WO2002072471A2 - Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor - Google Patents

Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor Download PDF

Info

Publication number
WO2002072471A2
WO2002072471A2 PCT/EP2002/002408 EP0202408W WO02072471A2 WO 2002072471 A2 WO2002072471 A2 WO 2002072471A2 EP 0202408 W EP0202408 W EP 0202408W WO 02072471 A2 WO02072471 A2 WO 02072471A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
mixture
reactor
oxide powder
elements
Prior art date
Application number
PCT/EP2002/002408
Other languages
English (en)
French (fr)
Other versions
WO2002072471A3 (de
Inventor
Stefan Remke
Bernd Müller
Günter Riedel
Stefan Ambrosius
Bernd Dahm
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to US10/471,590 priority Critical patent/US7358212B2/en
Priority to CA002440613A priority patent/CA2440613A1/en
Priority to JP2002571398A priority patent/JP2004526653A/ja
Priority to AT02729963T priority patent/ATE490216T1/de
Priority to DE50214795T priority patent/DE50214795D1/de
Priority to EP02729963A priority patent/EP1370486B1/de
Priority to KR10-2003-7011845A priority patent/KR20040012731A/ko
Priority to AU2002302391A priority patent/AU2002302391A1/en
Publication of WO2002072471A2 publication Critical patent/WO2002072471A2/de
Publication of WO2002072471A3 publication Critical patent/WO2002072471A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/241Stationary reactors without moving elements inside of the pulsating type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • B01J6/004Calcining using hot gas streams in which the material is moved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/16Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with particles being subjected to vibrations or pulsations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/40Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to vibrations or pulsations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • C01B13/185Preparing mixtures of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/20Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0772Processes including the use of precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00566Pulsated flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Definitions

  • the present invention relates to a process for the production of a finely divided, multinars, i.e. multi-element metal oxide powder suitable for use as a precursor to high temperature superconductors.
  • High-temperature superconductor materials are multinary oxides with high requirements for chemical purity, homogeneity, the defined phase composition and the crystallite size as well as the reproducibility.
  • some processes for producing the corresponding multiphase metal oxide powder are known, from which high-temperature superconductors can be produced by further processing, for example bulk material by pressing, extruding and / or sintering, or wire and strip conductors using a “powder-in-tube” -Method”.
  • EP 117 059, EP 522 575, EP 285 392, EP 302 830, EP 912 450 and US 5,298,654 describe the co-precipitation of metal compounds dissolved in water, e.g. of nitrates or chlorides.
  • the water-insoluble or sparingly soluble metal oxalate mixtures are precipitated from the solutions with oxalic acid.
  • the technical implementation of these processes requires a high level of technical effort, both in co-precipitation and in the disposal or reuse of the resulting degradation products.
  • mixtures of aqueous salt solutions of the elements that are to be contained in the superconductor are subjected to spray pyrolysis:
  • WO 89/02871 describes a process for the production of multi-element metal oxide powders for use as a precursor for HTSL ceramics, metal mixed salt solutions being sprayed into a tube furnace heated to a temperature of 800-1100 ° C. With this procedure on the one hand due to the external electrical heating of the tube furnace only a low energy yield and on the other hand only a relatively low conversion to the mixed oxide.
  • EP 371 211 claims a spray pyrolysis process for the production of finely divided, homogeneous ceramic powders, in which a solution or suspension of compounds containing the elements of the powder to be produced is sprayed into a reactor using a combustible gas, preferably hydrogen gas, in which the Gas is burned.
  • a combustible gas preferably hydrogen gas, in which the Gas is burned.
  • the conversion of the sprayed droplets into the oxide powder takes place in the flame at a measurable temperature of 1200-1300 ° C. If nitrate solutions are used, it can be assumed that the droplets / particles system is affected by much higher temperatures.
  • the production of powders for high-temperature superconductors with a defined composition is difficult with this method, since the powders generally also contain volatile metal oxides, e.g. Contain bi- or Pb-oxides that evaporate in variable proportions.
  • DE 195 05 133 describes a process for producing highly disperse oxidic powders, in which an aerosol of dissolved or liquid compounds in oxygen is fed to a detonating gas reactor under pressure before combustion. Very high reaction temperatures are also required.
  • EP 681 989 describes a process in which aerosols of aqueous solutions which contain a mixture of the corresponding metal salts in the required stoichiometric ratio are pyrolyzed in a hydrogen / oxygen flame.
  • the flame temperature is kept in the range of 800 to 1100 ° C. The contact of the aerosols and the powder produced in the process with carbon or carbon-containing compounds or materials must be avoided.
  • DD 245 674 and DD 245 649 describe processes for producing silicate substances or single-phase oxides, in which liquid silica sols or liquid or dissolved metal compounds with organic ligands are atomized in a pulsating combustion in an oscillating fire reactor and are thermally treated. This process produces highly disperse silica gels or oxides with targeted particle sizes, surface sizes and surface structures.
  • the object of the present invention is to provide a technically and economically advantageous process for producing a multinarium, at least ternary, metal oxide powder which is suitable for use as a precursor to high-temperature superconductors and which does not have the disadvantages of the prior art.
  • This object is achieved according to the invention by a method in which a mixture of the corresponding metal salts and / or metal oxides and / or metals in solid form or in the form of a solution or a suspension in the required stoichiometric ratio containing at least three elements, selected from Cu, Bi, Pb, Y, TI, Hg, La, lanthanide, alkaline earth metals, is introduced into a pulsation reactor with a pulsating gas flow resulting from flameless combustion and is partially or completely converted to the multinarium metal oxide.
  • the inventive method is characterized in that a mixture of the corresponding metal salts, metal oxides or metals in one
  • Pulsation reactor is introduced and converted to the multinars metal oxide containing several elements.
  • the metals or metal compounds are used in the required stoichiometric ratio and contain at least three elements, preferably three, four or five elements, selected from the group Cu, Bi, Pb, Y, TI, Hg, La, lanthanides, alkaline earth metals.
  • the finely divided, multi-element metal oxide powder obtained is for Suitable for use in the manufacture of high-temperature superconductor ceramics.
  • the operating principle of the pulsation reactor is similar to that of an acoustic cavity resonator, which consists of a combustion chamber, a resonance tube and a cyclone or filter for powder separation.
  • a pulsation reactor according to the invention is shown in FIG. 1. It consists of a combustion chamber (1), on the exhaust side of which there is a resonance tube (2) with one opposite
  • Combustion chamber connects significantly reduced flow cross section.
  • the combustion chamber floor is equipped with one or more valves for the entry of the combustion gases.
  • a suitable filter (3) for fine particles is used to separate the powders from the gas flow.
  • the fuel gas mixture entering the combustion chamber is ignited, burns very quickly and generates a pressure wave in the direction of the resonance tube, since the gas inlet side is largely closed by aerodynamic valves in the event of overpressure.
  • the gas flowing into the resonance tube creates a negative pressure in the combustion chamber, so that the valves create new ones
  • Gas mixture flows in and ignites itself. This process of valve closing and opening by pressure and negative pressure is periodically self-regulating.
  • the pulsating flameless combustion process in the combustion chamber releases energy with the propagation of a pressure wave in the resonance tube and stimulates an acoustic vibration there.
  • Such pulsating flows are characterized by a high degree of turbulence.
  • the pulsation frequency can be set via the reactor geometry and specifically varied via the temperature. This does not pose any difficulties for the person skilled in the art.
  • the gas flow resulting from flameless combustion preferably pulsates at 20 to 150 Hz, particularly preferably at 30 to 70 Hz.
  • Any gas that is suitable for generating hot gas is basically suitable as the fuel gas. This is optionally used in a mixture with oxygen. Natural gas and / or hydrogen in a mixture with air or optionally oxygen is preferably used. Propane or butane, for example, are also conceivable. In contrast to pyrolysis processes e.g. In the permeation reactor, the combustion air also serves as a carrier gas for mass transfer in the reactor.
  • the mixture of the corresponding metals and / or metal compounds can be introduced into the reactor either in solid form, in particular in the form of a powder, or in the form of a solution or suspension.
  • Solid mixtures of substances to be calcined can be conveyed into the gas stream by means of an injector, the pulsating turbulent flow leading to a fine distribution of the material in the reaction space.
  • Solutions or suspensions are introduced in finely divided form using one or more nozzles, preferably using a two-component nozzle. This results in a very rapid dewatering or thermal decomposition of the reactants and the remaining solid particles can react to the mixed oxide in the hot gas stream.
  • the mixture is introduced in the form of an aqueous salt solution or suspension of nitrates, acetates, citrates, lactates, tartrates, chlorides, hydroxides, carbonates and / or oxalates of the corresponding metals. Salt solutions of the corresponding metals with the same counter anion are particularly preferably used.
  • the mixture is introduced into the hot gas flow of the pulsation reactor resulting from the flameless combustion. This evaporates or burns any solvent that may be present, and metal salt or metal oxide particles form, which are then completely or partially converted to the multinar metal oxide in the further course of the reaction by thermal reaction, oxidation and / or reduction.
  • the mixture can either be introduced directly into the combustion chamber of the pulsation reactor or into the resonance tube of the pulsation reactor adjoining the combustion chamber.
  • the introduction into the resonance tube has the advantage that it separates the combustion process from the chemical solid-state reactions.
  • the gas flow resulting from the pulsating combustion has flow turbulences in the pulsation reactor, the degree of turbulence of which in a preferred embodiment is 5 to 10 times the degree of turbulence of a stationary flow.
  • the temperature of the gas flow in the combustion chamber of the pulsation reactor is preferably above 650 ° C, in particular above 800 ° C.
  • the particles generated in the reactor are separated from the gas flow using a suitable separating device, the selection of which poses no problem for the person skilled in the art, such as a gas cyclone, a surface filter or an electrostatic filter.
  • the reaction gas Before entering the separator, the reaction gas is cooled to the temperature required for the filter type. This is done by a
  • Heat exchanger and / or by introducing cooling gases into the exhaust gas stream are replaced by Hot gas filters.
  • a particular advantage of the method according to the invention is that instead of Hot gas filters cost-effective high-performance particulate filters with comparatively high specific filter areas and throughput rates can be used.
  • CO 2 -free cooling gases By introducing CO 2 -free cooling gases, powder with a particularly low residual carbon content can be produced.
  • the phase composition of the powder can be influenced by varying the oxygen partial pressure when the cooling gases are introduced.
  • the mixture of the corresponding metals or metal compounds used can additionally contain doping in the form of dissolved salts and / or dispersed solids.
  • dopants are added to the mixture in small amounts, i.e. up to a maximum of 5% by weight, preferably up to 1% by weight of the mixture, in order to specifically influence certain properties of the multinarium metal oxide powder to be produced.
  • the crystal size of secondary phases, which act as pinning centers can be limited by doping or the mechanical properties of the bulk material can be improved.
  • the crystallite size is understood to mean the size of the crystallographically uniform area of a powder particle and a pinning center is an adhesion center for the magnetic flow in superconductors (e.g. on non-superconducting secondary phases).
  • group Ib e.g. Ag
  • Mb group e.g. Zn
  • group IVa e.g. Sn
  • group IVb e.g. Zr
  • group Vllb of the periodic table e.g. Mn used.
  • metal oxide powder is subjected to a thermal aftertreatment in the temperature range from 500 to 960 ° C., preferably from 550 to 800 ° C.
  • a thermal aftertreatment in the temperature range from 500 to 960 ° C., preferably from 550 to 800 ° C.
  • Post-calcination in a powder bed in a chamber, tube, pass-through, belt or rotary tube furnace or in a fluidized bed is particularly preferred.
  • the conditions must be set so that the desired phase composition is achieved on the one hand, but on the other hand no formation of hard agglomerates by sintering or
  • the powder becomes one Grinding by means of an air jet mill, grinding media mill, impact mill or other grinding units.
  • Processes according to the invention are preferred in which the corresponding metals or metal compounds are selected from one of the following compositions: Bi-EA-Cu, (Bi, Pb) -EA-Cu, Y-EA-Cu, (Y, SE) -EA -Cu, TI-EA-Cu, (Tl.Pb) -EA-Cu or TI- (Y, EA) -Cu, where EA stands for alkaline earth metal elements, in particular for Ba, Ca and / or Sr, and SE stands for rare earth metals.
  • Another object of the present invention is a finely divided, multinary metal oxide powder, which was produced by a method according to the invention.
  • the average crystallite size of the metal oxide powder produced according to the invention i.e. the average size of the crystallographically uniform region of a powder particle, ⁇ 500 nm.
  • metal oxide powders are preferably produced which consist of one of the following compositions: Bi-EA-Cu-O, (Bi, Pb) -EA-Cu-O, Y- EA-Cu-O, (Y, SE) -EA-Cu-O, Tl-EA-Cu-O, (TI, Pb) -EA-Cu-0 or TI- (Y, EA) -Cu-O, where EA stands for alkaline earth metal elements, in particular for Ba, Ca and / or Sr, and SE stands for rare earth metals.
  • the present invention also relates to the use of the metal oxide powders produced according to the invention for the production of high-temperature superconductors.
  • High-temperature superconducting hollow or solid bodies in the form of plates, disks, rings, tubes, rods, etc., for example, can be produced from the metal oxide powders produced according to the invention
  • Silver-coated high-temperature superconducting wires can be made from powders or pressed rods or tape conductors can be produced.
  • the wires and strip conductors are used, for example, for power cables, power lines, transformers, motor and generator windings, magnets, power supply lines or bearings.
  • targets for coating processes can be produced from the metal mixed oxide powders produced according to the invention or they can be used for the production of coated strip conductors.
  • a mixture of aqueous nitrate solutions of the elements Bi, Pb, Sr, Ca and Cu is produced according to the stoichiometry Bi 1 P75 Pb 0 , 35 Sr ⁇ , 98 Ca 2] 0 Cu 3 O x , the total salt content of the mixed nitrate solution being 40%.
  • the geometry of the pulsation reactor is defined by the ratio
  • the mixed nitrate solution is introduced into the front section of the resonance tube as an aerosol by means of a two-substance nozzle.
  • the flue gases at the end of the resonance pipe contain 16.9% O 2 , 0.09%, CO 2 and 0.24% NO.
  • the powder is separated using a cassette filter with a filter area of 24 m 2 and a maximum temperature resistance of 130 ° C.
  • Properties of the powder produced B s Pbo , 35 Sr 1
  • An 8-hour recalculation is carried out in a chamber furnace at a temperature of 810 ° C, at which the multinary metal oxide powder is filled into Ag boats with a maximum bed height of 4 cm.
  • the nitrate content of the samples is reduced to values ⁇ 100 ppm and the desired one
  • the phase composition of the multinarium metal oxide powder produced was adjusted.
  • a mixture of substances according to Example 1 is injected axially into the combustion chamber of the pulsation reactor.
  • VH 2 3.1 kg / h
  • V V L 195 kg / h
  • M 10 kg / h
  • a reactor temperature of 900 ° C is set.
  • the flue gases contain 14.6% O 2 , 0.08%, C0 2 and 0.28% NO. All other parameters correspond to those of example 1.
  • the nitrate content of the samples is reduced to values ⁇ 100 ppm and the desired
  • the phase composition of the multinarium metal oxide powder produced was adjusted.
  • a mixture of chlorides of the elements Y, Ba, Cu is in the combustion chamber of the reactor according to the stoichiometric ratio Y- ⁇ , 5 Ba 2 Cu 3 injected according to Example 1.
  • V H2 1.0 kg / h
  • V V ⁇ _ 75 kg / h
  • M 3.0 kg / h
  • a reactor temperature of 900 ° C is set.
  • Powder properties - average grain size 70 nm
  • the recalculation is carried out for 4 hours at 710 ° C in a chamber furnace.
  • the residual chloride content is reduced to ⁇ 50 ppm without reducing the sintering reactivity of the powder.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines einteiligen, multinären Metalloxidpulvers, das zur Herstellung von Hochtemperatur-Supraleitern geeignet ist. Hierzu wir ein Gemisch der entsprechenden Metallsalze und/oder Metalloxide und/oder Metalle im erforderlichen stöchiometrischen Verhältnis in einen Pulsationsreaktor mit einer pulsierenden, aus einer flammenlosen Verbrennung resultierenden Gasströmung eingebracht und teilweise oder vollständig zum multinären Metalloxid umgesetzt.

Description

Verfahren zur Herstellung von multinaren Metalloxidpulvern in einem Pulsationsreaktor
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines feinteiligen, multinaren, d.h. mehrere Elemente enthaltenden Metalloxidpulvers, das sich zur Verwendung als Vorläufer von Hochtemperatur-Supraleitern eignet.
Hochtβmperatur-Supraleiter-Materialien (HTSL) sind multinäre Oxide mit hohen Anforderungen an die chemische Reinheit, die Homogenität, die definierte Phasenzusammensetzung und die Kristallitgröße sowie die Reproduzierbarkeit. Im Stand der Technik sind einige Verfahren zur Herstellung der entsprechenden mehrphasigen Metalloxidpuiver bekannt, aus denen durch weitere Verarbeitung Hochtemperatur-Supraleiter hergestellt werden können, beispielsweise Bulkmaterial durch Pressen, Extrudieren und/oder Sintern, oder Draht- und Bandleiter mittels „Pulver-in-Rohr-Verfahren".
In den EP 117 059, EP 522 575, EP 285 392, EP 302 830, EP 912 450 und US 5,298,654 wird die Kofällung von in Wasser gelösten Metallverbindungen, z.B. von Nitraten oder Chloriden, beschrieben. Dabei werden aus den Lösungen mit Oxalsäure die wasserunlöslichen oder schwer löslichen Metalloxalatgemische ausgefällt. Die technische Realisierung dieser Prozesse erfordert einen hohen technischen Aufwand sowohl bei der Kofällung wie auch bei der Entsorgung oder Wiederverwendung der entstehenden Abbauprodukte. Die Sprühtrocknung derartiger Mischfällungs-Produkte, die meist nur in geringer Konzentration in der „Mutterlauge" (Größenordnung von 10%) als Feststoff enthalten sind, ist aus energietechnischer Sicht ungünstig. Außerdem können bei der thermischen Entwässerung durch Rückreaktionen flüchtige Produkte entstehen, die mit der Abluft ausgetragen werden und die dadurch die chemische Zusammensetzung der Nachfolgeprodukte in nicht reproduzierbarer Weise beeinflussen.
In anderen Verfahren werden Mischungen wässriger Salzlösungen von den Elementen, die im Supraleiter enthalten sein sollen, einer Sprühpyrolyse unterzogen:
In der WO 89/02871 wird ein Verfahren zur Herstellung von Multielement- Metalloxidpulvern zur Verwendung als Vorläufer für HTSL-Keramiken beschrieben, wobei Metallmischsalzlösungen in einen auf eine Temperatur von 800-1100°C erhitzten Rohrofen gesprüht werden. Bei diesem Verfahren wird einerseits aufgrund der externen elektrischen Beheizung des Rohrofens nur eine geringe Energieausbeute und andererseits nur ein relativ geringer Umsatz zum Mischoxid erreicht.
Die EP 371 211 beansprucht ein Spraypyrolyseverfahren zur Herstellung von feinteiligen, homogenen Keramikpuivern, bei dem man eine Lösung oder Suspension von Verbindungen, die die Elemente des herzustellenden Pulvers enthalten, mit Hilfe eines brennbaren Gases, vorzugsweise Wasserstoffgas, in einen Reaktor einsprüht, in dem das Gas verbrannt wird. Die Umwandlung der versprühten Tröpfchen in die Oxidpulver findet in der Flamme bei einer messbaren Temperatur von 1200-1300°C statt. Im Fall der Verwendung von Nitratlösungen ist davon auszugehen, dass auf das System Tröpfchen/Teilchen weitaus höhere Temperaturen einwirken. Die Herstellung von Pulvern für Hochtemperatur- Supraleiter mit definierter Zusammensetzung ist mit diesem Verfahren schwierig, da die Pulver in der Regel auch flüchtige Metalioxide, z.B. Bi- oder Pb-oxide enthalten, die sich in variablen Anteilen verflüchtigen.
In der DE 195 05 133 wird ein Verfahren zur Herstellung hochdisperser oxidischer Pulver beschrieben, wobei ein Aerosol von gelösten oder flüssigen Verbindungen in Sauerstoff einem Knallgasreaktor unter Druck vor der Verbrennung zugeführt wird. Dabei werden ebenfalls sehr hohe Reaktionstemperaturen benötigt.
Die EP 681 989 beschreibt ein Verfahren, bei dem Aerosole von wässrigen Lösungen, die eine Mischung der entsprechenden Metallsalze im erforderlichen stöchiometrischen Verhältnis enthalten, in einer Wasserstoff/Sauerstoff-Flamme pyrolysiert werden. Dabei wird die Flammentemperatur im Bereich von 800 bis 1100°C gehalten. Der Kontakt der Aerosole und der im Verfahren erzeugten Pulver mit Kohlenstoff oder kohlenstoffhaltigen Verbindungen oder Materialien muss dabei vermieden werden.
Zusammenfassend ist festzustellen, dass die bekannten Spraypyrolyseverfahren für die Herstellung von Hochtemperatur-Supraleiter Pulvern folgende Nachteile aufweisen: Es kommt zur Bildung unerwünschter Hochtemperaturphasen. Die Verdampfung flüchtiger Oxide kann zu Stöchiometrie-Schwankungen bzw. zu unzureichender Reproduzierbarkeit der chemischen Zusammensetzung führen. Die Verfahren führen zu einer unzureichenden Umsetzung zum Mischoxid bzw. zu einem hohen Restnitratgehalt. Es kommt zur Bildung grobkörniger und harter Agglomerate und zu pulverigen Ablagerungen an der Reaktorwand, die in zeitlichen Abständen entfernt werden müssen, wodurch der Betrieb der Anlagen ggf. unterbrochen werden muss, und die oft die Quelle harter Agglomerate sind. Ferner besteht durch die begrenzte Reaktorgeometrie nur unzureichend die Möglichkeit zur Aufskalierung.
Die DD 245 674 und die DD 245 649 beschreiben Verfahren zur Herstellung silikatischer Stoffe bzw. einphasiger Oxide, bei dem flüssige Kieselsole bzw. flüssige oder gelöste Metallverbindungen mit organischen Liganden in einer pulsierenden Verbrennung in einem Schwingfeuerreaktor zerstäubt und thermisch behandelt werden. Dieses Verfahren erzeugt hochdisperse Kieselgele bzw. Oxide mit gezielten Partikelgrößen, Oberflächengrößen und Oberflächenstrukturen.
Aufgabe der vorliegenden Erfindung ist es, ein technisch und wirtschaftlich vorteilhaftes Verfahren zur Herstellung eines multinaren, mindestens temären Metalloxidpulvers bereit zu stellen, das sich zur Verwendung als Vorläufer von Hochtemperatur-Supraleitern eignet, und das die Nachteile des Standes der Technik nicht aufweist.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, bei dem ein Gemisch der entsprechenden Metallsalze und/oder Metalloxide und/oder Metalle in fester Form oder in Form einer Lösung oder einer Suspension im erforderlichen stöchiometrischen Verhältnis enthaltend mindestens drei Elemente, ausgewählt aus Cu, Bi, Pb, Y, TI, Hg, La, Lanthanide, Erdalkalimetalle, in einen Pulsationsreaktor mit einer pulsierenden, aus einer flammenlosen Verbrennung resultierenden Gasströmung eingebracht wird und teilweise oder vollständig zum multinaren Metalloxid umgesetzt wird.
Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass ein Gemisch der entsprechenden Metallsalze, Metalloxide oder Metalle in einen
Pulsationsreaktor eingebracht wird und zum multinaren d.h. zum mehrere Elemente enthaltenden Metalloxid umgesetzt wird. Dabei werden die Metalle bzw. Metallverbindungen im erforderlichen stöchiometrischen Verhältnis eingesetzt und enthalten mindestens drei Elemente, vorzugsweise drei, vier oder fünf Elemente, ausgewählt aus der Gruppe Cu, Bi, Pb, Y, TI, Hg, La, Lanthanide, Erdalkalimetalle. Das erhaltene feinteilige, mehrere Elemente enthaltende Metalloxidpulver ist zur Verwendung bei der Herstellung von Hochtemperatur-Supraleiter-Keramiken geeignet.
Überraschenderweise werden mit dem erfindungsgemäßen Verfahren trotz extrem kurzer Verweilzeiten im Reaktor multinäre Oxide mit hohem Grad der Umsetzung erhalten. Das Verfahren zeigt eine hohe Reaktivität zur Zielphasenbildung und gute Reproduzierbarkeit der Zusammensetzung. Die erfindungsgemäß hergestellten Partikel weisen geringe Partikelgrößen auf und bei der Herstellung entstehen keine groben bzw. harten Agglomerate.
Das Wirkprinzip des Pulsationsreaktors gleicht dem eines akustischen Hohlraumresonators, der aus einer Brennkammer, einem Resonanzrohr und einem Zyklon bzw. Filter zur Pulverabscheidung besteht. Ein erfindungsgemäßer Pulsationsreaktor ist in Figur 1 dargestellt. Er besteht aus einer Brennkammer (1), an die sich abgasseitig ein Resonanzrohr (2) mit einem gegenüber der
Brennkammer deutlich verringertem Strömungsquerschnitt anschließt. Der Brennkammerboden ist mit einem oder mehreren Ventilen zum Eintritt der Brenngase ausgestattet. Zur Abscheidung der Pulver aus dem Gässtrom dient ein geeigneter Filter (3) für Feinstpartikel.
Das in die Brennkammer eintretende Brenngasgemisch wird gezündet, verbrennt sehr schnell und erzeugt eine Druckwelle in Richtung des Resonanzrohres, da die Gaseintrittsseite durch aerodynamische Ventile bei Überdruck weitgehend verschlossen wird. Durch das in das Resonanzrohr ausströmende Gas wird ein Unterdruck in der Brennkammer erzeugt, so dass durch die Ventile neues
Gasgemisch nachströmt und selbst zündet. Dieser Vorgang des Ventil-Schließens und Öffnens durch Druck und Unterdruck erfolgt selbstregelnd periodisch. Der pulsierende flammenlose Verbrennungsprozess in der Brennkammer setzt mit der Ausbreitung einer Druckwelle im Resonanzrohr Energie frei und regt dort eine akustische Schwingung an. Derartige pulsierende Strömungen sind durch einen hohen Turbulenzgrad gekennzeichnet. Die Pulsationsfrequenz kann über die Reaktorgeometrie eingestellt und über die Temperatur gezielt variiert werden. Dies bereitet dem Fachmann keinerlei Schwierigkeiten. Bevorzugt pulsiert die aus der flammenlosen Verbrennung resultierende Gasströmung mit 20 bis 150 Hz, insbesondere bevorzugt mit 30 bis 70 Hz. Bezüglich des Brennkammerdruckes und der Gasgeschwindigkeit im Resonanzrohr liegen instationäre Verhältnisse vor, die einen besonders intensiven Wärmeübergang, d.h. eine sehr schnelle und umfangreiche Energieübertragung vom pulsierenden heißen Gasstrom zu den Festkörperpartikeln gewährleisten. Dadurch gelingt es erfindungsgemäß, bei sehr kurzen Verweilzeiten im Millisekundenbereich einen sehr großen Reaktionsfortschritt zu erzielen. Überraschenderweise kann unter diesen Bedingungen auch bei multinaren Stoffsystemen ein hoher Grad der definierten Mischoxidbildung erreicht werden. Vorteilhafterweise ist eine Aufskalierung des erfindungsgemäßen Verfahrens möglich.
Als Brenngas eignet sich grundsätzlich jedes Gas, das zur Heißgaserzeugung geeignet ist. Dieses wird gegebenenfalls im Gemisch mit Sauerstoff eingesetzt. Vorzugsweise wird Erdgas und/oder Wasserstoff im Gemisch mit Luft oder gegebenenfalls Sauerstoff verwendet. Denkbar sind aber beispielsweise auch Propan oder Butan. Im Unterschied zu Pyrolyseverfahren z.B. im Permeationsreaktor dient damit die Verbrennungsluft auch als Trägergas für den Stofftransport im Reaktor.
Das Gemisch der entsprechenden Metalle und/oder Metallverbindungen kann entweder in fester Form, insbesondere in Form eines Pulvers, oder in Form einer Lösung oder Suspension in den Reaktor eingebracht werden. Zu kalzinierende feste Stoffgemische können mittels Injektor in den Gasstrom gefördert werden, wobei die pulsierende turbulente Strömung zu einer feinen Verteilung des Materials im Reaktionsraum führt. Lösungen oder Suspensionen werden mittels einer oder mehrerer Düsen, vorzugsweise mittels Zweistoffdüse feinst verteilt eingebracht. Dadurch erfolgt eine sehr schnelle Entwässerung bzw. thermische Zersetzung der Reaktanten und die verbleibenden Festkörperpartikel können im heißen Gasstrom zum Mischoxid reagieren.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Gemisch in Form einer wässerigen Salzlösung oder Suspension von Nitraten, Acetaten, Citraten, Lactaten, Tartraten, Chloriden, Hydroxiden, Carbonaten und/oder Oxalaten der entsprechenden Metalle eingebracht. Besonders bevorzugt werden Salzlösungen der entsprechenden Metalle mit dem gleichen Gegenanion verwendet. Erfindungsgemäß wird das Gemisch in die aus der flammenlosen Verbrennung resultierende heiße Gasströmung des Pulsationsreaktors eingebracht. Dadurch verdampft bzw. verbrennt das gegebenenfalls vorhandene Lösungsmittel und Metallsalz- bzw. Metalloxidpartikel bilden sich, die dann im weiteren Verlauf der Reaktion durch thermische Umsetzung, Oxidation und/oder Reduktion ganz oder teilweise zum multinaren Metalloxid ungesetzt werden.
Bei dem erfindungsgemäßen Verfahren kann das Gemisch entweder direkt in die Brennkammer des Pulsationsreaktors oder in das an die Brennkammer anschließende Resonanzrohr des Pulsationsreaktors eingebracht werden. Das Einbringen in das Resonanzrohr hat den Vorteil, das dadurch der Verbrennungsprozess von den chemischen Festkörperreaktionen getrennt wird.
Durch die flammenlose Verbrennung und die turbulenten Strömungsverhältnisse liegt im Reaktionsraum eine homogene Temperaturverteilung vor, so dass die eingebrachten Rohstoffe einer gleichartigen thermischen Behandlung unterliegen. Damit werden lokale Überhitzungen und Wandablagerungen vermieden, die bei den Sprühpyrolyseverfahren zur Bildung grober und harter Agglomerate führen. Die aus der pulsierenden Verbrennung resultierende Gasströmung weist im Pulsationsreaktor Strömungsturbulenzen auf, deren Turbulenzgrad in einer bevorzugten Ausführungsform 5 bis 10-fach über dem Turbulenzgrad einer stationären Strömung liegt. Die Temperatur der Gasströmung in der Brennkammer des Pulsationsreaktors liegt vorzugsweise oberhalb von 650°C, insbesondere oberhalb vom 800°C. Bei keramischer Auskleidung der Brennkammer und gegebenenfalls des Resonanzrohres besteht die Möglichkeit das erfindungsgemäße Verfahren auch bei sehr hohen, mit anderen Verfahren nicht realisierbaren Temperaturen in der Gasströmung durchzuführen.
Die im Reaktor erzeugten Partikel werden mit einer geeigneten Abscheideeinrichtung, deren Auswahl dem Fachmann keinerlei Schwierigkeiten bereitet, wie beispielsweise einem Gaszyklon, einem Oberflächen- oder einem Elektrofilter, von der Gasströmung abgetrennt.
Das Reaktionsgas wird vor seinem Eintritt in den Abscheider auf die je nach Filtertyp erforderliche Temperatur abgekühlt. Dies erfolgt durch einen
Wärmetauscher und/oder durch Einleiten von Kühlgasen in den Abgasstrom. Als besonderer Vorteil des erfindungsgemäßen Verfahrens gilt, dass anstelle von Heißgasfiltern kostengünstige Hochleistungsschwebstofffilter mit vergleichsweise hohen spezifischen Filterflächen und Durchsatzleistungen angewendet werden können. Durch Einleiten CO2-freier Kühlgase kann Pulver mit besonders niedrigem Restkohlenstoffgehalt hergestellt werden. Mittels Variation des Sauerstoffpartialdruckes bei der Einleitung der Kühlgase kann die Phasenzusammensetzung des Pulvers beeinflusst werden.
In einer Variante des erfindungsgemäßen Verfahrens kann das eingesetzte Gemisch der entsprechenden Metalle bzw. Metallverbindungen zusätzlich Dotierungen in Form gelöster Salze und/oder dispergierter Feststoffe enthalten. Diese Dotierungen werden dem Gemisch in geringen Mengen, d.h. bis maximal 5 Gew.-%, vorzugsweise bis zu 1 Gew.-% des Gemisches, zugesetzt, um gezielt bestimmte Eigenschaften des herzustellenden multinaren Metalloxidpulvers zu beeinflussen. Beispielsweise kann durch Dotierungen die Kristal litgröße von Sekundärphasen, die als Pinningzentren wirken, begrenzt werden oder es können die mechanischen Eigenschaften des Bulkmaterials verbessert werden. Unter der Kristallitgröße ist die Größe des kristallographisch einheitlichen Bereich eines Pulverpartikels zu verstehen und ein Pinningzentrum ist ein Haftzentrum für den Magentischen Fluss in Supraleitern (z.B. an nicht supraleitenden Sekundärphasen). Als Dotierung werden ein oder mehrere der Elemente ausgewählt aus der Gruppe Ib z.B. Ag, aus der Gruppe Mb z.B. Zn, aus der Gruppe IVa z.B. Sn, aus der Gruppe IVb z.B. Zr, und/oder aus der Gruppe Vllb des Periodensystems z.B. Mn verwendet.
In einer weiteren Variante des erfindungsgemäßen Verfahrens kann das
Metalloxidpulver im Anschluss an die Umsetzung im Pulsationsreaktor einer thermischen Nachbehandlung im Temperaturbereich von 500 bis 960°C, vorzugsweise von 550 bis 800°C, unterzogen werden. Die Auswahl einer geeigneten Art der Nachkalzination in Abhängigkeit von der Pulverart, gewünschter Phasenzusammensetzung und Anwendung bereitet dem Fachmann keinerlei Schwierigkeiten. Insbesondere bevorzugt wird die Nachkalzination in einer Pulverschüttung in einem Kammer-, Rohr-, Durchschub-, Band- oder Drehrohrofen oder in einem Wirbelbett. Dabei sind die Bedingungen so einzustellen, dass einerseits die gewünschte Phasenzusammensetzung erreicht wird, andererseits aber keine Bildung harter Agglomerate durch Sintern oder
Verschmelzung von Primärkristalliten eintritt. Im Bedarfsfalle wird das Pulver einer Mahlung mittels Luftstrahlmühle, Mahlkörpermühle, Prallmühle oder anderen Mahlaggregaten unterzogen.
Bevorzugt sind erfindungsgemäße Verfahren, bei denen die entsprechenden Metalle bzw. Metallverbindungen aus einer der nachfolgenden Zusammensetzungen ausgewählt werden: Bi-EA-Cu, (Bi,Pb)-EA-Cu, Y-EA-Cu, (Y,SE)-EA-Cu, TI-EA-Cu, (Tl.Pb)-EA-Cu oder TI-(Y,EA)-Cu, wobei EA für Erdalkalimetallelemente, insbesondere für Ba, Ca und/oder Sr, und SE für Seltenerdmetalle steht.
Besonders bevorzugt werden für das erfindungsgemäße Verfahren Gemische verwendet, bei denen die eingesetzten Substanzen die folgenden Molverhältnisse der entsprechenden Metalle aufweisen:
Bi(2,o+/-X) Sr(2.0+/-x) Ca(1.0+/-x) CU(2.0+/-X) mit x=0,3, vorzugsweise mit x=0,2, oder Pb(0.3+/-y) Bi(i. +/.y) Sr(2.o+/-y) Ca(2.o+/.y) Cu(3.0+/-y) mit y=0,3 oder Yc Bad Cu3 mit 1 <c<1 ,8 und 1 ,5<d< 2,5.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein feinteiliges, multinäres Metalloxidpulver, das nach einem erfindungsgemäßen Verfahren hergestellt wurde. In einer besonders bevorzugten Ausführungsvariante ist die mittlere Kristallitgröße des erfindungsgemäß hergestellten Metalloxidpulvers, d.h. die mittlere Größe des kristallographisch einheitlichen Bereich eines Pulverpartikels, < 500 nm. Bevorzugt werden Metalloxidpulver erfindungsgemäß hergestellt, die aus einer der nachfolgenden Zusammensetzungen bestehen: Bi-EA-Cu-O, (Bi,Pb)-EA-Cu-O, Y-EA-Cu-O, (Y,SE)-EA-Cu-O, Tl-EA-Cu-O, (TI,Pb)-EA-Cu-0 oder TI-(Y,EA)-Cu-O, wobei EA für Erdalkalimetallelemente, insbesondere für Ba, Ca und/oder Sr, und SE für Seltenerdmetalle steht.
Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäß hergestellten Metalloxidpulver zur Herstellung von Hochtemperatur-Supraleitern.
Aus den erfindungsgemäß hergestellten Metalloxidpulvern können beispielsweise hochtemperatursupraleitende Hohl- oder Vollkörper in Form von Platten, Scheiben, Ringen, Rohren, Stäben, etc. angefertigt werden, die als
Stromzuführung oder Lagerbauteile verwendet werden können. Aus Pulvern oder gepressten Stäben können silberummantelte hochtemperatursupraleitende Drähte oder Bandleiter hergestellt werden. Die Drähte und Bandleiter finden zum Beispiel für Starkstromkabel, Stromleitungen, Transformatoren, Motor- und Generator- Wicklungen, Magnete, Stromzuführungen oder Lager Verwendung. Des weiteren können aus den erfindungsgemäß hergestellten Metallmischoxidpulvern Targets für Beschichtungsverfahren hergestellt werden oder sie können zur Herstellung beschichteter Bandleiter verwendet werden.
Die vollständige Offenbarung aller vor- und nachstehend aufgeführten Anmeldungen, Patente und Veröffentlichungen, sowie der korrespondierenden Anmeldung DE 101 11 938.0, eingereicht am 13.03.2001 , sind durch Bezugnahme in diese Anmeldung eingeführt.
Auch ohne weitere Ausführungen wird davon ausgegangen, dass ein Fachmann die obige Beschreibung im weitesten Umfang nutzen kann. Die bevorzugten Ausführungsformen und Beispiele für das erfindungsgemäße Verfahren sind deswegen lediglich als beschreibende, keineswegs als in irgendeiner Weise limitierende Offenbarung aufzufassen.
Beispiel 1 :
Es wird ein Gemisch von wässrigen Nitratlösungen der Elemente Bi, Pb, Sr, Ca und Cu gemäß der Stöchiometrie Bi1ι75 Pb0,35 Srι,98 Ca2]0 Cu3 Ox hergestellt, wobei der Gesamtsalzgehalt der Mischnitratlösung 40% beträgt.
Die Geometrie des Pulsationsreaktors ist definiert durch das Verhältnis
Brennkammer-Länge zu Brennkammer-Durchmesser gleich 2,2 und durch das Verhältnis Resonanzrohr- Länge zu Resonanzrohr-Durchmesser gleich 33. Mittels Zweistoffdüse wird die Mischnitratlösung in den vorderen Abschnitt des Resonanzrohres als Aerosol eingebracht. Die verfahrenstechnischen Parameter Brennstoffmenge (Wasserstoff) VH2, Verbrennungsluftmenge VVL werden entsprechend der eingedüsten Mischnitratlösung M so gewählt, dass sich im Resonanzrohr die gewünschte Reaktionstemperatur von 700°C einstellt: VH2 = 2,5 kg/h; VVL = 195 kg/h; M= 10 kg/h. Die Rauchgase am Ende des Resonanzrohres enthalten 16,9 % O2, 0,09%, CO2 und 0,24% NO.
Die Pulverabscheidung erfolgt mittels Kassettenfilter mit einer Filterfläche von 24 m2 und maximaler Temperaturbelastbarkeit von 130°C. Eigenschaften des hergestellten Pulvers B s Pbo,35 Sr1 |98 Ca2,o Cu3 Ox:
- mittlere Korngröße 0,15 μm
- spezifische Oberfläche 9,4 m2/g - Restnitratgehalt: 6,0%
Es erfolgt eine 8-stündige Nachkalzination in einem Kammerofen bei einer Temperatur von 810°C, bei der das multinäre Metalloxidpulver in Ag-Schiffchen mit einer maximalen Schütthöhe von 4 cm eingefüllt ist. Dabei wird der Nitratgehalt der Proben auf werte < 100 ppm abgesenkt und die gewünschte
Phasenzusammensetzung des hergestellten multinaren Metalloxidpulvers eingestellt.
Beispiel 2:
Ein Stoffgemisch gemäß Beispiel 1 wird axial in die Brennkammer des Pulsationsreaktors eingedüst. Mit VH2 = 3,1 kg/h; VVL = 195 kg/h; M= 10 kg/h wird eine Reaktortemperatur von 900°C eingestellt. Die Rauchgase enthalten 14,6 % O2, 0,08%, C02 und 0,28% NO. Alle anderen Parameter entsprechen denen von Beispiel 1.
Eigenschaften des hergestellten Pulvers Bi |75 Pb0,35 Sr1]98 Ca2,o Cu3 Ox:
- mittlere Korngröße 0,24 μm
- spezifische Oberfläche 8,4 m2/g - Restnitratgehalt: 4,4%
Durch eine 8-stündige Nachkalzination in einem Kammerofen bei einer Temperatur von 800°C, bei der das multinäre Metalloxidpulver in Ag-Schiffchen mit einer maximalen Schütthöhe von 4 cm eingefüllt ist, wird der Nitratgehalt der Proben auf werte < 100 ppm abgesenkt und die gewünschte
Phasenzusammensetzung des hergestellten multinaren Metalloxidpulvers eingestellt.
Beispiel 3:
Ein Gemisch von Chloriden der Elemente Y, Ba, Cu wird entsprechend dem stöchiometrischen Verhältnis Y-ι,5 Ba2 Cu3 in die Brennkammer des Reaktors gemäß Beispiel 1 eingedüst. Mit VH2 = 1 ,0 kg/h; VVι_= 75 kg/h; M= 3,0 kg/h wird eine Reaktortemperatur von 900°C eingestellt.
Pulvereigenschaften: - mittlere Korngröße 70 nm
- spezifische Oberfläche 12 m2/g
- Restchloridgehalt: 2,5%
Die Nachkalzination erfolgt 4 Stunden bei 710°C in einem Kammerofen. Hierdurch wird der Restchloridgehalt auf < 50 ppm abgebaut, ohne die Sinterreaktivität des Pulvers zu vermindern.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines feinteiligen, multinaren Metalloxidpulvers, das sich zur Verwendung als Vorläufer von Hochtemperatur-Supraleitern eignet, dadurch gekennzeichnet, dass ein Gemisch der entsprechenden Metallsalze und/oder Metalloxide und/oder Metalle in fester Form oder in Form einer Lösung oder einer Suspension im erforderlichen stöchiometrischen Verhältnis enthaltend mindestens drei Elemente, ausgewählt aus Cu, Bi, Pb, Y, TI, Hg, La, Lanthanide, Erdalkalimetalle, in einen Pulsationsreaktor mit einer pulsierenden, aus einer flammenlosen Verbrennung resultierenden Gasströmung eingebracht wird und teilweise oder vollständig zum multinaren Metalloxid umgesetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Gemisch eine wässrige Salzlösung oder -Suspension von Nitraten, Acetaten, Citraten, Lactaten, Tartraten, Chloriden, Hydroxiden, Carbonaten und/oder Oxalaten eingebracht wird.
3. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gemisch direkt in die Brennkammer des Pulsationsreaktors oder in das an die Brennkammer anschließende Resonanzrohr des Pulsationsreaktors eingebracht wird.
4. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aus der flammenlosen
Verbrennung resultierende Gasströmung im Pulsationsreaktor mit 20 bis 150 Hz, insbesondere mit 30 bis 70 Hz, pulsiert.
5. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aus der flammenlosen Verbrennung resultierende Gasströmung im Pulsationsreaktor
Strömungsturbulenzen aufweist, deren Turbulenzgrad 5-10-fach über demjenigen einer stationären Strömung liegt.
6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gasströmung in der Brennkammer des Pulsationsreaktors Temperaturen oberhalb vom 650°C, insbesondere oberhalb von 800°C, aufweist.
7. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gemisch Dotierungen in Form gelöster Salze und/oder dispergierter Feststoffe eines oder mehrerer der Elemente ausgewählt aus der Gruppe Ib des Periodensystems, insbesondere Ag, der Gruppe Mb, insbesondere Zn, der Gruppe IVa, insbesondere Sn, der Gruppe
IVb, insbesondere Zr, der Gruppe Vllb, insbesondere Mn, enthält.
8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Metalloxidpulver im Anschluss an die Umsetzung im Pulsationsreaktor einer thermischen Nachbehandlung im Temperaturbereich von 500 bis 960°C, vorzugsweise von 550 bis 800°C, unterzogen wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die thermische Nachbehandlung in einem Kammer-, Rohr-, Durchschub-, Band- oder Drehrohrofen oder in einem Wirbelschichtreaktor durchgeführt wird.
10. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Gemisch Verbindungen mit Elementen ausgewählt aus den folgenden Gruppen eingesetzt werden: Bi-EA-Cu, (Bi,Pb)-EA-Cu, Y-EA-Cu, (Y,SE)-EA-Cu, TI-EA-Cu, (TI.Pb)-EA-Cu oderTI-(Y,EA)-Cu, wobei EA für Erdalkalimetallelemente, insbesondere für Ba, Ca und/oder Sr, und SE für Seltenerdmetalle steht.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Verbindungen des Gemisches im folgenden Molverhältnis der Elemente eingesetzt werden Bi(2,o+/-x) Sr(2.0+/-χ) Ca(1.o+/-χ) Cu(2.o+/-x) mit x=0,3, vorzugsweise mit x=0,2, oder Pb(o.3+/-y) Bi(i.7+/.y) Sr(2.o+-y) Ca(2.o+/-y) CU(3.o+/.y) mity-0,3 oder Yc Bad Cu3 aufweisen mit 1 <c<1 ,8 und 1 ,5<d< 2,5.
12. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das hergestellte feinteilige Metalloxidpulver eine mittlere Kristallitgröße < 500 nm aufweist.
13. Feinteilige, multinäre Metalloxidpulver hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 12.
14. Metalloxidpulver nach Anspruch 13, dadurch gekennzeichnet, dass sie aus einer der nachfolgenden Zusammensetzungen bestehen: Bi-EA-Cu-O, (Bi,Pb)-EA-Cu-O, Y-EA-Cu-O,
(Y,SE)-EA-Cu-0, Tl-EA-Cu-O, (TI,Pb)-EA-Cu-O oderTI-(Y,EA)-Cu-O, wobei EA für Erdalkalimetallelemente, insbesondere für Ba, Ca und/oder Sr, und SE für Seltenerdmetalle steht.
15. Verwendung des nach einem oder mehreren der Ansprüche 1 bis 12 hergestellten Metalloxidpulvers zur Herstellung von Hochtemperatur- Supraleitern.
PCT/EP2002/002408 2001-03-13 2002-03-06 Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor WO2002072471A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/471,590 US7358212B2 (en) 2001-03-13 2002-03-06 Method for producing multinary metal oxide powders in a pulsed reactor
CA002440613A CA2440613A1 (en) 2001-03-13 2002-03-06 Method for producing multinary metal oxide powders in a pulsed reactor
JP2002571398A JP2004526653A (ja) 2001-03-13 2002-03-06 複数の金属酸化物粉末のパルスリアクタでの製造方法
AT02729963T ATE490216T1 (de) 2001-03-13 2002-03-06 Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor
DE50214795T DE50214795D1 (de) 2001-03-13 2002-03-06 Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor
EP02729963A EP1370486B1 (de) 2001-03-13 2002-03-06 Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor
KR10-2003-7011845A KR20040012731A (ko) 2001-03-13 2002-03-06 맥동 반응기에서의 다원성 금속 산화물 분말의 제조 방법
AU2002302391A AU2002302391A1 (en) 2001-03-13 2002-03-06 Method for producing multinary metal oxide powders in a pulsed reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10111938.0 2001-03-13
DE10111938A DE10111938A1 (de) 2001-03-13 2001-03-13 Herstellung von Hochtemperatur-Supraleiter-Pulvern in einem Pulsationsreaktor

Publications (2)

Publication Number Publication Date
WO2002072471A2 true WO2002072471A2 (de) 2002-09-19
WO2002072471A3 WO2002072471A3 (de) 2003-10-02

Family

ID=7677222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/002408 WO2002072471A2 (de) 2001-03-13 2002-03-06 Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor

Country Status (10)

Country Link
US (1) US7358212B2 (de)
EP (1) EP1370486B1 (de)
JP (1) JP2004526653A (de)
KR (1) KR20040012731A (de)
CN (1) CN1257100C (de)
AT (1) ATE490216T1 (de)
AU (1) AU2002302391A1 (de)
CA (1) CA2440613A1 (de)
DE (2) DE10111938A1 (de)
WO (1) WO2002072471A2 (de)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027270A2 (de) * 2004-09-10 2006-03-16 Unicore Ag & Co. Kg Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen
WO2006076964A2 (de) * 2005-01-19 2006-07-27 Merck Patent Gmbh Verfahren zur herstellung von mischoxiden mittels sprühpyrolyse
WO2007071530A2 (en) * 2005-12-23 2007-06-28 Evonik Degussa Gmbh Process for preparing pulverulent solids
WO2007105226A1 (en) * 2006-03-10 2007-09-20 Concil Of Scientific & Industrial Research Process for preparation of high temperature superconducting bulk current leads with improved properties and superconducting bulk current leads made thereby
WO2007144242A2 (en) * 2006-06-13 2007-12-21 Evonik Degussa Gmbh Process for preparing metal oxide powders
WO2007144060A1 (de) * 2006-06-12 2007-12-21 Merck Patent Gmbh Verfahren zur herstellung von granat-leuchtstoffen in einem pulsationsreaktor
WO2008006565A1 (de) 2006-07-13 2008-01-17 Süd-Chemie AG Verfahren zur herstellung nanokristalliner metalloxide
WO2008028681A2 (de) * 2006-09-07 2008-03-13 Süd-Chemie AG Verfahren zur herstellung nanokristalliner gemischter metalloxide und nanokristalline gemischte metalloxide, erhältlich durch das verfahren
DE102006039462A1 (de) * 2006-08-23 2008-03-20 Ibu-Tec Gmbh & Co. Kg Verfahren zur Herstellung von Partikeln
DE102007003744A1 (de) 2007-01-19 2008-07-31 Ibu-Tec Advanced Materials Gmbh Verfahren und thermischer Reaktor zur Herstellung von Partikeln
DE102007059990A1 (de) 2007-12-13 2009-06-18 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Hydrotalcitverbindungen
DE102008006607A1 (de) 2008-01-30 2009-08-06 Ibu-Tec Advanced Materials Ag Verfahren zur Herstellung feinteiliger Partikel
CN103896576A (zh) * 2014-03-06 2014-07-02 北京英纳超导技术有限公司 一种改性铋系超导粉及其制备方法
EP2982435A1 (de) 2014-08-07 2016-02-10 Kronos International, Inc. Verfahren zur Herstellung eines kohlenstoffhaltigen Photokatalysators auf Basis von Titandioxid
EP3053571A1 (de) 2015-02-05 2016-08-10 Dentsply DeTrey GmbH Verfahren zur Herstellung einer teilchenförmigen Dentalfüllstoffzusammensetzung
DE102015003398A1 (de) 2015-03-18 2016-09-22 Dennert Poraver Gmbh Verfahren und Anlage zur Herstellung von Mikrohohlkugeln aus Glas
DE102017126363A1 (de) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Herstellung eines Zeoliths
DE102018211645A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211635A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211652A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211641A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung und Verfahren zur Herstellung von Partikeln
DE102018211639A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung und Verfahren zur Herstellung von Partikeln
DE102018211628A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102019210282A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211650A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
WO2020225425A1 (de) 2019-05-09 2020-11-12 Ibu-Tec Advanced Materials Ag VORRICHTUNG ZUR THERMISCHEN BEHANDLUNG EINES ROHSTOFFS IN EINEM PULSIERENDEN HEIßGASSTROM
DE102019218690A1 (de) * 2019-12-02 2021-06-02 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
WO2021175849A1 (de) 2020-03-02 2021-09-10 Ibu-Tec Advanced Materials Ag Verfahren zur thermischen behandlung eines batteriematerials in einem thermischen reaktor
EP4327927A1 (de) 2022-08-23 2024-02-28 IBU-tec advanced materials AG Verfahren und reaktor zur thermischen behandlung von batterievorläufermaterial

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036437A1 (en) * 2000-04-03 2001-11-01 Andreas Gutsch Nanoscale pyrogenic oxides
WO2004058638A1 (de) * 2002-12-23 2004-07-15 Universität Tübingen Verfahren zur herstellung von nitrathaltigen precursoren für metalloxide und oxocuprat-supraleiter
US7589046B2 (en) * 2003-06-04 2009-09-15 Basf Aktiengesellschaft Thermal treatment of the precursor material of a catalytically active material
DE10328342B4 (de) * 2003-06-24 2006-05-04 Graphit Kropfmühl AG Verfahren zur Herstellung von expandiertem Graphit, expandierter Graphit und Verwendung
DE102004041747A1 (de) * 2004-08-28 2006-03-02 Degussa Ag Indium-Zinn-Mischoxidpulver
CN100372596C (zh) * 2005-01-13 2008-03-05 清华大学 一种燃煤排放可吸入颗粒物及其前驱体的脱除方法及装置
JP4799885B2 (ja) * 2005-03-14 2011-10-26 株式会社 赤見製作所 金属化合物粉末の製造法
JP5034314B2 (ja) * 2006-05-19 2012-09-26 住友大阪セメント株式会社 高屈折率透明粒子の製造方法と高屈折率透明粒子及び高屈折率透明複合体並びに発光素子
DE102006046806B4 (de) * 2006-06-14 2008-10-30 Ibu-Tec Advanced Materials Gmbh Verfahren zur Herstellung von beschichteten Partikeln und Verwendung eines thermischen Reaktors zur Durchführung des Verfahrens
DE102006046803A1 (de) * 2006-09-29 2008-04-03 Ibu-Tec Gmbh & Co. Kg Verfahren und thermischer Reaktor zur Herstellung von Partikeln
DE102008017308B4 (de) * 2008-04-04 2014-09-25 Süd-Chemie Ip Gmbh & Co. Kg Verfahren zur Herstellung von nanokristallinen Bismut-Molybdänmischoxidkatalysatoren
DE102008020600B4 (de) * 2008-04-24 2010-11-18 Outotec Oyj Verfahren und Anlage zur Wärmebehandlung feinkörniger mineralischer Feststoffe
JP2011096394A (ja) * 2009-10-27 2011-05-12 Univ Of Fukui リチウムイオン二次電池正極活物質の製造方法
JP5289511B2 (ja) * 2011-06-24 2013-09-11 株式会社 赤見製作所 金属化合物粉末の製造法
CN104445356B (zh) * 2014-10-30 2016-06-29 东南大学 含铜金属复合氧化物光催化材料的制备方法
CN106986560A (zh) * 2016-01-20 2017-07-28 海城市后英经贸集团有限公司 一种垱设脉冲燃烧设施
DE102017126365A1 (de) * 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Herstellung eines Zeoliths
DE102017128734A1 (de) 2017-12-04 2019-06-06 Schott Ag Verbundmaterial, umfassend wenigstens ein erstes Material und Partikel, wobei die Partikel einen negativen thermischen Ausdehnungskoeffizienten α aufweisen, und Klebematerial umfassend das Verbundmaterial
DE102017128719A1 (de) 2017-12-04 2019-06-06 Schott Ag Lithiumionenleitendes Verbundmaterial, umfassend wenigstens ein Polymer und lithiumionenleitende Partikel, und Verfahren zur Herstellung eines Lithiumionenleiters aus dem Verbundmaterial
CN109244229B (zh) * 2018-09-13 2022-03-18 安徽建筑大学 一种微电子超导材料及其制备方法
CN115414962B (zh) * 2022-09-22 2023-09-15 西北有色金属研究院 一种制备分子筛负载多元合金纳米颗粒材料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19608841C1 (de) * 1996-03-07 1997-08-28 Heidelberger Zement Ag Verfahren zur Herstellung von Metakaolin aus kaolinitischem Ton
DE19614430C1 (de) * 1996-04-12 1997-10-02 Pfeifer & Langen Verfahren zur Herstellung von Calciumoxid aus gefälltem Calciumcarbonat und Verwendungen
EP0905104A1 (de) * 1997-09-25 1999-03-31 Aventis Research & Technologies GmbH & Co. KG Verfahren zur Herstellung von hochtemperatursupraleitenden Bi (Pb) SrCaCuO-haltigen Pulvern und deren Verwendung
WO1999038819A1 (de) * 1998-01-30 1999-08-05 Aventis Research & Technologies Gmbh & Co. Kg Verfahren zum herstellen von oxidischen pulvers mit geringen kohlenstoff- und wasserstoffgehalten, deren verwendung sowie mischoxide für hochtemperatursupraleiter und hochtemperatursupraleiter

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606698B2 (ja) * 1987-03-23 1997-05-07 株式会社 半導体エネルギー研究所 超電導セラミツクスの作製方法
JP2630361B2 (ja) * 1987-03-27 1997-07-16 株式会社 半導体エネルギー研究所 超電導材料
JPH0649626B2 (ja) * 1987-08-27 1994-06-29 株式会社半導体エネルギ−研究所 酸化物超電導材料
US5106830A (en) * 1988-01-15 1992-04-21 University Of Arkansas High temperature superconductor system having the formula Tl-Ba-Cu-O
US5340796A (en) * 1988-02-12 1994-08-23 At&T Bell Laboratories Oxide superconductor comprising Cu, Bi, Ca and Sr
CA1341504C (en) * 1988-03-25 2006-04-11 Jun Akimitsu Substituted superconductive bi-sr-ca-cu oxide and bi-sr-ca-ln-cu oxide compositions
US5114702A (en) * 1988-08-30 1992-05-19 Battelle Memorial Institute Method of making metal oxide ceramic powders by using a combustible amino acid compound
US5348935A (en) * 1988-10-28 1994-09-20 The Regents Of The University Of California Highly oxidized superconductors
US4997808A (en) * 1988-12-27 1991-03-05 Eastman Kodak Company Superconductive ceramic oxide combination
US5306697A (en) * 1989-02-10 1994-04-26 University Of Houston - University Park Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same
JP3205997B2 (ja) * 1990-09-21 2001-09-04 東レ株式会社 超電導体
US5204313A (en) * 1990-12-07 1993-04-20 Eastman Kodak Company Process of forming a high temperature superconductor on a metal substrate surface
GB9409660D0 (en) * 1994-05-13 1994-07-06 Merck Patent Gmbh Process for the preparation of multi-element metaloxide powders
US6027826A (en) * 1994-06-16 2000-02-22 The United States Of America As Represented By The Secretary Of The Air Force Method for making ceramic-metal composites and the resulting composites
JPH0881221A (ja) * 1994-09-13 1996-03-26 Furukawa Electric Co Ltd:The 酸化物超電導体およびその製造方法
US5919735A (en) * 1994-11-04 1999-07-06 Agency Of Industrial Science And Technology High temperature superconductor
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6540838B2 (en) * 2000-11-29 2003-04-01 Genus, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
JP2003525189A (ja) * 1999-07-30 2003-08-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 反応性の向上したPb−Bi−Sr−Ca−Cu−酸化物粉末混合物、およびその製造方法
US6794339B2 (en) * 2001-09-12 2004-09-21 Brookhaven Science Associates Synthesis of YBa2CU3O7 using sub-atmospheric processing
KR100460841B1 (ko) * 2002-10-22 2004-12-09 한국전자통신연구원 플라즈마 인가 원자층 증착법을 통한 질소첨가 산화물박막의 형성방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19608841C1 (de) * 1996-03-07 1997-08-28 Heidelberger Zement Ag Verfahren zur Herstellung von Metakaolin aus kaolinitischem Ton
DE19614430C1 (de) * 1996-04-12 1997-10-02 Pfeifer & Langen Verfahren zur Herstellung von Calciumoxid aus gefälltem Calciumcarbonat und Verwendungen
EP0905104A1 (de) * 1997-09-25 1999-03-31 Aventis Research & Technologies GmbH & Co. KG Verfahren zur Herstellung von hochtemperatursupraleitenden Bi (Pb) SrCaCuO-haltigen Pulvern und deren Verwendung
WO1999038819A1 (de) * 1998-01-30 1999-08-05 Aventis Research & Technologies Gmbh & Co. Kg Verfahren zum herstellen von oxidischen pulvers mit geringen kohlenstoff- und wasserstoffgehalten, deren verwendung sowie mischoxide für hochtemperatursupraleiter und hochtemperatursupraleiter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHELUKAR S.D. ET AL: "Continuous Rotary Kiln Calcination of YBaCuO Precursor Powders" IND. ENG. CHEM. RES., Bd. 33, 1994, Seiten 421-427, XP002239301 *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044266A1 (de) * 2004-09-10 2006-03-30 Umicore Ag & Co. Kg Verfahren zur Herstellung alkalimetallhaltiger, mehrkomponentiger Metalloxidverbindungen und damit hergestellte Metalloxidverbindungen
WO2006027270A3 (de) * 2004-09-10 2007-01-04 Unicore Ag & Co Kg Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen
WO2006027270A2 (de) * 2004-09-10 2006-03-16 Unicore Ag & Co. Kg Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen
WO2006076964A2 (de) * 2005-01-19 2006-07-27 Merck Patent Gmbh Verfahren zur herstellung von mischoxiden mittels sprühpyrolyse
WO2006076964A3 (de) * 2005-01-19 2007-08-23 Merck Patent Gmbh Verfahren zur herstellung von mischoxiden mittels sprühpyrolyse
WO2007071530A2 (en) * 2005-12-23 2007-06-28 Evonik Degussa Gmbh Process for preparing pulverulent solids
WO2007071530A3 (en) * 2005-12-23 2007-11-29 Degussa Process for preparing pulverulent solids
CZ306776B6 (cs) * 2006-03-10 2017-07-07 Council Of Scientific & Industrial Research Způsob přípravy vysokoteplotních supravodivých velkokapacitních vodičů elektrického proudu se zlepšenými vlastnostmi a supravodivé velkokapacitní vodiče elektrického proudu tímto vyrobené
WO2007105226A1 (en) * 2006-03-10 2007-09-20 Concil Of Scientific & Industrial Research Process for preparation of high temperature superconducting bulk current leads with improved properties and superconducting bulk current leads made thereby
WO2007144060A1 (de) * 2006-06-12 2007-12-21 Merck Patent Gmbh Verfahren zur herstellung von granat-leuchtstoffen in einem pulsationsreaktor
WO2007144242A2 (en) * 2006-06-13 2007-12-21 Evonik Degussa Gmbh Process for preparing metal oxide powders
WO2007144242A3 (en) * 2006-06-13 2008-04-03 Evonik Degussa Gmbh Process for preparing metal oxide powders
WO2008006565A1 (de) 2006-07-13 2008-01-17 Süd-Chemie AG Verfahren zur herstellung nanokristalliner metalloxide
US9579631B2 (en) 2006-07-13 2017-02-28 Sued-Chemie Ip Gmbh & Co. Kg Process for the preparation of nanocrystalline metal oxides
EP2335821B1 (de) 2006-07-13 2016-03-16 IBU-tec advanced materials AG Verfahren zur Herstellung nanokristalliner Metalloxide
EA016985B1 (ru) * 2006-07-13 2012-08-30 Зюд-Хеми Аг Способ получения нанокристаллических частиц оксидов металлов
EP2335821A1 (de) 2006-07-13 2011-06-22 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Metalloxide
DE102006039462A1 (de) * 2006-08-23 2008-03-20 Ibu-Tec Gmbh & Co. Kg Verfahren zur Herstellung von Partikeln
DE102006039462B4 (de) * 2006-08-23 2010-02-18 Ibu-Tec Advanced Materials Ag Verfahren zur Herstellung von Partikeln
US8361619B2 (en) 2006-09-07 2013-01-29 Sud-Chemie Ag Process for preparing nanocrystalline mixed metal oxides
EP2059477B1 (de) 2006-09-07 2015-11-18 IBU-tec advanced materials AG Verfahren zur herstellung nanokristalliner gemischter metalloxide
WO2008028681A2 (de) * 2006-09-07 2008-03-13 Süd-Chemie AG Verfahren zur herstellung nanokristalliner gemischter metalloxide und nanokristalline gemischte metalloxide, erhältlich durch das verfahren
WO2008028681A3 (de) * 2006-09-07 2008-04-24 Sued Chemie Ag Verfahren zur herstellung nanokristalliner gemischter metalloxide und nanokristalline gemischte metalloxide, erhältlich durch das verfahren
DE102007003744A1 (de) 2007-01-19 2008-07-31 Ibu-Tec Advanced Materials Gmbh Verfahren und thermischer Reaktor zur Herstellung von Partikeln
DE102007059990A8 (de) * 2007-12-13 2009-10-15 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Hydrotalcitverbindungen
DE102007059990A1 (de) 2007-12-13 2009-06-18 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Hydrotalcitverbindungen
DE102008006607A1 (de) 2008-01-30 2009-08-06 Ibu-Tec Advanced Materials Ag Verfahren zur Herstellung feinteiliger Partikel
EP2092976A1 (de) 2008-01-30 2009-08-26 IBU-tec advanced materials AG Verfahren zur Herstellung feinteiliger Partikel
DE102008006607B4 (de) * 2008-01-30 2011-03-03 Ibu-Tec Advanced Materials Ag Verfahren zur Herstellung feinteiliger Partikel
CN103896576A (zh) * 2014-03-06 2014-07-02 北京英纳超导技术有限公司 一种改性铋系超导粉及其制备方法
EP2982435A1 (de) 2014-08-07 2016-02-10 Kronos International, Inc. Verfahren zur Herstellung eines kohlenstoffhaltigen Photokatalysators auf Basis von Titandioxid
EP3053571A1 (de) 2015-02-05 2016-08-10 Dentsply DeTrey GmbH Verfahren zur Herstellung einer teilchenförmigen Dentalfüllstoffzusammensetzung
US10610459B2 (en) 2015-02-05 2020-04-07 Dentsply Sirona Inc. Process for the preparation of a particulate dental filler composition
EP3053571B1 (de) 2015-02-05 2017-03-22 Dentsply DeTrey GmbH Verfahren zur Herstellung einer teilchenförmigen Dentalfüllstoffzusammensetzung
DE102015003398B4 (de) 2015-03-18 2018-11-22 Dennert Poraver Gmbh Verfahren und Anlage zur Herstellung von Mikrohohlkugeln aus Glas und Verwendung eines Pulsationsreaktors
DE102015003398A1 (de) 2015-03-18 2016-09-22 Dennert Poraver Gmbh Verfahren und Anlage zur Herstellung von Mikrohohlkugeln aus Glas
DE102017126363A1 (de) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Herstellung eines Zeoliths
DE102018211652A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211635A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211641A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung und Verfahren zur Herstellung von Partikeln
DE102018211639A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung und Verfahren zur Herstellung von Partikeln
DE102018211628A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102019210282A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211650A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211645A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
WO2020225425A1 (de) 2019-05-09 2020-11-12 Ibu-Tec Advanced Materials Ag VORRICHTUNG ZUR THERMISCHEN BEHANDLUNG EINES ROHSTOFFS IN EINEM PULSIERENDEN HEIßGASSTROM
DE102019218690A1 (de) * 2019-12-02 2021-06-02 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
WO2021175849A1 (de) 2020-03-02 2021-09-10 Ibu-Tec Advanced Materials Ag Verfahren zur thermischen behandlung eines batteriematerials in einem thermischen reaktor
EP4327927A1 (de) 2022-08-23 2024-02-28 IBU-tec advanced materials AG Verfahren und reaktor zur thermischen behandlung von batterievorläufermaterial
WO2024042000A1 (en) 2022-08-23 2024-02-29 Ibu-Tec Advanced Materials Ag Method and reactor for thermal treatment of battery precursor material

Also Published As

Publication number Publication date
US7358212B2 (en) 2008-04-15
AU2002302391A1 (en) 2002-09-24
US20040077481A1 (en) 2004-04-22
CN1520380A (zh) 2004-08-11
WO2002072471A3 (de) 2003-10-02
DE10111938A1 (de) 2002-09-26
CA2440613A1 (en) 2002-09-19
DE50214795D1 (de) 2011-01-13
JP2004526653A (ja) 2004-09-02
CN1257100C (zh) 2006-05-24
KR20040012731A (ko) 2004-02-11
EP1370486A2 (de) 2003-12-17
ATE490216T1 (de) 2010-12-15
EP1370486B1 (de) 2010-12-01

Similar Documents

Publication Publication Date Title
EP1370486B1 (de) Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor
JP3850899B2 (ja) 多元素金属酸化物粉末の製造方法
US5081102A (en) Preparation of precursor superconductor metal oxide powders by spray calcination from atomized nitrate solution
DE19650500A1 (de) Dotierte, pyrogen hergestellte Oxide
WO2006027270A2 (de) Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen
WO2007128821A2 (de) Verfahren zur herstellung von suspensionen nanopartikulärer feststoffe
DE2458221A1 (de) Katalysator sowie dessen herstellung und verwendung
DE3633309A1 (de) Stabilisierte metalloxide
EP1189835B1 (de) Sprühpyrolyse- oder sprühtrocknungsverfahren sowie anlage zur durchführung
JPH0873221A (ja) 複合酸化物粉末の製造方法
DE112006000294B4 (de) Verfahren zur Herstellung von Pulverteilchen mit Nanogröße
DE102006046806B4 (de) Verfahren zur Herstellung von beschichteten Partikeln und Verwendung eines thermischen Reaktors zur Durchführung des Verfahrens
WO1990014307A1 (de) Verfahren zur herstellung von oxidischen keramikpulvern
EP0186042A2 (de) Verfahren und Vorrichtung zur Herstellung von keramischen Pulvern auf Basis von ein- und/oder mehrkomponentigen Metalloxiden sowie deren Gemischen
DE19821144A1 (de) Verfahren zur Herstellung von pulverförmigen heterogenen Stoffen
EP0537502B1 (de) Metall- und Metallegierungspulver in Form von mikrokristallinen, kugelförmigen und dichten Teilchen sowie Verfahren und Vorrichtung zur Herstellung der Pulver
CN100554144C (zh) 金属氧化物的制造方法
DE112008000038T5 (de) Verfahren zur Herstellung eines pulverförmigen Rohmaterials für einen Oxid-Supraleiter
DE3638031A1 (de) Feinverteiltes oxid und seine herstellung
DE102006039462B4 (de) Verfahren zur Herstellung von Partikeln
DE10239058A1 (de) Verfahren zur Herstellung eines Heißleiterelements und Herstellungsgerät zur Herstellung von Rohmaterial für ein Heißleiterelement
WO1999038819A1 (de) Verfahren zum herstellen von oxidischen pulvers mit geringen kohlenstoff- und wasserstoffgehalten, deren verwendung sowie mischoxide für hochtemperatursupraleiter und hochtemperatursupraleiter
DE2501810A1 (de) Katalysator und verfahren zur reduktion von stickstoffoxiden
DD245649A1 (de) Verfahren zur herstellung hochdisperser oxide
DE19752080A1 (de) Verfahren zur Herstellung eines mehrkomponentigen, oxidischen Keramikpulvers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002729963

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037011845

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028063821

Country of ref document: CN

Ref document number: 2440613

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002571398

Country of ref document: JP

Ref document number: 10471590

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002729963

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642