WO2005100438A1 - Method for producing polypyrrole film - Google Patents

Method for producing polypyrrole film Download PDF

Info

Publication number
WO2005100438A1
WO2005100438A1 PCT/JP2005/005360 JP2005005360W WO2005100438A1 WO 2005100438 A1 WO2005100438 A1 WO 2005100438A1 JP 2005005360 W JP2005005360 W JP 2005005360W WO 2005100438 A1 WO2005100438 A1 WO 2005100438A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypyrrole film
electrolytic
polypyrrole
polymerization method
electrolytic polymerization
Prior art date
Application number
PCT/JP2005/005360
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuji Zama
Susumu Hara
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Publication of WO2005100438A1 publication Critical patent/WO2005100438A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring

Definitions

  • the present invention relates to a polypyrrole film containing perchlorate ions as a dopant, which can be greatly expanded and contracted by electrolytic oxidation and reduction.
  • conductive polymers such as polypyrrole exhibit electrolytic stretching, which is a phenomenon of stretching or deformation due to electrochemical redox. Electrolytic expansion and contraction of this conductive polymer is expected to be applied to applications such as micromachines, artificial muscles, artificial arms, artificial legs such as powered prostheses, and powered suits, because it generates forces such as pressure and tension during expansion and contraction. In recent years, it has attracted attention. As a method for producing such a conductive polymer, it is common to produce it by an electrolytic polymerization method.
  • a monomer component such as pyrrole is added to an electrolytic solution, a working electrode and a counter electrode are set in the electrolytic solution, and a voltage is applied to both electrodes to increase the conductivity.
  • a method of obtaining a molecular film on the working electrode is performed.
  • the conductive polymer obtained by the electropolymerization method was formed into a film with respect to the extension and generation force per 1 oxidation cycle as a conductive high molecule used in artificial muscle. It is known that when the expansion and contraction ratio of polypyrrole is 1%, a power of 3 MPa can be obtained. (For example, Non-Patent Document 1).
  • Non-Patent Document 1 Synthetic Metals, 90 (1997) 93-100 Disclosure of Invention
  • the above-described electrolytic polymerization method also corresponds to the above-described electrolytic polymerization method for obtaining a conductive polymer.
  • a supporting electrolyte is included in an electrolytic solution.
  • the supporting salt a known electrolyte can be used.However, it has three advantages of being inexpensive, being electrochemically stable, and having good mixing properties in an electrolytic solution. It is desirable to use perchlorate ion (CIO-), which is a supporting salt that is advantageous in the production work.
  • CIO- perchlorate ion
  • the conductive polymer is used in an actuator such as a micromachine, an artificial muscle, or a prosthesis, the purpose is to make the actuator perform a large displacement movement. It is necessary to greatly improve the expansion and contraction rate of about 1%.
  • the expansion and contraction ratio of the conductive polymer actuator containing perchlorate ion as a dopant was 3% or less.
  • polypyrrole films which are conductive polymers
  • it cannot be suitably used for applications such as exterior films and flexible electrodes that require high mechanical strength.
  • it is a conductive polymer containing perchlorate ion (CIO-) as a dopant.
  • the conductive high molecular weight obtained by the electrolytic polymerization method using a solvent such as carbonate or butyl acetate has insufficient stretch ratio and mechanical strength per one oxidation reduction cycle.
  • An object of the present invention is to use perchlorate ion (CIO-), which is a supporting salt that is advantageous in the production operation.
  • the inventors of the present invention have conducted intensive studies and have found that the above-mentioned problems can be solved by using the method for producing a polypyrrole film of the present invention, thereby leading to the present invention.
  • the present invention is as follows.
  • the present invention relates to a method for producing a polypyrrole film using an electrolytic polymerization method, wherein an electrolytic solution used in the electrolytic polymerization method contains pyrrole and / or a pyrrole derivative as a monomer component, and the electrolytic polymerization method is aromatic.
  • An electrolyte containing an aliphatic ester as a solvent, wherein the electrolyte contains perchlorate ions, and a conductive polymer film is formed on the working electrode by applying a voltage to the working electrode and the counter electrode.
  • This is a method for producing a polypyrrole film.
  • perchlorate ion (CIO-) can be used as a supporting salt.
  • the polypyrrole film is not limited to a polypyrrole film that is a polymer containing pyrrole alone as a monomer component, but may be a pyrrole derivative, or a polymer containing pyrrole and a pyrrole derivative as monomer components. Including.
  • the present invention is a polypyrrole film comprising pyrrole and Z or a pyrrole derivative as a polymerized unit, wherein the polypyrrole film is a polypyrrole film obtained by an electrolytic polymerization method, wherein the electrolytic polymerization method is aromatic.
  • the present invention is also an actuator element comprising at least a displacement part displaced by voltage application, an electrolyte and a counter electrode, wherein the displacement part is the above-mentioned polypyrrole film.
  • the actuator is a perchlorate ion (CIO-) as a dopant.
  • the actuator element Including and exhibiting a large expansion / contraction ratio per oxidation-reduction cycle and high mechanical strength, it can be suitably used as an actuator element.
  • the actuator element since the actuator element has high mechanical strength, it can be suitably used for a drive unit of a device that is subjected to a mechanical impact represented by a manipulator and a robot.
  • the perchlorate ion (C1 o-) can be used as a supporting electrolyte, so that a large expansion and contraction rate and high mechanical strength
  • a conductive polymer having a high degree of flexibility can be obtained more easily than a conventional production method.
  • the polypyrrole film of the present invention shows a large expansion / contraction rate per one oxidation-reduction cycle and has high mechanical strength, and thus is suitable as an actuator element, and is particularly subject to mechanical shock represented by a manipulator and a robot. It is more suitable as an actuator element used in the drive unit of the device.
  • the present invention relates to a method for producing a polypyrrole film using an electrolytic polymerization method, wherein an electrolytic solution used in the electrolytic polymerization method contains pyrrole and / or a pyrrole derivative as a monomer component, and the electrolytic polymerization method contains an aromatic ester.
  • a polypyrrole film comprising: an electrolytic solution containing a solvent; wherein the electrolytic solution contains perchlorate ions; and a conductive polymer film is formed on the working electrode by applying a voltage to the working electrode and the counter electrode. In the manufacturing method is there.
  • the electrolytic solution used in the electrolytic polymerization method contains pyrrole and Z or a pyrrole derivative as a monomer component, contains an aromatic ester as a solvent, and further contains perchlorate ions. Including.
  • the electrolytic solution contains perchlorate ions and contains an aromatic ester as a solvent, so that the workability of producing a polypyrrole film as a conductive polymer is easy, and the force is also reduced. It is possible to obtain a polypyrrole film having both a large expansion / contraction ratio per cycle and high mechanical properties.
  • the electrolyte does not contain an aromatic ester as a solvent,
  • the aromatic ester is not particularly limited as long as it has an aromatic ring and at least one ester bond in the molecule.
  • the aromatic ester is, for example, an aromatic ester selected from the group consisting of methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, dimethyl phthalate, getyl phthalate, dibutyl phthalate, and methyl salicylate.
  • Methyl benzoate and dimethyl phthalate are preferred because they can be used and the electrolyte has a high ionic conductivity.
  • the aromatic ester is not particularly limited as long as it is contained as a solvent in the electrolytic solution, but is contained in the electrolytic solution at 60 to 90% by weight based on the total amount of the electrolytic solution.
  • the content of perchlorate in the electrolytic solution is particularly limited as long as it is stably dissolved in the electrolytic solution.
  • the electrolyte preferably contains 0.1 to 35% by weight, more preferably 1 to 20% by weight, in order to maintain good ionic conductivity.
  • Perchloric acid The electrolytic solution containing the solvent can be obtained by dissolving perchlorate in the electrolytic solution.
  • the perchlorate can be dissolved in the electrolytic solution, and is not particularly limited as long as there is little danger of explosion or the like. A force capable of using a tetraalkylammonium salt can be used.
  • butylammonium salt because it is easily available and has high solubility.
  • the working electrode in electrolytic polymerization is not particularly limited as long as it is an electrode that can be used in electrolytic polymerization.
  • a nonmetallic electrode such as a metal electrode or an ITO glass electrode
  • the metal electrode is not particularly limited as long as it is an electrode mainly composed of a metal, but a metal of a metal element selected from the group consisting of Pt, Ti, Ni, Au, Ta, Mo, Cr and W A single electrode or an electrode of these alloys can be suitably used.
  • the metal species contained in the metal electrode is Ni or Ti because the conductive polymer obtained by the above-mentioned production method has a large expansion / contraction ratio and a large generating force and an electrode can be easily obtained.
  • the alloy for example, trade names “INCOLOY alloy 825”, “INCONEL alloy 600”, and “INCONEL alloy X-750” (all manufactured by Daido Special Metal Co., Ltd.) can be used.
  • a known electrode such as an ITO glass electrode can be used as the non-metal electrode.
  • the polypropylene film obtained by using an ITO glass electrode as a working electrode in the electrolytic polymerization can exhibit a tensile strength of 60 MPa or more.
  • the working electrode in the electrolytic polymerization is preferably a metal electrode from the viewpoint of mass productivity of the polypyrrole film.
  • monomer components of the conductive polymer contained in the electrolytic solution used in the electrolytic polymerization method include pyrrole and Z, which are polymerized by electrolytic polymerization and exhibit conductivity.
  • pyrrole derivative is not particularly limited as long as polypyrrole can be obtained by electrolytic polymerization.
  • Use is made of, for example, 1-methylvirol, 1-phenylpyrrole, 3-methylpyrrol, 3,4-dimethylbilol, and 3-phenylpyrrole. be able to.
  • Said mod As a nomer component pyrrol is preferable because it is easy to produce and is stable as a conductive polymer. Also, two or more of the above monomers can be used in combination.
  • the electrolytic solution used in the electrolytic polymerization method contains a fluorine atom with respect to the organic compound solvent, the trifluoromethanesulfonic acid ion and Z or a central atom.
  • a solution with a plurality of aions may contain a monomer of a conductive polymer, and may further contain other known additives such as polyethylene glycol and polyacrylamide.
  • the electrolytic polymerization method used in the method for producing a conductive polymer according to the present invention a known electrolytic polymerization method can be used as the electrolytic polymerization of a conductive high-molecular monomer. Either the constant current method or the electric sweep method can be used.
  • the electrolytic polymerization method can be performed at a current density of 0.01 to 20 mAZcm 2 and a reaction temperature of ⁇ 20 to 80 ° C.
  • the current density is 0.1 to 0.1 mAZcm 2 . — 2mAZcm 2 , reaction temperature of 10-40 ° C is preferable, and reaction temperature of 0-30 ° C is more preferable! / ,.
  • the present invention is a polypyrrole film obtained by the above production method. That is, the present invention is a polypyrrole film comprising pyrrole and Z or a pyrrole derivative as a polymerized unit, wherein the polypyrrole film is a polypyrrole film obtained by an electrolytic polymerization method, and the electrolytic polymerization method comprises the steps of: A polypyrrole film, characterized in that the electrolyte solution contains perchlorate ions.
  • the polypyrrole film is a polypyrrole film obtained by an electrolytic polymerization method containing perchlorate ions and an aromatic ester as a solvent in an electrolytic solution at the time of electrolytic polymerization, one polypyrrole film per oxidation cycle It can be obtained as a polypyrrole film having both high expansion and contraction and high mechanical properties.
  • the aromatic ester in the electrolytic solution of the electrolytic polymerization in the polypyrrole film of the present invention is the same as in the above production method.
  • the aromatic ester is not particularly limited, but may be contained in the preferred electrolytic solution of methyl benzoate and dimethyl phthalate in an amount of 60 to 99% by weight based on the total amount of the electrolytic solution.
  • the perchlorate ion in the electrolytic solution of the electrolytic polymerization in the polypyrrole membrane of the present invention is as described above. It is the same as in the case of the manufacturing method. That is, the polypyrrole film preferably comprises 0.1 to 35% by weight of the electrolyte, more preferably 1 to 15% by weight.
  • the working electrode of the electrolytic polymerization in the polypyrrole film of the present invention is the same as in the above-mentioned production method. That is, it is possible to suitably use an electrode of a simple metal or an alloy of a metal element selected from the group consisting of Pt, Ti, Ni, Au, Ta, Mo, Cr and W.
  • the electrolytic polymerization method for the polypyrrole film of the present invention is the same as the above-mentioned production method, except for the aromatic ester, perchlorate ion, and other conditions except for the working electrode.
  • the polypyrrole film of the present invention is formed on a working electrode by an electrolytic polymerization method.
  • the polypyrrole film formed on the working electrode peels off the working electrode force and is used for the actuator element.However, if the working electrode can be expanded and contracted, use the actuator element with the working electrode. You can also.
  • the method of peeling the polypropylene film formed on the working electrode is not particularly limited, but it is immersed in a polar solvent such as acetone or propylene carbonate, and the attached electrolyte is washed, and then tweezers or the like are used. It can be peeled off using.
  • the present invention is an actuator element including at least a displacement portion displaced by voltage application, an electrolyte, and a counter electrode, wherein the displacement portion is the above-mentioned polypyrrole film, and a voltage is applied to the polypyrrole film and the counter electrode. It is an actuator element to which a lead wire for supplying is connected.
  • the actuator element Since the electrolytic solution includes a polypyrrole film characterized in that the electrolytic solution contains perchlorate ions, the actuator element has a high mechanical strength with a tensile strength of 60 MPa or more. As the maximum expansion ratio due to electrolytic expansion and contraction, the expansion ratio can be 10% or more per 1 reduction. Since the actuator element has a high mechanical strength and a large expansion and contraction ratio, the mechanical impact represented by a manipulator and a robot Can be suitably used for a driving unit of a device provided with
  • the actuator element includes at least a displacement part displaced by applying a voltage, an electrolyte, and a counter electrode.
  • the displacement part and the counter electrode can be installed so as to sandwich the electrolyte so that a voltage can be applied to each of the displacement part and the counter electrode.
  • the electrolyte is not particularly limited as long as the polypyrrole film contains ions capable of performing doping and undoping.
  • An electrolyte such as an electrolyte, a polymer electrolyte, or a gel electrolyte may be used as desired. Can be used.
  • an actuator element having a rod for accommodating the displacement portion, the electrolyte, and the counter electrode in a housing and taking out the displacement of the displacement portion to the outside can be provided.
  • the electrolyte is an electrolyte, it is preferable to adopt an element configuration in which the displacement portion, the electrolyte, and the counter electrode are sealed in a housing.
  • the method for applying a voltage to the displacement portion and the counter electrode is not particularly limited, and can be performed by a known method.
  • a voltage may be applied to the displacement portion and the counter electrode by connecting a lead wire to each of the displacement portion and the counter electrode, connecting the lead wire to a power source, and applying a voltage from the power source. it can.
  • the actuator element has a large expansion / contraction ratio per oxidation-reduction cycle in electrolytic expansion / contraction with high mechanical strength. Therefore, the drive unit of a device to which mechanical shock represented by a manipulator and a robot is applied is provided. It can be suitably used.
  • a polypyrrole film was obtained in the same manner as in Example 1 except that the monomers, dopant ions, solvents, and working electrodes shown in Table 1 were used.
  • a polypyrrole film of Comparative Example 1 was obtained in the same manner as in Example 1, except that the solvents shown in Table 1 were used as the solvent.
  • TBAC 1 0 4 perchlorate tetra - n-Petit Ruan monitor ⁇ beam
  • Working electrode force was also peeled off from the polypyrrole films of Examples 13 and Comparative Example 1 using acetone. Then, it was kept in an aqueous ImolZl PF solution (operating electrolyte) containing a working electrolyte (PF).
  • the expansion / contraction ratio per redox vital was measured by the following measurement method. Further, the tensile strength of the polypyrrole films of Examples 13 and 13 and Comparative Example 1 was measured using the following measurement method. The results are shown in Table 1. The tensile strength was evaluated according to the following evaluation criteria.
  • the film-shaped conductive polymer molded products obtained in Examples 13 and 13 and Comparative Example 1 were used as working electrodes having a length of 15 mm and a width of 2 mm, and a platinum plate was used as a counter electrode.
  • the electrode is held in the electrolyte, connected to a power supply via a lead, and the potential ( ⁇ 0.9— + 0.7 V vs AgZAg +) is applied for one cycle to determine the displacement (displaced length). It was measured.
  • the first oxidation-reduction process is performed by dividing the difference in displacement obtained by extending and contracting the working electrode by one cycle of application (one oxidation reduction cycle) by the original length of the working electrode.
  • Example 13 and 13 and Comparative Example 1 After cutting the polypropylene films obtained in Examples 13 and 13 and Comparative Example 1 into strips each having a length of 20 mm, the strips were subjected to aluminum tabbing so that the tab interval was about 4 mm, and the strips were cut into 5 mm width strips. Each test piece was prepared. Using each test piece, the tensile strength was measured at a test speed of 0.5 mmZmin using a known apparatus in accordance with the JIS K7127 film tensile test (strength). The tensile strength was measured using a tester “INSTRON5582”.
  • Tensile strength is equivalent to that of conventional general-purpose engineering plastics, excellent in tensile strength, and suitable for applications requiring high strength.
  • Tensile strength is comparable to that of conventional polypyrrole film, and is not suitable for applications requiring high strength.
  • Example 13 The polypyrrole membrane of Example 13 has a stretching ratio per oxidation-reduction cycle of 11.2 to 13.5%, so the maximum value of stretching due to electrolytic stretching is 11.2% or more.
  • the mechanical strength (tensile strength) was also 60.1 MPa or more. Therefore, the polypyrrole film of Example 13 uses an aromatic ester as a solvent at the time of electrolytic polymerization.
  • the extensibility per reduction cycle was excellent and the mechanical strength was excellent.
  • the method for producing a polypyrrole film of the present invention since the electrolytic solution contains perchlorate ions, the polypyrrole production operability is reduced in the production of the polypyrrole film using the electrolytic solution containing another negative ion in the supporting electrolyte. Manufacturing workability is better than the method. Furthermore, the method for producing a polypyrrole film according to the present invention includes the step of reducing peroxidation due to electrochemical oxidation-reduction because the electrolyte contains perchlorate ions and the electrolyte further contains an aromatic ester. It is possible to obtain a polypyrrole film having a high mechanical strength and a large expansion / contraction ratio per cycle.
  • the polypyrrole film obtained by the above production method has a high mechanical strength with a large expansion ratio per one oxidation / reduction cycle in the expansion and contraction by electrochemical oxidation / reduction, and thus has a high mechanical strength. It can be suitably used.
  • the actuator element using the above-mentioned polypyrrole film as a dislocation portion has a large mechanical expansion ratio per one oxidation reduction cycle in the expansion and contraction by electrochemical oxidation-reduction, and thus has a high mechanical strength. It can be suitably used as an actuator element used in a drive unit of a device to which a mechanical shock is applied, such as a pulser and a robot.

Abstract

A method for producing a polypyrrole film using an electrolytic polymerization method, characterized in that an electrolyte solution used in the electrolytic polymerization method contains pyrrole or a pyrrole derivative as a monomer component, the above electrolytic polymerization method uses an electrolytic solution containing an aromatic ester as a solvent, the electrolytic solution contains a perchlorate ion, and a voltage is applied to a working electrode and a counter electrode, to thereby form an electroconductive polymer film on the working electrode.

Description

明 細 書  Specification
ポリピロール膜の製造方法  Method for producing polypyrrole film
技術分野  Technical field
[0001] 本発明は、電解酸ィ匕還元により大きな伸縮をすることができる、過塩素酸イオンをド 一パントとして含むポリピロール膜に関する。  The present invention relates to a polypyrrole film containing perchlorate ions as a dopant, which can be greatly expanded and contracted by electrolytic oxidation and reduction.
背景技術  Background art
[0002] ポリピロールなどの導電性高分子は、電気化学的な酸化還元によって伸縮あるい は変形する現象である電解伸縮を発現することが知られて ヽる。この導電性高分子 の電解伸縮は、伸縮の際に押圧や引張り等の発生力が生じることから、マイクロマシ ン、人工筋肉、義手'義足、パワードスーツなどのァクチユエータ等の用途として応用 が期待され、近年注目されている。このような導電性高分子の製造方法としては、電 解重合法により製造されるのが一般的である。電解重合法としては、通常は、電解液 中にピロール等のモノマー成分をカ卩え、この電解液中に作用電極及び対向電極を 設置して、両電極に電圧を印加することで導電性高分子膜を作用電極上に得る方法 が行われる。  [0002] It is known that conductive polymers such as polypyrrole exhibit electrolytic stretching, which is a phenomenon of stretching or deformation due to electrochemical redox. Electrolytic expansion and contraction of this conductive polymer is expected to be applied to applications such as micromachines, artificial muscles, artificial arms, artificial legs such as powered prostheses, and powered suits, because it generates forces such as pressure and tension during expansion and contraction. In recent years, it has attracted attention. As a method for producing such a conductive polymer, it is common to produce it by an electrolytic polymerization method. In the electrolytic polymerization method, usually, a monomer component such as pyrrole is added to an electrolytic solution, a working electrode and a counter electrode are set in the electrolytic solution, and a voltage is applied to both electrodes to increase the conductivity. A method of obtaining a molecular film on the working electrode is performed.
[0003] 電解重合法により得られた導電性高分子は、人工筋肉に用いられている導電性高 分子として、 1酸ィ匕還元サイクル当たりの伸張と発生力とについては、膜に形成され たポリピロールの伸縮率が 1%であるときに 3MPaの発生力が得られる程度であるこ とが知られている。(例えば、非特許文献 1)。  [0003] The conductive polymer obtained by the electropolymerization method was formed into a film with respect to the extension and generation force per 1 oxidation cycle as a conductive high molecule used in artificial muscle. It is known that when the expansion and contraction ratio of polypyrrole is 1%, a power of 3 MPa can be obtained. (For example, Non-Patent Document 1).
[0004] 非特許文献 1 :シンセティックメタルズ (Synthetic Metals), 90 (1997) 93— 100 発明の開示  [0004] Non-Patent Document 1: Synthetic Metals, 90 (1997) 93-100 Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上記における電解重合法も該当するのである力 導電性高分子を得るための電解 重合法としては、電解液中に支持電解質を含むのが通常である。前記支持塩として は、公知の電解質を使用することができるが、安価であること、電気化学的に安定で あること、及び電解液での混合性が良いことの 3つの利点を有することから、製造作 業上有利な支持塩である過塩素酸イオン (CIO―)を用いることが望ま 、。 [0006] しかし、導電性高分子をマイクロマシンや人工筋肉、義手'義足などのァクチユエ一 タに用いる場合には、ァクチユエータにより大きな変位運動をさせることが目的となる ので、 1酸ィ匕還元サイクル当たりの伸縮率を 1%程度力 大きく改善する必要がある。 また、過塩素酸イオンをドーパントとして含む導電性高分子ァクチユエータの伸縮率 は 3%以下であった。 [0005] The above-described electrolytic polymerization method also corresponds to the above-described electrolytic polymerization method for obtaining a conductive polymer. In general, a supporting electrolyte is included in an electrolytic solution. As the supporting salt, a known electrolyte can be used.However, it has three advantages of being inexpensive, being electrochemically stable, and having good mixing properties in an electrolytic solution. It is desirable to use perchlorate ion (CIO-), which is a supporting salt that is advantageous in the production work. [0006] However, when the conductive polymer is used in an actuator such as a micromachine, an artificial muscle, or a prosthesis, the purpose is to make the actuator perform a large displacement movement. It is necessary to greatly improve the expansion and contraction rate of about 1%. The expansion and contraction ratio of the conductive polymer actuator containing perchlorate ion as a dopant was 3% or less.
[0007] また、導電性高分子であるポリピロールフィルムは、汎用エンジニアリングプラスチッ クフィルムと比べて一般には機械的強度が十分ではなぐ高い機械的強度が要求さ れないパッケージ内の電極等の用途には好適であるが、高い機械的強度が要求さ れる外装フィルムやフレキシブル電極等の用途には好適に用 、ることができな 、。特 に、過塩素酸イオン (CIO―)をドーパントとして含む導電性高分子であって、プロピレ  [0007] In addition, polypyrrole films, which are conductive polymers, are generally insufficient in mechanical strength compared to general-purpose engineering plastic films, and are not suitable for applications such as electrodes in packages that do not require high mechanical strength. Although suitable, it cannot be suitably used for applications such as exterior films and flexible electrodes that require high mechanical strength. In particular, it is a conductive polymer containing perchlorate ion (CIO-) as a dopant.
4  Four
ンカーボネートや酢酸ブチル等の溶媒を用いた電解重合法により得られた導電性高 分子は、 1酸ィ匕還元サイクル当たりの伸縮率と機械的強度とが十分ではない。  The conductive high molecular weight obtained by the electrolytic polymerization method using a solvent such as carbonate or butyl acetate has insufficient stretch ratio and mechanical strength per one oxidation reduction cycle.
[0008] 本発明の目的は、製造作業上有利な支持塩である過塩素酸イオン (CIO―)を用い [0008] An object of the present invention is to use perchlorate ion (CIO-), which is a supporting salt that is advantageous in the production operation.
4 Four
、しかも、大きな伸縮率と高い機械的強度とを有する導電性高分子を得ることである。 課題を解決するための手段 In addition, it is an object of the present invention to obtain a conductive polymer having a large expansion and contraction rate and a high mechanical strength. Means for solving the problem
[0009] そこで、本発明者らは、鋭意検討の結果、本発明のポリピロール膜の製造方法を用 いること〖こより、上記課題を解決することができることを見出し本発明に至った。本発 明は以下である。 [0009] The inventors of the present invention have conducted intensive studies and have found that the above-mentioned problems can be solved by using the method for producing a polypyrrole film of the present invention, thereby leading to the present invention. The present invention is as follows.
[0010] 本発明は、電解重合法を用いたポリピロール膜の製造方法であって、電解重合法 に用いられる電解液はピロール及び/又はピロール誘導体をモノマー成分として含 み、前記電解重合法は芳香族エステルを溶媒として含む電解液を用い、前記電解 液は過塩素酸イオンを含み、作用電極及び対極に電圧を印加することにより作用電 極上に導電性高分子膜が形成されることを特徴とするポリピロール膜の製造方法で ある。前記製造方法は、過塩素酸イオン (CIO―)を支持塩として用いることができる  [0010] The present invention relates to a method for producing a polypyrrole film using an electrolytic polymerization method, wherein an electrolytic solution used in the electrolytic polymerization method contains pyrrole and / or a pyrrole derivative as a monomer component, and the electrolytic polymerization method is aromatic. An electrolyte containing an aliphatic ester as a solvent, wherein the electrolyte contains perchlorate ions, and a conductive polymer film is formed on the working electrode by applying a voltage to the working electrode and the counter electrode. This is a method for producing a polypyrrole film. In the above production method, perchlorate ion (CIO-) can be used as a supporting salt.
4  Four
ので製造作業性が良好であり、しかも、得られた導電性高分子膜は電解伸縮による 大きな伸縮率と高い機械的強度とを有する。なお、本願において、ポリピロ一ル膜は 、ピロールのみをモノマー成分とする高分子であるポリピロールの膜状体に限られず 、ピロール誘導体、並びにピロールとピロール誘導体とをモノマー成分とする高分子 も含む。 Therefore, the manufacturing workability is good, and the obtained conductive polymer film has a large expansion and contraction ratio due to electrolytic expansion and contraction and high mechanical strength. In the present application, the polypyrrole film is not limited to a polypyrrole film that is a polymer containing pyrrole alone as a monomer component, but may be a pyrrole derivative, or a polymer containing pyrrole and a pyrrole derivative as monomer components. Including.
[ooii] また、本発明は、ピロール及び Z又はピロール誘導体を重合単位とするポリピロ一 ル膜であって、前記ポリピロール膜が電解重合法により得られたポリピロール膜であり 、前記電解重合法が芳香族エステルを溶媒として含む電解液を用い、前記電解液が 過塩素酸イオンを含むことを特徴とするポリピロール膜である。  [ooii] Further, the present invention is a polypyrrole film comprising pyrrole and Z or a pyrrole derivative as a polymerized unit, wherein the polypyrrole film is a polypyrrole film obtained by an electrolytic polymerization method, wherein the electrolytic polymerization method is aromatic. A polypyrrole film using an electrolytic solution containing a group III ester as a solvent, wherein the electrolytic solution contains perchlorate ions.
[0012] また、本発明は、電圧印加により変位する変位部と電解質と対極とを少なくとも備え たァクチユエータ素子であって、前記変位部が上記のポリピロール膜であるァクチュ エータ素子である。前記ァクチユエータは、ドーパントとして過塩素酸イオン(CIO―)  [0012] The present invention is also an actuator element comprising at least a displacement part displaced by voltage application, an electrolyte and a counter electrode, wherein the displacement part is the above-mentioned polypyrrole film. The actuator is a perchlorate ion (CIO-) as a dopant.
4 含み、しかも大きな 1酸化還元サイクルあたりの伸縮率を示し、高い機械的強度を有 するので、ァクチユエータ素子として好適に用いることができる。特に、前記ァクチュ エータ素子は、高い機械的強度を有するので、マニピュレータ及びロボットに代表さ れる機械的衝撃が与えられる装置の駆動部に、好適に用いることができる。  4 Including and exhibiting a large expansion / contraction ratio per oxidation-reduction cycle and high mechanical strength, it can be suitably used as an actuator element. In particular, since the actuator element has high mechanical strength, it can be suitably used for a drive unit of a device that is subjected to a mechanical impact represented by a manipulator and a robot.
発明の効果  The invention's effect
[0013] 上記のように、本発明のポリピロール膜の製造方法は、得られた導電性高分子膜が 電解伸縮による大きな伸縮率と高 、機械的強度とを有するので、過塩素酸イオン (C1 o―)を支持電解質として用いることができることから、大きな伸縮率と高い機械的強 [0013] As described above, in the method for producing a polypyrrole film of the present invention, since the obtained conductive polymer film has a large expansion and contraction rate due to electrolytic expansion and contraction, and high mechanical strength, the perchlorate ion (C1 o-) can be used as a supporting electrolyte, so that a large expansion and contraction rate and high mechanical strength
4 Four
度とを有する導電性高分子を従来の製造方法よりも容易に得ることができる。また、 本発明のポリピロール膜は、大きな 1酸化還元サイクルあたりの伸縮率を示し、高い 機械的強度を有するので、ァクチユエータ素子として好適であり、特にマニピュレータ 及びロボットに代表される機械的衝撃が与えられる装置の駆動部用いられるァクチュ エータ素子として、更に好適である。  A conductive polymer having a high degree of flexibility can be obtained more easily than a conventional production method. Further, the polypyrrole film of the present invention shows a large expansion / contraction rate per one oxidation-reduction cycle and has high mechanical strength, and thus is suitable as an actuator element, and is particularly subject to mechanical shock represented by a manipulator and a robot. It is more suitable as an actuator element used in the drive unit of the device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] (製造方法)  [0014] (Manufacturing method)
本発明は、電解重合法を用いたポリピロール膜の製造方法であって、電解重合法 に用いられる電解液はピロール及び/又はピロール誘導体をモノマー成分として含 み、前記電解重合法は芳香族エステルを溶媒として含む電解液を用い、前記電解 液は過塩素酸イオンを含み、作用電極及び対極に電圧を印加することにより作用電 極上に導電性高分子膜が形成されることを特徴とするポリピロール膜の製造方法で ある。 The present invention relates to a method for producing a polypyrrole film using an electrolytic polymerization method, wherein an electrolytic solution used in the electrolytic polymerization method contains pyrrole and / or a pyrrole derivative as a monomer component, and the electrolytic polymerization method contains an aromatic ester. A polypyrrole film comprising: an electrolytic solution containing a solvent; wherein the electrolytic solution contains perchlorate ions; and a conductive polymer film is formed on the working electrode by applying a voltage to the working electrode and the counter electrode. In the manufacturing method is there.
[0015] 本発明のポリピロール膜の製造方法において、電解重合法に用いられる電解液に は、ピロール及び Z又はピロール誘導体をモノマー成分として含み、溶媒として芳香 族エステルを含み、さらに過塩素酸イオンを含む。  [0015] In the method for producing a polypyrrole film of the present invention, the electrolytic solution used in the electrolytic polymerization method contains pyrrole and Z or a pyrrole derivative as a monomer component, contains an aromatic ester as a solvent, and further contains perchlorate ions. Including.
[0016] 前記電解液は、過塩素酸イオンを含み、かつ溶媒として芳香族エステルを含むこと により、導電性高分子であるポリピロール膜の製造作業性が容易であり、し力も 1酸ィ匕 還元サイクル当たりの大きな伸縮率と高い機械的物性とを兼ね備えたポリピロール膜 を得ることができる。前記電解液に溶媒として芳香族エステルが含まれな ヽ場合には The electrolytic solution contains perchlorate ions and contains an aromatic ester as a solvent, so that the workability of producing a polypyrrole film as a conductive polymer is easy, and the force is also reduced. It is possible to obtain a polypyrrole film having both a large expansion / contraction ratio per cycle and high mechanical properties. In the case where the electrolyte does not contain an aromatic ester as a solvent,
、 1酸ィ匕還元サイクル当たりの大きな伸縮率と高い機械的物性とを兼ね備えたポリピ ロール膜を得ることは難しい。 However, it is difficult to obtain a polypyrrole film having both a large expansion and contraction rate per one oxidation cycle and high mechanical properties.
[0017] 前記芳香族エステルとしては、芳香環を有し、 1以上エステル結合を分子中に有し ていれば特に限定されるものではない。前記芳香族エステルは、例えば、安息香酸 メチル、安息香酸ェチル、安息香酸プロピル、安息香酸ブチル、フタル酸ジメチル、 フタル酸ジェチル、フタル酸ジブチル、及びサリチル酸メチルからなる群から選ばれ た芳香族エステルを用いることができ、電解液のイオン導電率が大きいことから安息 香酸メチル、フタル酸ジメチルが好ましい。理由は定かではないが、支持塩に過塩素 酸イオンを含む塩を用いても、前記芳香族エステルを溶媒として電解液に用いること により、ポリピロール鎖間の相互作用を高めて、緻密な構造となるので、 1酸化還元サ イタル当たりの大きな伸縮率と高い機械的物性とを兼ね備えたポリピロ一ル膜を得る ことができるものと考えられる。  The aromatic ester is not particularly limited as long as it has an aromatic ring and at least one ester bond in the molecule. The aromatic ester is, for example, an aromatic ester selected from the group consisting of methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, dimethyl phthalate, getyl phthalate, dibutyl phthalate, and methyl salicylate. Methyl benzoate and dimethyl phthalate are preferred because they can be used and the electrolyte has a high ionic conductivity. Although the reason is not clear, even when a salt containing perchlorate ion is used as the supporting salt, the interaction between polypyrrole chains is enhanced by using the aromatic ester as a solvent in the electrolytic solution, and a dense structure is obtained. Therefore, it is considered that a polypyrrole film having both a large expansion and contraction rate per redox vital and high mechanical properties can be obtained.
[0018] 前記芳香族エステルは、電解液中に溶媒として含まれて ヽれば、特に限定されるも のではないが、電解液中に、電解液全量に対して 60— 90重量%含まれれば、 1酸 化還元サイクル当たりの大きな伸縮率と高い機械的物性とを兼ね備えたポリピロール 膜を得ることができる。  The aromatic ester is not particularly limited as long as it is contained as a solvent in the electrolytic solution, but is contained in the electrolytic solution at 60 to 90% by weight based on the total amount of the electrolytic solution. For example, it is possible to obtain a polypyrrole film having both a large expansion and contraction rate per oxidation reduction cycle and high mechanical properties.
[0019] 本発明のポリピロール膜の製造方法において、電解液中に含まれる過塩素酸ィォ ンは、電解液中に安定に溶解していれば、電解液全量中における含有量が特に限 定されるものではないが、良好なイオン伝導度を保っために電解液中に 0. 1— 35重 量%含まれるのが好ましぐ 1一 20重量%含まれるのがより好ましい。過塩素酸ィォ ンを含む電解液は過塩素酸塩を電解液に溶解することにより得ることができる。該過 塩素酸塩は、電解液に溶解することができ、爆発等の危険の少ないものであれば特 に限定されるものではなぐテトラアルキルアンモ-ゥム塩を用いることができる力 テ トラー n プチルアンモ-ゥム塩を用いることが入手が容易で溶解度が大きいために好 ましい。過塩素酸イオンを含む電解液を用いて電解重合を行うことにより、過塩素酸 イオンをドーパントとして含むポリピロール膜が得られる。 [0019] In the method for producing a polypyrrole film of the present invention, the content of perchlorate in the electrolytic solution is particularly limited as long as it is stably dissolved in the electrolytic solution. Although not required, the electrolyte preferably contains 0.1 to 35% by weight, more preferably 1 to 20% by weight, in order to maintain good ionic conductivity. Perchloric acid The electrolytic solution containing the solvent can be obtained by dissolving perchlorate in the electrolytic solution. The perchlorate can be dissolved in the electrolytic solution, and is not particularly limited as long as there is little danger of explosion or the like. A force capable of using a tetraalkylammonium salt can be used. It is preferable to use butylammonium salt because it is easily available and has high solubility. By performing electrolytic polymerization using an electrolytic solution containing perchlorate ions, a polypyrrole film containing perchlorate ions as a dopant can be obtained.
[0020] 本願発明の導電性高分子の製造方法において、電解重合における作用電極は、 電解重合に用いることができる電極であれば特に限定されるものではない。前記作 用電極として、金属電極や ITOガラス電極などの非金属電極を用いることにより、高 い機械的物性を備えたポリピロ一ル膜を得ることができる。前記金属電極は、金属を 主とする電極であれば特に限定されるものではないが、 Pt、 Ti、 Ni、 Au、 Ta、 Mo、 Cr及び Wからなる群より選ばれた金属元素についての金属単体の電極またはこれら の合金の電極を好適に用いることができる。前記製造方法により得られた導電性高 分子の伸縮率及び発生力が大きぐ且つ電極を容易に入手できることから、金属電 極に含まれる金属種が Ni、 Tiであることが特に好ましい。なお、前記合金としては、 例えば、商品名「INCOLOY alloy 825」、「INCONEL alloy 600」、 「INCO NEL alloy X— 750」(以上、大同スペシャルメタル株式会社製)を用いることができ る。また、非金属電極としては、 ITOガラス電極等の公知の電極を用いることができる 。前記電解重合における作用電極として ITOガラス電極を用いて得られたポリピロ一 ル膜は、 60MPa以上の引張り強度を示すことができる。なお、電解重合における作 用電極としては、ポリピロール膜の量産性の観点から、金属電極であることが好まし い。 In the method for producing a conductive polymer of the present invention, the working electrode in electrolytic polymerization is not particularly limited as long as it is an electrode that can be used in electrolytic polymerization. By using a nonmetallic electrode such as a metal electrode or an ITO glass electrode as the working electrode, a polypyrrole film having high mechanical properties can be obtained. The metal electrode is not particularly limited as long as it is an electrode mainly composed of a metal, but a metal of a metal element selected from the group consisting of Pt, Ti, Ni, Au, Ta, Mo, Cr and W A single electrode or an electrode of these alloys can be suitably used. It is particularly preferable that the metal species contained in the metal electrode is Ni or Ti because the conductive polymer obtained by the above-mentioned production method has a large expansion / contraction ratio and a large generating force and an electrode can be easily obtained. As the alloy, for example, trade names “INCOLOY alloy 825”, “INCONEL alloy 600”, and “INCONEL alloy X-750” (all manufactured by Daido Special Metal Co., Ltd.) can be used. In addition, a known electrode such as an ITO glass electrode can be used as the non-metal electrode. The polypropylene film obtained by using an ITO glass electrode as a working electrode in the electrolytic polymerization can exhibit a tensile strength of 60 MPa or more. The working electrode in the electrolytic polymerization is preferably a metal electrode from the viewpoint of mass productivity of the polypyrrole film.
[0021] 本発明の導電性高分子の製造方法において、電解重合法に用いられる電解液に 含まれる導電性高分子のモノマー成分としては、電解重合により高分子化して導電 性を示すピロール及び Zまたはピロール誘導体であれば特に限定されるものではな い。前記ピロール誘導体は、電解重合によりポリピロールを得ることができれば特に 限定されるものではなぐ 1ーメチルビロール、 1 フエ-ルビロール、 3 メチルピロ一 ル、 3, 4—ジメチルビロール、 3—フエ-ルビロールなどを用いることができる。前記モ ノマー成分としては、製造が容易であり、導電性高分子として安定であるために、ピロ ールが好ましい。また、上記モノマーは 2種以上併用することができる。 In the method for producing a conductive polymer of the present invention, monomer components of the conductive polymer contained in the electrolytic solution used in the electrolytic polymerization method include pyrrole and Z, which are polymerized by electrolytic polymerization and exhibit conductivity. Alternatively, there is no particular limitation as long as it is a pyrrole derivative. The pyrrole derivative is not particularly limited as long as polypyrrole can be obtained by electrolytic polymerization. Use is made of, for example, 1-methylvirol, 1-phenylpyrrole, 3-methylpyrrol, 3,4-dimethylbilol, and 3-phenylpyrrole. be able to. Said mod As a nomer component, pyrrol is preferable because it is easy to produce and is stable as a conductive polymer. Also, two or more of the above monomers can be used in combination.
[0022] 本発明の導電性高分子の製造方法において、電解重合法に用いられる電解液に は、前記有機化合物溶媒と前記トリフルォロメタンスルホン酸イオン及び Zまたは中 心原子に対してフッ素原子を複数含むァ-オンとの溶液中に、導電性高分子の単量 体を含み、さらにポリエチレングリコールやポリアクリルアミドなどの公知のその他の添 加剤を含むこともできる。 [0022] In the method for producing a conductive polymer according to the present invention, the electrolytic solution used in the electrolytic polymerization method contains a fluorine atom with respect to the organic compound solvent, the trifluoromethanesulfonic acid ion and Z or a central atom. A solution with a plurality of aions may contain a monomer of a conductive polymer, and may further contain other known additives such as polyethylene glycol and polyacrylamide.
[0023] 本発明の導電性高分子の製造方法において用いられる電解重合法は、導電性高 分子単量体の電解重合として、公知の電解重合方法を用いることが可能であり、定 電位法、定電流法及び電気掃引法のいずれをも用いることができる。例えは、前記 電解重合法は、電流密度 0. 01— 20mAZcm2、反応温度- 20— 80°Cで行うことが でき、良好な膜質の導電性高分子を得るために、電流密度 0. 1— 2mAZcm2、反 応温度 10— 40°Cの条件下で行うことが好ましぐ反応温度が 0— 30°Cの条件であ ることがより好まし!/、。 As the electrolytic polymerization method used in the method for producing a conductive polymer according to the present invention, a known electrolytic polymerization method can be used as the electrolytic polymerization of a conductive high-molecular monomer. Either the constant current method or the electric sweep method can be used. For example, the electrolytic polymerization method can be performed at a current density of 0.01 to 20 mAZcm 2 and a reaction temperature of −20 to 80 ° C. In order to obtain a conductive polymer having good film quality, the current density is 0.1 to 0.1 mAZcm 2 . — 2mAZcm 2 , reaction temperature of 10-40 ° C is preferable, and reaction temperature of 0-30 ° C is more preferable! / ,.
[0024] (ポリピロール膜) (Polypyrrole film)
本発明は、上記製造方法により得られたポリピロール膜である。即ち、本発明は、ピ ロール及び Z又はピロール誘導体を重合単位とするポリピロール膜であって、前記 ポリピロール膜が電解重合法により得られたポリピロール膜であり、前記電解重合法 が芳香族エステルを溶媒として含む電解液を用い、前記電解液が過塩素酸イオンを 含むことを特徴とするポリピロール膜である。前記ポリピロール膜は、電解重合時にお ける電解液中に過塩素酸イオンをと溶媒として芳香族エステルを含む電解重合法に より得られたポリピロール膜であることから、 1酸ィ匕還元サイクル当たりの大きな伸縮率 と高い機械的物性とを兼ね備えたポリピロール膜として得られる。  The present invention is a polypyrrole film obtained by the above production method. That is, the present invention is a polypyrrole film comprising pyrrole and Z or a pyrrole derivative as a polymerized unit, wherein the polypyrrole film is a polypyrrole film obtained by an electrolytic polymerization method, and the electrolytic polymerization method comprises the steps of: A polypyrrole film, characterized in that the electrolyte solution contains perchlorate ions. Since the polypyrrole film is a polypyrrole film obtained by an electrolytic polymerization method containing perchlorate ions and an aromatic ester as a solvent in an electrolytic solution at the time of electrolytic polymerization, one polypyrrole film per oxidation cycle It can be obtained as a polypyrrole film having both high expansion and contraction and high mechanical properties.
[0025] 本発明のポリピロール膜における電解重合の電解液中の芳香族エステルは、上記 製造方法の場合と同様である。つまり、前記芳香族エステルは、特に限定されるもの ではないが、安息香酸メチル、フタル酸ジメチルが好ましぐ電解液中、電解液全量 に対して 60— 99重量%含まれれば良い。  [0025] The aromatic ester in the electrolytic solution of the electrolytic polymerization in the polypyrrole film of the present invention is the same as in the above production method. In other words, the aromatic ester is not particularly limited, but may be contained in the preferred electrolytic solution of methyl benzoate and dimethyl phthalate in an amount of 60 to 99% by weight based on the total amount of the electrolytic solution.
[0026] 本発明のポリピロール膜における電解重合の電解液中の過塩素酸イオンは、上記 製造方法の場合と同様である。つまり、前記ポリピロール膜は、電解液中に 0. 1— 35 重量%含まれるのが好ましぐ 1一 15重量%含まれるのがより好ましい。 [0026] The perchlorate ion in the electrolytic solution of the electrolytic polymerization in the polypyrrole membrane of the present invention is as described above. It is the same as in the case of the manufacturing method. That is, the polypyrrole film preferably comprises 0.1 to 35% by weight of the electrolyte, more preferably 1 to 15% by weight.
[0027] 本発明のポリピロール膜における電解重合の作用電極は、上記製造方法の場合と 同様である。つまり、 Pt、 Ti、 Ni、 Au、 Ta、 Mo、 Cr及び Wからなる群より選ばれた金 属元素についての金属単体の電極またはこれらの合金の電極を好適に用いることが できる。 [0027] The working electrode of the electrolytic polymerization in the polypyrrole film of the present invention is the same as in the above-mentioned production method. That is, it is possible to suitably use an electrode of a simple metal or an alloy of a metal element selected from the group consisting of Pt, Ti, Ni, Au, Ta, Mo, Cr and W.
[0028] また、本発明のポリピロール膜における電解重合法は、芳香族エステル、過塩素酸 イオン、及び作用電極を除ぐその他の条件について、上記製造方法の場合と同様 である。  [0028] The electrolytic polymerization method for the polypyrrole film of the present invention is the same as the above-mentioned production method, except for the aromatic ester, perchlorate ion, and other conditions except for the working electrode.
[0029] 本発明のポリピロール膜は、電解重合法により、作用電極上に形成される。作用電 極上に形成されたポリピロール膜は、作用電極力も剥離してァクチユエータ素子に用 いられるが、作用電極が構造上伸縮可能である場合には作用電極を備えた状態で、 ァクチユエータ素子に用いることもできる。作用電極上に形成されたポリピロ一ル膜を 剥離する方法としては、特に限定されるものではないが、アセトンやプロピレンカーボ ネート等の極性溶媒中に浸漬し、付着した電解液を洗浄後にピンセット等を用いて 剥がすことができる。  [0029] The polypyrrole film of the present invention is formed on a working electrode by an electrolytic polymerization method. The polypyrrole film formed on the working electrode peels off the working electrode force and is used for the actuator element.However, if the working electrode can be expanded and contracted, use the actuator element with the working electrode. You can also. The method of peeling the polypropylene film formed on the working electrode is not particularly limited, but it is immersed in a polar solvent such as acetone or propylene carbonate, and the attached electrolyte is washed, and then tweezers or the like are used. It can be peeled off using.
[0030] (ァクチユエータ素子) [0030] (actuator element)
本発明は、電圧印加により変位する変位部と電解質と対極とを少なくとも備えたァク チユエータ素子であって、前記変位部が上記のポリピロール膜であり、前記ポリピロ ール膜及び前記対極に電圧を供給するためのリード線が接続されているァクチユエ ータ素子である。変位部としてピロール及び Z又はピロール誘導体を重合単位とす るポリピロール膜であって、前記ポリピロール膜が電解重合法により得られたポリピロ ール膜であり、前記電解重合法が芳香族エステルを溶媒として含む電解液を用い、 前記電解液が過塩素酸イオンを含むことを特徴とするポリピロ一ル膜を備えているこ とから、前記ァクチユエータ素子は、引張り強度が 60MPa以上である高い機械的強 度を有し、し力も電解伸縮による最大の伸縮率として、 1酸ィ匕還元当たりの伸縮率が 10%以上の伸縮をすることができる。前記ァクチユエータ素子は、高い機械的強度と 大きな伸縮率を有することから、マニピュレータ及びロボットに代表される機械的衝撃 が与えられる装置の駆動部に、好適に用いることができる。 The present invention is an actuator element including at least a displacement portion displaced by voltage application, an electrolyte, and a counter electrode, wherein the displacement portion is the above-mentioned polypyrrole film, and a voltage is applied to the polypyrrole film and the counter electrode. It is an actuator element to which a lead wire for supplying is connected. A polypyrrole film using pyrrole and Z or a pyrrole derivative as a polymerized unit as a displacement portion, wherein the polypyrrole film is a polypyrrole film obtained by an electrolytic polymerization method, and the electrolytic polymerization method uses an aromatic ester as a solvent. Since the electrolytic solution includes a polypyrrole film characterized in that the electrolytic solution contains perchlorate ions, the actuator element has a high mechanical strength with a tensile strength of 60 MPa or more. As the maximum expansion ratio due to electrolytic expansion and contraction, the expansion ratio can be 10% or more per 1 reduction. Since the actuator element has a high mechanical strength and a large expansion and contraction ratio, the mechanical impact represented by a manipulator and a robot Can be suitably used for a driving unit of a device provided with
[0031] 前記ァクチユエータ素子は、電圧印加により変位する変位部、電解質、及び対極を 少なくとも備えている。前記変位部及び前記対極を、前記変位部及び前記対極のそ れぞれに電圧を印加できるように、前記電解質を挟むように設置することができる。こ のように前記変位部と前記対極を設置することにより、前記変位部及び前記対極に 電圧を印加することで、前記変位部と前記対極との間の電解質中にぉ ヽてイオンの 移動が生じ、ポリピロール膜においてドーピング及び脱ドーピングが生じる。この変位 部におけるポリピロール膜のドーピング及び脱ドーピングにより、ァクチユエータ素子 は馬区動することができる。  [0031] The actuator element includes at least a displacement part displaced by applying a voltage, an electrolyte, and a counter electrode. The displacement part and the counter electrode can be installed so as to sandwich the electrolyte so that a voltage can be applied to each of the displacement part and the counter electrode. By disposing the displacement part and the counter electrode in this way, by applying a voltage to the displacement part and the counter electrode, the movement of ions is largely caused in the electrolyte between the displacement part and the counter electrode. Doping and undoping occur in the polypyrrole film. The doping and undoping of the polypyrrole film in the displacement portion allows the actuator element to move in a horse-like manner.
[0032] 前記電解質は、前記ポリピロール膜がドーピング及び脱ドーピングを行うことができ るイオンを含むものであれば特に限定されるものではなぐ電解液、高分子電解質、 ゲル電解質等の電解質を所望により用いることができる。また、前記変位部、前記電 解質、及び前記対極を筐体中に収納し、変位部の変位を外部に取り出すためにロッ ドを備えたァクチユエータ素子の構成とすることができる。例えば、前記電解質が電 解液である場合には、筐体中に前記変位部、前記電解質、及び前記対極を封入し た素子構成を採用することが好ま 、。前記変位部及び前記対極に電圧を印加する 方法としては、特に限定されるものではなぐ公知の方法により行うことができる。例え ば、前記変位部及び前記対極のそれぞれにリード線を接続し、該リード線を電源に 接続し、該電源から電圧を印加することで、前記変位部及び前記対極に電圧を印加 することができる。  [0032] The electrolyte is not particularly limited as long as the polypyrrole film contains ions capable of performing doping and undoping. An electrolyte such as an electrolyte, a polymer electrolyte, or a gel electrolyte may be used as desired. Can be used. Further, an actuator element having a rod for accommodating the displacement portion, the electrolyte, and the counter electrode in a housing and taking out the displacement of the displacement portion to the outside can be provided. For example, when the electrolyte is an electrolyte, it is preferable to adopt an element configuration in which the displacement portion, the electrolyte, and the counter electrode are sealed in a housing. The method for applying a voltage to the displacement portion and the counter electrode is not particularly limited, and can be performed by a known method. For example, a voltage may be applied to the displacement portion and the counter electrode by connecting a lead wire to each of the displacement portion and the counter electrode, connecting the lead wire to a power source, and applying a voltage from the power source. it can.
[0033] 前記ァクチユエータ素子は、機械的強度が高ぐ電解伸縮における 1酸化還元サイ クル当たりの伸縮率が大きいことから、マニピュレータ及びロボットに代表される機械 的衝撃が与えられる装置の駆動部に、好適に用いることができる。 実施例  [0033] The actuator element has a large expansion / contraction ratio per oxidation-reduction cycle in electrolytic expansion / contraction with high mechanical strength. Therefore, the drive unit of a device to which mechanical shock represented by a manipulator and a robot is applied is provided. It can be suitably used. Example
[0034] 以下に、本願発明の実施例及び比較例を示すが、本願発明は以下に限定されるも のではない。  Hereinafter, Examples and Comparative Examples of the present invention will be described, but the present invention is not limited to the following.
[0035] (実施例 1) (Example 1)
表 1に記載されたモノマー及びドーパントイオンの塩を表 1に記載の溶媒に公知の 撹拌方法により溶解し、導電性高分子のモノマーを 0. 25molZlとして、かつ過塩素 酸イオンを表 1の濃度として含む電解液を調製した。この電解液に作用電極としてチ タン電極 (Ti電極)を用い、対向電極として白金電極(Pt電極)を用いて、重合電流 密度が表 1に記載の値である定電流法により電解重合を行った。この電解重合により 、表 1に記載の導電率及び膜厚を有する実施例 1のポリピロール膜が得られた。 Known salts of the monomers and dopant ions described in Table 1 for the solvents described in Table 1 It was dissolved by a stirring method to prepare an electrolytic solution containing 0.25 mol Zl of a conductive polymer monomer and a concentration of perchlorate ion in Table 1. Using a titanium electrode (Ti electrode) as the working electrode and a platinum electrode (Pt electrode) as the counter electrode, electrolytic polymerization was carried out by the galvanostatic method with a polymerization current density of the value shown in Table 1. Was. By this electrolytic polymerization, the polypyrrole film of Example 1 having the conductivity and the film thickness shown in Table 1 was obtained.
[0036] (実施例 2及び 3)  (Examples 2 and 3)
表 1に記載されたモノマー、ドーパントイオン、溶媒、及び作用電極を用いたこと以 外は実施例 1と同様にしてポリピロ一ル膜を得た。  A polypyrrole film was obtained in the same manner as in Example 1 except that the monomers, dopant ions, solvents, and working electrodes shown in Table 1 were used.
[0037] (比較例 1)  (Comparative Example 1)
溶媒として、表 1に記載の溶媒を用いたこと以外は実施例 1と同様にして比較例 1の ポリピロールフィルムを得た。  A polypyrrole film of Comparative Example 1 was obtained in the same manner as in Example 1, except that the solvents shown in Table 1 were used as the solvent.
[0038] [表 1]  [0038] [Table 1]
Figure imgf000010_0001
Figure imgf000010_0001
T B A C 1 04:過塩素酸テトラ— n—プチルアンモニゥム TBAC 1 0 4: perchlorate tetra - n-Petit Ruan monitor © beam
[0039] (評価) [0039] (Evaluation)
実施例 1一 3及び比較例 1のポリピロール膜を、アセトンを用いて作用電極力も剥離 して、動作電解質 (PF )を含んだ ImolZlの PF水溶液 (動作電解液)に保持した。 Working electrode force was also peeled off from the polypyrrole films of Examples 13 and Comparative Example 1 using acetone. Then, it was kept in an aqueous ImolZl PF solution (operating electrolyte) containing a working electrolyte (PF).
6 6  6 6
保持されたポリピロール膜について、下記の測定方法により、それぞれ 1酸化還元サ イタル当たりの伸縮率を測定した。また、実施例 1一 3及び比較例 1のポリピロール膜 について、下記の測定方法を用いて引張強度を測定した。結果を表 1に示す。なお 、引張強度については、下記の評価基準により評価した。  With respect to the retained polypyrrole film, the expansion / contraction ratio per redox vital was measured by the following measurement method. Further, the tensile strength of the polypyrrole films of Examples 13 and 13 and Comparative Example 1 was measured using the following measurement method. The results are shown in Table 1. The tensile strength was evaluated according to the following evaluation criteria.
[0040] 〔伸縮率の測定方法〕 [Method of measuring expansion / contraction ratio]
実施例 1一 3及び比較例 1で得られた膜状の導電性高分子成形品を長さ 15mm、 幅 2mmの動作電極とし、白金プレートを対向電極とし、それぞれ電極の端部に、動 作電極を前記電解液中に保持し、リードを介して電源と接続して、電位 (-0. 9— + 0 . 7V v. s. AgZAg+)を 1サイクル印カロして変位量 (変位した長さ)を測定した。動 作電極が 1サイクルの印加(1酸ィ匕還元サイクル)で伸長と収縮とをすることにより得ら れた変位の差を、動作電極の元の長さで割ることにより、最初の酸化還元サイクルで ある 1酸ィ匕還元サイクル当たりの伸縮率を求めた。  The film-shaped conductive polymer molded products obtained in Examples 13 and 13 and Comparative Example 1 were used as working electrodes having a length of 15 mm and a width of 2 mm, and a platinum plate was used as a counter electrode. The electrode is held in the electrolyte, connected to a power supply via a lead, and the potential (−0.9— + 0.7 V vs AgZAg +) is applied for one cycle to determine the displacement (displaced length). It was measured. The first oxidation-reduction process is performed by dividing the difference in displacement obtained by extending and contracting the working electrode by one cycle of application (one oxidation reduction cycle) by the original length of the working electrode. The expansion / contraction ratio per cycle, ie, one cycle of reduction of the acid, was determined.
[0041] (伸縮率の測定方法) (Method of measuring expansion ratio)
実施例 1一 3及び比較例 1で得られたポリピロ一ル膜をそれぞれ長さ 20mmの短冊 状に裁断した後に、タブ間隔が約 4mmとなるようにアルミタブ力卩ェを施して 5mm幅 短冊である試験片をそれぞれ作成した。各試験片を用いて、 JIS K7127のフィルム 引張試験 (強さ)に準拠して、試験速度 0. 5mmZminで引張強度を公知の装置を 用いて測定した。なお、引張強度の測定には、試験機「INSTRON5582型」を用い て測定した。  After cutting the polypropylene films obtained in Examples 13 and 13 and Comparative Example 1 into strips each having a length of 20 mm, the strips were subjected to aluminum tabbing so that the tab interval was about 4 mm, and the strips were cut into 5 mm width strips. Each test piece was prepared. Using each test piece, the tensile strength was measured at a test speed of 0.5 mmZmin using a known apparatus in accordance with the JIS K7127 film tensile test (strength). The tensile strength was measured using a tester “INSTRON5582”.
[0042] (評価基準) [0042] (Evaluation criteria)
〇:引張り強度が従来の汎用エンジニアリングプラスチックと同等であり、引張強度 が優れ、高強度が要求される用途に好適である。  〇: Tensile strength is equivalent to that of conventional general-purpose engineering plastics, excellent in tensile strength, and suitable for applications requiring high strength.
X:引張り強度が従来のポリピロールフィルムと同程度であり、高強度が要求される 用途に好適ではない。  X: Tensile strength is comparable to that of conventional polypyrrole film, and is not suitable for applications requiring high strength.
[0043] (結果) [0043] (Result)
実施例 1一 3のポリピロール膜は、 1酸化還元サイクル当たりの伸縮率が 11. 2— 13 . 5%であるので、電解伸縮による伸縮の最大値が 11. 2%以上であり、さらに機械 的強度(引張り強度)も 60.1MPa以上であった。従って、実施例 1一 3のポリピロール 膜は、電解重合時に、溶媒として芳香族エステルを用いていることから、製造作業性 の良好な過塩素酸イオンを電解質に用いても、電解伸縮における 1酸化還元サイク ル当たりの伸縮率に優れ、しかも機械的強度に優れていた。 Example 13 The polypyrrole membrane of Example 13 has a stretching ratio per oxidation-reduction cycle of 11.2 to 13.5%, so the maximum value of stretching due to electrolytic stretching is 11.2% or more. The mechanical strength (tensile strength) was also 60.1 MPa or more. Therefore, the polypyrrole film of Example 13 uses an aromatic ester as a solvent at the time of electrolytic polymerization. The extensibility per reduction cycle was excellent and the mechanical strength was excellent.
[0044] 一方、比較例 1のポリピロ一ル膜は金属電極を用いて ヽるが、芳香族エステルを溶 媒として用いな力つたことから、実施例 1一 3のポリピロール膜に比べて機械的強度が 低下した。 On the other hand, although the polypyrrole film of Comparative Example 1 was formed by using a metal electrode, it was mechanically different from the polypyrrole film of Examples 13 to 13 because it did not use an aromatic ester as a solvent. Strength decreased.
産業上の利用可能性  Industrial applicability
[0045] 本発明のポリピロール膜の製造方法は、電解液中に過塩素酸イオンを含むことから 、ポリピロールの製造作業性が他のマイナスイオンを支持電解質に含む電解液を用 いたポリピロール膜の製造方法に比べて、製造作業性が良好である。さらに、本発明 のポリピロール膜の製造方法は、電解液中に過塩素酸イオンを含み、さらに電解液 中に芳香族エステルを含むことから、電気化学的な酸化還元による伸縮における 1 酸ィ匕還元サイクル当たりの伸縮率が大きぐ機械的強度が高いポリピロ一ル膜を得る ことができる。 [0045] In the method for producing a polypyrrole film of the present invention, since the electrolytic solution contains perchlorate ions, the polypyrrole production operability is reduced in the production of the polypyrrole film using the electrolytic solution containing another negative ion in the supporting electrolyte. Manufacturing workability is better than the method. Furthermore, the method for producing a polypyrrole film according to the present invention includes the step of reducing peroxidation due to electrochemical oxidation-reduction because the electrolyte contains perchlorate ions and the electrolyte further contains an aromatic ester. It is possible to obtain a polypyrrole film having a high mechanical strength and a large expansion / contraction ratio per cycle.
[0046] 上記製造方法により得られたポリピロール膜は、電気化学的な酸ィ匕還元による伸縮 における 1酸ィ匕還元サイクル当たりの伸縮率が大きぐ機械的強度が高いことから、ァ クチユエータ素子として好適に用いることができる。さらに、前記ポリピロ一ル膜を変 位部に用いたァクチユエータ素子は、電気化学的な酸化還元による伸縮における 1 酸ィ匕還元サイクル当たりの伸縮率が大きぐ機械的強度が高いことから、マ-ピユレ ータ及びロボットに代表される機械的衝撃が与えられる装置の駆動部に用いられる ァクチユエータ素子として好適に用いることができる。  [0046] The polypyrrole film obtained by the above production method has a high mechanical strength with a large expansion ratio per one oxidation / reduction cycle in the expansion and contraction by electrochemical oxidation / reduction, and thus has a high mechanical strength. It can be suitably used. Further, the actuator element using the above-mentioned polypyrrole film as a dislocation portion has a large mechanical expansion ratio per one oxidation reduction cycle in the expansion and contraction by electrochemical oxidation-reduction, and thus has a high mechanical strength. It can be suitably used as an actuator element used in a drive unit of a device to which a mechanical shock is applied, such as a pulser and a robot.

Claims

請求の範囲 The scope of the claims
[1] 電解重合法を用いたポリピロール膜の製造方法であって、  [1] A method for producing a polypyrrole film using an electrolytic polymerization method,
電解重合法に用いられる電解液はピロール及び Z又はピロール誘導体をモノマー 成分として含み、  The electrolytic solution used in the electrolytic polymerization method contains pyrrole and Z or a pyrrole derivative as a monomer component,
前記電解重合法は芳香族エステルを溶媒として含む電解液を用い、  The electrolytic polymerization method uses an electrolytic solution containing an aromatic ester as a solvent,
前記電解液は過塩素酸イオンを含み、  The electrolyte contains perchlorate ions,
作用電極及び対極に電圧を印加することにより作用電極上に導電性高分子膜が形 成される  A conductive polymer film is formed on the working electrode by applying a voltage to the working electrode and the counter electrode.
ことを特徴とするポリピロール膜の製造方法。  A method for producing a polypyrrole film.
[2] 前記電解重合法に用いられる作用電極は金属電極である請求の範囲第 1項に記載 のポリピロール膜の製造方法。  2. The method for producing a polypyrrole film according to claim 1, wherein the working electrode used in the electrolytic polymerization method is a metal electrode.
[3] 前記芳香族エステルが、安息香酸メチル、安息香酸ェチル、安息香酸プロピル、安 息香酸ブチル、フタル酸ジメチル、フタル酸ジェチル、フタル酸ジブチル、及びサリ チル酸メチルカ なる群よりいずれか 1つ以上選ばれることを特徴とする請求の範囲 第 1項に記載のポリピロール膜の製造方法。  [3] The aromatic ester is selected from the group consisting of methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, dimethyl phthalate, getyl phthalate, dibutyl phthalate, and methylca salicylate. 2. The method for producing a polypyrrole film according to claim 1, wherein at least one is selected.
[4] 前記電解液が 0. 05-1. OmolZLの濃度で過塩素酸イオンを含む請求の範囲第 1 項に記載のポリピロール膜の製造方法。  [4] The method for producing a polypyrrole film according to claim 1, wherein the electrolytic solution contains perchlorate ions at a concentration of 0.05-1. OmolZL.
[5] ピロール及び Z又はピロール誘導体を重合単位とするポリピロール膜であって、 前記ポリピロール膜が電解重合法により得られたポリピロール膜であり、  [5] A polypyrrole film having a polymerization unit of pyrrole and Z or a pyrrole derivative, wherein the polypyrrole film is a polypyrrole film obtained by an electrolytic polymerization method,
前記電解重合法が芳香族エステルを溶媒として含む電解液を用い、  The electrolytic polymerization method uses an electrolytic solution containing an aromatic ester as a solvent,
前記電解液が過塩素酸イオンを含むことを特徴とするポリピロール膜。  A polypyrrole membrane, wherein the electrolyte contains perchlorate ions.
[6] 前記電解重合法に用いられる作用電極が金属電極である請求の範囲第 5項に記載 のポリピロール膜。  [6] The polypyrrole film according to claim 5, wherein the working electrode used in the electrolytic polymerization method is a metal electrode.
[7] 前記芳香族エステルが、安息香酸メチル、安息香酸ェチル、安息香酸プロピル、安 息香酸ブチル、フタル酸ジメチル、フタル酸ジェチル、フタル酸ジブチル、及びサリ チル酸メチルカ なる群よりいずれか 1つ以上選ばれることを特徴とする請求の範囲 第 5項に記載のポリピロール膜。  [7] The aromatic ester is selected from the group consisting of methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, dimethyl phthalate, getyl phthalate, dibutyl phthalate, and methyl salicylate. 6. The polypyrrole film according to claim 5, wherein at least one is selected.
[8] 引張り強度が 60MPa以上である請求の範囲第 5項に記載のポリピロール膜。 [8] The polypyrrole film according to claim 5, having a tensile strength of 60 MPa or more.
[9] ポリピロール膜中にドーパントとして過塩素酸イオンを含む請求の範囲第 5項に記載 のポリピロール膜。 [9] The polypyrrole film according to claim 5, wherein the polypyrrole film contains perchlorate ion as a dopant.
[10] 電圧印加により変位する変位部と電解質と対極とを少なくとも備えたァクチユエータ 素子であって、前記変位部が請求の範囲第 5項に記載のポリピロール膜であるァク チユエータ素子。  [10] An actuator element comprising at least a displacement part displaced by voltage application, an electrolyte, and a counter electrode, wherein the displacement part is the polypyrrole film according to claim 5.
PCT/JP2005/005360 2004-04-15 2005-03-24 Method for producing polypyrrole film WO2005100438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-120722 2004-04-15
JP2004120722A JP2005298764A (en) 2004-04-15 2004-04-15 Method for preparing polypyrrole film

Publications (1)

Publication Number Publication Date
WO2005100438A1 true WO2005100438A1 (en) 2005-10-27

Family

ID=35149959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005360 WO2005100438A1 (en) 2004-04-15 2005-03-24 Method for producing polypyrrole film

Country Status (2)

Country Link
JP (1) JP2005298764A (en)
WO (1) WO2005100438A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086288A1 (en) * 2006-01-24 2007-08-02 Eamex Corporation Process for producing conductive polymer actuator device
US9099410B2 (en) 2003-10-13 2015-08-04 Joseph H. McCain Microelectronic device with integrated energy source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943707B2 (en) * 2006-01-16 2012-05-30 イーメックス株式会社 Conductive polymer actuator element
JP5249526B2 (en) * 2006-05-31 2013-07-31 本田技研工業株式会社 Method and apparatus for producing conductive polymer film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088036A (en) * 1983-10-21 1985-05-17 Agency Of Ind Science & Technol Production of electroconductive polypyrrole
JPH0649184A (en) * 1992-03-10 1994-02-22 Sumitomo Chem Co Ltd Production of conductive resin composite
JPH10306144A (en) * 1997-05-08 1998-11-17 Toshio Kunugi Method for high-sensitivity shrinkage elongation of pyrrole polymer film or fiber
JPH11263828A (en) * 1997-12-31 1999-09-28 Kemet Electronics Corp Production of conductive polymer using self-regenerative oxidizing agent
JP2000239361A (en) * 1998-07-06 2000-09-05 Showa Denko Kk Conductive polymer, solid electrolytic capacitor and production thereof
JP2004162035A (en) * 2002-10-02 2004-06-10 Eamex Co Method for producing conductive polymer, conductive polymer, conductive polymer molding and conductive molymer, laminate and apparatus using them
JP2004285352A (en) * 2003-03-04 2004-10-14 Eamex Co Deformable high strength polypyrrole film and its producing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164804A (en) * 1987-12-21 1989-06-28 Canon Inc Actuator
JP3067284B2 (en) * 1991-07-10 2000-07-17 松下電器産業株式会社 Capacitor and manufacturing method thereof
JPH05326338A (en) * 1992-05-21 1993-12-10 Nippon Chibagaigii Kk Solid electrolytic capacitor and its manufacture
JP2000336154A (en) * 1999-03-23 2000-12-05 Mitsubishi Chemicals Corp Production of electroconductive polymer
JP2004010858A (en) * 2002-06-11 2004-01-15 Yamaguchi Technology Licensing Organization Ltd Method for producing electroconductive polymer fine particle and the electroconductive polymer fine particle
JP2005187510A (en) * 2003-12-24 2005-07-14 Achilles Corp Film-like conductive polymer and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088036A (en) * 1983-10-21 1985-05-17 Agency Of Ind Science & Technol Production of electroconductive polypyrrole
JPH0649184A (en) * 1992-03-10 1994-02-22 Sumitomo Chem Co Ltd Production of conductive resin composite
JPH10306144A (en) * 1997-05-08 1998-11-17 Toshio Kunugi Method for high-sensitivity shrinkage elongation of pyrrole polymer film or fiber
JPH11263828A (en) * 1997-12-31 1999-09-28 Kemet Electronics Corp Production of conductive polymer using self-regenerative oxidizing agent
JP2000239361A (en) * 1998-07-06 2000-09-05 Showa Denko Kk Conductive polymer, solid electrolytic capacitor and production thereof
JP2004162035A (en) * 2002-10-02 2004-06-10 Eamex Co Method for producing conductive polymer, conductive polymer, conductive polymer molding and conductive molymer, laminate and apparatus using them
JP2004285352A (en) * 2003-03-04 2004-10-14 Eamex Co Deformable high strength polypyrrole film and its producing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9099410B2 (en) 2003-10-13 2015-08-04 Joseph H. McCain Microelectronic device with integrated energy source
US9413405B2 (en) 2003-10-13 2016-08-09 Joseph H. McCain Microelectronic device with integrated energy source
WO2007086288A1 (en) * 2006-01-24 2007-08-02 Eamex Corporation Process for producing conductive polymer actuator device

Also Published As

Publication number Publication date
JP2005298764A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
CN102365816B (en) Electrode film for polymer actuator element, and polymer actuator element comprising same
Shaplov et al. Ionic semi-interpenetrating networks as a new approach for highly conductive and stretchable polymer materials
Hara et al. Free-standing gel-like polypyrrole actuators doped with bis (perfluoroalkylsulfonyl) imide exhibiting extremely large strain
JP2002100405A (en) Resin composition for gel high polymer solid electrolyte and the gel high polymer solid electrolyte
Hara et al. Highly stretchable and powerful polypyrrole linear actuators
WO2005100438A1 (en) Method for producing polypyrrole film
JP5948624B2 (en) Conductive polymer composite and method for producing the same
JP2004082395A (en) Method for forming laminate and laminate
JP5915826B2 (en) Conductive polymers containing phenolic compounds
JP4943707B2 (en) Conductive polymer actuator element
JP5388192B2 (en) Conductive polymer actuator material
JP4727182B2 (en) Driving method of conductive polymer actuator element
KR20210105991A (en) Dynamically coupled supramolecular polymers for stretchable batteries
Zama et al. The correlation between electrically induced stress and mechanical tensile strength of polypyrrole actuators
JP2006274229A (en) Method for driving conductive polymer actuator element
US8715531B2 (en) Actuator
JP2013106491A (en) Polymer actuator
Jeong et al. Highly Conductive Self-Healable Rhenium Oxide–Polytetrahydrofuran Composite for Resilient Flexible Electrode
JP6481356B2 (en) Electrolyte for actuator element and actuator element
Wickramasinhage et al. Gel actuators based on polymeric radicals
US10745526B2 (en) Crosslinked polymer based on a random copolymer and a volatile polyaminated crosslinking agent and processes for producing same
JP4644130B2 (en) Method for manufacturing conductive polymer actuator element
US5120407A (en) Electrochemical polymerization of five-membered heterocyclic monomers
JP2005187510A (en) Film-like conductive polymer and its manufacturing method
JPH01157060A (en) Polyaniline electrode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase