USRE33824E - Fault detecting intrusion detection device - Google Patents

Fault detecting intrusion detection device Download PDF

Info

Publication number
USRE33824E
USRE33824E US07/429,054 US42905489A USRE33824E US RE33824 E USRE33824 E US RE33824E US 42905489 A US42905489 A US 42905489A US RE33824 E USRE33824 E US RE33824E
Authority
US
United States
Prior art keywords
output signals
subsystem
storing
counting
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/429,054
Inventor
Richard A. Johnson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to US07/429,054 priority Critical patent/USRE33824E/en
Application granted granted Critical
Publication of USRE33824E publication Critical patent/USRE33824E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/183Single detectors using dual technologies
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2491Intrusion detection systems, i.e. where the body of an intruder causes the interference with the electromagnetic field
    • G08B13/2494Intrusion detection systems, i.e. where the body of an intruder causes the interference with the electromagnetic field by interference with electro-magnetic field distribution combined with other electrical sensor means, e.g. microwave detectors combined with other sensor means

Definitions

  • the present invention relates to an improved intrusion detection device and, more particularly, to an improved intrusion detection device of the type having two sensors and the ability to detect fault within one of the two sensors.
  • Combination intrusion detection devices are wellknown in the art.
  • a typical combination is the use of a passive infrared intrusion detection device along with a microwave intrusion detection device.
  • the output of the two sensors are supplied to an AND gate. If both of the sensors detect the presence of an intruder, then an alarm is triggered.
  • One drawback of a combination dual sensing device is that if one of the sensors or subsystems fails to operate properly, the integrity of the entire system is lost. This is because once a subsystem or the sensor thereof has failed (assuming that it fails in the open mode; i.e., the failed sensor/subsystem never detects the presence of an intruder), and since the entire system is dependent upon the presence of a signal on both of the sensor subsystems, the failure of one sensor subsystem fails the entire system.
  • a second possible source of sensor failure is if the sensor is not installed properly. In order for the entire intrusion detection system to function properly, both sensor subsystems must be directed at the same volume or space location. Both sensors must detect the presence of an intruder in the same or proximate location. Thus, there must be overlapping of the area or space of detection of the two sensors. If the two sensor subsystems are not aligned properly and are not directed towards the same space or volume location, the non-overlapping field will result in the entire system never producing alarm. This is because an intruder will always be detected by only a single sensor subsystem. Another source of failure is due to tampering. If a would-be intruder has masked or disabled one sensor subsystem, there again the disablement of that sensor subsystem would have disabled the entire system.
  • an intrusion detection system of the dual sensor subsystem type it is highly desirable in an intrusion detection system of the dual sensor subsystem type to be able to detect any internal electrical malfunction of any one of the sensor subsystems, or to detect any physical tampering of any one of the sensor subsystems, or to detect any masking of the normal fields of use of any of the sensor subsystems or to detect the improper installation which results in substantially different fields of view of each sensor subsystem. Any of these conditions may be termed collectively as a "fault condition".
  • an improvement to an intrusion detection apparatus is disclosed.
  • the intrusion detection apparatus is of the type having dual sensors with each of the two sensors providing a signal upon the detection of an intruder.
  • Logic means is further provided to process the two signals from the dual sensors to trigger an alarm in the event the intruder is detected by both of the sensors.
  • the improvement comprises a first storage means for storing the number of signals recorded by one of the dual sensors.
  • a second storage means stores the number of signals detected by the second sensor.
  • a logic control means receives the output of the first and second storage means and compares the numbers stored therein and outputs a fault signal in response to this comparison.
  • FIG. 1 is a schematic block diagram of an improved intrusion detection system of the present invention.
  • FIG. 2 is a schematic block diagram of the fault detection subsystem of the intrusion detection device of the present invention.
  • FIG. 3 is a detail circuit diagram of the fault detection subsystem of the present invention.
  • the intrusion detection system 10 of the present invention comprises a first sensor 12 subassembly and a second sensor 14 subassembly.
  • the first sensor 12 subassembly is typically a passive infrared radiation detection subsystem.
  • the second sensor 14 subassembly is typically a microwave energy detection subsystem.
  • Each of the first sensor 12 subsystem and second sensor 14 subsystem is directed to detect intruders within the same space or volume of space 16.
  • Each of the first sensor 12 subsystem and second sensor 14 subsystem produces a first output signal 18 and a second output signal 20, respectively, upon the detection of an intruder within the space or volume 16 to which the subsystem is directed.
  • Such a system 10, using the combination of a photoelectric sensor and microwave detector is fully described in U.S. Pat. No. 3,725,888.
  • the first and second output signals 18 and 20, respectively, are supplied to a logic controller 22.
  • the logic controller 22 produces an output signal 24 which triggers an alarm 26 in the event an intruder is detected by both the first sensor 12 subsystem and the second sensor 14 subsystem, within a specified period of time.
  • the device 10 also comprises a fault detection subsystem 30.
  • the fault detection subsystem 30 also receives the first and second output signals 18 and 20, respectively.
  • the fault detection subsystem 30 comprises an input signal conditioner 32 to which the first and second output signals 18 and 20, respectively, are supplied.
  • the input signal conditioner 32 processes the input signals, by for example, holding them for a predetermined period of time.
  • the first and second output signals 18 and 20 are supplied to a rapid event suppressor 34.
  • the rapid event suppressor 34 detects the presence of a rapid series of pulses. If this occurs, the fault detection subsystem 30 will stop counting the output signal 18 or 20 for a preset period of time.
  • the first and second output signals 18 and 20, respectively are supplied to a first and a second counters 36 and 38, respectively.
  • the output of the first and the second event counter 36 and 38 are supplied to a control logic 40.
  • the control logic 40 also receives a user selectable ratio number along input lines 42 which pass through a ratio select logic 44.
  • the output of the control logic 40 is a signal which can indicate fault in one of the two sensor subsystems. That fault signal 46 is supplied to a NOR gate 48. Other inputs to the NOR Gate 48 are a tamper signal 50 and a microwave supervisory signal 52. Further, the NOR gate 48 may be disabled by a signal sent along the disabled line 54.
  • the output of the NOR gate 48 is a signal which is supplied to a relay drive 56 and to an LED drive 58 which informs the user of the fault that is detected.
  • An oscillator and clock generator 60 supplies the necessary clocking signals to the rapid events suppressor 34 and to the LED drive 58.
  • the first sensor output signal 18 is supplied to a NAND gate 62, and to an OR gate 64 and an invertor 66.
  • the output of the NAND gate 62 is supplied to a second AND gate 68, which is then supplied to the first counter 36, which is an eight (8) bit counter.
  • NAND gate 62 is also controlled by the rapid event suppressor 34. In the event a rapid series of pulses is detected by the suppressor 34, NAND gate 62 is turned off thereby preventing first sensor output signal 18 from reaching the first counter 36. Gates 64 and 68 are used for testing purposes.
  • the second output signal 20 from the microwave detection subsystem 14 is supplied to a one-shot 68 (which comprises a counter 68a and an OR gate 68b), which keeps the signal low for approximately 3.8 seconds after the last microwave pulse.
  • the output of the one-shot 68 is then passed to a NOR gate 70, to an AND gate 72 and to the second counter 38, which is also an eight bit counter.
  • the function of the NOR gate 70 is similar to the NAND gate 62. AND gates 72 and 73 are also used for testing purposes.
  • the rapid event suppressor 34 comprises, in part, a long counter 100 and a dual counter 101.
  • the long counter 100 receives timing pulses from the oscillator and clock generator 60.
  • the dual counter 101 receives the first and second output signals 18 and 20 (after passing through gates 62 and 70, respectively).
  • the long counter 100 resets the dual counter 101 every one (1) minute.
  • the dual counter 101 receives greater than or equal to eight (8) signals (first or second output signals 18 or 20) within a one minute interval, the dual counter 101 (1) causes the dual counter 101 to be reset; (2) turns off gates 62 and 70 for eight (8) minutes; and (3) after eight (8) minutes, turns on gates 62 and 70 and resumes normal operation.
  • the four user selectable ratio signals 42 are supplied to the ratio select logic 44 which comprises a plurality of AND gates, an OR gate and multiplexers 86 and 90, all as shown and connected in FIG. 3. Two of the four user selectable ratio signals 42 are used to disable the appropriate least significant bits (LSB) from the first and second counters 36 and 38 to obtain the conditions of (1) greater than 0; (2) greater than 1; (3) greater than 3; or (4) greater than 7 as inputs to PIR AND gate 80 and MW AND gate 82.
  • the output of the PIR AND gate 80 and MW AND gate 82 is a determination of the number of signals (18 or 20, respectively) counted by counters 36 and 38 which meets or exceeds the number set by two of the four user selectable input lines 42.
  • the other two user selectable lines 42 are supplied to multiplexers 86 and 90.
  • the multiplexers 86 and 90 select one of the four MSB from counters 36 and 38 and supplies that as input to PIR AND gate 85 and MW AND gate 89, and also to gates 88 and 84, respectively.
  • PIR AND gate 85 and MW AND gate 89 and also to gates 88 and 84, respectively.
  • the counter 36 or 38 reaches a number of the MSB that is selected by the two user selectable lines 42, that causes a compare event at 92 and 94. In that event, the least significant bits of the counter 36 or 38 that did not cause the compare event is analyzed to determine if that number meets or exceeds the number set by the other two user selectable lines.
  • a pulse appears at 94. This indicates "no fault”.
  • the no fault pulse 94 resets the first and second counters 36 and 38. However, if the converse occurred, a pulse would appear at 92. This indicates a "fault", i.e., too many signals of the sensor of one type are counted as compared to the signals of the sensor of the other type.
  • the fault pulse 92 is supplied to the NOR gate 48, which then triggers a flip flop 46.
  • the Q output of the flip flop 96 triggers the relay drive 56 and the LED drive 58.
  • the user first selects the number of events to cause the compare and the minimum for the compare.
  • the first and second sensors 12 and 14 would be counting the intruders in the space 16. These counts would be collected by the fault detection subsystem 30 and stored in the first and second counters 36 and 38, respectively.
  • the first or second counter 36 or 38 reaches the number set by the user for a compare event, the number of counts stored in the counter that did not cause the compare event is compared to the minimum set by the user. If that number is greater than the minimum, then "no fault". Otherwise there is a fault in one of the sensor subsystems.
  • the operation of the fault detection subsystem 30 in no way impedes the arming or disarming of the intrusion detection device 10. During the time that the fault detection subsystem 30 is in operation, the intrusion detection device 10 can still be armed.
  • the intrusion detection system 10 of the present invention There are many advantages to the improved intrusion detection system 10 of the present invention. First and foremost, with the use of a dual sensor intrusion detection system, false alarm is minimized. Furthermore, with the fault detection 30, it is seen that the failure of one of the sensor subsystems can be easily detected, and an indication be sent to the user of the failure of the intrusion detection device 1?. Thus, the intrusion detection device 10 has all of the advantages of both fail-safe, as well as reliability.

Abstract

In an improved intrusion detection device system of the dual-sensor type, wherein one sensor is a PIR sensor and the other is a microwave sensor, the improvement comprises counting the detection of intrusion separately by the microwave sensor and by the passive infrared sensor. Thereafter, the counts by the two separate detectors are compared and an indication is given if the number exceeds a certain user selectable threshold, to indicate fault in one of the two sensor subsystems.

Description

.Iadd.This is a reissue of application Ser. No. 893,399 filed 8-5-86, now U.S. Pat. No. 4,710,750..Iaddend.
TECHNICAL DESCRIPTION
The present invention relates to an improved intrusion detection device and, more particularly, to an improved intrusion detection device of the type having two sensors and the ability to detect fault within one of the two sensors.
BACKGROUND OF THE INVENTION
Combination intrusion detection devices are wellknown in the art. A typical combination is the use of a passive infrared intrusion detection device along with a microwave intrusion detection device. The output of the two sensors are supplied to an AND gate. If both of the sensors detect the presence of an intruder, then an alarm is triggered.
The combination of the electrical outputs of two independent sensing subsystems with each subsystem responding to different stimuli in a complementary manner significantly reduces the possibility of false alarms. This reduction of false alarms more than offsets the higher costs in the manufacturing of these combination intrusion detection devices.
One drawback of a combination dual sensing device is that if one of the sensors or subsystems fails to operate properly, the integrity of the entire system is lost. This is because once a subsystem or the sensor thereof has failed (assuming that it fails in the open mode; i.e., the failed sensor/subsystem never detects the presence of an intruder), and since the entire system is dependent upon the presence of a signal on both of the sensor subsystems, the failure of one sensor subsystem fails the entire system.
There are many possible causes of failure of a sensor or its subsystem. One possible failure of a sensor or its subsystem is the failure in the electrical circuitry. A second possible source of sensor failure is if the sensor is not installed properly. In order for the entire intrusion detection system to function properly, both sensor subsystems must be directed at the same volume or space location. Both sensors must detect the presence of an intruder in the same or proximate location. Thus, there must be overlapping of the area or space of detection of the two sensors. If the two sensor subsystems are not aligned properly and are not directed towards the same space or volume location, the non-overlapping field will result in the entire system never producing alarm. This is because an intruder will always be detected by only a single sensor subsystem. Another source of failure is due to tampering. If a would-be intruder has masked or disabled one sensor subsystem, there again the disablement of that sensor subsystem would have disabled the entire system.
Thus, it is highly desirable in an intrusion detection system of the dual sensor subsystem type to be able to detect any internal electrical malfunction of any one of the sensor subsystems, or to detect any physical tampering of any one of the sensor subsystems, or to detect any masking of the normal fields of use of any of the sensor subsystems or to detect the improper installation which results in substantially different fields of view of each sensor subsystem. Any of these conditions may be termed collectively as a "fault condition".
SUMMARY OF THE INVENTION
In the present invention, an improvement to an intrusion detection apparatus is disclosed. The intrusion detection apparatus is of the type having dual sensors with each of the two sensors providing a signal upon the detection of an intruder. Logic means is further provided to process the two signals from the dual sensors to trigger an alarm in the event the intruder is detected by both of the sensors. The improvement comprises a first storage means for storing the number of signals recorded by one of the dual sensors. A second storage means stores the number of signals detected by the second sensor. A logic control means receives the output of the first and second storage means and compares the numbers stored therein and outputs a fault signal in response to this comparison.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic block diagram of an improved intrusion detection system of the present invention.
FIG. 2 is a schematic block diagram of the fault detection subsystem of the intrusion detection device of the present invention.
FIG. 3 is a detail circuit diagram of the fault detection subsystem of the present invention.
DETAILED DESCRIPTION OF THE DRAWINGS
Referring to FIG. 1, there is shown a block diagram of an improved intrusion detection system 10 of the present invention. The intrusion detection system 10 of the present invention comprises a first sensor 12 subassembly and a second sensor 14 subassembly. The first sensor 12 subassembly is typically a passive infrared radiation detection subsystem. The second sensor 14 subassembly is typically a microwave energy detection subsystem. Each of the first sensor 12 subsystem and second sensor 14 subsystem is directed to detect intruders within the same space or volume of space 16. Each of the first sensor 12 subsystem and second sensor 14 subsystem produces a first output signal 18 and a second output signal 20, respectively, upon the detection of an intruder within the space or volume 16 to which the subsystem is directed. Such a system 10, using the combination of a photoelectric sensor and microwave detector is fully described in U.S. Pat. No. 3,725,888.
The first and second output signals 18 and 20, respectively, are supplied to a logic controller 22. The logic controller 22 produces an output signal 24 which triggers an alarm 26 in the event an intruder is detected by both the first sensor 12 subsystem and the second sensor 14 subsystem, within a specified period of time.
In the improved intrusion detection device 10 of the present invention, the device 10 also comprises a fault detection subsystem 30. The fault detection subsystem 30 also receives the first and second output signals 18 and 20, respectively.
Referring to FIG. 2, there is shown in block diagram the fault detection subsystem 30. The fault detection subsystem 30 comprises an input signal conditioner 32 to which the first and second output signals 18 and 20, respectively, are supplied. The input signal conditioner 32 processes the input signals, by for example, holding them for a predetermined period of time.
From the input signal conditioner 32, the first and second output signals 18 and 20 are supplied to a rapid event suppressor 34. The rapid event suppressor 34 detects the presence of a rapid series of pulses. If this occurs, the fault detection subsystem 30 will stop counting the output signal 18 or 20 for a preset period of time. From the rapid event suppressor 34, the first and second output signals 18 and 20, respectively, are supplied to a first and a second counters 36 and 38, respectively. The output of the first and the second event counter 36 and 38 are supplied to a control logic 40. The control logic 40 also receives a user selectable ratio number along input lines 42 which pass through a ratio select logic 44. The output of the control logic 40 is a signal which can indicate fault in one of the two sensor subsystems. That fault signal 46 is supplied to a NOR gate 48. Other inputs to the NOR Gate 48 are a tamper signal 50 and a microwave supervisory signal 52. Further, the NOR gate 48 may be disabled by a signal sent along the disabled line 54.
The output of the NOR gate 48 is a signal which is supplied to a relay drive 56 and to an LED drive 58 which informs the user of the fault that is detected. An oscillator and clock generator 60 supplies the necessary clocking signals to the rapid events suppressor 34 and to the LED drive 58.
Referring to FIG. 3, there is shown in greater detail the various block components of the fault detection subsystem 30 described in FIG. 2. The first sensor output signal 18 is supplied to a NAND gate 62, and to an OR gate 64 and an invertor 66. The output of the NAND gate 62 is supplied to a second AND gate 68, which is then supplied to the first counter 36, which is an eight (8) bit counter. NAND gate 62 is also controlled by the rapid event suppressor 34. In the event a rapid series of pulses is detected by the suppressor 34, NAND gate 62 is turned off thereby preventing first sensor output signal 18 from reaching the first counter 36. Gates 64 and 68 are used for testing purposes.
The second output signal 20 from the microwave detection subsystem 14 is supplied to a one-shot 68 (which comprises a counter 68a and an OR gate 68b), which keeps the signal low for approximately 3.8 seconds after the last microwave pulse. The output of the one-shot 68 is then passed to a NOR gate 70, to an AND gate 72 and to the second counter 38, which is also an eight bit counter. The function of the NOR gate 70 is similar to the NAND gate 62. AND gates 72 and 73 are also used for testing purposes.
The rapid event suppressor 34 comprises, in part, a long counter 100 and a dual counter 101. The long counter 100 receives timing pulses from the oscillator and clock generator 60. The dual counter 101 receives the first and second output signals 18 and 20 (after passing through gates 62 and 70, respectively).
The long counter 100 resets the dual counter 101 every one (1) minute. In the event the dual counter 101 receives greater than or equal to eight (8) signals (first or second output signals 18 or 20) within a one minute interval, the dual counter 101 (1) causes the dual counter 101 to be reset; (2) turns off gates 62 and 70 for eight (8) minutes; and (3) after eight (8) minutes, turns on gates 62 and 70 and resumes normal operation.
The four user selectable ratio signals 42 are supplied to the ratio select logic 44 which comprises a plurality of AND gates, an OR gate and multiplexers 86 and 90, all as shown and connected in FIG. 3. Two of the four user selectable ratio signals 42 are used to disable the appropriate least significant bits (LSB) from the first and second counters 36 and 38 to obtain the conditions of (1) greater than 0; (2) greater than 1; (3) greater than 3; or (4) greater than 7 as inputs to PIR AND gate 80 and MW AND gate 82. The output of the PIR AND gate 80 and MW AND gate 82 is a determination of the number of signals (18 or 20, respectively) counted by counters 36 and 38 which meets or exceeds the number set by two of the four user selectable input lines 42.
The other two user selectable lines 42 are supplied to multiplexers 86 and 90. The multiplexers 86 and 90 select one of the four MSB from counters 36 and 38 and supplies that as input to PIR AND gate 85 and MW AND gate 89, and also to gates 88 and 84, respectively. When either the counter 36 or 38 reaches a number of the MSB that is selected by the two user selectable lines 42, that causes a compare event at 92 and 94. In that event, the least significant bits of the counter 36 or 38 that did not cause the compare event is analyzed to determine if that number meets or exceeds the number set by the other two user selectable lines.
In the event the number of the counts of the least significant bits of the counter that did not cause the compare event, meets or exceeds the user selected threshold, then a pulse appears at 94. This indicates "no fault". The no fault pulse 94 resets the first and second counters 36 and 38. However, if the converse occurred, a pulse would appear at 92. This indicates a "fault", i.e., too many signals of the sensor of one type are counted as compared to the signals of the sensor of the other type. The fault pulse 92 is supplied to the NOR gate 48, which then triggers a flip flop 46. The Q output of the flip flop 96 triggers the relay drive 56 and the LED drive 58.
In the operation of the fault detection subsystem 30, the user first selects the number of events to cause the compare and the minimum for the compare. During the unarmed stage, the first and second sensors 12 and 14 would be counting the intruders in the space 16. These counts would be collected by the fault detection subsystem 30 and stored in the first and second counters 36 and 38, respectively. When the first or second counter 36 or 38 reaches the number set by the user for a compare event, the number of counts stored in the counter that did not cause the compare event is compared to the minimum set by the user. If that number is greater than the minimum, then "no fault". Otherwise there is a fault in one of the sensor subsystems.
It should be emphasized that the operation of the fault detection subsystem 30 in no way impedes the arming or disarming of the intrusion detection device 10. During the time that the fault detection subsystem 30 is in operation, the intrusion detection device 10 can still be armed.
There are many advantages to the improved intrusion detection system 10 of the present invention. First and foremost, with the use of a dual sensor intrusion detection system, false alarm is minimized. Furthermore, with the fault detection 30, it is seen that the failure of one of the sensor subsystems can be easily detected, and an indication be sent to the user of the failure of the intrusion detection device 1?. Thus, the intrusion detection device 10 has all of the advantages of both fail-safe, as well as reliability.

Claims (8)

I claim:
1. In an intrusion detection apparatus of the type having dual sensing means, a first sensing means for generating a first output signal in response to the detection of an intruder, a second sensing means for generating a second output signal in response to the detection of an intruder, and logic means for receiving said first and said second output signals and for generating an alarm in response thereto, wherein the improvement comprising:
first means for storing the number of first output signals received from said first sensing means;
second means for storing the number of second output signals received from said second sensing means; and
logic means for comparing the number of first output signals from said first storing means and the number of second output signals from said second storing means and for generating an output signal indicative of fault in said apparatus, in response to said comparison.
2. The apparatus of claim 1 wherein said logic means further comprises:
user selectable means for selecting a threshold number and means for comparing the number of second output signals from said second storing means to the number of first output signals from said first storing means, in the event said number from said second storing means exceeds said threshold number.
3. The apparatus of claim 1 wherein said first sensing means is a passive infrared detecting sensing means and said second sensing means is a microwave detecting sensing means.
4. The apparatus of claim 1 wherein said first storing means is a counter.
5. The apparatus of claim 1 wherein said second storing means is a counter.
6. The apparatus of claim 2 wherein said logic means further comprises:
user selectable means for selecting a minimum number and a second means for comparing the number of first output signals from said first storing means to said minimum number, in the event said number from said second storing means exceeds said threshold number; and
said second comparing means for generating said output signal in response to said comparison. .Iadd.
7. In an intrusion detection system of the class employing dual technology subsystems, wherein a first subsystem provides a first output signal responsive to the detection of an intruder and wherein a second subsystem provides a second output responsive to the detection of an intruder and including means responsive to said first and second output signals for generating an alarm, the improvements therein comprising:
first counting means for counting the number of said first output signals provided by said first subsystem and for providing an output signal when said count equals a selected count,
second counting means for counting the number of said second output signals provided by said second subsystem and for providing an output signal when said count equals a predetermined count,
logic means coupled to said first and second counting means for generating a fault signal indicating a system malfunction for said output signal from said first or second counting means..Iaddend. .Iadd.8. The system according to claim 7 wherein said first subsystem is a microwave intrusion detection system with said second subsystem being a passive infra-red intrusion detection system..Iaddend. .Iadd.9. The system according to claim 7 wherein said first counting means is a binary counter having a plurality of outputs and including switching means for selecting any one output as said selected count..Iaddend. .Iadd.10. The system according to claim 7 wherein said second counting means is a decade counter..Iaddend.
.Iadd.11. The system according to claim 7 including means coupled to said first and second counting means for resetting said counting means when said first and second output signals are simultaneously provided..Iaddend.
US07/429,054 1986-08-05 1989-10-30 Fault detecting intrusion detection device Expired - Lifetime USRE33824E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/429,054 USRE33824E (en) 1986-08-05 1989-10-30 Fault detecting intrusion detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/893,399 US4710750A (en) 1986-08-05 1986-08-05 Fault detecting intrusion detection device
US07/429,054 USRE33824E (en) 1986-08-05 1989-10-30 Fault detecting intrusion detection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06/893,399 Reissue US4710750A (en) 1986-08-05 1986-08-05 Fault detecting intrusion detection device

Publications (1)

Publication Number Publication Date
USRE33824E true USRE33824E (en) 1992-02-18

Family

ID=25401505

Family Applications (2)

Application Number Title Priority Date Filing Date
US06/893,399 Ceased US4710750A (en) 1986-08-05 1986-08-05 Fault detecting intrusion detection device
US07/429,054 Expired - Lifetime USRE33824E (en) 1986-08-05 1989-10-30 Fault detecting intrusion detection device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US06/893,399 Ceased US4710750A (en) 1986-08-05 1986-08-05 Fault detecting intrusion detection device

Country Status (7)

Country Link
US (2) US4710750A (en)
EP (1) EP0259015B1 (en)
JP (1) JPH0782589B2 (en)
AU (1) AU588207B2 (en)
CA (1) CA1264832A (en)
DE (1) DE3775305D1 (en)
ES (1) ES2028089T3 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473311A (en) * 1994-09-16 1995-12-05 C&K Systems, Inc. Method and apparatus to distinguish human intruder and animal intruder
US5578988A (en) * 1994-09-16 1996-11-26 C & K Systems, Inc. Intrusion detection system having self-adjusting threshold
US6384414B1 (en) * 1997-11-25 2002-05-07 Board Of Regents, The University Of Texas System Method and apparatus for detecting the presence of an object
US20040075548A1 (en) * 2002-10-21 2004-04-22 Beggs Ryan P. Monitoring a remote body detection system of a door
US20050044792A1 (en) * 2003-06-20 2005-03-03 Beggs Ryan P. Door with a safety antenna
US7120238B1 (en) 2001-07-12 2006-10-10 8X8, Inc. Sensor-controlled telephone system
US20070063841A1 (en) * 2005-09-22 2007-03-22 Honeywell International, Inc. Cross-zone supervision for a security system
US20100019903A1 (en) * 2007-02-15 2010-01-28 Atsumi Electric Co., Ltd. Passive infrared detector

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535331A (en) * 1987-09-04 1996-07-09 Texas Instruments Incorporated Processor condition sensing circuits, systems and methods
GB2217889B (en) * 1988-04-08 1992-09-23 Matsushita Electric Works Ltd Composite type crime preventive sensor
US4833450A (en) * 1988-04-15 1989-05-23 Napco Security Systems, Inc. Fault detection in combination intrusion detection systems
US4882567A (en) * 1988-09-29 1989-11-21 C & K Systems, Inc. Intrusion detection system and a method therefor
US5019802A (en) * 1989-12-15 1991-05-28 Brittain Raymond C Intrusion detection apparatus
US5077548A (en) * 1990-06-29 1991-12-31 Detection Systems, Inc. Dual technology intruder detection system with sensitivity adjustment after "default"
US5216410A (en) * 1990-11-16 1993-06-01 Digital Security Controls Ltd. Intrusion alarm sensing unit
US5164703A (en) * 1991-05-02 1992-11-17 C & K Systems, Inc. Audio intrusion detection system
AU657545B2 (en) * 1991-06-21 1995-03-16 Boral Energy Asset Management Limited Dual gas monitor
US5276427A (en) * 1991-07-08 1994-01-04 Digital Security Controls Ltd. Auto-adjust motion detection system
US5583523A (en) * 1992-01-06 1996-12-10 C & K Systems, Incorporation Planar microwave tranceiver employing shared-ground-plane antenna
GB2263360B (en) * 1992-01-06 1996-02-07 C & K Systems Inc Improvements in or relating to antennas
US5332536A (en) * 1992-01-22 1994-07-26 Cook Composites And Polymers Co. Molding resins and UV-transparent molds made from the resins for making fiber reinforced articles
US5331308A (en) * 1992-07-30 1994-07-19 Napco Security Systems, Inc. Automatically adjustable and self-testing dual technology intrusion detection system for minimizing false alarms
CA2113026A1 (en) * 1993-01-28 1994-07-29 Paul Michael Hoseit Methods and apparatus for intrusion detection having improved immunity to false alarms
US5416487A (en) * 1993-06-28 1995-05-16 Scantronic Limited Testing of dual technology sensors
US5491467A (en) * 1994-01-31 1996-02-13 C & K Systems, Inc. Location independent intrusion detection system
GB2288681B (en) * 1994-04-14 1998-05-20 Pyronix Ltd Fault monitoring event detection device
GB9415196D0 (en) * 1994-07-28 1994-09-21 Rover Group Vehicle alarm self-check
US5581237A (en) * 1994-10-26 1996-12-03 Detection Systems, Inc. Microwave intrusion detector with threshold adjustment in response to periodic signals
US5640142A (en) * 1995-02-01 1997-06-17 Pittway Corporation Alarm system testing circuit
GB2308482B (en) * 1995-12-20 2000-03-29 Pyronix Ltd Event detection device with fault monitoring capability
US5684458A (en) * 1996-02-26 1997-11-04 Napco Security Systems, Inc. Microwave sensor with adjustable sampling frequency based on environmental conditions
US5986357A (en) * 1997-02-04 1999-11-16 Mytech Corporation Occupancy sensor and method of operating same
US6078253A (en) * 1997-02-04 2000-06-20 Mytech Corporation Occupancy sensor and method of operating same
US6087938A (en) * 1997-09-17 2000-07-11 Nachshol Electronics Ltd. Outdoor intrusion detector
AU4706200A (en) 1999-05-07 2000-11-21 C & K Systems, Inc. Glass-break detector and method of alarm discrimination
ITMI20011043A1 (en) * 2001-05-18 2002-11-18 Beghelli Spa ANTI-INTRUSION DEVICE
US20030128130A1 (en) * 2001-11-30 2003-07-10 Everspring Industry Co., Ltd. Solar powered radio transmission security camera
JP4250697B2 (en) * 2003-09-04 2009-04-08 オプテックス株式会社 Combination sensor
US7034675B2 (en) * 2004-04-16 2006-04-25 Robert Bosch Gmbh Intrusion detection system including over-under passive infrared optics and a microwave transceiver
WO2006022594A1 (en) * 2004-08-27 2006-03-02 Singapore Technologies Dynamics Pte Ltd Multi-sensor intrusion detection system
JP3793822B1 (en) * 2005-01-07 2006-07-05 オプテックス株式会社 Microwave sensor
US7680283B2 (en) * 2005-02-07 2010-03-16 Honeywell International Inc. Method and system for detecting a predetermined sound event such as the sound of breaking glass
CN100426330C (en) * 2006-12-29 2008-10-15 黄尚南 Infrared microwave alarm
US9613510B2 (en) * 2013-02-05 2017-04-04 Honeywell International Inc. Apparatus and method for rapid human detection with pet immunity
AU2015226202B2 (en) * 2014-03-03 2019-07-25 Vsk Electronics Nv Intrusion detection with motion sensing
US10306341B2 (en) * 2017-06-28 2019-05-28 Motorola Solutions, Inc. Method and apparatus for determining sensor data reliability at an incident scene for real-time and post-incident processing
US10657784B1 (en) * 2018-05-14 2020-05-19 Amazon Technologies, Inc. Auxiliary motion detector for video capture
CN109147248A (en) * 2018-09-14 2019-01-04 深圳世元云标识科技有限公司 A kind of mark forbids swarming into intellectual monitoring alarm system and method

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074053A (en) * 1960-03-01 1963-01-15 American District Telegraph Co Electrical system and method for protecting premises subject to varying ambient conditions
US3448449A (en) * 1965-08-25 1969-06-03 Bendix Corp Automatic test device
US3725888A (en) * 1971-04-05 1973-04-03 Pyrotector Inc Detector system
US3727216A (en) * 1971-01-28 1973-04-10 Mosler Safe Co Electromagnetic and ultrasonic doppler correlation intrusion alarm system
US3801978A (en) * 1972-07-20 1974-04-02 E Systems Inc Ultrasonic-microwave doppler intrusion alarm system
US4222041A (en) * 1978-04-19 1980-09-09 Siemens Aktiengesellschaft Danger alarm system
US4243979A (en) * 1976-12-13 1981-01-06 Siemens Aktiengesellschaft Burglar alarm security circuit arrangement
US4275390A (en) * 1976-03-31 1981-06-23 Siemens Aktiengesellschaft Burglar alarm device
US4331952A (en) * 1980-09-22 1982-05-25 American District Telegraph Company Redundant sensor adapter
US4401976A (en) * 1980-01-16 1983-08-30 Stadelmayr Hans G Multiple sensor interconnected alarm system responsive to different variables
EP0107042A1 (en) * 1982-10-01 1984-05-02 Cerberus Ag Infrared detector for spotting an intruder in an area
US4482889A (en) * 1980-11-14 1984-11-13 Nippondenso Co., Ltd. Device for detecting failure of ultrasonic apparatus
US4528553A (en) * 1983-08-16 1985-07-09 Conoco Inc. Event detection apparatus
US4611197A (en) * 1985-02-19 1986-09-09 Sansky Michael J Malfunction-detecting status monitoring system
US4625199A (en) * 1985-01-14 1986-11-25 American District Telegraph Company Combination intrusion detector system having correlated ultrasonic and microwave detection sub-systems
US4660024A (en) * 1985-12-16 1987-04-21 Detection Systems Inc. Dual technology intruder detection system
US4833450A (en) * 1988-04-15 1989-05-23 Napco Security Systems, Inc. Fault detection in combination intrusion detection systems
US4882567A (en) * 1988-09-29 1989-11-21 C & K Systems, Inc. Intrusion detection system and a method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528533A (en) * 1982-07-28 1985-07-09 General Scanning, Inc. Actuator with compensating flux path

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074053A (en) * 1960-03-01 1963-01-15 American District Telegraph Co Electrical system and method for protecting premises subject to varying ambient conditions
US3448449A (en) * 1965-08-25 1969-06-03 Bendix Corp Automatic test device
US3727216A (en) * 1971-01-28 1973-04-10 Mosler Safe Co Electromagnetic and ultrasonic doppler correlation intrusion alarm system
US3725888A (en) * 1971-04-05 1973-04-03 Pyrotector Inc Detector system
US3801978A (en) * 1972-07-20 1974-04-02 E Systems Inc Ultrasonic-microwave doppler intrusion alarm system
US4275390A (en) * 1976-03-31 1981-06-23 Siemens Aktiengesellschaft Burglar alarm device
US4243979A (en) * 1976-12-13 1981-01-06 Siemens Aktiengesellschaft Burglar alarm security circuit arrangement
US4222041A (en) * 1978-04-19 1980-09-09 Siemens Aktiengesellschaft Danger alarm system
US4401976A (en) * 1980-01-16 1983-08-30 Stadelmayr Hans G Multiple sensor interconnected alarm system responsive to different variables
US4331952A (en) * 1980-09-22 1982-05-25 American District Telegraph Company Redundant sensor adapter
US4482889A (en) * 1980-11-14 1984-11-13 Nippondenso Co., Ltd. Device for detecting failure of ultrasonic apparatus
EP0107042A1 (en) * 1982-10-01 1984-05-02 Cerberus Ag Infrared detector for spotting an intruder in an area
US4528553A (en) * 1983-08-16 1985-07-09 Conoco Inc. Event detection apparatus
US4625199A (en) * 1985-01-14 1986-11-25 American District Telegraph Company Combination intrusion detector system having correlated ultrasonic and microwave detection sub-systems
US4611197A (en) * 1985-02-19 1986-09-09 Sansky Michael J Malfunction-detecting status monitoring system
US4660024A (en) * 1985-12-16 1987-04-21 Detection Systems Inc. Dual technology intruder detection system
US4833450A (en) * 1988-04-15 1989-05-23 Napco Security Systems, Inc. Fault detection in combination intrusion detection systems
US4882567A (en) * 1988-09-29 1989-11-21 C & K Systems, Inc. Intrusion detection system and a method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578988A (en) * 1994-09-16 1996-11-26 C & K Systems, Inc. Intrusion detection system having self-adjusting threshold
US5473311A (en) * 1994-09-16 1995-12-05 C&K Systems, Inc. Method and apparatus to distinguish human intruder and animal intruder
US6384414B1 (en) * 1997-11-25 2002-05-07 Board Of Regents, The University Of Texas System Method and apparatus for detecting the presence of an object
US7120238B1 (en) 2001-07-12 2006-10-10 8X8, Inc. Sensor-controlled telephone system
US20040075548A1 (en) * 2002-10-21 2004-04-22 Beggs Ryan P. Monitoring a remote body detection system of a door
US7034682B2 (en) 2003-06-20 2006-04-25 Rite-Hite Holding Corporation Door with a safety antenna
US20050044792A1 (en) * 2003-06-20 2005-03-03 Beggs Ryan P. Door with a safety antenna
US7151450B2 (en) 2003-06-20 2006-12-19 Rite-Hite Holding Corporation Door with a safety antenna
US20070063841A1 (en) * 2005-09-22 2007-03-22 Honeywell International, Inc. Cross-zone supervision for a security system
WO2007038224A2 (en) * 2005-09-22 2007-04-05 Honeywell International, Inc. Cross-zone supervision for a security system
WO2007038224A3 (en) * 2005-09-22 2007-07-12 Honeywell Int Inc Cross-zone supervision for a security system
US7423530B2 (en) * 2005-09-22 2008-09-09 Honeywell International Inc. Cross-zone supervision for a security system
US20100019903A1 (en) * 2007-02-15 2010-01-28 Atsumi Electric Co., Ltd. Passive infrared detector

Also Published As

Publication number Publication date
US4710750A (en) 1987-12-01
EP0259015A2 (en) 1988-03-09
ES2028089T3 (en) 1992-07-01
JPH0782589B2 (en) 1995-09-06
CA1264832A (en) 1990-01-23
EP0259015A3 (en) 1988-07-06
JPS6345697A (en) 1988-02-26
AU588207B2 (en) 1989-09-07
DE3775305D1 (en) 1992-01-30
EP0259015B1 (en) 1991-12-18
AU7629687A (en) 1988-02-11

Similar Documents

Publication Publication Date Title
USRE33824E (en) Fault detecting intrusion detection device
US4833450A (en) Fault detection in combination intrusion detection systems
US5083106A (en) Intruder detection system with programmable countdown timer for self-supervision
US4559527A (en) Dual mode electronic intrusion or burglar alarm system
US4114147A (en) Code combination property alarm system
US4612442A (en) Passive infrared intrusion detection system
US3699569A (en) Security system for indicating fire, intrusion or the like
US4498075A (en) Fault indicator apparatus for a multi-zone intrusion system
US4030095A (en) Pulsed alarm system
US4963749A (en) Quad element intrusion detection
GB2104696A (en) Electronic security systems
EP0310655B1 (en) Continuously armed high reliability pulse train processor
US4150369A (en) Intrusion alarm system
US4523185A (en) Zoned intrusion display with series-connected sensors
US4222046A (en) Abnormal condition responsive means with periodic high sensitivity
US4156235A (en) Apparatus for activating or deactivating an intrusion detection system from a plurality of remote locations
EP0755551B1 (en) Fault monitoring event detection device
US5121102A (en) Programmable voltage source with isolation network
US4679031A (en) Device to facilitate the arming of an alarm system and to provide lock-out protection
US4912455A (en) Alarm systems
SU1042051A1 (en) Alarm device
AU615798B2 (en) Alarm control system
RU2078377C1 (en) Method for security alarm
KR970000967Y1 (en) Double circuit for signal output in a oscillation sensor
US5298879A (en) Vehicle alarm system having a coded visual response

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY