US7027919B2 - Vehicle and/or asset tracking and localization system and method - Google Patents

Vehicle and/or asset tracking and localization system and method Download PDF

Info

Publication number
US7027919B2
US7027919B2 US10/698,547 US69854703A US7027919B2 US 7027919 B2 US7027919 B2 US 7027919B2 US 69854703 A US69854703 A US 69854703A US 7027919 B2 US7027919 B2 US 7027919B2
Authority
US
United States
Prior art keywords
vehicle
module
tracking system
control module
microprocessor control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/698,547
Other versions
US20040093159A1 (en
Inventor
Daniel Bernesi
Francesco Losito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/698,547 priority Critical patent/US7027919B2/en
Publication of US20040093159A1 publication Critical patent/US20040093159A1/en
Application granted granted Critical
Publication of US7027919B2 publication Critical patent/US7027919B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • G08G1/205Indicating the location of the monitored vehicles as destination, e.g. accidents, stolen, rental
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/10Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device
    • B60R25/102Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device a signal being sent to a remote location, e.g. a radio signal being transmitted to a police station, a security company or the owner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/30Detection related to theft or to other events relevant to anti-theft systems
    • B60R25/33Detection related to theft or to other events relevant to anti-theft systems of global position, e.g. by providing GPS coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Definitions

  • the present invention relates to a vehicle and/or asset tracking and localization system and method for determining absolute vehicle/asset location.
  • U.S. Pat. No. 5,895,436 discloses a vehicle tracking system using the existing cellular network
  • U.S. Pat. No. 5,225,842 discloses a vehicle tracking system employing global positioning system (GPS) satellites for position/location determination.
  • GPS global positioning system
  • tracking systems that use the cellular network are limited by constraints such as having to locate the missing vehicle through relative signal strength methods between cellular base stations. These systems also require several back and forth signalling transmissions between the location transceiver mounted in the vehicle and the base stations of the cellular network.
  • One disadvantage of such tracking systems is that the cell distribution is not the same throughout the network and the accuracy of the tracking may vary depending on the number of base stations available at any site.
  • wireless remote cut-off modules to disable critical components in a vehicle such as fuel pumps, ignition, starter, fuel injection, etc., to prevent engine starting by unauthorized users.
  • a tracking system for locating a vehicle and/or asset comprising:
  • the radio transmitter may be any type of wireless transmitter using cellular networks, paging networks, or any other wireless radio transmission.
  • This system relies upon the typical characteristic of inertial sensors, which is the fact that a vehicle/asset's position or location is the result of the original location plus the second integral of the longitudinal and lateral acceleration magnitudes.
  • the system according to the present invention is therefore autonomous and self-contained, and does not depend upon third party infrastructures such as prior art vehicle tracking systems using cellular networks as disclosed in U.S. Pat. No. 5,895,436 (SAVOIE) or vehicle tracking systems employing global positioning system (GPS) satellites for position/location determination as disclosed in U.S. Pat. No. 5,225,842 (BROWN).
  • SAVOIE vehicle tracking systems using cellular networks as disclosed in U.S. Pat. No. 5,895,436
  • GPS global positioning system
  • the preferred inertial sensors consist of micro-machined accelerometers manufactured using nano-technology methods, although other inertial sensors could be used.
  • the inertial sensors combined with the central station data processing capabilities provide location resolutions approaching 1–2 meters per kilometer.
  • Absolute vehicle location may be displayed in Latitude-Longitude coordinates and/or scrolling area maps.
  • a method for locating a vehicle and/or asset comprising the steps of:
  • a method to control remote cut-off modules using a high frequency carrier superimposed to the existing vehicle wiring The cut-off modules are connected directly to the controlled component, and controlled by superimposing a high frequency carrier signal to the 12 Volt vehicle wiring.
  • this carrier may have a frequency between 50 kHz and 500 kHz, and is modulated by a coded signal that is used to remotely enable or disable the cut-off module.
  • the cut-off modules may be easily disguised within the existing vehicle wiring harnesses.
  • control signal contains digital packets that may address each module individually, the modules answer with status and acknowledge packets using the same communications principle.
  • the remote cut-off modules contain a high frequency receiver/demodulator that extracts the data packet from the vehicle wiring, a rolling code data recovery circuit and a relay that is used to control, disable and enable the critical vehicle components.
  • the modules are always in the disable mode unless enabled by the main control unit. Therefore removing or destroying the main control unit will not allow the vehicle's engine to be started.
  • the packets contain a progressive rolling code key to address the remote modules. This means that every time that a module is addressed, an algorithm within the control module firmware generates a new, different identification code.
  • This process prevents would be thieves to eavesdrop the communication between the control and remote modules, and to try to energize the modules by emulating the control signals.
  • FIG. 1 is a schematic block diagram of a tracking system for locating a vehicle and/or asset according to a preferred embodiment of the present invention.
  • FIG. 2 is a block diagram of a vehicle mounted unit of a tracking system according a preferred embodiment of the present invention.
  • FIG. 3 is a block diagram of wireless remote cut-off modules according to a preferred embodiment of the present invention.
  • the tracking system 10 for locating a vehicle and/or asset 12 includes an inertial navigation device 14 with inertial navigation sensors mounted on the vehicle and/or asset 12 for generating a position vector used to determine an absolute vehicle/asset location.
  • the system 10 also includes a radio transmitter 16 connected to the navigation device 14 for transmitting the position vector; and a central monitoring station 18 for receiving the position vector transmitted by the radio transmitter 16 .
  • the radio transmitter 16 may be any type of wireless transmitter using cellular networks, paging networks, or any other wireless radio transmission.
  • the tracking system 10 may also include a mobile Tracker/Follower Vehicle, which is detailed further below.
  • the inertial navigational device 14 and radio transmitter 16 may preferably be integrated in a vehicle mounted unit 20 containing the following modules:
  • the unit 20 may contain a Radio-goniometer module 28 in place of the Electronic Magnetic Compass module 27 .
  • the Legitimate User Verification module 21 provides the means to identify the user as the owner or owner authorized person, and notify the Microprocessor/system Controller 24 accordingly.
  • the Legitimate User Verification may be accomplished by means of a biometrics fingerprint recognition module.
  • a biometrics fingerprint recognition module including one or the combination of the following methods may be used:
  • the Vehicle Movement Detector 22 can generate a signal and prompt the Microprocessor/system Controller 24 if the vehicle 12 is moved, pushed or towed without authorization.
  • the Engine Start Detector 23 can generate a signal and prompt the Microprocessor/system Controller 24 if the vehicle's engine has been started without authorization.
  • the Longitudinal Accelerometer 25 can sense all positive and negative accelerations along the vehicle's longitudinal axis, and will send the acquired data to the Microprocessor/System controller 24 .
  • the Lateral Accelerometer 26 can sense all positive and negative accelerations along the vehicle's lateral axis, and will send the acquired data to the Microprocessor/System controller 24 .
  • the Electronic Magnetic compass 27 can be used to determine the initial vehicle heading direction.
  • the radio-goniometer 28 can be used to find the direction of one or more known radio transmitting sources. These sources could include a number of AM or FM stations as well as other high power known transmitters. Thus, the radio-goniometer 28 output may also be used to determine the initial vehicle heading direction.
  • the outputs of the Longitudinal 25 and Lateral 26 accelerometers are sent to the Microprocessor/System Controller 24 where the vehicle instant velocity is computed by integrating the positive and negative increments of the acceleration magnitudes.
  • the Microprocessor/system Controller 24 will then integrate the instant longitudinal and lateral velocity magnitudes over a period of time to compute a vector that will represent the absolute vehicle displacement from the original location in polar coordinates.
  • the Microprocessor/System Controller 24 may get from time to time data from the Electronic Magnetic compass 27 or the radio-goniometer 28 to recalibrate the heading magnitude.
  • a Radio Transceiver 29 may be used to transmit at predetermined intervals the absolute displacement vectors together with the heading data to the central monitoring station 18 using public or private radio communication channels. Even though the radio transmitter 16 described above can be used instead, it is preferable to use the radio transceiver 29 as it has the advantage of being able to receive commands from the central monitoring station 18 . It should be noted that high security options may include the use of spread-spectrum communications.
  • Power for the Vehicle Mounted unit 20 may be supplied by the vehicle's 12V battery.
  • a second internal battery may be able to power the unit 20 in the event that the vehicle's battery is disconnected or the wiring is cut or tampered with.
  • the purpose of the Central Monitoring Station 18 is to receive navigational data sent from the Vehicle Mounted Unit 20 , and using computational methods, to determine the actual location of the vehicle in question.
  • Data received from the Vehicle Mounted Unit 20 can be converted into meaningful latitude-longitude coordinates and/or a scrolling map display where the System Administrator may follow the vehicle displacement through actual city streets, roads and highways, in real time.
  • the Central Monitoring Station 18 can immediately know that a particular vehicle has been stolen or that is being driven by a non-authorized person, the system administrator will be able to call the police and provide enough information that will allow the stolen vehicle to be intercepted as it is being driven away.
  • the System Administrator may dispatch a Tracker/Follower vehicle (not illustrated) to an area very close to the actual location of the missing vehicle.
  • the Follower/Tracker Vehicle may be equipped with radio receivers and radio direction finders that can lock onto the periodic beacon signal transmitted by the Vehicle Mounted Unit 20 . This will allow finding and/or following the missing vehicle until the local authorities decide upon the proper course of action to recover the vehicle in question.
  • the system 10 In use, under normal operating conditions, the system 10 is in stand-by mode, waiting for a trigger signal to start generating vehicle displacement data.
  • the authorized/legitimate user of the vehicle must normally disable the system before starting the vehicle's engine.
  • the system 10 will be triggered if the vehicle's engine is started without prior disabling the system, or if the vehicle is moved, towed or pushed without authorization. This is achieved through the legitimate user verification module 21 , the movement detector module 22 and the engine start detector module 23 . Once the system has been triggered, it will proceed to initialize-calibrate, reset the displacement vectors, and acquire the initial vehicle heading.
  • the system 10 After initializing and calibrating, the system 10 starts transmitting a data stream containing the displacement vector from the original location, and in the case of radio-goniometer 28 equipped units, the goniometer frequency and direction data.
  • the central monitoring station 18 will be instantly alerted of the vehicle 12 being displaced without authorization, and will proceed to alert the vehicle's owner and local authorities.
  • the central station 20 may dispatch a tracking/following vehicle that will lock on the transmitted data stream beacon, and will help to determine the actual vehicle location within a few square meters. This information will be transmitted to the local authorities in order to intercept and recover the vehicle.
  • a method to control remote cut-off modules 30 using a high frequency carrier superimposed to the existing vehicle wiring 31 is provided.
  • the cut-off modules 30 are connected directly to the controlled component 32 , and controlled by superimposing a high frequency carrier signal to the 12 Volt vehicle wiring.
  • this carrier may have a frequency between 50 kHz and 500 kHz, and is modulated by a coded signal that is used to remotely enable or disable the cut-off module 30 .
  • cut-off 30 modules Since there is no wiring from the main control to the cut-off modules 30 , it becomes very difficult to locate and disable them.
  • the cut-off 30 modules may be easily disguised within the existing vehicle wiring harnesses.
  • control signal contains digital packets that may address each module individually, the modules answer with status and acknowledge packets using the same communications principle.
  • the remote cut-off modules 30 contain a high frequency receiver/demodulator 33 that extracts the data packet from the vehicle wiring 31 , a rolling code data recovery circuit and a relay 34 that is used to control, disable and enable the critical vehicle components 32 .
  • control signal is sent by an alarm unit or security module 35 which uses a rolling code generator 36 and a high frequency modulator 37 before being transmitted via the existing wire of the vehicle 31 .
  • the modules 30 are always in the disable mode unless enabled by the main control unit. Therefore removing or destroying the main control unit will not allow the vehicle's engine to be started.
  • the packets contain a progressive rolling code key to address the remote modules. This means that every time that a module is addressed, an algorithm within the control module firmware generates a new, different identification code.
  • This process prevents would be thieves to eavesdrop the communication between the control and remote modules, and to try to energize the modules by emulating the control signals.

Abstract

A tracking system and method for locating a vehicle and/or asset. The system includes an inertial navigation device with inertial navigation sensors mounted on the vehicle and/or asset for generating a position vector used to determine an absolute vehicle/asset location. The system also includes a radio transmitter connected to the navigation device for transmitting the position vector; and a central monitoring station for receiving the position vector transmitted by the radio transmitter.

Description

This application claims the benefit of Provisional Appliocation No. 60/422,889, filed Nov. 1, 2002
FIELD OF THE INVENTION
The present invention relates to a vehicle and/or asset tracking and localization system and method for determining absolute vehicle/asset location.
BACKGROUND OF THE INVENTION
Various systems have been suggested to date to enable the locating and tracking of stolen or missing vehicles. For example, U.S. Pat. No. 5,895,436 (SAVOIE) discloses a vehicle tracking system using the existing cellular network, whereas U.S. Pat. No. 5,225,842 (BROWN) discloses a vehicle tracking system employing global positioning system (GPS) satellites for position/location determination.
However, such prior art tracking systems are very dependent upon third party infrastructures to determine location information, which is disadvantageous for many reasons.
For example, tracking systems that use the cellular network are limited by constraints such as having to locate the missing vehicle through relative signal strength methods between cellular base stations. These systems also require several back and forth signalling transmissions between the location transceiver mounted in the vehicle and the base stations of the cellular network. One disadvantage of such tracking systems is that the cell distribution is not the same throughout the network and the accuracy of the tracking may vary depending on the number of base stations available at any site.
In the case of GPS tracking systems, the signals that are used are even weaker than in cellular networks requiring antennas with a clear view to the sky, also GPS does not work indoors.
There is therefore a need for a vehicle and/or asset tracking tracking system that is not dependent on the infrastructure of the existing wireless systems to obtain the location information of a missing vehicle or asset.
Furthermore, in this same field of vehicle security, it is known to use wireless remote cut-off modules to disable critical components in a vehicle such as fuel pumps, ignition, starter, fuel injection, etc., to prevent engine starting by unauthorized users.
The main disadvantage of present cut-off modules is the fact that since they must be wired to the main control unit, the wiring is easy to follow. Therefore they can be located and bypassed with little effort.
SUMMARY OF THE INVENTION
According to the present invention, there is provided a tracking system for locating a vehicle and/or asset comprising:
    • an inertial navigation device including inertial navigation sensors mounted on the vehicle and/or asset for generating a position vector used to determine an absolute vehicle and/or asset location;
    • a radio transmitter connected to the navigation device for transmitting the position vector; and
    • a central monitoring station for receiving the position vector transmitted by the radio transmitter.
The radio transmitter may be any type of wireless transmitter using cellular networks, paging networks, or any other wireless radio transmission.
This system according to the present invention relies upon the typical characteristic of inertial sensors, which is the fact that a vehicle/asset's position or location is the result of the original location plus the second integral of the longitudinal and lateral acceleration magnitudes.
The system according to the present invention is therefore autonomous and self-contained, and does not depend upon third party infrastructures such as prior art vehicle tracking systems using cellular networks as disclosed in U.S. Pat. No. 5,895,436 (SAVOIE) or vehicle tracking systems employing global positioning system (GPS) satellites for position/location determination as disclosed in U.S. Pat. No. 5,225,842 (BROWN).
The preferred inertial sensors consist of micro-machined accelerometers manufactured using nano-technology methods, although other inertial sensors could be used.
Preferably, the inertial sensors combined with the central station data processing capabilities provide location resolutions approaching 1–2 meters per kilometer.
Absolute vehicle location may be displayed in Latitude-Longitude coordinates and/or scrolling area maps.
According to another aspect of the present invention, there is provided a method for locating a vehicle and/or asset comprising the steps of:
    • a) mounting an inertial navigation device including inertial navigation sensors on the vehicle and/or asset, the inertial navigation device generating a position vector used to determine an absolute vehicle and/or asset location;
    • b) transmitting the position vector by means of a radio transmitter connected to the navigation device; and
    • c) receiving the position vector transmitted by the radio transmitter at a central monitoring station.
According to yet another aspect of the present invention, there is provided a method to control remote cut-off modules using a high frequency carrier superimposed to the existing vehicle wiring. The cut-off modules are connected directly to the controlled component, and controlled by superimposing a high frequency carrier signal to the 12 Volt vehicle wiring.
Preferably, this carrier may have a frequency between 50 kHz and 500 kHz, and is modulated by a coded signal that is used to remotely enable or disable the cut-off module.
Since there is no wiring from the main control to the cut-off modules, it becomes very difficult to locate and disable them.
The cut-off modules may be easily disguised within the existing vehicle wiring harnesses.
Preferably, the control signal contains digital packets that may address each module individually, the modules answer with status and acknowledge packets using the same communications principle.
Preferably, the remote cut-off modules contain a high frequency receiver/demodulator that extracts the data packet from the vehicle wiring, a rolling code data recovery circuit and a relay that is used to control, disable and enable the critical vehicle components.
Preferably, the modules are always in the disable mode unless enabled by the main control unit. Therefore removing or destroying the main control unit will not allow the vehicle's engine to be started.
Preferably, the packets contain a progressive rolling code key to address the remote modules. This means that every time that a module is addressed, an algorithm within the control module firmware generates a new, different identification code.
This process prevents would be thieves to eavesdrop the communication between the control and remote modules, and to try to energize the modules by emulating the control signals.
The use of rolling code technology to address the remote modules therefore prevents eavesdropping and the emulation of system control packets.
The invention as well as its numerous advantages will be better understood by reading of the following non-restrictive description of preferred embodiments made in reference to the appending drawing.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a schematic block diagram of a tracking system for locating a vehicle and/or asset according to a preferred embodiment of the present invention.
FIG. 2 is a block diagram of a vehicle mounted unit of a tracking system according a preferred embodiment of the present invention.
FIG. 3 is a block diagram of wireless remote cut-off modules according to a preferred embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, the tracking system 10 for locating a vehicle and/or asset 12 according to a preferred embodiment of the present invention includes an inertial navigation device 14 with inertial navigation sensors mounted on the vehicle and/or asset 12 for generating a position vector used to determine an absolute vehicle/asset location. The system 10 also includes a radio transmitter 16 connected to the navigation device 14 for transmitting the position vector; and a central monitoring station 18 for receiving the position vector transmitted by the radio transmitter 16.
The radio transmitter 16 may be any type of wireless transmitter using cellular networks, paging networks, or any other wireless radio transmission.
The tracking system 10 according to the present may also include a mobile Tracker/Follower Vehicle, which is detailed further below.
Referring to FIG. 2, the inertial navigational device 14 and radio transmitter 16 may preferably be integrated in a vehicle mounted unit 20 containing the following modules:
    • Legitimate User Verification module 21;
    • Vehicle Movement Detector module 22;
    • Engine Start Detector module 23;
    • Microprocessor/System Control module 24;
    • Longitudinal accelerometer module 25;
    • Lateral accelerometer module 26;
    • Electronic Magnetic Compass module 27; and
    • Radio Communications transceiver module 29.
As explained below, the unit 20 may contain a Radio-goniometer module 28 in place of the Electronic Magnetic Compass module 27.
The Legitimate User Verification module 21 provides the means to identify the user as the owner or owner authorized person, and notify the Microprocessor/system Controller 24 accordingly.
Preferably, the Legitimate User Verification may be accomplished by means of a biometrics fingerprint recognition module. However, other methods including one or the combination of the following methods may be used:
    • 1—Pressing a button on a hand-held rolling code micro-transmitter.
    • 2—Entering numbers on a keypad.
    • 3—Hidden switch/magnetic switch.
    • 4—Voice recognition.
    • 5—Other authorized user validation methods.
The Vehicle Movement Detector 22 can generate a signal and prompt the Microprocessor/system Controller 24 if the vehicle 12 is moved, pushed or towed without authorization.
The Engine Start Detector 23 can generate a signal and prompt the Microprocessor/system Controller 24 if the vehicle's engine has been started without authorization.
The Longitudinal Accelerometer 25 can sense all positive and negative accelerations along the vehicle's longitudinal axis, and will send the acquired data to the Microprocessor/System controller 24.
The Lateral Accelerometer 26 can sense all positive and negative accelerations along the vehicle's lateral axis, and will send the acquired data to the Microprocessor/System controller 24.
The Electronic Magnetic compass 27 can be used to determine the initial vehicle heading direction. Alternatively, the radio-goniometer 28 can be used to find the direction of one or more known radio transmitting sources. These sources could include a number of AM or FM stations as well as other high power known transmitters. Thus, the radio-goniometer 28 output may also be used to determine the initial vehicle heading direction.
The outputs of the Longitudinal 25 and Lateral 26 accelerometers are sent to the Microprocessor/System Controller 24 where the vehicle instant velocity is computed by integrating the positive and negative increments of the acceleration magnitudes. The Microprocessor/system Controller 24 will then integrate the instant longitudinal and lateral velocity magnitudes over a period of time to compute a vector that will represent the absolute vehicle displacement from the original location in polar coordinates.
Although not absolutely necessary for the system operation, the Microprocessor/System Controller 24 may get from time to time data from the Electronic Magnetic compass 27 or the radio-goniometer 28 to recalibrate the heading magnitude.
A Radio Transceiver 29 may used to transmit at predetermined intervals the absolute displacement vectors together with the heading data to the central monitoring station 18 using public or private radio communication channels. Even though the radio transmitter 16 described above can be used instead, it is preferable to use the radio transceiver 29 as it has the advantage of being able to receive commands from the central monitoring station 18. It should be noted that high security options may include the use of spread-spectrum communications.
Although periodic radio-goniometer readings from multiple transmitting sources alone could be used to determine vehicle position, the combination of both inertial and goniometer methods provides higher position resolution as well as enhanced security.
Power for the Vehicle Mounted unit 20 may be supplied by the vehicle's 12V battery. Alternatively, a second internal battery may be able to power the unit 20 in the event that the vehicle's battery is disconnected or the wiring is cut or tampered with.
The purpose of the Central Monitoring Station 18 is to receive navigational data sent from the Vehicle Mounted Unit 20, and using computational methods, to determine the actual location of the vehicle in question.
Data received from the Vehicle Mounted Unit 20 can be converted into meaningful latitude-longitude coordinates and/or a scrolling map display where the System Administrator may follow the vehicle displacement through actual city streets, roads and highways, in real time.
Because of the fact that the Central Monitoring Station 18 can immediately know that a particular vehicle has been stolen or that is being driven by a non-authorized person, the system administrator will be able to call the police and provide enough information that will allow the stolen vehicle to be intercepted as it is being driven away.
Upon receiving navigational data from a missing vehicle, or at a later time, the System Administrator may dispatch a Tracker/Follower vehicle (not illustrated) to an area very close to the actual location of the missing vehicle.
The Follower/Tracker Vehicle may be equipped with radio receivers and radio direction finders that can lock onto the periodic beacon signal transmitted by the Vehicle Mounted Unit 20. This will allow finding and/or following the missing vehicle until the local authorities decide upon the proper course of action to recover the vehicle in question.
In use, under normal operating conditions, the system 10 is in stand-by mode, waiting for a trigger signal to start generating vehicle displacement data. The authorized/legitimate user of the vehicle must normally disable the system before starting the vehicle's engine. The system 10 will be triggered if the vehicle's engine is started without prior disabling the system, or if the vehicle is moved, towed or pushed without authorization. This is achieved through the legitimate user verification module 21, the movement detector module 22 and the engine start detector module 23. Once the system has been triggered, it will proceed to initialize-calibrate, reset the displacement vectors, and acquire the initial vehicle heading.
Different applications may require the use of the self-contained electronic magnetic compass or the self-contained radio-goniometer for spot calibration purposes.
After initializing and calibrating, the system 10 starts transmitting a data stream containing the displacement vector from the original location, and in the case of radio-goniometer 28 equipped units, the goniometer frequency and direction data.
The central monitoring station 18 will be instantly alerted of the vehicle 12 being displaced without authorization, and will proceed to alert the vehicle's owner and local authorities.
At the same time the central station 20 may dispatch a tracking/following vehicle that will lock on the transmitted data stream beacon, and will help to determine the actual vehicle location within a few square meters. This information will be transmitted to the local authorities in order to intercept and recover the vehicle.
Referring to FIG. 3, according to yet another aspect of the present invention, there is provided a method to control remote cut-off modules 30 using a high frequency carrier superimposed to the existing vehicle wiring 31. The cut-off modules 30 are connected directly to the controlled component 32, and controlled by superimposing a high frequency carrier signal to the 12 Volt vehicle wiring.
Preferably, this carrier may have a frequency between 50 kHz and 500 kHz, and is modulated by a coded signal that is used to remotely enable or disable the cut-off module 30.
Since there is no wiring from the main control to the cut-off modules 30, it becomes very difficult to locate and disable them. The cut-off 30 modules may be easily disguised within the existing vehicle wiring harnesses.
Preferably, the control signal contains digital packets that may address each module individually, the modules answer with status and acknowledge packets using the same communications principle.
Preferably, the remote cut-off modules 30 contain a high frequency receiver/demodulator 33 that extracts the data packet from the vehicle wiring 31, a rolling code data recovery circuit and a relay 34 that is used to control, disable and enable the critical vehicle components 32.
Preferably, the control signal is sent by an alarm unit or security module 35 which uses a rolling code generator 36 and a high frequency modulator 37 before being transmitted via the existing wire of the vehicle 31.
Preferably, the modules 30 are always in the disable mode unless enabled by the main control unit. Therefore removing or destroying the main control unit will not allow the vehicle's engine to be started.
Preferably, the packets contain a progressive rolling code key to address the remote modules. This means that every time that a module is addressed, an algorithm within the control module firmware generates a new, different identification code.
This process prevents would be thieves to eavesdrop the communication between the control and remote modules, and to try to energize the modules by emulating the control signals.
The use of rolling code technology to address the remote modules therefore prevents eavesdropping and the emulation of system control packets.
Although preferred embodiments of the present invention have been described in detail herein and illustrated in the accompanying drawings, it is to be understood that the invention is not limited to these precise embodiments and that various changes and modifications may be effected therein without departing from the scope or spirit of the present invention.

Claims (10)

1. A tracking system for locating a vehicle comprising:
a device mounted on the vehicle for generating a position vector used to determine an absolute vehicle location;
a radio transmitter connected to the device for transmitting the position vector; and
a central monitoring station for receiving the position vector transmitted by the radio transmitter;
wherein the device includes a microprocessor control module and the vehicle is provided with at least one cut-off module connected to and powered by existing conductor wires of the vehicle, said at least one cut-off module being adapted to disable a critical component of the vehicle to prevent engine starting by an unauthorized user, and wherein said at least one cut-off module is controlled by a high frequency carrier signal sent by the microprocessor control module and carried by the existing conductor wires of the vehicle.
2. The tracking system according to claim 1, wherein the microprocessor control module is connected to first and second micro-machined accelerometers for receiving accelerations measurements along longitudinal and lateral directions of the vehicle, and for computing the position vector.
3. The tracking system according to claim 2, wherein the microprocessor control module is connected to an electronic magnetic compass module to determine a heading direction of the vehicle.
4. The tracking system according to claim 2, wherein the microprocessor control module is connected to a radio-goniometer to determine a heading direction of the vehicle.
5. The tracking system according to claim 1, wherein the radio transmitter includes a wireless cellular network transceiver for establishing a cellular telecommunications link with the central monitoring station.
6. The tracking system according to claim 1, wherein the radio transmitter includes a wireless paging network transceiver for establishing a pager telecommunications link with the central monitoring station.
7. The tracking system according to claim 2, wherein the microprocessor control module is connected to a legitimate user verification module for determining if a user is authorized to move the vehicle by means of a validation method.
8. The tracking system according to claim 7, wherein the legitimate user verification module includes a biometrics fingerprint identification module for determining if a user is authorized to move the vehicle.
9. The tracking system according to claim 7, wherein the microprocessor control module is connected to a movement detector module for detecting unauthorized movement of the vehicle and to an engine start detector for detecting unauthorized engine starting of the vehicle.
10. The tracking system according to claim 1, wherein the carrier signal has a frequency of 50 KHz to 500 KHz modulated by a rolling code signal and wherein the at least one cut-off modules includes a high frequency receiver demodulator-for extracting data packets received from the existing conductor wires of the vehicle, and a rolling code data recovery circuit and a relay for enabling and disabling the critical vehicle components.
US10/698,547 2002-11-01 2003-11-03 Vehicle and/or asset tracking and localization system and method Expired - Fee Related US7027919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/698,547 US7027919B2 (en) 2002-11-01 2003-11-03 Vehicle and/or asset tracking and localization system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42288902P 2002-11-01 2002-11-01
US10/698,547 US7027919B2 (en) 2002-11-01 2003-11-03 Vehicle and/or asset tracking and localization system and method

Publications (2)

Publication Number Publication Date
US20040093159A1 US20040093159A1 (en) 2004-05-13
US7027919B2 true US7027919B2 (en) 2006-04-11

Family

ID=32233516

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/698,547 Expired - Fee Related US7027919B2 (en) 2002-11-01 2003-11-03 Vehicle and/or asset tracking and localization system and method

Country Status (1)

Country Link
US (1) US7027919B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090189750A1 (en) * 2008-01-29 2009-07-30 Sin Etke Technology Co., Ltd. Vehicle anti-theft system and method
US20100274434A1 (en) * 2009-04-28 2010-10-28 Caterpillar Inc. Position monitoring system for a mobile machine
US20120039246A1 (en) * 2009-04-28 2012-02-16 Huawei Technologies Co., Ltd Paging method, location update method and device
US8699943B2 (en) * 2011-06-03 2014-04-15 Andrew Llc Mobile repeater system and method having geophysical location awareness without use of GPS
US8924548B2 (en) 2011-08-16 2014-12-30 Panduit Corp. Integrated asset tracking, task manager, and virtual container for data center management
US20150226827A1 (en) * 2013-10-22 2015-08-13 Polaris Sensor Technologies, Inc. Sky Polarization and Sun Sensor System and Method
US9467877B2 (en) 2009-04-21 2016-10-11 Commscope Technologies Llc Radio communication systems with integrated location-based measurements for diagnostics and performance optimization
US9793982B2 (en) 2009-04-21 2017-10-17 Commscope Technologies Llc System for automatic configuration of a mobile communication system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088001A (en) * 2004-10-25 2007-12-12 付款保护系统公司 Method and system for monitoring a vehicle
JP5245825B2 (en) 2006-06-30 2013-07-24 株式会社ニコン Maintenance method, exposure method and apparatus, and device manufacturing method
US8868220B2 (en) * 2007-07-16 2014-10-21 Crucs Holdings, Llc Systems and methods for automatically changing operational states of appliances
US9076331B2 (en) * 2007-07-16 2015-07-07 Crucs Holdings, Llc System and method to monitor vehicles on a roadway and to control driving restrictions of vehicle drivers
US8115656B2 (en) * 2008-02-25 2012-02-14 Recovery Systems Holdings, Llc Vehicle security and monitoring system
US20150168173A1 (en) * 2012-07-10 2015-06-18 Chinapac Limited System and method for managing location of assets equipped with transponder
CN111361422B (en) * 2020-03-24 2021-07-16 江铃汽车股份有限公司 Automobile rear collision power-off protection method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225842A (en) 1991-05-09 1993-07-06 Navsys Corporation Vehicle tracking system employing global positioning system (gps) satellites
US5686765A (en) 1993-03-19 1997-11-11 Driver Id Llc Vehicle security system including fingerprint and eyeball part identification
US5742509A (en) * 1995-04-11 1998-04-21 Trimble Navigation Limited Personal tracking system integrated with base station
US5895436A (en) 1996-04-26 1999-04-20 Savoie; Paul-Andreroland Vehicle tracking system using cellular network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225842A (en) 1991-05-09 1993-07-06 Navsys Corporation Vehicle tracking system employing global positioning system (gps) satellites
US5686765A (en) 1993-03-19 1997-11-11 Driver Id Llc Vehicle security system including fingerprint and eyeball part identification
US5742509A (en) * 1995-04-11 1998-04-21 Trimble Navigation Limited Personal tracking system integrated with base station
US5895436A (en) 1996-04-26 1999-04-20 Savoie; Paul-Andreroland Vehicle tracking system using cellular network

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782178B2 (en) * 2008-01-29 2010-08-24 Sin Etke Technology Co., Ltd. Vehicle anti-theft system and method
US20090189750A1 (en) * 2008-01-29 2009-07-30 Sin Etke Technology Co., Ltd. Vehicle anti-theft system and method
US9467877B2 (en) 2009-04-21 2016-10-11 Commscope Technologies Llc Radio communication systems with integrated location-based measurements for diagnostics and performance optimization
US10820251B2 (en) 2009-04-21 2020-10-27 Commscope Technologies Llc Radio communication systems with integrated location-based measurements for diagnostics and performance optimization
US10645667B2 (en) 2009-04-21 2020-05-05 Commscope Technologies Llc System for automatic configuration of a mobile communication system
US10009827B2 (en) 2009-04-21 2018-06-26 Commscope Technologies Llc Radio communication systems with integrated location-based measurements for diagnostics and performance optimization
US9854557B2 (en) 2009-04-21 2017-12-26 Commscope Technologies Llc System for automatic configuration of a mobile communication system
US9793982B2 (en) 2009-04-21 2017-10-17 Commscope Technologies Llc System for automatic configuration of a mobile communication system
US8306726B2 (en) 2009-04-28 2012-11-06 Caterpillar Inc. Position monitoring system for a mobile machine
US8837325B2 (en) * 2009-04-28 2014-09-16 Huawei Technologies Co., Ltd. Paging method, location update method and device
US20120039246A1 (en) * 2009-04-28 2012-02-16 Huawei Technologies Co., Ltd Paging method, location update method and device
US20100274434A1 (en) * 2009-04-28 2010-10-28 Caterpillar Inc. Position monitoring system for a mobile machine
US8699943B2 (en) * 2011-06-03 2014-04-15 Andrew Llc Mobile repeater system and method having geophysical location awareness without use of GPS
US8924548B2 (en) 2011-08-16 2014-12-30 Panduit Corp. Integrated asset tracking, task manager, and virtual container for data center management
US9423484B2 (en) * 2013-10-22 2016-08-23 Polaris Sensor Technologies, Inc. Sky polarization and sun sensor system and method
US20150226827A1 (en) * 2013-10-22 2015-08-13 Polaris Sensor Technologies, Inc. Sky Polarization and Sun Sensor System and Method
US20170184700A1 (en) * 2013-10-22 2017-06-29 Polaris Sensor Technologies, Inc. Sky Polarization and Sun Sensor System and Method
US9989625B2 (en) * 2013-10-22 2018-06-05 Polaris Sensor Technologies, Inc. Sky polarization and sun sensor system and method
US10408918B2 (en) * 2013-10-22 2019-09-10 Polaris Sensor Technologies, Inc. Sky polarization and sun sensor system and method

Also Published As

Publication number Publication date
US20040093159A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US7027919B2 (en) Vehicle and/or asset tracking and localization system and method
US5731785A (en) System and method for locating objects including an inhibiting feature
US6934625B2 (en) Tracking system and method
US7768393B2 (en) System and method for asset tracking
Singh et al. A smart anti-theft system for vehicle security
JP2000302014A (en) Method and device for sensing, announcing and positioning vehicle theft
Dey et al. Anti-theft protection of vehicle by GSM & GPS with fingerprint verification
CN106017462A (en) Positioning analysis method for internet of vehicles
CA2447401C (en) Vehicule and/or asset tracking and localization system and method
EP1221684B1 (en) A method, system and portable device for locating a vehicle
WO2015140702A1 (en) Telematic device for bicycles or similar vehicles
CN110832563B (en) Information communication device and position management system
RU2174923C1 (en) System for providing monitoring, information services and protection of mobile objects from unauthorized actions
CA2410831A1 (en) Vehicle and/or asset tracking and localization system
Kassim et al. Performance analysis of acceleration sensor for movement detection in vehicle security system
RU2528090C1 (en) Satellite security-search system
Karthik et al. Design and implementation of helmet to track the accident zone and recovery using GPS and GSM
EP1515155B1 (en) Two-way tracking system and method using an existing wireless network
CN106027654A (en) Mobile phone vehicle networking platform
RU2175920C1 (en) Vehicle safety, navigation and monitoring system
RU2685945C2 (en) Anti-theft alert system
KR102490788B1 (en) Theft detection system for two-wheeled vehicles using impact detection technology
KR100401159B1 (en) System for chasing stolen automobile
RU2668770C1 (en) Method for finding a stolen vehicle
RU2244641C1 (en) Information-security system for vehicles and immovable property objects

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140411