers 34 can be pinched or curled in both directions in the curling plane CP away from their normal path P, then it is necessary to rotate only two finger assemblies 12 about their positioning axes PA. While various mechanisms may be used to rotate the assemblies 12, the mechanism shown rotates all three finger assemblies 12 to allow the fingers 34 to be pinched or curled in only one direction away from normal path P.
  • the mechanism 15 includes a positioning drive motor 81 mounted on palmar plate 21 within cavity 25.
  • the drive shaft 82 of motor 81 mounts drive gear 84 on the lower end thereof with a pitch diameter d,.
  • the drive gear 84 meshes directly with a gear 85 on the pivot shaft 38 of finger assembly and drives a driven gear 86 on shaft 38 of assembly 12,
  • a four-bar link 89 is pinned at one end to 84 by drive pin 90 located from the rotational axis of gear 84 a distance r, as will become more apparent.
  • the link 89 has an effective length L and its opposite end is pinned to a four-bar gear 91 through a driven pin 92.
  • the pin 92 is located from the rotational axis of gear 91 a distance r: as will become more apparent.
  • the four-bar gear 91 meshes with a driven gear 94 on the pivot shaft 38 of finger assembly 12 to drive same.
  • the mechanism 15 is known as a double dwell mechanism and progressively rotates finger assemblies 12 from the three-jaw prehensile mode (bending direction shown by solid lines in FIGS. 3 and 4) to the wrap prehensile mode (bending direction shown by dashed lines) to the spread prehensile mode (bending direction shown by phantom lines) to the tip prehensile mode (bending direction shown by dotdash lines).
  • the drive pin 90 assumes the solid line position on gear 84 in FIG.
  • finger assembly 12. is not effectively rotated while assembly 12,, is rotated 60 clockwise and assembly 12, is rotated 60 counterclockwise when gear 84 moves pin 90 from position P; to position P
  • gear 84 rotates pin 90 from position P; to position P assembly 12,, is effectively rotated l counterclockwise, assembly 12 is rotated l80 clockwise and assembly 12,. is rotated l80 counterclockwise.
  • gear 84 rotates pin from position P,- to position P, assembly 12,, is effectively rotated 180 counterclockwise; assembly 12,, is rotated 330 clockwise, and assembly 12, is rotated 330 counterclockwise.
  • motor 81 rotating drive shaft 82 counterclockwise from position P, to position P, and clockwise from position P, back to position P,-. Therefore motor 81 is reversible and can stop gear 84 in any of the above positions.
  • the ratio of the pitch diameter d, of drive gear 84 to each of the pitch diameters d and d of driven gears 85 and 86 is 1.25.
  • the pitch diameter d of four-bar gear 91 is equal to three times the pitch diameter (1,, of the driven gear 94.
  • the distance r is always less than one-half of the pitch diameter d of four-bar gear 91 and the distance r is always greater than one-half of the pitch diameter d, of
  • assembly 12 is at the same position P during the three-jaw and wrap modes and at the same position P during the spherical and tip modes while the finger assemblies 12 and 12 change position for each mode.
  • each axis PA is also illustrated as parallel to its respective curling plane CP, it is to be understood that it may be skewed with respect to the plane CP without departing from the scope of theinvention.
  • the curlling axes CA of each finger assembly 12 may be skewed with respect to each other.
  • a multiple prehension manipulator mechanism comprising:
  • finger drive means for selectively opening and closing said finger means to grasp
  • positioning drive means for selectively positioning said finger means so that at least two of said finger means are aligned along a common path in direct opposition to each other at a first position, and are parallel to each other and laterally spaced from each other in a second position.
  • said positioning drive means further positions said at least two finger means so that said finger means are directed toward a common point displaced laterally from the common path in a third position.
  • each of said finger means includes a finger bendable in a single curling plane about a revolute axis substantially normal to said curling plane and rotatable about a positioning axis substantially parallel to said curling plane.
  • each of said fingers has a normal substantially straight open position in which said finger lies along a prescribed substantially straight path in said curling plane substantially parallel to said positioning axis.
  • said positioning means further includes a four-bar linkage mechanism operatively connecting said motor with said other of said finger means so that other finger means is substantially parallel to and in opposition to said at least two finger means in said second position, and is directed toward said common point in said third position.
  • said four-bar linkage mechanism includes a drive gear having a first prescribed pitch diameter d operatively connected to said motor for selected rotation by said motor; a first driven gear having a second prescribed pitch diameter d operatively connected to one of said at least two finger means for rotating said finger means about its positioning axis and drivingly meshing with said drive gear; a four-bar gear rotatably mounted in said base having a third pitch diameter d a second driven gear having a fourth pitch diameter d operatively connected to said other finger means for rotating said other finger means about its positioning axis and drivingly meshing with said four-bar gear; and a four-bar link pinned to said drive gear a prescribed distance r from its center of rotation and pinned to said four-bar gear a prescribed distance r from its center of rotation and having a prescribed length L according to the following relationships:

Abstract

A multiple prehension manipulator mechanism including a base; a plurality of finger assemblies mounted on the base; finger drive means for selectively opening and closing the fingers so that each finger moves in a single curling plane; and positioning drive means for selectively positioning the finger assemblies so that different prehensile modes can be achieved. The disclosure also contemplates the method of operation of the mechanism.

Description

United States Patent [191 Skinner, II
[ 51 Feb. 18, 1975 MULTIPLE PREHENSION MANIPULATOR [76] Inventor: Frank R. Skinner, II, 2248 Ann Dr.,
St. Joseph, Mich.
[22] Filed: Mar. 5, 1974 211 Appl. No.: 448,342
Related US. Application Data [62] Division of Ser. No. 360,022, May 14, 1973,
abandoned.
[52] U.S. Cl. 294/106, 3/l2.7, 214/1 CM [51] Int. Cl. A6lf 1/06 [58] Field of Search 214/1 CM; 3/l2.7; 294/97, 294/115, 106
[56] References Cited UNITED STATES PATENTS Colechia 214/1 CM 3,694,021 9/ l 972 Mullen 294/106 Primary Examiner-Robert J. Spar Assistant ExaminerGe0rge F. Abraham Attorney, Agent, or FirmB. J. Powell [5 7] ABSTRACT 9 Claims, 5 Drawing Figures MULTIPLE PREHENSION MANIPULATOR CROSS-REFERENCE TO RELATED APPLICATIONS This application is a division of my copending application Ser. No. 360,022 filed May 14, 1973 for Multiple Prehension Manipulator Mechanism,-
now abandoned.
BACKGROUND OF THE INVENTION Many attempts known been made to produce a manipulator having substantially the same capabilities as the human hand. Because the human hand has many motor and control systems, such prior art manipulators have been very complicated and therefore prohibitively expensive to manufacture and maintain. Because of the complexity of the human hand, many of these prior art manipulators attempted to combine several motor functions of the human hand with the attendant loss of capability.
SUMMARY OF THE INVENTION The invention disclosed herein overcomes these and other problems associated with the prior art by providing a manipulator which has virtually all ofthe basic capabilities associated with the human hand. The construction of the invention is relatively simple thereby reducing the manufacturing cost and maintenance cost.
The invention comprises generally a plurality of finger assemblies, each including a finger pivoted about at least one finger axis through a single plane normal to the finger axis, a base mounting the finger assemblies so that the plane of each finger can be rotated about a positioning axis through the plane and normal to the finger axes, finger drive means for pivoting the fingers about the respective finger axes, and positioning means for moving the finger assemblies so that at least two of the planes will be rotated about their respective positioning axes. The finger drive means may individually or collectively pivot the fingers about their finger axes. Also, the planes of movement of the fingers may be rotated so that the positioning axis substantially intersects the finger axes.
These and other features and advantages will become more apparent upon consideration of the following specification and accompanying drawings wherein like characters of reference designate corresponding parts throughout the various views and in which:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a perspective view of one embodiment of the invention;
FIG. 2 is a side view of the manipulator of FIG. 1 shown partly in cross-section with the fingers in tip prehensile mode and the finger drive mechanism omitted for clarity;
FIG. 3 is a cross-sectional view taken along line 33 in FIG. 2 and showing the finger assemblies in threejaw prehensile mode;
FIG. 4 is an operating end view of the manipulator of FIG. 1; and,
FIG. 5 is a cross-sectional view of the finger mechanism taken along line 5-5 in FIG. 4.
These figures and the following detailed description disclose specific embodiments of the invention, however, it is to be understood that the inventive concept is not limited thereto since it may be embodied in other forms.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS Referring to FIGS. l5, it will be seen that the first embodiment of the manipulator is designated by the numeral 10. Generally, the manipulator 10 includes a base 11, a plurality of finger assemblies 12 mounted on base 11, a finger driving mechanism 14 carried by each finger assembly 12, and a positioning mechanism 15 carried in base 11 for positioning the finger assemblies 12.
Basically, the manipulator is an assembly of drives and mechanisms intended for prehension. These mechanisms, called fingers, can have one or more bending sections. Externally, a finger with its bending sections resembles an open linkage. Each finger link is a component of a closed linkage which can pivot or rotate the link. The fingers do not translate and are attached to a base. Three fingers are considered necessary and sufficient in the construction of the manipulator. Fingers can approach, contact, or pass one another during prehensile operation. The manipulator contains all of the drives either in the base or finger assemblies. A multiple degree-of-freedom wrist mechanism (not shown) 'may be used to connect to and move the manipulator so that it can approach an object from any direction The objective of the manipulator is to produce a highly versatile hand with a minimum number of moving parts, a dependable drive system, and an optimum number of degrees of freedom. The number of degrees of freedom is considered optimum when it is estimated that the manipulator can grasp all of the basic geometrical shapes from any aspect with the minimum number of external control inputs. These basic shapes are rectangular and triangular prisms, spheres, and cylinders.
The human hand is generally accepted as being capable of the six basic prehensile patterns: lateral, hook, tip, palmar, spherical, and cylindrical. These six basic prehensile patterns. because of similarities, can be reduced to the three basic mechanical equivalents of wrap, three-jaw and tip prehension that very nearly duplicate the basic human hand prehensile patterns. Additionally, in order to grip large objects that the fingers can not surround, spread prehension is created which consists of inserting the fingers into an opening in the object and then bending them outward to engage the object within the opening. The manipulator 10 is able to generate all of the above four equivalent prehensile ipatterns.
Referring now to FIGS. 24, it will be seen that the base 11 is hollow with an equilateral triangular shaped top palmar plate 21 and bottom base plate 22. A tubular side wall 24 also having a general equilateral triangular cross-sectional shape connects the plates 21 and 22 so that the plates are substantially parallel to each other and in vertical alignment. Generally speaking, the
palmar plate 21 corresponds to the palm of the human hand. A cavity 25 is defined within the plates 21 and 22 and side wall 24. requires velocity A finger assembly 12 is rotatably journalled between plates 21 and 22 at each of their three corners and extends outwardly from the palm plate 21. The finger asseniblies 12 are individually designated 12., -l2 to distinguish each. The finger driving mechanism 14 of each assembly 12 is positioned in cavity 25 and rotatable with its associated assembly 12 as will become more apparent. The positioning mechanism 15 is also mounted within cavity 25.
FINGER ASSEMBLY Any of many systems may be used to pivot links Finger assemblies 12 42, are all identical in con- 5 40-42 with respect to each other and the finger 12 with struction and therefore only one assembly which is designated generally 12 as seen in FIG. 5 will be described in detail with like reference numbers applied to each. The assembly 12 includes a frame 31 which is rotatably journalled about a positioning axis PA between palmar plate 21 and base plate 22 as seen in FIG. 2. A mounting bracket 32 on frame 31 projects through an appropriate opening 26 in palmar plate 21. A finger 34 is connected to bracket 32 through a single revolute joint 35 so the entire finger 34 is pivotal through a single curling plane CP as best seen in FIG. 1 about a curling axis CA passing through the joint 35. It will be noted that the positioning axis PA is parallel to the curling axis CA passing through the joint 35. It will be noted that the positioning axis PA is parallel to the curling plane CP while the curling axis CA is perpendicular to the curling plane CP. In this embodiment, it will be noted that the positioning axis PA substantially intersects the curling axis CA and lies within the curling plane CP.
While fingers 34 may be a single rigid member, those illustrated have multiple links joined by revolute joints to increase the ability of the finger to constrain an object and thus its versatility. The fingers 34 may have any number of links, however, three links are illustrated and have been found sufficient when used in combination with other like fingers to approximate the human hand. The links illustrated are a base link 40, an intermediate link 41 and a distal link 42. The base link 40 is connected at one end to the bracket 32 through the revolute joint 35. One end of the intermediate link 41 is connected to the other end of the base link 40 through a revolute joint 44 so that link 41 is pivoted to link 40 about a second curling axis CA-2 parallel to the axis CA ofjoint 35. One end of the distal link 42 is connected to the other end of the intermediate link 41 through a third revolute joint 45 so that link 42 is pivoted to link 41 about a third curling axis CA-3 parallel to the second axis CA-2 and base axis CA.
Each link is provided with a gripping surface 46 to engage an object as is apparent. While only one gripping surface 46 is provided on one side of each link, it is to be understood that such surfaces may be provided on both sides if the finger is to be double acting as will become more apparent.
To limit the amount of movement between links 40-42 and with bracket 32, a stop 48 may be provided on each end of base link 40 at the revolute joints 35 and 44 as well as on the distal link 42 at the revolute joint 45. The stops 48 may be configurated differently depending on the movement to be controlled, however,.
the stops 48 illustrated limit the opening movement of the links to a position in which the links are longitudinally aligned in a substantially straight path P as seen in FIGS. 2 and 5 and the entire finger 34 so that the path P is substantially normal to the working surface 23 of the palmar plate 21 when the finger assembly 12 is in its normal open position.
It will also be understood that while the fingers 34 could be curled away from path P in either direction in a plane CP, the embodiment shown curls the fingers 34 away from path P in only one direction and that is in the direction toward the surface 46 as indicated by arrow C in FIGS. 2 and 5. The finger 12 is shown in a first curled position in FIG. 2 by dashed lines and in anrespect to bracket 32 and the working surface of palmar plate 21. For instance, the links 4042 may be pivoted independently at each revolute joint 35,44 and 45 or the pivoting at the joints may be coupled in any desired fashion. Several systems which can be used are cross four-bar chains, miniature compound pulleys, four-bar chains with an expanding link and tension cables. Cross fourbar chains are dependable, easily built, and can transmit an angular displacement to the finger links in a continuously compounding manner. Miniature compound pulleys develop a high mechanical advantage and allow the finger links to bend through large angles. Expanding link four-bar chains can be used to drive the links easily with a high mechanical advantage and reasonable losses. Tension cables rotate the links by simple direct contact and require very little space. The finger driving mechanism 14 is shown by way of example only and is a tension cable-pulley system.
The mechanism 14 is mounted in frame 31 and rotatable therewith so that the relative positions are maintained between the finger 34 and driving mechanism 14 as the finger assembly 12 is rotated about its position ing axis PA. Because the motion of the finger 34 is attempting to duplicate that of the human finger, the base revolute joint 35 is independently rotated while the second and third revolute joints 44 and 45 are concurrently rotated in this illustration.
The mechanism 14 includes a curl drive unit 50 and a pinch drive unit 51 as best seen in FIG. 5. Unit 50 includes a reversible drive motor 52 drivingly connected to a first multiple sheave winding drum 54. A third cable drive is operatively connected to one sheave of drum 54 and serves to selectively close the third revolute joint 45. Third cable drive 55 includes a pair of pulleys 56, one being rotatably journalled in the distal link 42 on the opposite side from the revolute joint 45 and one being rotatably journalled in the intermediate link 41 on the opposite side from joint 45. A flexible cable 58 is wound around pulleys 56 and attached to drum 54 in such a way that when cable 58 is wound upon drum 54 as drum 54 is rotated in a first direction, the cable 58 forces the pulleys 56 toward each other to force the link 45 to pivot toward link 44 about the third curl axis CA-3. A second cable drive 60 similar to drive 55 is operatively connected to another sheave of the winding drum 54 to selectively close the second revolute joint 44. The second drive 60 includes a pair of pulleys 61 journalled in links 41 and 40 across joint 44 and drive cable 62 wound therearound and connected to drum 55 so that, as the drum rotates in the first direction, the pulleys 61 will be drawn together to pivot link 41 toward link 40 about the second curl axis CA-Z.
The unit 50 also includes an uncurling cable drive 64 operatively connected to yet another sheave of the first winding drum 54 and serves to concurrently open the .second and third revolute joints 44 and 45. The drive 64 includes a pair of pulleys 65, one rotatably journalled in the inboard end of link 42 at the stop 48 and the other rotatably journalled in the outboard end of base link 40 at stop 48. A slack adjustment pulley 66 is rotatably journalled in link 41 intermediate its ends and is spring urged toward the gripping surface 46. A flexible cable 68 is wound around pulleys 65 and 66 and connected to winding drum 54 in such a manner that when drum 54 is rotated oppositely to the first direction, the pulleys 65 will be forced toward pulley 66 to open the links 41 and 42 about the curling axes CA-2 and CA-3. Thus, as the drum 54 is rotated in the first direction (counterclockwise in FIG. 5), the links 41 and 42 will be concurrently curled, and as drum 54 is rotated in the opposite direction (clockwise in FIG. 5) the links 41 and 42 will be uncurled to straighten the finger 34.
Unit 51 includes a reversible drive motor 70 drivingly connected to a second multiple sheave winding drum 71. A first cable drive 72 is operatively connected to one sheave of drum 71 and serves to selectively close the first revolute joint 35. First cable drive 72 includes a pair of pulleys 74, one being rotatably journalled in the base link 40 on the opposite side from the revolute joint 35 and one being rotatably journalled in the bracket 32 on the opposite side from joint 35. A flexible cable 75 is wound around pulleys 74 and attached to drum 71 in such a way that when cable 75 is wound upon drum 71, as the drum 71 is rotated in a first direction, the cable 75 forces the pulleys 74 toward each other to force the link 40 to pivot toward bracket 32 about the first curl axis CA to impart a pinching movement to finger 34.
The unit 51 also includes an unpinching cable drive 76 operatively connected to another sheave of the second winding drum 71 and serves to concurrently open the first revolute joint 35. The drive 76 includes a pulley 78 rotatably journalled in the inboard end oflink 40 at the stop 48. Pulley 79 is rotatably journalled in bracket 32 and is spring urged away from revolute joint 35. A flexible cable 80 is wound around pulleys 78 and 79 and connected to winding drum 71 in such a manner that when drum 71 is rotated oppositely to the first direction, the pulley 78 will be forced toward pulley 79 to open the link 40 about the curling axis CA. Thus, as the drum 71 is rotated in the first direction (clockwise in FIG. 5), the link 40 will be rotated to cause the finger 34 to pinch, and as drum 71 is rotated in the opposite direction (counterclockwise in FIG. 5) the link 40 will be unpinched to straighten the finger 34.
POSITIONING MECHANISM The positioning mechanism uses a single drive motor to drive the finger assemblies 12 into their various prehensile modes. If the fingers 34 can be pinched or curled in both directions in the curling plane CP away from their normal path P, then it is necessary to rotate only two finger assemblies 12 about their positioning axes PA. While various mechanisms may be used to rotate the assemblies 12, the mechanism shown rotates all three finger assemblies 12 to allow the fingers 34 to be pinched or curled in only one direction away from normal path P.
Referring now to FIG. 3, the mechanism 15 includes a positioning drive motor 81 mounted on palmar plate 21 within cavity 25. The drive shaft 82 of motor 81 mounts drive gear 84 on the lower end thereof with a pitch diameter d,. The drive gear 84 meshes directly with a gear 85 on the pivot shaft 38 of finger assembly and drives a driven gear 86 on shaft 38 of assembly 12,
through idler gear 88. Gears 85, 86 and 88 have pitch diameters d, d,, and (1., respectively. A four-bar link 89 is pinned at one end to 84 by drive pin 90 located from the rotational axis of gear 84 a distance r, as will become more apparent. The link 89 has an effective length L and its opposite end is pinned to a four-bar gear 91 through a driven pin 92. The pin 92 is located from the rotational axis of gear 91 a distance r: as will become more apparent. The four-bar gear 91 meshes with a driven gear 94 on the pivot shaft 38 of finger assembly 12 to drive same.
The mechanism 15 is known as a double dwell mechanism and progressively rotates finger assemblies 12 from the three-jaw prehensile mode (bending direction shown by solid lines in FIGS. 3 and 4) to the wrap prehensile mode (bending direction shown by dashed lines) to the spread prehensile mode (bending direction shown by phantom lines) to the tip prehensile mode (bending direction shown by dotdash lines). As gear 84 is rotated, the drive pin 90 assumes the solid line position on gear 84 in FIG. 3 labelled P, for the three-jaw prehensile mode; assumes the dashed line position labelled P,, on gear 84 for the wrap prehensile mode which is displaced from position P, by angle a; assumes the phantom line position labelled P, on gear 84 for the spread prehensile mode which is displaced from position P by angle B; and assumes the dot-dash line position labelled P, on gear 84 for the tip prehensile mode which is displaced from position P, by angle 0. With the initial three-jaw prehensile mode position taken as the zero position and clockwise angular displacement of the finger assemblies 12 as seen in FIG. 3 taken as negative, a comparison of the resulting angular displacement of the finger assemblies 12 is shown in TABLE I attached to the end of this specification.
As seen from TABLE I, finger assembly 12., is not effectively rotated while assembly 12,, is rotated 60 clockwise and assembly 12, is rotated 60 counterclockwise when gear 84 moves pin 90 from position P; to position P As gear 84 rotates pin 90 from position P; to position P assembly 12,, is effectively rotated l counterclockwise, assembly 12 is rotated l80 clockwise and assembly 12,. is rotated l80 counterclockwise. As gear 84 rotates pin from position P,- to position P, assembly 12,, is effectively rotated 180 counterclockwise; assembly 12,, is rotated 330 clockwise, and assembly 12, is rotated 330 counterclockwise. Thus it will be seen that the various prehensile patterns may be achieved by motor 81 rotating drive shaft 82 counterclockwise from position P, to position P, and clockwise from position P, back to position P,-. Therefore motor 81 is reversible and can stop gear 84 in any of the above positions.
Angles a, B and 0 are determined by equation:
which produces an angle a 48, B 96 and a: The ratio of the pitch diameter d, of drive gear 84 to each of the pitch diameters d and d of driven gears 85 and 86 is 1.25. To avoid locking mechanism 15, the pitch diameter d of four-bar gear 91 is equal to three times the pitch diameter (1,, of the driven gear 94. The distance r is always less than one-half of the pitch diameter d of four-bar gear 91 and the distance r is always greater than one-half of the pitch diameter d, of
drive gear 84. Where distance r, r cos 60, the length L of four-bar link 89 can be calculated as follows:
where t outside diameter pitch diameter of fourbar gear 91 or motor gear 84. Thus, it will be seen that assembly 12,, is at the same position P during the three-jaw and wrap modes and at the same position P during the spherical and tip modes while the finger assemblies 12 and 12 change position for each mode.
As the pin 90 moves from position P to P and position P to P, the pin 92 is moved through angle gr. While various sizes of the gears 84, 85, 86, 88, 91 and 94 as well as the length of link 89 may be varied, one representative size is set forth in TABLE 11 attached to the end of this specification.
While the positioning axes PA are illustrated parallel to each other it is to be understood that these axes may be skewed with respect to each other without departing from the scope of the invention. Likewise, while each axis PA is also illustrated as parallel to its respective curling plane CP, it is to be understood that it may be skewed with respect to the plane CP without departing from the scope of theinvention. In the same manner it is to be understood that the curlling axes CA of each finger assembly 12 may be skewed with respect to each other.
While specific embodiments of the invention have been disclosed herein, it is to be understood that full use may be made of modifications, substitutions and equivalents without departing from the scope of the inventive concept.
TABLE 1 COMPARISON OF ANGULAR DlSPLACEMEN-T OF FlNGERS Prehensile Finger Finger Finger Mode Assembly 12., Assembly 12,, Assembly 12,.
Thrce-Jaw 0 0 Wrap 0 60 +60 Spread +180 180 +l80 Tip +180 330 +330 TABLE II REPRESENTATIVE SIZES COMPONENT DlMENSlON SIZE d, 2.10" I 1.80 (I 1.80" 11., Practical d 1.50" d .50" r .419" r .65" L 1.83
1 claim:
1. A multiple prehension manipulator mechanism comprising:
a plurality of finger means;
finger drive means for selectively opening and closing said finger means to grasp; and,
positioning drive means for selectively positioning said finger means so that at least two of said finger means are aligned along a common path in direct opposition to each other at a first position, and are parallel to each other and laterally spaced from each other in a second position.
2. The mechanism of claim 1 wherein said positioning drive means further positions said at least two finger means so that said finger means are directed toward a common point displaced laterally from the common path in a third position.
3. The mechanism of claim 2 wherein said positioning drive means includes a single motor.
4. The mechanism of claim 3 wherein each of said finger means includes a finger bendable in a single curling plane about a revolute axis substantially normal to said curling plane and rotatable about a positioning axis substantially parallel to said curling plane.
5. The mechanism of claim 4 wherein each of said fingers has a normal substantially straight open position in which said finger lies along a prescribed substantially straight path in said curling plane substantially parallel to said positioning axis.
6. The mechanism of claim 5 wherein there are three finger means and further including a palmar member rotatably mounting each of said finger means for rotation about said positioning axes, said palmar member defining a planar working surface and said finger means located so that said fingers project over said surface from spaced points and said positioning axes are substantially parallel.
7. The mechanism of claim 6 wherein said finger means are positioned so that said positioning axis of each of said finger means lies in said curling plane of said finger in substantial alignment with said prescribed straight path of said finger is said open position.
8. The mechanism of claim 7 wherein said positioning means further includes a four-bar linkage mechanism operatively connecting said motor with said other of said finger means so that other finger means is substantially parallel to and in opposition to said at least two finger means in said second position, and is directed toward said common point in said third position.
9. The mechanism of claim 8 wherein said four-bar linkage mechanism includes a drive gear having a first prescribed pitch diameter d operatively connected to said motor for selected rotation by said motor; a first driven gear having a second prescribed pitch diameter d operatively connected to one of said at least two finger means for rotating said finger means about its positioning axis and drivingly meshing with said drive gear; a four-bar gear rotatably mounted in said base having a third pitch diameter d a second driven gear having a fourth pitch diameter d operatively connected to said other finger means for rotating said other finger means about its positioning axis and drivingly meshing with said four-bar gear; and a four-bar link pinned to said drive gear a prescribed distance r from its center of rotation and pinned to said four-bar gear a prescribed distance r from its center of rotation and having a prescribed length L according to the following relationships:
where r outside diameter of said driven gear d

Claims (9)

1. A multiple prehension manipulator mechanism comprising: a plurality of finger means; finger drive means for selectively opening and closing said finger means to grasp; and, positioning drive means for selectively positioning said finger means so that at least two of said finger means are aligned along a common path in direct opposition to each other at a first position, and are parallel to each other and laterally spaced from each other in a second position.
2. The mechanism of claim 1 wherein said positioning drive means further positions said at least two finger means so that said finger means are directed toward a common point displaced laterally from the common path in a third position.
3. The mechanism of claim 2 wherein said positioning drive means includes a single motor.
4. The mechanism of claim 3 wherein each of said finger means includes a finger bendable in a single curling plane about a revolute axis substantially normal to said curling plane and rotatable about a positioning axis substantially parallel to said curling plane.
5. The mechanism of claim 4 wherein each of said fingers has a normal substantially straight open position in which said finger lies along a prescribed substantially straight path in said curling plane substantially parallel to said positioning axis.
6. The mechanism of claim 5 wherein there are three finger means and further including a palmar member rotatably mounting each of said finger means for rotation about said positioning axes, said palmar member defining a planar working surface and said finger means located so that said fingers project over said surface from spaced points and said positioning axes are substantially parallel.
7. The mechanism of claim 6 wherein said finger means are positioned so that said positioning axis of each of said finger means lies in said curling plane of said finger in substantial alignment with said prescribed straight path of said finger is said open position.
8. The mechanism of claim 7 wherein said positioning means further includes a four-bar linkage mechanism operatively connecting said motor with said other of said finger means so that other finger means is substantially parallel to and in opposition to said at least two finger means in said second position, and is directed toward said common point in said third position.
9. The mechanism of claim 8 wherein said four-bar linkage mechanism includes a drive gear having a first prescribed pitch diameter d1 operatively connected to said motor for selected rotation by said motor; a first driven gear having a second prescribed pitch diameter d2 operatively connected to one of said at least two finger means for rotating said finger means about its positioning axis and drivingly meshing with said drive gear; a four-bar gear rotatably mounted in said base having a third pitch diameter d5; a second driven gear having a fourth pitch diameter d6 operatively connected to said other finger means for rotating said other finger means about its positioning axis and drivingly meshing with said four-bar gear; and a four-bar link pinned to said drive gear a prescribed distance r1 from its center of rotation and pinned to said four-bar gear a prescribed distance r2 from its center of rotation and having a prescribed length L according to the following relationships: d1/d2 1.25 d5 3 d6 r2 d5/2 r1 > d1/2 r1 r2 cos 60* L > or = ( ( Alpha 1/2 + Alpha 5/2 + t)2 - (r2 cos 60)2) 1/2 where t outside diameter of said driven gear - d1.
US448342A 1973-05-14 1974-03-05 Multiple prehension manipulator Expired - Lifetime US3866966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US448342A US3866966A (en) 1973-05-14 1974-03-05 Multiple prehension manipulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36002273A 1973-05-14 1973-05-14
US448342A US3866966A (en) 1973-05-14 1974-03-05 Multiple prehension manipulator

Publications (1)

Publication Number Publication Date
US3866966A true US3866966A (en) 1975-02-18

Family

ID=27000721

Family Applications (1)

Application Number Title Priority Date Filing Date
US448342A Expired - Lifetime US3866966A (en) 1973-05-14 1974-03-05 Multiple prehension manipulator

Country Status (1)

Country Link
US (1) US3866966A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047448A (en) * 1975-05-15 1977-09-13 Sofermo Robot head
FR2465571A1 (en) * 1979-09-19 1981-03-27 Alberto Rovetta MULTI-PURPOSE MECHANICAL HAND
US4469327A (en) * 1982-03-15 1984-09-04 Hasbro Industries, Inc. Amusement game device
EP0140569A2 (en) * 1983-09-30 1985-05-08 Kabushiki Kaisha Toshiba Robot hand
US4573727A (en) * 1984-03-31 1986-03-04 Kabushiki Kaisha Toshiba Robot hand
US4616971A (en) * 1983-10-11 1986-10-14 Fairchild Camera And Instrument Corp. Robotic hand and method for manipulating printed circuit boards
GB2175877A (en) * 1985-05-14 1986-12-10 Francis Taylor Chambers Robotic hand
US4667997A (en) * 1984-10-31 1987-05-26 Hitachi, Ltd. Grip device
US4865376A (en) * 1987-09-25 1989-09-12 Leaver Scott O Mechanical fingers for dexterity and grasping
WO1990002030A1 (en) * 1988-08-31 1990-03-08 The Trustees Of The University Of Pennsylvania Methods and apparatus for mechanically intelligent grasping
US4921293A (en) * 1982-04-02 1990-05-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-fingered robotic hand
US4946380A (en) * 1989-05-30 1990-08-07 University Of Southern California Artificial dexterous hand
US4990162A (en) * 1988-03-21 1991-02-05 Children's Hospital At Stanford Rotary hand prosthesis
US5052736A (en) * 1990-02-02 1991-10-01 The University Of Maryland Modular dexterous hand
US5108140A (en) * 1988-04-18 1992-04-28 Odetics, Inc. Reconfigurable end effector
US5150937A (en) * 1989-09-07 1992-09-29 Canon Kabushiki Kaisha Work pickup apparatus
US5161846A (en) * 1988-08-23 1992-11-10 Canon Kabushiki Kaisha Hand apparatus
US5172951A (en) * 1990-08-06 1992-12-22 University Of Utah Research Foundation Robotic grasping apparatus
US5209715A (en) * 1989-11-13 1993-05-11 Walker Fitness Systems, Inc. Automatic force generating and control system
US5280981A (en) * 1991-02-01 1994-01-25 Odetics, Inc. End effector with load-sensitive digit actuation mechanisms
US5356187A (en) * 1993-06-21 1994-10-18 The United States Of America As Represented By The Secretary Of The Navy Recovery and deployment device
US5378033A (en) * 1993-05-10 1995-01-03 University Of Kentucky Research Foundation Multi-function mechanical hand with shape adaptation
US5487580A (en) * 1993-03-24 1996-01-30 Murata Manufacturing Co., Ltd. Chuck unit
US5501498A (en) * 1988-08-31 1996-03-26 The Trustees Of The University Of Pennsylvania Methods and apparatus for mechanically intelligent grasping
US5570920A (en) * 1994-02-16 1996-11-05 Northeastern University Robot arm end effector
US5716352A (en) * 1994-06-24 1998-02-10 United States Surgical Corporation Apparatus and method for performing surgical tasks during laparoscopic procedures
US5762390A (en) * 1996-07-16 1998-06-09 Universite Laval Underactuated mechanical finger with return actuation
US6197017B1 (en) 1998-02-24 2001-03-06 Brock Rogers Surgical, Inc. Articulated apparatus for telemanipulator system
US6217094B1 (en) * 1999-05-24 2001-04-17 Japan Servo Co., Ltd. Object holding device
US6276733B1 (en) 1998-06-30 2001-08-21 Phd, Inc. Jaw tips and jaw tip assemblies for parts grippers
US6358285B1 (en) * 2000-06-29 2002-03-19 Teh Lin Prosthetic & Orthopaedic Inc. Motor-driven prosthetic prehensor
US6432112B2 (en) 1998-02-24 2002-08-13 Brock Rogers Surgical, Inc. Articulated apparatus for telemanipulator system
US6505870B1 (en) 2000-05-30 2003-01-14 UNIVERSITé LAVAL Actuation system for highly underactuated gripping mechanism
US6517132B2 (en) * 2000-04-04 2003-02-11 Honda Giken Kogyo Kabushiki Kaisha Multifinger hand device
US20040054424A1 (en) * 2000-12-06 2004-03-18 Hiroshi Matsuda Multi-finger hand device
US6817641B1 (en) * 2002-08-30 2004-11-16 Lawrence J. Singleton, Jr. Robotic arm and hand
US6874834B2 (en) 1996-10-07 2005-04-05 Phd, Inc. Linear slide gripper
US20050145077A1 (en) * 2003-11-12 2005-07-07 Williams Steven A. Light bulb installation and removal device
US20060012197A1 (en) * 2003-12-30 2006-01-19 Strider Labs, Inc. Robotic hand with extendable palm
US20070088340A1 (en) * 1998-02-24 2007-04-19 Hansen Medical, Inc. Surgical instruments
US7223142B1 (en) 2005-09-07 2007-05-29 Mcdonough Kevin Marine rescue assembly and a method for rescuing an individual
US20070239120A1 (en) * 1998-02-24 2007-10-11 Brock David L Flexible instrument
US20080038099A1 (en) * 2004-07-15 2008-02-14 Krones Ag Gripper for Containers and Container Handling Machine
US20080177285A1 (en) * 1998-02-24 2008-07-24 Hansen Medical, Inc. Surgical instrument
US20090071281A1 (en) * 2007-09-13 2009-03-19 Fisk Allan T Robot arm assembly
US20100072766A1 (en) * 2006-09-08 2010-03-25 Oerlikon Assembly Equipment Pte. Ltd. Gripper with three jaws forming two clamps
US20100158656A1 (en) * 2008-12-18 2010-06-24 Seavey Nathaniel J M Robot arm assembly
US20100164243A1 (en) * 2008-12-29 2010-07-01 Albin Scott R Gripper system
US20110089709A1 (en) * 2009-10-20 2011-04-21 Nexus Biosystems, Inc. Gripper Apparatus and Method for Containers of Different Sizes
US8007511B2 (en) 2003-06-06 2011-08-30 Hansen Medical, Inc. Surgical instrument design
US8414043B2 (en) 2008-10-21 2013-04-09 Foster-Miller, Inc. End effector for mobile remotely controlled robot
US8414598B2 (en) 1998-02-24 2013-04-09 Hansen Medical, Inc. Flexible instrument
US8573663B1 (en) * 2012-04-30 2013-11-05 Precision Machinery Research & Development Center Finger-gesticulation hand device
US20140117686A1 (en) * 2011-07-12 2014-05-01 Kabushiki Kaisha Yaskawa Denki Robot hand and robot
CN107053243A (en) * 2016-03-07 2017-08-18 温州市科泓机器人科技有限公司 Revolute robot's paw
US20190152069A1 (en) * 2016-10-20 2019-05-23 Olympus Corporation Swing mechanism and gripping tool
US20200147812A1 (en) * 2018-11-08 2020-05-14 Sri International Gripper Devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451224A (en) * 1967-06-20 1969-06-24 Gen Dynamics Corp Stowable underwater manipulator
US3694021A (en) * 1970-07-31 1972-09-26 James F Mullen Mechanical hand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451224A (en) * 1967-06-20 1969-06-24 Gen Dynamics Corp Stowable underwater manipulator
US3694021A (en) * 1970-07-31 1972-09-26 James F Mullen Mechanical hand

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047448A (en) * 1975-05-15 1977-09-13 Sofermo Robot head
FR2465571A1 (en) * 1979-09-19 1981-03-27 Alberto Rovetta MULTI-PURPOSE MECHANICAL HAND
US4469327A (en) * 1982-03-15 1984-09-04 Hasbro Industries, Inc. Amusement game device
US4921293A (en) * 1982-04-02 1990-05-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-fingered robotic hand
EP0140569A3 (en) * 1983-09-30 1985-06-12 Kabushiki Kaisha Toshiba Robot hand
US4623183A (en) * 1983-09-30 1986-11-18 Kabushiki Kaisha Toshiba Robot hand
EP0140569A2 (en) * 1983-09-30 1985-05-08 Kabushiki Kaisha Toshiba Robot hand
US4616971A (en) * 1983-10-11 1986-10-14 Fairchild Camera And Instrument Corp. Robotic hand and method for manipulating printed circuit boards
US4573727A (en) * 1984-03-31 1986-03-04 Kabushiki Kaisha Toshiba Robot hand
US4667997A (en) * 1984-10-31 1987-05-26 Hitachi, Ltd. Grip device
GB2175877A (en) * 1985-05-14 1986-12-10 Francis Taylor Chambers Robotic hand
US4715638A (en) * 1985-05-14 1987-12-29 Chambers Francis T Robotic hand with slip couplings
US4865376A (en) * 1987-09-25 1989-09-12 Leaver Scott O Mechanical fingers for dexterity and grasping
US4990162A (en) * 1988-03-21 1991-02-05 Children's Hospital At Stanford Rotary hand prosthesis
US5108140A (en) * 1988-04-18 1992-04-28 Odetics, Inc. Reconfigurable end effector
US5161846A (en) * 1988-08-23 1992-11-10 Canon Kabushiki Kaisha Hand apparatus
WO1990002030A1 (en) * 1988-08-31 1990-03-08 The Trustees Of The University Of Pennsylvania Methods and apparatus for mechanically intelligent grasping
US4957320A (en) * 1988-08-31 1990-09-18 Trustees Of The University Of Pennsylvania Methods and apparatus for mechanically intelligent grasping
US5501498A (en) * 1988-08-31 1996-03-26 The Trustees Of The University Of Pennsylvania Methods and apparatus for mechanically intelligent grasping
US4955918A (en) * 1989-05-30 1990-09-11 University Of Southern California Artificial dexterous hand
US4946380A (en) * 1989-05-30 1990-08-07 University Of Southern California Artificial dexterous hand
US5150937A (en) * 1989-09-07 1992-09-29 Canon Kabushiki Kaisha Work pickup apparatus
US5209715A (en) * 1989-11-13 1993-05-11 Walker Fitness Systems, Inc. Automatic force generating and control system
US5052736A (en) * 1990-02-02 1991-10-01 The University Of Maryland Modular dexterous hand
US5172951A (en) * 1990-08-06 1992-12-22 University Of Utah Research Foundation Robotic grasping apparatus
US5328224A (en) * 1990-08-06 1994-07-12 University Of Utah Research Foundation Robotic grasping apparatus
US5280981A (en) * 1991-02-01 1994-01-25 Odetics, Inc. End effector with load-sensitive digit actuation mechanisms
US5487580A (en) * 1993-03-24 1996-01-30 Murata Manufacturing Co., Ltd. Chuck unit
US5378033A (en) * 1993-05-10 1995-01-03 University Of Kentucky Research Foundation Multi-function mechanical hand with shape adaptation
US5356187A (en) * 1993-06-21 1994-10-18 The United States Of America As Represented By The Secretary Of The Navy Recovery and deployment device
US5570920A (en) * 1994-02-16 1996-11-05 Northeastern University Robot arm end effector
US5716352A (en) * 1994-06-24 1998-02-10 United States Surgical Corporation Apparatus and method for performing surgical tasks during laparoscopic procedures
US5807376A (en) * 1994-06-24 1998-09-15 United States Surgical Corporation Apparatus and method for performing surgical tasks during laparoscopic procedures
US5762390A (en) * 1996-07-16 1998-06-09 Universite Laval Underactuated mechanical finger with return actuation
US6874834B2 (en) 1996-10-07 2005-04-05 Phd, Inc. Linear slide gripper
US7713190B2 (en) 1998-02-24 2010-05-11 Hansen Medical, Inc. Flexible instrument
US20080132913A1 (en) * 1998-02-24 2008-06-05 Hansen Medical, Inc. Surgical instrument
US20070239120A1 (en) * 1998-02-24 2007-10-11 Brock David L Flexible instrument
US8414598B2 (en) 1998-02-24 2013-04-09 Hansen Medical, Inc. Flexible instrument
US6432112B2 (en) 1998-02-24 2002-08-13 Brock Rogers Surgical, Inc. Articulated apparatus for telemanipulator system
US7789875B2 (en) 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
US20070088340A1 (en) * 1998-02-24 2007-04-19 Hansen Medical, Inc. Surgical instruments
US20080119872A1 (en) * 1998-02-24 2008-05-22 Hansen Medical, Inc. Surgical instrument
US6692485B1 (en) 1998-02-24 2004-02-17 Endovia Medical, Inc. Articulated apparatus for telemanipulator system
US20080177285A1 (en) * 1998-02-24 2008-07-24 Hansen Medical, Inc. Surgical instrument
US6197017B1 (en) 1998-02-24 2001-03-06 Brock Rogers Surgical, Inc. Articulated apparatus for telemanipulator system
US6276733B1 (en) 1998-06-30 2001-08-21 Phd, Inc. Jaw tips and jaw tip assemblies for parts grippers
US6302462B2 (en) 1998-06-30 2001-10-16 Phd, Inc. Jaw tips and jaw tip assemblies for parts grippers
US6217094B1 (en) * 1999-05-24 2001-04-17 Japan Servo Co., Ltd. Object holding device
US6517132B2 (en) * 2000-04-04 2003-02-11 Honda Giken Kogyo Kabushiki Kaisha Multifinger hand device
JP2003534930A (en) * 2000-05-30 2003-11-25 ユニヴェルシテ ラヴァル Actuation system for gripping mechanism operated by very few actuators
US6505870B1 (en) 2000-05-30 2003-01-14 UNIVERSITé LAVAL Actuation system for highly underactuated gripping mechanism
US6358285B1 (en) * 2000-06-29 2002-03-19 Teh Lin Prosthetic & Orthopaedic Inc. Motor-driven prosthetic prehensor
US6913627B2 (en) * 2000-12-06 2005-07-05 Honda Giken Kogyo Kabushiki Kaisha Multi-finger hand device
US20040054424A1 (en) * 2000-12-06 2004-03-18 Hiroshi Matsuda Multi-finger hand device
US6817641B1 (en) * 2002-08-30 2004-11-16 Lawrence J. Singleton, Jr. Robotic arm and hand
US8007511B2 (en) 2003-06-06 2011-08-30 Hansen Medical, Inc. Surgical instrument design
US7197962B2 (en) * 2003-11-12 2007-04-03 Steven Andrew Williams Light bulb installation and removal device
US20050145077A1 (en) * 2003-11-12 2005-07-07 Williams Steven A. Light bulb installation and removal device
US7370896B2 (en) 2003-12-30 2008-05-13 Strider Labs, Inc. Robotic hand with extendable palm
US20060012197A1 (en) * 2003-12-30 2006-01-19 Strider Labs, Inc. Robotic hand with extendable palm
US7661739B2 (en) * 2004-07-15 2010-02-16 Krones Ag Gripper for containers and container handling machine
US20080038099A1 (en) * 2004-07-15 2008-02-14 Krones Ag Gripper for Containers and Container Handling Machine
US7223142B1 (en) 2005-09-07 2007-05-29 Mcdonough Kevin Marine rescue assembly and a method for rescuing an individual
US20100072766A1 (en) * 2006-09-08 2010-03-25 Oerlikon Assembly Equipment Pte. Ltd. Gripper with three jaws forming two clamps
US20090071281A1 (en) * 2007-09-13 2009-03-19 Fisk Allan T Robot arm assembly
US8176808B2 (en) 2007-09-13 2012-05-15 Foster-Miller, Inc. Robot arm assembly
US8414043B2 (en) 2008-10-21 2013-04-09 Foster-Miller, Inc. End effector for mobile remotely controlled robot
US20100158656A1 (en) * 2008-12-18 2010-06-24 Seavey Nathaniel J M Robot arm assembly
US8322249B2 (en) 2008-12-18 2012-12-04 Foster-Miller, Inc. Robot arm assembly
US20100164243A1 (en) * 2008-12-29 2010-07-01 Albin Scott R Gripper system
US8141924B2 (en) * 2008-12-29 2012-03-27 Foster-Miller, Inc. Gripper system
US20110089709A1 (en) * 2009-10-20 2011-04-21 Nexus Biosystems, Inc. Gripper Apparatus and Method for Containers of Different Sizes
US8439414B2 (en) * 2009-10-20 2013-05-14 Brooks Automation, Inc. Gripper apparatus and method for containers of different sizes
US8910985B2 (en) 2009-10-20 2014-12-16 Brooks Automation, Inc. Gripper apparatus and method for containers of different sizes
US20140117686A1 (en) * 2011-07-12 2014-05-01 Kabushiki Kaisha Yaskawa Denki Robot hand and robot
US8910984B2 (en) * 2011-07-12 2014-12-16 Kabushiki Kaisha Yaskawa Denki Robot hand and robot
US8573663B1 (en) * 2012-04-30 2013-11-05 Precision Machinery Research & Development Center Finger-gesticulation hand device
CN107053243A (en) * 2016-03-07 2017-08-18 温州市科泓机器人科技有限公司 Revolute robot's paw
US20190152069A1 (en) * 2016-10-20 2019-05-23 Olympus Corporation Swing mechanism and gripping tool
US10786909B2 (en) * 2016-10-20 2020-09-29 Olympus Corporation Swing mechanism and gripping tool
US20200147812A1 (en) * 2018-11-08 2020-05-14 Sri International Gripper Devices
US10710247B2 (en) * 2018-11-08 2020-07-14 Sri International Gripper devices

Similar Documents

Publication Publication Date Title
US3866966A (en) Multiple prehension manipulator
US8052185B2 (en) Robot hand with humanoid fingers
US5570920A (en) Robot arm end effector
US3901547A (en) Multiple prehension mechanism
US6324934B1 (en) Robot arm
JP3848123B2 (en) Humanoid robot hand
JPH02145282A (en) Upper extremity mechanism of human like type
DE3261701D1 (en) Rectilinear translation mechanism with belt pulleys and belts
JPS58126091A (en) Power manipulator
CN107984484B (en) Self-adaptive robot finger device with end accurate compensation and linear parallel clamping
JP6127315B2 (en) Hand device and finger
CN108818577B (en) Self-adaptive robot finger device for linearly and parallelly clamping oscillating bar and sliding groove
JP2003305681A (en) Robot hand
WO2005059407A1 (en) Rotation and extension/retraction link mechanism
US5020388A (en) Wire guide apparatus for wire-driven mechanism
US11660764B2 (en) Robot joint device
CN208529125U (en) Mechanical thumb and manipulator
CN114131644A (en) Mechanical arm
US20220305669A1 (en) Robot hand
CN214686581U (en) Humanoid mechanical arm
SU1119837A1 (en) Industrial robot
CN114193503B (en) Manipulator finger joint and underactuated manipulator
KR102303660B1 (en) Gripping apparatus using cardan gear mechanism
SU1184664A1 (en) Manipulator grip
JPS6260235B2 (en)