WO1997002602A1 - Semiconductor integrated circuit device and method of production thereof - Google Patents

Semiconductor integrated circuit device and method of production thereof Download PDF

Info

Publication number
WO1997002602A1
WO1997002602A1 PCT/JP1996/001653 JP9601653W WO9702602A1 WO 1997002602 A1 WO1997002602 A1 WO 1997002602A1 JP 9601653 W JP9601653 W JP 9601653W WO 9702602 A1 WO9702602 A1 WO 9702602A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
region
integrated circuit
semiconductor integrated
circuit device
Prior art date
Application number
PCT/JP1996/001653
Other languages
French (fr)
Japanese (ja)
Inventor
Sohei Omori
Shinichiro Wada
Nobuo Tamba
Akihisa Uchida
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP50497897A priority Critical patent/JP3942192B2/en
Publication of WO1997002602A1 publication Critical patent/WO1997002602A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI

Definitions

  • the present invention relates to a semiconductor integrated circuit device and a manufacturing technology thereof, and more particularly to a technology effective when applied to a protection element technology of a semiconductor integrated circuit device using an SOI (Silicon On Insulator) substrate.
  • SOI Silicon On Insulator
  • the SOI technology is a technology for forming a predetermined semiconductor integrated circuit device on a thin semiconductor layer formed on an insulating layer, and has, for example, the following excellent effects.
  • a complete element isolation structure can be realized by forming the element isolation portion to reach the insulating layer for forming SOI. Also, since there is no active parasitic effect such as a parasitic M0S transistor or a parasitic bipolar transistor appearing in the pn junction isolation structure, a latch-up phenomenon can be prevented. Furthermore, since the area occupied by the element isolation portion is small, the degree of element integration can be improved.
  • the SOI substrate studied by the present inventors has a structure in which a thin semiconductor layer is provided on a semiconductor substrate for securing strength via an insulating layer, and a predetermined semiconductor integrated circuit device is provided on the semiconductor layer. Are formed.
  • These elements include the elements that make up the internal circuits of the semiconductor integrated circuit device, the input / output circuits (including input circuits, output circuits, and input / output bidirectional circuits) of the semiconductor integrated circuit device, and the like. elements such as power 3 ⁇ 4 Mel protective circuit for protecting the.
  • the SOI substrate On such a semiconductor layer for element formation, wiring for connecting elements and the like via an insulating layer is formed. That is, the SOI substrate The structure is such that a semiconductor layer for element formation is sandwiched between insulating layers above and below it.
  • the SOI substrate is described, for example, in Keigaku Shuppan Co., Ltd., published on February 15, 1990, in “Illustrated Super LSI Engineering” on pages 322 to 325. The structure and various manufacturing methods are described.
  • the heat generated when the element breaks down is transferred to the thin semiconductor layer because the semiconductor layer on which the element for the protection circuit is formed is sandwiched between the upper and lower insulating layers. There is a problem that only heat can escape in the horizontal direction, and the heat may cause the protection circuit element to deteriorate or be damaged.
  • An object of the present invention is to provide a technique capable of improving the heat dissipation of heat generated in a protection circuit element in a semiconductor integrated circuit device using an SOI substrate.
  • Another object of the present invention is to provide a technique capable of improving the electrostatic breakdown resistance of a protection circuit element in a semiconductor integrated circuit device using an SOI substrate.
  • a semiconductor integrated circuit device includes a supporting semiconductor substrate, A semiconductor integrated circuit device comprising: an SOI substrate having an element forming semiconductor layer provided via an insulating layer; and an external terminal for leading out an electrode of the element on an upper layer of the semiconductor layer.
  • an element for a protection circuit electrically connected to the external terminal is provided on the insulating layer removed region where the insulating layer is partially removed.
  • the heat generated when the protection circuit element breaks down can be released to the supporting semiconductor substrate side through the insulating layer removal region. It is possible to improve the heat dissipation of the heat generated in the element for use.
  • the charge generated by static electricity or the like can be released to the supporting semiconductor substrate side through the insulating layer removal area, and the charge can be prevented from being concentrated on the protection circuit element. It becomes possible to improve the electrostatic breakdown resistance of the device.
  • the above-described effects can be obtained without increasing the diffusion capacitance and the wiring-substrate capacitance. It becomes possible.
  • the insulating layer of the SOI substrate is only partially removed and the insulating layer is left in other regions, no significant step is formed in the upper semiconductor layer. Therefore, it is possible to prevent the occurrence of a defect such as a disconnection of a wiring due to a step.
  • the predetermined semiconductor region of the element for the protection circuit is provided so as to be in contact with the insulating layer, and the predetermined semiconductor region of the element forming the semiconductor integrated circuit is insulated. It is provided so as to be in contact with the layer.
  • FIG. 1 is a cross-sectional view of a main part of a semiconductor integrated circuit device according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a main part of a semiconductor integrated circuit device according to an embodiment of the present invention
  • FIG. 1, a main part plan view of the semiconductor integrated circuit device of FIG. 1
  • FIG. 4 is a plan view of a semiconductor chip constituting the semiconductor integrated circuit device
  • FIG. 5 is a plan view of a semiconductor chip constituting the semiconductor integrated circuit device
  • FIG. 1 is a cross-sectional view of a main part of a semiconductor integrated circuit device according to an embodiment of the present invention
  • FIG. 1 is a cross-sectional view of a main part of a semiconductor integrated circuit device according to an embodiment of the present invention
  • FIG. 1 a main part plan view of the semiconductor integrated circuit device of FIG. 1
  • FIG. 4 is a plan view of a semiconductor chip constituting the semiconductor integrated circuit device
  • FIG. 5 is a plan view of a semiconductor chip constitu
  • FIG. 6 is a circuit diagram of an input protection circuit of a semiconductor integrated circuit device
  • FIG. 7 is a circuit diagram of an output protection circuit of a semiconductor integrated circuit device
  • FIG. 8 is a cross-sectional view of a main part during a manufacturing process of the semiconductor integrated circuit device.
  • FIG. 9 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. 8
  • FIG. 10 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. 1 is a cross-sectional view of the main parts during the manufacturing process of the semiconductor integrated circuit device following Fig. 10.
  • FIG. 12 is a fragmentary cross-sectional view of the semiconductor integrated circuit device during the manufacturing process following FIG. 11; FIG.
  • FIG. 13 is a fragmentary sectional view of the semiconductor integrated circuit device during the manufacturing process following FIG.
  • FIG. 14 is a fragmentary cross-sectional view of the semiconductor integrated circuit device during the manufacturing process following FIG. 13
  • FIG. 17 is a fragmentary cross-sectional view of the semiconductor integrated circuit device according to another embodiment of the present invention during the manufacturing process.
  • FIG. 18 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. 17, and FIG.
  • FIG. 19 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG.
  • FIG. 20 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. 1 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. 20;
  • FIG. 22 is a cross-sectional view of a main portion of the semiconductor integrated circuit device during the manufacturing process following FIG. 21; Is a circuit diagram of an input protection circuit of a semiconductor integrated circuit device according to another embodiment of the present invention.
  • FIG. 24 is a circuit diagram of an output protection circuit of the semiconductor integrated circuit device according to another embodiment of the present invention.
  • FIG. 25 is a cross-sectional view of a main part of the semiconductor integrated circuit device of FIG. 23
  • FIG. 26 is a plan view of a main part of a semiconductor integrated circuit device according to another embodiment of the present invention
  • FIG. XXVII in Figure 26 Cross-sectional view along line XXVII
  • Figure 2 FIG. 8 is a cross-sectional view of a main part of an internal circuit region of a semiconductor integrated circuit device according to another embodiment of the present invention
  • FIG. 29 is a protection circuit of a semiconductor integrated circuit device according to another embodiment of the present invention.
  • FIG. 30 is a cross-sectional view of a main part of a semiconductor integrated circuit device including the protection circuit of FIG. 29.
  • FIG. 4 is a plan view of a semiconductor chip included in the semiconductor integrated circuit device according to the first embodiment.
  • the semiconductor chip 1 is composed of, for example, a semiconductor chip having a rectangular shape in a plane, an internal circuit area A is arranged at the center, and a peripheral circuit area B is arranged at the outer periphery.
  • a predetermined logic circuit such as a microprocessor is formed.
  • a peripheral circuit area B for example, an input / output circuit such as an input buffer circuit, an output buffer circuit, or an input / output bidirectional circuit, a protection circuit and a power supply circuit are formed.
  • a plurality of CCB (Controlled Collapse Bonding) bump electrodes (external terminals) 2 are regularly arranged on the main surface of the semiconductor chip 1.
  • the CCB bump electrode 2 is made of, for example, a lead (Pb) -tin (Sn) alloy, and is electrically connected to elements formed on the semiconductor chip 1 through wiring. Note that, in the internal circuit region A, the CCB bump electrodes 2 for mainly supplying power supply voltage are arranged, and in the peripheral circuit region B, the CCB bump electrodes 2 for signals are arranged.
  • the arrangement states of the internal circuit area A and the peripheral circuit area B are not limited to those shown in FIG. 4 and can be variously changed, and for example, may be as shown in FIG. That is, the rectangular internal circuit area A and the peripheral circuit area B extending vertically in FIG. 5 are alternately arranged along the horizontal direction in FIG. May be placed.
  • the CCB bump electrode 2 for supplying the power supply voltage on the low potential side is arranged in the internal circuit area A
  • the CCB bump electrode 2 for supplying the power supply voltage on the high potential side is disposed in the peripheral circuit area B.
  • CCB bump electrodes 2 for signals and CCB bump electrodes 2 for signals are alternately arranged.
  • FIGS. 6 and 7 circuit diagrams of the input protection circuit and the output protection circuit formed in the peripheral circuit region B are shown in FIGS. 6 and 7, respectively.
  • the current I indicates the direction in which the electrostatic current flows.
  • the input protection circuit 3 shown in FIG. 6 is a circuit for protecting peripheral circuits and internal circuits from static electricity or the like, and has, for example, two diodes D 1 and D 2 and a resistor R.
  • the diode (first pn junction diode) D 1 is electrically connected between the power supply wiring V C C and the input C C B bump electrode 2 in the opposite direction.
  • the power supply wiring V CC is a high-potential power supply wiring, and is set to, for example, about 0 V.
  • the diode (second pn junction diode) D 2 is electrically connected in the opposite direction between the input CCB bump electrode 2 and the power supply wiring V EE.
  • the power supply wiring V EE is a low-potential power supply wiring, and is set to, for example, about 12 V.
  • the resistor R is electrically connected between the input CCB bump electrode 2 and the internal circuit, and is set to, for example, about 100 ⁇ .
  • the output protection circuit 4 shown in FIG. 7 is a circuit for protecting peripheral circuits and internal circuits from static electricity and the like, and has, for example, two diodes D 3 and D 4.
  • the diode (first pn junction diode) D 3 is electrically connected between the power supply wiring V C C and the output C C B bump electrode 2 in the opposite direction.
  • the diode (second pn junction diode) D 4 is electrically connected between the output CCB bump electrode 2 and the power supply wiring V EE in the opposite direction.
  • FIG. 1 shows a cross-sectional view taken along the line II of FIG. Fig. 2 shows a cross-sectional view of the main part of the internal circuit area A.
  • FIG. 3 some hatchings are added to make the drawing easier to see.
  • an S 0 I substrate 5 is used as an element formation substrate constituting the semiconductor chip 1.
  • the SOI substrate 5 includes a semiconductor substrate 5a, an insulating layer 5b formed thereon, and a semiconductor layer 5c formed thereon.
  • the semiconductor substrate 5a is a supporting substrate component mainly for securing the strength of the SOI substrate 5, and is made of, for example, n-type silicon (Si) single crystal.
  • Insulating layer 5 b is made of, for example, silicon dioxide (S i 0 2), has a thickness of, for example 5 0 0 OA about.
  • the semiconductor layer 5c and the semiconductor substrate 5a are in physical contact with each other. As a result, in the semiconductor integrated circuit device according to the first embodiment, the following can be performed.
  • the heat generated when the diodes D1 and D2 break down can be released to the supporting semiconductor substrate 5a through the removed area of the insulating layer 5b. It is possible to improve the heat dissipation.
  • the semiconductor layer 5c is a substrate component for element formation, and is made of, for example, an n-type Si single crystal, and has a thickness of, for example, about 1 to 2 / m.
  • a field insulating film 6a for isolation and a trench isolation portion 6b are formed.
  • Field insulating film 6 a is composed of, for example, S i 0 2. Also, train Chi separating unit 6 b is in the dug to the extent that the upper surface of the field insulating film 6 b reaching a portion of the insulating layer 5 b groove, an insulating film is padded made of, for example, S i 0 2 It is formed.
  • the diode D 1 includes an n + -type buried region 7 a 1, an n + -type lead-out region 7 b 1, an IT-type semiconductor region 7 c 1, and a p + -type semiconductor region (first p-type semiconductor region) 7 d 1.
  • the n + -type buried region 7a1 is made of, for example, an n + -type Si single crystal, and is formed in the lowermost layer of the semiconductor layer 5c.
  • the n + -type lead region 7 b 1 is formed so as to extend from the upper surface of the semiconductor layer 5 c to the n + -type buried region 7 a 1, and has a connection hole 9 formed in the insulating film 8 on the SOI substrate 5. It is electrically connected to wiring 10a through a.
  • the wiring 10a is made of, for example, an aluminum (A 1) —Si—copper (Cu) alloy, and is electrically connected to, for example, a power supply wiring V CC. As shown in FIG. 3, the wiring 10a and the connection hole 9a are arranged so as to surround the periphery of the p + type semiconductor region 7d1.
  • the II-type semiconductor region 7 c 1 is made of, for example, an ⁇ -type Si single crystal formed by an epitaxial method, and is formed on the n + -type buried region 7 a 1. Have been.
  • the n-type buried region 7a1, the n + -type lead region 7b1, and the IT-type semiconductor region 7c1 are doped with an n-type impurity such as phosphorus or arsenic (As).
  • n-type semiconductor region 7 c 1 a p + type semiconductor region (first p-type semiconductor region) 7 d 1 is formed, and the p + type semiconductor region 7 d 1 and the n ⁇ type semiconductor region are formed.
  • the main action part of diode D1 is formed at the pn junction with 7c1.
  • the P + type semiconductor region 7 d 1 is electrically connected to wirings 10 b and 10 c formed independently of each other through connection holes 9 b and 9 c formed in the insulating film 8.
  • the wiring 10b is electrically connected to, for example, an internal circuit.
  • the wiring 10c is electrically connected to the wiring 10d through the connection hole 9d, and further electrically connected to the input CCB bump electrode 2 (see FIG. 4) through the wiring 10a. .
  • the wirings 10b and 10c are made of, for example, an A1-Si-Cu alloy, and are electrically connected to each other through a resistor R made of a p + type semiconductor region 7d1.
  • the size of the diode D 1 including the n + -type lead region 7 b 1 is, for example, about 35 ⁇ mX 28 ⁇ m.
  • the diode D 2 includes an n + -type buried region 7 a 2, an n + -type lead-out region 7 b 2, an IT-type semiconductor region 7 c 2, and a p + -type semiconductor region (second p-type semiconductor region) 7 d 2 And
  • the n + type buried region 7a2 is made of, for example, an n + type Si single crystal, and is formed in the lowermost layer of the semiconductor layer 5c.
  • the n + -type lead-out region 7 b 2 is formed to extend from the upper surface of the semiconductor layer 5 c to the n + -type buried region 7 a 2, and has a connection hole 9 e formed in the insulating film 8 on the SOI substrate 5. Is electrically connected to the wiring 10e through the wire. As shown in FIG. 3, the wiring 10 e and the connection hole 9 e are arranged so as to surround the periphery of the p + -type semiconductor region 7 d 2.
  • the wiring 10 e is made of, for example, A 1—Si—Cu alloy, is electrically connected to the wiring 10 d through the connection hole 9 f, and is further connected to the input CCB bump electrode through the wiring 10 d. 2 (see Fig. 4 etc.).
  • the n ⁇ type semiconductor region 7 c 2 is made of, for example, an IT type Si single crystal formed by an epitaxial method, and is formed on the n + type buried region 7 a 2.
  • phosphorus or As of an n-type impurity is introduced into the n + buried region 7a2, the n + -type lead region 7b2, and the IT-type semiconductor region 7c2.
  • a p + type semiconductor region 7 d 2 is formed above the IT type semiconductor region 7 c 2, and a diode is formed at a pn junction between the p + type semiconductor region 7 d 2 and the IT type semiconductor region 7 c 2.
  • the main working part of D2 is formed.
  • the p + type semiconductor region 7 d 2 is electrically connected to the wiring 10 f through a connection hole 9 g formed in the insulating film 8.
  • the wiring 10 f is made of, for example, an A 1 -Si—Cu alloy, and is electrically connected to, for example, a power supply wiring V EE.
  • the size of the diode D 2 including the n + -type extraction region 7 b 2 is, for example, about 28 / .rnX 22 m.
  • the insulating film 8 is made of, for example, a PSG (Phospho Silicate Glass) film.
  • npn transistor a vertical npn bipolar transistor (hereinafter, referred to as npn transistor) 11, a p-channel MOS transistor (hereinafter, referred to as pMOS) 12, An n-channel type MOS transistor (hereinafter referred to as nMOS) 13 is formed.
  • npn transistor a vertical npn bipolar transistor
  • pMOS p-channel MOS transistor
  • nMOS An n-channel type MOS transistor
  • the pMOS 12 and the nMOS 13 form a CMOS circuit, and the CMOS circuit and the npn transistor 11 form a BiC-MOS (Bipolor C-MOS) circuit.
  • the npn transistor 11 includes a collector buried region 11a, a base region 11c formed above the n ⁇ well 11b thereon, and an emitter region 11d formed in the upper center of the base region 11c. have.
  • the n + -type collector buried region 11a has, for example, phosphorus or As of an n-type impurity introduced therein.
  • the collector electrode 14c is formed through the collector bow I-exposed region 1If formed in the n-type well 11b. Electrically connected to I have.
  • the collector electrode 14 c has, for example, a c base region 11 c made of an A 1 -Si—Cu alloy, and surrounds a central intrinsic base region 11 c 1 and an emitter region 11 d above it. And the base drawer area 1 1 c 2 arranged as follows.
  • P-type impurity boron is introduced into the intrinsic base region 11c1 and the base extraction region 11c2.
  • the impurity concentration of the base extraction region 11c2 is set higher than that of the intrinsic base region 11c1.
  • the base extraction region 11c2 is electrically connected to the base electrode 14b2 via the base extraction electrode 14b1.
  • the base extraction electrode 14 b 1 is made of, for example, low-resistance polysilicon
  • the base electrode 14 b 2 is made of, for example, an A 1 -S i -Cu alloy.
  • the emitter region 11 d has, for example, n-type impurity phosphorus or As introduced therein, and is electrically connected to the emitter electrode 14 e 2 via the emitter extraction electrode 14 el.
  • the emitter extraction electrode 14 e 1 is made of, for example, low-resistance polysilicon
  • the emitter electrode 14 e 2 is made of, for example, an A 1 -Si—Cu alloy.
  • the pMOS 12 includes a pair of source region 12a and drain region 12b formed above the semiconductor layer 5c, a gate oxide film 12c formed on the semiconductor layer 5c, and It has a gate electrode 12d formed thereon.
  • the source region 12 a and the drain region 12 b have a structure having a low concentration region 12 a 1, 12 b 1 and a high concentration region 12 a 2, 12 b 2 outside thereof, respectively. I have.
  • the low-concentration regions 12a1 and 12b1 and the high-concentration regions 12a2 and 12b2 contain, for example, boron as a p-type impurity.
  • the source region 12a and the drain region 12b are electrically connected to the source electrode 14s1 and the drain electrode 14d, respectively.
  • the source electrode 14 s 1 and the drain electrode 14 d 1 are made of, for example, an A 1 —S i —Cu alloy.
  • Gate oxide film 1 2 c is made of, for example, S i 0 2.
  • the gate electrode 1 2 d is formed by Shirisai de layer mosquitoes s deposition consisting WS i 2 like for example the low-resistance poly-silicon layer.
  • the upper and side surfaces of the gate electrode 1 2 d is, for example S i 0 2 consists of a cap insulating film 1 5 a and cyclic Dowo - le 1 5 b are formed.
  • the nMOS 13 includes a pair of a source region 13 a and a drain region 13 b formed on the semiconductor layer 5 c, a gate oxide film 13 c formed on the semiconductor layer 5 c, And a gate electrode 13d formed thereon. It should be noted that boron as a p-type impurity is introduced into the semiconductor layer 5c in the region where the nMOS 13 is formed.
  • the source region 13a and the drain region 13b consist of low concentration regions 13a1, 13b1 and high concentration regions 13a2, 13b2 outside thereof, respectively. It has the same structure as 12.
  • the low-concentration regions 13a1, 13b1 and the high-concentration regions 13a2, 13b2 contain, for example, n-type impurity phosphorus or As.
  • the source region 13a and the drain region 13b are electrically connected to the source electrode 14s2 and the drain electrode 14d2, respectively.
  • the source electrode 14 s 2 and the drain electrode 14 d 2 are made of, for example, an A 1 —S i —Cu alloy.
  • a gate oxide film 1 3 c is made of, for example, S i 0 2.
  • Gate - gate electrode 1 3 d is formed by Shirisai de layer mosquito deposition made of WS i 2 like for example the low-resistance poly-silicon layer.
  • the upper and side surfaces of the gate one gate electrode 1 3 d, if example embodiment S i 0 2 cap insulating film 1 made of 5 a and cyclic Douoru 1 5 b are formed.
  • FIG. 1 and FIG. 2 example if are S i 0 2 made of an insulating film 1 6 force s deposits, which in due connection Wiring 1 0 a, 1 0 b, 10 e, 10 f, base electrode 14 b 2, emitter electrode 14 e 2, collector electrode 14 c, source electrode 14 s 1, 14 s 2, and drain electrode 14 d 1 , 14 d 2 are coated. Furthermore, the On the insulating film 16, for example, a surface protection film 17 composed of a SiO 2 film or a laminated film formed by depositing a silicon nitride film on the SiO 2 film is deposited. The wiring 10d (see Fig. 3) is covered.
  • FIGS an example of a method of manufacturing the semiconductor integrated circuit device according to the first embodiment will be described with reference to FIGS.
  • a photo-resist that covers the removal region of the insulating layer 5b (see FIG. 1) on the main surface of a semiconductor substrate 5a made of, for example, an n-type Si single crystal.
  • a semiconductor substrate 5a made of, for example, an n-type Si single crystal.
  • Regis Tono ,.
  • Turn 18a is formed by photolithographic techniques.
  • oxygen ions are introduced into the semiconductor substrate 5a by an ion implantation method or the like.
  • the dose at this time is, for example, about 10 18 Z cm 2 .
  • the acceleration energy is, for example, about 180 keV to 200 keV.
  • the semiconductor substrate 5a is subjected to a nitrogen annealing treatment at about 130 ° C. to 135 ° C. for about 2 hours to 6 hours, and the region into which oxygen ions are implanted is selectively subjected to S annealing.
  • a nitrogen annealing treatment at about 130 ° C. to 135 ° C. for about 2 hours to 6 hours, and the region into which oxygen ions are implanted is selectively subjected to S annealing.
  • i 0 2 As shown in FIG. 9, an insulating layer 5 b having a thickness of, for example, about 500 OA is formed at a predetermined depth position of the semiconductor substrate 5 a, and, for example, A thin semiconductor layer 5 c 1 having a thickness of about 0.1 ⁇ m is formed.
  • the insulating layer 5b is not formed in a part, and the thin semiconductor layer 5c1 and the lower semiconductor substrate 5a are physically and physically in the removed region. It is in contact.
  • the area where the insulating layer 5b is removed is an area where heat, electrostatic current, and the like generated by the input / output protection circuit are released to the semiconductor substrate 5a.
  • a semiconductor layer 5c2 made of, for example, an n-type Si single crystal is formed on the thin semiconductor layer 5c1. Is formed by an epitaxy method. Thereby, the semiconductor layer 5c is formed on the insulating layer 5b, and the SOI substrate 5 is manufactured. Subsequently, as shown in FIG. 11, the upper portion of the semiconductor layer 5 c, for example, S i 0 2 consists of the field insulating film 6 a conventional LOCOS (Local Oxidi zation of Silicon Roh, / removed by the cowpea "! Form 9
  • a groove is formed at a predetermined position of the field insulating film 6a so as to reach the upper portion of the insulating layer 5b, and then an insulating film made of, for example, SiO 2 is buried in the groove.
  • the separation part 6b is formed.
  • a collector extraction region 11 f is formed in the transistor formation region of the internal circuit region A.
  • the collector extraction region 11f is formed by forming a photoresist pattern so as to cover the region other than that region, and then implanting, for example, phosphorus or As of an n-type impurity into the SOI substrate 5 by ion implantation or the like. And an annealing treatment is performed.
  • n + -type lead-out regions 7 b 1 and 7 b 2 are formed in the rr semiconductor regions 7 c 1 and 7 c 2 of the input / output protection circuit region in the peripheral circuit region B.
  • the SOI substrate 5 is ionized with, for example, n-type impurity phosphorus or As. It is formed by injecting by an injection method or the like and further performing an annealing process.
  • ⁇ + type semiconductor regions 7 d 1 and 7 d 2 are formed above the ⁇ ⁇ semiconductor regions 7 c 1 and 7 c 2 of the input / output protection circuit region in the peripheral circuit region B.
  • ion implantation of, for example, BF 2 of a P type impurity into the SOI substrate 5 is performed. It is formed by injecting by a method or the like and further performing an annealing process.
  • An insulating film 8a is deposited by a CVD method or the like.
  • the edge film 8a is removed by photolithography and dry etching.
  • a conductive film made of, for example, p-type low-resistance polysilicon is deposited on the S01 substrate 5 by a CVD method or the like, and the conductive film is patterned by photolithography and dry etching to obtain a conductive film.
  • a film 18 is formed.
  • the insulating film 8b made of, for example, SiO 2 is deposited on the SOI substrate 5 by a CVD method or the like, the insulating film 8b and the conductive film 18 in the base region of the bipolar transistor formation region are formed by photolithography. Then, by removing by a dry etching technique, as shown in FIG. 14, a base extraction electrode 14 b 1 is formed and a part of the upper surface of the semiconductor layer 5 c is exposed.
  • BF 2 ions are introduced into the exposed portions of the semiconductor layer 5c of the SOI substrate 5 by ion implantation or the like.
  • the dose at this time is, for example, about 10 13 Z cm 2
  • the acceleration energy is, for example, about 60 keV.
  • annealing is performed on the SOI substrate 5 to form an intrinsic base region 11 c 1, and then p-type impurities in the conductor film 18 are diffused into the upper portion of the semiconductor layer 5 c. As shown in FIG. 15, a base lead-out region 11 c 2 is formed.
  • an insulating film made of, for example, SiO 2 is deposited on the SOI substrate 5 by a CVD method or the like, and the insulating film is etched back to form openings in the insulating film 8 and the conductor film 18.
  • a conductive film made of, for example, n-type low-resistance polysilicon is deposited on the S0I substrate 5 by a CVD method or the like, and then the conductive film is patterned by photolithography and dry etching. Thus, an emitter extraction electrode 14 e 1 is formed.
  • the n-type impurity in the emitter electrode 14 e 1 is removed from the semiconductor layer 5.
  • an emitter region 11 d is formed above the intrinsic base region 11 c 1.
  • connection hole 19 is formed in the insulating film 8 by photolithography. And drilling by dry etching technology.
  • the metal film is patterned by photolithography and dry etching.
  • wiring 10a, 10b, 10e, 10f, collector electrode 14c, base electrode 14b2, emitter electrode 14e2, source electrodes 14s1, 14s2, and drain electrode 14c then to form a d 1, 14 d 2, as shown in FIGS.
  • a surface protective film 17 is deposited on the insulating film 16 by a CVD method or the like. Thereafter, the semiconductor integrated circuit device is manufactured according to the normal semiconductor integrated circuit device manufacturing process.
  • the main surface of the first semiconductor substrate 20 is polished by a CMP (Chemical Mechanical Polishing) method or the like, as shown in FIG. Flatten.
  • CMP Chemical Mechanical Polishing
  • the field insulating film 21 is left above the main surface of the semiconductor substrate 20. Thereby, the insulating layer 5b is formed.
  • the main surface of the first semiconductor substrate 20 and the main surface of the other prepared second semiconductor substrate (supporting semiconductor substrate) 22 were opposed to each other and brought into contact with each other.
  • the first semiconductor substrate 20 and the second semiconductor substrate are subjected to annealing treatment in an oxygen atmosphere or the like at about 800 ° C. to 110 ° C. for about 2 hours.
  • the second semiconductor substrate 22 is made of, for example, an n-type Si single crystal.
  • the back surface of the first semiconductor substrate 20 is etched away by, for example, a dry etching process to form a thin semiconductor layer 5c1, as shown in FIG. 20, and then the same as in the first embodiment.
  • a semiconductor layer 5c2 made of, for example, an n-type Si single crystal is grown by an epitaxy method or the like to form the semiconductor layer 5c.
  • a field insulating film 6 a made of, for example, SiO 2 is formed on the semiconductor layer 5 c by a LOCOS method or the like.
  • a trench isolation 6b is formed at a predetermined position. Subsequent steps are the same as in the first embodiment, and a description thereof will be omitted.
  • FIGS. 23 and 24 show circuit diagrams of the input protection circuit and the output protection circuit formed in the peripheral circuit region of the third embodiment
  • FIG. 25 shows a semiconductor integrated circuit including this input protection circuit element.
  • 1 shows a cross-sectional view of a main part of a circuit device.
  • the electrostatic protection element constituting the protection circuit is constituted by MOS transistors Q1 to Q4 functioning as diodes.
  • the MOS transistor (first MIS transistor) Q1 of the input protection circuit 3 is connected to the power supply wiring V CC and the input CCB bump electrode 2 with its gate electrode connected to the power supply wiring V CC. And a diode connection.
  • the M 0 S transistor (second MIS transistor) Q 2 is connected between the power supply wiring V EE and the input CCB bump electrode 2 with its gate electrode connected to the power supply wiring V EE. Diode connected.
  • MOS transistor of output protection circuit 4 (first MIS transistor E) Q3 is electrically connected between the power supply wiring V CC and the output CCB bump electrode 2 with its gate electrode connected to the power supply wiring V CC.
  • the MOS transistor (second MIS transistor) Q4 is electrically connected between the output CCB bump electrode 2 and the power supply wiring VEE with its gate electrode connected to the power supply wiring VEE. Connected.
  • FIG. 25 shows only the MOS transistor Q1 described above, but the MOS transistors Q2 to Q4 have basically the same structure.
  • the above-mentioned MOS transistor Q1 is composed of a pair of source region (first n-type semiconductor region) 24a and a drain region provided separately from each other above a semiconductor layer 5c made of, for example, a p-type Si single crystal.
  • the source region 24a and the drain region 24b are doped with, for example, an n-type impurity such as phosphorus or As to form the source region 13a and the drain region 13b of the nMOS 13 of the internal circuit. Sometimes formed at the same time. A channel region is formed between the source region 24a and the drain region 24b.
  • the gate electrode 24 d is made of, for example, A 1 -Si—Cu alloy, and has a collector electrode 14 c base electrode 14 b 2, an emitter electrode 14 e 2, a source electrode 14 s 1, It is formed simultaneously when 14 s 2 and the drain electrodes 14 d 1 and 14 d 2 are formed.
  • the insulating layer 5b immediately below the channel region of the MOS transistor Q1 for the electrostatic protection element is removed.
  • FIG. 27 shows a plan view of the input protection circuit 3 of the fourth embodiment and a cross-sectional view taken along line XXVII-XXVII of the input protection circuit 3.
  • Fig. 28 shows a cross-sectional view of the main part of the internal circuit area A (see Fig. 4 etc.). Note that FIG. 26 is partially hatched to make the drawing easier to see.
  • the SOI substrate 5 includes a semiconductor substrate 5a, an insulating layer 5b formed thereon, and a semiconductor layer 5c formed thereon.
  • the semiconductor substrate 5a is a supporting substrate component that mainly secures the strength of the SOI substrate 5, and is made of, for example, n-type silicon (Si) single crystal.
  • Insulating layer 5 b is made of, for example, silicon dioxide (S i 0 2), has a thickness of, for example 5 0 0 OA about.
  • the semiconductor integrated circuit device enables the following first to fourth operations.
  • the heat generated when the diodes D1 and D2 break down can be released to the supporting semiconductor substrate 5a through the removed area of the insulating layer 5b. It is possible to improve the heat dissipation.
  • the current flowing through the diode D 1, D 2 by the static electricity or the like can also Nigasuko and force s on the semiconductor substrate 5 a side of the supporting through removal region of the insulating layer 5 b, Daio one de D 1, It can prevent the electric field from concentrating on D2 Therefore, it is possible to improve the electrostatic breakdown resistance of the diodes D 1 and D 2.
  • Arrow C in FIG. 1 schematically shows an escape route for heat or electrostatic current.
  • the semiconductor layer 5 Ho a substrate structure of the element formation, for example, an n-type S i monocrystalline, its thickness is thinner than the first to third embodiments, preferably, for example, 0.1 lambda m It is about.
  • a field insulating film 6a for isolation is formed.
  • the field insulating film 6 a is made of, for example, S i 0 2, its bottom is in contact insulating layer 5 as shown in FIG. 2 7 and 2 8.
  • the field insulating film 6 c which is arranged inside the field insulating film 6 a, for example, an insulating film S i 0 2 consists of elements in the separation.
  • the field insulating film 6c does not have a bottom portion in contact with the insulating layer 5b, and a semiconductor layer is interposed therebetween.
  • the diode D 1 for the input protection circuit shown in FIGS. 26 and 27 is composed of an n + -type lead region 7 b 1, an rr -type semiconductor region 7 c 1 surrounded by this region, and a p + Semiconductor region (first p-type semiconductor region) 7 d 1.
  • the diffusion capacitance of the diode D ⁇ can be reduced by the absence of the ⁇ + buried region 7a1 described in the first embodiment.
  • the n + -type extraction region 7 b 1 contains, for example, an n-type impurity such as phosphorus or As, and extends so that the bottom reaches the insulating layer 5 b.
  • the n + -shaped lead region 7 b 1 is electrically connected to the wiring 10 a through a connection hole 9 a formed in the insulating film 8 on the SOI substrate 5.
  • the wiring 10a is made of, for example, an aluminum (A 1) —Si—copper (Cu) alloy, and is electrically connected to, for example, a power supply wiring V CC. As shown in FIG. 26, the wiring 10a and the connection hole 9a are arranged so as to surround the periphery of the p + -type semiconductor region 7d1.
  • the IT-type semiconductor region 7 c 1 is formed by introducing n-type impurity phosphorus or As into an IT-type Si single crystal formed by, for example, an epitaxy method, and the center of the bottom is a supporting semiconductor substrate. Physical contact with 5a.
  • the p + -type semiconductor region (first p-type semiconductor region) 7 d1 contains, for example, p-type impurity boron, and the p + -type semiconductor region 7 d 1 and the rr -type semiconductor region 7 c 1
  • the main working part of the diode D1 is formed at the pn junction of FIG.
  • the P + type semiconductor region 7 d 1 is electrically connected to wirings 10 b and 10 c formed independently of each other through connection holes 9 b and 9 c formed in the insulating film 8. .
  • the wiring 10b is electrically connected to, for example, an internal circuit.
  • the wiring 10c is electrically connected to the wiring 10d through the connection hole 9d, and is further electrically connected to the input CCB bump electrode through the wiring 10a.
  • the wirings 10b and 10c are made of, for example, A1-Si-Cu alloy, and are electrically connected to each other through a resistor R composed of ap + type semiconductor region 7d1. .
  • the size of Daiodo D 1 including the n + type extraction region 7 bl is, for example, 3 5 m X 2 8 ⁇ m extent.
  • the diode D 2 for the input protection circuit is composed of an n + -type lead region 7 b 2, an n ⁇ -type semiconductor region 7 c 2 surrounded by the n + -type lead region 7 b 2, and a p + -type semiconductor Body region (second p-type semiconductor region) 7 d 2.
  • the diffusion capacity of the diode D2 can be reduced by the absence of the n + buried region 7a2 described in the first embodiment. .
  • the n + -type extraction region 7b2 contains, for example, phosphorus or As of an n-type impurity, and extends so that the bottom reaches the insulating layer 5b.
  • the n + -type lead region 7b2 is electrically connected to the wiring 10e through a connection hole 9e formed in the insulating film 8 on the SOI substrate 5.
  • the wiring 10e and the connection hole 9e are arranged so as to surround the p + type semiconductor region 7d2.
  • the wiring 10 e is made of, for example, an A 1 -Si i-Cu alloy, is electrically connected to the wiring 10 d through the connection hole 9 f, and furthermore, is connected to the input CCB bump through the wiring 10 d. It is electrically connected to the electrodes.
  • the n-type semiconductor region 7c2 is formed, for example, by introducing n-type impurity phosphorus or As into a Si single crystal formed by an epitaxy method.
  • the p + type semiconductor region 7 d 2 contains, for example, boron as a p-type impurity, and the main function of the diode D 2 is formed at the pn junction between the p + type semiconductor region 7 d 2 and the ⁇ type semiconductor region 7 c 2. A part is formed.
  • the p + type semiconductor region 7 d 2 is electrically connected to the wiring 10 f through a connection hole 9 g formed in the insulating film 8.
  • the wiring 10 f is made of, for example, an A 1 Si—Cu alloy, and is electrically connected to, for example, a power supply wiring V EE.
  • the size of the diode D2 including the n + -shaped extraction region 7b2 is, for example, about 28 m ⁇ 22 m.
  • the insulating film 8 is made of, for example, a PSG (Phospho Silicate Glass) film.
  • pM ⁇ S 12 and nMOS 13 are formed as shown in FIG.
  • the pMOS 12 and the nMOS 13 form a CM ⁇ S circuit.
  • the pMOS 12 is formed on a pair of the source region 12 a and the drain region 12 b formed on the semiconductor layer 5 c and on the semiconductor layer 5 c. It has a gate oxide film 12c and a gate electrode 12d formed thereon.
  • the source region 12a and the drain region 12b have a structure having low concentration regions 12a1 and 12b1 and high concentration regions 12a2 and 12b2 outside thereof.
  • the low-concentration regions 12a1, 12b1 and the high-concentration regions 12a2, 12b2 contain, for example, p-type impurity boron.
  • the bottoms of the high-concentration regions 12a2 and 12b2 of the source region 12a and the drain region 12b are formed to reach the insulating layer 5b.
  • the structure (diffusion capacitance) between the source region 12a and the drain region 12b of the pMOS 12 and the semiconductor substrate 5a can be significantly reduced. This is for the following reasons.
  • the diffusion capacity of a MOS FET formed on a normal semiconductor substrate is given by the series connection of the gate insulating film capacity and the depletion layer capacity.
  • the depletion layer capacitance is caused by complete depletion of the semiconductor layer 5c. Instead, the effect of the capacitance due to the insulating layer 5b becomes significant. That is, in the MOS FET on the SOI substrate, the diffusion capacitance is determined by the capacitance of the insulating layer 5b.
  • the dielectric constant of Si is 12, whereas the dielectric constant of Si 0 2 is 4, which is 1/3 of the dielectric constant of Si.
  • the source region 12a and the drain region 12b of the pMOS 12 are electrically connected to the source electrode 14s1 and the drain electrode 14d1, respectively.
  • the source electrode 14 s 1 and the drain electrode 14 d 1 are made of, for example, an A 1 —S i —Cu alloy.
  • Gate - gate oxide film 12 c is made of, for example, S i 0 2.
  • Gate electrode 12 d is Shirisai de layer made of WS i 2 etc., which are deposited for example on a low resistance polysilicon layer.
  • the upper and side surfaces of the gate electrode 12 d, for example S i 0 2 consists of a cap insulating film 1 5 a and cyclic Dowo Lumpur 15 b are formed.
  • the nMOS 13 is formed on a pair of the source region 13a and the drain region 13b formed on the semiconductor layer 5c, the gate oxide film 13c formed on the semiconductor layer 5c, and formed thereon. Gate electrode 13d. It should be noted that boron as a P-type impurity is introduced into the semiconductor layer 5c in the region where the nMOS 13 is formed.
  • the source region 13a and the drain region 13b are composed of low-concentration regions 13a1 and 13b1 and high-concentration regions 13a2 and 13b2 outside thereof, respectively, and have a structure similar to that of the pMOS 12. I have.
  • the low-concentration regions 13a1, 13b1 and the high-concentration regions 13a2, 13b2 contain, for example, n-type impurity phosphorus or As.
  • the bottoms of the high-concentration regions 13a2 and 13b2 of the source region 13a and the drain region 13b are also formed to reach the insulating layer 5b.
  • the structure (diffusion capacitance) between the source region 13a and the drain region 13b of the nMOS 13 and the semiconductor substrate 5a can be significantly reduced.
  • the semiconductor layer shown in the structure of the first embodiment and the like is not interposed under the source region 13a and the drain region 13b.
  • the diffusion capacitance is larger than that of the nMOS 13 described in the first embodiment. It is possible to lower. The reasons for these are the same as in the above pMOSl2, and will not be described.
  • 14 d2 is made of, for example, an A1-Si-Cu alloy.
  • a gate oxide film 13 c is made of, for example, S i 0 2.
  • Gate - gate electrode 13 d is formed by Shirisai de layer power deposition made of WS i 2 like for example the low-resistance poly-silicon layer.
  • a cap insulating film 15a made of SiO 2 and a sidewall 15b are formed on the upper layer and the side surface of the gate electrode 13d.
  • SO I on the substrate 5 such as, as shown in FIGS. 27 and 28, for example, S i 0 2 made of an insulating film 16 force? Are deposited, that this shall wiring 10 a, 10 b, 10 e, 10 f, source electrodes 14 sl, 14 s 2 and drain electrodes 14 d 1, 14 d 2 are coated.
  • a SiO 2 film or a surface protective film 17 formed by depositing a silicon nitride film on the SiO 2 film is deposited, thereby forming the wiring 10d ( See Fig. 26).
  • the diffusion capacities of the pMOS 12 and the nMOS 13 in the internal circuit area can be reduced as compared with the first embodiment, the gate input capacity of the pMOS 12 and the nMOS 13 can be reduced, and the pMOS 1 It is possible to improve the switching characteristics of the CMOS circuit composed of the NMOS 2 and the nMOS 13.
  • FIG. 29 shows a circuit diagram of the input protection circuit according to the fifth embodiment.
  • the input protection circuit has three elements, two diode-connected MOS transistors (first MIS transistors) Q5 and MOS transistors (second MIS transistors) Q6.
  • the MOS transistor Q5 of the input protection circuit 3 is electrically connected between the power supply wiring V CC and the output CCB bump electrode 2 with its gate electrode connected to the power supply wiring V CC. ing.
  • the MOS transistor Q6 is electrically connected between the output CCB bump electrode 2 and the power supply wiring VEE with its gate electrode connected to the power supply wiring VEE.
  • FIG. 30 shows a cross-sectional view of a main part of a semiconductor integrated circuit device including such an input protection circuit 3.
  • FIG. 30 shows an input protection circuit on the left side and an internal circuit on the right side.
  • the internal circuit is the same as that of the fourth embodiment, and the description is omitted.
  • the insulating layer 5b immediately below the channel region of the MOS transistors Q5 and Q6 forming the input protection circuit 3 is removed. Therefore, the same effect as in the first embodiment can be obtained.
  • Each of the MOS transistors Q5 and Q6 is, for example, an n-channel type MOS transistor, and has semiconductor regions 25A and 26A and source regions (first n-type semiconductor region and second n-type semiconductor region) 25a. , 26a and drain regions (first n-type semiconductor region, second n-type semiconductor region) 25b, 26b, gate oxide films 25c, 26c, and gate electrodes 25d, 26d And The source regions 25a, 26a and the drain regions 25b, 2b The region between 6 b is the channel region.
  • the source region 25a, 26a and the drain region 25b, 26b are respectively a low concentration region 25a1, 25b1, 26a1, 26b1 and a high concentration region 25a2. , 25b2,26a2,26b2.
  • the low-concentration region 25 a 1,25 b 1,26 a 1,26 b 1 and the high-concentration region 25 a 2,25 b 2,26 a 2,26 b 2 include, for example, n-type impurity phosphorus or A s is contained.
  • the bottoms of the high-concentration regions 25a2, 25b2, 26a2, 26b2 in the source regions 25a, 26a and the drain regions 25b, 26b are such that they reach the insulating layer 5b. Is formed. Therefore, according to the fifth embodiment, the diffusion capacitance of the MOS transistors Q5 and Q6 for the input protection circuit can be reduced for the same reason as in the pMOS 12 of the fourth embodiment (see FIG. 28). Is possible.
  • the source region 25a, 26a and the drain region 25b, 26b of such M ⁇ S transistors Q5, Q6 are respectively connected to the source electrode 14s3, 14s4 and the drain electrode 14d3, 14d. It is electrically connected to d4.
  • the source electrodes 14 s 3, 14 s 4 and the drain electrodes 14 d 3, 14 d 4 are made of, for example, an A 1 —Si—Cu alloy.
  • the wiring 10 g is made of, for example, an A 1 -Si-Cu alloy.
  • Gate one gate oxide film 2 5 c, 26 c are made of, for example, S i 0 2.
  • the gate electrodes 25 d and 26 d are formed by depositing a silicide layer made of WSi 2 or the like on a low-resistance polysilicon layer, for example.
  • the upper and side surfaces of the gate one gate electrode 2 5 d, 26 d, for example, S I_ ⁇ 2 consisting cap insulating film 1 5 a and cyclic Douoru 1 5 b are formed.
  • the gate input capacity of the pMOS 12 and the nMOS 13 can be reduced. It is possible to improve the switching characteristics of the CMOS circuit composed of 12 and nMOS 13.
  • the electrostatic protection element may be configured by a lateral bipolar transistor. .
  • the force described in the case of using the L 0 C 0 S method and the polishing method as a method of forming the insulating layer on the first semiconductor substrate is not limited to this. Instead, various changes can be made. For example, the following may be performed.
  • oxygen ions are introduced into a predetermined plane position of the first semiconductor substrate by an ion implantation method, and then an annealing process is performed on the semiconductor substrate to insulate only the oxygen ion introduction region in the semiconductor substrate.
  • the layers are selectively formed.
  • the upper surface of the semiconductor substrate is etched and removed by a dry etching method or the like until the upper portion of the insulating layer 5b is exposed, thereby forming a first semiconductor substrate provided with an insulating layer on the upper portion.
  • the power described mainly when the invention made by the present inventor is applied to a semiconductor integrated circuit device having a microprocessor, which is the application field behind it, is not limited to this.
  • the present invention is applied to other semiconductor integrated circuit devices having a memory circuit such as DRAM (Dynamic Random Access Memory), SRAM (Static RAM) or other semiconductor integrated circuit devices such as SRAM with logic. It is also possible.
  • Industrial applicability is also possible.
  • the semiconductor integrated circuit device and the method of manufacturing the same are suitable for use in a semiconductor integrated circuit device incorporated in a small electronic device such as a mobile communication device, an electronic computer or a video camera, and a method of manufacturing the same.

Abstract

A semiconductor integrated circuit device comprising an SOI substrate (5) that includes a semiconductor layer (5c) deposited on an insulating layer (5b) formed over a semiconductor substrate (5a). The insulating layer (5b) is selectively removed immediately below the p-n junctions of input protective diodes D1, D2 to remove heat and static charges from the diodes by conducting them directly to the semiconductor substrate (5a).

Description

明 細 書 半導体集積回路装置およびその製造方法 技術分野  Description: Semiconductor integrated circuit device and method of manufacturing the same
本発明は、 半導体集積回路装置およびその製造技術に関し、 特に、 S O I (Silicon On Insulator) 基板を用いる半導体集積回路装置の保 護素子技術に適用して有効な技術に関するものである。 背景技術  The present invention relates to a semiconductor integrated circuit device and a manufacturing technology thereof, and more particularly to a technology effective when applied to a protection element technology of a semiconductor integrated circuit device using an SOI (Silicon On Insulator) substrate. Background art
S O I技術は、 絶縁層上に形成された薄い半導体層上に所定の半導 体集積回路装置を形成する技術であり、例えば次のような優れた効果 を有している。  The SOI technology is a technology for forming a predetermined semiconductor integrated circuit device on a thin semiconductor layer formed on an insulating layer, and has, for example, the following excellent effects.
すなわち、 素子分離部を S O I形成用の絶縁層まで達するように形 成することで完全な素子分離構造を実現できる。 また、 p n接合分離 構造で現れる寄生 M 0 S トランジスタや寄生バイポーラ トランジス タ等の能動的な寄生効果がないため、 ラツチアツプ現象等を防止でき る。 さらに、 素子分離部の占有面積が小さいので素子集積度を向上さ せることができる等である。  That is, a complete element isolation structure can be realized by forming the element isolation portion to reach the insulating layer for forming SOI. Also, since there is no active parasitic effect such as a parasitic M0S transistor or a parasitic bipolar transistor appearing in the pn junction isolation structure, a latch-up phenomenon can be prevented. Furthermore, since the area occupied by the element isolation portion is small, the degree of element integration can be improved.
ところで、 本発明者の検討した S O I基板は、 強度を確保するため の半導体基板上に絶縁層を介して薄い半導体層を設けた構造となつ ており、 その半導体層には所定の半導体集積回路装置を構成する素子 が形成されている。  Meanwhile, the SOI substrate studied by the present inventors has a structure in which a thin semiconductor layer is provided on a semiconductor substrate for securing strength via an insulating layer, and a predetermined semiconductor integrated circuit device is provided on the semiconductor layer. Are formed.
その素子には、 半導体集積回路装置の内部回路を構成するための素 子の他、 半導体集積回路装置の入出力回路 (入力回路、 出力回路およ び入出力双方向の回路を含む) やそれを保護する保護回路用の素子等 力 ¾める。 These elements include the elements that make up the internal circuits of the semiconductor integrated circuit device, the input / output circuits (including input circuits, output circuits, and input / output bidirectional circuits) of the semiconductor integrated circuit device, and the like. elements such as power ¾ Mel protective circuit for protecting the.
このような素子形成用の半導体層上には、 絶縁層を介して素子間等 を結線するための配線が形成されている。 すなわち、 S O I基板は、 素子形成用の半導体層がその上下の絶縁層に挟まれる構造となって いる。 On such a semiconductor layer for element formation, wiring for connecting elements and the like via an insulating layer is formed. That is, the SOI substrate The structure is such that a semiconductor layer for element formation is sandwiched between insulating layers above and below it.
なお、 S O I基板については、 例えば啓学出版株式会社、 1 9 9 0 年 1 2月 1 5日発行、 「図説超 L S I工学」 P 3 2 2〜P 3 2 5に記 載があり、 S O I基板の構造および種々の製造方法について説明され ている。  The SOI substrate is described, for example, in Keigaku Shuppan Co., Ltd., published on February 15, 1990, in “Illustrated Super LSI Engineering” on pages 322 to 325. The structure and various manufacturing methods are described.
ところ力 上記発明者力 s検討した S O I技術においては、 以下の問 題があることを本発明者は見い出した。  However, the present inventor has found that the above-mentioned inventor's ssociated SOI technology has the following problems.
第 1に、 S 0 I基板では、 保護回路用の素子が形成された半導体層 の上下が絶縁層で挟まれている関係上、 その素子がブレークダウンし た際に生じる熱を薄い半導体層に沿って横方向にしか逃がすことが できず、 その熱によつて保護回路用の素子が劣化あるいは破損してし まう問題がある。  First, in the S0I substrate, the heat generated when the element breaks down is transferred to the thin semiconductor layer because the semiconductor layer on which the element for the protection circuit is formed is sandwiched between the upper and lower insulating layers. There is a problem that only heat can escape in the horizontal direction, and the heat may cause the protection circuit element to deteriorate or be damaged.
第 2に、 S O I基板では、 保護回路用の素子が形成された半導体層 に静電気等による大電流が流れた場合、 その半導体層の上下が絶縁層 で挟まれている関係上、 その大電流を薄い半導体層に沿って横方向に しか逃がすことができず、 その大電流が保護回路用の素子に集中する 結果、 保護回路用の素子が劣化あるいは破損してしまう問題がある。 本発明の目的は、 S O I基板を用いた半導体集積回路装置において、 保護回路用の素子で発生した熱の放熱性を向上させることのできる 技術を提供することにある。  Second, in the SOI substrate, when a large current due to static electricity or the like flows through the semiconductor layer on which the element for the protection circuit is formed, the large current is reduced because the upper and lower portions of the semiconductor layer are sandwiched by insulating layers. There is a problem that only a lateral current can escape along the thin semiconductor layer, and the large current concentrates on the element for the protection circuit, so that the element for the protection circuit is deteriorated or damaged. An object of the present invention is to provide a technique capable of improving the heat dissipation of heat generated in a protection circuit element in a semiconductor integrated circuit device using an SOI substrate.
本発明の他の目的は、 S O I基板を用いた半導体集積回路装置にお いて、保護回路用の素子の静電破壊耐性を向上させることのできる技 術を提供することにある。  Another object of the present invention is to provide a technique capable of improving the electrostatic breakdown resistance of a protection circuit element in a semiconductor integrated circuit device using an SOI substrate.
本発明の前記ならびにその他の目的と新規な特徴は、 本明細書の記 述ぉよび添付図面から明らかになるであろう。 発明の開示  The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings. Disclosure of the invention
本発明の半導体集積回路装置は、 支持用の半導体基板と、 その上に 絶縁層を介して設けられた素子形成用の半導体層とを有する S O I 基板を備え、 前記半導体層の上層に素子の電極を引き出す外部端子を 設けてなる半導体集積回路装置であって、 前記半導体層において前記 絶縁層を部分的に取り除いた絶縁層除去領域上に、 前記外部端子に電 気的に接続された保護回路用の素子を設けたものである。 A semiconductor integrated circuit device according to the present invention includes a supporting semiconductor substrate, A semiconductor integrated circuit device comprising: an SOI substrate having an element forming semiconductor layer provided via an insulating layer; and an external terminal for leading out an electrode of the element on an upper layer of the semiconductor layer. In the above, an element for a protection circuit electrically connected to the external terminal is provided on the insulating layer removed region where the insulating layer is partially removed.
上記した本発明の半導体集積回路装置によれば、 保護回路用の素子 がブレークダウンした際に生じた熱を、 絶縁層除去領域を通じて支持 用の半導体基板側にも逃がすことができるので、 保護回路用の素子で 発生した熱の放熱性を向上させることが可能となる。  According to the above-described semiconductor integrated circuit device of the present invention, the heat generated when the protection circuit element breaks down can be released to the supporting semiconductor substrate side through the insulating layer removal region. It is possible to improve the heat dissipation of the heat generated in the element for use.
また、 静電気等により生じた電荷を、 絶縁層除去領域を通じて支持 用の半導体基板側にも逃がすことができ、 保護回路用の素子に電荷が 集中するのを防ぐことができるので、 保護回路用の素子の静電破壊耐 性を向上させることが可能となる。  In addition, the charge generated by static electricity or the like can be released to the supporting semiconductor substrate side through the insulating layer removal area, and the charge can be prevented from being concentrated on the protection circuit element. It becomes possible to improve the electrostatic breakdown resistance of the device.
また、 S O I基板の絶縁層を部分的に除去しただけで、 他の領域に は絶縁層が残されているので、 拡散容量や配線 ·基板間容量の増大を 招くことなく、 上述の作用を得ることが可能となる。  In addition, since the insulating layer of the SOI substrate is only partially removed and the insulating layer is left in other regions, the above-described effects can be obtained without increasing the diffusion capacitance and the wiring-substrate capacitance. It becomes possible.
さらに、 S O I基板の絶縁層を部分的に除去しただけで、 他の領域 には絶縁層が残されているので、 上層の半導体層に大幅な段差が生じ ることもない。 したがって、 段差に起因する配線断線等のような不良 の発生を防止することが可能となる。  Furthermore, since the insulating layer of the SOI substrate is only partially removed and the insulating layer is left in other regions, no significant step is formed in the upper semiconductor layer. Therefore, it is possible to prevent the occurrence of a defect such as a disconnection of a wiring due to a step.
また、 本発明の半導体集積回路装置は、 前記保護回路用の素子の所 定の半導体領域を前記絶縁層に接するように設け、 前記半導体集積回 路を構成する素子の所定の半導体領域を前記絶縁層に接するように 設けたものである。  Further, in the semiconductor integrated circuit device according to the present invention, the predetermined semiconductor region of the element for the protection circuit is provided so as to be in contact with the insulating layer, and the predetermined semiconductor region of the element forming the semiconductor integrated circuit is insulated. It is provided so as to be in contact with the layer.
上記した半導体集積回路装置によれば、 半導体集積回路装置におけ る全体的な拡散容量を下げることができるので、 半導体集積回路装置 の動作速度を向上させることが可能となる。 図面の簡単な説明 図 1は、 本発明の一実施の形態である半導体集積回路装置の要部断 面図、 図 2は、 本発明の一実施の形態である半導体集積回路装置の要 部断面図、 図 3は、 図 1の半導体集積回路装置の要部平面図、 図 4は、 半導体集積回路装置を構成する半導体チップの平面図、 図 5は、 半導 体集積回路装置を構成する半導体チップの平面図、 図 6は、 半導体集 積回路装置の入力保護回路の回路図、 図 7は、 半導体集積回路装置の 出力保護回路の回路図、 図 8は、 半導体集積回路装置の製造工程中に おける要部断面図、 図 9は、 図 8に続く半導体集積回路装置の製造ェ 程中における要部断面図、 図 1 0は、 図 9に続く半導体集積回路装置 の製造工程中における要部断面図、 図 1 1は、 図 1 0に続く半導体集 積回路装置の製造工程中における要部断面図、 図 1 2は、 図 1 1に続 く半導体集積回路装置の製造工程中における要部断面図、 図 1 3は、 図 1 2に続く半導体集積回路装置の製造工程中における要部断面図、 図 1 4は、 図 1 3に続く半導体集積回路装置の製造工程中における要 部断面図、 図 1 5は、 図 1 4に続く半導体集積回路装置の製造工程中 における要部断面図、 図 1 6は、 図 1 5に続く半導体集積回路装置の 製造工程中における要部断面図、 図 1 7は、 本発明の他の実施の形態 である半導体集積回路装置の製造工程中における要部断面図、 図 1 8 は、 図 1 7に続く半導体集積回路装置の製造工程中における要部断面 図、 図 1 9は、 図 1 8に続く半導体集積回路装置の製造工程中におけ る要部断面図、 図 2 0は、 図 1 9に続く半導体集積回路装置の製造ェ 程中における要部断面図、 図 2 1は、 図 2 0に続く半導体集積回路装 置の製造工程中における要部断面図、 図 2 2は、 図 2 1に続く半導体 集積回路装置の製造工程中における要部断面図、 図 2 3は、 本発明の 他の実施の形態である半導体集積回路装置の入力保護回路の回路図、 図 2 4は、 本発明の他の実施の形態である半導体集積回路装置の出力 保護回路の回路図、 図 2 5は、 図 2 3の半導体集積回路装置の要部断 面図、 図 2 6は、 本発明の他の実施の形態である半導体集積回路装置 の要部平面図、 図 2 7は、 図 2 6の XXVII— XXVII線の断面図、 図 2 8は、本発明の他の実施の形態である半導体集積回路装置の内部回路 領域の要部断面図、 図 2 9は本発明の他の実施の形態である半導体集 積回路装置の保護回路の回路図、 図 3 0は図 2 9の保護回路を含む半 導体集積回路装置の要部断面図である。 発明を実施するための最良の形態 According to the semiconductor integrated circuit device described above, the overall diffusion capacitance in the semiconductor integrated circuit device can be reduced, so that the operation speed of the semiconductor integrated circuit device can be improved. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a cross-sectional view of a main part of a semiconductor integrated circuit device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a main part of a semiconductor integrated circuit device according to an embodiment of the present invention, and FIG. 1, a main part plan view of the semiconductor integrated circuit device of FIG. 1, FIG. 4 is a plan view of a semiconductor chip constituting the semiconductor integrated circuit device, FIG. 5 is a plan view of a semiconductor chip constituting the semiconductor integrated circuit device, FIG. 6 is a circuit diagram of an input protection circuit of a semiconductor integrated circuit device, FIG. 7 is a circuit diagram of an output protection circuit of a semiconductor integrated circuit device, and FIG. 8 is a cross-sectional view of a main part during a manufacturing process of the semiconductor integrated circuit device. FIG. 9 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. 8, and FIG. 10 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. 1 is a cross-sectional view of the main parts during the manufacturing process of the semiconductor integrated circuit device following Fig. 10. FIG. 12 is a fragmentary cross-sectional view of the semiconductor integrated circuit device during the manufacturing process following FIG. 11; FIG. 13 is a fragmentary sectional view of the semiconductor integrated circuit device during the manufacturing process following FIG. FIG. 14 is a fragmentary cross-sectional view of the semiconductor integrated circuit device during the manufacturing process following FIG. 13, and FIG. 15 is a fragmentary cross-sectional view of the semiconductor integrated circuit device during the manufacturing process following FIG. 6 is a fragmentary cross-sectional view of the semiconductor integrated circuit device during the manufacturing process following FIG. 15, and FIG. 17 is a fragmentary cross-sectional view of the semiconductor integrated circuit device according to another embodiment of the present invention during the manufacturing process. FIG. 18 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. 17, and FIG. 19 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. FIG. 20 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. 1 is a cross-sectional view of a main part of the semiconductor integrated circuit device during the manufacturing process following FIG. 20; FIG. 22 is a cross-sectional view of a main portion of the semiconductor integrated circuit device during the manufacturing process following FIG. 21; Is a circuit diagram of an input protection circuit of a semiconductor integrated circuit device according to another embodiment of the present invention. FIG. 24 is a circuit diagram of an output protection circuit of the semiconductor integrated circuit device according to another embodiment of the present invention. FIG. 25 is a cross-sectional view of a main part of the semiconductor integrated circuit device of FIG. 23, FIG. 26 is a plan view of a main part of a semiconductor integrated circuit device according to another embodiment of the present invention, and FIG. XXVII in Figure 26 — Cross-sectional view along line XXVII, Figure 2 FIG. 8 is a cross-sectional view of a main part of an internal circuit region of a semiconductor integrated circuit device according to another embodiment of the present invention, and FIG. 29 is a protection circuit of a semiconductor integrated circuit device according to another embodiment of the present invention. FIG. 30 is a cross-sectional view of a main part of a semiconductor integrated circuit device including the protection circuit of FIG. 29. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面に基づいて詳細に説明する。 なお、 実施の形態を説明するための全図において同一機能を有するものは 同一の符号を付し、 その繰り返しの説明は省略する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for describing the embodiments, components having the same functions are denoted by the same reference numerals, and repeated description thereof will be omitted.
本実施の形態 1の半導体集積回路装置を構成する半導体チップの 平面図を図 4に示す。 半導体チップ 1は、 例えば平面四角形状の半導 体小片からなり、 その中央には、 内部回路領域 Aが配置され、 その外 周には周辺回路領域 Bが配置されている。  FIG. 4 is a plan view of a semiconductor chip included in the semiconductor integrated circuit device according to the first embodiment. The semiconductor chip 1 is composed of, for example, a semiconductor chip having a rectangular shape in a plane, an internal circuit area A is arranged at the center, and a peripheral circuit area B is arranged at the outer periphery.
内部回路領域 Aには、例えばマイクロプロセッサ等のような所定の 論理回路 (半導体集積回路) が形成されている。 周辺回路領域 Bには、 例えば入カバッファ回路、 出力バッファ回路または入出力双方向の回 路等のような入出力回路、 その保護回路および電源回路等が形成され ている。  In the internal circuit area A, a predetermined logic circuit (semiconductor integrated circuit) such as a microprocessor is formed. In the peripheral circuit area B, for example, an input / output circuit such as an input buffer circuit, an output buffer circuit, or an input / output bidirectional circuit, a protection circuit and a power supply circuit are formed.
また、 半導体チップ 1の主面上には、 C C B (Controlled Collapse Bonding)バンプ電極 (外部端子) 2が複数規則的に配置されている。 C C Bバンプ電極 2は、 例えば鉛 (P b ) —錫 (S n ) 合金からなり、 配線を通じて半導体チップ 1に形成された素子と電気的に接続され ている。 なお、 内部回路領域 A内には、 主として電源電圧供給用の C C Bバンプ電極 2が配置され、 周辺回路領域 B内には、 信号用の C C Bバンプ電極 2が配置されている。  A plurality of CCB (Controlled Collapse Bonding) bump electrodes (external terminals) 2 are regularly arranged on the main surface of the semiconductor chip 1. The CCB bump electrode 2 is made of, for example, a lead (Pb) -tin (Sn) alloy, and is electrically connected to elements formed on the semiconductor chip 1 through wiring. Note that, in the internal circuit region A, the CCB bump electrodes 2 for mainly supplying power supply voltage are arranged, and in the peripheral circuit region B, the CCB bump electrodes 2 for signals are arranged.
ただし、 内部回路領域 Aおよび周辺回路領域 Bの配置状態は、 図 4 に限定されるものではなく種々変更可能であり、 例えば図 5に示すよ うにしても良い。 すなわち、 図 5の上下方向に延びる長方形状の内部 回路領域 Aおよび周辺回路領域 Bを図 5の横方向に沿って交互に配 置しても良い。 なお、 この場合、 内部回路領域 A内には、 例えば低電 位側の電源電圧供給用の C C Bバンプ電極 2が配置され、 周辺回路領 域 B内には、例えば高電位側の電源電圧供給用の C C Bバンプ電極 2 および信号用の C C Bバンプ電極 2が交互に配置されている。 However, the arrangement states of the internal circuit area A and the peripheral circuit area B are not limited to those shown in FIG. 4 and can be variously changed, and for example, may be as shown in FIG. That is, the rectangular internal circuit area A and the peripheral circuit area B extending vertically in FIG. 5 are alternately arranged along the horizontal direction in FIG. May be placed. In this case, for example, the CCB bump electrode 2 for supplying the power supply voltage on the low potential side is arranged in the internal circuit area A, and the CCB bump electrode 2 for supplying the power supply voltage on the high potential side is disposed in the peripheral circuit area B. CCB bump electrodes 2 for signals and CCB bump electrodes 2 for signals are alternately arranged.
次に、 周辺回路領域 Bに形成された入力保護回路および出力保護回 路の回路図をそれぞれ図 6および図 7に示す。 なお、 図 6および図 7 において、 電流 Iは、 静電気電流等が流れる方向を示している。  Next, circuit diagrams of the input protection circuit and the output protection circuit formed in the peripheral circuit region B are shown in FIGS. 6 and 7, respectively. In FIGS. 6 and 7, the current I indicates the direction in which the electrostatic current flows.
図 6に示す入力保護回路 3は、 周辺回路や内部回路等を静電気等か ら保護するための回路であり、例えば 2つのダイォード D 1,D 2 と抵 抗 Rとを有している。  The input protection circuit 3 shown in FIG. 6 is a circuit for protecting peripheral circuits and internal circuits from static electricity or the like, and has, for example, two diodes D 1 and D 2 and a resistor R.
ダイオード (第 1の p n接合ダイオード) D 1 は、 電源用配線 V C Cと入力用の C C Bバンプ電極 2との間に逆方向となるように電気的 に接続されている。 電源用配線 V CCは、 高電位の電源配線であり、 例えば 0 V程度に設定されている。  The diode (first pn junction diode) D 1 is electrically connected between the power supply wiring V C C and the input C C B bump electrode 2 in the opposite direction. The power supply wiring V CC is a high-potential power supply wiring, and is set to, for example, about 0 V.
ダイォード (第 2の p n接合ダイォード) D 2 は、 入力用の C C B バンプ電極 2と電源用配線 V EE との間に逆方向となるように電気的 に接続されている。 電源用配線 V EEは、 低電位の電源配線であり、 例えば一 2 V程度に設定されている。  The diode (second pn junction diode) D 2 is electrically connected in the opposite direction between the input CCB bump electrode 2 and the power supply wiring V EE. The power supply wiring V EE is a low-potential power supply wiring, and is set to, for example, about 12 V.
抵抗 Rは、 入力用の C C Bバンプ電極 2と内部回路との間に電気的 に接続されており、 例えば 1 0 0 Ω程度に設定されている。  The resistor R is electrically connected between the input CCB bump electrode 2 and the internal circuit, and is set to, for example, about 100 Ω.
図 7に示す出力保護回路 4は、 周辺回路や内部回路等を静電気等か ら保護するための回路であり、 例えば 2つのダイォード D 3 , D 4 を有している。  The output protection circuit 4 shown in FIG. 7 is a circuit for protecting peripheral circuits and internal circuits from static electricity and the like, and has, for example, two diodes D 3 and D 4.
ダイオード (第 1の p n接合ダイオード) D 3 は、 電源用配線 V C Cと出力用の C C Bバンプ電極 2との間に逆方向となるように電気的 に接続されている。 また、 ダイオード (第 2の p n接合ダイオード) D 4 は、 出力用の C C Bバンプ電極 2と電源用配線 V EEとの間に逆 方向となるように電気的に接続されている。  The diode (first pn junction diode) D 3 is electrically connected between the power supply wiring V C C and the output C C B bump electrode 2 in the opposite direction. The diode (second pn junction diode) D 4 is electrically connected between the output CCB bump electrode 2 and the power supply wiring V EE in the opposite direction.
次に、 この入力保護回路 3の平面図を図 3に示す。 また、 その図 3 の I— I線の断面図を図 1に示す。 さらに、 内部回路領域 Aの要部断 面図を図 2に示す。 なお、 図 3には、 図面を見易くするため一部ハツ チングを付してある。 Next, a plan view of the input protection circuit 3 is shown in FIG. Figure 3 FIG. 1 shows a cross-sectional view taken along the line II of FIG. Fig. 2 shows a cross-sectional view of the main part of the internal circuit area A. In FIG. 3, some hatchings are added to make the drawing easier to see.
本実施の形態 1においては、 図 1および図 2に示すように、 半導体 チップ 1を構成する素子形成用基板として S 0 I基板 5力 吏用され ている。 S O I基板 5は、 半導体基板 5 aと、 その上層に形成された 絶縁層 5 bと、 その上層に形成された半導体層 5 cとから構成されて いる。  In the first embodiment, as shown in FIG. 1 and FIG. 2, an S 0 I substrate 5 is used as an element formation substrate constituting the semiconductor chip 1. The SOI substrate 5 includes a semiconductor substrate 5a, an insulating layer 5b formed thereon, and a semiconductor layer 5c formed thereon.
半導体基板 5 aは、 主として S O I基板 5の強度を確保する支持用 の基板構成部であり、 例えば n形のシリコン ( S i ) 単結晶からなる。 絶縁層 5 bは、 例えば二酸化シリコン (S i 0 2)からなり、 その厚さ は、 例えば 5 0 0 O A程度である。 The semiconductor substrate 5a is a supporting substrate component mainly for securing the strength of the SOI substrate 5, and is made of, for example, n-type silicon (Si) single crystal. Insulating layer 5 b is made of, for example, silicon dioxide (S i 0 2), has a thickness of, for example 5 0 0 OA about.
本実施の形態 1においては、 その絶縁層 5 bにおいて入力保護回路 用のダイォード D 1,D 2 の p n接合面直下における領域のみが部分 的に除去されている。 すなわち、 その p n接合面直下の領域では、 半 導体層 5 c と半導体基板 5 aとが物理的に接触した状態となってい る。 これにより、 本実施の形態 1の半導体集積回路装置においては、 以下のことが可能となっている。  In the first embodiment, only the region directly below the pn junction surface of the input protection circuit diodes D 1 and D 2 in the insulating layer 5 b is partially removed. That is, in a region immediately below the pn junction surface, the semiconductor layer 5c and the semiconductor substrate 5a are in physical contact with each other. As a result, in the semiconductor integrated circuit device according to the first embodiment, the following can be performed.
第 1に、 ダイォ一ド D 1,D 2がブレークダウンした際に生じた熱を、 絶縁層 5 bの除去領域を通じて支持用の半導体基板 5 a側にも逃が すことができるので、 その熱の放熱性を向上させることが可能となつ ている。  First, the heat generated when the diodes D1 and D2 break down can be released to the supporting semiconductor substrate 5a through the removed area of the insulating layer 5b. It is possible to improve the heat dissipation.
第 2に、 静電気等によりダイオード D 1,D 2に流れた電流を、 絶縁 層 5 bの除去領域を通じて支持用の半導体基板 5 a側にも逃がすこ とができ、ダイオード D 1 ,D 2 に電界が集中するのを防ぐことができ るので、そのダイォ一ド D 1 ,D 2 の静電破壊耐性を向上させることが 可能となっている。 なお、 図 1中の矢印 Cは、 熱または静電気電流の 逃げ道を模式的に示したものである。  Secondly, the current flowing through the diodes D 1 and D 2 due to static electricity or the like can be released to the supporting semiconductor substrate 5 a through the removed area of the insulating layer 5 b, and the current flows to the diodes D 1 and D 2. Since the concentration of the electric field can be prevented, it is possible to improve the electrostatic breakdown resistance of the diodes D 1 and D 2. Arrow C in FIG. 1 schematically shows an escape route for heat or electrostatic current.
第 3に、 S O I基板 5の絶縁層 5 bを部分的に除去しただけで、 他 の領域には絶縁層 5 bが残されているので、 拡散容量や配線 ·基板間 容量の大幅な増大を招くことなく、上述の効果を得ることが可能とな つている。 Third, the removal of the insulating layer 5b of the SOI substrate 5 only partially Since the insulating layer 5b is left in this region, the above-mentioned effects can be obtained without causing a large increase in the diffusion capacitance or the wiring-substrate capacitance.
第 4に、 S O I基板 5の絶縁層 5 bを部分的に除去しただけで、 他 の領域には絶縁層 5 bが残されているので、上層の半導体層 5 cに大 幅な段差が生じることもない。 したがって、 下地段差に起因する配線 断線等のような不良の発生を防止することが可能となっている。  Fourth, since the insulating layer 5b of the SOI substrate 5 is only partially removed and the insulating layer 5b is left in other regions, a large step occurs in the upper semiconductor layer 5c. Not even. Therefore, it is possible to prevent the occurrence of a defect such as a disconnection of the wiring due to the step of the base.
半導体層 5 cは、 素子形成用の基板構成部であり、 例えば n形の S i単結晶からなり、 その厚さは、 例えば 1 〜 2 / m程度である。 半導 体層 5 cの上部の所定位置には、 分離用のフィールド絶縁膜 6 aおよ びトレンチ分離部 6 bが形成されている。  The semiconductor layer 5c is a substrate component for element formation, and is made of, for example, an n-type Si single crystal, and has a thickness of, for example, about 1 to 2 / m. At a predetermined position above the semiconductor layer 5c, a field insulating film 6a for isolation and a trench isolation portion 6b are formed.
フィールド絶縁膜 6 aは、 例えば S i 0 2からなる。 また、 トレン チ分離部 6 bは、 フィールド絶縁膜 6 bの上面から絶縁層 5 bの一部 に達する程度に掘られた溝内に、 例えば S i 0 2からなる絶縁膜が埋 め込まれて形成されている。 Field insulating film 6 a is composed of, for example, S i 0 2. Also, train Chi separating unit 6 b is in the dug to the extent that the upper surface of the field insulating film 6 b reaching a portion of the insulating layer 5 b groove, an insulating film is padded made of, for example, S i 0 2 It is formed.
ダイオード D 1 は、 n +形埋込み領域 7 a 1 と、 n +形引出し領域 7 b 1 と、 IT形半導体領域 7 c 1 と、 p +形半導体領域 (第 1 p形半導 体領域) 7 d 1 とを有している。 The diode D 1 includes an n + -type buried region 7 a 1, an n + -type lead-out region 7 b 1, an IT-type semiconductor region 7 c 1, and a p + -type semiconductor region (first p-type semiconductor region) 7 d 1.
n +形埋込み領域 7 a 1 は、 例えば n +形の S i単結晶からなり、 半 導体層 5 cの最下層に形成されている。 n +形引出し領域 7 b 1は、半 導体層 5 cの上面から n +形埋込み領域 7 a 1 まで延びるように形成 されており、 S O I基板 5上の絶縁膜 8に穿孔された接続孔 9 aを通 じて配線 1 0 aと電気的に接続されている。  The n + -type buried region 7a1 is made of, for example, an n + -type Si single crystal, and is formed in the lowermost layer of the semiconductor layer 5c. The n + -type lead region 7 b 1 is formed so as to extend from the upper surface of the semiconductor layer 5 c to the n + -type buried region 7 a 1, and has a connection hole 9 formed in the insulating film 8 on the SOI substrate 5. It is electrically connected to wiring 10a through a.
この配線 1 0 aは、 例えばアルミニウム (A 1 ) — S i —銅(C u ) 合金からなり、 例えば電源用配線 V CCと電気的に接続されている。 この配線 1 0 aおよび接続孔 9 aは、 図 3に示すように、 p +形半導体 領域 7 d 1の周囲を取り囲むように配置されている。  The wiring 10a is made of, for example, an aluminum (A 1) —Si—copper (Cu) alloy, and is electrically connected to, for example, a power supply wiring V CC. As shown in FIG. 3, the wiring 10a and the connection hole 9a are arranged so as to surround the periphery of the p + type semiconductor region 7d1.
II -形半導体領域 7 c 1は、例えばェピタキシャル法によつて形成さ れた η ·形の S i単結晶からなり、 n +形埋込み領域 7 a 1 上に形成さ れている。 このような n+埋込み領域 7 a 1、 n+形引出し領域 7 b 1 および IT形半導体領域 7 c 1には、例えば n形不純物のリンまたはヒ 素 (As) が導入されている。 The II-type semiconductor region 7 c 1 is made of, for example, an η-type Si single crystal formed by an epitaxial method, and is formed on the n + -type buried region 7 a 1. Have been. For example, the n-type buried region 7a1, the n + -type lead region 7b1, and the IT-type semiconductor region 7c1 are doped with an n-type impurity such as phosphorus or arsenic (As).
n-形半導体領域 7 c 1 の上部には、 p+形半導体領域 (第 1 p形半 導体領域) 7 d 1が形成されており、 この p +形半導体領域 7 d 1と n -形半導体領域 7 c 1との p n接合部にダイォ—ド D 1の主要作用部が 形成されている。  Above the n-type semiconductor region 7 c 1, a p + type semiconductor region (first p-type semiconductor region) 7 d 1 is formed, and the p + type semiconductor region 7 d 1 and the n− type semiconductor region are formed. The main action part of diode D1 is formed at the pn junction with 7c1.
P+形半導体領域 7 d 1は、 絶縁膜 8に穿孔された接続孔 9 b, 9 c を通じて、 それぞれ互いに独立して形成された配線 1 0 b, 1 0 cと 電気的に接続されている。 配線 10 bは、 例えば内部回路と電気的に 接続されている。 また、 配線 10 cは、 接続孔 9 dを通じて配線 10 dと電気的に接続され、 さらに、 その配線 10 aを通じて入力用の C CBバンプ電極 2 (図 4参照) と電気的に接続されている。 この配線 10 b, 10 cは、 例えば A 1 -S i—Cu合金からなり、 その相互 間は、 p+形半導体領域 7 d 1 からなる抵抗 Rを通じて電気的に接続 されている。 なお、 n+形引出し領域 7 b 1 を含めたダイオード D 1 の大きさは、 例えば 35 ^mX 28 ^ m程度である。  The P + type semiconductor region 7 d 1 is electrically connected to wirings 10 b and 10 c formed independently of each other through connection holes 9 b and 9 c formed in the insulating film 8. The wiring 10b is electrically connected to, for example, an internal circuit. The wiring 10c is electrically connected to the wiring 10d through the connection hole 9d, and further electrically connected to the input CCB bump electrode 2 (see FIG. 4) through the wiring 10a. . The wirings 10b and 10c are made of, for example, an A1-Si-Cu alloy, and are electrically connected to each other through a resistor R made of a p + type semiconductor region 7d1. The size of the diode D 1 including the n + -type lead region 7 b 1 is, for example, about 35 ^ mX 28 ^ m.
ダイオード D 2は、 n+形埋込み領域 7 a 2 と、 n+形引出し領域 7 b 2 と、 IT形半導体領域 7 c 2 と、 p+形半導体領域 (第 2 p形半導 体領域) 7 d 2とを有している。 The diode D 2 includes an n + -type buried region 7 a 2, an n + -type lead-out region 7 b 2, an IT-type semiconductor region 7 c 2, and a p + -type semiconductor region (second p-type semiconductor region) 7 d 2 And
n+形埋込み領域 7 a 2は、 例えば n+形の S i単結晶からなり、 半 導体層 5 cの最下層に形成されている。 n+形引出し領域 7 b 2は、半 導体層 5 cの上面から n+形埋込み領域 7 a 2 まで延びるように形成 されており、 SO I基板 5上の絶縁膜 8に穿孔された接続孔 9 eを通 じて配線 10 eと電気的に接続されている。配線 10 eおよび接続孔 9 eは、 図 3に示すように、 p+形半導体領域 7 d 2の周囲を取り囲む ように配置されている。 この配線 10 eは、 例えば A 1— S i— Cu 合金からなり、接続孔 9 f を通じて上記した配線 10 dと電気的に接 続され、 さらに、 その配線 10 dを通じて入力用の CCBバンプ電極 2 (図 4等参照) と電気的に接続されている。 The n + type buried region 7a2 is made of, for example, an n + type Si single crystal, and is formed in the lowermost layer of the semiconductor layer 5c. The n + -type lead-out region 7 b 2 is formed to extend from the upper surface of the semiconductor layer 5 c to the n + -type buried region 7 a 2, and has a connection hole 9 e formed in the insulating film 8 on the SOI substrate 5. Is electrically connected to the wiring 10e through the wire. As shown in FIG. 3, the wiring 10 e and the connection hole 9 e are arranged so as to surround the periphery of the p + -type semiconductor region 7 d 2. The wiring 10 e is made of, for example, A 1—Si—Cu alloy, is electrically connected to the wiring 10 d through the connection hole 9 f, and is further connected to the input CCB bump electrode through the wiring 10 d. 2 (see Fig. 4 etc.).
n -形半導体領域 7 c 2は、例えばェピタキシャル法によって形成さ れた IT形の S i単結晶からなり、 n+形埋込み領域 7 a 2上に形成さ れている。 このような n+埋込み領域 7 a 2、 n+形引出し領域 7 b 2 および IT形半導体領域 7 c 2には、例えば n形不純物のリンまたは A sが導入されている。 The n − type semiconductor region 7 c 2 is made of, for example, an IT type Si single crystal formed by an epitaxial method, and is formed on the n + type buried region 7 a 2. For example, phosphorus or As of an n-type impurity is introduced into the n + buried region 7a2, the n + -type lead region 7b2, and the IT-type semiconductor region 7c2.
IT形半導体領域 7 c 2の上部には、 p+形半導体領域 7 d 2が形成 されており、 この p+形半導体領域 7 d 2と IT形半導体領域 7 c 2と の p n接合部にダイォ—ド D 2の主要作用部が形成されている。  A p + type semiconductor region 7 d 2 is formed above the IT type semiconductor region 7 c 2, and a diode is formed at a pn junction between the p + type semiconductor region 7 d 2 and the IT type semiconductor region 7 c 2. The main working part of D2 is formed.
p+形半導体領域 7 d 2 は、 絶縁膜 8に穿孔された接続孔 9 gを通 じて配線 10 f と電気的に接続されている。 配線 10 f は、 例えば A 1 -S i— C u合金からなり、 例えば電源用配線 V EEと電気的に接 続されている。 なお、 n+形引出し領域 7 b 2を含めたダイオード D 2 の大きさは、 例えば 28 /. rnX 22 m程度である。 また、 絶縁膜 8 は、 例えば PSG (Phospho Silicate Glass) 膜からなる。  The p + type semiconductor region 7 d 2 is electrically connected to the wiring 10 f through a connection hole 9 g formed in the insulating film 8. The wiring 10 f is made of, for example, an A 1 -Si—Cu alloy, and is electrically connected to, for example, a power supply wiring V EE. Note that the size of the diode D 2 including the n + -type extraction region 7 b 2 is, for example, about 28 / .rnX 22 m. The insulating film 8 is made of, for example, a PSG (Phospho Silicate Glass) film.
一方、 内部回路形成領域には、 図 2に示すように、 例えば縦形 np nバイポーラトランジスタ (以下、 np nトランジスタという) 11 と、 pチャネル形の MO Sトランジスタ (以下、 pMOSという) 1 2と、 nチャネル形の M〇 Sトランジスタ (以下、 nMOSという) 13とが形成されている。  On the other hand, in the internal circuit formation region, as shown in FIG. 2, for example, a vertical npn bipolar transistor (hereinafter, referred to as npn transistor) 11, a p-channel MOS transistor (hereinafter, referred to as pMOS) 12, An n-channel type MOS transistor (hereinafter referred to as nMOS) 13 is formed.
そして、 この pMOS 12および nMOS 13によって CMOS回 路が形成されており、 この CMOS回路と n p nトランジスタ 11と によって B i C-MO S (Bipolor C-MOS)回路が形成されている。  The pMOS 12 and the nMOS 13 form a CMOS circuit, and the CMOS circuit and the npn transistor 11 form a BiC-MOS (Bipolor C-MOS) circuit.
n p nトランジスタ 11は、 コレクタ埋込領域 11 aと、 その上の nゥエル 11 bの上部に形成されたベース領域 1 1 cと、 ベース領域 11 cの上部中央に形成されたエミッ夕領域 11 dとを有している。 この n+形のコレクタ埋込領域 11 aは、例えば n形不純物のリンま たは Asが導入されてなり、 nゥエル 11 bに形成されたコレクタ弓 I 出し領域 1 I f を通じてコレクタ電極 14 cと電気的に接続されて いる。 コレクタ電極 1 4 cは、 例えば A 1 - S i— C u合金からなる c ベース領域 1 1 cは、 中央の真性ベース領域 1 1 c 1 と、その上部 にエミ ッタ領域 1 1 dを取り囲むように配置されたベース引出し領 域 1 1 c 2 とから構成されている。 The npn transistor 11 includes a collector buried region 11a, a base region 11c formed above the n ゥ well 11b thereon, and an emitter region 11d formed in the upper center of the base region 11c. have. The n + -type collector buried region 11a has, for example, phosphorus or As of an n-type impurity introduced therein. The collector electrode 14c is formed through the collector bow I-exposed region 1If formed in the n-type well 11b. Electrically connected to I have. The collector electrode 14 c has, for example, a c base region 11 c made of an A 1 -Si—Cu alloy, and surrounds a central intrinsic base region 11 c 1 and an emitter region 11 d above it. And the base drawer area 1 1 c 2 arranged as follows.
真性ベース領域 1 1 c 1およびべ一ス引出し領域 1 1 c 2には、 例 えば P形不純物のホウ素が導入されている。 ただし、 ベース引出し領 域 1 1 c 2の不純物濃度は、 真性ベース領域 1 1 c 1の不純物濃度よ りも高く設定されている。  For example, P-type impurity boron is introduced into the intrinsic base region 11c1 and the base extraction region 11c2. However, the impurity concentration of the base extraction region 11c2 is set higher than that of the intrinsic base region 11c1.
ベース引出し領域 1 1 c 2は、 ベース引出し電極 1 4 b 1 を介して ベース電極 1 4 b 2と電気的に接続されている。 ベース引出し電極 1 4 b 1は、 例えば低抵抗ポリシリコンからなり、 ベース電極 1 4 b 2 は、 例えば A 1 - S i 一 C u合金からなる。  The base extraction region 11c2 is electrically connected to the base electrode 14b2 via the base extraction electrode 14b1. The base extraction electrode 14 b 1 is made of, for example, low-resistance polysilicon, and the base electrode 14 b 2 is made of, for example, an A 1 -S i -Cu alloy.
エミッタ領域 1 1 dは、例えば n形不純物のリンまたは A sが導入 されてなり、 エミッタ引出し電極 1 4 e lを介してエミッタ電極 1 4 e 2と電気的に接続されている。 エミッタ引出し電極 1 4 e 1は、 例 えば低抵抗ポリシリコンからなり、 エミッ夕電極 1 4 e 2は、 例えば A 1 - S i—C u合金からなる。  The emitter region 11 d has, for example, n-type impurity phosphorus or As introduced therein, and is electrically connected to the emitter electrode 14 e 2 via the emitter extraction electrode 14 el. The emitter extraction electrode 14 e 1 is made of, for example, low-resistance polysilicon, and the emitter electrode 14 e 2 is made of, for example, an A 1 -Si—Cu alloy.
p M O S 1 2は、 半導体層 5 cの上部に形成された一対のソース領 域 1 2 aおよびドレイン領域 1 2 bと、 半導体層 5 c上に形成された ゲート酸化膜 1 2 cと、 その上に形成されたゲ— ト電極 1 2 dとを有 している。  The pMOS 12 includes a pair of source region 12a and drain region 12b formed above the semiconductor layer 5c, a gate oxide film 12c formed on the semiconductor layer 5c, and It has a gate electrode 12d formed thereon.
ソース領域 1 2 aおよびドレイン領域 1 2 bは、 それぞれ低濃度領 域 1 2 a 1, 1 2 b 1 とその外側の高濃度領域 1 2 a 2,1 2 b 2とを 有する構造となっている。 その低濃度領域 1 2 a 1 , 1 2 b 1および高 濃度領域 1 2 a 2,1 2 b 2には、 例えば p形不純物のホウ素が導入さ れている。 そして、 このようなソース領域 1 2 aおよびドレイン領域 1 2 bは、 それぞれソース電極 1 4 s 1 およびドレイン電極 1 4 d と電気的に接続されている。ソース電極 1 4 s 1 およびドレイン電極 1 4 d 1 は、 例えば A 1— S i— C u合金からなる。 ゲート酸化膜 1 2 cは、 例えば S i 0 2 からなる。 ゲート電極 1 2 dは、例えば低抵抗ポリシリコン層上に W S i 2等からなるシリサイ ド層カ s堆積されてなる。 なお、 ゲート電極 1 2 dの上層および側面に は、 例えば S i 0 2からなるキャップ絶縁膜 1 5 aおよびサイ ドウォ —ル 1 5 bが形成されている。 The source region 12 a and the drain region 12 b have a structure having a low concentration region 12 a 1, 12 b 1 and a high concentration region 12 a 2, 12 b 2 outside thereof, respectively. I have. The low-concentration regions 12a1 and 12b1 and the high-concentration regions 12a2 and 12b2 contain, for example, boron as a p-type impurity. The source region 12a and the drain region 12b are electrically connected to the source electrode 14s1 and the drain electrode 14d, respectively. The source electrode 14 s 1 and the drain electrode 14 d 1 are made of, for example, an A 1 —S i —Cu alloy. Gate oxide film 1 2 c is made of, for example, S i 0 2. The gate electrode 1 2 d is formed by Shirisai de layer mosquitoes s deposition consisting WS i 2 like for example the low-resistance poly-silicon layer. Incidentally, the upper and side surfaces of the gate electrode 1 2 d is, for example S i 0 2 consists of a cap insulating film 1 5 a and cyclic Dowo - le 1 5 b are formed.
n M O S 1 3は、 半導体層 5 cの上部に形成された一対のソース領 域 1 3 aおよびドレイン領域 1 3 bと、 半導体層 5 c上に形成された ゲート酸化膜 1 3 cと、 その上に形成されたゲート電極 1 3 dとを有 している。 なお、 n M O S 1 3の形成領域における半導体層 5 cには、 p形不純物のホウ素が導入されている。  The nMOS 13 includes a pair of a source region 13 a and a drain region 13 b formed on the semiconductor layer 5 c, a gate oxide film 13 c formed on the semiconductor layer 5 c, And a gate electrode 13d formed thereon. It should be noted that boron as a p-type impurity is introduced into the semiconductor layer 5c in the region where the nMOS 13 is formed.
ソース領域 1 3 aおよびドレイン領域 1 3 bは、 それぞれ低濃度領 域 1 3 a 1,1 3 b 1とその外側の高濃度領域 1 3 a 2, 1 3 b 2とから なり、 p MO S 1 2と同様の構造となっている。 その低濃度領域 1 3 a 1, 1 3 b 1および高濃度領域 1 3 a 2, 1 3 b 2には、 例えば n形不 純物のリンまたは A sが導入されている。 そして、 このようなソース 領域 1 3 aおよびドレイン領域 1 3 bは、 それぞれソース電極 1 4 s 2およびドレイン電極 1 4 d 2と電気的に接続されている。 ソース電 極 1 4 s 2およびドレイン電極 1 4 d 2は、 例えば A 1 — S i— C u 合金からなる。  The source region 13a and the drain region 13b consist of low concentration regions 13a1, 13b1 and high concentration regions 13a2, 13b2 outside thereof, respectively. It has the same structure as 12. The low-concentration regions 13a1, 13b1 and the high-concentration regions 13a2, 13b2 contain, for example, n-type impurity phosphorus or As. The source region 13a and the drain region 13b are electrically connected to the source electrode 14s2 and the drain electrode 14d2, respectively. The source electrode 14 s 2 and the drain electrode 14 d 2 are made of, for example, an A 1 —S i —Cu alloy.
ゲート酸化膜 1 3 cは、 例えば S i 0 2からなる。 ゲ—ト電極 1 3 dは、 例えば低抵抗ポリシリコン層上に W S i 2等からなるシリサイ ド層カ堆積されてなる。 ゲ一ト電極 1 3 dの上層および側面には、 例 えば S i 0 2からなるキャップ絶縁膜 1 5 aおよびサイ ドウオール 1 5 bが形成されている。 A gate oxide film 1 3 c is made of, for example, S i 0 2. Gate - gate electrode 1 3 d is formed by Shirisai de layer mosquito deposition made of WS i 2 like for example the low-resistance poly-silicon layer. The upper and side surfaces of the gate one gate electrode 1 3 d, if example embodiment S i 0 2 cap insulating film 1 made of 5 a and cyclic Douoru 1 5 b are formed.
このような S O I基板 5上には、 図 1および図 2に示すように、 例 えば S i 0 2からなる絶縁膜 1 6力 s堆積されており、 これによつて配 線 1 0 a, 1 0 b , 1 0 e , 1 0 f 、 ベース電極 1 4 b 2、 ェミッタ 電極 1 4 e 2、 コレクタ電極 1 4 c , ソース電極 1 4 s 1, 1 4 s 2お よびドレイン電極 1 4 d 1 , 1 4 d 2が被覆されている。 さらに、 その 絶縁膜 1 6上には、例えば S i 0 2膜または S i 0 2膜上に窒化シリコ ン膜が堆積されてなる積層膜からなる表面保護膜 1 7が堆積されて おり、 これによつて配線 1 0 d (図 3参照) 等が被覆されている。 次に、 本実施の形態 1の半導体集積回路装置の製造方法例を図 8〜 図 1 6によって説明する。 On such an SOI substrate 5, FIG. 1 and FIG. 2, example if are S i 0 2 made of an insulating film 1 6 force s deposits, which in due connexion Wiring 1 0 a, 1 0 b, 10 e, 10 f, base electrode 14 b 2, emitter electrode 14 e 2, collector electrode 14 c, source electrode 14 s 1, 14 s 2, and drain electrode 14 d 1 , 14 d 2 are coated. Furthermore, the On the insulating film 16, for example, a surface protection film 17 composed of a SiO 2 film or a laminated film formed by depositing a silicon nitride film on the SiO 2 film is deposited. The wiring 10d (see Fig. 3) is covered. Next, an example of a method of manufacturing the semiconductor integrated circuit device according to the first embodiment will be described with reference to FIGS.
まず、 図 8に示すように、 例えば n形の S i単結晶からなる半導体 基板 5 aの主面上に、 上記した絶縁層 5 b (図 1参照) の除去領域を 被覆するようなフォ ト レジス トノ、。ターン 1 8 aをフォ ト リソグラフ ィ技術によって形成する。  First, as shown in FIG. 8, for example, a photo-resist that covers the removal region of the insulating layer 5b (see FIG. 1) on the main surface of a semiconductor substrate 5a made of, for example, an n-type Si single crystal. Regis Tono ,. Turn 18a is formed by photolithographic techniques.
続いて、 このフォトレジストパターン 1 8 aをマスクとして、 半導 体基板 5 aに、 例えば酸素イオンをイオン注入法等によって導入する。 この際のドーズ量は、 例えば 1 0 18個 Z c m 2程度である。 また、 加 速エネルギーは、 例えば 1 8 0 k e V〜 2 0 0 k e V程度である。 Subsequently, using the photoresist pattern 18a as a mask, for example, oxygen ions are introduced into the semiconductor substrate 5a by an ion implantation method or the like. The dose at this time is, for example, about 10 18 Z cm 2 . The acceleration energy is, for example, about 180 keV to 200 keV.
その後、 半導体基板 5 aに対して、 例えば 1 3 0 0 °C〜 1 3 5 0 °C 程度で 2時間〜 6時間程度の窒素ァニール処理を施し、酸素イオンを 打ち込んだ領域を選択的に S i 0 2に変えることにより、 図 9に示す ように、 半導体基板 5 aの所定の深さ位置に、 例えば厚さ 5 0 0 O A 程度の絶縁層 5 bを形成するとともに、 その上層に、 例えば厚さ 0. 1 μ m程度の薄い半導体層 5 c 1を形成する。 After that, the semiconductor substrate 5a is subjected to a nitrogen annealing treatment at about 130 ° C. to 135 ° C. for about 2 hours to 6 hours, and the region into which oxygen ions are implanted is selectively subjected to S annealing. By changing to i 0 2 , as shown in FIG. 9, an insulating layer 5 b having a thickness of, for example, about 500 OA is formed at a predetermined depth position of the semiconductor substrate 5 a, and, for example, A thin semiconductor layer 5 c 1 having a thickness of about 0.1 μm is formed.
ここで、 本実施の形態 1においては、 一部分に絶縁層 5 bが形成さ れていない除去領域があり、 その除去領域において薄い半導体層 5 c 1 と下層の半導体基板 5 aと力物理的に接触した状態となっている。 そして、 この絶縁層 5 bの除去領域が上記した入出力保護回路で発生 した熱や静電気電流等を半導体基板 5 a側に逃がす領域となる。  Here, in the first embodiment, there is a removed region where the insulating layer 5b is not formed in a part, and the thin semiconductor layer 5c1 and the lower semiconductor substrate 5a are physically and physically in the removed region. It is in contact. The area where the insulating layer 5b is removed is an area where heat, electrostatic current, and the like generated by the input / output protection circuit are released to the semiconductor substrate 5a.
次いで、 図 1 0に示すように、 薄い半導体層 5 c 1に埋め込み領域 を形成した後、 その薄い半導体層 5 c 1上に、 例えば n形の S i単結 晶からなる半導体層 5 c 2 をェピタキシャル法によって形成する。こ れによって、 絶縁層 5 bに半導体層 5 cを形成し、 S O I基板 5を製 造する。 続いて、 図 11に示すように、 半導体層 5 cの上部に、 例えば S i 02からなるフィールド絶縁膜 6 aを通常の LOCOS (Local Oxidi zation of Siliconノ 、/去によつ"!形成ー9る。 Next, as shown in FIG. 10, after a buried region is formed in the thin semiconductor layer 5c1, a semiconductor layer 5c2 made of, for example, an n-type Si single crystal is formed on the thin semiconductor layer 5c1. Is formed by an epitaxy method. Thereby, the semiconductor layer 5c is formed on the insulating layer 5b, and the SOI substrate 5 is manufactured. Subsequently, as shown in FIG. 11, the upper portion of the semiconductor layer 5 c, for example, S i 0 2 consists of the field insulating film 6 a conventional LOCOS (Local Oxidi zation of Silicon Roh, / removed by the cowpea "! Form 9
その後、 そのフィ—ルド絶縁膜 6 aの所定位置に絶縁層 5 bの上部 に達するような溝を形成した後、 その溝内に、 例えば S i 02からな る絶縁膜を埋め込むことにより トレンチ分離部 6 bを形成する。 Thereafter, a groove is formed at a predetermined position of the field insulating film 6a so as to reach the upper portion of the insulating layer 5b, and then an insulating film made of, for example, SiO 2 is buried in the groove. The separation part 6b is formed.
次いで、 図 12に示すように、 内部回路領域 Aのトランジスタ形成 領域に、 コレクタ引出し領域 11 f を形成する。 このコレクタ引出し 領域 11 f は、 その領域以外を被覆するようなフォ トレジストパター ンを形成した後、 SO I基板 5に対して、 例えば n形不純物のリンま たは A sをイオン注入法等によって注入し、 さらにァニール処理を施 すことによって形成する。  Next, as shown in FIG. 12, a collector extraction region 11 f is formed in the transistor formation region of the internal circuit region A. The collector extraction region 11f is formed by forming a photoresist pattern so as to cover the region other than that region, and then implanting, for example, phosphorus or As of an n-type impurity into the SOI substrate 5 by ion implantation or the like. And an annealing treatment is performed.
続いて、周辺回路領域 Bにおける入出力保護回路領域の rr半導体領 域 7 c 1,7 c 2に n+形引出し領域 7 b 1,7 b 2を形成する。 この n + 形引出し領域 7 b 1,7 b 2は、 その領域以外を被覆するようなフォト レジストパターンを形成した後、 SO I基板 5に対して、 例えば n形 不純物のリンまたは A sをイオン注入法等によって注入し、 さらにァ ニール処理を施すことによって形成する。  Subsequently, n + -type lead-out regions 7 b 1 and 7 b 2 are formed in the rr semiconductor regions 7 c 1 and 7 c 2 of the input / output protection circuit region in the peripheral circuit region B. After forming a photoresist pattern so as to cover the n + -type extraction regions 7 b 1 and 7 b 2, the SOI substrate 5 is ionized with, for example, n-type impurity phosphorus or As. It is formed by injecting by an injection method or the like and further performing an annealing process.
その後、周辺回路領域 Bにおける入出力保護回路領域の η·半導体領 域 7 c 1,7 c 2の上部に、 ρ+形半導体領域 7 d 1,7 d 2を形成する。 この P+形半導体領域 7 d 1,7 d 2は、その領域以外を被覆するような フォ トレジストパターンを形成した後、 SO I基板 5に対して、 例え ば P形不純物の BF 2をイオン注入法等によって注入し、 さらにァニ 一ル処理を施すことによつて形成する。 Thereafter, ρ + type semiconductor regions 7 d 1 and 7 d 2 are formed above the η · semiconductor regions 7 c 1 and 7 c 2 of the input / output protection circuit region in the peripheral circuit region B. In the P + type semiconductor regions 7 d 1 and 7 d 2, after forming a photoresist pattern covering the other regions, ion implantation of, for example, BF 2 of a P type impurity into the SOI substrate 5 is performed. It is formed by injecting by a method or the like and further performing an annealing process.
次いで、 内部回路領域 Aに、 pMOS 12および nMOS 13を、 通常の M 0 Sトランジスタの形成方法に従ってそれぞれ形成した後、 図 13に示すように、 SO I基板 5上に、 例えば S i 02からなる絶 縁膜 8 aを CVD法等によって堆積する。 Then, the internal circuit region A, the pMOS 12 and nMOS 13, after forming respectively according the method of forming the conventional M 0 S transistors, as shown in FIG. 13, on SO I substrate 5, for example, from S i 0 2 An insulating film 8a is deposited by a CVD method or the like.
続いて、 バイポーラトランジスタ形成領域のベース領域における絶 縁膜 8 aをフォ トリソグラフィ技術およびドライエツチング技術に よって除去する。 Next, the isolation in the base region of the bipolar transistor formation region The edge film 8a is removed by photolithography and dry etching.
その後、 S 0 1基板 5上に、 例えば p形の低抵抗ポリシリコンから なる導体膜を C V D法等によって堆積した後、 その導体膜をフォトリ ソグラフィ技術およびドライエツチング技術によってパター二ング することにより導体膜 1 8を形成する。  Thereafter, a conductive film made of, for example, p-type low-resistance polysilicon is deposited on the S01 substrate 5 by a CVD method or the like, and the conductive film is patterned by photolithography and dry etching to obtain a conductive film. A film 18 is formed.
次いで、 S O I基板 5上に、 例えば S i 0 2からなる絶縁膜 8 bを C V D法等によって堆積した後、 バイポーラトランジスタ形成領域の ベース領域における絶縁膜 8 bおよび導体膜 1 8をフォ トリソグラ フィ技術およびドライエツチング技術によつて除去することにより、 図 1 4に示すように、 ベース引出し電極 1 4 b 1を形成するとともに、 半導体層 5 cの上面の一部を露出させる。 Next, after an insulating film 8b made of, for example, SiO 2 is deposited on the SOI substrate 5 by a CVD method or the like, the insulating film 8b and the conductive film 18 in the base region of the bipolar transistor formation region are formed by photolithography. Then, by removing by a dry etching technique, as shown in FIG. 14, a base extraction electrode 14 b 1 is formed and a part of the upper surface of the semiconductor layer 5 c is exposed.
続いて、 絶縁膜 8 bをマスクとして、 S O I基板 5の半導体層 5 c の露出部に、例えば B F 2イオンをィォン注入法等によつて導入する。 この際のドーズ量は、 例えば 1 0 13個 Z c m 2程度、 加速エネルギー は、 例えば 6 0 k e V程度である。 Subsequently, using the insulating film 8b as a mask, for example, BF 2 ions are introduced into the exposed portions of the semiconductor layer 5c of the SOI substrate 5 by ion implantation or the like. The dose at this time is, for example, about 10 13 Z cm 2 , and the acceleration energy is, for example, about 60 keV.
その後、 S O I基板 5に対してァニール処理を施すことにより、 真 性ベース領域 1 1 c 1を形成した後、 導体膜 1 8中の p形不純物を半 導体層 5 cの上部に拡散することにより、 図 1 5に示すように、 ベ一 ス引出し領域 1 1 c 2を形成する。  Thereafter, annealing is performed on the SOI substrate 5 to form an intrinsic base region 11 c 1, and then p-type impurities in the conductor film 18 are diffused into the upper portion of the semiconductor layer 5 c. As shown in FIG. 15, a base lead-out region 11 c 2 is formed.
次いで、 S O I基板 5上に、 例えば S i 0 2からなる絶縁膜を C V D法等によって堆積した後、 その絶縁膜をエッチバックすることによ り、 絶縁膜 8および導体膜 1 8の開口部の側面に絶縁膜 8 cを形成す る o Next, an insulating film made of, for example, SiO 2 is deposited on the SOI substrate 5 by a CVD method or the like, and the insulating film is etched back to form openings in the insulating film 8 and the conductor film 18. Form insulation film 8c on the side o
続いて、 S 0 I基板 5上に、 例えば n形の低抵抗ポリシリコンから なる導体膜を C V D法等によって堆積した後、 その導体膜をフォ トリ ソグラフィ技術およびドライエツチング技術によってパター二ング することにより、 ェミツ夕引出し電極 1 4 e 1を形成する。  Subsequently, a conductive film made of, for example, n-type low-resistance polysilicon is deposited on the S0I substrate 5 by a CVD method or the like, and then the conductive film is patterned by photolithography and dry etching. Thus, an emitter extraction electrode 14 e 1 is formed.
その後、 ェミツ夕引出し電極 1 4 e 1中の n形不純物を半導体層 5 cの上部に拡散させることにより、 真性ベース領域 1 1 c 1の上部に エミッ夕領域 1 1 dを形成する。 After that, the n-type impurity in the emitter electrode 14 e 1 is removed from the semiconductor layer 5. By diffusing the region above c, an emitter region 11 d is formed above the intrinsic base region 11 c 1.
次いで、 図 16に示すように、 SO I基板 5上に、 例えば S i 0 2 からなる絶縁膜 8 dを CVD法等によって堆積した後、 絶縁膜 8に接 続孔 1 9をフォ トリソグラフィ技術およびドライエツチング技術に よって穿孔する。  Next, as shown in FIG. 16, after an insulating film 8 d made of, for example, SiO 2 is deposited on the SOI substrate 5 by a CVD method or the like, a connection hole 19 is formed in the insulating film 8 by photolithography. And drilling by dry etching technology.
続いて、 SO I基板 5上に、 例えば A 1 -S i—Cu合金からなる 金属膜をスパッタリング法等によって堆積した後、 その金属膜をフォ トリソグラフィ技術およびドライエツチング技術によってパター二 ングすることにより、 配線 1 0 a, 1 0 b, 1 0 e, 1 0 f 、 コレク タ電極 14 c , ベース電極 14 b 2、 ェミツタ電極 14 e 2、 ソース 電極 14 s 1,14 s 2およびドレイン電極 14 d 1,14 d 2を形成す その後、 図 1および図 2に示したように、 SO I基板 5上に、 例え ば S i 02からなる絶縁膜 1 6を CVD法等によって堆積した後、 配 線形成工程を経てその絶縁膜 1 6上に表面保護膜 1 7を CVD法等 によって堆積する。 以降は、 通常の半導体集積回路装置の製造工程に 従って半導体集積回路装置を製造する。 Subsequently, after depositing a metal film made of, for example, an A1-Si-Cu alloy on the SOI substrate 5 by a sputtering method or the like, the metal film is patterned by photolithography and dry etching. Thus, wiring 10a, 10b, 10e, 10f, collector electrode 14c, base electrode 14b2, emitter electrode 14e2, source electrodes 14s1, 14s2, and drain electrode 14c then to form a d 1, 14 d 2, as shown in FIGS. 1 and 2, on sO I substrate 5, after the insulating film 1 6 consisting of S i 0 2 deposited by CVD method or the like for example, After a wiring forming step, a surface protective film 17 is deposited on the insulating film 16 by a CVD method or the like. Thereafter, the semiconductor integrated circuit device is manufactured according to the normal semiconductor integrated circuit device manufacturing process.
このように、 本実施の形態 1によれば、 以下の効果を得ることが可 能となる。  As described above, according to the first embodiment, the following effects can be obtained.
(1).ダイォ一ド D 1,D 2の下層の絶縁層 5 bを除去したことにより、 ダイォード D 1,D 2がブレークダウンした際に生じた熱を、 絶縁層 5 bの除去領域を通じて支持用の半導体基板 5 a側にも逃がすことが できるので、 その熱の放熱性を向上させることが可能となる。  (1) By removing the insulating layer 5 b under the diodes D 1 and D 2, the heat generated when the diodes D 1 and D 2 break down is passed through the region where the insulating layer 5 b is removed. Since the heat can be released to the supporting semiconductor substrate 5a side, the heat radiation of the heat can be improved.
(2).ダイォード D 1,D 2の下層の絶縁層 5 bを除去したことにより、 静電気等によりダイォード D 1,D 2に流れた電流を、 絶縁層 5 bの除 去領域を通じて支持用の半導体基板 5 a側にも逃がすことができ、 ダ ィォ一ド D 1,D 2に電界が集中するのを防ぐことができるので、 その ダイォ一ド D 1,D 2の静電破壊耐性を向上させることが可能となる。 (3) . S 0 I基板 5の絶縁層 5 bを部分的に除去しただけで、 他の領域 には絶縁層 5 1)カ残されているので、 拡散容量や配線 ·基板間容量の 大幅な増大を招くことなく、 上述の効果を得ることが可能となる。 し たがって、 半導体集積回路装置の動作速度の遅延を招くことなく、 半 導体集積回路装置の信頼性を向上させることが可能となる。 (2) By removing the insulating layer 5b under the diodes D1 and D2, the current flowing through the diodes D1 and D2 due to static electricity or the like can be supported through the removed area of the insulating layer 5b. It can escape to the side of the semiconductor substrate 5a and can prevent the electric field from being concentrated on the diodes D1 and D2. Therefore, the electrostatic damage resistance of the diodes D1 and D2 can be reduced. It can be improved. (3) .Since the insulating layer 5 b of the S 0 I substrate 5 is only partially removed and the insulating layer 5 1) remains in other areas, the diffusion capacitance and the capacitance between the wiring and the substrate are greatly increased. The above-described effect can be obtained without causing a significant increase. Therefore, it is possible to improve the reliability of the semiconductor integrated circuit device without causing a delay in the operation speed of the semiconductor integrated circuit device.
(4) . S O I基板 5の絶縁層 5 bを部分的に除去しただけで、 他の領域 には絶縁層 5 bが残されているので、 上層の半導体層 5 cに大幅な段 差が生じることもない。 したがって、 下地段差に起因する配線断線等 のような不良の発生を防止することが可能となる。  (4) Since the insulating layer 5b of the SOI substrate 5 is only partially removed and the insulating layer 5b is left in other regions, a large step occurs in the upper semiconductor layer 5c. Not even. Therefore, it is possible to prevent the occurrence of a defect such as a disconnection of the wiring caused by the step of the base.
次に、 本発明の他の実施の形態 2を図 1 7〜図 2 2によって説明す る。 なお、 本実施の形態 2においては、 S 0 I基板 5の他の製造方法 例について説明する。  Next, another embodiment 2 of the present invention will be described with reference to FIGS. In the second embodiment, another example of the manufacturing method of the SOI substrate 5 will be described.
まず、 図 1 7に示すように、 例えば n形の S i単結晶からなる第 1 の半導体基板 2 0の主面上に、 通常の L O C O S法等によって、 例え ば S i 0 2からなるフィールド絶縁膜 2 1を形成する。 この際、 第 1 の半導体基板 2 0の所定位置には、 フィールド絶縁膜 2 1の無い除去 領域が形成されている。 First, as shown in FIG. 1 7, for example, the first semiconductor substrate 2 0 on the main surface consisting of n-type S i monocrystal by conventional LOCOS method, a field insulating consisting S i 0 2 For example A film 21 is formed. At this time, a removal region without the field insulating film 21 is formed at a predetermined position of the first semiconductor substrate 20.
続いて、 その第 1の半導体基板 2 0の主面を C M P (Chemical Mec hanical Polishing)法等によつて研磨することにより、 図 1 8に示すよ うに、 第 1の半導体基板 2 0の主面を平坦にする。 ただし、 この際の 研磨処理においては、 フィールド絶縁膜 2 1 (図 1 7参照) が半導体 基板 2 0の主面上部に残るようにする。 これにより、 絶縁層 5 bを形 成する。  Subsequently, the main surface of the first semiconductor substrate 20 is polished by a CMP (Chemical Mechanical Polishing) method or the like, as shown in FIG. Flatten. However, in the polishing process at this time, the field insulating film 21 (see FIG. 17) is left above the main surface of the semiconductor substrate 20. Thereby, the insulating layer 5b is formed.
その後、 図 1 9に示すように、 第 1の半導体基板 2 0の主面と、 他 に用意した第 2の半導体基板 (支持用の半導体基板) 2 2の主面とを 対向させ接触させた状態で、 例えば 8 0 0 °C〜 1 1 0 0 °C程度で 2時 間程の酸素雰囲気等でのァニール処理を施すことにより、 第 1の半導 体基板 2 0と第 2の半導体基板 2 2とを張り合わせる。第 2の半導体 基板 2 2は、 例えば n形の S i単結晶からなる。 次いで、 第 1の半導体基板 2 0の裏面を、 例えばドライエッチング 処理によってエッチング除去することにより、 図 2 0に示すように、 薄い半導体層 5 c 1を形成した後、 前記実施の形態 1と同様、 その薄 い半導体層 5 c 1上に、 図 2 1に示すように、 例えば n形の S i単結 晶からなる半導体層 5 c 2をェピタキシャル法等によって成長させて 半導体層 5 cを形成する。 Thereafter, as shown in FIG. 19, the main surface of the first semiconductor substrate 20 and the main surface of the other prepared second semiconductor substrate (supporting semiconductor substrate) 22 were opposed to each other and brought into contact with each other. In this state, the first semiconductor substrate 20 and the second semiconductor substrate are subjected to annealing treatment in an oxygen atmosphere or the like at about 800 ° C. to 110 ° C. for about 2 hours. 2 Laminate with 2. The second semiconductor substrate 22 is made of, for example, an n-type Si single crystal. Next, the back surface of the first semiconductor substrate 20 is etched away by, for example, a dry etching process to form a thin semiconductor layer 5c1, as shown in FIG. 20, and then the same as in the first embodiment. On the thin semiconductor layer 5c1, as shown in FIG. 21, a semiconductor layer 5c2 made of, for example, an n-type Si single crystal is grown by an epitaxy method or the like to form the semiconductor layer 5c. Form.
続いて、 前記実施の形態 1と同様に、 図 2 2に示すように、 半導体 層 5 cの上部に、例えば S i 0 2 からなるフィールド絶縁膜 6 aを L O C O S法等によって形成した後、 その所定の位置にトレンチ分離部 6 bを形成する。 これ以降は、 前記実施の形態 1と同じなので説明を 省略する。 Subsequently, as in the first embodiment, as shown in FIG. 22, a field insulating film 6 a made of, for example, SiO 2 is formed on the semiconductor layer 5 c by a LOCOS method or the like. A trench isolation 6b is formed at a predetermined position. Subsequent steps are the same as in the first embodiment, and a description thereof will be omitted.
このような本実施の形態 2においては、 前記実施の形態 1と同じ効 果を得ることが可能である。  In the second embodiment, the same effect as in the first embodiment can be obtained.
次に、 本発明の他の実施の形態 3を図 2 3〜図 2 5によって説明す る。 なお、 図 2 3および図 2 4は本実施の形態 3の周辺回路領域に形 成された入力保護回路および出力保護回路の回路図を示し、 図 2 5は この入力保護回路素子を含む半導体集積回路装置の要部断面図を示 している。  Next, another embodiment 3 of the present invention will be described with reference to FIGS. FIGS. 23 and 24 show circuit diagrams of the input protection circuit and the output protection circuit formed in the peripheral circuit region of the third embodiment, and FIG. 25 shows a semiconductor integrated circuit including this input protection circuit element. 1 shows a cross-sectional view of a main part of a circuit device.
本実施の形態 3においては、保護回路を構成する静電保護素子が、 ダイオードとして機能する M O S トランジスタ Q 1〜Q 4によって構 成されている。  In the third embodiment, the electrostatic protection element constituting the protection circuit is constituted by MOS transistors Q1 to Q4 functioning as diodes.
入力保護回路3の M O S トランジスタ (第 1の M I S トランジス タ) Q 1は、 そのゲ—ト電極が電源用配線 V CCに接続された状態で、 電源用配線 V CCと入力用の C C Bバンプ電極 2との間にダイォード 接続されている。 また、 M 0 S トランジスタ (第 2の M I S トランジ スタ) Q 2は、 そのゲート電極が電源用配線 V EEに接続された状態 で電源用配線 V EEと入力用の C C Bバンプ電極 2との間にダイォ一 ド接続されている。  The MOS transistor (first MIS transistor) Q1 of the input protection circuit 3 is connected to the power supply wiring V CC and the input CCB bump electrode 2 with its gate electrode connected to the power supply wiring V CC. And a diode connection. The M 0 S transistor (second MIS transistor) Q 2 is connected between the power supply wiring V EE and the input CCB bump electrode 2 with its gate electrode connected to the power supply wiring V EE. Diode connected.
出力保護回路 4の M O S トランジスタ (第 1の M I S トランジス 夕) Q 3は、 そのゲ—ト電極が電源用配線 V CCに接続された状態で、 電源用配線 V CCと出力用の C C Bバンプ電極 2との間に電気的に接 続されている。 また、 M O S トランジスタ (第 2の M I S トランジス タ) Q 4は、 そのゲート電極が電源用配線 V EEに接続された状態で、 出力用の C C Bバンプ電極 2と電源用配線 V EE との間に電気的に接 続されている。 MOS transistor of output protection circuit 4 (first MIS transistor E) Q3 is electrically connected between the power supply wiring V CC and the output CCB bump electrode 2 with its gate electrode connected to the power supply wiring V CC. The MOS transistor (second MIS transistor) Q4 is electrically connected between the output CCB bump electrode 2 and the power supply wiring VEE with its gate electrode connected to the power supply wiring VEE. Connected.
次に、 この入力保護回路 3の断面図を図 2 5に示す。 なお、 図 2 5 には上記した MO Sトランジスタ Q 1のみを示すが、 MO Sトランジ スタ Q 2〜Q 4も基本的に同じ構造となっている。  Next, a cross-sectional view of the input protection circuit 3 is shown in FIG. FIG. 25 shows only the MOS transistor Q1 described above, but the MOS transistors Q2 to Q4 have basically the same structure.
上記した M O S トランジスタ Q 1は、 例えば p形の S i単結晶から なる半導体層 5 cの上部に互いに離間して設けられた一対のソース 領域 (第 1 n形半導体領域) 2 4 aおよびドレイン領域 (第 1 n形半 導体領域) 2 4 bと、 その半導体層 5 c上の絶縁膜 8からなるゲート 絶縁膜 2 4 cと、 その絶縁膜 8上に配置されたゲ—ト電極 2 4 dとを 有する。  The above-mentioned MOS transistor Q1 is composed of a pair of source region (first n-type semiconductor region) 24a and a drain region provided separately from each other above a semiconductor layer 5c made of, for example, a p-type Si single crystal. (First n-type semiconductor region) 24 b, a gate insulating film 24 c composed of an insulating film 8 on the semiconductor layer 5 c, and a gate electrode 24 d disposed on the insulating film 8 And
ソース領域 2 4 aおよびドレイン領域 2 4 bは、 例えば n形不純物 のリンまたは A sが導入されてなり、 内部回路の n M O S 1 3のソー ス領域 1 3 aおよびドレイン領域 1 3 bの形成時に同時に形成され る。 このソース領域 2 4 aと ドレイン領域 2 4 bとの間はチャネル領 域となっている。  The source region 24a and the drain region 24b are doped with, for example, an n-type impurity such as phosphorus or As to form the source region 13a and the drain region 13b of the nMOS 13 of the internal circuit. Sometimes formed at the same time. A channel region is formed between the source region 24a and the drain region 24b.
ゲート電極 2 4 dは、 例えば A 1 - S i— C u合金からなり、 コレ クタ電極 1 4 c ベース電極 1 4 b 2 、 ェミツ夕電極 1 4 e 2 、 ソ ース電極 1 4 s 1, 1 4 s 2 およびドレイン電極 1 4 d 1,1 4 d 2 の 形成時に同時に形成される。  The gate electrode 24 d is made of, for example, A 1 -Si—Cu alloy, and has a collector electrode 14 c base electrode 14 b 2, an emitter electrode 14 e 2, a source electrode 14 s 1, It is formed simultaneously when 14 s 2 and the drain electrodes 14 d 1 and 14 d 2 are formed.
そして、 本実施の形態 3においても、 静電保護素子用の M O S トラ ンジスタ Q 1 のチャネル領域直下における絶縁層 5 bが除去されて いる。 これにより、 本実施の形態 3においても、 前記実施の形態 1で 得られた効果と同じ効果を得ることが可能となっている。  In the third embodiment as well, the insulating layer 5b immediately below the channel region of the MOS transistor Q1 for the electrostatic protection element is removed. As a result, also in the third embodiment, the same effect as that obtained in the first embodiment can be obtained.
次に、 本発明の他の実施の形態 4を図 2 6〜図 2 8によって説明す る。 なお、 本実施の形態 4においては、 半導体チップの構成、 保護回 路の回路構成および S 0 I基板の製造方法は前記実施の形態 1,2と 同じなので説明を省略する。 Next, another embodiment 4 of the present invention will be described with reference to FIGS. You. In the fourth embodiment, since the configuration of the semiconductor chip, the circuit configuration of the protection circuit, and the method of manufacturing the SOI substrate are the same as those in the first and second embodiments, the description will be omitted.
本実施の形態 4の入力保護回路 3の平面図およびその XXVII— XX VII線の断面図を図 2 7に示す。 また、 内部回路領域 A (図 4等参照) の要部断面図を図 2 8に示す。 なお、 図 2 6には、 図面を見易くする ため一部ハッチングが付してある。  FIG. 27 shows a plan view of the input protection circuit 3 of the fourth embodiment and a cross-sectional view taken along line XXVII-XXVII of the input protection circuit 3. Fig. 28 shows a cross-sectional view of the main part of the internal circuit area A (see Fig. 4 etc.). Note that FIG. 26 is partially hatched to make the drawing easier to see.
本実施の形態 4においては、 図 2 6および図 2 7に示すように、 半 導体チップ 1を構成する素子形成用基板として前記実施の形態 1 と 同様の S O I基板 5力 ?使用されている。 この S O I基板 5は、 半導体 基板 5 aと、 その上層に形成された絶縁層 5 bと、 その上層に形成さ れた半導体層 5 cとから構成されている。 In the fourth embodiment, as shown in FIG. 2 6 and 2 7 is similar SOI substrate 5 force? Using the first embodiment as the element forming substrate constituting the semi-conductor chip 1. The SOI substrate 5 includes a semiconductor substrate 5a, an insulating layer 5b formed thereon, and a semiconductor layer 5c formed thereon.
半導体基板 5 aは、 主として S O I基板 5の強度を確保する支持用 の基板構成部であり、 例えば n形のシリコン (S i ) 単結晶からなる。 絶縁層 5 bは、 例えば二酸化シリコン (S i 0 2)からなり、 その厚さ は、 例えば 5 0 0 O A程度である。 The semiconductor substrate 5a is a supporting substrate component that mainly secures the strength of the SOI substrate 5, and is made of, for example, n-type silicon (Si) single crystal. Insulating layer 5 b is made of, for example, silicon dioxide (S i 0 2), has a thickness of, for example 5 0 0 OA about.
本実施の形態 4においては、 その絶縁層 5 bにおいて入力保護回路 用のダイォ—ド D 1 ,D 2の p n接合面直下における領域のみが部分的 に除去されている。 すなわち、 その p n接合面直下の領域では、 半導 体層 5 cと半導体基板 5 aとが物理的に接触した状態となっている。 これにより、 本実施の形態 4の半導体集積回路装置においては、 以下 の第 1〜第 4のことが可能となっている。  In the fourth embodiment, only the region directly below the pn junction surface of the diodes D 1 and D 2 for the input protection circuit in the insulating layer 5 b is partially removed. That is, in a region immediately below the pn junction surface, the semiconductor layer 5c and the semiconductor substrate 5a are in a state of being in physical contact with each other. As a result, the semiconductor integrated circuit device according to the fourth embodiment enables the following first to fourth operations.
第 1に、 ダイォ一ド D 1,D 2がブレークダウンした際に生じた熱を、 絶縁層 5 bの除去領域を通じて支持用の半導体基板 5 a側にも逃が すことができるので、 その熱の放熱性を向上させることが可能となつ ている。  First, the heat generated when the diodes D1 and D2 break down can be released to the supporting semiconductor substrate 5a through the removed area of the insulating layer 5b. It is possible to improve the heat dissipation.
第 2に、 静電気等によりダイオード D 1,D 2に流れた電流を、 絶縁 層 5 bの除去領域を通じて支持用の半導体基板 5 a側にも逃がすこ と力 sでき、 ダイォ一ド D 1,D 2に電界が集中するのを防ぐことができ るので、 そのダイォ一ド D 1,D 2の静電破壊耐性を向上させることが 可能となっている。 なお、 図 1中の矢印 Cは、 熱または静電気電流の 逃げ道を模式的に示したものである。 Second, the current flowing through the diode D 1, D 2 by the static electricity or the like, can also Nigasuko and force s on the semiconductor substrate 5 a side of the supporting through removal region of the insulating layer 5 b, Daio one de D 1, It can prevent the electric field from concentrating on D2 Therefore, it is possible to improve the electrostatic breakdown resistance of the diodes D 1 and D 2. Arrow C in FIG. 1 schematically shows an escape route for heat or electrostatic current.
第 3に、 S O I基板 5の絶縁層 5 bを部分的に除去しただけで、 他 の領域には絶縁層 5 bが残されているので、 拡散容量や配線 .基板間 容量の大幅な増大を招くことなく、 上述の効果を得ることが可能とな つている。  Third, since the insulating layer 5b of the SOI substrate 5 is only partially removed and the insulating layer 5b is left in other regions, the diffusion capacitance and the wiring / substrate capacitance are greatly increased. The above-mentioned effects can be obtained without inviting.
第 4に、 S O I基板 5の絶縁層 5 bを部分的に除去しただけで、 他 の領域には絶縁層 5 bが残されているので、 上層の半導体層 5 cに大 幅な段差が生じることもない。 したがって、 下地段差に起因する配線 断線等のような不良の発生を防止することが可能となっている。  Fourth, since the insulating layer 5b of the SOI substrate 5 is only partially removed and the insulating layer 5b is left in other regions, a large step occurs in the upper semiconductor layer 5c. Not even. Therefore, it is possible to prevent the occurrence of a defect such as a disconnection of the wiring due to the step of the base.
半導体層 5 じほ、 素子形成用の基板構成部であり、 例えば n形の S i単結晶からなり、 その厚さは、 前記実施の形態 1〜3よりも薄く、 好ましくは、 例えば 0.1 Λ m程度である。 The semiconductor layer 5 Ho, a substrate structure of the element formation, for example, an n-type S i monocrystalline, its thickness is thinner than the first to third embodiments, preferably, for example, 0.1 lambda m It is about.
半導体層 5 cの上部の所定位置には、 分離用のフィールド絶縁膜 6 aが形成されている。 このフィールド絶縁膜 6 aは、 例えば S i 0 2 からなり、 その底部が図 2 7および図 2 8に示すように絶縁層 5 に 接している。 At a predetermined position above the semiconductor layer 5c, a field insulating film 6a for isolation is formed. The field insulating film 6 a is made of, for example, S i 0 2, its bottom is in contact insulating layer 5 as shown in FIG. 2 7 and 2 8.
なお、 保護回路領域において、 フィールド絶縁膜 6 aの内側に配置 されているフィールド絶縁膜 6 cは、 例えば S i 0 2からなる素子内 分離用の絶縁膜である。 このフィールド絶縁膜 6 cは、 その底部が絶 縁層 5 bに接しておらず、 その間には半導体層が介在されている。 Incidentally, in the protection circuit region, the field insulating film 6 c which is arranged inside the field insulating film 6 a, for example, an insulating film S i 0 2 consists of elements in the separation. The field insulating film 6c does not have a bottom portion in contact with the insulating layer 5b, and a semiconductor layer is interposed therebetween.
図 2 6および図 2 7に示す入力保護回路用のダイォード D 1は、 n +形引出し領域 7 b 1 と、 これに囲まれた rr形半導体領域 7 c 1と、 その上層に形成された p +形半導体領域 (第 1 p形半導体領域) 7 d 1 とを有している。  The diode D 1 for the input protection circuit shown in FIGS. 26 and 27 is composed of an n + -type lead region 7 b 1, an rr -type semiconductor region 7 c 1 surrounded by this region, and a p + Semiconductor region (first p-type semiconductor region) 7 d 1.
本実施の形態 4のダイォ—ド D 1においては、 前記実施の形態 1で 説明した η +埋込領域 7 a 1が無い分、 ダイオード D〗の拡散容量を低 減することが可能となっている。 n+形引出し領域 7 b 1 は、 例えば n形不純物のリンまたは A sが 含有されてなり、 その底部が絶縁層 5 bに達する程度に延びている。 この n+形引出し領域 7 b 1は、 S O I基板 5上の絶縁膜 8に穿孔され た接続孔 9 aを通じて配線 1 0 aと電気的に接続されている。 In the diode D1 of the fourth embodiment, the diffusion capacitance of the diode D〗 can be reduced by the absence of the η + buried region 7a1 described in the first embodiment. I have. The n + -type extraction region 7 b 1 contains, for example, an n-type impurity such as phosphorus or As, and extends so that the bottom reaches the insulating layer 5 b. The n + -shaped lead region 7 b 1 is electrically connected to the wiring 10 a through a connection hole 9 a formed in the insulating film 8 on the SOI substrate 5.
この配線 1 0 aは、例えばアルミニウム (A 1 ) — S i —銅(C u ) 合金からなり、 例えば電源用配線 V CCと電気的に接続されている。 この配線 1 0 aおよび接続孔 9 aは、図 2 6に示すように、 p +形半導 体領域 7 d 1の周囲を取り囲むように配置されている。  The wiring 10a is made of, for example, an aluminum (A 1) —Si—copper (Cu) alloy, and is electrically connected to, for example, a power supply wiring V CC. As shown in FIG. 26, the wiring 10a and the connection hole 9a are arranged so as to surround the periphery of the p + -type semiconductor region 7d1.
IT形半導体領域 7 c 1は、例えばェピタキシャル法によって形成さ れた IT形の S i単結晶に n形不純物のリンまたは A sが導入されて なり、 その底部の中央は支持用の半導体基板 5 aと物理的に接触して いる。  The IT-type semiconductor region 7 c 1 is formed by introducing n-type impurity phosphorus or As into an IT-type Si single crystal formed by, for example, an epitaxy method, and the center of the bottom is a supporting semiconductor substrate. Physical contact with 5a.
p +形半導体領域 (第 1 p形半導体領域) 7 d 1は、例えば p形不純 物のホウ素が含有されてなり、 この p +形半導体領域 7 d 1 と rr形半 導体領域 7 c 1との p n接合部にダイオード D 1の主要作用部が形成 されている。  The p + -type semiconductor region (first p-type semiconductor region) 7 d1 contains, for example, p-type impurity boron, and the p + -type semiconductor region 7 d 1 and the rr -type semiconductor region 7 c 1 The main working part of the diode D1 is formed at the pn junction of FIG.
P +形半導体領域 7 d 1は、 絶縁膜 8に穿孔された接続孔 9 b , 9 c を通じて、 それぞれ互いに独立して形成された配線 1 0 b, 1 0 cと 電気的に接続されている。  The P + type semiconductor region 7 d 1 is electrically connected to wirings 10 b and 10 c formed independently of each other through connection holes 9 b and 9 c formed in the insulating film 8. .
配線 1 0 bは、 例えば内部回路と電気的に接続されている。 また、 配線 1 0 cは、接続孔 9 dを通じて配線 1 0 dと電気的に接続され、 さらに、 その配線 1 0 aを通じて入力用の C C Bバンプ電極と電気的 に接続されている。 この配線 1 0 b, 1 0 cは、 例えば A 1— S i— C u合金からなり、 その相互間は、 p +形半導体領域 7 d 1からなる抵 抗 Rを通じて電気的に接続されている。 なお、 n +形引出し領域 7 b l を含めたダイォード D 1 の大きさは、 例えば 3 5 m X 2 8 Λ m程 度である。 The wiring 10b is electrically connected to, for example, an internal circuit. The wiring 10c is electrically connected to the wiring 10d through the connection hole 9d, and is further electrically connected to the input CCB bump electrode through the wiring 10a. The wirings 10b and 10c are made of, for example, A1-Si-Cu alloy, and are electrically connected to each other through a resistor R composed of ap + type semiconductor region 7d1. . The size of Daiodo D 1 including the n + type extraction region 7 bl is, for example, 3 5 m X 2 8 Λ m extent.
また、 入力保護回路用のダイオード D 2は、 n +形引出し領域 7 b 2 と、 これに囲まれた n—形半導体領域 7 c 2 と、 その上層の p +形半導 体領域 (第 2 p形半導体領域) 7 d 2とを有している。 The diode D 2 for the input protection circuit is composed of an n + -type lead region 7 b 2, an n − -type semiconductor region 7 c 2 surrounded by the n + -type lead region 7 b 2, and a p + -type semiconductor Body region (second p-type semiconductor region) 7 d 2.
本実施の形態 4のダイォ—ド D 2においては、 前記実施の形態 1で 説明した n+埋込領域 7 a 2が無い分、 ダイォード D 2の拡散容量を低 減することが可能となっている。  In the diode D2 of the fourth embodiment, the diffusion capacity of the diode D2 can be reduced by the absence of the n + buried region 7a2 described in the first embodiment. .
n+形引出し領域 7 b 2は、例えば n形不純物のリンまたは A sが含 有されてなり、 その底部が絶縁層 5 bに達する程度に延びている。 こ の n+形引出し領域 7 b 2は、 SO I基板 5上の絶縁膜 8に穿孔された 接続孔 9 eを通じて配線 10 eと電気的に接続されている。  The n + -type extraction region 7b2 contains, for example, phosphorus or As of an n-type impurity, and extends so that the bottom reaches the insulating layer 5b. The n + -type lead region 7b2 is electrically connected to the wiring 10e through a connection hole 9e formed in the insulating film 8 on the SOI substrate 5.
この配線 10 eおよび接続孔 9 eは、図 26に示すように、 p+形半 導体領域 7 d 2の周囲を取り囲むように配置されている。 この配線 1 0 eは、 例えば A 1 -S i一 Cu合金からなり、 接続孔 9 f を通じて 上記した配線 10 dと電気的に接続され、 さらに、 その配線 10 dを 通じて入力用の CCBバンプ電極と電気的に接続されている。  As shown in FIG. 26, the wiring 10e and the connection hole 9e are arranged so as to surround the p + type semiconductor region 7d2. The wiring 10 e is made of, for example, an A 1 -Si i-Cu alloy, is electrically connected to the wiring 10 d through the connection hole 9 f, and furthermore, is connected to the input CCB bump through the wiring 10 d. It is electrically connected to the electrodes.
n -形半導体領域 7 c 2は、例えばェピタキシャル法によって形成さ れた S i単結晶に n形不純物のリンまたは A sが導入されてなる。  The n-type semiconductor region 7c2 is formed, for example, by introducing n-type impurity phosphorus or As into a Si single crystal formed by an epitaxy method.
p+形半導体領域 7 d 2は、例えば p形不純物のホウ素が含有されて なり、 この p+形半導体領域 7 d 2 と η·形半導体領域 7 c 2 との p n 接合部にダイオード D 2の主要作用部が形成されている。  The p + type semiconductor region 7 d 2 contains, for example, boron as a p-type impurity, and the main function of the diode D 2 is formed at the pn junction between the p + type semiconductor region 7 d 2 and the η type semiconductor region 7 c 2. A part is formed.
p+形半導体領域 7 d 2は、絶縁膜 8に穿孔された接続孔 9 gを通じ て配線 10 f と電気的に接続されている。 配線 1 0 f は、 例えば A 1 一 S i— C u合金からなり、 例えば電源用配線 V EEと電気的に接続 されている。 なお、 n+形引出し領域 7 b 2を含めたダイォ一ド D2の 大きさは、 例えば 28 mX 22 m程度である。 また、 絶縁膜 8は、 例えば P S G (Phospho Silicate Glass) 膜からなる。  The p + type semiconductor region 7 d 2 is electrically connected to the wiring 10 f through a connection hole 9 g formed in the insulating film 8. The wiring 10 f is made of, for example, an A 1 Si—Cu alloy, and is electrically connected to, for example, a power supply wiring V EE. Note that the size of the diode D2 including the n + -shaped extraction region 7b2 is, for example, about 28 m × 22 m. The insulating film 8 is made of, for example, a PSG (Phospho Silicate Glass) film.
一方、 内部回路形成領域には、 図 28に示すように、 例えば pM〇 S 12および nMOS 13が形成されている。 そして、 この pMOS 12および nMO S 13によって CM〇 S回路が形成されている。 pMO S 12は、 半導体層 5 cの上部に形成された一対のソース領 域 1 2 aおよびドレイン領域 12 bと、 半導体層 5 c上に形成された ゲート酸化膜 12 cと、 その上に形成されたゲ一ト電極 12 dとを有 している。 On the other hand, in the internal circuit formation region, for example, pM〇S 12 and nMOS 13 are formed as shown in FIG. The pMOS 12 and the nMOS 13 form a CM〇S circuit. The pMOS 12 is formed on a pair of the source region 12 a and the drain region 12 b formed on the semiconductor layer 5 c and on the semiconductor layer 5 c. It has a gate oxide film 12c and a gate electrode 12d formed thereon.
ソース領域 12 aおよびドレイン領域 12 bは、 それぞれ低濃度領 域 12 a 1, 12 b 1 とその外側の高濃度領域 12 a 2,12 b 2とを 有する構造となっている。 その低濃度領域 12 a 1,12 b 1および高 濃度領域 12 a 2,12 b 2には、 例えば p形不純物のホウ素が導入さ れている。  The source region 12a and the drain region 12b have a structure having low concentration regions 12a1 and 12b1 and high concentration regions 12a2 and 12b2 outside thereof. The low-concentration regions 12a1, 12b1 and the high-concentration regions 12a2, 12b2 contain, for example, p-type impurity boron.
このソース領域 12 aおよびドレイン領域 12 bの高濃度領域 1 2 a 2,12 b 2の底部は、 絶縁層 5 bに達する程度に形成されている。 これにより、 pMOS 12のソース領域 12 aおよびドレイン領域 1 2 bと半導体基板 5 aとの間の容量 (拡散容量) を大幅に低減するこ とが可能な構造となっている。 これは、 次の理由からである。  The bottoms of the high-concentration regions 12a2 and 12b2 of the source region 12a and the drain region 12b are formed to reach the insulating layer 5b. Thus, the structure (diffusion capacitance) between the source region 12a and the drain region 12b of the pMOS 12 and the semiconductor substrate 5a can be significantly reduced. This is for the following reasons.
一般に、 通常の半導体基板上に形成された MOS · FETの拡散容 量は、 ゲート絶縁膜容量と空乏層容量との直列接続によって与えられ る。  Generally, the diffusion capacity of a MOS FET formed on a normal semiconductor substrate is given by the series connection of the gate insulating film capacity and the depletion layer capacity.
一方、 S〇 I基板上に形成された MOS · FETにおいては、 その ソース領域およびドレイン領域を絶縁層 5 bに達する程度に形成し た場合、 半導体層 5 cの完全空乏化により、 空乏層容量の代わりに絶 縁層 5 bによる容量の影響が顕著となる。 すなわち、 SO I基板上の MOS . FETでは、 拡散容量が絶縁層 5 bの容量で決められる。  On the other hand, in a MOS FET formed on an S〇I substrate, when the source region and the drain region are formed so as to reach the insulating layer 5b, the depletion layer capacitance is caused by complete depletion of the semiconductor layer 5c. Instead, the effect of the capacitance due to the insulating layer 5b becomes significant. That is, in the MOS FET on the SOI substrate, the diffusion capacitance is determined by the capacitance of the insulating layer 5b.
ところで、 S iの誘電率は 12であるのに対して S i 02の誘電率 は 4であり、 S iの誘電率の 1/3であることから、 SO I基板上の M OS · FETは、 その拡散容量 (絶縁層 5 bの容量で決まる) を、 通 常の半導体基板上に形成された M0S · FETの拡散容量 (p n接合 容量で決まる) の 1/10程度に低減することが可能となる。 By the way, the dielectric constant of Si is 12, whereas the dielectric constant of Si 0 2 is 4, which is 1/3 of the dielectric constant of Si. Can reduce the diffusion capacitance (determined by the capacitance of the insulating layer 5b) to about 1/10 of the diffusion capacitance (determined by the pn junction capacitance) of the M0S • FET formed on a normal semiconductor substrate. It becomes possible.
このことは、 前記実施の形態 1等で説明した pMOS 12 (図 2参 照) と比較しても言うことができる。 すなわち、 本実施の形態 4の p MOS 12の構造では、 そのソース領域 12 aおよびドレイン領域 1 2 bの下層に前記実施の形態 1等の構造で示すような半導体層が介 在されないので、前記実施の形態 1等で説明した p MO S 12よりも 拡散容量を下げることが可能となっている。 This can be said to be compared with the pMOS 12 (see FIG. 2) described in the first embodiment and the like. That is, in the structure of the pMOS 12 of the fourth embodiment, a semiconductor layer as shown in the structure of the first embodiment and the like is interposed under the source region 12a and the drain region 12b. Since it does not exist, the diffusion capacity can be lower than that of pMOS 12 described in the first embodiment and the like.
このような pMOS 12のソース領域 1 2 aおよびドレイン領域 12 bは、 それぞれソース電極 14 s 1 およびドレイン電極 14 d 1 と電気的に接続されている。 ソース電極 14 s 1 およびドレイン電 極 14 d 1 は、 例えば A 1— S i— C u合金からなる。  The source region 12a and the drain region 12b of the pMOS 12 are electrically connected to the source electrode 14s1 and the drain electrode 14d1, respectively. The source electrode 14 s 1 and the drain electrode 14 d 1 are made of, for example, an A 1 —S i —Cu alloy.
ゲ—ト酸化膜 12 cは、 例えば S i 02からなる。 ゲート電極 12 dは、 例えば低抵抗ポリシリコン層上に WS i 2等からなるシリサイ ド層が堆積されてなる。 なお、 ゲート電極 12 dの上層および側面に は、 例えば S i 02からなるキャップ絶縁膜 1 5 aおよびサイ ドウォ ール 15 bが形成されている。 Gate - gate oxide film 12 c is made of, for example, S i 0 2. Gate electrode 12 d is Shirisai de layer made of WS i 2 etc., which are deposited for example on a low resistance polysilicon layer. Incidentally, the upper and side surfaces of the gate electrode 12 d, for example S i 0 2 consists of a cap insulating film 1 5 a and cyclic Dowo Lumpur 15 b are formed.
nMO S 1 3は、 半導体層 5 cの上部に形成された一対のソース領 域 13 aおよびドレイン領域 13 bと、 半導体層 5 c上に形成された ゲート酸化膜 13 cと、 その上に形成されたゲート電極 13 dとを有 している。 なお、 nMO S 13の形成領域における半導体層 5 cには、 P形不純物のホウ素が導入されている。  The nMOS 13 is formed on a pair of the source region 13a and the drain region 13b formed on the semiconductor layer 5c, the gate oxide film 13c formed on the semiconductor layer 5c, and formed thereon. Gate electrode 13d. It should be noted that boron as a P-type impurity is introduced into the semiconductor layer 5c in the region where the nMOS 13 is formed.
ソース領域 13 aおよびドレイン領域 13 bは、 それぞれ低濃度領 域 13 a 1,13 b 1 とその外側の高濃度領域 13 a 2,13 b 2とから なり、 pMOS 12と同様の構造となっている。 その低濃度領域 13 a 1, 13 b 1および高濃度領域 13 a 2, 13 b 2には、 例えば n形不 純物のリンまたは A sが導入されている。  The source region 13a and the drain region 13b are composed of low-concentration regions 13a1 and 13b1 and high-concentration regions 13a2 and 13b2 outside thereof, respectively, and have a structure similar to that of the pMOS 12. I have. The low-concentration regions 13a1, 13b1 and the high-concentration regions 13a2, 13b2 contain, for example, n-type impurity phosphorus or As.
このソ一ス領域 13 aおよびドレイン領域 13 bの高濃度領域 1 3 a 2,13 b 2の底部も、 絶縁層 5 bに達する程度に形成されている。 これにより、 nMOS 13のソース領域 13 aおよびドレイン領域 1 3 bと半導体基板 5 aとの間の容量 (拡散容量) を大幅に低減するこ とが可能な構造となっている。 そして、 本実施の形態 4の nMOS 1 3の構造では、 そのソース領域 13 aおよびドレイン領域 13 bの下 層に前記実施の形態 1等の構造で示すような半導体層が介在されな いので、 前記実施の形態 1等で説明した nMOS 1 3よりも拡散容量 を下げることが可能となっている。 これらの理由は、 上記 pMOS l 2と同じなので説明を省略する。 The bottoms of the high-concentration regions 13a2 and 13b2 of the source region 13a and the drain region 13b are also formed to reach the insulating layer 5b. Thus, the structure (diffusion capacitance) between the source region 13a and the drain region 13b of the nMOS 13 and the semiconductor substrate 5a can be significantly reduced. In the structure of the nMOS 13 of the fourth embodiment, the semiconductor layer shown in the structure of the first embodiment and the like is not interposed under the source region 13a and the drain region 13b. The diffusion capacitance is larger than that of the nMOS 13 described in the first embodiment. It is possible to lower. The reasons for these are the same as in the above pMOSl2, and will not be described.
このような nMOS 13のソース領域 13 aおよびドレイン領域 Such a source region 13a and a drain region of the nMOS 13
13 bは、 それぞれソース電極 14 s 2およびドレイン電極 14 d 2 と電気的に接続されている。 ソース電極 14 s 2およびドレイン電極13b is electrically connected to the source electrode 14s2 and the drain electrode 14d2, respectively. Source electrode 14 s 2 and drain electrode
14 d2は、 例えば A 1— S i—Cu合金からなる。 14 d2 is made of, for example, an A1-Si-Cu alloy.
ゲート酸化膜 13 cは、 例えば S i 02からなる。 ゲ—ト電極 13 dは、 例えば低抵抗ポリシリコン層上に WS i 2等からなるシリサイ ド層力堆積されてなる。 ゲ一ト電極 13 dの上層および側面には、 例 えば S i 02からなるキャップ絶縁膜 15 aおよびサイドウオール 1 5 b力形成されている。 A gate oxide film 13 c is made of, for example, S i 0 2. Gate - gate electrode 13 d is formed by Shirisai de layer power deposition made of WS i 2 like for example the low-resistance poly-silicon layer. On the upper layer and the side surface of the gate electrode 13d, for example, a cap insulating film 15a made of SiO 2 and a sidewall 15b are formed.
以上のような SO I基板 5上には、 図 27および図 28に示すよう に、 例えば S i 02からなる絶縁膜 16力 ?堆積されており、 これによ つて配線 10 a, 10 b, 10 e, 10 f 、 ソース電極 14 s l,14 s 2およびドレイン電極 14 d 1, 14 d 2力被覆されている。 さらに、 その絶縁膜 16上には、例えば S i 02膜または S i 02膜上に窒化シ リコン膜が堆積されてなる表面保護膜 17が堆積されており、 これに よって配線 10 d (図 26参照) 等が被覆されている。 Or SO I on the substrate 5, such as, as shown in FIGS. 27 and 28, for example, S i 0 2 made of an insulating film 16 force? Are deposited, that this shall wiring 10 a, 10 b, 10 e, 10 f, source electrodes 14 sl, 14 s 2 and drain electrodes 14 d 1, 14 d 2 are coated. Further, on the insulating film 16, for example, a SiO 2 film or a surface protective film 17 formed by depositing a silicon nitride film on the SiO 2 film is deposited, thereby forming the wiring 10d ( See Fig. 26).
このように、 本実施の形態 4においては、 前記実施の形態 1で得ら れた効果の他に、 以下の効果を得ることが可能となる。  As described above, in the fourth embodiment, in addition to the effects obtained in the first embodiment, the following effects can be obtained.
(1) .内部回路領域における pMOS 12および nMO S 13の拡散容 量を前記実施の形態 1よりも下げることができるので、 pMOS 12 および nMOS 13ゲ一ト入力容量を下げることができ、 pMOS 1 2および nMOS 13で構成された C MO S回路のスィツチング特 性を向上させることが可能となる。  (1) Since the diffusion capacities of the pMOS 12 and the nMOS 13 in the internal circuit area can be reduced as compared with the first embodiment, the gate input capacity of the pMOS 12 and the nMOS 13 can be reduced, and the pMOS 1 It is possible to improve the switching characteristics of the CMOS circuit composed of the NMOS 2 and the nMOS 13.
(2) .保護回路用のダイォ—ド D 1,D 2の拡散容量を前記実施の形態 1 よりも下げることができるので、 半導体集積回路装置の全体的な拡散 容量を下げることが可能となる。  (2) Since the diffusion capacitance of the diodes D 1 and D 2 for the protection circuit can be reduced as compared with the first embodiment, the overall diffusion capacitance of the semiconductor integrated circuit device can be reduced. .
(3) .上記 (1),(2)により、半導体集積回路装置の動作速度を向上させるこ とが可能となる。 (3) According to the above (1) and (2), the operation speed of the semiconductor integrated circuit device can be improved. It becomes possible.
次に、 本発明の他の実施の形態 5を図 29および図 30によって説 明する。 なお、 本実施の形態 5においては、 半導体チップの構成、 保 護回路の回路構成および S 0 I基板の製造方法は前記実施の形態 1, 2と同じなので説明を省略する。  Next, another embodiment 5 of the present invention will be described with reference to FIGS. In the fifth embodiment, since the configuration of the semiconductor chip, the circuit configuration of the protection circuit, and the method of manufacturing the SOI substrate are the same as those in the first and second embodiments, description thereof will be omitted.
本実施の形態 5における入力保護回路の回路図を図 29に示す。本 実施の形態 5においては、 入力保護回路 3力、 ダイオード接続された 2つの MOSトランジスタ (第 1の MI S トランジスタ) Q5および MOSトランジスタ (第 2の MI Sトランジスタ) Q 6を有している。  FIG. 29 shows a circuit diagram of the input protection circuit according to the fifth embodiment. In the fifth embodiment, the input protection circuit has three elements, two diode-connected MOS transistors (first MIS transistors) Q5 and MOS transistors (second MIS transistors) Q6.
この入力保護回路 3の MOSトランジスタ Q 5は、 そのゲート電極 が電源用配線 V CCに接続された状態で、 電源用配線 V CC と出力用 の C C Bバンプ電極 2との間に電気的に接続されている。  The MOS transistor Q5 of the input protection circuit 3 is electrically connected between the power supply wiring V CC and the output CCB bump electrode 2 with its gate electrode connected to the power supply wiring V CC. ing.
また、 MOSトランジスタ Q 6は、 そのゲート電極が電源用配線 V EE に接続された状態で、 出力用の CCBバンプ電極 2と電源用配線 V EEとの間に電気的に接続されている。  The MOS transistor Q6 is electrically connected between the output CCB bump electrode 2 and the power supply wiring VEE with its gate electrode connected to the power supply wiring VEE.
次に、 このような入力保護回路 3を含む半導体集積回路装置の要部 断面図を図 30に示す。 図 30には、 その左側に入力保護回路が示さ れ、 その右側に内部回路が示されている。 なお、 内部回路については 前記実施の形態 4と同じなので説明を省略する。  Next, FIG. 30 shows a cross-sectional view of a main part of a semiconductor integrated circuit device including such an input protection circuit 3. FIG. 30 shows an input protection circuit on the left side and an internal circuit on the right side. The internal circuit is the same as that of the fourth embodiment, and the description is omitted.
本実施の形態 5においては、 入力保護回路 3を構成する MOSトラ ンジスタ Q 5, Q 6のチャネル領域直下の絶縁層 5 bが除去されている。 したがって、前記実施の形態 1と同じ効果を得ることが可能となって いる。  In the fifth embodiment, the insulating layer 5b immediately below the channel region of the MOS transistors Q5 and Q6 forming the input protection circuit 3 is removed. Therefore, the same effect as in the first embodiment can be obtained.
MOSトランジスタ Q 5, Q 6は、 共に、 例えば nチャネル形の MO Sトランジスタからなり、半導体領域 25 A,26 Aと、ソース領域(第 1 n形半導体領域、第 2 n形半導体領域) 25 a,26 aおよびドレイ ン領域 (第 1 n形半導体領域、 第 2 n形半導体領域) 25 b,26 bと、 ゲ一ト酸化膜 25 c,26 cと、 ゲ一ト電極 25 d,26 dとを有して いる。 なお、 ソース領域 25 a, 2 6 aおよびドレイ ン領域 25 b, 2 6 bの間がチャネル領域となっている。 Each of the MOS transistors Q5 and Q6 is, for example, an n-channel type MOS transistor, and has semiconductor regions 25A and 26A and source regions (first n-type semiconductor region and second n-type semiconductor region) 25a. , 26a and drain regions (first n-type semiconductor region, second n-type semiconductor region) 25b, 26b, gate oxide films 25c, 26c, and gate electrodes 25d, 26d And The source regions 25a, 26a and the drain regions 25b, 2b The region between 6 b is the channel region.
ソース領域 25 a, 26 aおよびドレイン領域 25 b,26 bは、 そ れぞれ低濃度領域 2 5 a 1,2 5 b 1,26 a 1,26 b 1および高濃度領 域 2 5 a 2,25 b 2,26 a 2,26 b 2を有している。 この低濃度領域 25 a 1,25 b 1,26 a 1,26 b 1および高濃度領域 2 5 a 2, 25 b 2,26 a 2,26 b 2には、 例えば n形不純物のリンまたは A sが含有 されている。  The source region 25a, 26a and the drain region 25b, 26b are respectively a low concentration region 25a1, 25b1, 26a1, 26b1 and a high concentration region 25a2. , 25b2,26a2,26b2. The low-concentration region 25 a 1,25 b 1,26 a 1,26 b 1 and the high-concentration region 25 a 2,25 b 2,26 a 2,26 b 2 include, for example, n-type impurity phosphorus or A s is contained.
このソース領域 25 a, 26 aおよびドレイン領域 2 5 b,26 bに おける高濃度領域 2 5 a 2, 25 b 2, 26 a 2, 26 b 2の底部は、 絶縁 層 5 bに達する程度に形成されている。 したがって、 本実施の形態 5 によれば、 前記実施の形態 4の pMOS 1 2 (図 28参照) と同じ理 由により、 入力保護回路用の MOS トランジスタ Q 5, Q 6の拡散容量 も低減することが可能となっている。  The bottoms of the high-concentration regions 25a2, 25b2, 26a2, 26b2 in the source regions 25a, 26a and the drain regions 25b, 26b are such that they reach the insulating layer 5b. Is formed. Therefore, according to the fifth embodiment, the diffusion capacitance of the MOS transistors Q5 and Q6 for the input protection circuit can be reduced for the same reason as in the pMOS 12 of the fourth embodiment (see FIG. 28). Is possible.
このような M〇Sトランジスタ Q 5,Q 6のソース領域 2 5 a, 26 aおよびドレイン領域 2 5 b,26 bは、それぞれソース電極 14 s 3, 14 s 4およびドレイン電極 14 d 3, 14 d 4と電気的に接続されて いる。 このソース電極 14 s 3,1 4 s 4およびドレイン電極 1 4 d 3, 14 d 4は、 例えば A 1— S i— C u合金からなる。  The source region 25a, 26a and the drain region 25b, 26b of such M〇S transistors Q5, Q6 are respectively connected to the source electrode 14s3, 14s4 and the drain electrode 14d3, 14d. It is electrically connected to d4. The source electrodes 14 s 3, 14 s 4 and the drain electrodes 14 d 3, 14 d 4 are made of, for example, an A 1 —Si—Cu alloy.
そして、 MOS トランジスタ Q5,Q6のソース電極 1 4 s 3とドレ ィン電極 14 d 4とは、 配線 1 0 gによって電気的に接続されている。 この配線 1 0 gは、 例えば A 1 - S i— C u合金からなる。  Then, the source electrode 14 s 3 of the MOS transistors Q 5 and Q 6 and the drain electrode 14 d 4 are electrically connected by a wiring 10 g. The wiring 10 g is made of, for example, an A 1 -Si-Cu alloy.
ゲ一ト酸化膜 2 5 c,26 cは、 例えば S i 02からなる。 また、 ゲ ート電極 2 5 d,26 dは、 例えば低抵抗ポリシリコン層上に WS i 2 等からなるシリサイ ド層カ堆積されてなる。ゲ一ト電極 2 5 d,26 d の上層および側面には、 例えば S i〇 2からなるキャップ絶縁膜 1 5 aおよびサイ ドウオール 1 5 bが形成されている。 Gate one gate oxide film 2 5 c, 26 c are made of, for example, S i 0 2. The gate electrodes 25 d and 26 d are formed by depositing a silicide layer made of WSi 2 or the like on a low-resistance polysilicon layer, for example. The upper and side surfaces of the gate one gate electrode 2 5 d, 26 d, for example, S I_〇 2 consisting cap insulating film 1 5 a and cyclic Douoru 1 5 b are formed.
このように、 本実施の形態 5によれば、 以下の効果を得ることが可 能となる。  As described above, according to the fifth embodiment, the following effects can be obtained.
(1).保護回路用の MO S トランジスタ Q 5,Q 6の下層の絶縁層 5 bを 除去したことにより、 MOSトランジスタ Q 5,Q 6がブレークダウ ンした際に生じた熱を、絶縁層 5 bの除去領域を通じて支持用の半導 体基板 5 a側にも逃がすことができるので、 その熱の放熱性を向上さ せることが可能となる。 (1) .The lower insulating layer 5b of the MOS transistors Q5 and Q6 for the protection circuit By the removal, the heat generated when the MOS transistors Q5 and Q6 break down can be released to the supporting semiconductor substrate 5a through the removed area of the insulating layer 5b. This makes it possible to improve the heat dissipation.
(2). 保護回路用の MOSトランジスタ Q 5,Q 6の下層の絶縁層 5 bを 除去したことにより、 静電気等により MOSトランジスタ Q 5,Q 6に 流れた電流を、 絶縁層 5 bの除去領域を通じて支持用の半導体基板 5 a側にも逃がすことができ、 MO Sトランジス夕 Q 5,Q 6に電界が集 中するのを防ぐことができるので、 その MO Sトランジスタ Q 5,Q 6 の静電破壊耐性を向上させることが可能となる。 (2). By removing the insulating layer 5b under the MOS transistors Q5 and Q6 for the protection circuit, the current flowing through the MOS transistors Q5 and Q6 due to static electricity and the like is removed. It is possible to escape to the supporting semiconductor substrate 5a side through the region, and it is possible to prevent the electric field from being concentrated on the MOS transistors Q5 and Q6. It is possible to improve the electrostatic breakdown resistance.
(3) . SO I基板 5の絶縁層 5 bを部分的に除去しただけで、 他の領域 には絶縁層 5 bが残されているので、 拡散容量や配線 ·基板間容量の 大幅な増大を招くことなく、 上述の効果を得ることが可能となる。 (3) Since the insulating layer 5b of the SOI substrate 5 is only partially removed and the insulating layer 5b is left in other regions, the diffusion capacitance and the wiring-substrate capacitance are greatly increased. The above-mentioned effect can be obtained without inviting.
(4) .内部回路領域における pMOS 12および nMO S 13の拡散容 量を前記実施の形態 1よりも下げることができるので、 pMOS 12 および nMO S 13のゲート入力容量を下げることができ、 pMO S 12および nMO S 1 3で構成された C MO S回路のスィツチング 特性を向上させることが可能となる。 (4) Since the diffusion capacity of the pMOS 12 and the nMOS 13 in the internal circuit area can be reduced as compared with the first embodiment, the gate input capacity of the pMOS 12 and the nMOS 13 can be reduced. It is possible to improve the switching characteristics of the CMOS circuit composed of 12 and nMOS 13.
(5) .保護回路用の MOSトランジスタ Q 5,Q 6の拡散容量を前記実施 の形態 1よりも下げることができるので、 半導体集積回路装置の全体 的な拡散容量を下げることが可能となる。  (5) Since the diffusion capacitance of the MOS transistors Q5 and Q6 for the protection circuit can be reduced as compared with the first embodiment, the overall diffusion capacitance of the semiconductor integrated circuit device can be reduced.
(6) .上記 (3)〜(5)により、 半導体集積回路装置の動作速度を向上させる ことが可能となる。  (6) According to the above (3) to (5), the operation speed of the semiconductor integrated circuit device can be improved.
(7) . SO I基板 5の絶縁層 5 bを部分的に除去しただけで、 他の領域 には絶縁層 5 bが残されているので、 上層の半導体層 5 cに大幅な段 差が生じることもない。 したがって、 下地段差に起因する配線断線等 のような不良の発生を防止することが可能となる。  (7). Since the insulating layer 5b of the SOI substrate 5 is only partially removed and the insulating layer 5b is left in other regions, a large step is formed in the upper semiconductor layer 5c. It does not occur. Therefore, it is possible to prevent the occurrence of a defect such as a disconnection of the wiring caused by the step of the base.
(8) .上記 (1)〜(7)により、 半導体集積回路装置の信頼性を確保したまま、 半導体集積回路装置の動作速度を向上させることが可能となる。 以上、 本発明者によってなされた発明を実施の形態に基づき具体的 に説明したが、本発明は前記実施の形態 1〜 5に限定されるものでは なく、 その要旨を逸脱しない範囲で種々変更可能であることはいうま でもない。 (8) According to the above (1) to (7), it is possible to improve the operation speed of the semiconductor integrated circuit device while securing the reliability of the semiconductor integrated circuit device. As described above, the invention made by the inventor has been specifically described based on the embodiments. However, the present invention is not limited to the first to fifth embodiments and can be variously modified without departing from the gist thereof. Needless to say,
例えば前記実施の形態 1においては、 静電保護素子としてダイォ一 ドを用いた場合について説明したが、 これに限定されるものではなく、 例えば静電保護素子をラテラルバイポーラトランジスタで構成して も良い。  For example, in the first embodiment, the case where a diode is used as an electrostatic protection element has been described. However, the present invention is not limited to this. For example, the electrostatic protection element may be configured by a lateral bipolar transistor. .
また、 前記実施の形態 2においては、 第 1の半導体基板の上部に絶 縁層を形成する方法として L 0 C 0 S法および研磨法を用いた場合 について説明した力^ これに限定されるものではなく種々変更可能で あり、 例えば次のようにしても良い。  Further, in the second embodiment, the force described in the case of using the L 0 C 0 S method and the polishing method as a method of forming the insulating layer on the first semiconductor substrate is not limited to this. Instead, various changes can be made. For example, the following may be performed.
すなわち、 まず、 第 1の半導体基板の所定平面位置に酸素イオンを イオン注入法で導入した後、 その半導体基板に対してァニール処理を 施すことにより、 その半導体基板における酸素イオンの導入領域のみ に絶縁層を選択的に形成する。 続いて、 その半導体基板の上面を、 絶 縁層 5 bの上部が露出するまでドライエツチング法等によってエツ チング除去することにより、上部に絶縁層の設けられた第 1の半導体 基板を形成する。  That is, first, oxygen ions are introduced into a predetermined plane position of the first semiconductor substrate by an ion implantation method, and then an annealing process is performed on the semiconductor substrate to insulate only the oxygen ion introduction region in the semiconductor substrate. The layers are selectively formed. Subsequently, the upper surface of the semiconductor substrate is etched and removed by a dry etching method or the like until the upper portion of the insulating layer 5b is exposed, thereby forming a first semiconductor substrate provided with an insulating layer on the upper portion.
以上の説明では主として本発明者によってなされた発明をその背 景となった利用分野であるマイクロプロセッサを有する半導体集積 回路装置に適用した場合について説明した力 これに限定されず種々 適用可能であり、例えば D R AM (Dynamic Random Access Memory)、 S R AM (Static RAM) 等のようなメモリ回路を有する他の半導体集 積回路装置または論理付 S R AM等のような他の半導体集積回路装 置に適用することも可能である。 産業上の利用可能性  In the above description, the power described mainly when the invention made by the present inventor is applied to a semiconductor integrated circuit device having a microprocessor, which is the application field behind it, is not limited to this. For example, the present invention is applied to other semiconductor integrated circuit devices having a memory circuit such as DRAM (Dynamic Random Access Memory), SRAM (Static RAM) or other semiconductor integrated circuit devices such as SRAM with logic. It is also possible. Industrial applicability
以上のように、 本発明の半導体集積回路装置およびその製造方法は、 例えば移動体通信機器、 電子計算機またはビデオカメラ等のような小 形電子機器に内蔵される半導体集積回路装置およびその製造方法に 用いて好適なものである。 As described above, the semiconductor integrated circuit device and the method of manufacturing the same according to the present invention For example, the present invention is suitable for use in a semiconductor integrated circuit device incorporated in a small electronic device such as a mobile communication device, an electronic computer or a video camera, and a method of manufacturing the same.

Claims

求 の 範 囲 Range of request
1 . 支持用の半導体基板と、 その上に絶縁層を介して設けられた素子 形成用の半導体層とを有する S 0 I基板を備え、 前記半導体層の上層 に素子の電極を引き出す外部端子を設けてなる半導体集積回路装置 であって、 前記素子形成用の半導体層において前記絶縁層を部分的に 取り除いた絶縁層除去領域上に、 前記外部端子に電気的に接続された 保護回路用の素子を設けた冃ことを特徴とする半導体集積回路装置。 1. An S0I substrate having a supporting semiconductor substrate and an element forming semiconductor layer provided thereon with an insulating layer interposed therebetween, and an external terminal for leading an electrode of the element to the upper layer of the semiconductor layer. A semiconductor integrated circuit device provided, comprising: an element for a protection circuit electrically connected to the external terminal on an insulating layer removal region in which the insulating layer is partially removed from the semiconductor layer for element formation. And a semiconductor integrated circuit device.
2 . 請求項 1記載の半導体集積回路装置において、 前記保護回路は、2. The semiconductor integrated circuit device according to claim 1, wherein the protection circuit comprises:
( a ) 前記外部端子と高電源電位との間に逆方向となるように電気的 に接続された第 1の p η接合ダイォードと、 (a) a first p η junction diode electrically connected in a reverse direction between the external terminal and a high power supply potential;
( b ) 前記外部端子と基準電位との間に逆方向となるように電気的に 接続された第 2の p n接合ダイォードとを有することを特徴とする  (b) a second pn junction diode electrically connected between the external terminal and a reference potential in a reverse direction.
3 . 請求項 2記載の半導体集積回路装置において、 前記半導体基板は シリコン単結晶からなり、 前記絶縁層は二酸化シリコンからなり、 前 記素子形成用の半導体層は n形のシリコン単結晶からなり、 前記第 1 の p n接合ダイォ—ドは前記素子形成用の半導体層と前記絶縁層除 去領域の直上における半導体層の上部に形成された第 1 p形半導体 領域との接合領域に形成され、 前記第 2の p n接合ダイォードは前記 素子形成用の半導体層と前記絶縁層除去領域の直上における半導体 層の上部に形成された第 2 p形半導体領域との接合領域に形成され ていることを特徴とする半導体集積回路装置。 3. The semiconductor integrated circuit device according to claim 2, wherein the semiconductor substrate is made of silicon single crystal, the insulating layer is made of silicon dioxide, and the semiconductor layer for forming the element is made of n-type silicon single crystal, The first pn junction diode is formed in a junction region between the semiconductor layer for element formation and a first p-type semiconductor region formed on the semiconductor layer immediately above the insulating layer removed region, and The second pn junction diode is formed in a junction region between the semiconductor layer for element formation and a second p-type semiconductor region formed on the semiconductor layer immediately above the insulating layer removal region. Semiconductor integrated circuit device.
4 . 請求項 3記載の半導体集積回路装置において、 前記第 1の p n接 合ダイォー ドおよび第 2の p n接合ダイォ— ドの n形の半導体層に 接続された n形の引出し領域をその底部が前記絶縁層に接するよう に設けたことを特徴とする半導体集積回路装置。  4. The semiconductor integrated circuit device according to claim 3, wherein an n-type lead region connected to the n-type semiconductor layer of the first pn junction diode and the second pn junction diode has a bottom portion. A semiconductor integrated circuit device provided so as to be in contact with the insulating layer.
5 . 請求項 4記載の半導体集積回路装置において、 半導体集積回路の 内部回路を構成する M I S トランジスタのソース · ドレイン領域用の 一対の半導体領域を、 その底部が前記絶縁層に接するように設けたこ とを特徴とする半導体集積回路装置。 5. The semiconductor integrated circuit device according to claim 4, wherein a pair of semiconductor regions for a source / drain region of an MIS transistor constituting an internal circuit of the semiconductor integrated circuit are provided such that bottom portions thereof are in contact with the insulating layer. And a semiconductor integrated circuit device.
6 . 請求項 1記載の半導体集積回路装置において、 前記保護回路は、 6. The semiconductor integrated circuit device according to claim 1, wherein the protection circuit comprises:
( a ) 前記外部端子と高電源電位との間に逆方向となるようにダイォ 一ド接続された第 1の M I S トランジスタと、 (a) a first MIS transistor diode-connected in a reverse direction between the external terminal and a high power supply potential;
( b ) 前記外部端子と基準電位との間に逆方向となるようにダイォー ド接続された第 2の M I S トランジスタとを有することを特徴とす る半導体集積回路装置。  (b) A semiconductor integrated circuit device having a second MIS transistor which is diode-connected between the external terminal and a reference potential in a reverse direction.
7 . 請求項 6記載の半導体集積回路装置において、 前記半導体基板は シリコン単結晶からなり、 前記絶縁層は二酸化シリコンからなり、 前 記素子形成用の半導体層は n形のシリコン単結晶からなり、前記第 1 の M I S トランジスタは前記素子形成用の半導体層の上部に互いに 離間して形成された一対の第 1 n形半導体領域と、 前記一対の第 1 n 形半導体領域間に形成され、 かつ、 前記絶縁層除去領域の直上におけ る前記素子形成用の半導体層の上部に形成されたチヤネル領域と、前 記チャネル領域上に形成されたゲート絶縁膜と、 前記ゲート絶縁膜上 に形成されたゲ一ト電極とを有し、前記第 2の M I S トランジスタは 前記素子形成用の半導体層の上部に互いに離間して形成された一対 の第 2 n形半導体領域と、 前記一対の第 2 n形半導体領域間に形成さ れ、 かつ、 前記絶縁層除去領域の直上における前記素子形成用の半導 体層の上部に形成されたチャネル領域と、 前記チャネル領域上に形成 されたゲ—ト絶縁膜と、 前記ゲ—ト絶縁膜上に形成されたゲート電極 とを有することを特徴とする半導体集積回路装置。  7. The semiconductor integrated circuit device according to claim 6, wherein the semiconductor substrate is made of silicon single crystal, the insulating layer is made of silicon dioxide, and the semiconductor layer for forming the element is made of n-type silicon single crystal, The first MIS transistor is formed between a pair of first n-type semiconductor regions formed apart from each other on the element-forming semiconductor layer, and between the pair of first n-type semiconductor regions. A channel region formed above the semiconductor layer for element formation immediately above the insulating layer removed region, a gate insulating film formed on the channel region, and a gate insulating film formed on the gate insulating film. A gate electrode, wherein the second MIS transistor includes a pair of second n-type semiconductor regions formed above and separated from each other on the element-forming semiconductor layer; and a pair of second n-type semiconductor regions. Semiconductor territory A channel region formed between and above the element forming semiconductor layer immediately above the insulating layer removed region; a gate insulating film formed on the channel region; And a gate electrode formed on the gate insulating film.
8 . 請求項 7記載の半導体集積回路装置において、 前記第 1の M I S トランジスタの第 1 n形半導体領域および第 2の M I S トランジス タの第 2 n形半導体領域を、 その底部が前記絶縁層に接するように設 けたことを特徴とする半導体集積回路装置。  8. The semiconductor integrated circuit device according to claim 7, wherein the first n-type semiconductor region of the first MIS transistor and the second n-type semiconductor region of the second MIS transistor have their bottom portions in contact with the insulating layer. A semiconductor integrated circuit device characterized by being provided as described above.
9 . 請求項 8記載の半導体集積回路装置において、 半導体集積回路の 内部回路を構成する M I S トランジスタのソース · ドレイン領域用の 一対の半導体領域を、 その底部が前記絶縁層に接するように設けたこ とを特徴とする半導体集積回路装置。 9. The semiconductor integrated circuit device according to claim 8, wherein a pair of semiconductor regions for a source / drain region of an MIS transistor constituting an internal circuit of the semiconductor integrated circuit are provided so that bottom portions thereof are in contact with the insulating layer. And a semiconductor integrated circuit device.
1 0 . 請求項 1記載の半導体集積回路装置において、 前記保護回路の 一端側は、 前記素子形成用の半導体層上に絶縁膜を介して形成された 前記外部端子を構成するバンプ電極と電気的に接続され、他端側は、 半導体集積回路を構成する内部回路と電気的に接続されていること を特徴とする半導体集積回路装置。  10. The semiconductor integrated circuit device according to claim 1, wherein one end of the protection circuit is electrically connected to a bump electrode forming the external terminal formed on a semiconductor layer for element formation via an insulating film. And the other end is electrically connected to an internal circuit constituting the semiconductor integrated circuit.
1 1 . 請求項 1記載の半導体集積回路装置において、 半導体集積回路 の内部回路を構成する M I S トランジスタのソース . ドレイン領域用 の一対の半導体領域を、 その底部が前記絶縁層に接するように設けた ことを特徴とする半導体集積回路装置。  11. The semiconductor integrated circuit device according to claim 1, wherein a pair of semiconductor regions for a source and a drain region of an MIS transistor constituting an internal circuit of the semiconductor integrated circuit are provided such that bottom portions thereof are in contact with the insulating layer. A semiconductor integrated circuit device characterized by the above-mentioned.
1 2 . 請求項 1記載の半導体集積回路装置において、 前記素子形成用 の半導体層に半導体集積回路の内部回路を構成する素子としてバイ ポーラ トランジスタおよび M I S トランジスタを設けたことを特徴 とする半導体集積回路装置。  12. The semiconductor integrated circuit according to claim 1, wherein a bipolar transistor and an MIS transistor are provided as elements constituting an internal circuit of the semiconductor integrated circuit in the semiconductor layer for element formation. apparatus.
1 3 . 支持用の半導体基板と、 その上に絶縁層を介して設けられた素 子形成用の半導体層とを有する S 0 I基板を備え、 前記素子形成用の 半導体層の上層に素子の電極を引き出す外部端子を設けてなる半導 体集積回路装置であって、 前記外部端子に電気的に接続された保護回 路用の素子の下方に、前記絶縁層を部分的に取り除いた絶縁層除去領 域を設けたことを特徴とする半導体集積回路装置。  13. An S0I substrate having a supporting semiconductor substrate and an element-forming semiconductor layer provided thereon with an insulating layer interposed therebetween, wherein an element is formed on the element-forming semiconductor layer. A semiconductor integrated circuit device provided with an external terminal from which an electrode is drawn out, the insulating layer partially removing the insulating layer below a protection circuit element electrically connected to the external terminal. A semiconductor integrated circuit device having a removal area.
1 4 . 請求項 1記載の半導体集積回路装置の製造方法において、 14. The method for manufacturing a semiconductor integrated circuit device according to claim 1,
( a ) 前記支持用の半導体基板の所定の深さおよび平面位置に酸素ィ オンを選択的に導入する工程と、 (a) selectively introducing oxygen ions at a predetermined depth and a planar position of the supporting semiconductor substrate,
( b ) 前記支持用の半導体基板に対して熱処理を施すことにより、 前 記酸素イオンの導入領域に前記絶縁層を形成するとともに、 前記半導 体基板の主面側に前記半導体層を形成する工程と、  (b) performing heat treatment on the supporting semiconductor substrate to form the insulating layer in the oxygen ion introduction region and to form the semiconductor layer on the main surface side of the semiconductor substrate. Process and
( C ) 前記絶縁層が形成されていない絶縁層除去領域上における前記 素子形成用の半導体層に保護回路用の素子を形成する工程とを有す ることを特徴とする半導体集積回路装置の製造方法。 (C) forming a protection circuit element on the element formation semiconductor layer on the insulating layer removed region where the insulating layer is not formed. Method.
1 5 . 請求項 1記載の半導体集積回路装置の製造方法において、15. The method of manufacturing a semiconductor integrated circuit device according to claim 1,
( a ) 第 1の半導体基板の少なくとも一面に、 部分的に除去された領 域を有する絶縁層を形成する工程と、 (a) forming an insulating layer having a partially removed region on at least one surface of the first semiconductor substrate;
( b ) 前記第 1の半導体基板の絶縁層の形成された面と、 他に用意し た第 2の半導体基板の所定面とを対向させ接触させた後、 双方の半導 体基板を張り合わせ接合する工程と、  (b) After the surface of the first semiconductor substrate on which the insulating layer is formed and the predetermined surface of the second semiconductor substrate prepared separately are brought into contact with each other and brought into contact with each other, the two semiconductor substrates are bonded together. The process of
( c ) 前記第 1の半導体基板または前記第 2の半導体基板の裏面を除 去することにより、 前記素子形成用の半導体層を形成する工程と、 (c) forming a semiconductor layer for element formation by removing a back surface of the first semiconductor substrate or the second semiconductor substrate;
( d ) 前記絶縁層が形成されていない絶縁層除去領域上における前記 素子形成用の半導体層に保護回路用の素子を形成する工程とを有す ることを特徴とする半導体集積回路装置の製造方法。 (d) forming a protection circuit element on the element formation semiconductor layer on the insulation layer removed area where the insulation layer is not formed. Method.
PCT/JP1996/001653 1995-07-04 1996-06-17 Semiconductor integrated circuit device and method of production thereof WO1997002602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50497897A JP3942192B2 (en) 1995-07-04 1996-06-17 Semiconductor integrated circuit device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/167777 1995-07-04
JP16777795 1995-07-04

Publications (1)

Publication Number Publication Date
WO1997002602A1 true WO1997002602A1 (en) 1997-01-23

Family

ID=15855922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001653 WO1997002602A1 (en) 1995-07-04 1996-06-17 Semiconductor integrated circuit device and method of production thereof

Country Status (2)

Country Link
JP (1) JP3942192B2 (en)
WO (1) WO1997002602A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249028B1 (en) 1998-10-20 2001-06-19 International Business Machines Corporation Operable floating gate contact for SOI with high Vt well
US6355537B1 (en) 1999-02-23 2002-03-12 Silicon Wave, Inc. Method of providing radio frequency isolation of device mesas using guard ring regions within an integrated circuit device
US6366622B1 (en) 1998-12-18 2002-04-02 Silicon Wave, Inc. Apparatus and method for wireless communications
US6429502B1 (en) 2000-08-22 2002-08-06 Silicon Wave, Inc. Multi-chambered trench isolated guard ring region for providing RF isolation
JP2003037254A (en) * 2001-05-22 2003-02-07 Samsung Electronics Co Ltd Soi substrate having etching blocking film, manufacturing method therefor, soi integrated circuit produced on the same and method for producing the soi integrated circuit by using the same
US6627954B1 (en) 1999-03-19 2003-09-30 Silicon Wave, Inc. Integrated circuit capacitor in a silicon-on-insulator integrated circuit
JP2007243457A (en) * 2006-03-07 2007-09-20 Seiko Npc Corp Oscillator circuit
JP2009177139A (en) * 2007-12-28 2009-08-06 Panasonic Corp Semiconductor integrated circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393265A (en) * 1989-09-06 1991-04-18 Nissan Motor Co Ltd Semiconductor integrated circuit
JPH04345064A (en) * 1991-05-22 1992-12-01 Hitachi Ltd Semiconductor integrated circuit device and its manufacture
JPH06310658A (en) * 1993-04-20 1994-11-04 Hitachi Ltd Semiconductor integrated circuit device
JPH0817694A (en) * 1994-06-27 1996-01-19 Motorola Inc Thin film and bulk mixed semiconductor substrate to be applied to integrated circuit as well as its formation method
JPH08181219A (en) * 1994-12-21 1996-07-12 Nippondenso Co Ltd Semiconductor integrated circuit device
JPH08195443A (en) * 1995-01-18 1996-07-30 Fujitsu Ltd Semiconductor device and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393265A (en) * 1989-09-06 1991-04-18 Nissan Motor Co Ltd Semiconductor integrated circuit
JPH04345064A (en) * 1991-05-22 1992-12-01 Hitachi Ltd Semiconductor integrated circuit device and its manufacture
JPH06310658A (en) * 1993-04-20 1994-11-04 Hitachi Ltd Semiconductor integrated circuit device
JPH0817694A (en) * 1994-06-27 1996-01-19 Motorola Inc Thin film and bulk mixed semiconductor substrate to be applied to integrated circuit as well as its formation method
JPH08181219A (en) * 1994-12-21 1996-07-12 Nippondenso Co Ltd Semiconductor integrated circuit device
JPH08195443A (en) * 1995-01-18 1996-07-30 Fujitsu Ltd Semiconductor device and its manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249028B1 (en) 1998-10-20 2001-06-19 International Business Machines Corporation Operable floating gate contact for SOI with high Vt well
US6366622B1 (en) 1998-12-18 2002-04-02 Silicon Wave, Inc. Apparatus and method for wireless communications
US6355537B1 (en) 1999-02-23 2002-03-12 Silicon Wave, Inc. Method of providing radio frequency isolation of device mesas using guard ring regions within an integrated circuit device
US6627954B1 (en) 1999-03-19 2003-09-30 Silicon Wave, Inc. Integrated circuit capacitor in a silicon-on-insulator integrated circuit
US6429502B1 (en) 2000-08-22 2002-08-06 Silicon Wave, Inc. Multi-chambered trench isolated guard ring region for providing RF isolation
JP2003037254A (en) * 2001-05-22 2003-02-07 Samsung Electronics Co Ltd Soi substrate having etching blocking film, manufacturing method therefor, soi integrated circuit produced on the same and method for producing the soi integrated circuit by using the same
JP2007243457A (en) * 2006-03-07 2007-09-20 Seiko Npc Corp Oscillator circuit
JP2009177139A (en) * 2007-12-28 2009-08-06 Panasonic Corp Semiconductor integrated circuit

Also Published As

Publication number Publication date
JP3942192B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
US7256456B2 (en) SOI substrate and semiconductor integrated circuit device
KR0163402B1 (en) Merged bipolar/cmos technology using electrically active trench
US6670677B2 (en) SOI substrate having an etch stop layer and an SOI integrated circuit fabricated thereon
JP2974211B2 (en) SOI semiconductor device
JP4917172B2 (en) Vertical current controlled silicon-on-insulator (SOI) device and method of forming the same
US6638807B2 (en) Technique for gated lateral bipolar transistors
KR20090042252A (en) Soi device and method for its fabrication
JP3888658B2 (en) Semiconductor device having SOI structure and manufacturing method thereof
KR20000005660A (en) Cmos self-aligned strapped interconnection and method for same
GB2346260A (en) Forming trench contacts to substrates in SOI devices
JPH1070281A (en) Semiconductor device and fabrication thereof
US5929490A (en) Semiconductor device with an improved body contact hole structure
JP2009532885A (en) Protection from charging damage in hybrid alignment transistors.
JP3742845B2 (en) Manufacturing method of SOI device having double gate structure and SOI device having double gate structure manufactured by the manufacturing method
KR20020034870A (en) Integrated circuits with reduced substrate capacitance
US7982266B2 (en) Dielectric material separated-type, high breakdown voltage semiconductor circuit device, and production method thereof
JP2012015538A (en) Semiconductor device
US5932917A (en) Input protective circuit having a diffusion resistance layer
JP3254431B2 (en) Semiconductor device having decoupling capacitance and method of manufacturing the same
WO1997002602A1 (en) Semiconductor integrated circuit device and method of production thereof
JPH08213478A (en) Semiconductor integrated circuit device and its manufacture
US8294218B2 (en) Method of fabricating an integrated circuit with gate self-protection, and an integrated circuit with gate self-protection
JP3148766B2 (en) Semiconductor device
JP2000323582A (en) Semiconductor device and manufacture thereof
JP2008258648A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase