WO1999013344A1 - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
WO1999013344A1
WO1999013344A1 PCT/DE1998/002612 DE9802612W WO9913344A1 WO 1999013344 A1 WO1999013344 A1 WO 1999013344A1 DE 9802612 W DE9802612 W DE 9802612W WO 9913344 A1 WO9913344 A1 WO 9913344A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration sensor
seismic
seismic masses
sensor according
masses
Prior art date
Application number
PCT/DE1998/002612
Other languages
German (de)
French (fr)
Inventor
Claus Schmidt
Gerhard Mader
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1999013344A1 publication Critical patent/WO1999013344A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/14Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch
    • H01H35/147Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch the switch being of the reed switch type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/105Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by magnetically sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/135Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by making use of contacts which are actuated by a movable inertial mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0011Rear collision or recoiling bounce after frontal collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01013Means for detecting collision, impending collision or roll-over
    • B60R2021/01027Safing sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01034Controlling a plurality of restraint devices

Definitions

  • the invention relates to an acceleration sensor.
  • a known acceleration sensor (DE 44 43 419) is sensitive to accelerations from two opposite directions and has a magnetic seismic mass which is slidably mounted on a carrier.
  • the rest position of the seismic mass is approximately in the center of the support, in the following the rest position of the seismic mass is to be understood as the position that the seismic mass assumes in its direction of sensitivity without the action of acceleration forces.
  • the seismic mass is shifted from this rest position into an end position depending on the direction of an acceleration force acting on the acceleration sensor.
  • Magnetically controllable switches are arranged at the end positions which close due to a shift in the magnetic seismic mass.
  • the rest position and end positions as well as the restoring forces of the seismic mass are brought about by a soft iron molded body of the carrier, the cross section of which is reduced from the rest position to the end positions.
  • the object of the invention is to provide an acceleration sensor and in particular an acceleration sensor designed as an acceleration switch, which is easy to manufacture and which is sensitive to two directions of acceleration.
  • the task is solved by the features of the patent claim
  • each seismic mass is displaceable from a rest position against a force on the other seismic mass into an end position.
  • At least one switching element is actuated as a result of a displacement of at least one of the seismic masses from its rest position into its end position, the seismic mass not necessarily triggering a switching process only when it is deflected into the end position, but possibly also with a smaller deflection.
  • the acceleration sensor according to the invention can advantageously be produced from a few components in a small number of work steps, in particular simple assembly steps. Nevertheless, the acceleration sensor is bidirectionally sensitive, that is, sensitive to accelerations from two opposite directions. It can thus advantageously be used in a motor vehicle to detect an impact. Is his
  • Sensitivity axis aligned in particular parallel to the longitudinal axis of the vehicle, so both a front and a rear impact can be detected with the acceleration sensor. If its sensitivity axis is arranged transversely to the vehicle's longitudinal axis, the acceleration sensor can record both lateral accelerations in the event of a side impact from the right and lateral accelerations in the event of a side impact from the left.
  • the sub-claims 2 and 3 are geared to the acceleration-related deflection of one of the seismic To provide mass counteracting force in an advantageous manner.
  • This force counteracts an acceleration-related deflection of both seismic masses and is also called a restoring force in the technical field, since it tries to move a seismic mass that has been deflected back into its rest position.
  • both seismic masses are designed as magnets and are arranged with their polarities in such a way that two identical poles of the magnets face each other and the seismic masses thus repel one another, this results in a deflection of a seismic
  • Mass counteracting force gained without additional component The formation of this force in its local course along the longitudinal axis of the carrier and in its strength is responsible for the deflection speed and the deflection path and thus in particular for the acceleration threshold force acting on the seismic mass which is required to actuate the switching element.
  • a spiral spring is arranged between the two seismic masses, so that a seismic mass deflected as a function of the acceleration must overcome a predetermined spring travel against the spring force of the spring in order to actuate the switching element.
  • Claims 9 and 10 are directed to a device for triggering an occupant protection means, which uses the acceleration sensor according to the invention as a so-called safing sensor.
  • FIG. 1 shows an acceleration sensor according to the invention
  • FIG. 2 shows another acceleration sensor according to the invention
  • FIG. 3 shows a third acceleration sensor according to the invention
  • FIG. 4 shows the acceleration sensor according to FIG. 1 under the action of an acceleration force from one direction
  • FIG. 5 shows the acceleration sensor according to FIG. 1 under the influence of an acceleration force from another direction
  • FIG. 6 shows a device for triggering an occupant protection means using the acceleration sensor according to the invention.
  • Figure 1 shows an acceleration sensor according to the invention with a carrier 1 with two stops 11 and 12 at its ends.
  • Two seismic masses 21 and 22 designed as magnets are arranged displaceably along the longitudinal axis of the carrier 1 between the stops 11 and 12.
  • a housing 5 encloses the carrier 1 and the seismic masses 21 and 22.
  • the acceleration sensor according to FIG. 1 has a cylindrical shape: the carrier 1, the seismic masses 21 and 22 and the housing 5 have hollow cylindrical shapes.
  • the stops 11 and 12 are designed as circular plates.
  • a switching element 3, which is designed as a magnetically controllable switch 31, is shown in broken lines in the hollow cylindrical carrier 1.
  • the magnetically controllable switch 31 contains a housing 313, preferably filled with protective gas, which encloses contacts 311 and 312.
  • the contacts 311 and 312 are guided through the housing 313 to the outside and penetrate the stop 12 in order to end in connections 314 and 315, at which a switching signal of the magnetically controllable switch 31 can be tapped.
  • the seismic masses 21 and 22 are shown in FIG. 1 in their rest positions.
  • the rest position of a seismic mass is to be understood as the position along the carrier 1 which is assumed by the seismic mass, provided that no acceleration force acts on it.
  • the seismic masses are held in their rest positions by a force F drawn with a double arrow.
  • the force F is based on the formation of the seismic masses 21 and 22 as magnets.
  • the polarities - S for the south pole and N for the north pole - are selected such that the seismic masses repel one another and thus the magnetic force F acts on each seismic mass 21 and 22 and holds the respective seismic mass 21 and 22 in their rest position.
  • Figure 4 shows the acceleration sensor of Figure 1 below
  • FIG. 5 shows the acceleration sensor according to FIG. 1 under the action of an acceleration force B from the direction opposite to FIG. 4.
  • an acceleration force B directed in this way, instead of the seismic mass 22, the seismic mass 21 is deflected from its rest position into the end position shown in FIG. 5, in which it causes the contacts 311 and 312 of the magnetically controllable switch 31 (reed switch) to close.
  • FIG. 2 shows a further acceleration sensor according to the invention, in which instead of a magnetic force F acting on the seismic masses 21 and 22, a force F caused by a spiral spring 4 acts on the seismic masses 21 and 22.
  • the spring 4 is arranged between the seismic masses 21 and 22 and presses the seismic masses 21 and 22 into their rest positions against the stops 11 and 12. In FIG. 2, no acceleration force acts on the acceleration sensor. Close to the rest positions of the seismic masses 21 and 22 are at / in the / stops 11 and
  • Each contact 321 is designed as a spring element which, when the seismic masses 21 and 22 are at rest, is held at a distance from the contact 322 by an extension 211 and 221 of the seismic masses 21 and 22. If one of the seismic masses 21 or 22 according to FIG. 4 or FIG. 5 is deflected, the spring element contact piece 321 is no longer held in its pretensioned position by the extension 211, but instead establishes a conductive connection with the contact 322. A corresponding switching signal can be tapped at connections 323 and 324.
  • the extensions 211 and 221 can also be formed in one piece with the contact pieces 321 instead of in one piece with the seismic masses 21 and 22.
  • FIG. 3 shows a third acceleration sensor according to the invention, in which, according to FIG. 1, the seismic masses 21 and 22 are designed as magnets.
  • Mechanically controllable switches 32 are provided as switching elements 3 at both ends of the carrier 1, contacts 321 and 322 being provided on / in the stops 11 and 12, each of which opens into connections 323 and 324, from which a switching signal can be tapped .
  • a current signal applied to the connections 323 and 324 flows via the contacts 321 and 323 and the seismic mass 21 or 22, which is now electrically conductive. If one of the seismic masses 21 and 22 deflected according to FIG. 4 or FIG. 5, this opens from a contact 321 or 322 and a seismic contact
  • the acceleration sensor according to FIG. 1 detects the action of an acceleration force on the acceleration sensor, but not the direction of the acceleration force, due to the use of only a single switching element 3 arranged close to the two end positions of the two seismic masses 21 and 22. This can be recognized, for example, with acceleration sensors according to FIG. 2 or FIG. 3, the switching signal of each switching element 3 standing for an acceleration force from a specific direction.
  • FIG. 6 shows a device for triggering an occupant protection device with the acceleration sensor 0 according to the invention, which is arranged in series with an occupant protection device 9 or its ignition element and a controllable power stage 8 between an energy supply.
  • a further acceleration sensor 6 is provided, the signal of which is evaluated by an evaluator 7.
  • the evaluator 7 controls the power stage 8 in a conductive manner when a sufficiently strong impact to trigger the occupant protection means 9 is detected.
  • the acceleration sensor 0 has a switching threshold which is exceeded even at a lower impact intensity, so that the switching signal of the acceleration sensor 0 specifies a time window in which an ignition signal from the evaluator 7 can switch the controllable power stage 8 to on.
  • An acceleration sensor 0 used in this way is known in the technical field with the term safing sensor. In the following, acceleration sensor 0 and the other
  • Acceleration sensor 6 aligned parallel to the longitudinal axis of the vehicle.
  • the further acceleration sensor 6, like the acceleration sensor 0, is also bidirectional and therefore sensitive to accelerations in the event of a front and rear impact.
  • the occupant protection means 9 is a protection means that is triggered in the event of a front impact, such as a driver or front passenger airbag, and the occupant protection means 91 shown in FIG. 6 is provided for protection in the event of a rear impact, for example a belt tensioner. If the evaluator 7 recognizes that there is a rear-end collision, it controls a power level 81 assigned to the occupant protection means 91 in order to trigger the occupant protection means 91.
  • Acceleration sensor 0 is designed according to FIG.
  • the acceleration sensor 1 has only one switching element 3, which supplies a switching signal for both acceleration directions, for which the acceleration sensor is sensitive.
  • a single acceleration sensor is used here as a safing sensor for both a front and a rear impact, with only a single switching element.
  • an acceleration sensor according to FIGS. 2 or 3 can also be used, in which case the one mechanically controllable switch of the acceleration sensor exclusively the ignition circuit 8, 9, 0 for the occupant protection means 9 for front impact protection, the other mechanically controllable switch 32 of the acceleration sensor 0 is exclusively assigned to the ignition circuit 81, 91, 0 for the occupant protection means 91 for rear impact protection.
  • the switching threshold of the acceleration sensor according to FIG. 1 can be changed, for example, in such a way that the gnetically controllable switch is not arranged centrally between the seismic masses 21 and 22 in their rest position, but shifted towards one of the seismic masses, so that, for example, the switching threshold is greater in a front impact than in a rear impact.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

The invention relates to an acceleration sensor comprising a support (1) with two stop elements (11, 12). Two seismic masses (21, 22) are arranged along the support (1) in such a way that they can be displaced between the stop elements (11, 12). Each seismic mass (21, 22) can be displaced from a resting position against a force (F) towards the other seismic mass (22, 21) into an end position. The invention provides for a switch element (3) which is actuated by the displacement of at least one of the seismic masses (21, 22) from its resting position to its end position.

Description

Beschreibungdescription
BeschleunigungssensorAcceleration sensor
Die Erfindung betrifft einen Beschleunigungssensor.The invention relates to an acceleration sensor.
Ein bekannter Beschleunigungssensor (DE 44 43 419) ist für Beschleunigungen aus zwei zueinander entgegengesetzten Richtungen empfindlich und weist dabei eine magnetische seismi- sehe Masse auf, die verschiebbar auf einem Träger gelagert ist. Die Ruhelage der seismischen Masse ist etwa mittig auf dem Träger, wobei im folgenden unter Ruhelage der seismischen Masse diejenige Lage zu verstehen ist, die die seismische Ma- se ohne Einwirkung von Beschleunigungskräften in ihrer Emp- findlichkeitsrichtung einnimmt. Beschleunigungsabhängig wird die seismische Masse aus dieser Ruhelage je nach Richtung einer auf den Beschleunigungssensor einwirkenden Beschleunigungskraft in eine Endlage verschoben. Bei den Endlagen sind magnetisch steuerbare Schalter angeordnet, die infolge einer Verschiebung der magnetischen seismischen Masse schließen. Ruhelage und Endlagen sowie Rückstellkräfte der seismischen Masse werden durch einen Weicheisen-Formkörper des Trägers bewirkt , dessen Querschnitt von der Ruhelage zu den Endlagen hin verringert ist .A known acceleration sensor (DE 44 43 419) is sensitive to accelerations from two opposite directions and has a magnetic seismic mass which is slidably mounted on a carrier. The rest position of the seismic mass is approximately in the center of the support, in the following the rest position of the seismic mass is to be understood as the position that the seismic mass assumes in its direction of sensitivity without the action of acceleration forces. Depending on the acceleration, the seismic mass is shifted from this rest position into an end position depending on the direction of an acceleration force acting on the acceleration sensor. Magnetically controllable switches are arranged at the end positions which close due to a shift in the magnetic seismic mass. The rest position and end positions as well as the restoring forces of the seismic mass are brought about by a soft iron molded body of the carrier, the cross section of which is reduced from the rest position to the end positions.
Aufgabe der Erfindung ist es, einen Beschleunigungssensor und insbesondere einen als Beschleunigungsschalter ausgebildeten Beschleunigungssensor zu schaffen, der aufwandsarm herzustellen ist, und der für zwei Beschleunigungsrichtungen empfind- lieh ist. Gelöst wird die Aufgabe durch die Merkmale des PatenanspruchsThe object of the invention is to provide an acceleration sensor and in particular an acceleration sensor designed as an acceleration switch, which is easy to manufacture and which is sensitive to two directions of acceleration. The task is solved by the features of the patent claim
1. Auf einem Träger mit zwei Anschlägen sind zwei seismische Massen zwischen den Anschlägen entlang des Trägers verschiebbar angeordnet, wobei jede seismische Masse aus einer Ruhela- ge gegen eine Kraft auf die andere seismische Masse zu in eine Endlage verschiebbar ist . Zumindest ein Schaltelement wird infolge einer Verschiebung zumindest einer der seismischen Massen von ihrer Ruhelage in ihre Endlage betätigt, wobei die seismische Masse nicht notwendigerweise erst bei ihrer Aus- lenkung in die Endlage einen Schaltvorgang auslöst sondern gegebenenfalls auch bei einer geringeren Auslenkung.1. On a support with two stops, two seismic masses are slidably arranged between the stops along the support, each seismic mass being displaceable from a rest position against a force on the other seismic mass into an end position. At least one switching element is actuated as a result of a displacement of at least one of the seismic masses from its rest position into its end position, the seismic mass not necessarily triggering a switching process only when it is deflected into the end position, but possibly also with a smaller deflection.
Der erfindungsgemäße Beschleunigungssensor ist in vorteilhafter Weise aus wenigen Bauteilen in einer geringen Anzahl von Arbeitsschritten, insbesondere einfach auszuführenden Montageschritten, herstellbar. Dennoch ist der Beschleunigungssensor bidirektional empfindlich, das heißt empfindlich für Beschleunigungen aus zwei zueinander entgegengesetzten Richtungen. Er kann damit in vorteilhafter Weise in einem Kraftfahr- zeug zum Erkennen eines Aufpralls verwendet werden. Ist seineThe acceleration sensor according to the invention can advantageously be produced from a few components in a small number of work steps, in particular simple assembly steps. Nevertheless, the acceleration sensor is bidirectionally sensitive, that is, sensitive to accelerations from two opposite directions. It can thus advantageously be used in a motor vehicle to detect an impact. Is his
Empfindlichkeitsachse insbesondere parallel zur Fahrzeuglängsachse ausgerichtet, so kann mit dem Beschleunigungssensor sowohl ein Front- als auch ein Heckaufprall erkannt werden. Ist seine Empfindlichkeitsachse quer zur Fahrzeuglängs- ache angeordnet, kann der Beschleunigungssensor sowohl Querbeschleunigungen bei einem Seitenaufprall von rechts als auch Querbeschleunigungen bei einem Seitenaufprall von links aufnehmen.Sensitivity axis aligned in particular parallel to the longitudinal axis of the vehicle, so both a front and a rear impact can be detected with the acceleration sensor. If its sensitivity axis is arranged transversely to the vehicle's longitudinal axis, the acceleration sensor can record both lateral accelerations in the event of a side impact from the right and lateral accelerations in the event of a side impact from the left.
Die Unteransprüche 2 und 3 sind darauf ausgerichtet, die einer beschleunigungsbedingten Auslenkung einer der seismischen Massen entgegenwirkende Kraft auf vorteilhafte Weise bereitzustellen. Diese Kraft wirkt einer beschleunigungsbedingeten Auslenkung beider seismischen Massen entgegen und wird in der Fachwelt auch Rückstellkraft genannt, da sie eine einmal aus- gelenkte seismische Masse wieder in ihre Ruhelage zu verschieben versucht. Sind insbesondere beide seismische Massen als Magnete ausgebildet und mit ihren Polaritäten derart angeordnet, daß sich zwei gleiche Pole der Magnete einander gegenüberstehen und sich die seismischen Massen somit voneinan- der abstoßen, wird die einer Auslenkung einer seismischenThe sub-claims 2 and 3 are geared to the acceleration-related deflection of one of the seismic To provide mass counteracting force in an advantageous manner. This force counteracts an acceleration-related deflection of both seismic masses and is also called a restoring force in the technical field, since it tries to move a seismic mass that has been deflected back into its rest position. If, in particular, both seismic masses are designed as magnets and are arranged with their polarities in such a way that two identical poles of the magnets face each other and the seismic masses thus repel one another, this results in a deflection of a seismic
Masse entgegenwirkende Kraft ohne zusätzliches Bauteil gewonnen. Die Ausbildung dieser Kraft in ihrem örtlichen Verlauf entlang der Längsachse des Trägers und in ihrer Stärke ist verantwortlich für die Auslenkgeschwindigkeit und den Aus- lenkweg und damit insbesondere für die auf die seismische Masse einwirkende Beschleunigungsschwellenkraft, die erforderlich ist, um das Schaltelement zu betätigen. Alternativ oder zusätzlich ist zwischen den beiden seismischen Massen eine Spiralfeder angeordnet, so daß eine beschleunigungsab- hängig ausgelenkte seismische Masse gegen die Federkraft der Feder einen vorgegebenen Federweg überwinden muß, um das Schaltelement zu betätigen. Beiden vorteilhaften Weiterbildungen ist gemein, daß nicht jeder seismischen Masse ein eigenes Element zum Erzeugen der Rückstellkraft zugeordnet ist sondern daß ein gemeinsames Kraftelement wie die Feder oder die magnetische Ausbildung der seismischen Massen die Rückstellkräfte für selbige erzeugt.Mass counteracting force gained without additional component. The formation of this force in its local course along the longitudinal axis of the carrier and in its strength is responsible for the deflection speed and the deflection path and thus in particular for the acceleration threshold force acting on the seismic mass which is required to actuate the switching element. As an alternative or in addition, a spiral spring is arranged between the two seismic masses, so that a seismic mass deflected as a function of the acceleration must overcome a predetermined spring travel against the spring force of the spring in order to actuate the switching element. Both advantageous developments have in common that each seismic mass is not assigned its own element for generating the restoring force, but that a common force element such as the spring or the magnetic formation of the seismic masses generates the restoring forces for the same.
Die Unteransprüche 4 bis 8 sind auf vorteilhafte Weiterbil- düngen des Schaltelements gerichtet. Die Ansprüche 9 und 10 sind auf eine Einrichtung zum Auslösen eines Insassenschutzmittels ausgerichtet, die den erfindungsgemäßen Beschleunigungssensor als sogenannten Safing-Sensor verwendet .The subclaims 4 to 8 are directed to advantageous further developments of the switching element. Claims 9 and 10 are directed to a device for triggering an occupant protection means, which uses the acceleration sensor according to the invention as a so-called safing sensor.
Ausführungsbeispiele der Erfindung und ihrer Weiterbildungen werden anhand der Zeichnung näher erläutert. Es zeigen:Embodiments of the invention and its developments are explained in more detail with reference to the drawing. Show it:
Figur 1 einen erfindungsgemäßen Beschleunigungssensor, Figur 2 einen weiteren erfindungsgemäßen Beschleunigungs- sensor,1 shows an acceleration sensor according to the invention, FIG. 2 shows another acceleration sensor according to the invention,
Figur 3 einen dritten erfindungsgemäßen Beschleunigungssensor,FIG. 3 shows a third acceleration sensor according to the invention,
Figur 4 den Beschleunigungssensor nach Figur 1 unter Ein- Wirkung einer Beschleunigungskraft aus einer Richtung,FIG. 4 shows the acceleration sensor according to FIG. 1 under the action of an acceleration force from one direction,
Figur 5 den Beschleunigungssensor nach Figur 1 unter Einwirkung einer Beschleunigungskraft aus einer anderen Richtung, und Figur 6 eine Einrichtung zum Auslösen eines Insassenschutzmittels unter Verwendung des erfindungsgemäßen Beschleunigungssensors .5 shows the acceleration sensor according to FIG. 1 under the influence of an acceleration force from another direction, and FIG. 6 shows a device for triggering an occupant protection means using the acceleration sensor according to the invention.
Gleiche Bauteile in den Figuren sind figurenübergreifend durch gleiche Bezugszeichen gekennzeichnet.Identical components in the figures are identified by the same reference symbols in all figures.
Figur 1 zeigt einen erfindungsgemäßen Beschleunigungssensor mit einem Träger 1 mit zwei Anschlägen 11 und 12 an seinen Enden. Zwei als Magnete ausgebildete seismische Massen 21 und 22 sind entlang der Längsachse des Trägers 1 verschiebbar auf diesem zwischen den Anschlägen 11 und 12 angeordnet. Ein Ge- häuse 5 umschließt den Träger 1 und die seismischen Massen 21 und 22. Der Beschleunigungssensor gemäß Figur 1 hat eine zylindrische Form: Dabei weisen der Träger 1, die seismischen Massen 21 und 22 und das Gehäuse 5 hohlzylindrische Formen auf. Die Anschläge 11 und 12 sind als kreisrunde Platten ausgebildet .Figure 1 shows an acceleration sensor according to the invention with a carrier 1 with two stops 11 and 12 at its ends. Two seismic masses 21 and 22 designed as magnets are arranged displaceably along the longitudinal axis of the carrier 1 between the stops 11 and 12. A housing 5 encloses the carrier 1 and the seismic masses 21 and 22. The acceleration sensor according to FIG. 1 has a cylindrical shape: the carrier 1, the seismic masses 21 and 22 and the housing 5 have hollow cylindrical shapes. The stops 11 and 12 are designed as circular plates.
In dem hohlzylindrischen Träger 1 ist ein Schaltelement 3 strichiert eingezeichnet, das als magnetisch steuerbarer Schalter 31 ausgebildet ist. Der magnetisch steuerbare Schalter 31 enthält ein vorzugsweise mit Schutzgas angefülltes Gehäuse 313, das Kontakte 311 und 312 umschließt. Die Kontakte 311 und 312 sind durch das Gehäuse 313 nach außen geführt und durchdringen den Anschlag 12, um in Anschlüssen 314 und 315 zu enden, an denen ein Schaltsignal des magnetisch steuerbaren Schalters 31 abgegriffen werden kann.A switching element 3, which is designed as a magnetically controllable switch 31, is shown in broken lines in the hollow cylindrical carrier 1. The magnetically controllable switch 31 contains a housing 313, preferably filled with protective gas, which encloses contacts 311 and 312. The contacts 311 and 312 are guided through the housing 313 to the outside and penetrate the stop 12 in order to end in connections 314 and 315, at which a switching signal of the magnetically controllable switch 31 can be tapped.
Die seismischen Massen 21 und 22 sind in Figur 1 in ihren Ruhelagen eingezeichnet. Unter Ruhelage einer seismischen Masse ist diejenige Position entlang des Trägers 1 zu verstehen, die von der seismischen Masse eingenommen wird, sofern keine Beschleunigungskraft auf sie einwirkt. Die seismischen Massen werden durch eine mit einem Doppelpfeil eingezeichnete Kraft F in ihren Ruhelagen gehalten. Die Kraft F beruht auf der Ausbildung der seismischen Massen 21 und 22 als Magnete. Die Polaritäten - S für Südpol und N für Nordpol - sind derart gewählt, daß sich die seismischen Massen voneinander abstoßen und damit auf jede seismische Masse 21 und 22 die magnetische Kraft F einwirkt und die jeweilige seismische Masse 21 und 22 in ihrer Ruhelage hält. Figur 4 zeigt den Beschleunigungssensor nach Figur 1 unterThe seismic masses 21 and 22 are shown in FIG. 1 in their rest positions. The rest position of a seismic mass is to be understood as the position along the carrier 1 which is assumed by the seismic mass, provided that no acceleration force acts on it. The seismic masses are held in their rest positions by a force F drawn with a double arrow. The force F is based on the formation of the seismic masses 21 and 22 as magnets. The polarities - S for the south pole and N for the north pole - are selected such that the seismic masses repel one another and thus the magnetic force F acts on each seismic mass 21 and 22 and holds the respective seismic mass 21 and 22 in their rest position. Figure 4 shows the acceleration sensor of Figure 1 below
Einwirkung einer Beschleunigungskraft B aus der durch den Pfeil eingezeichneten Richtung. Dabei ist die Beschleunigungskraft B größer als die Kraft F, so daß die seismische Masse 22 aus ihrer Ruhelage gemäß Figur 1 in ihre Endlage gemäß Figur 4 ausgelenkt wird. In dieser Endlage bewirkt die seismische Masse 22 aufgrund ihrer magnetischen Ausbildung ein Schließen der ohne Einwirken einer Beschleunigungskraft gemäß Figur 1 noch geöffneten Schaltkontakte 311 und 312. Das Schaltelement 3 ist damit betätigt, an den Anschlüssen 314 und 315 kann ein Schaltsignal abgegriffen werden. Die seismische Masse 21 verharrt weiter in ihrer Ruhelage, da der Anschlag 11 einer Auslenkung aufgrund der Beschleunigungskraft B entgegensteht .Action of an acceleration force B from the direction shown by the arrow. The acceleration force B is greater than the force F, so that the seismic mass 22 is deflected from its rest position according to FIG. 1 into its end position according to FIG. 4. In this end position, the seismic mass 22, due to its magnetic design, causes the switching contacts 311 and 312, which are still open without the action of an acceleration force, to be closed in accordance with FIG. 1. The switching element 3 is thus actuated; The seismic mass 21 remains in its rest position, since the stop 11 opposes a deflection due to the acceleration force B.
Figur 5 zeigt den Beschleunigungssensor gemäß Figur 1 unter Einwirkung einer Beschleunigungskraft B aus der zu Figur 4 entgegengesetzten Richtung. Bei einer derart gerichteten Beschleunigungskraft B wird anstelle der seismischen Masse 22 die seismische Masse 21 aus ihrer Ruhelage in die in Figur 5 eingezeichnete Endlage ausgelenkt, in der sie ein Schließen der Kontakte 311 und 312 des magnetisch steuerbaren Schalters 31 (Reed-Schalters) bewirkt.FIG. 5 shows the acceleration sensor according to FIG. 1 under the action of an acceleration force B from the direction opposite to FIG. 4. With an acceleration force B directed in this way, instead of the seismic mass 22, the seismic mass 21 is deflected from its rest position into the end position shown in FIG. 5, in which it causes the contacts 311 and 312 of the magnetically controllable switch 31 (reed switch) to close.
Figur 2 zeigt einen weiteren erfindungsgemäßen Beschleunigungssensor, bei dem anstelle einer magnetischen auf die seismischen Massen 21 und 22 einwirkenden Kraft F eine durch eine Spiralfeder 4 verursachte Kraft F auf die seismischen Massen 21 und 22 einwirkt. Die Feder 4 ist zwischen den seis- mischen Massen 21 und 22 angeordnet und drückt die seismischen Massen 21 und 22 in ihre Ruhelagen gegen die Anschläge 11 und 12. In Figur 2 wirkt keine Beschleunigungskraft auf den Beschleunigungssensor ein. Nahe bei den Ruhelagen der seismischen Massen 21 und 22 sind an/in den /Anschlägen 11 undFIG. 2 shows a further acceleration sensor according to the invention, in which instead of a magnetic force F acting on the seismic masses 21 and 22, a force F caused by a spiral spring 4 acts on the seismic masses 21 and 22. The spring 4 is arranged between the seismic masses 21 and 22 and presses the seismic masses 21 and 22 into their rest positions against the stops 11 and 12. In FIG. 2, no acceleration force acts on the acceleration sensor. Close to the rest positions of the seismic masses 21 and 22 are at / in the / stops 11 and
12 mechanisch steuerbare Schalter 32 angeordnet, jeweils mit Kontakten 321 und 322 und elektrisch mit den Kontakten 321 und 322 verbundenen Anschlüssen 323 und 324 zum Abgreifen von Schaltsignalen. Dabei ist jeder Kontakt 321 als Federelement ausgebildet, das bei Ruhelage der seismischen Massen 21 und 22 durch je einen Fortsatz 211 und 221 der seismischen Massen 21 und 22 von dem Kontakt 322 beabstandet gehalten wird. Wird eine der seismischen Massen 21 oder 22 gemäß Figur 4 oder Figur 5 ausgelenkt, so wird das Federelement-Kontaktstück 321 nicht mehr durch den Fortsatz 211 in seiner vorgespannten Lage gehalten sondern stellt eine leitende Verbindung mit dem Kontakt 322 her. Ein entsprechendes Schaltsignal ist an den Anschlüssen 323 und 324 abzugreifen. Die Fortsätze 211 und 221 können auch einstückig mit den Kontaktstücken 321 ausgebildet sein anstelle einstückig mit den seismischen Massen 21 und 22.12 mechanically controllable switches 32 are arranged, each with contacts 321 and 322 and connections 323 and 324 electrically connected to contacts 321 and 322 for tapping switching signals. Each contact 321 is designed as a spring element which, when the seismic masses 21 and 22 are at rest, is held at a distance from the contact 322 by an extension 211 and 221 of the seismic masses 21 and 22. If one of the seismic masses 21 or 22 according to FIG. 4 or FIG. 5 is deflected, the spring element contact piece 321 is no longer held in its pretensioned position by the extension 211, but instead establishes a conductive connection with the contact 322. A corresponding switching signal can be tapped at connections 323 and 324. The extensions 211 and 221 can also be formed in one piece with the contact pieces 321 instead of in one piece with the seismic masses 21 and 22.
Figur 3 zeigt einen dritten erfindungsgemäßen Beschleunigungssensor, bei dem wiederum gemäß Figur 1 die seismischen Massen 21 und 22 als Magnete ausgebildet sind. Als Schaltelemente 3 sind mechanisch steuerbare Schalter 32 zu beiden En- den des Trägers 1 vorgesehen, wobei Kontakte 321 und 322 an/in den Anschlägen 11 und 12 vorgesehen sind, die jeweils in Anschlüsse 323 und 324 münden, an denen ein Schaltsignal abgegriffen werden kann. Ein an die Anschlüsse 323 und 324 angelegtes Stromsignal fließt über die Kontakte 321 und 323 und die nun elektrisch leitend ausgebildete seismische Masse 21 beziehungsweise 22. Wird eine der seismischen Massen 21 und 22 gemäß Figur 4 oder Figur 5 ausgelenkt, so öffnet das jeweils aus einem Kontakt 321 oder 322 und einer seismischenFIG. 3 shows a third acceleration sensor according to the invention, in which, according to FIG. 1, the seismic masses 21 and 22 are designed as magnets. Mechanically controllable switches 32 are provided as switching elements 3 at both ends of the carrier 1, contacts 321 and 322 being provided on / in the stops 11 and 12, each of which opens into connections 323 and 324, from which a switching signal can be tapped . A current signal applied to the connections 323 and 324 flows via the contacts 321 and 323 and the seismic mass 21 or 22, which is now electrically conductive. If one of the seismic masses 21 and 22 deflected according to FIG. 4 or FIG. 5, this opens from a contact 321 or 322 and a seismic contact
Masse 21 oder 22 gebildete Schaltelement 3.Mass 21 or 22 formed switching element 3rd
Der Beschleunigungssensor gemäß Figur 1 erkennt aufgrund der Verwendung nur eines einzigen nahe bei den beiden Endlagen der beiden seismischen Massen 21 und 22 angeordneten Schaltelements 3 das Einwirken einer Beschleunigungskraft auf den Beschleunigungssensor, jedoch nicht die Richtung der Be- schleunigungskraft . Diese kann beispielsweise mit Beschleunigungssensoren gemäß Figur 2 oder Figur 3 erkannt werden, wobei das Schaltsignal eines jeden Schaltelements 3 für eine Beschleunigungskraft aus einer bestimmten Richtung steht.The acceleration sensor according to FIG. 1 detects the action of an acceleration force on the acceleration sensor, but not the direction of the acceleration force, due to the use of only a single switching element 3 arranged close to the two end positions of the two seismic masses 21 and 22. This can be recognized, for example, with acceleration sensors according to FIG. 2 or FIG. 3, the switching signal of each switching element 3 standing for an acceleration force from a specific direction.
Figur 6 zeigt eine Einrichtung zum Auslösen eines Insassenschutzmittels mit dem erfindungsgemäßen Beschleunigungssensor 0, der in Serie zu einem Insassenschutzmittel 9 beziehungsweise dessen Zündelement und einer steuerbaren Leistungsstufe 8 zwischen einer Energieversorgung angeordnet ist. Es ist ein weiterer Beschleunigungssensor 6 vorgesehen, dessen Signal von einem Auswerter 7 ausgewertet wird. Der Auswerter 7 steuert die Leistungstufe 8 leitend, wenn ein ausreichend starker Aufprall zum Auslösen des Insassenschutzmittels 9 erkannt wird. Der Beschleunigungssensor 0 weist eine Schaltschwelle auf, die bereits bei einer geringeren Aufprallstärke überschritten wird, so daß das Schaltsignal des Beschleunigungs- sensors 0 ein Zeitfenster vorgibt, in dem ein Zündsignal des Auswerters 7 die steuerbare Leistungstufe 8 leitend schalten kann. Ein derart verwendeter Beschleunigungssensor 0 ist in der Fachwelt mit dem Begriff Safing-Sensor belegt. Im folgenden sei der Beschleunigungssensor 0 und der weitereFIG. 6 shows a device for triggering an occupant protection device with the acceleration sensor 0 according to the invention, which is arranged in series with an occupant protection device 9 or its ignition element and a controllable power stage 8 between an energy supply. A further acceleration sensor 6 is provided, the signal of which is evaluated by an evaluator 7. The evaluator 7 controls the power stage 8 in a conductive manner when a sufficiently strong impact to trigger the occupant protection means 9 is detected. The acceleration sensor 0 has a switching threshold which is exceeded even at a lower impact intensity, so that the switching signal of the acceleration sensor 0 specifies a time window in which an ignition signal from the evaluator 7 can switch the controllable power stage 8 to on. An acceleration sensor 0 used in this way is known in the technical field with the term safing sensor. In the following, acceleration sensor 0 and the other
Beschleunigungssensor 6 parallel zur Fahrzeuglängsachse ausgerichtet . Auch der weitere Beschleunigungssensor 6 sei wie der Beschleunigungssensor 0 bidirektional und damit für Be- schleunigungen bei einem Front- und einem Heckaufprall empfindlich. Das Insassenschutzmittel 9 sei ein Schutzmittel, das bei einem Frontaufprall ausgelöst wird, wie zum Beispiel ein Fahrer- oder Beifahrerairbag, das weiter in Figur 6 eingezeichnete Insassenschutzmittel 91 zum Schutz bei einem Heckaufprall vorgesehen, beispielsweise ein Gurtstraffer. Erkennt der Auswerter 7, daß ein Heckaufprall vorliegt, so steuert er eine dem Insassenschutzmittel 91 zugeordnete Leistungsstufe 81 leitend, um das Insassenschutzmittel 91 auszulösen. Der Beschleunigungssensor 0 ist gemäß Figur 1 ausge- bildet und weist lediglich ein Schaltelement 3 auf, das für beide Beschleunigungsrichtungen, für die der Beschleunigungs- sensor empfindlich ist, ein Schaltsignal liefert. In vorteilhafter Weise wird hier also nur ein einziger Beschleunigungs- sensor als Safing-Sensor sowohl für einen Front- als auch für einen Heckaufprall verwendet, mit nur einem einzigen Schaltelement. Alternativ kann jedoch auch ein Beschleunigungssensor nach den Figuren 2 oder 3 verwendet werden, wobei hierbei der eine mechanisch steuerbare Schalter des Beschleunigungssensors ausschließlich dem Zündkreis 8, 9, 0 für das Insassen- Schutzmittel 9 zum Frontaufprallschutz, der andere mechanisch steuerbare Schalter 32 des Beschleunigungssensors 0 ausschließlich dem Zündkreis 81, 91, 0 für das Insassenschutzmittel 91 zum Heckaufprallschutz zugeordnet wird.Acceleration sensor 6 aligned parallel to the longitudinal axis of the vehicle. The further acceleration sensor 6, like the acceleration sensor 0, is also bidirectional and therefore sensitive to accelerations in the event of a front and rear impact. The occupant protection means 9 is a protection means that is triggered in the event of a front impact, such as a driver or front passenger airbag, and the occupant protection means 91 shown in FIG. 6 is provided for protection in the event of a rear impact, for example a belt tensioner. If the evaluator 7 recognizes that there is a rear-end collision, it controls a power level 81 assigned to the occupant protection means 91 in order to trigger the occupant protection means 91. Acceleration sensor 0 is designed according to FIG. 1 and has only one switching element 3, which supplies a switching signal for both acceleration directions, for which the acceleration sensor is sensitive. Advantageously, only a single acceleration sensor is used here as a safing sensor for both a front and a rear impact, with only a single switching element. Alternatively, however, an acceleration sensor according to FIGS. 2 or 3 can also be used, in which case the one mechanically controllable switch of the acceleration sensor exclusively the ignition circuit 8, 9, 0 for the occupant protection means 9 for front impact protection, the other mechanically controllable switch 32 of the acceleration sensor 0 is exclusively assigned to the ignition circuit 81, 91, 0 for the occupant protection means 91 for rear impact protection.
Die Schaltschwelle des Beschleunigungssensors nach Figur 1 kann beispielsweise dahingehend verändert werden, daß der ma- gnetisch steuerbare Schalter nicht mittig zwischen den seismischen Massen 21 und 22 in ihrer Ruhelage angeordnet ist, sondern verschoben zu einer der seismischen Massen hin, so daß beispielsweise die Schaltschwelle bei einem Frontaufprall größer ist als bei einem Heckaufprall. The switching threshold of the acceleration sensor according to FIG. 1 can be changed, for example, in such a way that the gnetically controllable switch is not arranged centrally between the seismic masses 21 and 22 in their rest position, but shifted towards one of the seismic masses, so that, for example, the switching threshold is greater in a front impact than in a rear impact.

Claims

Patentansprüche claims
1. Beschleunigungssensor,1. acceleration sensor,
- mit einem Träger (1) mit zwei Anschlägen (11,12), - mit zwei entlang des Trägers (1) zwischen den Anschlägen (11,12) verschiebbar angeordneten seismischen Massen (21,22), wobei jede seismische Masse (21,22) aus einer Ruhelage gegen eine Kraft (F) auf die andere seismische Masse (22,21) zu in eine Endlage verschiebbar ist, und - mit einem Schaltelement (3) , das infolge einer Verschiebung zumindest einer der seismischen Massen (21,22) von ihrer Ruhelage in ihre Endlage betätigt wird.- With a carrier (1) with two stops (11, 12), - With two seismic masses (21, 22) arranged displaceably along the carrier (1) between the stops (11, 12), each seismic mass (21, 22) can be shifted from a rest position against a force (F) to the other seismic mass (22, 21) into an end position, and - with a switching element (3) which, as a result of a displacement, at least one of the seismic masses (21, 22 ) is actuated from its rest position to its end position.
2. Beschleunigungssensor nach Anspruch 1, bei dem die seismi- sehen Massen (21,22) als Magnete ausgebildet und derart auf dem Träger (1) angeordnet sind, daß sie sich magnetisch abstoßen.2. Acceleration sensor according to claim 1, in which the seismic masses (21, 22) are designed as magnets and are arranged on the carrier (1) in such a way that they magnetically repel each other.
3. Beschleunigungssensor nach Anspruch 1 oder Anspruch 2 , bei dem eine Feder (4) zwischen den seismischen Massen (21,22) angeordnet ist.3. Acceleration sensor according to claim 1 or claim 2, in which a spring (4) is arranged between the seismic masses (21, 22).
4. Beschleunigungssensor nach Anspruch 2, bei dem das Schalt- element (3) als magnetisch steuerbarer Schalter (31) ausge- bildet ist.4. Acceleration sensor according to claim 2, wherein the switching element (3) is designed as a magnetically controllable switch (31).
5. Beschleunigungssensor nach Anspruch 4, bei dem der magnetisch steuerbare Schalter (31) nahe der Endlagen der seismischen Massen (21,22) angeordnet ist. 5. Acceleration sensor according to claim 4, wherein the magnetically controllable switch (31) is arranged near the end positions of the seismic masses (21, 22).
6. Beschleunigungssensor nach einem der vorhergehenden Ansprüche, bei dem das Schaltelement (3) als mechanisch steuerbarer Schalter (32) ausgebildet ist.6. Acceleration sensor according to one of the preceding claims, in which the switching element (3) is designed as a mechanically controllable switch (32).
7. Beschleunigungssensor nach Anspruch 6, bei der je ein mechanisch steuerbarer Schalter (32) nahe der Ruhelagen der seismischen Massen (21,22) angeordnet ist.7. Acceleration sensor according to claim 6, in which a mechanically controllable switch (32) is arranged near the rest positions of the seismic masses (21, 22).
8. Beschleunigungssensor nach Anspruch 7, bei der die seismi- sehen Massen (21,22) elektrisch leitend sind und ein8. Acceleration sensor according to claim 7, wherein the seismic masses (21, 22) are electrically conductive and a
Strompfad bei geschlossenem Schaltelement (3) über die seismischen Massen (21,22) führt.Current path with the switching element (3) closed over the seismic masses (21, 22).
9. Einrichtung zum Auslösen eines Insassenschutzmittels mit einem Beschleunigungssensor (0) nach einem der vorhergehenden9. Device for triggering an occupant protection device with an acceleration sensor (0) according to one of the preceding
Ansprüche, mit einem weiteren Beschleunigungssensor (6) , und mit einem Auswerter (7) für ein Signal des weiteren Beschleunigungssensors (6) , wobei das Insassenschutzmittel (9) abhängig von dem Signal des weiteren Beschleunigungssensors (6) und abhängig von dem Schaltsignal des Beschleunigungssensors (0) gesteuert wird.Claims, with a further acceleration sensor (6), and with an evaluator (7) for a signal of the further acceleration sensor (6), the occupant protection means (9) depending on the signal of the further acceleration sensor (6) and depending on the switching signal of the acceleration sensor (0) is controlled.
10. Einrichtung nach Anspruch 9, die zum Auslösen eines Insassenschutzmittels für den Frontaufprallschutz und eines In- sassenschutzmittels für den Heckaufprallschutz verwendet wird, wobei der Beschleunigungssensor (0) und der weitere Beschleunigungssensor (6) jeweils einen Frontaufprall und einen Heckaufprall erkennen. 10. The device according to claim 9, which is used to trigger an occupant protection means for front impact protection and an occupant protection means for rear impact protection, the acceleration sensor (0) and the further acceleration sensor (6) each recognizing a front impact and a rear impact.
PCT/DE1998/002612 1997-09-10 1998-09-03 Acceleration sensor WO1999013344A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19739814.6 1997-09-10
DE1997139814 DE19739814A1 (en) 1997-09-10 1997-09-10 Acceleration sensor

Publications (1)

Publication Number Publication Date
WO1999013344A1 true WO1999013344A1 (en) 1999-03-18

Family

ID=7841920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/002612 WO1999013344A1 (en) 1997-09-10 1998-09-03 Acceleration sensor

Country Status (2)

Country Link
DE (1) DE19739814A1 (en)
WO (1) WO1999013344A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002091A (en) * 1998-11-18 1999-12-14 Breed Automotive Technology, Inc. Bi-directional shock sensor employing reed switch
DE10304830B4 (en) * 2002-10-04 2005-06-30 Gebr. Schmidt Fabrik für Feinmechanik GmbH & Co. KG Shock pulse sensor
DE102004016266A1 (en) * 2004-04-02 2005-10-20 Bosch Gmbh Robert Multifunctional upfront sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177370A (en) * 1990-11-19 1993-01-05 Meister Jack B Impact sensor for vehicle safety restraint system
EP0545393A1 (en) * 1991-12-02 1993-06-09 Tokin Corporation Shock sensor
EP0598919A1 (en) * 1992-06-12 1994-06-01 Oki Electric Industry Company, Limited Shock sensor
DE19536437A1 (en) * 1995-09-29 1997-04-03 Siemens Ag Crash sensor for passenger protection system in motor vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2644606A1 (en) * 1976-10-02 1978-04-06 Daimler Benz Ag MAGNETIC ACTUATED ELECTRIC SWITCH
DE3338287C1 (en) * 1983-10-21 1985-05-02 W. Günther GmbH, 8500 Nürnberg Acceleration and deceleration sensor
DE3804032A1 (en) * 1988-02-10 1989-08-24 Edmund Zottnik Method and device for measuring acceleration
DE4443419C1 (en) * 1994-12-06 1996-03-07 Siemens Ag Acceleration sensor for vehicle safety system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177370A (en) * 1990-11-19 1993-01-05 Meister Jack B Impact sensor for vehicle safety restraint system
EP0545393A1 (en) * 1991-12-02 1993-06-09 Tokin Corporation Shock sensor
EP0598919A1 (en) * 1992-06-12 1994-06-01 Oki Electric Industry Company, Limited Shock sensor
DE19536437A1 (en) * 1995-09-29 1997-04-03 Siemens Ag Crash sensor for passenger protection system in motor vehicle

Also Published As

Publication number Publication date
DE19739814A1 (en) 1999-03-18

Similar Documents

Publication Publication Date Title
EP1252523B1 (en) Sensor arrangement
EP1181172B1 (en) Steering wheel
DE3015155A1 (en) SPEED CHANGE SENSOR
EP0022146B1 (en) Circuit for recording erroneous operation of at least one safety device protecting vehicle occupants in the event of an accident
DE2258772A1 (en) COLLISION SENSOR FOR A MOTOR VEHICLE SAFETY DEVICE
EP0830271B1 (en) Control device for triggering a restraint system in a vehicle during a sideways-on collision
DE3830782C1 (en)
DE19547307A1 (en) Passenger protection device and associated actuating device
EP0689219B1 (en) Vehicle sensitive mechanical contactor
EP1386128B1 (en) Sensor array for detecting and evaluating mechanical deformations
DE4031326C2 (en) Acceleration sensor and occupant restraint system with an acceleration sensor for triggering the same
DE3713698C1 (en) Acceleration switch
WO1999013344A1 (en) Acceleration sensor
DE4031332C2 (en) Acceleration sensor
DE3509054C1 (en) Acceleration switch
EP0803129B1 (en) Mechanical acceleration switch
DE19508014C1 (en) Mechanical acceleration switch
DE19757289C2 (en) Bidirectional accelerometer
DE4029195C1 (en) Impact sensor for safety arrangement e.g. restraint in motor vehicle - has two weights damped for desired response characteristic to close electrical contacts on plate springs
EP0642696B1 (en) Traffic accident detecting sensor for a passenger protection system in a vehicle
DE112020001771T5 (en) CONTROL DEVICE FOR AN ACOUSTIC WARNING DEVICE OF A VEHICLE
WO2023036662A1 (en) Vehicle seat for a motor vehicle
DE4335250A1 (en) Electromechanical acceleration sensor
EP1164612A1 (en) Acceleration value limiting switch
DE19536437A1 (en) Crash sensor for passenger protection system in motor vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase